
DIPLOMARBEIT

Using Modern Equivariant Machine Learning
Architectures as Effective Hamiltonians for

Monte Carlo Simulations of
Quantum Spin Systems

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

066 461
Masterstudium Technische Physik

eingereicht von

Felix Schlemmer
Matrikelnummer 11906276

ausgeführt am Institut für Theoretische Physik
der Fakultät für Physik der Technischen Universität Wien

Betreuung
Betreuer: Privatdoz. Dipl.-Ing. Dr.techn. Andreas Ipp

Wien, 31.08.2025 (Unterschrift Verfasser) (Unterschrift Betreuer)





Kurzfassung

Monte-Carlo-Methoden spielen eine fundamentale Rolle in der numerischen Sim-
ulation physikalischer Systeme, insbesondere in der statistischen Mechanik, der
Quantenmechanik und der Festkörperphysik. In dieser Arbeit werden verschiedene
Monte-Carlo-Techniken und deren Anwendung auf unterschiedliche Hamiltonians
untersucht, mit besonderem Fokus auf das Ising-Modell, das Ising-ähnliche Pla-
quettenmodell und das Double-Exchange-Modell. Ein zentrales Ziel ist der Ver-
gleich verschiedener Update-Strategien, darunter lokale Metropolis-Updates, glob-
ale Wolff-Cluster-Updates und Self Learning Monte Carlo (SLMC) Updates. Nach
der Demonstration der Wirksamkeit von SLMC anhand einer Proof-of-Concept-
Studie des Ising-ähnlichen Plaquettenmodells wird gezeigt, dass SLMC in Kom-
bination mit netzwerkbasierten effektiven Hamiltonians die Simulationseffizienz
komplexer Quantenspinsysteme signifikant verbessern kann. Zukünftige Arbeiten
können sich darauf konzentrieren, den vorgestellten Formalismus auf komplexere
Systeme wie die S U(3)-Symmetriegruppe der QCD zu erweitern.





Abstract

Monte Carlo methods play a fundamental role in the numerical simulation of phys-
ical systems, particularly in statistical mechanics, quantum mechanics, and con-
densed matter physics. This study explores various Monte Carlo techniques and
their application to different Hamiltonians, with a focus on the Ising model, the
Ising-like plaquette model, and the Double Exchange model. A key objective is
to compare different update strategies, including local Metropolis updates, global
Wolff cluster updates, and Self Learning Monte Carlo (SLMC) updates. After
demonstrating the effectiveness of SLMC using a proof-of-concept study of the
Ising-like plaquette model, it is shown that SLMC in combination with network-
based effective Hamiltonians can improve the simulation efficiency of complex
quantum spin systems significantly. Future work might focus on extending the
presented formalism to more complex systems such as the S U(3) symmetry group
of QCD.
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1. Introduction

Monte Carlo methods have long been a cornerstone in the numerical simulation of
physical systems, providing powerful tools for investigating statistical mechanics,
quantum mechanics, and condensed matter physics [1]. This work explores various
Monte Carlo techniques and their application to different Hamiltonians, with a
particular focus on the Ising model [2], the Ising-like plaquette model [3], and
the Double Exchange model [4–6]. The study aims to compare different update
methods, including local and global techniques, and to assess the effectiveness
of Self Learning Monte Carlo (SLMC) [3] updates in improving computational
efficiency for complex quantum systems.
The motivation behind this research lies in the necessity of efficient simulation
techniques for complex systems. Many-body problems, particularly those involv-
ing interactions between classical and quantum mechanical degrees of freedom,
pose significant computational challenges. The Double Exchange model, which
describes the coupling of itinerant electrons to localized spins, exemplifies such a
system. Traditional Monte Carlo methods, while effective, often suffer from critical
slowing down, limiting their applicability near phase transitions. By incorporating
cluster update methods, such as the Wolff algorithm, and exploring the potential of
SLMC, this work seeks to mitigate these limitations and enhance the performance
of Monte Carlo simulations.
This thesis is structured as follows: Chapter 2 provides a detailed description of
the Hamiltonians analyzed in this work, starting with the classical Ising model,
followed by the Ising-like plaquette model, and concluding with the more com-
plex Double Exchange model. Chapter 3 introduces the fundamental principles
of Monte Carlo simulations and explores several update strategies, including lo-
cal Metropolis updates, Wolff cluster updates, and the Self Learning Monte Carlo
(SLMC) method. Chapters 4 and 5 discuss the construction and training of effec-
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tive Hamiltonians using neural network architectures, such as transformer-based
and fully connected models, with an emphasis on numerical stability and expres-
sivity. Chapter 6 presents a comprehensive comparison of simulation performance
across models and update schemes, evaluating acceptance rates, autocorrelation
lengths, and accuracy of observable estimation. Finally, Chapter 7 concludes with
a summary of key findings and an outlook on future directions.
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2. Exact Hamiltonians

This chapter provides an overview of the Hamiltonians investigated in this study.
Beginning with the Ising model, a well-established framework in statistical mechan-
ics, its formulation and key properties will be discussed. After the Ising model,
the Ising-like plaquette model is introduced, which is used to validate the Self
Learning Monte Carlo implementation. The chapter then introduces the Double
Exchange model, which describes the interaction between itinerant electrons and
classical spins, requiring a more intricate treatment due to the coupling of classical
and quantum degrees of freedom. The mathematical structure of these models is
presented, along with relevant approximations and observables that will be used
in subsequent Monte Carlo simulations.

2.1. Ising Model

In preparation for simulating the Double Exchange model, a simpler model, namely
the Ising model, is considered. The Ising model is a simplification of the more
generalized classical Heisenberg model [7]

H eisenber gH({S}) = −1

2

∑︁
i, j

Jij Si · Sj. (2.1)

The Heisenberg model describes classical spins Si of unit length, which are placed
on a lattice. The interaction strength between the spins on the lattice sites i and
j is given by the coupling constant Jij. The coupling constant fulfills Jij = Jj i and
to prevent self interactions of the spins, Jii = 0 holds. A common simplification
of the Heisenberg model is to pin the spins to one direction, most commonly the
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z-direction. The resulting Hamiltonian

I singH({S}) = −1

2

∑︁
i, j

Jij S
z
i · Sz

j (2.2)

describes the Ising model without an external field.
The model was first introduced by Ernst Ising and Wilhelm Lenz in 1920 [2],
and in 1925 an exact solution for the 1d-Ising model was found by Ising and
subsequently published in his thesis [8]. The one dimensional model does not show
a phase transition. The two dimensional model was solved only approximately 20
years later in 1942 by Lars Onsager [9, 10]. In two or more dimensions, the Ising
model shows a phase transition between an unordered and ordered phase. The
ordered phase shows ferro- or antiferromagnetic order, depending on the sign of
the coupling parameter J .
The expectation values for observables in the Ising model can be calculated us-
ing

⟨O ⟩β =
1

Zβ

∫︁
dS e−βH({S}) O({S}), (2.3)

Zβ =

∫︁
dS e−βH({S}), (2.4)

where Z is the partition function. Common observables are the magnetization and
energy [7].

2.1.1. Mean Field Approximation with External Field

A common method for calculating the partition function Zβ of the Ising model
is the mean field approximation. Starting from the Ising model with an external
field h (2.5)

I singH({S}) = −J

2

∑︁
⟨i, j⟩

Sz
i S

z
j − h

∑︁
i

Sz
i , (2.5)

the nearest neighbour interaction Sz
i S

z
j is expanded around the expectation value

⟨Sz
i ⟩ and higher order terms of the fluctuation (⟨Sz

i ⟩ − Si) are dropped, as given
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by

Sz
i S

z
j = (⟨Sz

i ⟩+ Sz
i − ⟨Sz

i ⟩) · (⟨Sz
j ⟩+ Sz

j − ⟨Sz
j ⟩)

= ⟨Sz
i ⟩⟨Sz

j ⟩+ ⟨Sz
i ⟩(Sz

j − ⟨Sz
j ⟩) + ⟨Sz

j ⟩(Sz
i − ⟨Sz

i ⟩)+
+

✭✭✭✭✭✭✭✭✭✭✭✭
(Sz

i − ⟨Sz
i ⟩)(Sz

j − ⟨Sz
j ⟩).

(2.6)

The resulting mean field (MFT) Hamiltonian is

M F TH({S}) = 1

2
m2N q J −

∑︁
i

Sz
i (h+ q J m) , (2.7)

where m = ⟨Sz
i ⟩, N is the total number of spins in the system, q is the number

of nearest neighbours, and Sz
i ∈ {−1, 1}. The partition function Zβ evaluates

to

Zβ =
∑︁

Sz
i ∈{−1,1}

[︀
e−β M F TH({S})]︀ = (︂

e−
1
2
β m2q J2 cosh

[︀
β(h+ q J m)

]︀)︂N

. (2.8)

With m = 1
β N

∂
∂ h logZβ, an implicit equation for the magnetization of the system

can be calculated [7]
m = tanh

[︀
β(h+ q J m)

]︀
. (2.9)

A plot of the magnetization is given in figure 2.1.

2.2. Ising-Like Plaquette Model

An extension of the Ising model considered in this thesis is an Ising-like plaquette
model. The Hamiltonian is first introduced in [3] and used to demonstrate the
effectiveness of the Self Learning Monte Carlo method (SLMC). The Hamiltonian
– given in equation (2.10) – is a direct extension of the Ising model and introduces
a non-linear fourth order spin term. As for the Ising model, the degrees of freedom
considered are one dimensional spins Sz

i ∈ {+1,−1}. A similar Hamiltonian could
be constructed using O(3) spins, however, such a Hamiltonian would need to con-
sider permutations of the plaquette spins. If the plaquette coupling t is taken to
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Figure 2.1.: The dashed line corresponds to an external field of h = 0, the solid
line to an external field h = 0.1. In both cases, the number of nearest
neighbours is q = 4 and the coupling constant is J = 4.

be t = 0, the model reduces to the ordinary Ising model, given by

P QH({S}) = −J
∑︁
⟨i, j⟩

Sz
i S

z
j − t

∑︁
ij k l∈□

Sz
i S

z
jS

z
kS

z
l , (2.10)

with a constant coupling J and only first order nearest neighbour interactions.
In the context of this thesis, the model is used to validate the implementation of
the Self Learning Monte Carlo method (for details see section 3.4) and familiarize
oneself with training effective models.
The Ising-like plaquette model is suitable for these tasks, as the non-linear nature
of the model cannot be reproduced exactly by linear nearest neighbour interactions
of higher orders, and thus if the observables of the Hamiltonian can be reproduced
correctly using SLMC, the robustness of the reweighting is demonstrated.
The formalism developed for the Ising model (section 2.1) can be applied to the
Ising-like plaquette model without major modification.
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2.3. Double Exchange Model

The Double Exchange model – also known as spin fermion model – was first pro-
posed by Clarence Zehner [5] and describes the interaction between itinerant elec-
trons and stationary, classical spins. It therefore describes an interaction between
classical and quantum-mechanical degrees of freedom [6].

2.3.1. Hamiltonian and Ladder Operators

The Hamiltonian consists of three parts, the hopping term, the spin-fermion inter-
action and the occupation number of electrons per spin site i and is given by

D EH({S}) = − t
∑︁

⟨i, j⟩, σ

(︀
ĉ†i, σ ĉj, σ + ĉ†j, σ ĉi, σ

)︀
⏟  ⏞  

hopping term

+
J

2

∑︁
i, σ, σ′

ĉ†i, σ(Si · σ)σ σ′ ĉi, σ′

⏟  ⏞  
spin-fermion interaction

−µ
∑︁
i, σ

ĉ†i, σ ĉi, σ⏟  ⏞  
µN̂

.

