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Kurzfassung 

Im Zuge internationaler Klimaschutzinitiativen wie dem Pariser Abkommen sowie dem 
European Green Deal wurden verbindliche Zielvorgaben zur Reduktion von 
Treibhausgasemissionen formuliert, die produzierende Unternehmen betreffen. Der 
Industriesektor war im Jahr 2023 für 20,3 % der gesamten Treibhausgasemissionen 
innerhalb der Europäischen Union verantwortlich und trägt damit maßgeblich zur 
Erderwärmung bei. Um irreversible ökologische, soziale und wirtschaftliche Schäden 
zu vermeiden, sind drastische Emissionsreduktionen erforderlich. Unternehmen 
stehen dabei vor der Herausforderung, ihre Produktionsprozesse nachhaltiger zu 
gestalten, ohne ihre Wettbewerbsfähigkeit zu verlieren oder das Wohlbefinden ihrer 
Mitarbeitenden zu vernachlässigen. 

Mit wachsendem gesellschaftlichem Druck, verschärften regulatorischen 
Anforderungen sowie steigenden Erwartungen entlang der Lieferkette steigt die 
Relevanz, Nachhaltigkeitsaspekte in der industriellen Produktion systematisch zu 
erfassen und zu bewerten. Da die Umsetzung dieser Anforderungen eine 
nachvollziehbare Herleitung und kontinuierliche Verbesserung ökologischer und 
sozialer Wirkungen in operativen Prozessen voraussetzt, gewinnen automatisierte 
Ansätze zur Identifikation von Nachhaltigkeitspotenzialen in Wertströmen zunehmend 
an Bedeutung. 

Ein bewährter Ansatz zur Prozessoptimierung ist das Lean-Management-Werkzeug 
Value Stream Mapping (VSM). Durch die Erweiterung des klassischen VSM um 
ökologische und soziale Nachhaltigkeitskennzahlen entsteht ein methodisches 
Instrument zur ganzheitlichen Bewertung von Produktionsprozessen entlang der drei 
Säulen der Nachhaltigkeit. Gleichzeitig bieten digitale Technologien im Kontext von 
Industrie 4.0 neue Möglichkeiten, Produktionsdaten automatisiert auszuwerten und 
Entscheidungshilfen datenbasiert zu gestalten. 

Ziel dieser Arbeit ist die Entwicklung eines Algorithmus zur automatisierten 
Identifikation und Bewertung von Nachhaltigkeitspotenzialen in industriellen 
Wertströmen. Hierzu werden bestehende Ansätze und Werkzeuge zur 
Berücksichtigung von Nachhaltigkeitsaspekten in Produktionssystemen analysiert. 
Der entwickelte Algorithmus kombiniert etablierte 
Entscheidungsunterstützungsverfahren mit produktionstechnischen Kennzahlen und 
nutzt digitale Strukturen zur systematischen Bewertung von 
Nachhaltigkeitspotenzialen. Die Anwendung richtet sich insbesondere an 
produzierende Unternehmen, die klassische Lean-Methoden um 
Nachhaltigkeitsaspekte erweitern und datenbasiert Handlungsfelder identifizieren 
möchten. Die Praxistauglichkeit und Wirksamkeit des entwickelten Algorithmus wird 
abschließend anhand eines realen industriellen Fallbeispiels validiert und diskutiert. 
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Abstract 

International climate protection initiatives, including the Paris Agreement and the 
European Green Deal, have established binding targets for reducing greenhouse gas 
emissions that directly impact manufacturing companies. The industrial sector was 
responsible for 20.3% of the total greenhouse gas emissions within the European 
Union in 2023 and thus contributes significantly to global warming. To avoid irreversible 
ecological, social, and economic damages, drastic emission reductions are required. 
Companies face the challenge of making their production processes more sustainable 
without losing their competitiveness or neglecting the well-being of their employees. 

With increasing societal pressure, tightened regulatory requirements, and rising 
expectations along the supply chain, the relevance of systematically identifying and 
evaluating sustainability aspects in industrial production is growing. Since the 
implementation of these requirements presupposes a comprehensible derivation and 
continuous improvement of ecological and social impacts in operational processes, 
automated approaches to identifying sustainability potentials in value streams are 
becoming increasingly important. 

A proven approach to process optimization is the lean management tool Value Stream 
Mapping (VSM). By extending the traditional VSM with ecological and social indicators, 
a methodological instrument is created for a holistic evaluation of production processes 
along the three pillars of sustainability. At the same time, digital technologies in the 
context of Industry 4.0 offer new possibilities to automatically evaluate production data 
and design data-driven decision support. 

The objective of this work is the development of an algorithm for the automated 
identification and evaluation of sustainability potentials in industrial value streams. In 
this context, existing approaches and tools for considering sustainability aspects in 
production systems are analyzed. The developed algorithm combines established 
decision support methods with production-related indicators and uses digital structures 
for the systematic evaluation of sustainability potentials. The application is primarily 
aimed at manufacturing companies that want to extend classical lean methods with 
sustainability aspects and identify fields of action based on data. The practicability and 
effectiveness of the developed algorithm are finally validated and discussed using a 
real industrial case study.  
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1 Introduction 

1.1 General introduction to the subject area and Problem 
definition 

The climate crisis is one of the most significant global challenges of the 21st century. 
Environmental degradation and climate change are disrupting natural systems, 
impacting ecosystems, economies, and the well-being of billions of people (United 
Nations Environment Programme, 2024). At its core, the crisis is driven by human-
induced greenhouse gas (GHG) emissions (Ipcc, 2022). The global mean surface 
temperature has increased by approximately 1°C since the late 19th century, largely 
due to the sharp rise in GHG emissions. Industry is a significant contributor to these 
emissions, accounting for 20.3% of GHG emissions within the EU in 2023 (European 
Parliament, 2024). 

To prevent irreversible social and economic consequences, drastic reductions in GHG 
emissions are essential. Global and regional initiatives such as the European Green 
Deal, specifically the Green Deal Industrial Plan (GDIP) with the Net Zero Industry Act 
(NZIA) and the Fit for 55 package, require manufacturing companies to adopt 
sustainable practices (Veugelers et al., 2024) and (Europäische Union, 2021). 

In this context, the manufacturing sector, one of the largest emitters (Stratmann et al., 
2023), faces challenges closely linked to the operational implementation of 
sustainability. A lack of knowledge, missing strategies, and limited practical guidance 
often led to sustainability aspects being insufficiently considered in production system 
design and decision-making. Furthermore, there is no consistent integration of 
sustainability KPIs into production planning and control, making it difficult to monitor 
performance across the entire value chain. As a result, companies often lack real-time 
insights into resource use, waste streams, and emissions, which prevents the timely 
identification of inefficiencies and targeted improvement actions. Addressing these 
challenges requires effective and structured operational methods that enable 
companies to identify and act on sustainability potentials within their production 
processes. 

One such method is Value Stream Mapping (VSM), which provides a visual and 
analytical framework to uncover inefficiencies and opportunities for improvement (Sihn 
et al., 2016). In this context, the use of KPIs allows organizations to quantitatively 
assess performance and evaluate the effects of implemented improvements (Berndt 
et al., 2024). Currently, VSM is primarily applied at the operational level, sometimes 
incorporating sustainability KPIs to identify potentials and bottlenecks along the value 
stream by measuring actual values and defining target values. However, its reliance 
on numerous manual operations, such as drawing up the current state map, calculating 
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sustainability KPIs, identifying lean and green waste, and developing the future state 
map limits scalability and consistency. Moreover, the lack of automated integration of 
sustainability KPIs into VSM workflows leads to fragmented and incomplete data, 
which is updated only irregularly rather than in real time. 

The absence of tools, such as algorithms, present a significant challenge for 
organizations striving to integrate sustainability aspects into their operations 
effectively. To address this gap, this thesis develops an algorithm for assessing 
sustainability performance in a structured, value stream-oriented manner. The 
algorithm is designed to automatically identify sustainability potentials within 
production processes, thereby advancing sustainability goals in the manufacturing 
sector, fostering more sustainable production practices. 

In this context, the key issues can be classified into the following problem areas: 

Problem 1: Knowledge gaps and challenges regarding sustainability lead to the 
insufficient consideration of sustainability aspects in current production systems 

Problem 2: The lack of the integration of sustainability KPIs into current production 
systems hinders the efficient monitoring of the sustainability performance across the 
entire value chain 

Problem 3: The absence of robust sustainability assessment systems impedes the 
continuous monitoring and evaluation of economic, environmental, and social impacts, 
thereby hindering the identification of inefficiencies within organizational processes 

1.2 Research questions and Aim of the Thesis 
Based on the previously mentioned problem, the following research questions arise: 

Research Question 1: How are sustainability aspects considered in current 
production systems? 

Research Question 2: What approaches and tools enable the identification of 
sustainability bottlenecks and potentials in manufacturing companies? 

Research Question 3: How can an algorithm be designed to identify economic, 
environmental, and social sustainability potentials in production systems? 

In the initial phase, the theoretical foundations will be established to provide a 
comprehensive understanding of the core concepts and principles. In addition to the 
Principles of Value Stream Mapping, the Triple Bottom Line by John Elkington, as well 
as relevant standards and regulations, will be discussed, which are fundamental for 
supporting organizations in the implementation of sustainable practices and ensuring 
compliance with legal requirements. Furthermore, the significance of sustainability 
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KPIs will be examined, with particular emphasis on their role in measuring and 
assessing sustainability progress across the economic, environmental and social 
dimensions. In this context, the fundamentals of algorithms will also be introduced, with 
a focus on their role within sustainability assessment, highlighting their potential to 
enable data-driven decision-making and automation in the evaluation of sustainability 
performance. 