(2.11)

The hopping term allows a fermion to jump from the lattice site i to a neighbouring
lattice site j – indicated by ⟨i, j⟩ – and vice versa. t is the hopping constant, which
sets the energy scale of the system. The interaction strength between the classical
spins Si and the fermions is set by the coupling constant J and a fermion with
spin σ is created (annihilated) on lattice site i through the application of ĉ†i, σ (ĉi, σ)
on the vacuum wave function |∅⟩. µ is the chemical potential of the system, most
commonly chosen to be 0. The classical spins are placed on a 2D N × N square
lattice and are normalized to |S| = 1. σ are the Pauli matrices {σx, σy, σz} [4,
11].

Creation and Annihilation Operators

The challenge when simulating the Double Exchange model are the creation and
annihilation operators of the fermions. The creation/annihilation operators for
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one spin up or spin down particle are given by

ĉ† = 1
2
(σx + iσy) , (2.12a)

ĉ = 1
2
(σx − iσy) . (2.12b)

If the Fock-states (2.17) are considered, the tensor product of the two Hilbert
spaces must be taken and thus the ladder operators for a 2 particle system have
the form [12]

ĉ
(†)
↑ = ĉ(†) ⊗ I, (2.13a)

ĉ
(†)
↓ = I⊗ ĉ(†). (2.13b)

Matrix Representation

To calculate the matrix representation of the ladder operators, the identity matrix
and the Pauli matrices

I =

(︃
1 0

0 1

)︃
, σx =

(︃
0 1

1 0

)︃
, σy =

(︃
0 −i

i 0

)︃
, σz =

(︃
1 0

0 −1

)︃
, (2.14)

must be inserted into (2.12) and (2.13). The ladder operators are then given
by

ĉ† =

(︃
0 1

0 0

)︃
, ĉ =

(︃
0 0

1 0

)︃
. (2.15)

If the state of the single particle can be |✶⟩ = (1, 0)T and |∅⟩ = (0, 1)T , the ladder
operators act in the following way:

ĉ† |∅⟩ = |✶⟩ , ĉ† |✶⟩ = 0, ĉ |∅⟩ = 0, ĉ |✶⟩ = |∅⟩ . (2.16)

Furthermore, the anticommutation relation {ĉ, ĉ†} = I holds and (ĉ(†))2 = 0.
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For a two particle system, represented by the states

|↑↓⟩ =

����
1

0

0

0

     , |↑⟩ =

����
0

1

0

0

     , |↓⟩ =

����
0

0

1

0

     , |∅⟩ =

����
0

0

0

1

     , (2.17)

the matrix representation of the ladder operators is

ĉ†↑ =

����
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

     , ĉ↑ =

����
0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

     , (2.18)

ĉ†↓ =

����
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

     , ĉ↓ =

����
0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

     . (2.19)

For the ladder operators, the relations

ĉ†↑ |↑↓⟩ = 0, ĉ†↑ |↑⟩ = 0, ĉ†↑ |↓⟩ = |↑↓⟩ , ĉ†↑ |∅⟩ = |↑⟩ ,
ĉ↑ |↑↓⟩ = |↓⟩ , ĉ↑ |↑⟩ = |∅⟩ , ĉ↑ |↓⟩ = 0, ĉ↑ |∅⟩ = 0,

ĉ†↓ |↑↓⟩ = 0, ĉ†↓ |↑⟩ = |↑↓⟩ , ĉ†↓ |↓⟩ = 0, ĉ†↓ |∅⟩ = |↓⟩ ,
ĉ↓ |↑↓⟩ = |↑⟩ , ĉ↓ |↑⟩ = 0, ĉ↓ |↓⟩ = |∅⟩ , ĉ↓ |∅⟩ = 0

(2.20)

hold.

n-Particle Operators

For the n-particle case, the construction of the ladder operators works in a similar
fashion. The ladder operator consists of tensor products of the unit matrix with
the corresponding 2-particle (2p) ladder operator on the corresponding index. For
example, if the operator ĉ†↑, (3) should be constructed for a system with 4 lattice

9



sites, the operator reads
ĉ†↑, (3) = I⊗ I⊗ ĉ†↑ ⊗ I, (2.21)

where I indicates the 4 × 4 unit matrix. Thus, the total matrix dimension of the
operator is 44. In general, the matrix dimension scales like 4L, where L is the
lattice size N ×N . This is a problem, since the dimension of the ladder operator
determines the dimension of the Hamiltonian. As will be outlined in the next
section, the eigenvalues – e.g. the energy values – of the Hamiltonian are needed
to calculate observables. If the dimension of the Hamiltonian gets too large, the
system can not be simulated within a reasonable timeframe [4, 6, 11].

2.3.2. 1-Particle Reduced Hamiltonian

To solve the problem of the dimensionality of the Hamiltonian, the fact that the
fermions in (2.11) are non-interacting can be exploited. The non-interaction of the
fermions implies that the full n-particle Hamiltonian can be replaced by the one-
particle operator. In contrast to the dimension of the full Hamiltonian (4L), the
dimension of the 1-particle (1p)Hamiltonian scales like 2 ·L. The drastic difference
of these scaling laws is visualized in figure 2.2. To construct the 1p-Hamiltonian,
the one particle entries must be projected out from the full Hamiltonian. This is
done by calculating matrix elements of the form ⟨ΨA|D EH({S}) |ΨB⟩, where ΨA
and ΨB are one particle wave functions, which can be constructed using ĉ†σ |∅⟩,
with |∅⟩ being the vacuum state. The result of the calculation is given by

1p
D EHnmρρ′({S}) = ⟨∅ ĉnρ|D EH({S}) |ĉ†mρ′ ∅⟩

= −2tδρρ′
∑︁
⟨i, j⟩

δnjδim +
J

2
δnm(Sm · σ)ρρ′ − µδnmδρρ′ .

(2.22)

This result is obtained if all expressions are simplified using the anticommutation
relations for the ladder operators

{ĉσ, ĉ†σ′} = δσ σ′ ,

{ĉ†σ, ĉ†σ′} = {ĉσ, ĉσ′} = 0.
. (2.23)
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The detailed derivation of the 1-particle reduced Hamiltonian, including the appli-
cation of anticommutation relations and matrix element evaluations, is provided
in appendix A.

Figure 2.2.: Given the lattice has L = N ×N sites, the dimension of the Hamil-
tonian scales differently for the full- and the 1p-Hamiltonian. The
two scaling laws are compared in this figure. Especially noteworthy
is the logarithmic scale on the y-axis.

2.3.3. Observables

Similar to the Ising model, observables are calculated through the use of the parti-
tion function Zβ. While the integration over the spin configurations was sufficient
for the Ising model, the quantum-mechanical degrees of freedom in the Double
Exchange model require an additional trace [6]. In general, this trace calculation
is highly non-trivial, however, using the fact that the fermions are non interacting
and treating them with the grand canonical ensemble, a simple expression can be
obtained

Zβ =

∫︁
dS Tr

[︀
e−βH({S})]︀ = ∫︁

dS
∏︁
ν

[︀
1 + e−β εν({S})]︀ , (2.24)

where εν are the eigenenergies of the one particle Hamiltonian. Observables can
be calculated using

⟨O ⟩β =
1

Zβ

∫︁
dS Tr

[︀
e−βH({S})]︀ O({S}). (2.25)
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Common observables are the magnetization

|M | = 1

Zβ

∫︁
dS Tr

[︀
e−βH({S})]︀ ⃒⃒⃒⃒

⃒ 1L ∑︁
i

Si

⃒⃒⃒⃒
⃒ , (2.26)

the staggered magnetization

⃒⃒
Ms

⃒⃒
=

1

Zβ

∫︁
dS Tr

[︀
e−βH({S})]︀ ⃒⃒⃒ 1

L
∑︁
i

Si(−1)
∑︀d

j=1 xj

⃒⃒⃒
, (2.27)

where xj in the sum in the exponent indicates the site index in the j-th dimension,
and the mean energy [4, 6]

⟨E⟩ = −∂ ln (Zβ)

∂ β
=

1

Zβ

∫︁
dS Tr

[︀
e−βH({S})]︀ ∑︁

ν

εν
1 + eβ εν

. (2.28)

How these integrals are calculated in the framework of Monte Carlo simulations
will be described in detail in the following sections.
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3. Monte Carlo Methods

Monte Carlo methods serve as essential tools for the numerical study of statisti-
cal and quantum-mechanical systems. This chapter introduces the fundamental
principles of Monte Carlo sampling and discusses various update methods, in-
cluding the local Metropolis algorithm, global Wolff cluster updates, and the Self
Learning Monte Carlo algorithm. Additionally, the Hybrid Monte Carlo method
is discussed, particularly in the context of constrained spin manifolds. Lastly, the
No-U-Turn sampler is introduced, a state of the art extension of the Hybrid Monte
Carlo method.

3.1. Introduction to Monte Carlo Methods

The Monte Carlo method was first used by Nicholas Metropolis et al. [1] to calcu-
late observables of an ensemble. The main challenge when calculating observables
is the calculation of the high dimensional integrals over the phase space, given
by

⟨O ⟩ = 1

Zβ

∫︁
dpdqO(p, q) e−βH(p, q). (3.1)

The trick used to calculate the given integral is to generate configurations {p, q}
according to the probability distribution e−βH [1]. The configurations following
this distribution can be generated using a Markov chain obeying detailed balance
and ergodicity. If a set {Xn}n≥0 of stochastically distributed random configurations
and its transition probabilities T fulfil the condition

T (Xn+1|Xn, Xn−1, . . . , X0) = T (Xn+1|Xn) ∀n ≥ 0, (3.2)
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the set is called a Markov chain [13]. This means that each generated configuration
Xi ≡ Xi(p, q) only depends on the previous configuration (no memory). If this
condition is satisfied,

pn(X) = pn−1(X) +
∫︁

dX
′ T (X|X′)pn−1(X

′)−
∫︁

dX
′ T (X′|X)pn−1(X) (3.3)

is fulfilled for the configuration probabilities pn(X). In the limit for large n, pn(X) ≈
pn−1(X) = peq(X) and thus a sufficient condition for equation (3.3) is

T (X|X′)peq(X′) = T (X′|X)peq(X). (3.4)

The condition (3.4) is called detailed balance. In Monte Carlo simulations, peq(X)
is most commonly chosen to be peq(X) = e−βH[X(p, q)].
Ergodicity is the condition that each configuration Xi can theoretically be reached
from each other configuration Xj. This condition highly depends on the specific
update method used. If both detailed balance and ergodicity are fulfilled and the
random configurations Xi are generated according to peq(X), then the stochastic
expectation value ⟨O ⟩ can be calculated using

⟨O ⟩ = 1

N

∑︁
i

Oi, (3.5)

where N is the total number of configurations and Oi is the value of the observable
associated with the configuration Xi [14].
How the configurations Xi are generated in detail depends on the specific update
method used. A few of these update methods will be discussed in the follow-
ing.

3.2. Local Updates – Metropolis Algorithm

One of the most flexible update methods is the Metropolis algorithm. Here, only
one degree of freedom is changed to step from configuration Xi to Xi+1. To determine
if the new configuration is accepted, the transition probability T is written as
T (X′|X) = g(X′|X) ·A(X′|X), where g(X′|X) is the proposal distribution and A(X′|X) is
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the acceptance probability. g(X′|X) is the probability to propose the configuration
X
′, given the current configuration is X. The new configuration X

′ is then chosen
with the acceptance probability A(X′|X). If the decomposition of T is inserted in
the detailed balance condition,

A(X′|X)
A(X|X′) =

peq(X
′)

peq(X)

g(X|X′)
g(X′|X) (3.6)

is obtained. A common choice for the acceptance ratio, which fulfills equation (3.6)
is

A(X′|X) = min

(︂
1,

peq(X
′)

peq(X)

g(X|X′)
g(X′|X)

)︂
. (3.7)

This method is known as the Metropolis algorithm. For local updates, the dis-
tribution g(X′|X) is constant, since the generation of the configuration X

′ is purely
random [13, 14]. For this case, the Metropolis algorithm simplifies to

A(X′|X) = min
(︀
1, e−βΔE

)︀
, (3.8)

where ΔE is the energy difference of the configurations X and X
′. The main draw-

back of this update method is that near the critical point, where the correlation
length diverges, a lot of samples must be generated to reach a statistically sig-
nificant result. This limitation can be mitigated with nonlocal update methods.
Pseudocode for the Metropolis algorithm is given in appendix B.1.