Subsequently, a systematic literature review (SLR) will be conducted to identify and 
analyze the prevailing approaches and tools employed in production systems that 
consider sustainability aspects. To ensure a comprehensive overview of existing 
methodologies, the reviewed scientific publications will be systematically categorized 
according to their key contribution and area of application. 

Building on the approaches and tools identified in SLR, the primary objective of this 
thesis is to develop an algorithm that enables the identification, evaluation, and 
prioritization of sustainability-related potentials within production processes. This 
algorithm is intended to support decision-makers in manufacturing by providing 
transparent, data-driven insights into economic, environmental, and social impacts 
across the value stream, thus fostering more effective and holistic sustainability 
management at the operational level. 

By extending the traditional Value Stream Mapping (VSM) approach to systematically 
incorporate sustainability dimensions, the algorithm aims to close the gap between 
conceptual sustainability frameworks and their operational implementation. It will 
enable organizations to automatically identify critical improvement areas and highlight 
the KPIs that most significantly influence the sustainability performance of each 
production process. Validated with empirical manufacturing data, this algorithm is 
designed to enhance the reliability, robustness, accuracy, and practical applicability of 
sustainability assessments within production systems, contributing to more sustainable 
and competitive industrial practices. 

The aim of this thesis can be broken down into the following objectives: 

Research Objective 1: Identifying and analyzing existing approaches and tools used 
in production systems to address sustainability 

Research Objective 2: Identifying approaches and models for detecting sustainability 
bottlenecks and potentials in manufacturing companies 

Research Objective 3: Developing an algorithm that enables the automated 
identification and evaluation of sustainability-related potentials within production 
systems 
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1.3 Organization and Structure of the thesis 
The foundation of this work is based on the design-science paradigm, as proposed by 
(Hevner et al., 2004). The thesis is structured, as suggested by the research questions, 
into a theoretical and a practical part. In Chapter 1, the current situation is explained, 
followed by the derivation of the resulting problem statement, the presentation of the 
research questions and objectives of the thesis, and the determination of the Structure 
of the thesis. Chapter 2 outlines the research methodology, encompassing the Design 
Science method. In Chapter 3, the relevant theoretical foundations are presented, and 
the key terms are defined, which are essential for the subsequent development of the 
algorithm. An in-depth systematic literature review on existing approaches, tools, and 
relevant sustainability KPIs for real-time monitoring in production systems is provided 
in Chapter 4. Chapter 5 focuses on the development and detailed explanation of the 
Sustainability Potentials Detection Algorithm (SPDA), which is empirically tested and 
evaluated in Chapter 6 using manufacturing data to assess its effectiveness, accuracy, 
reliability, and reproducibility. Chapter 7 contains the conclusion and limitations, 
followed by the outlook and Future Work in Chapter 8. Chapter 9 includes the list of 
relevant publications, sustainability KPIs identified through SLR and the source code 
of SPDA. Chapters 10 includes the bibliography. Chapter 11 to 14 provide the lists of 
illustrations, equations, tables and abbreviations. 
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2 Methodology and Methodical Approach 

The foundation of this work is based on the design-science paradigm, which has its 
origins in engineering and the sciences of the artificial, and primarily focuses on 
problem solving through the creation of innovative artifacts such as ideas, practices, 
technical capabilities, or products (Hevner et al., 2004). 

The research process in the design-science paradigm begins with the conception of 
innovative artifacts, which are then implemented. The artifacts in a research project 
can take various forms, such as a construct, model, method, or an instantiation (Hevner 
et al., 2004). The artifact in this work will be an algorithm, that fulfil the requirements 
based on the previously mentioned problem. 

The framework used in this work is based on Hevner's Three-Cycle View, which 
connects the contextual environment, design science activities, and scientific 
knowledge to ensure high-quality research. The three cycles are the Relevance Cycle, 
the Design Cycle and the Rigor Cycle, as shown in Figure 1. 

The Rigor Cycle is essential to connect the design-science paradigm and the 
underlying knowledge base (Hevner et al., 2004). The theoretical foundations and the 
results from SLR serve as the knowledge base for this work. A variety of scientific 
databases are available for relevant literature. For SLR, the „Scopus“ database was 
chosen. A search strategy was developed based on the research problem and 
objectives to identify and explore relevant literature. 

The Relevance Cycle bridges the gap between the project's environment and the 
Design Science Research by establishing key criteria for the developed artifact 
(Hevner et al., 2004). Building on insights from the systematic literature review and 
established methodologies, specific requirements for the algorithm are meticulously 
identified. These requirements ensure that the algorithm addresses practical needs 
within production systems. 

The Design Cycle involves a continuous process of constructing the artifact, assessing 
its performance, and refining it based on the feedback obtained. This cycle is 
fundamentally reliant on the Relevance and Rigor Cycles, as it draws upon their inputs 
to establish a solid basis for the development of the necessary artifact (Hevner et al., 
2004). In this work, the Design Cycle focuses on developing and testing the algorithm 
using manufacturing data. The algorithm undergoes several iterations of refinement, 
incorporating feedback from operational supervisors and insights gained during 
empirical testing. The designed algorithm will contribute to the knowledge base (Rigor 
Cycle). 
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The final step is to communicate the results in the form of a master's thesis, which also 
discusses open questions and provides an outlook for future research and 
applications. 

 

Figure 1: Design Science Research Cycles adapted from (Hevner et al., 2004) 
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3 Theoretical Principles 

In this chapter, the key theoretical principles are introduced that are essential for 
understanding concepts and sustainable practices. First, the chapter “Principles of 
Value Stream Mapping” explains the concept of value stream mapping, which plays a 
central role in improving manufacturing processes. Next, the chapter “Sustainability in 
the Context of Production Systems” highlights the economic, environmental and social 
dimensions of sustainability using the Triple Bottom Line framework. It also addresses 
relevant standards and regulations that guide the implementation of sustainable 
processes and practices. Furthermore, it focuses on measuring sustainability through 
key performance indicators that enable objective assessments of performance. Finally, 
the chapter “Fundamentals of Algorithms” presents the basic concepts of algorithms, 
which play a crucial role in the analysis and optimization of production systems. 
Together, these sections lay the theoretical foundation for advancing and optimizing 
production processes in line with sustainability goals. 

3.1 Principles of Value Stream Mapping 
Value Stream Mapping (VSM) is a methodological tool used to analyze the current 
state of the value stream, reaching from suppliers to customers, while also facilitating 
the creation of a future state map. Originating from the Toyota Production System 
(TPS), VSM has become one of the most widely recognized methodologies in Lean 
Management (Niemann et al., 2021). By employing simple and standardized symbols, 
VSM provides a systematic and visual representation of the entire value stream, 
encompassing its key elements and interdependencies (Erlach, 2019). By mapping out 
these processes, VSM enables the identification of inefficiencies, potentials and 
bottlenecks in production systems (Niemann et al., 2021). 

The term VSM is made up of the words “value” and “stream”. In a production process, 
the input goods are given added value through value creation. From a business 
perspective, the increase in value is driven by production efforts that are closely linked 
to the product feature. Therefore, from a business perspective, the value of a product 
can be defined using the Equation 1 (Erlach, 2019): 𝑽𝒂𝒍𝒖𝒆 = 𝑴𝒂𝒏𝒖𝒇𝒂𝒄𝒕𝒖𝒓𝒊𝒏𝒈 𝒄𝒐𝒔𝒕𝒔 + 𝑷𝒓𝒐𝒇𝒊𝒕 𝒎𝒂𝒓𝒈𝒊𝒏 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒄𝒐𝒎𝒑𝒂𝒏𝒚  

Equation 1: Value of a product 

Stream refers to the sequence of production activities in which physical materials or 
information move from one workstation to the next (Erlach, 2019). 

Thus, the term "value stream" refers to a series of interconnected processes, both 
value-adding and non-value-adding, that are necessary to produce a product. These 
processes encompass the entire flow, from the procurement of raw materials to the 
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delivery of the finished product to the customer (Sihn et al., 2016). Building on this 
understanding of the value stream, the next section will explore the key phases 
involved in VSM. 

3.1.1 Phases in Value Stream Mapping 
The phases in VSM provide a structured approach to analyzing and improving the flow 
of materials, information, and processes, as illustrated in Figure 2. The following 
sections will provide a detailed explanation of each phase in VSM, highlighting the key 
activities and objectives involved in successfully implementing this method. 

 

Figure 2: Phases in Value Stream Mapping, adapted from (Sihn et al., 2016) 

Product Family Formation 

The initial step is to choose the product and the related production processes that will 
be targeted for improvement. Different products often have different manufacturing 
processes, and to ensure clarity in the Value Stream Analysis (VSA), it is essential to 
group products with similar production characteristics into product families (Niemann 
et al., 2021). A product family is defined as a set of products that are manufactured 
using similar production steps and, typically, share the same or similar machinery and 
equipment. A product family involves products that require comparable operations, 
which may include assembly, machining, or finishing (Sihn et al., 2016). Tools such as 
the product family matrix will be used for the formation of product families (Erlach, 
2019).  

In the Product Family Matrix, the vertical axis lists the different products being 
manufactured, while the horizontal axis captures the key production stages necessary 
to produce those products, as shown in Figure 3. The matrix essentially serves as a 
mapping tool, linking products with their corresponding operations, machinery, and 
tools. The cells of the matrix indicate whether a particular production step is used for a 
given product, allowing manufacturers to identify which products share similar 
production requirements (Koch, 2015). In addition to aligning products with common 
production steps, the product family matrix can incorporate a variety of other criteria to 
further refine the grouping of products into families. These factors contribute to a more 
accurate representation of production realities and demand characteristics, thereby 
supporting more effective decision-making (Sihn et al., 2016).  



Theoretical Principles  11 

 

Figure 3: Product Family Matrix, adapted from (Erlach, 2019) 

As an intermediate step between the formation of product families and VSA (current 
state), the customer demand analysis is conducted. This step aims to avoid both 
underproduction and overproduction by aligning the production with actual customer 
demand. Therefore, the takt time should be calculated using Equation 2, which 
represents the time needed to produce a product to meet customer demand (Niemann 
et al., 2021).  

𝑻𝒂𝒌𝒕 𝒕𝒊𝒎𝒆 = 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆 𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒑𝒆𝒓 𝒑𝒆𝒓𝒊𝒐𝒅𝑪𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒅𝒆𝒎𝒂𝒏𝒅 𝒑𝒆𝒓 𝒑𝒆𝒓𝒊𝒐𝒅  
Equation 2: Takt time 

The prerequisite for Equation 2 is stable and predictable customer demand per period. 
Any fluctuations in customer demand can disrupt the system’s efficiency, potentially 
requiring adjustments in production capacity, scheduling, or resource management in 
order to ensure a consistent flow and meet customer expectations, while avoiding 
excessive lead times and unnecessary costs (Niemann et al., 2021). 

Value Stream Analysis 

The next step is the Value Stream Analysis (VSA) of the current state, which involves 
identifying and visualizing the required processes, including the flow of materials and 
information, for a specific product family (Sihn et al., 2016). For the mapping of the 
current state, standardized symbols are employed, as shown in Figure 4. Processes 
like turning, assembly etc., as well as logistical activities such as shipping etc., are all 
represented in the map. Transport is differentiated in internal (e.g., by forklift) or 
external (e.g., by truck) and is illustrated using arrows (Sihn et al., 2016).  
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Figure 4: Standardized symbols for VSM (Batra et al., 2016) 

In VSA, all activities involved in the production of a product are traced back in order to 
identify weaknesses, waste, and inefficiencies (Schuh et al., 2014). An example of the 
visualization of the current state as a value stream map is shown in Figure 5. 

 

Figure 5: Value stream map (Osman Zahid et al., 2020) 

The current state of the value stream can be visualized through on-site manufacturing 
data, such as total lead time, processing times and inventory. These data points help 
to determine the throughput time, which is a critical measure of efficiency in a 
manufacturing system. It can be simplified and calculated using the Equation 3:  

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 𝒕𝒊𝒎𝒆 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒂𝒓𝒕𝒔 𝒊𝒏 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚𝑪𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒅𝒆𝒎𝒂𝒏𝒅 𝒑𝒆𝒓 𝒅𝒂𝒚  
Equation 3: Throughput time 

Equation 3 provides a rough estimate of how long it takes on average, for a part to be 
processed and delivered to the customer, based on current inventory levels and 
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demand rates. Inventory levels of raw materials or goods between production stages 
are depicted using a triangle symbol. A timeline is positioned below the value stream 
map, which consists of the upper level and lower level. The upper level represents the 
processing times for each step in the value stream. The lower level illustrates the 
amount of time that raw materials or goods remain in inventory or in a waiting state 
before being processed to the next step. A Value stream map also includes the 
production planning system (e.g., ERP or MES system), which is displayed centrally 
above the value stream (Sihn et al., 2016). 

VSA serves as a key input for Value Stream Design (VSD), enabling targeted 
improvements to enhance efficiency and streamline processes. 

Value Stream Design 

Value Stream Design (VSD) focuses on creating a desired future state for the value 
stream, with the goal of aligning the flow of value with takt time to ensure that 
production processes are synchronized with customer demand (Sihn et al., 2016). 
Efficiency is increased by eliminating waste and reducing non-value-adding activities 
throughout the value stream (Niemann et al., 2021). In TPS, waste is systematically 
categorized into seven types (Erlach, 2019). The seven types of waste are 
overproduction, high inventory levels, transportation, unnecessary movements, 
waiting, inefficiencies within the production process itself, and defects (Niemann et al., 
2021). To systematically eliminate waste in the production process, seven guidelines 
are defined, as illustrated in Figure 6 (Sihn et al., 2016). By following these principles, 
manufacturing companies can improve the overall process efficiency. 

 

Figure 6: Guidelines for optimization of value streams, adopted from (Sihn et al., 2016) 

The first key guideline is to align production processes with takt time in order to meet 
customer demand. This allows for responsive and demand-driven scheduling (Sihn et 
al., 2016). Operator Balance Chart (OBC) is an effective tool to visualize the cycle 
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times of each production stage. It serves as a visual aid for balancing production flow, 
reducing inefficiencies, and ensuring that processes are synchronized with customer 
demand. Operator Balance Chart is a bar graph that displays the cycle times and the 
takt time (horizontal line), as illustrated in Figure 7. Cycle times that are longer than 
the takt time indicate bottlenecks in the production processes, as these processes are 
taking longer than required to meet customer demand. Conversely, cycle times that 
are shorter than the takt time visualize waste, as production is happening faster than 
needed, potentially leading to overproduction or underutilization of resources 
(Niemann et al., 2021). 

 

Figure 7: Operator Balance Chart, adopted from (Sihn et al., 2016) 

The second guideline is the implementation of one-piece flow. One-piece-flow is 
characterized by a production of a single unit, where the part is directly passed to the 
next process without being halted or stored between steps (Erlach, 2019). The goal is 
to adhere to the takt time and to produce only what is required at each step. This 
approach eliminates intermediate inventories between processes, reducing the need 
for buffer spaces and handling effort. To enable one-piece flow manufacturing, 
workstations must be arranged according to the sequence of operations (Sihn et al., 
2016). 

The third guideline is the implementation of a pull system. In a pull system, Kanban 
cards are used to control the material supply and production. Each card is linked to a 
specific container, with the quantity matching the amount specified on the card. This 
ensures a consistent and controlled material flow, helping to balance supply and 
demand, reduce inventory, and align production with customer needs (Erlach, 2019). 
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In pull systems, it is essential to identify the point where the control of the value stream 
occurs (fourth guideline). This point is referred to as the "Pacemaker Process" and 
determines the production rhythm for the entire value stream. The choice of the point 
also affects lead time and scheduling. It is crucial that material flows downstream from 
the Pacemaker Process to subsequent processes without interruption. Thus, the 
production scheduling point should be placed as far upstream as possible (Sihn et al., 
2016). 

The fifth guiding principle is flexibility through balancing the production mix. To meet 
varying customer demands with minimal lead time, production of different products 
should be evenly distributed over a set period. This approach helps prevent 
bottlenecks and ensures that production is flexible enough to respond to changes in 
customer demand. Additionally, it results in small inventory buffers, allowing for a more 
responsive and efficient manufacturing process (Sihn et al., 2016). 

To ensure a smooth and stable production flow, and to respond immediately to issues 
with corrective actions, a balanced production level is targeted (sixth guideline). To 
improve production control, smaller production orders are released at regular intervals. 
These small work units are defined by the “pitch” interval, which is calculated using 
Equation 4 (Sihn et al., 2016).  𝟏 𝑷𝒊𝒕𝒄𝒉 = 𝑻𝒂𝒌𝒕 𝒕𝒊𝒎𝒆 ∗ 𝑪𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓 𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 

Equation 4: 1 Pitch 

The seventh guideline is Every Part Every Interval (EPEI) production. In EPEI 
production, the goal is to manufacture each product in a defined time interval, ideally 
with the smallest possible batch sizes. This approach ensures that all product variants 
are produced regularly to maintain flexibility and responsiveness to customer demand 
(Erlach, 2019). 

Implementation 

To implement the future state, both Flow Kaizen and Process Kaizen are applied. Flow 
Kaizen primarily focuses on improving the flow of materials and information, aiming to 
optimize how these elements are moved throughout the value stream. In contrast, 
Process Kaizen targets the flow of people and processes, with particular emphasis on 
the interactions between employees and their respective manufacturing processes. 
Since achieving the future state at once is rarely feasible, value stream loops introduce 
improvements step-by-step. Clear objectives and assigned responsibilities ensure 
accountability and effective progress monitoring (Sihn et al., 2016). 

In summary, VSM provides a structured framework for visualizing, analyzing, and 
optimizing production processes with a focus on operational efficiency and waste 
reduction. However, as the manufacturing industry face increasing pressure from 
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regulatory requirements and stakeholder expectations, the scope of process 
optimization must expand beyond traditional efficiency metrics. Integrating 
sustainability considerations, which encompass economic, environmental and social 
dimensions, into VSA becomes essential for achieving long-term resilience and 
compliance with evolving frameworks and regulatory standards. The subsequent 
chapter therefore introduces the foundational concepts of sustainability. 

3.2 Sustainability in the Context of Production Systems 
Sustainability, often referred to as the Triple Bottom Line (TBL), is an essential concept 
that underscores the need for businesses and organizations to consider not only their 
economic performance but also their environmental and social impacts. The following 
chapter provides a definition of sustainability and elaborates the concept of TBL by 
John Elkington. 

Definition and Importance of Sustainability 

The United Nations (UN) provides one of the most widely recognized definitions of 
sustainable development, which is defined as follows (Brundtland, 1987):  

"Sustainable development is development that meets the needs of the present without 
compromising the ability of future generations to meet their own needs." 

This definition incorporates two fundamental concepts, which are the priority of 
essential human needs and the limitations of technology and social organization in 
meeting the present and future needs (Brundtland, 1987). In essence, sustainability 
refers to a state in which a balance is achieved between economic growth, 
environmental protection and social inclusion, as illustrated in Figure 8 (UNITED 
NATIONS, n.d.). 

 

Figure 8: Three dimensions of sustainability, adopted from (Purvis, 2019) 

Building upon this fundamental understanding of sustainability, TBL concept provides 
a practical and widely adopted model for evaluating organizational performance across 
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the economic, environmental, and social dimensions, which are discussed in detail in 
the following sections. 