3.3. Global Updates

To mitigate the problems of local update methods, global update methods can be
developed. These update methods are designed for a specific Hamiltonian and are
thus not that versatile in comparison to local updates. One prominent example
will be discussed in the following.

3.3.1. Wolff Cluster Updates

The Wolff update is one example for a cluster update. In contrast to local updates,
cluster updates update significantly more degrees of freedom compared to the
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single one in local updates. The Wolff update method was first developed in 1989
to combat the critical slowing down in Ising-like models [15]. The idea behind the
Wolff algorithm is to construct a cluster of spins and flip all of the involved spins.
The update has an acceptance probability of 1, since detailed balance is considered
when constructing the cluster.

Algorithm

Before discussing the Wolff algorithm, the notion of a spin flip must be generalized.
In the Ising model, spins can usually only take the values Sz = ±1. There, a spin
flip is trivial. In the case where the spins are elements of S O(n), the spins can be
reflected along the reflection vector r using

R(r)Si = Si − 2(Si · r)r. (3.9)

The algorithm to construct a Wolff cluster will be described in the following.
1. choose a random reflection vector r and a random lattice site i

2. add the spin at site i to the cluster C
3. connect a neighbouring site Sj to the cluster with probability

P (Si,Sj) = 1− exp {min [0, 2β(r ·R(r)Si)(r · Sj)]}

and if the connection is performed, add Sj to the cluster C
4. repeat for all unvisited neighbouring lattice sites
5. flip all spins contained in the cluster ∀Si ∈ C: Si ↦→ R(r)Si

Ergodicity is fulfilled, since a cluster can be constituted by only a single spin, and
the reflection vector is chosen at random. Detailed balance is also fulfilled, since
the transition probabilities fulfil the relation [15]

T (X′|X)
T (X|X′) = e−βΔE. (3.10)

Pseudocode for the Wolff cluster algorithm is given in appendix B.2.
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3.4. Self Learning Monte Carlo Method

A major limitation of global update methods is that they must be designed care-
fully for each set of problems. An effort to mitigate this limitation is done by
the Self Learning Monte Carlo (SLMC) method. Here, two Hamiltonians are in-
volved, the exact Hamiltonian H and an effective Hamiltonian Heff. The effective
Hamiltonian is preferably chosen in such a way that there exists an efficient global
update method. The effective Hamiltonian then ‘learns’ the exact Hamiltonian
and Monte Carlo updates are performed using the effective Hamiltonian.

Algorithm

The algorithm consists of the following steps:
1. Learning Process

1.1 Perform a trial simulation using local updates and the exact Hamilto-
nian H to generate training data.

1.2 Using the data generated in the previous step, an effective Hamiltonian
Heff is learned.

2. Simulation
2.1 Using Heff, propose new configurations.
2.2 Determine, whether the proposed configuration should be kept using

the original Hamiltonian H.
The acceptance ratio of a proposed configuration is computed following these steps:
Since the new configurations are proposed following the effective Hamiltonian Heff,
the proposal distribution obeys

g(X′|X)
g(X|X′) =

peq , eff(X′)
peq , eff(X)

. (3.11)

Inserting this into (3.7),

A(X′|X) = min

(︂
1,

peq(X
′)

peq(X)

peq , eff(X)
peq , eff(X′)

)︂
(3.12)

is obtained. This is the acceptance ratio for an SLMC update [3, 4]. Pseudocode
for the SLMC algorithm is given in appendix B.3.
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3.5. Hybrid Monte Carlo Method

A global update method which is relatively system independent is the Hybrid
– or Hamiltonian – Monte Carlo method. The main idea is to generate new
configurations through integrating Hamilton’s equations.
Suppose the target distribution for the Markov chain is f(X). By adding auxiliary
momentum variables p, the Hamiltonian transforms to

H → H = U(X) + T (X, p), (3.13)

where U(X) = − ln f(X), which follows from f(X) → f(X)e−T = e−H = p(X, p).
With this new Hamiltonian H, new configurations X

′ can be calculated using

dX

dt
=

∂H
∂p

=
∂T
∂p

, (3.14)

−dp

dt
=

∂H
∂X

(3.15)

To calculate the acceptance ratio of a proposed configuration, the proposal prob-
ability g(X′, p′|X0, p0) must be considered. If a usual integrator is chosen that
performs the transformation (X0, p0) → (XT , pT ) after the integration time T , then
the proposal probability is g(X′, p′|X0, p0) = δ(X′ − XT )δ(p

′ − pT ).
Inserting this into the acceptance ratio for the Metropolis algorithm (3.7), the
acceptance ratio is always 0, since the proposal probability is not reversible, which
can be seen from

A(XT , pT |X0, p0) = min

(︂
1,

p(XT , pT )

p(X0, p0)

g(X0, p0|XT , pT )
g(XT , pT |X0, p0)

)︂
= min

(︂
1,

p(XT , pT )

p(X0, p0)

δ(2XT − X0)δ(2pT − p0)

δ(XT − XT )δ(pT − pT )

)︂
= min

(︂
1,

p(XT , pT )

p(X0, p0)

0

1

)︂
= 0.

(3.16)

The expressions δ(2XT−X0) and δ(2pT−p0) come from the fact that after two steps,
the new configuration (X′, p′) is (X′, p′) = (2XT , 2pT ) and the target configuration
is (X0, p0).
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If the transition is modified to be reversible, which corresponds to the sign flip
(X, p) → (X, −p) in the integrator, and modifying g(X′, p′|X0, p0) to read

g(X′, p′|X0, p0) = δ(X′ − XT )δ(p
′ + pT ), (3.17)

the acceptance probability becomes non-zero and is given by

A(XT , −pT |X0, p0) = min

(︂
1,

p(XT , −pT )

p(X0, p0)

g(X0, p0|XT , −pT )

g(XT , −pT |X0, p0)
)︂

= min

(︂
1,

p(XT , −pT )

p(X0, p0)

δ(X0 − X0)δ(p0 − p0)

δ(XT − XT )δ(−pT + pT )

)︂
= min

(︀
1, e−H(XT ,−pT )+H(X0, p0)

)︀
.

(3.18)

A popular choice for the kinetic term T is T (X, p) = 1
2
pTM−1p, where M is

the mass matrix. This choice is known as Euclidian-Gaussian kinetic energy [16].
Pseudocode for the Hybrid Monte Carlo algorithm is given in appendix B.4.

3.5.1. Hybrid Monte Carlo on the Sphere

Since the degrees of freedom considered in the Ising model and Double Exchange
model are elements of S O(n), it is natural to construct a Hybrid Monte Carlo
method on the sphere. The following discussion will focus on spins S ∈ S2.

Derivatives on the Sphere

A crucial component of the Hybrid Monte Carlo method are derivatives. The
problem with cartesian derivatives of a spin is that the norm may not be conserved.
To construct a norm conserving derivative, a new spin S′ is considered. S′ is
constructed by rotating the original spin S around the rotation axis r by an
infinitesimal angle ϑ. The rotation around r can be expressed using the exponential
map S → er̂S = eriLiS, where Li are the generators of so(3). The transformed
spin thus reads

S′ = S + δS = eϑriLiS = S + ϑriLiS. (3.19)
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Using the representation (Li)j k = −εij k, δS is given as

δ Sj = ϑ[riLi]j kSk = −ϑriεij kSk = ϑ(r × S)j. (3.20)

Expanding a function f(S′) for small changes, the result

f(S′) = f(S + δS) = f(S) + δS∇f(S) = f(S) + ϑ(r × S) · ∇f(S) (3.21)

is obtained.
With the obtained expressions, the directional derivative Drf(S) can be defined
as

Drf(S) = lim
ϑ→0

f(S + δS)− f(S)

ϑ
= r · [︀S × ∇f(S)

]︀
, (3.22)

and the components of the derivative can be identified as

Drf(S) = r · Df(S), (3.23)

Df(S) = S × ∇f(S). (3.24)

Some properties of Drf(S) are:
• The main advantage of this derivative is that it is – in contrast to the deriva-

tive in spherical coordinates – defined everywhere, even at the poles.
• For r = S, DSf(S) = 0. This is expected, since the rotation of a vector

around itself does not change the vector.
• The derivative Df(S) is part of the tangent space of the S2.

Equations of Motion

To introduce an S O(3) symmetry into the Hybrid Monte Carlo method, the nor-
malization condition ‖S‖ = 1 is added to the partition function and the auxiliary
momentum variables p are introduced [17]. The result is

Z =

∫︁
DSe−βH(S) =

∫︁
d3S δ(‖S‖ − 1)e−βH(S)

=
1

Zp

∫︁
d3S

∫︁
d3p δ(‖S‖ − 1)e−[βH(S)+ 1

2
‖p‖2⏟  ⏞  

H(S, p)

]
(3.25)
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and the equations of motion (EOMs) read

dS

dt
=

∂H(S, p)

∂p
= p× S,

dp

dt
= −∂H(S, p)

∂S
= −βD H(S). (3.26)

Using these equations, symplectic integrators can be adapted to conserve the norm
of the spins [17, 18].
To derive the EOM for p, the derivative of H(S, p) with respect to S must be taken.
As shown previously, the partial derivative with respect to S can be calculated
using equation (3.23).

−∂H(S, p)

∂S
= −DH(S, p) = −βD H(S) = −βS × ∇H(S) = ṗ. (3.27)

A possible integration scheme for equation (3.27) is

p(t+ Δt) = p(t) + Δtṗ = p(t) + Δtβ∇H(︀
S(t)

)︀× S(t). (3.28)

The EOM for the spins S carry a bit more subtly. The derivative ∂H(S, p)
∂p

is
not performed directly, however, auxiliary fields K are introduced. These fields
parametrize the spins {S} with respect to a reference spin S0. The parametrization
reads

S = eKiLiS0. (3.29)

Using this parametrization, the EOM for K can be calculated to be

K̇ =
∂H(S, p)

∂p
= p. (3.30)

A possible integration scheme again is

K(t+ Δt) = K(t) + ΔtK̇ = K(t) + Δtp(t). (3.31)

If the so(3) generators are multiplied from the right hand side and the result-
ing equation is exponentiated, an expression for the time evolution of S is re-
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trieved

eK(t+Δt)L⏟  ⏞  
S(t+Δt)

= eKi(t)Li⏟  ⏞  
S(t)

eΔtpj(t)Lj . (3.32)

Using equations (3.29) and (3.30) an explicit expression for Ṡ can be calculated.
It reads

Ṡi(t) =
d

dt

(︀[︀
eKj(t)Lj

]︀
ik
S0

k

)︀
=

=
[︀
K̇j(t)Lj

]︀
ik
Sk(t) =

=
[︀
pj(t)Lj]ikSk(t) =

= −pj(t)εj ikSk(t) =

= (p× S)i

(3.33)

and matches precisely with the expression given in equation (3.26).
To summarize, the equations of motion read

Ṡ = p× S, ṗ = −βS × ∇H(S), (3.34)

and possible integration steps are

S(t+ Δt) = eΔtp(t)·LS(t), (3.35)

p(t+ Δt) = p(t) + Δtβ∇H(︀
S(t)

)︀× S(t). (3.36)

3.5.2. Dual Averaging

When performing Hamiltonian Monte Carlo simulations the chosen step size Δt

and trajectory length L have a profound impact on the simulation efficiency. If
the step size is chosen to be too small, the computational cost is very high without
proportional gains in sampling efficiency. Conversely, a very large step size leads
to numerical instability and poor acceptance rates.
Thus, the choice of Δt and L must be made deliberately to maximize the efficiency.
This, however, is not always trivial or even possible. A possibility for optimizing
the parameters is to adapt the step size Δt dynamically. The Dual Averaging
scheme is such an algorithm [19].
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Overview of the Algorithm

Dual averaging is a stochastic optimization method for solving convex optimization
problems. The core idea is to adapt the step size until the target acceptance ratio
is reached. This is achieved through maintaining a running average of a quantity
related to the discrepancy between the observed acceptance ratio and the target
acceptance rate. Let Hm denote the error at iteration m

Hm = δ − αm, (3.37)

where δ is the target acceptance rate and αm is the observed acceptance ratio at
iteration m. The update to the step size Δt is performed using

H̄m = 1
m+t0

Hm +
(︁
1− 1

m+t0

)︁
H̄m−1, H̄0 = 0, (3.38)

logΔtm = µ−
√
m
γ
H̄m, (3.39)

logΔtm = 1
mκ logΔtm +

(︀
1− 1

mκ

)︀
logΔtm−1, Δt0 = 1, (3.40)

where µ is a user-defined parameter related to the initial guess for the step size,
γ is a learning rate parameter, and H̄m is the running average of the acceptance
error. κ and t0 are adaptions to the original algorithm proposed in [19], which
weigh recent configurations stronger and prevent a step size which tends to 0,
respectively. The dual averaging update rule incorporates a decaying step size
schedule to ensure convergence, while mitigating the effect of early noise in the
sampling process. Usually, the update is only performed during the warm-up
phase, upon completeness, Δtm → Δt.
Using this update procedure for the step size an overall acceptance ratio of δ can
usually be achieved. Dual averaging is a core component in the advanced No–U–
Turn Sampler (NUTS) algorithm, which ensures optimal computational efficiency
[20].

3.5.3. The No-U-Turn Sampler

The No-U-Turn Sampler (NUTS) is an advanced version of the HMC algorithm,
which dynamically builds the trajectory until the proposed trajectory starts to
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turn back on itself. The main advantage of NUTS is that the optimal trajectory
length L is determined during the simulation and no manual tuning is needed. The
necessity of tuning the step size Δt can be eliminated by the previously described
dual averaging approach. Thus, both, L and Δt will be determined automatically
to reach the target acceptance ratio and maximize the computational efficiency of
the simulation [20].

Overview of the Algorithm

NUTS augments the Hamiltonian model p(X, p) ∝ e−H(X, p) by introducing a slice
variable u. The joint probability of the position X, momentum p, and slice variable
u is given by

p(X, p, u) ∝ I {︀
u ∈ [0, e−H(X, p)]

}︀
, (3.41)

where I {·} is defined as

I {w} =

1, w is True

0, otherwise
. (3.42)

After integrating out u, the marginal probability of X and p reduces to p(X, p) =

e−H(X, p), as in standard HMC. The conditional distributions p(u|X, p) and p(X, p|u)
are uniform within the slice and the following conditions hold:

• p(u|X, p) is uniform over the interval [0, e−H(X, p)],
• p(X, p|u) is uniform if and only if u ≤ e−H(X, p).

To add further flexibility to the sampling process, two sets of configurations are
introduced. The set B, containing all configurations generated during the NUTS
iteration and the set C, which is a subset of B. The configurations for B are
generated by integrating randomly in the forward or backward direction, whereas
the configurations in C are chosen deterministically from B.
The key here is that the set C must satisfy a set of conditions to ensure that the
overall procedure leaves the joint distribution p(X, p, u, B, C |Δt) invariant. The
conditions are

1. transformations of X, p when adding a new state to C must preserve volume,
i.e., the Jacobian determinant must be 1,
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2. p((X, p) ∈ C |X, p, u, Δt) = 1, e.g, the current configuration (X, p) is included
in C,

3. all states in C must satisfy u ≤ e−H(X0, p0),
4. the conditional distribution p(B, C |X, p, u, Δt) must be invariant under any

permutation of C.
To choose a new configuration during the NUTS update, the following steps are
taken:

1. sample p ∼ N (0, 1),
2. sample u ∼ U(0, e−H(X, p)) from a uniform distribution,
3. sample B and C from the corresponding conditional probability,
4. sample the new position Xm+1 and momentum pm+1 using a transition kernel

T (Xm, p, C) that leaves the uniform distribution over C invariant.
To leave the uniform distribution invariant, the transition kernel T must sat-
isfy ∑︁

(X, p)∈C
T (X′, p′|X, p, C) = I {(X′, p′) ∈ C }. (3.43)

This ensures that each state in C has an equal probability of being chosen.
The specific probability distribution p(B, C |X, p, u, Δt) used by NUTS is defined
by a binary tree of configurations (X, p). At the start, the tree contains a single
node corresponding to the current state (X, p). Each subsequent iteration of the
algorithm doubles the size of the tree by adding more position-momentum states.
The tree expansion consists of:

• A direction vj is randomly chosen from {+1, −1}, and 2j integrations steps
are taken, where j is the current depth of the tree.

• If vj = +1, the left half of the tree remains unchanged, while the right half
corresponds to a balanced binary tree of height j. If vj = −1, the situation
is reversed.

• This process is repeated recursively until either of the stopping criteria is
satisfied.

The two primary stopping conditions are:
• Stopping due to retracing: The algorithm stops if, for any subtree, the

position-momentum states at the leftmost (−) and rightmost (+) leaves sat-
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isfy
(X+ − X

−) · p− < 0 or (X+ − X
−) · p+ < 0.

This condition ensures that the trajectory has made a ‘U-turn’, indicating
that further exploration would revisit previously sampled regions in param-
eter space.

• Stopping due to low probability: The tree expansion stops if the proba-
bility falls below a threshold, indicating that further exploration would result
in states with extremely low probability

eΔmax−H < u,

where Δmax is a user-defined threshold, commonly chosen to be ∼ 1000.
Once the trajectory has been fully explored and the doubling process is halted,
the next state is sampled uniformly from the set C, the collection of valid position-
momentum states that satisfy the slice condition. This ensures that the distribu-
tion of sampled states remains consistent with the target distribution.
When implementing NUTS for the simulation of a process, the sampling stage and
tree building can be combined, as described in [20]. Pseudocode for the advanced
algorithm is given in algorithm 1.
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Algorithm 1 Pseudocode for the No-U-Turn Sampler with Dual Averaging [20]
1: Given X0, δ, H({S}), N , Nadapt:
2: Initialize variables:
3: Δt0 = ProposeStepSize(X), µ = log(10Δt0), Δt0 = 1, H̄0 = 0, γ = 0.05, t0 = 10, κ = 0.75.
4: for m=1 to N do
5: Sample p0 ∼ N (0, 1).
6: Sample u ∼ U [0, e−H(Xm−1, p0)].
7: Initialize Xm = X− = X+ = Xm−1, p− = p+ = p0, j = 0, n = s = 1.
8: while s = 1 do
9: Choose random direction vj ∼ U({−1, 1}).
10: if vj = 1 then
11: –, –, X+, p+, X′, n′, s′, α, nα ← BuildTree(X−, p−, u, vj , j, Δtm−1, Xm−1, p0).
12: else
13: X−, p−, –, –, X′, n′, s′, α, nα ← BuildTree(X−, p−, u, vj , j, Δtm−1, Xm−1, p0).
14: end if
15: if s′ = 1 then
16: With probability min(1, n′

n
): Xm ← X′.

17: end if
18: n ← n+ n′.
19: s ← s′I {(X+ − X−) · p− ≥ 0}I {(X+ − X−) · p+ ≥ 0}.
20: j ← j + 1.
21: end while
22: if m ≤ Nadapt then
23: Set H̄m = 1

m+t0

(︁
δ − α

nα

)︁
+

(︁
1− 1

m+t0

)︁
H̄m−1.

24: Set logΔtm = µ−
√
m
γ

H̄m.
25: Set logΔtm = 1

mκ logΔtm +
(︀
1− 1

mκ

)︀
logΔtm−1.

26: else
27: Set Δtm = ΔtNadapt .
28: end if
29: end for
30: function BuildTree(X, p, u, v, j, Δt, X0, p0)
31: if j = 0 then
32: X′, p′ ←Propagate(X, p, vΔt).
33: n′ = I {u ≤ e−H(X′, p′)}.
34: s′ = I {u < eΔmax−H(X′, p′)}.
35: α = min

(︁
1, eH(X0, p0)−H(X′, p′)

)︁
.

36: return X′, p′, X′, p′, X′, n′, s′, α, 1 .
37: else
38: X−, p−, X+, p+, X′, n′, s′, α′, n′

α ← BuildTree(X, p, u, v, j − 1, Δt, X0, p0).
39: if s′ = 1 then
40: if v = 1 then
41: −−, −−, X+, p+, X′′, n′′, s′′, α′′, n′′

α ← BuildTree(X+, p+, u, v, j − 1, Δt, X0, p0).
42: else
43: X−, p−, −−, −−, X′′, n′′, s′′, α′′, n′′

α ← BuildTree(X−, p−, u, v, j − 1, Δt, X0, p0).
44: end if
45: With probability n′′

n′+n′′ : X′ ← X′′.
46: α′ ← α′ + α′′.
47: n′

α ← n′
α + n′′

α.
48: s′ ← s′′I {(X+ − X−) · p− ≥ 0}I {(X+ − X−) · p+ ≥ 0}.
49: n′ ← n′ + n′′.
50: end if
51: return X−, p−, X+, p+, X′, n′, s′, α′, n′

α .
52: end if
53: end function
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4. Effective Hamiltonians

In this chapter, the basic properties of the effective Hamiltonians – namely invari-
ance and equivariance – will be discussed on the basis of global S O(3) rotations.
Once the importance of equivariance is demonstrated, the effective Hamiltonians
used for later analysis will be introduced and motivated.

4.1. General Properties

Before the considered effective Hamiltonians are discussed, general properties of
the Hamiltonians will be considered. These properties apply to the effective, as
well as the exact Hamiltonians. These considerations are important because a
well designed effective Hamiltonian can reproduce the exact behaviour better than
a randomly chosen one. The properties considered are (group) invariance and
(group) equivariance.

4.1.1. Invariance

In physics, quantities that remain unchanged under a defined set of transformations
are invariant with respect to these transformations. Such invariants – energy,
charge, angular momentum – form the bedrock of physical law because they encode
universal, observer-independent statements about a system. Noether’s theorem
shows that each continuous symmetry is linked to an invariant quantity of the
system. In other words, each transformation that leaves the system invariant is
linked to a conserved quantity [21]. When constructing effective Hamiltonians,
insisting on the same invariance properties that the exact Hamiltonian possesses
guarantees that the low-energy description respects the underlying symmetries of
the full theory.
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Mathematically, invariance can be defined in the following way.
A function F : X → Y , Φ ↦→ F(Φ) is invariant with respect to the group transfor-
mations g ∈ G, if

F(DX [g]Φ) = F(Φ), (4.1)

where Φ ∈ X, F(Φ) ∈ Y and DX [g] is the representation of g in X.
For the exact Hamiltonians considered in chapter 2 it can be verified that global
spin flips are invariant transformations for the Ising model and the Ising-like pla-
quette model. For the Double Exchange model, global S O(3) rotations leave the
observables invariant. Consequently, all constructed effective Hamiltonians should
include a global S O(3) invariance. This can be achieved if spin-spin interactions
are considered, since the expression Si · Sj is S O(3) invariant, as shown by

Si · Sj → (RSi) · (RSj) = ST
i RTR⏟ ⏞ 

I

Sj = ST
i Sj = Si · Sj. (4.2)

4.1.2. Equivariance

In contrast to invariance, equivariance is the property that the output of a trans-
formation F transforms in the same way as the input. Mathematically, a function
F : X → Y , Φ ↦→ F(Φ) is equivariant with respect to the group transformations
g ∈ G, if

F(DX [g]Φ) = DY [g]F(Φ), (4.3)

where Φ ∈ X, F(Φ) ∈ Y and DX [g], DY [g] is the representation of g in X and Y ,
respectively.
In the context of effective Hamiltonians, equivariance guarantees that any term of
the form Seff

i · Seff
j is invariant under transformations S → Seff = F(S), provided

that FT = F−1.
Equivariance in the context of machine learning allows models to naturally han-
dle transformations, ensuring that the model’s output transforms in a predictable
way when the input undergoes these transformations. This leads to improved
parameter efficiency, as the network can share filters across different transforma-
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tions, reducing the number of parameters needed and enhancing generalization.
Additionally, equivariance makes the network more robust to variations in the in-
put, such as changes in orientation or viewpoint, which is especially valuable in
domains like object recognition, medical imaging, and robotics where such varia-
tions are common. Group equivariant Convolutional Neural Networks represent a
widespread model class which is used for these applications [22].