3.2.1 The Triple Bottom Line in Manufacturing 
The Tripple Bottom Line (TBL), introduced by John Elkington, is a reporting framework 
designed to encourage companies to assess and communicate their impact on the 
economy, environment and society. TBL focuses on the accounting and measurement 
of economic, environmental, and social factors, enabling a more comprehensive and 
sustainable view of corporate performance (Elkington, 1997). In the manufacturing 
sector, the TBL framework helps assess not only financial outcomes but also the 
environmental footprint of production processes and the social implications of labor 
practices (Dewi et al., 2023). By expanding traditional financial metrics to include 
environmental and social indicators, the TBL creates new categories of value, often 
referred to as the "Three P´s" (People, Planet, and Prosperity), as shown in Figure 9 
(UW ONLINE COLLABORATIVES, 2022). This approach is also commonly known in 
the literature as the "Three Pillars Model” (Handelszeitung, n.d.). 

 

Figure 9: Three P´s of TBL (Stedman & Gillis, 2024) 

Economic Bottom Line – Prosperity 

This dimension refers to the economic success of a company. In accounting, the 
"Bottom Line" denotes the final line in the profit and loss statement (P&L). It represents 
more than just profit and loss, because it also includes sustainable business models 
(Elkington, 1997). For manufacturing companies, economic sustainability involves 
optimizing production efficiency through new manufacturing technologies and reducing 
waste, ensuring that operational improvements contribute to long-term value creation 
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and resource-efficient operations (Abubakr et al., 2020). To ensure long-term 
economic sustainability for a company, it is essential to create stable value over time. 
This includes achieving long-term financial stability, fostering innovation, and 
maintaining strong demand for its products or services (Elkington, 1997). 

The shear zone between prosperity/profit and planet, illustrated in Figure 9, addresses 
the issue “Eco-efficiency” (Stedman & Gillis, 2024). “Eco-efficiency” refers to providing 
goods and services at competitive prices that meet human needs and enhance quality 
of life while progressively reducing ecological impacts and resource intensity across 
the entire lifecycle. In manufacturing, eco-efficiency can be achieved through lean 
management tools such as 5S and SMED, as well as energy-saving initiatives and 
circular economy strategies (García-Alcaraz et al., 2021) and (Jovane et al., 2008). 
The goal is to achieve eco-efficiency and secure economic success without negative 
impacts on society or the environment (Elkington, 1997). 

Environmental Bottom Line – Planet 

This dimension focuses on the environmental impacts of a company (Stedman & Gillis, 
2024). It includes a closer examination of "critical natural capital" and “renewable, 
replaceable, or substitutable natural capital”. Critical natural capital ensures the 
preservation of life and the integrity of ecosystems, while the second form of natural 
capital, as the name suggests, can be renewed, repaired, or substituted. In 
manufacturing, this involves optimizing material and energy usage in order to enhance 
environmental performance (Li et al., 2017). Long-term sustainable businesses can 
improve their environmental performance by measuring environmental impacts 
through KPIs such as life cycle impacts of products, energy consumption, material and 
water usage at production sites (Elkington, 1997). The goal is to protect the planet and 
minimize the negative effects on the environment (Arowoshegbe & Emmanuel, 2016). 

The shear zone between planet and people highlights the connection between 
environmental protection and social responsibility, as shown in Figure 9. Companies 
that enhance the quality of life by adopting environmentally friendly and sustainable 
practices can achieve both ecological and social benefits (Graver, 2024). In 
manufacturing, this may include adopting measures to optimize material usage and 
reduce waste, while at the same time implementing workplace practices and 
technologies that improve operator safety, ergonomics, and reduce exposure to 
harmful substances such as dust and noise (Atoillah & Hartini, 2021). 

Social Bottom Line - People 

The social dimension of TBL refers to the extensive impact a company has on society 
and individuals, particularly concerning the well-being of its employees, communities, 
and future generations. According to (Elkington, 1997), social capital is defined as 
human capital, which includes elements such as public health, education, skills, and 
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overall social welfare. The goal is to promote beneficial and fair business practices 
towards the workforce, human capital, and the wider community (Elkington, 1997). In 
manufacturing, this includes ensuring safe working conditions, providing training for 
employees, and designing work environments that minimize physical strain while 
promoting ergonomic efficiency (Utama & Abirfatin, 2023). Additionally, companies can 
further influence people positively and support future generations by ensuring fair 
hiring practices, providing equitable wages, and offering health insurance to 
employees (Miller, 2020), (Arowoshegbe & Emmanuel, 2016). 

The shear zone between prosperity/profit and people addresses the issue “Socio-
economic sustainability” and highlights the connection between economic success and 
social responsibility. Socio-economic sustainability entails the integration of business 
practices that promote social equity and economic stability, thereby creating value for 
all stakeholders. This approach includes entrepreneurial activities aimed at combating 
poverty, creating job opportunities, and fostering fair and just environments (Elkington, 
1997). 

To effectively implement the principles of TBL, organizations require clear guidelines 
and a structured approach to ensure that sustainability efforts are consistent and 
verifiable across industries. This makes international standards and regulatory 
frameworks essential for guiding companies toward measurable and comparable 
sustainability outcomes. 

3.2.2 Regulatory Drivers for Industrial Sustainability  
To address climate change and promote sustainable development, regional and global 
efforts such as the Paris Agreement and the European Green Deal are important 
initiatives. To complement these efforts, both organizations and governments are 
adopting frameworks and standards that help structure and measure progress toward 
climate and sustainability goals. 

To better understand the necessity and impact of regulatory frameworks, it is essential 
to examine the historical development of global GHG emissions. This provides context 
for the urgency and scope of current climate policy efforts. 

Evolution of GHG Emissions 

Figure 10a shows the global annual CO2 emissions released into the atmosphere from 
the combustion of coal, natural gas, liquid fuels, cement manufacture, and gas flaring 
(CO2FF) over the past two centuries. Approximately 50% of the CO2 emissions 
produced by human activities remain in the atmosphere. The remaining CO2 emissions 
are absorbed by the oceans and the terrestrial biosphere, predominantly trees. As 
shown in Figure 10a, the global population has significantly increased since 1950, 
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which has also contributed to the massive rise in CO2 emissions (Salawitch et al., 
2017). 

The diagram in Figure 10b illustrates the historical evolution of GHG emissions from 
1825 to 2020, highlighting major industrial developments that have shaped emission 
trends. Starting with the early industrial revolution, emissions rose gradually due to 
coal-powered steel manufacturing. The second industrial revolution brought 
electrification and mass production, accelerating emissions. A significant post-World 
War 2 industrial boom, driven by oil and chemical industries, caused a steep increase. 
Despite the oil shocks of the 1970s, globalization and the rapid industrialization of 
emerging economies, particularly China fueled further growth (Salawitch et al., 2017). 

 

Figure 10: Total global emission of CO2 (Salawitch et al., 2017) 

To prevent the catastrophic consequences of rising in CO2 emissions, largely driven 
by the rapid industrial expansion and energy-intensive production methods of the past 
two centuries, sustainability frameworks set out ambitious objectives to limit global 
warming and promote global efforts toward more sustainable industrial development.  

3.2.3 Sustainability Frameworks and Reporting Standards 
In response to these urgent needs, a growing number of international agreements, 
regulatory frameworks, and reporting standards have been introduced to guide the 
transition toward a climate-neutral economy. Among the most significant initiatives are 
the Paris Agreement, the European Green Deal, the EU Taxonomy regulation and the 
Global Reporting Initiative. 
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Paris Agreement 

The Paris Agreement, adopted on 12. December 2015 at the 21st Conference of the 
Parties (COP21) to the United Nations Framework Convention on Climate Change 
(UNFCCC) in Paris, represents a significant milestone in the global effort to combat 
climate change (United Nations Climate Change, n.d.). The agreement followed the 
Kyoto Protocol and emphasized the importance of universal participation and long-
term sustainability (Salawitch et al., 2017) and (Bundesministerium für Klimaschutz, 
Umwelt, Energie, Mobilität, Innovation und Technologie, 2024). 

The central goal of the Paris Agreement is to limit global average temperature rise to 
well below 2°C above pre-industrial levels, with a further effort to limit the temperature 
increase to 1.5°C (United Nations Climate Change, n.d.). Achieving this requires 
transformations in industrial production, including materials efficiency, enhanced 
recycling, decarbonization of production processes and the adoption of very low- or 
zero-emission technologies (Shukla et al., 2022). 

To meet the Paris Agreement’s ambitious climate targets, nations must not only 
transform their industrial processes but also establish clear guidelines for action. One 
such framework is the set of Nationally Determined Contributions (NDCs) for GHG 
emission reductions and climate actions, which may include both quantitative and 
qualitative goals, along with defined timelines (United Nations, n.d.-b) and (United 
Nations & Development Programme, 2023). In the industrial sector, these contributions 
drive efforts toward energy-efficient manufacturing, the adoption of cleaner 
technologies, and the implementation of circular economy principles (Shukla et al., 
2022). 

Another important aspect of the Paris Agreement is its reliance on global stocktaking, 
which occurs every five years to communicate, update, and enhance their NDCs 
(United Nations, 2015) and (United Nations, n.d.-a). The results guide updates to 
climate action plans, promoting technological innovations and stronger mitigation 
efforts (United Nations Climate Change, n.d.). 

To translate these global goals into concrete regional policies, EU introduced the 
European Green Deal, aiming to lead the path toward climate neutrality among its 
member states. 