4.2. Neural Networks as Effective Hamiltonians

The preceding sections have established that any effective Hamiltonian should
respect the global S O(3) invariance dictated by the exact model. Beyond this
symmetry requirement, the practical task is to choose a functional form that is suf-
ficiently expressive to reproduce the low-energy physics while remaining tractable
for optimisation. In the following, four complementary ansätze are explored. They
are loosely arranged by increasing structural complexity: a strictly linear nearest-
neighbour model, a transformer-like architecture that learns an effective spin field,
a fully-connected interaction matrix, and a convolutional-attention hybrid inspired
by modern deep-learning practice. Each construction is accompanied by a discus-
sion of its symmetry properties, parameter count, and expected range of valid-
ity.

4.2.1. Linear Nearest Neighbour Interactions

The most basic effective Hamiltonians considered in this work are

HL
eff = E0 −

∑︁
k , ⟨i, j⟩k

Jeff
k Si · Sj (4.4)

and

HLz
eff = E0 −

∑︁
k , ⟨i, j⟩k

Jeff
k Sz

i S
z
j . (4.5)

They consist of n nearest-neighbour interaction terms and a constant energy offset
E0. Each of the k-th-nearest-neighbour interactions has its own coupling constant
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Jeff
k . Invariance of the Hamiltonian is guaranteed because of the spin-spin inter-

action Si · Sj. For some Hamiltonians, e.g., Ising model and Ising-like plaquette
model, the 3d-spins get restricted to a reference axis – most commonly chosen to
be the z axis – which has the consequence that not the full inner product of the
spins Si ·Sj is needed, however, the z-component Sz

i S
z
j is sufficient to capture the

model’s behaviour. This is equivalent to using 1d-spins Sz
i ∈ {+1,−1} instead of

3d-spins S ∈ O(3).
The Hamiltonian HL

eff is used for the Double Exchange model, while HLz
eff is used for

approximating the Ising-like plaquette model. Often – e.g., for the Ising-like pla-
quette model – only first order nearest-neighbour interactions must be considered
and higher order interactions can be neglected. If this is done, the Hamiltonian
reduces to

HLz
eff = E0 − Jeff

∑︁
⟨i, j⟩

Sz
i S

z
j . (4.6)

The number of trainable parameters scales with the nearest-neighbour order con-
sidered and is cp = 1 + n. One parameter encodes the constant energy offset E0,
while the other n parameters describe the n coupling parameters Jeff

k .
The main advantage of this class of effective Hamiltonian is that in order to capture
more complex behaviour it is often sufficient to include nearest-neighbour terms
of higher order.

4.2.2. Spin-Transformer

A natural extension of the nearest-neighbour interactions is the use of an effective
spin field {Seff} instead of the exact one {S}. Based on [23], a transformer-like
architecture is chosen to generate the effective spin field. The adapted nearest-
neighbour Hamiltonian is given by

HT
eff = E0 −

∑︁
k , ⟨i, j⟩k

Jeff
k Seff

i · Seff
j . (4.7)
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The effective spin field {Seff} is built up iteratively using a neural network con-
sisting of L attention layers. The network architecture is given by

S(0) ≡ S, (4.8)

S(l) = N [︀
S(l−1) +AS

θ(l)(S
(l−1))

]︀
, (4.9)

Seff ≡ S(L), (4.10)

where l is the layer index, N normalizes each of the spins and AS
θ(l)

is a neural
network map between spin configurations. θ(l) represents all trainable parameters
of the l-th layer. The structure of the neural network map A closely follows the
structure introduced in [24] and represents an attention layer. The precise form of
the attention mechanism is

AS
θ(l)(S) = M̂SV̂ ,

M̂ij = σ
(︁

1√
3
SQ̂
i · SK̂

j

)︁
,

θ(l) = {Q(l), K(l), V (l)}.
(4.11)

M̂ij is the attention matrix, a L×L matrix which encodes all spin-spin interactions.
Q̂, K̂ and V̂ are the sets of query, key and value weights, which can be interpreted
as the representation of a local operator given by

Sα̂ ≡ α̂S,

Sα̂
i ≡

∑︁
k , ⟨i, j⟩k

αkSj.
(4.12)

The local operator calculates a new spin field Sα̂ using up to n-th order nearest-
neighbour interactions. The function σ(·) is a non-linear activation function [25],
chosen to be the ReLU in this thesis.
To test if the proposed effective Hamiltonian could be suitable for approximating
the Double Exchange model it must be shown that the effective Hamiltonian HT

eff

is invariant under global S O(3) rotations. Furthermore, it must be shown that the
proposed attention mechanism is equivariant under global rotations.
The invariance with respect to global rotations follows directly from the form of

33



the interaction term Seff
i · Seff

j , provided the attention mechanism is equivariant.
This means that the condition

(RS)eff = RSeff (4.13)

must hold if R is an S O(3) rotation. From the structure of the local operator
Sα̂, it follows that the operator is equivariant, e.g. (RS)α̂ = RSα̂, and thus
the attention matrix is invariant under global S O(3) rotations. If the attention
matrix is invariant under global rotations it immediately follows that the attention
mechanism AS

θ(l)
is equivariant and thus the effective Hamiltonian is invariant under

global rotations. In a similar way the invariance of the effective Hamiltonian with
respect to global lattice translations can be shown [4].
The transformer-like effective Hamiltonians shows a promising scaling law for the
number of trainable parameters. If nearest-neighbours up to n1-th order are con-
sidered for spin-spin interaction, the local operator considers nearest-neighbour
interactions up to n2-th order and the number of attention layers is L then the
total number of trainable parameters is cp = 1 + n1 + 3× L× (n2 + 1).

4.2.3. Fully Connected

The previous two effective Hamiltonians used nearest-neighbour interactions of k-
th order as a basic building block. Although this is a somewhat canonical choice
for lattice systems, it nevertheless is a strong restriction. A generalised approach
would be to allow arbitrary spin-spin interactions without limiting them to nearest
neighbour interactions. An implicit advantage of the nearest-neighbour interac-
tions is the lattice size independence of the constructed Hamiltonians. A general
interaction term of the form xTAx would, however, be interesting to study.
A natural choice for such a Hamiltonian applied to spin systems is given by

HF
eff = E0 + Tr

[︁
STĴLS

]︁
. (4.14)

E0 again is a constant energy offset, ĴL is the L× L coupling matrix for a lattice
of size L = N × N and Tr is the trace operator. Invariance with respect to
global S O(3) rotations is again guaranteed by the form of the spin-spin interaction.
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Equivariant spin transformations, similar to the attention mechanism previously
described, could be added to the model, unfortunately, the scope of the thesis did
not allow for this.
Such a fully connected effective Hamiltonian should reproduce complex emergent
behaviour relatively well, since each coupling can be adjusted individually to allow
for fine-grained control. A major disadvantage in comparison to the previously
discussed Hamiltonians is the dependence on the lattice size. If a simulation for
a different lattice size should be performed, the presently proposed Hamiltonian
must be retrained. The number of trainable parameters is cp = 1 + L2, which is
significantly higher than for the previously proposed models.

4.2.4. Spin-CNN

The last effective Hamiltonian considered in this thesis takes inspiration from
convolutional neural networks and transformer architectures. The main idea is
that the query, key and value matrices [24] get generated by a convolution. E.g.
the local operator from the transformer-like Hamiltonian (see equation (4.12)) gets
replaced by a convolution.
The convolution Γ(S)i of order n will perform a weighted sum of the n× n spins
surrounding the spin Si, where n = 2k + 1. A visual representation of the ker-
nel is given in figure 4.1, where the spins are represented by the black dots, the
highlighted spin is the spin for which the convolution is performed and the blue
square visualizes the convolution kernel. Mathematically, the convolution is de-
fined as

(ω ∗ S)i = Γ(ω)(S)i = N
[︁∑︁

j

ωjSi+j

]︁
, (4.15)

where ω is the convolution kernel and j sums over the neighbouring spins in the
n× n region.
The Hamiltonian consists of a constant energy offset E0 and the sum over all
inner products of the current spin field and a convoluted spin field scaled with an
effective coupling constant Jeff. Additionally, the actual spin field gets replaced by
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Figure 4.1.: Visualization of a 2D spin convolution.

an effective spin field Seff. The resulting Hamiltonian is

HC
eff = E0 + Jeff

∑︁
i

Seff
i · Γ(ω)(S

eff)i. (4.16)

The effective spin field is constructed using a combination of convolution layers Γ
and attention layers A. The attention layer is defined in a similar way as described
previously, however, Sα̂ → Γ(α)(S). Again, ReLU is used as a non-linear activation
function and the resulting attention spin field is added to the original field.
If the layer number of the model is L, the original spin field gets transformed
using L convolution layers, followed by L attention layers. In addition to the
growing number of layers, the convolution kernel for each layer depends on the
layer index, namely the kernel size for layer ℓ is nℓ = [(2ℓ+ 1) mod (2L+ 1)].

36



The full definition of the effective spin field is given by

Seff = AL(ΓL(S)),

A(S)i = N
(︃
Si +

∑︁
j

σ
[︁

1√
3
Γ(Q)(S)i · Γ(K)(S)j

]︁
· Γ(V )(S)j

)︃
,

On = O ◦ O ◦ · · · ◦ O⏟  ⏞  
n-times

.

(4.17)

Regarding the symmetries of the spin-CNN, it is apparent that the defined convo-
lution is equivariant with respect to global S O(3) rotations

(ω ∗RS) = R(ω ∗ S), (4.18)

and thus the attention layer A transforms equivariantly and the effective Hamil-
tonian HC

eff is invariant under global S O(3) rotations. The number of trainable
parameters scales like cp = 2 + n2

ω + L+ 4
3
L(L+ 1)(L+ 2), where nω is the shape

of the outermost convolution. Within the scope of this thesis, nω = 3 was chosen.
The parameter count depends highly on the model depth (L3) and scales worse
than the previous models. Furthermore, the model does not display the global C4
lattice symmetry. Thus, it is to be expected that the effective spin-CNN performs
worse than the previously proposed models.
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5. Training Effective

Hamiltonians

This chapter addresses the training of effective Hamiltonians introduced in the
previous section. While their construction defines the functional form and sym-
metry properties, it remains necessary to determine suitable parameters such that
the effective model reproduces the behaviour of the exact Hamiltonian. To this
end, different training strategies are employed, ranging from supervised fits of en-
ergy spectra to unsupervised approaches based on reweighting techniques. The
following discussion illustrates these procedures and highlights numerical aspects
relevant for stability and efficiency.

5.1. Plaquette Model

The training procedure for the Ising-like plaquette model is heavily inspired by
[3]. In preparation for training the effective Hamiltonian, training data must be
generated. Therefore, the simulation is performed using local updates and all
accept/reject steps are performed using the exact Hamiltonian. The simulation is
performed near the critical point and the parameters of the Hamiltonian were set
to t/J = 0.2 and T =

√
10.

Once the training data is generated, the model parameters of the effective Hamil-
tonian can be fitted to the data. HLz

eff given in equation (4.6), was chosen as an
effective Hamiltonian. As shown in [3], higher order interaction terms can be
neglected. The loss function for training is defined to be

loss({S}) =
[︁
P QH({S})− HLz

eff ({S})
]︁2

, (5.1)
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which is the mean square error. The resulting trained parameters are E0 = 1.181

and Jeff = 1.116. Thus, the trained effective Hamiltonian is

HLz
eff = 1.181− 1.116

∑︁
⟨i, j⟩

Sz
i S

z
j . (5.2)

The similarity of the obtained parameters E0, Jeff and the parameters stated in [3]
shows that the training procedure yields sensible results. The described procedure
is a supervised training procedure [26], which will be adapted for the Double
Exchange model.

5.2. Double Exchange Model

As discussed in the previous section, only one effective Hamiltonian was trained
to approximate the exact Ising-like plaquette Hamiltonian. For the Double Ex-
change model, different effective Hamiltonians will be trained and consequently
compared.
The general training procedure is the same for all effective Hamiltonians and will
be discussed in the following. Additionally, considerations regarding numerical
stability will be made.

5.2.1. Numerical Stability

In contrast to the Ising model or the plaquette model, the energy calculation
for the Double Exchange model is more involved. The reason being that the
Hamiltonian describes the interaction of fermions with classical spins {S}. Thus,
the Hamiltonian is a matrix, as described in section 2.3.
When calculating observables, the trace over the Boltzmann weight, W = Tr

[︀
e−βH]︀,

must be calculated. For a scalar valued Hamiltonian this operation is trivial, how-
ever, for matrix valued Hamiltonians the calculation is more involved. Using the
grand canonical ensemble and the fact that the fermions are non-interacting, the
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trace can be rewritten as

Tr
[︀
e−βH]︀ = ∏︁

ν

[︀
1 + e−β εν]︀ . (5.3)

The product in equation (5.3) is performed over all eigenenergies of the Hamil-
tonian. This implies that for each local update the eigenvalues of H must be
calculated, which is numerically expensive. In addition, the expression e−β εν is nu-
merically unstable for large β. If one of the factors diverges, which could happen
if the energy is negative and β > 103, then W diverges, which is unphysical and a
problem for calculating the acceptance ratio.
A possible solution for the divergence is to work with the logarithmic Boltzmann
weight lnW . Using the logarithmic expression, the Boltzmann weight reads

lnW = ln

{︃∏︁
ν

[︀
1 + e−β εν]︀}︃ =

∑︁
ν

ln
[︀
1 + e−β εν]︀ . (5.4)

This expression still has problems if εν < 0 and β > 103. This can be fixed if
an approximation is used for ln(1 + ex). If x is large, 1 + ex ≈ ex and if x is
very negative, 1 + ex ≈ 1. If x is O(1), the exact expression must be used. The
behaviour of this expression can be captured using a piecewise function

e(x) = ln(1 + ex) ≈

������
x, x > θ

0, x < −θ

ln(1 + ex), otherwise

, (5.5)

where θ is a cutoff parameter which must be chosen to minimize the error. In the
implementation a value of θ = 50 was chosen. If this expression is used during the
calculation of lnW , the logarithmic Boltzmann weight is numerically stable. In
addition to the function e(x), the derivative e′(x) must also be stabilized, since it
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is used for backpropagation [27]. The stabilized derivative is given by

e′(x) =
1

1 + e−x
≈

������
1, x > θ

0, x < −θ

1
1+e−x , otherwise

. (5.6)

As described in chapter 3, the acceptance ratio of the newly generated configura-
tion is calculated using the ratio of Boltzmann weights, where W(X) = peq(X). To
prevent redundant exponentiation of lnW and reduce the thus introduced errors,
the logarithm of the acceptance ratio can be calculated. Using local updates, the
acceptance ratio is

A(X′|X) = min

(︂
1,

W(X′)
W(X)

)︂
, (5.7)

and upon applying the logarithm to the equation, the expression reads

lnA(X′|X) = min (0, lnW(X′)− lnW(X)) . (5.8)

In addition to the acceptance ratio, the uniformly distributed random number
α ∈ [0, 1) must also be logarithmized. Thus, the new configuration is accepted if
lnα < lnA(X′|X).
For SLMC updates, the acceptance ratio using the logarithmized Boltzmann weight
reads

lnA(X′|X) = min (0, lnW(X′)− lnW(X) + lnWeff(X)− lnWeff(X
′)) . (5.9)

Using these equations, the acceptance ratio can be calculated with a high degree
of numerical stability.

5.2.2. Supervised and Unsupervised Training

Training an effective Hamiltonian is split into two parts, a supervised training
stage followed by an unsupervised training procedure. All training is performed
for a 6× 6 lattice setup. This strikes a balance between computational complexity
and complex emergent behaviour.
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Supervised Training

The supervised training [26] is carried out in a similar way as described for the
Ising-like plaquette model. At first, training data is generated using local updates
and the exact Double Exchange Hamiltonian. Afterwards, the relative mean square
error (MSE) over all training configurations

MSE({X}) = 1

NX

∑︁
{X}

[︂
lnW(X)− lnWeff(X)

lnW(X)

]︂2
(5.10)

is minimized. NX is the number of training configurations, X is one set of spins
{S} and Heff → lnWeff is the effective Hamiltonian which should be trained. The
parameters chosen for training were t = 1, J = −1, µ = 0 and β = 20.

Unsupervised Training

Following the supervised phase, the effective Hamiltonians undergo unsupervised
refinement [28] using the Self Learning Monte Carlo method. In this phase, the
model actively participates in generating new spin configurations through Markov
chains and is continuously updated at each reweighting step. This iterative process
allows the model to adapt to configurations it may not have encountered during
initial training, improving its accuracy and generalization. By leveraging feed-
back from SLMC acceptance ratios, the model parameters are fine-tuned to better
approximate the exact Boltzmann distribution, particularly in regions of configu-
ration space that are critical for capturing the physical behaviour of the Double
Exchange model.

5.2.3. Training Results

An overview of the trained models and their corresponding MSE is given in ta-
ble 5.1. The number in brackets indicates the number of layers used to generate the
effective spin field {Seff}. The linear model – which corresponds to a transformer-
like model with 0 attention layers – was trained using nearest neighbour interac-
tions of order 6. Similarly, for the local operators Sα̂, n2 = 6 was used. As can be
seen from the table, the MSE of the linear model as well as all transformer models
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is approximately equal. This indicates that the attention layers do not drastically
improve the model’s performance.

Model MSE [10−7] Parameter Count c

Linear 4.747 7

Transformer (1) 4.468 25
Transformer (2) 4.431 43
Transformer (3) 4.571 61
Transformer (4) 4.638 79
Transformer (5) 4.435 97
Transformer (6) 4.712 115
Transformer (7) 4.699 133
Transformer (8) 4.591 151
Transformer (9) 4.455 169

Fully Connected 2.259 1297

Convolutional (0) 39.433 11
Convolutional (1) 497.183 47
Convolutional (2) 156.494 147
Convolutional (3) 177.245 343

Table 5.1.: Mean squared error for different model architectures, scaled by 10−7

and the model size.

A plot of the true value lnW over the predicted value lnWeff is given in figure 5.1
for the linear model and in figure 5.2 for the transformer models. Compared to the
models including only nearest neighbour interactions, the relative MSE of the fully
connected effective Hamiltonian improves by a factor of ∼ 2. A plot comparing
the true and predicted values is given in figure 5.3.
In contrast to the linear, transformer-like and fully connected effective Hamilto-
nian, the convolution-like effective Hamiltonian struggles with reproducing the
behaviour of the exact Hamiltonian. While the linear convolution network – cor-
responding to L = 0 – manages to reproduce the behaviour approximately, the
effective models involving at least one convolution and convolutional attention
layer (4.15 & 4.17) struggle to reproduce the results. The models involving L ≥ 2

display a hard cutoff for lnWeff and struggle to converge. Consequently, the rel-
ative MSE is 1 − 2 orders of magnitude higher than for the previously discussed
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models.
The source for this discrepancy could have different reasons. Firstly, the chosen
Hamiltonian could be designed poorly, resulting in the effective Hamiltonian not
being able to capture the correct behaviour. Secondly, there could be a problem
with the convolutions (4.15), from which the discrepancy arises. Lastly, the model
could have lacked training time or training data, which could be fixed with longer
training cycles or more diverse training data.
As part of this work, it was decided to focus on the effective Hamiltonians which
have already been shown to capture the behaviour of the exact model. However,
future work should investigate the convolution-like models further.
A plot of the training result for the linear convolution-like effective Hamiltonian is
given in figure 5.4. It can be observed that the distribution of datapoints is signifi-
cantly wider than for the more effective models. The plots for the convolution-like
models with 1−3 layers is given in figure 5.5. In addition to the whole data range,
a zoomed in view to the relevant area is provided.
In conclusion, the linear, fully connected, and transformer-like effective Hamilto-
nians can be trained to reproduce the behaviour of the exact Hamiltonian, while
the convolution-like Hamiltonians fail to do so.

Figure 5.1.: A plot of the true value over the predicted value for the linear effec-
tive Hamiltonian.
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Figure 5.2.: A plot of the true value over the predicted value for the transformer-like effec-
tive Hamiltonian with 1-9 attention layers.
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Figure 5.3.: A plot of the true value over the predicted value for the fully connected effective
Hamiltonian.

Figure 5.4.: A plot of the true value over the predicted value for the linear convolution-like
effective Hamiltonian.
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Figure 5.5.: A plot of the true value over the predicted value for the convolution-like effec-
tive Hamiltonian with a layer count of 1-3.
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6. Comparison of Update

Methods and Effective

Hamiltonians

Having established the relevant Hamiltonians, Monte Carlo techniques and ma-
chine learning aspects, this chapter presents a systematic comparison of the differ-
ent update strategies. Special attention is given to the applicability of the SLMC
approach, particularly to the Double Exchange model. The results highlight both
the strengths and limitations of the considered update methods, providing a foun-
dation for future work.

6.1. Ising Model

The Ising model was mainly considered as a preparation for the Double Exchange
model, since Wolff updates are designed to work with Ising-like models. For the
Ising model, local- and Wolff updates yield the same results for the magnetization
and staggered magnetization over a large temperature range (figures 6.1a & 6.2a).
This indicates that the Wolff updates were implemented correctly and can be used
as an efficient update method for the Self Learning Monte Carlo method.
It is notable that the acceptance ratio for the Wolff updates (figure 6.3a) is equiva-
lent to one over the whole temperature range. This is expected, since the proposed
configuration after the cluster growth is always accepted. The opaquely filled re-
gion in the plots indicates the standard deviation of the observable.
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6.2. Ising-like Plaquette Model

As in the Ising model, multiple Markov chains were calculated and the results
aggregated at the end. From figure 6.2b it is obvious that the simulation has not
yet fully reached the equilibrium, however, for the low temperature regime and
the phase transition, the convergence was sufficient.
A comparison of the magnetization and staggered magnetization (figures 6.1b &
6.2b) shows that the two update methods, local updates and Self Learning Monte
Carlo updates, yield the same observable over a large temperature range. For
the Self Learning Monte Carlo updates, the Hamiltonian described in section 5.1
was used. This behaviour demonstrates that a simple effective model can be used
to simulate the Ising-like plaquette model (PQ) within the framework of the Self
Learning Monte Carlo method. Since the results match with [3] it can be deduced
that the algorithm was implemented correctly and can be extended to more com-
plex models. In addition to the observables, the acceptance ratio (figure 6.3b)
shows a rather interesting behaviour. In comparison to local updates, the accep-
tance ratio for the SLMC updates is significantly higher across the whole tempera-
ture range. Furthermore, in the low and high temperature regions, the acceptance
ratio tends towards one. This indicates that in these regions, the two models –
Ising-like plaquette model and Ising model – show the same behaviour.