European Green Deal 

Building on the global framework established by the Paris Agreement, the European 
Green Deal (EGD), adopted on December 2019, specifies a broad array of measures 
designed to facilitate the transition to a low-carbon, sustainable economy within Europe 
(Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und 
Technologie, n.d.) and (Europäische Kommission, 2021). This strategic document 
outlines EUs commitment to assume a global leadership role in the fight against climate 
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change. It outlines the goal of reducing emissions by at least 55% by 2030 (“Fit for 55" 
legislative package), compared to 1990 levels (Bundesministerium für Klimaschutz, 
Umwelt, Energie, Mobilität, Innovation und Technologie, n.d.). In February 2024, the 
European Commission introduced an additional interim target of a 90% reduction in 
emissions by 2040 (European Commission, n.d.-d). 

EGD includes measures for industry to drive a sustainable economic transformation. 
Three central components of this comprehensive strategy are the Green Deal 
Industrial Plan (GDIP), the Critical Raw Materials Act (CRMA), and the Net-Zero 
Industry Act (NZIA), as illustrated in Figure 11 (European Commission, n.d.-d). 

GDIP, introduced by the European Commission in February 2023, aims to align 
European industry with sustainability objectives while enhancing its global 
competitiveness. Its primary goal is to increase the EU’s manufacturing capacity for 
CO2-neutral technologies and products, which are crucial for meeting the ambitious 
climate targets (European Commission, 2023). 

 

Figure 11: Key Initiatives of European Green Deal 

CRMA is another key initiative of GDIP, aimed at ensuring the supply of critical raw 
materials essential for the green transition and the digital economy. NZIA is a 
regulatory framework designed to transform the EU’s industrial base into a fully 
climate-neutral production sector by 2050 through adoption of clean technologies 
(European Commission, n.d.-c). 

Building on these strategic initiatives, regulatory frameworks such as the EU 
Taxonomy regulation further operationalize EDG’s sustainability ambitions by 
providing a standardized classification system for environmentally sustainable 
economic activities. As industries increasingly align with such frameworks, effective 
reporting standards become essential for tracking progress and ensuring 
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accountability. Instruments like the EU Taxonomy Regulation and the Global Reporting 
Initiative establish benchmarks for companies to disclose their environmental impact, 
guiding them toward greater transparency and consistency in their sustainability efforts 
(European Commission, n.d.-a) and (Global Sustainability Standards Board (GSSB), 
2021b, p. 1). 

EU Taxonomy regulation 

EU Taxonomy regulation, introduced in 2020, plays a pivotal role in guiding companies 
and investors through the transition to a greener economy and net zero, particularly by 
establishing clear criteria for sustainable investments and promoting activities such as 
the shift to a circular economy and the reduction of pollution (European Commission, 
n.d.-a). 

EU Taxonomy regulation explicitly includes manufacturing activities within its scope, 
setting technical screening criteria to determine whether industrial production 
processes substantially contribute to environmental objectives, such as climate change 
mitigation or transition to a circular economy, as shown in Figure 12. This framework 
provides a standardized reference for the manufacturing industry to align investment 
and operations with the EU’s sustainability targets (European Commission, 2020). 

 

Figure 12: Six objectives of the EU-Taxonomy (European Commission, n.d.-b) 

Building on this, standardized reporting frameworks such as GRI Standards facilitate 
transparent disclosure of sustainability performance by organizations. 

Global Reporting Initiative 

Global Reporting Initiative (GRI) Standards provide a structured and comprehensive 
set of standards for sustainability reporting, ensuring clear and detailed disclosures of 
economic, environmental, and social impacts (Global Sustainability Standards Board 
(GSSB), 2021b, p. 1). GRI standards are divided into “Universal Standards (GRI 1, 
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GRI 2, and GRI 3)”, “Sector Standards”, and “Topic Standards”, as shown in Figure 
13. 

GRI 1 outlines the fundamental principles of sustainability reporting, including 
accuracy, balance, clarity, comparability, completeness, sustainability context, 
timeliness and verifiability (Global Sustainability Standards Board (GSSB), 2021b, p. 
1). 

GRI 2 outlines specific requirements for sustainability reporting within organizations, 
expecting organizations to describe value creation across the entire value chain and 
assess economic, environmental, and social impacts from their operations and 
products (Global Sustainability Standards Board (GSSB), 2021c, p. 2). 

GRI 3 outlines the methodological steps required to identify material topics with the 
most significant impacts on the economy, environment, and society. 

 

Figure 13: GRI standards (Global Sustainability Standards Board (GSSB), 2021a) 

The process of determining material topics encompasses the understanding of the 
organizational context, identification of actual and potential impacts, assessment of the 
significance of these impacts and prioritization of the most relevant topics for the 
sustainability report (Global Sustainability Standards Board (GSSB), 2021d, p. 3). 

The set of GRI Standards also includes 40 Sector Standards (GRI 11, 12, 13, …), 
organized into four distinct groups (Global Sustainability Standards Board (GSSB), 
n.d.-a), which are “Basic Materials and Needs,” “Industrial,” “Transport, Infrastructure, 
and Tourism,” and “Other Services and Light Manufacturing” (Global Sustainability 
Standards Board (GSSB), 2021e). Sector-specific standards improve reporting quality 
by addressing industry challenges and enhancing transparency (Global Sustainability 
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Standards Board (GSSB), n.d.-a). In addition, Topic Standards (Series 200, 300, 400) 
guide organizations in reporting on their material topics (Global Sustainability 
Standards Board (GSSB), n.d.-b). 

Building on the discussion of sustainability frameworks, including the Paris Agreement, 
the European Green Deal, the EU Taxonomy regulation, and the GRI Standards, the 
following section introduces sustainability KPIs. These indicators are essential for 
systematically measuring and monitoring performance across the economic, 
environmental, and social dimensions of TBL, providing organizations with actionable 
insights to identify improvement areas, and align operations with sustainability goals. 

3.2.4 Sustainability Key Performance Indicators 
To make sustainability measurable and actionable within manufacturing companies, it 
is essential to define and monitor KPIs. Sustainability KPIs provide a structured way to 
evaluate performance across the economic, environmental, and social dimensions of 
TBL, while aligning measurement with recognized frameworks such as the GRI 
Standards and the EU Taxonomy regulation. 

According to (Parmenter, 2020), KPIs are metrics that highlight the most crucial 
aspects of organizational performance, vital for both the current and future success of 
the organization. They are regularly updated to allow real-time tracking and swift 
responses to any changes. KPIs are strategically aligned with the organization's goals 
and are simple, clear, and easy to understand. KPIs are intricately integrated within 
the organizational framework, allowing them to be directly attributable to specific 
teams. This deep embedding ensures that accountability can be assigned (Parmenter, 
2020). 

Traditional accounting standards provide well-established frameworks for the 
measurement of profit, thus rendering the economic bottom line relatively clear and 
measurable for many businesses and organizations (Kenton, 2024). In contrast, the 
assessment of the People and Planet dimensions requires the adoption of new, more 
comprehensive indicators. Notable among these are the Human Development Index 
(HDI) and the Index of Sustainable Economic Welfare (ISEW), which aim to provide a 
more nuanced understanding of societal and environmental well-being (Elkington, 
1997). 

By linking KPIs to established standards like GRI and EU Taxonomy, organizations not 
only ensure consistent and credible sustainability reporting but also generate 
structured, quantifiable data that can feed advanced analytical tools. This data 
provides the foundation for algorithmic approaches, enabling systematic evaluation of 
value stream processes and identification of sustainability potentials. 



Theoretical Principles  26 

3.3 Fundamentals of Algorithms 
This chapter presents a comprehensive analysis of algorithms, beginning with a clear 
definition to establish a foundational understanding of the term. In particular, the focus 
is placed on algorithms that support sustainability performance assessments in 
industrial value streams, highlighting their role in enhancing economic, environmental, 
and social outcomes. Additionally, the chapter examines the key properties of 
algorithms, which are essential for their successful implementation in various 
computational tasks and are particularly relevant for sustainability-related decision-
making, as they ensure that the analysis is transparent, reproducible, and reliable. 
Furthermore, this chapter introduces the theoretical foundations underlying the 
Sustainability Potentials Detection Algorithm (SPDA) for identifying sustainability 
potentials within value streams and demonstrates how structured algorithmic 
approaches can systematically reveal areas for improvement across multiple 
sustainability dimensions. In order to establish a solid conceptual foundation for the 
subsequent analysis, it is essential to define the term “algorithm” and examine its 
fundamental characteristics. 

Definition and Purpose 

An algorithm is a well-defined, step-by-step procedure designed to solve a specific 
problem. It takes a set of input values, processes them through a sequence of clearly 
defined and unambiguous steps, and generates a set of output values (O’Regan, 
2018). The specific steps and operations performed by the algorithm are determined 
by the nature of the problem and the context in which the algorithm is applied (Yang, 
2021). In sustainability assessments within manufacturing contexts, algorithms are 
applied to process and evaluate large amounts of heterogeneous data, enabling 
decision-makers to identify improvement potentials in environmental, economic, and 
social dimensions (Soltani et al., 2019). Algorithms can be implemented through 
computer programs, typically written in a programming language, which enables their 
execution (O’Regan, 2018). According to (O’Regan, 2023), the speed of the program 
depends on several factors, including the algorithm used, the input values, the way the 
algorithm is implemented in the chosen programming language, the compiler, the 
operating system, and the hardware of the computer. A significant characteristic of 
many algorithms is their iterative nature, where a process is repeated multiple times 
until the desired outcome is achieved (Yang, 2014). 

Building on this understanding of what algorithms are and how they function, it is 
important to examine their key properties, which define their effectiveness and 
applicability in various contexts. 
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Properties 

An algorithm is distinguished by several fundamental properties. Firstly, it exhibits 
clarity, where each step is precisely and unambiguously defined. Secondly, the 
property of finiteness ensures that an algorithm terminates after a finite number of 
steps, providing a definite outcome. Furthermore, an algorithm must possess 
executability, meaning that all instructions are feasible and can be effectively 
implemented in practice. Algorithms also have clearly defined inputs, which lead to 
specific outputs upon execution, making their behavior predictable. Finally, 
determinism is a crucial property, as it ensures that, for identical inputs, an algorithm 
will consistently produce the same output, thereby guaranteeing predictable and 
reproducible results (LMU München, Institut für Informatik, 2014). 