Ising Magnetization

(a) Comparison of local and Wolff up-
dates.

PQ Magnetization

(b) Comparison of local and SLMC up-
dates.

Figure 6.1.: Magnetization for the Ising model and the Ising-like plaquette model.
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Ising Staggered Magnetization

(a) Comparison of local and Wolff updates.

PQ Staggered Magnetization

(b) Comparison of local and SLMC updates.

Figure 6.2.: Staggered magnetization for the Ising model and the Ising-like plaquette model.

Ising Acceptance Ratio

(a) Comparison of local and Wolff updates.

PQ Acceptance Ratio

(b) Comparison of local and SLMC updates.

Figure 6.3.: Acceptance ratio for the Ising model and the Ising-like plaquette model.
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6.3. Double Exchange Model

Having discussed the results for the Ising and Ising-like plaquette model, the results
for the Double Exchange model will be presented. The main focus will be on
the correctness of the observables calculated by the effective Hamiltonians, the
correlation length of the different effective Hamiltonians, as well as the behaviour
of selected effective Hamiltonians in dependency of the lattice size.

6.3.1. Observables

As discussed in section 3.4, the accept/reject step in the Self Learning Monte Carlo
method

A(X′|X) = min

(︂
1,

peq(X
′)

peq(X)

peq , eff(X)
peq , eff(X′)

)︂
(6.1)

should be able to correct faulty distributions of the effective Hamiltonian. For
Markov chains of infinite length, any effective Hamiltonian should in theory repro-
duce the results of the exact Hamiltonian. In practice, however, the probability
distribution generated by the effective Hamiltonian and the exact Hamiltonian
should be sufficiently similar. To test the performance of the effective Hamilto-
nians compared to the exact simulation, 7 Markov chains of length 5000 were
generated for each temperature. From the low standard deviation in the figures
6.4, 6.5 and 6.6 it can be deduced that the simulation reached the equilibrium and
all Markov chains produced a similar result.
From the figures 6.4a and 6.5a it can be seen that the transformer-like and fully
connected effective Hamiltonians can reproduce the exact behaviour of the Dou-
ble Exchange model to a high degree of agreement. The convolution-like effective
Hamiltonian with 0 convolution or attention layer also reproduces the result of the
exact Hamiltonian, however, the discrepancy to the exact Hamiltonian is larger
compared to the other effective Hamiltonians, especially near the phase transi-
tion.
The convolution-like effective Hamiltonian with 3 convolution and attention layers
fails to accurately reproduce the behaviour of the exact Hamiltonian, as can be
seen in the figures 6.4b and 6.5b.
This model behaviour reflects the relative MSE values given in table 5.1, where
the relative MSE values for the transformer-like, and fully connected effective
Hamiltonians were approximately equal, whilst the values for the convolutional
models were 1− 2 orders of magnitude higher.
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In addition to the whole temperature range, simulations at β = 20 – which roughly
corresponds to the critical point – were performed. Simulations at this temperature
were performed using local-, SLMC-, as well as, HMC-updates. As displayed in
the figures 6.4a and 6.5a, the HMC-like update methods – HMC and NUTS –
fail to explore the phase space in a representative way. Furthermore, due to the
model’s nature of needing to diagonalize the exact Hamiltonian for each update
step, the computational complexity for the HMC updates and NUTS updates is
higher compared to local updates. The SLMC updates did not manage to correct
the faulty configuration distribution and thus, the observables generated using a
Hybrid Self Learning Monte Carlo update do not agree with the exact result. Thus,
HMC in the here presented and implemented way is not suitable for simulating the
Double Exchange model. It is possible that an error in the implementation causes
these discrepancies; however, due to the computational complexity the advantages
of HMC are diminishingly small.
The acceptance ratio given in the figure 6.6 shows an interesting behaviour. For the
convolution-like effective Hamiltonians the acceptance ratio is worse in comparison
to the exact model (figure 6.6b), which is consistent with the models failing to
reproduce the behaviour of the exact Hamiltonian.
Analysing the acceptance ratio for the transformer-like model and the fully con-
nected effective Hamiltonian, a dip near the critical point can be observed. This
indicates that the effective models can approximate the exact model in the high
and low temperature regime very accurately, as indicated by the high acceptance
ratio of > 60%, and struggles near the phase transition. Furthermore, the per-
formance of the fully connected effective Hamiltonian must be emphasized, as it
outperforms the transformer-like effective Hamiltonian significantly near the crit-
ical point. The comparison of the transformer-like model with 0 and 3 attention
layers also shows no significant difference. This indicates that the attention layers
do not significantly improve the effective model.
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(a)

(b)

Figure 6.4.: A plot of the staggered magnetization over a temperature range of T = 0.01t
to T = 1t for multiple (effective) Hamiltonians.
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(a)

(b)

Figure 6.5.: A plot of the magnetization over a temperature range of T = 0.01t to T = 1t
for multiple (effective) Hamiltonians.
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(a)

(b)

Figure 6.6.: A plot of the acceptance ratio over a temperature range of T = 0.01t to T = 1t
for multiple (effective) Hamiltonians.
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6.3.2. Autocorrelation Length

An important quantity within the framework of Monte Carlo simulations is the
autocorrelation length τ̂ . The autocorrelation can be used to quantify how similar
two consecutive configurations are. The total length ℓ of the Markov chain should
be significantly larger than the autocorrelation time, ℓ ≫ τ̂ . This guarantees
that the number of independent samples N = ℓ/τ̂ is large enough to sufficiently
approximate the target distribution.
The autocorrelation length is calculated using

τ̂ = 1 + 2
M∑︁
t=1

ρ̂(t), (6.2)

where ρ̂(t) is the normalized autocorrelation function given by

ρ̂(t) =
ĉ(t)

ĉ(0)
, ĉ(t) =

1

N − t

N−t∑︁
n=1

(xn − µ̂)(xn+t − µ̂), µ̂ =
1

N

N∑︁
n=1

xn (6.3)

and M ≪ N . If the sum would range up to N , fluctuations in the longer lags would
result in a noisy estimate for τ̂ . M is commonly chosen to fulfil M ≥ Cτ̂(M), with
constant C ∼ 5 [29].
In table 6.1, the values of τ̂ for each considered (effective) Hamiltonian is given.
The autocorrelation was calculated at β = 20, which roughly corresponds to the
critical point. As the operator considered, the staggered magnetization |M |s was
chosen. It can be observed that local updates yield a very high autocorrelation
length for the exact Hamiltonian. Using a transformer-like – Linear, Transformer
(i) – or fully connected effective Hamiltonian with SLMC updates, τ̂ is reduced by
a factor of ∼ 20. This indicates that Self Learning Monte Carlo updates drastically
improve the simulation performance of a quantum spin system near the critical
point. In agreement with the poor model performance indicated by the deviating
observable values, the autocorrelation length for the convolutional Hamiltonians is
approximately equal or even worse than for local updates of the exact Hamiltonian.
This is an indication that the convolutional models are not suited for simulating
the Double Exchange model.
An interesting observation is that the autocorrelation length for the simulations
using HMC updates does not improve drastically, except for the exact Hamiltonian.
This indicates that SLMC has the highest impact for reducing the correlation
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length. Interestingly, the correlation length is largest for NUTS updates of the
exact Hamiltonian.
The best performing model, in agreement with the acceptance ratio values, is the
fully connected effective Hamiltonian. This can also be observed in the inset of
figure 6.7. In figure 6.7, a comparative plot of the autocorrelations of the different
Hamiltonians is given.

Model τ̂ [iterations]
Exact 266.542
Exact (HMC) 31.511
Exact (NUTS) 613.562

Linear 11.978
Linear (HMC) 17.794
Transformer (3) 12.627
Transformer (3) (HMC) 20.354

Fully Connected 8.373
Fully Connected (HMC) 9.870

Convolutional (0) 233.784
Convolutional (3) 707.452

Table 6.1.: The autocorrelation length of different (effective) Hamiltonians for a
Markov chain of length N = 5000 and β = 20.

6.3.3. Lattice Size Analysis

As discussed in chapter 4, not all of the considered effective Hamiltonians are a
priori lattice size independent. By design, only the transformer- and convolution-
like effective Hamiltonians can be used to simulate lattice sizes other than the
size they are trained on. For the transformer-like effective Hamiltonian with 0

and 3 attention layers simulations for different lattice sizes and temperatures were
performed.
The results for β = 20 and N = 4 up to N = 15 are given in the figures 6.9a, 6.10a
and 6.11a. A remarkable result is that the staggered magnetization shows a dif-
ferent behaviour in even lattice sizes compared to uneven ones. For uneven lattice
sizes, frustration effects significantly reduce the alignment of spins and thus reduce
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Figure 6.7.: The autocorrelation for different (effective) Hamiltonians and update
methods for β = 20.

the staggered magnetization (figure 6.9a). The magnetization shows a similar be-
haviour, however, the effect is less pronounced (figure 6.10a). The acceptance ratio
also fluctuates with the lattice size. For uneven lattice sizes, the exact simulation
using local updates provides higher acceptance ratios than SLMC updates. The
reason could again be the frustration effects, which hinder the spin order. If a
frustrated spin is updated, the energy of the configuration hardly changes and the
proposed configuration will be accepted with high probability. This would also
explain the sinking acceptance ratio with growing N (figure 6.11a).
A similar behaviour can be observed for β = 200, although the acceptance ratio
for the SLMC updates is consistently ∼ 50% higher than for local updates (fig-
ure 6.11b). This is explainable by the fact that the system is in an ordered phase
for β = 200 and thus, local updates significantly impact the energy of the system.
The discrepancy in the magnetization (figure 6.10b) can be explained by poor
statistics, indicated by the low acceptance ratio. The staggered magnetization
again is different for even and uneven lattice sizes N (figure 6.9b).
In general it was demonstrated that the transformer-like effective Hamiltonians
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can be used to simulate configurations of arbitrary size, even though training was
performed only for one specific lattice size.