These core properties enable algorithms to effectively address complex challenges. In 
sustainability assessments, they are particularly useful for optimizing industrial 
processes and identifying improvement opportunities across TBL dimensions. 

3.3.1 Algorithmic Approaches in Sustainability Assessment 
Optimization algorithms play a pivotal role in sustainability assessments and decision 
support systems. Particularly in the context of industrial value chains, algorithmic 
approaches enable the systematic identification of sustainability potentials. These 
methods are especially effective in integrating heterogeneous information sources, 
structuring complex decision-making processes, and generating transparent and 
reproducible outcomes (Soltani et al., 2019). 

Building on the identification of sustainability potentials, a structured evaluation of KPIs 
is essential. The Analytic Hierarchy Process (AHP) provides an effective method for 
systematically weighting these KPIs. 

Weighted Evaluation of Sustainability KPIs using AHP 

For comprehensive sustainability evaluations, it is crucial to analyze and prioritize KPIs 
associated with each dimension of sustainability, thereby enabling a structured 
assessment of their contribution to the fulfillment of strategic business objectives and 
long-term sustainability targets. AHP is used to systematically weight sustainability 
KPIs by facilitating pairwise comparisons, which quantify the relative importance of 
each criterion in relation to others (Dewi et al., 2023). 

Focus group discussions are conducted to perform pairwise comparisons of 
sustainability KPIs using Saaty’s fundamental scale. The outcomes of these 
comparisons are organized into a pairwise comparison matrix A, as presented in 
Equation 5. The weights for each sustainability KPI are then derived through the 
eigenvalue method, which involves normalizing matrix A (Equation 6) to obtain matrix 
A1, calculating the eigenvector W (Equation 7), the eigenvalues Wi (Equation 8) and 
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the maximum eigenvalue λmax (Equation 9). The final step in the AHP procedure is the 
assessment of consistency of the judgments, performed by calculating the Consistency 
Index (CI) and Consistency Ratio (CR) according to Equation 10 and Equation 11, 
respectively. A CR value below 0.10 indicates acceptable consistency of the pairwise 
comparison matrix (Dewi et al., 2023). 

 

Equation 5: Results of the pairwise comparison transferred into matrix A 

 

 

Equation 6: Normalized matrix A1 

 

Equation 7: Eigenvector W 

 

Equation 8: Eigenvalue Wi 
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Equation 9: Eigenvalue λmax for the pairwise comparison between indicators  

 

Equation 10: Consistency Index 

 

Equation 11: Consistency Ratio 

While AHP is primarily used to determine the relative importance of sustainability KPIs 
through structured expert judgment, these resulting weights can further serve as input 
for more comprehensive multi-criteria evaluation methods (Soltani et al., 2019).  

Integrating AHP Weights into Multi-Criteria Evaluation: TOPSIS 

A commonly used Multi-Criteria Decision-Making (MCDM) method is the Technique for 
Order Preference by Similarity to Ideal Solution (TOPSIS) algorithm, which ranks 
alternatives based on their closeness to an ideal sustainability solution (Soltani et al., 
2019). The application of the TOPSIS algorithm involves several distinct steps, which 
are depicted in Figure 14. The sequence of steps ensures that both the relative 
importance of KPIs and the performance of alternatives across multiple criteria are 
systematically considered. 

 

Figure 14: Steps for the TOPSIS algorithm, adopted from (Soltani et al., 2019) 
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The first step is to construct the normalized decision matrix using Equation 12, where 
each row represents a work step, and each column corresponds to a sustainability 
indicator (Soltani et al., 2019). 

 

Equation 12: Normalized decision matrix 

After normalization, each element in the matrix is multiplied by the corresponding 
weight of the criterion, as shown in Equation 13, to obtain the weighted values (Soltani 
et al., 2019). 

 

Equation 13: Weighted normalized values 

The next step is to calculate the (positive) ideal and (negative) anti ideal solutions 
based on the maximum and minimum values in the weighted matrix, as shown in 
Equation 14 and Equation 15 (Soltani et al., 2019). 

 

Equation 14: Ideal solution 

 

Equation 15: Anti-ideal solution 

The Euclidean distances between each alternative and both the ideal and anti-ideal 
solutions are then calculated, as shown in Equation 16 and Equation 17 (Soltani et al., 
2019). 

𝑆�� = -∑ (𝑉�� − 𝐴��)�	��� , j=1,2,3,…,n; i=1,2,3,…..,m 

Equation 16: Euclidean distances of each alternative from ideal solution 𝑆�� = -∑ (𝑉�� − 𝐴��)�	��� , j=1,2,3,…,n; i=1,2,3,…..,m 

Equation 17: Euclidean distances of each alternative from anti-ideal solution 

The last step is to calculate the relative closeness to the ideal solution, as shown in 
Equation 18 (Soltani et al., 2019). 

 

Equation 18: Relative closeness to the ideal solution (TOPSIS Score) 



Theoretical Principles  31 

The alternatives are subsequently ranked based on their closeness coefficient, which 
quantifies the relative proximity to the ideal solution. The alternative with the highest 
closeness coefficient is regarded as the most optimal, as it exhibits the greatest 
similarity to the ideal solution (Soltani et al., 2019). In addition to TOPSIS, other 
methods such as Fuzzy EDAS (Evaluation Based on Distance from Average Solution) 
algorithm can be applied for identifying sustainability potentials in value streams. 

Fuzzy EDAS for Enhanced Sustainability Evaluation 

Fuzzy EDAS algorithm facilitates the evaluation of alternatives by quantifying the 
distances of each alternative from an ideal solution, encompassing both positive and 
negative deviations, as well as from an average solution (Aouag & Soltani, 2023). The 
fuzzy EDAS algorithm involves several steps, which are depicted in Figure 15. 

 

Figure 15: Steps for the Fuzzy EDAS algorithm 

The first step is to calculate the average solution according to each criterion, as shown 
in Equation 19 (Aouag & Soltani, 2023). 

 

Equation 19: Calculation of the average solution according to each criterion 

The second step is to calculate the positive and negative distances from the average 
solution, as shown in Equation 20 (Aouag & Soltani, 2023). 
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Equation 20: Calculation of the positive and negative Distances from the average solution 

The next step is to compute the weighted sum of positive and negative Distances for 
all criteria, as shown in Equation 21 and Equation 22 (Aouag & Soltani, 2023). 

 

Equation 21: Weighted sum of positive distances 

 

Equation 22: Weighted sum of negative distances 

The subsequent step involves normalizing the values of spi and sni, as shown in 
Equation 23. After this normalization, the appraisal score Asi for all criteria is calculated 
using Equation 24 (Aouag & Soltani, 2023). 

 

Equation 23: Normalization of spi and sni 



Theoretical Principles  33 

 

Equation 24: Appraisal score Asi for all criteria 

After calculating the Appraisal Scores ASi for all alternatives, the alternatives are 
ranked based on the ASi values. The alternative with the highest ASi score is 
considered the best, as it is the closest to the ideal solution (Aouag & Soltani, 2023). 

By employing algorithmic reasoning based on formal rules and structured evaluation 
procedures, algorithms contribute to improving both the consistency and 
comprehensiveness of sustainability analyses in industrial applications. Building on 
this premise, various methodological approaches have been developed and applied in 
the literature to support sustainability-oriented decision-making in industrial contexts. 
To gain a comprehensive overview of existing solutions and their application domains, 
a systematic literature review was conducted. 
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4 State of the art / Literature analysis 

4.1 Systematic Literature Review 
Definition and Purpose 

A systematic literature review (SLR) is a structured and comprehensive method used 
to identify, evaluate, and synthesize existing research on a particular topic. The primary 
objective is to explore the research field, examine the current state of knowledge, and 
assess the relevance of various scientific sources (Booth et al., 2016). The process 
typically involves defining the research question, selecting relevant databases, 
developing search strategies, applying inclusion and exclusion criteria to select the 
most pertinent studies, and evaluating the relevance of the papers in relation to the 
research questions (Läzer, 2010). 

4.1.1 Implementation of SLR in this Thesis 
In this work, SLR is conducted, which serves as the foundation for the knowledge base. 
Based on the research questions and the aim of the thesis, relevant literature is 
retrieved from the scientific databases “Scopus”. Figure 16 illustrates the 
comprehensive information and procedural steps employing the PRISMA flowchart to 
ensure transparency in the selection process, following the standards set out in the 
PRISMA 2020 statement (Page et al., 2021). 

Search Strategy and Database Selection 

The search terms were meticulously derived based on the research questions and 
objectives. These terms consist of several keywords interconnected by Boolean 
operators (Booth et al., 2016). For the initial search, the terms "sustainability" and 
"production systems" were used in combination with the AND operator. Additionally, 
the term “manufacturing” was used as a synonym for “production systems” with the OR 
operator. Since the focus is on identifying sustainability potentials at the operational 
level, the term “value stream mapping” was employed in combination with the AND 
operator. The initial search resulted in 149 publications. 

Inclusion and Exclusion Criteria 

Further inclusion and exclusion criteria were formulated to make the search more 
precise and reduce the search results (Booth et al., 2016). All documents published 
between 2015 and 2025 were included in the search in order to obtain up-to-date 
information. Only publications, which have German or English as their language, were 
included in the systematic literature review. 33 documents could not be downloaded or 
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there was no access to the PDF-File, so these documents were excluded. The 
outcome of the second search in “Scopus” was 106 publications. 