Lattice Size Independent Fully Connected Effective Hamiltonian

For the fully connected effective Hamiltonian an adaptation is proposed to restore
the lattice size independence.
As described previously, HF

eff is trained for the lattice size L = N×N . The trained
coupling matrix is ĴL. To use the trained Hamiltonian for a different lattice size
L′ = N ′ ×N ′, the original coupling matrix ĴL gets tiled, cropped and rescaled, to
obtain the new coupling matrix ĴL′ . Rescaling by N /N ′ aims to keep the trace at
a similar order of magnitude. The algorithm for this tiling is given in algorithm 2.
Once the new effective coupling matrix is generated, it can be used to simulate
lattices of size L′.
The results for β = 20 are given in the figures 6.9a, 6.10a and 6.11a. Although
the observables can be reproduced correctly for lattice sizes smaller than 8, the
acceptance ratio is very low for lattice sizes N ′ and thus, the correlation length is
rather long. Consequently, the simulation would need a very long Markov chain
to reach the equilibrium and thus, the fully connected effective Hamiltonian is not
suitable for this task. For simulating different lattice sizes than the training lattice
size, the transformer-like effective Hamiltonians are more suitable than the adapted
fully connected effective Hamiltonian. A comparison of the autocorrelation for
N = 4, N = 6 and N = 10 of the staggered magnetization for the transformer-
like effective Hamiltonian with 3 attention layers and the fully connected effective
Hamiltonian is given in figure 6.8.
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Algorithm 2 The tiling algorithm to generate a coupling matrix for arbitrary
lattice sizes.
1: function tileCouplingMatrix(ĴL, N ′)
2: N ← number of rows in ĴL
3: f = N

N ′
4: if N ′ < N then
5: s = ⌊N−N ′

2 ⌋
6: ĴL′ = f · ĴL[s : s+N ′, s : s+N ′]
7: else
8: num_tiles = 2 · ⌊N ′

N ⌋+ 1

9: tiled = ĴL.repeat(num_tiles, num_tiles)
10: M = num_tiles ·N
11: s = ⌊M−N ′

2 ⌋
12: ĴL′ = f · tiled[s : s+N ′, s : s+N ′]
13: end if
14: return ĴL′

15: end function

Figure 6.8.: Autocorrelation for the transformer-like effective Hamiltonian with
3 attention layers and the fully connected effective Hamiltonian for
lattice sizes N = 4, 6, 10.
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(a)

(b)

Figure 6.9.: The staggered magnetization for β = 20 (a) and β = 200 (b) for different
lattice sizes ranging from N = 4 to N = 15.
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(a)

(b)

Figure 6.10.: The magnetization for β = 20 (a) and β = 200 (b) for different lattice sizes
ranging from N = 4 to N = 15.
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(a)

(b)

Figure 6.11.: The acceptance ratio for β = 20 (a) and β = 200 (b) for different lattice
sizes ranging from N = 4 to N = 15.
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7. Conclusion and Outlook

In this thesis, a comprehensive exploration of various Monte Carlo simulation
techniques was undertaken, with a focus on the development and evaluation of
the Self Learning Monte Carlo (SLMC) method applied to complex spin systems.
Three models were considered in increasing order of complexity: the Ising model,
the Ising-like plaquette model, and the Double Exchange model. Through this
progression, both classical and machine learning-inspired update strategies were
systematically compared, enabling a nuanced understanding of their respective
strengths and limitations.
For the Ising and plaquette models, local and cluster update methods – particu-
larly the Wolff algorithm – were validated and shown to produce consistent ther-
modynamic observables across a wide range of temperatures. The implementation
of SLMC updates yielded a significant improvement in sampling efficiency, as evi-
denced by higher acceptance ratios and reduced autocorrelation lengths, especially
near the critical region where local updates typically suffer from critical slowing
down. These results laid the foundation for applying SLMC to more intricate
models.
The main focus of the thesis was the application of SLMC techniques to the Dou-
ble Exchange model, which represents a challenging system due to the interplay
of classical spin degrees of freedom and quantum mechanical fermions. Here,
multiple effective Hamiltonians were designed using neural network architectures
of varying complexity, including linear, transformer-based, fully connected, and
convolution-like models. The models were trained through a combination of su-
pervised and unsupervised learning procedures. Training stability was achieved by
introducing numerically robust formulations of the logarithmic Boltzmann weight
and its derivatives, thereby enabling stable backpropagation even at low temper-
atures.
The training results revealed that transformer-based and fully connected effective
Hamiltonians achieved the lowest relative mean squared error (MSE), successfully
approximating the exact Boltzmann distribution. Interestingly, the addition of
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multiple attention layers in the transformer architectures did not yield a signif-
icant performance improvement, suggesting a redundancy in expressivity for the
considered lattice size. The fully connected Hamiltonian, although computation-
ally more expensive and lacking lattice-size generalizability, outperformed all other
models near the critical point. In contrast, convolution-like Hamiltonians consis-
tently underperformed both in terms of MSE and in reproducing thermodynamic
observables, likely due to their limited symmetry properties and poor numerical
conditioning.
If lattice size independence is not needed for the analysis of a system, the fully
connected effective Hamiltonian proved to outperform more carefully constructed
models. This is rather surprising since an interaction of the form Tr

[︁
S(ĴS)T

]︁
is a

rather simple and general interaction term. For lattice size dependent simulations
it would be interesting to introduce different lattice sizes into the training data and
study the behaviour of the resulting transformer-like effective Hamiltonian. Addi-
tionally, a comparative analysis of two Hamiltonians trained using different lattice
sizes could yield further insight. Furthermore, an expansion to even more complex
exact Hamiltonians and symmetries – like S U(3) used in QCD – is desirable.
To conclude, this study demonstrates that advanced Monte Carlo techniques us-
ing machine learning, when carefully adapted to specific models, can significantly
enhance simulation efficiency and provide deeper insights into complex interacting
systems such as quantum spin systems.
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A. 1 Particle Reduced

Hamiltonian - Calculations

In this appendix, detailed calculations for the derivation of the 1-particle reduced
Hamiltonian used for the Double Exchange model are provided. The goal is to
reduce the computational complexity by projecting the full Hamiltonian onto
a one-particle subspace. The key steps involve the application of ladder oper-
ator anticommutation relations and the evaluation of matrix elements between
single-particle states. The starting point is the full Hamiltonian provided in equa-
tion (2.11). Using the one-particle wave functions |ĉ†nσ ∅⟩, the one-particle Hamil-
tonian is projected from the full Hamiltonian,

1p
D EHnmρρ′({S}) = ⟨∅ ĉnρ|D EH({S}) |ĉ†mρ′ ∅⟩

=− 2t ⟨∅ ĉnρ|
∑︁

⟨i, j⟩, σ

(︀
ĉ†i, σ ĉj, σ + ĉ†j, σ ĉi, σ

)︀ |ĉ†mρ′ ∅⟩

+
J

2
⟨∅ ĉnρ|

∑︁
i, σ, σ′

ĉ†i, σ (Si · σ)σ σ′⏟  ⏞  
φi
σ σ′

ĉi, σ′ |ĉ†mρ′ ∅⟩

− µ ⟨∅ ĉnρ|
∑︁
i, σ

ĉ†i, σ ĉi, σ |ĉ†mρ′ ∅⟩

=− tA+
J

2
B − µC,

(A.1)

where the parameters A, B and C are given by the following equations.
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• Term A:

⟨∅ ĉnρ| ĉ†iσ ĉj σ |ĉ†mρ′ ∅⟩ = ⟨∅ ĉnρĉ†iσ
(︀
δj mδσ ρ′ −✟✟✟✟ĉ†mρ′ ĉj σ

)︀ ∅⟩
= ⟨∅ δj mδσ ρ′

(︀
δinδσ ρ −✟✟✟✟

ĉ†iσ ĉnρ
)︀ ∅⟩

= δj mδσ ρ′δinδσ ρ

(A.2)

⇒ A =
∑︁

⟨i, j⟩, σ

(︀
δj mδσ ρ′δinδσ ρ + δimδσ ρ′δj nδσ ρ

)︀
= δρρ′

∑︁
⟨i, j⟩

(︀
δj mδin + δimδj n

)︀
= 2δρρ′

∑︁
⟨i, j⟩

δnjδim (A.3)

• Term B:

⟨∅ ĉnρ| ĉ†iσφi
σ σ′ ĉiσ′ |ĉ†mρ′ ∅⟩ = φi

σ σ′⟨∅ ĉnρĉ†iσ
(︀
δimδσ′ρ′ −✟✟✟✟

ĉ†mρ′ ĉiσ′
)︀ ∅⟩

= φi
σ σ′δimδσ′ρ′⟨∅

(︀
δinδσ ρ −✟✟✟✟

ĉ†iσ ĉnρ
)︀ ∅⟩

= φi
σ σ′δimδσ′ρ′δinδσ ρ

(A.4)

⇒ B =
∑︁
i, σ, σ′

(︀
φi
σ σ′δimδσ′ρ′δinδσ ρ

)︀
= φm

ρρ′δnm (A.5)

• Term C:

⟨∅ ĉnρ| ĉ†i, σ ĉi, σ |ĉ†mρ′ ∅⟩ = ⟨∅ ĉnρĉ†i, σ
(︀
δimδσ ρ′ −✟✟✟✟

ĉ†mρ′ ĉi, σ
)︀ ∅⟩

= ⟨∅ δimδσ ρ′
(︀
δinδσ ρ −✟✟✟✟ĉ†i, σ ĉnρ

)︀ ∅⟩
= δimδσ ρ′δinδσ ρ

(A.6)

⇒ C =
∑︁
i, σ

δimδσ ρ′δinδσ ρ = δnmδρρ′ (A.7)

If all terms are simplified, the one-particle Hamiltonians is given by

1p
D EHnmρρ′({S}) = −2tδρρ′

∑︁
⟨i, j⟩

δnjδim +
J

2
δnm(Sm · σ)ρρ′ − µδnmδρρ′ . (A.8)
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B. Pseudoalgorithms for Monte

Carlo Update Methods

This appendix collects the pseudo-code for the Monte Carlo update algorithms
discussed in chapter 3. These pseudoalgorithms provide step-by-step procedures
for implementing the Metropolis, Wolff cluster, Self-Learning Monte Carlo, and
Hybrid Monte Carlo methods. They serve both as a reference for algorithmic
details and as a guide for potential reimplementations.

B.1. Metropolis Algorithm

Algorithm 3 Pseudocode for the Metropolis algorithm.
1: Initialize state X

2: for i = 1 to N do
3: Generate candidate X

′

4: Compute the acceptance probability α = min
(︀
1, e−βΔE

)︀
5: Choose r ∼ U(0, 1)
6: if r < α then
7: Accept the move: X ← X

′

8: else
9: Reject the move: Keep X unchanged

10: end if
11: Compute the observable Oi for the configuration X

12: end for
13: Calculate the ensemble average ⟨O ⟩ = 1

N

∑︀N
i=1 Oi
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B.2. Wolff Clustering Algorithm

Algorithm 4 Pseudocode for the Wolff clustering algorithm.
1: Initialize spin state X

2: for t = 1 to N do
3: Choose a random initial spin Si

4: Choose a random reflection vector r
5: Initialize an empty cluster and add Si to it
6: Mark Si as visited
7: Initialize a stack with Si

8: while stack is not empty do
9: Pop a spin S′ from the stack

10: for each unvisited neighbour Sj of S′ do
11: Compute bond activation probability: p = 1− emin[0,−2β(r·S′)(r·Sj)]

12: Mark Sj as visited
13: Draw r ∼ U(0, 1)
14: if r < p then
15: Add Sj to the cluster
16: Push Sj onto the stack
17: end if
18: end for
19: end while
20: Flip all spins in the cluster
21: end for
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B.3. Self Learning Monte Carlo Algorithm

Algorithm 5 Pseudocode for the SLMC algorithm.
1: Perform trial simulation using local updates and H to generate training data
2: Train an effective Hamiltonian Heff

3: Initialize state X.
4: for i = 1 to N do
5: Propose a new configuration X

′ using Heff

6: Compute acceptance probability α = min(1, peq(X
′)

peq(X)

peq , eff(X)
peq , eff(X′))

7: Choose r ∼ U(0, 1)
8: if r < α then
9: Accept the move: X ← X

′

10: else
11: Reject the move: Keep X unchanged
12: end if
13: Compute the observable Oi for the configuration X

14: end for
15: Calculate the ensemble average ⟨O ⟩ = 1

N

∑︀N
i=1 Oi
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B.4. Hybrid Monte Carlo Algorithm

Algorithm 6 Pseudocode for the Hybrid Monte Carlo algorithm.
1: Initialize state X

2: for i = 1 to N do
3: Sample momentum p ∼ N (0, M)
4: Compute initial energy E = H(X, p) = H(X) + 1

2
pTM−1p

5: Compute new configuration X
′, p′ using Hamilton’s equations

6: Compute new energy E ′ = H(X′, p′)
7: p′ ← −p′

8: Compute the acceptance probability α = min(1, e−β(E′−E))
9: Choose r ∼ U(0, 1)

10: if r < α then
11: Accept the move: X ← X

′

12: else
13: Reject the move: Keep X unchanged
14: end if
15: Compute the observable Oi for the configuration X

16: end for
17: Calculate the ensemble average ⟨O ⟩ = 1

N

∑︀N
i=1 Oi
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