Relevance Assessment and Evaluation Criteria 

The results of the refined search can be distinguished into relevant and non-relevant 
reports. The documents were analyzed in more detail by reading through the abstracts 
in order to assess their relevance. Additionally, seven criteria were defined to assess 
the relevance of the publications. The seven criteria are "methodology (transparency 
and comprehensibility of the approach), fields of action (presentation of the derivation 
of fields of action), technological depth (technical findings such as patents, methods, 
etc.), comprehensiveness (cross-industry content), independence (degree of 
independence), innovation (proportion of self-development of methods and models) 
and industry sector (consideration of manufacturing/production systems)". One point 
(insufficient, very small contribution) or five points (very good, significant contribution) 
were awarded per criterion. After considering the inclusion and exclusion criteria and 
evaluation of the relevance of the publications with the seven criteria, the number of 
publications was reduced to 44. 

Scope and Objectives of SLR in this Thesis 

This work excludes publications that explore the application of traditional value stream 
mapping (in supply chain management) and (Green) Lean principles in non-production 
settings, such as office and service environments, as well as those focused on waste 
management. Additionally, it excludes literature examining obstacles and facilitators 
for green VSM implementation and investigates the disparity between industrial 
practices and academic research on energy-efficient manufacturing design. 

Having outlined the methodology and selection criteria of the SLR, it is essential to 
clarify its specific objectives within the scope of this thesis. The literature review is 
conducted with the primary aim of analyzing how sustainability aspects are considered 
in value streams of manufacturing companies. Since the overarching aim of this thesis 
is to develop a data-driven approach for the automated detection of sustainability 
potentials within value streams, it is essential to systematically review existing 
approaches, frameworks and conceptual models. Furthermore, the review 
concentrates on the sustainability-related KPIs applied and their weighting, analyzing 
their significance in industrial contexts. Finally, analyzing the application domains of 
sustainability-oriented solutions ensures that the developed algorithm remains 
relevant, transferable, and aligned with the practical requirements of industrial 
environments. 
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Figure 16: Procedure for the systematic literature review - PRISMA flowchart, adapted from 
(Page et al., 2021) 
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4.2 Discussion of Results 
This section presents the relevant publications identified through SLR. In this chapter, 
the focus lies on analyzing the frameworks, conceptual models, application areas, and 
sustainability dimensions addressed in current research, as well as the approaches 
used for identifying sustainability bottlenecks and potentials in manufacturing 
companies. Examining these aspects is essential for the context of this work, as it 
allows for a comprehensive understanding of how sustainability is operationalized in 
production systems, and which strategies and tools are applied to assess and enhance 
sustainability performance. To ensure clarity and facilitate reference, the relevant 
documents with its key findings and contributions are systematically organized and 
presented in Table 8. 

4.2.1 Evaluation Approaches for Sustainability in Manufacturing 
A fundamental step in understanding how sustainability is addressed within production 
systems is the analysis of approaches, frameworks, and conceptual models employed 
in existing research. The systematic literature review indicates that the majority of 
identified approaches build upon Value Stream Mapping (VSM) as a core analytical 
tool, which is then adapted or extended to integrate sustainability assessment. 
Identified methodologies are Sustainable VSM (SVSM), Life Cycle - VSM (LC-VSM), 
Environmental VSM (EVSM), Triple Bottom Line - VSM (TBL-VSM), Green-Integrated 
VSM (GIVSM), Circular VSM (CVSM), Overall greenness performance - VSM (OGP-
VSM) and VSM4S. These variations differ in their scope, sustainability dimensions 
addressed, and evaluation techniques applied. Figure 17 illustrates the frequency with 
which each methodology occurs in the reviewed publications. 

 

Figure 17: Identified methodologies through SLR 
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The dataset highlights that SVSM appears 31 times, which is significantly higher than 
any other methodology. This dominance suggests that SVSM is the most effective, 
widely accepted and extensively researched approach. The LC-VSM methodology 
appears six times, indicating moderate acceptance compared to SVSM. This could 
reflect its relevance in specific applications where a life-cycle perspective is required. 
While EVSM appears twice, TBL-VSM, GIVSM, CVSM, OGP-VSM, and VSM4S each 
appear once. 

These various methodologies will be discussed in detail to highlight their specific 
characteristics, applications, and differences. 

Sustainable VSM 

Sustainable Value Stream Mapping (SVSM) is a methodology that extends the 
principles of traditional VSM by integrating sustainability dimensions, particularly the 
TBL indicators (Atoillah & Hartini, 2021). The primary objective of SVSM is to evaluate 
economic efficiency, ecological and social sustainability performance (Hartini et al., 
2020). SVSM is generally implemented in four phases (Figure 18), which, according to 
(Utama & Abirfatin, 2023), are aligned with the DMAIC (Define, Measure, Analyze, 
Improve, Control) process. This integration forms the Sustainable Lean Six-Sigma 
(SLSS) framework for enhancing sustainable manufacturing performance. The DMAIC 
process is a data-driven quality strategy used to improve processes. This SLSS 
framework is illustrated in Figure 19. 

 

Figure 18: Phases in SVSM, adapted from (Hartini et al., 2020) 

In the SLSS framework, the identification and selection of sustainability KPIs take place 
during the "Define" phase. In this phase, tools such as the SIPOC (Supplier, Input, 
Process, Output, Customer) diagram and the Delphi method, including the AHP 
method, are employed. Furthermore, the "Measure and Analyze" phases focus on 
mapping the current SVSM, which, according to (Hartini et al., 2020), corresponds to 
the "Creation of SVSM (current state)" phase. The "Improve and Control" phases align 
with the "Implementation" phase as described by (Hartini et al., 2020). Tools like 
Failure Mode and Effects Analysis (FMEA) are used to define necessary improvement 
actions, and subsequent control is conducted using check sheets, which are key 
characteristics of these two phases (Utama & Abirfatin, 2023) and (Djatna & Prasetyo, 
2019). 



State of the art / Literature analysis  39 

 

Figure 19: SLSS framework (Utama & Abirfatin, 2023) 

In the following, each of the four phases according to (Hartini et al., 2020) is explained 
in detail. 

Selection of Sustainability KPIs 

According to (Hartini et al., 2020), the initial phase entails the selection of sustainability 
KPIs. Choosing suitable indicators for sustainable manufacturing is important, as they 
offer objective and measurable criteria to evaluate sustainability performance in 
manufacturing companies (Utama & Abirfatin, 2023). By visualizing these sustainability 
KPIs and establishing critical efficiency values, processes requiring immediate 
improvement can be systematically identified (Hartini et al., 2020). The approach for 
the selection of sustainability KPIs is depicted in Figure 20. Sustainability KPIs are 
generally selected based on the specific application area, industry or value chain 
(Soltani et al., 2019). A collection of sustainability KPIs for evaluating sustainability 
performance in production systems are presented in Table 7. 
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Figure 20: Sustainability KPIs selection process, adopted from (Hartini et al., 2018) 

The selection process follows the Delphi method, which is a survey technique used to 
systematically gather opinions and build consensus on a complex topic. This method 
involves administering anonymous questionnaires to a group of experts, who provide 
their responses independently. The process is iterative, allowing for feedback and 
refinement of opinions until a consensus is reached. According to (Utama & Abirfatin, 
2023), this approach guarantees the selection of indicators that are both relevant and 
reliable. The evaluation of these indicators is conducted through the analysis of the 
weighted average (WA) and the level of consensus (LoC) (Utama & Abirfatin, 2023). 
For an indicator to be incorporated into the final set used for sustainability assessment, 
it must achieve either LoC of at least 0.7 or WA of at least 4.0 (Hartini et al., 2020). 

Once the key sustainability KPIs have been established through the Delphi method, 
AHP method is used to weight these indicators and evaluate the alternatives. This 
approach allows for a systematic comparison of the various options based on the 
weighted importance of each sustainability criterion. Focus group discussions are 
utilized to perform pairwise comparisons between TBL indicators. In this step, experts 
assess the relative importance of one indicator compared to another, assigning a 
numerical score on a scale of 1 to 9 (Saaty’s scale). The result of the pairwise 
comparison is transferred into a matrix and the weight for each indicator and alternative 
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is calculated using mathematical methods. The final step of the AHP method is the 
verification of the consistency of the evaluations. For this, CI and CR are calculated 
(Dewi et al., 2023). 

Creation of the Current State 

In these phases, the current state of the value stream is mapped. The SVSM includes 
the flow of materials and information for a specific product family, and the selected 
sustainability KPIs along with their efficiency values (Utama & Abirfatin, 2023). 

SVSM also includes the "Manufacturing Sustainability Index (MSI)” (Equation 25), 
which is used in order to determine the overall sustainability performance of the 
manufacturing process. This comprehensive index encompasses weighted economic, 
environmental, and social indexes, which are calculated using Equation 26, Equation 
27 and Equation 28 (Hartini et al., 2020). 𝑴𝑺𝑰 =  αα ∗  𝑬𝒄_𝑰 + ββ ∗  𝑬𝒏_𝑰 + γγ ∗  𝑺_𝑰  

Equation 25: Manufacturing Sustainability Index (MSI) 𝑬𝒄_𝑰 = ΣΣ𝒘𝒊 ∗ 𝑬𝒊  
Equation 26: Economic index 𝑬𝒏_𝑰 = ΣΣ𝒘𝒊 ∗ 𝑽𝒊  

Equation 27: Environmental index 𝑺_𝑰 = ΣΣ𝒘𝒊 ∗ 𝑺𝒊 
Equation 28: Social index  

The economic indicator reflects the efficiency related to time, quality, inventory, and 
cost management within the production system. It evaluates how effectively resources 
are allocated and utilized to achieve optimal production outcomes while minimizing 
waste and expenses (Hartini et al., 2020). 

The environmental indicator assesses the efficiency of material and energy usage, as 
well as waste management practices. This dimension highlights the system's capability 
to reduce environmental impact through sustainable resource utilization and effective 
waste reduction strategies (Hartini et al., 2020). 

The social indicator measures the efficiency of the workforce in terms of health, safety, 
employee satisfaction, and HR development. It reflects the system's commitment to 
ensuring a safe and healthy work environment, promoting employee well-being, and 
fostering continuous professional growth (Hartini et al., 2020). 

While the MSI provides a quantitative assessment based on weighted indexes, the 
"Overall Sustainability Index (SI)" offers an alternative approach for evaluating 
sustainability performance by comparing actual values (E) against defined target 
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values (S) for each KPI. According to (Saraswati et al., 2024), target and actual values 
can be obtained through interviews with the head of production or by utilizing the 
company’s historical data. The computation of the Overall SI involves determining the 
deviation by calculating the difference between the target value (S) and the actual 
value (E) for each indicator, as shown in Equation 30. These computed values serve 
as input for the calculation of the SI for economic (SIEc), environmental (SIEn) and 
social (SISc) factors, as outlined in Equation 29. The weighting of these factors (W) is 
performed using Saaty's nine-point scale, ensuring a systematic assessment of their 
relative importance. Finally, the Overall SI is derived by integrating the weighted 
economic, environmental and social factors, as formulated in Equation 31 (Sari Emelia 
et al., 2021). 

 

Equation 29: SIEc, SISc and SIEn factors 

 

Equation 30: Difference between the target value (S) and the actual value (E) 

 

Equation 31: Overall SI 

Creation of the Future State 

The future state of the SVSM is developed using expert knowledge to identify 
processes requiring immediate improvement. Sustainable bottlenecks and potential 
improvements are defined, and improvement initiatives are visualized along with their 
anticipated impact on the MSI or Overall SI (Saraswati et al., 2024). Tools such as 
Failure Mode and Effects Analysis (FMEA) support the identification of necessary 
improvements. 

Implementation 

In the final phase, improvement measures are implemented and monitored. Tools such 
as Statistical Process Control (SPC) and the use of check charts are employed to 
effectively monitor the implementation and execution of improvement measures 
(Utama & Abirfatin, 2023). The phases of SVSM can be iteratively repeated to facilitate 
ongoing monitoring and rapid response to inefficiencies in the production system 
(Antomarioni et al., 2018). 

While SVSM focuses on improving sustainability within the scope of existing value 
streams, Life Cycle - VSM takes a broader approach by evaluating sustainability 
across the entire product lifecycle. 
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Life Cycle – VSM 

Life Cycle (LC) - VSM is an extension of the traditional VSM designed to evaluate the 
sustainability performance of a company. LC-VSM extends the sustainability 
assessment to cover the entire lifecycle of a product, integrating economic, 
environmental, and social KPIs from production to disposal entire (Hartini et al., 2019) 
and (Kluczek & Bartlomiej, 2020). LC-VSM has four phases, which are depicted in 
Figure 21. 

 

Figure 21: Phases in LC-VSM, adapted from (Horsthofer-Rauch et al., 2021) 

According to (Hartini et al., 2019), LC-VSM considers the life cycle of a product, from 
the pre-manufacturing stage (preparation of raw materials) to manufacturing, 
consumption (use by the consumer), and the post-consumption stage (disposal, reuse, 
and recycling), as shown in Figure 22. 

 

Figure 22: Life cycle of a product, adopted from (Hartini et al., 2019) 

The first phase of LC-VSM is the selection of sustainability KPIs. Based on the 
company's strategy and sustainability objectives, relevant sustainability KPIs are 
defined for VSA. These KPIs are carefully chosen to provide meaningful insights into 
the economic, environmental and social aspects of the value stream (Horsthofer-
Rauch et al., 2021).  

A particular form of LC-VSM is the energy-focused VSM approach based on Life Cycle 
Assessment (LCA), as presented by (Kluczek & Bartlomiej, 2020). This approach 
focuses primarily on energy-related aspects of the lifecycle, which leads to the 
exclusion of time as a relevant KPI in the analysis. To assess sustainability 
comprehensively, (Kluczek & Bartlomiej, 2020) integrated energy LCA, Life Cycle 
Costing (LCC), and Social Life Cycle Assessment (SLCA) into their approach. 

The calculation of the environmental impact of each activity is performed using an LCA 
calculator based on life cycle inventory (LCI) (Samant & Prakash, 2020). According to 
(Salvador et al., 2021), an LCA calculator can employ the “TRACI” as Life Cycle Impact 
Assessment (LCIA), which can involve several impact categories. The environmental 
impacts of a product are quantified in kg CO2e across its entire life cycle, helping to 
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identify the life phases with the highest and lowest environmental impacts (Samant & 
Prakash, 2020). 

After the selection of the necessary sustainability KPIs, the required data is prepared 
to represent the current state in LC-VSM. According to (Salvador et al., 2021), the 
environmental impacts of a production step are calculated using the “Ecoinvent 3.3” 
database. 

According to (Horsthofer-Rauch et al., 2024), process mining can be utilized to 
visualize the value stream. The implementation of a process mining-based, 
sustainability-integrated VSM approach demands considerable initial effort. By utilizing 
a data model tailored to the company’s specific requirements, real-time updates and 
dynamic changes to the database are facilitated, enhancing the system's flexibility and 
efficiency in sustainability monitoring and optimization (Horsthofer-Rauch et al., 2024). 

Through LC-VSM, the material and energy flows, as well as decision flows, become 
evident. Using this information, the improvement team can consistently pinpoint 
internal and external inefficiencies, environmental impacts, and underlying issues that 
hinder the company’s sustainability performance (Hartini et al., 2019). 

After defining the action measures, the LC-VSM of the future state is created, which 
involves the potential gains from the proposed changes. Before implementing the 
improvement actions, the future state is discussed in terms of total impacts, specific 
impacts by process, and Lean Management KPIs (Salvador et al., 2021). 

In addition to LC-VSM, another methodology that equally incorporates economic, 
environmental, and social factors is the TBL-VSM. 

Tripple Bottom Line – VSM 

The Tripple Bottom Line (TBL) - VSM, presented by (Chavez et al., 2023), integrates 
sustainability KPIs to evaluate and enhance TBL performance of production systems. 
The TBL-VSM framework is composed of four key phases, as depicted in Figure 23. 
In order to select the relevant sustainability KPIs, this approach incorporates traditional 
Lean Management KPIs, GRI reporting standards, as well as the Science Based 
Targets initiative (SBTi) and the GHG protocol (Chavez et al., 2023). In the case study 
presented by (Chavez et al., 2023), TBL-VSM was employed to assess and visualize 
waste in the production process. The production process of a pharmaceutical company 
was analyzed, and improvement opportunities were identified across the economic, 
environmental, and social dimensions. 
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Figure 23: Phases in TBL-VSM, adapted from (Chavez et al., 2023) 

At the bottom of the TBL-VSM map, in addition to the Lean Management KPIs, the GRI 
KPIs are indicated, which are associated with the GRI Topic standards. GRI indicators 
are utilized to measure and assess improvements across the three pillars of 
sustainability. According to (Chavez et al., 2023), for measuring the sustainability 
performance of a manufacturing process, standards 301 to 306 and 403 are 
recommended. 

While TBL-VSM integrates sustainability KPIs across economic, environmental, and 
social dimensions, VSM4S builds on this by using goal programming to assess these 
dimensions more systematically. 

VSM4S 

VSM4S is a methodology that integrates economic, environmental and social 
dimensions, assessing sustainability performance through a multi-criteria approach 
grounded in the philosophy of goal programming (Serafim Silva et al., 2024). The 
VSM4S framework is based on the 5SEnSU model, as illustrated in Figure 24. 
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Figure 24: VSM4S framework (Serafim Silva et al., 2024) 

Initially, the selection and calculation of economic, environmental, and social KPIs are 
performed. Within the 5SEnSU model, it is essential to select at least one KPI for each 
sustainability dimension to enable the application of goal programming philosophy 
effectively (Serafim Silva et al., 2024). 

Next, the goals, penalties, and weights for the selected indicators are defined, which 
are essential for the 5SEnSU model (goal programming philosophy). To compute the 
Synthetic Sustainability Indicator of the System (SSIS) for current and future state, 
specific targets must be established for each sustainability KPI, as the deviation from 
the target for each indicator contributes to the SSIS calculation. Within the context of 
goal programming, indicators that fall below the target and are to be maximized, or 
indicators that exceed the target and are to be minimized, are penalized. An example 
illustrating the objective of minimizing an indicator is shown in Figure 25, where 
indicators for systems #2 and #4 exceed the goal and should therefore incur a higher 
penalty than those for systems #1 and #3, which fall below the target. The penalty 
values are determined based on an approach derived from Eco-indicator 99. Following 
this, the weighting of each sustainability KPI is performed, with weights assigned by 
the user. Methods such as the Delphi method or AHP can be utilized for this purpose. 
This process facilitates the calculation of the SSIS (Serafim Silva et al., 2024). 
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Figure 25: Philosophy of goal programming (Serafim Silva et al., 2024) 

Next, improvement strategies are formulated and consolidated into Kaizen projects. 
Consequently, SSIS for each Kaizen project is calculated for the future state map. 
Since different Kaizen projects lead to varying SSIS values, a decision must be made 
regarding which project to implement. In addition to the SSIS values, the benefit-cost 
ratio (B/C) and full-time equivalent (FTE) indicators are also required for selecting the 
optimal Kaizen project. The decision-making process can be visually supported by 
representing SSIS, B/C, and FTE in a cube figure, as shown in Figure 26, which aids 
in the selection of the most effective Kaizen project (Serafim Silva et al., 2024). 

 

Figure 26: Eight possible scenarios for the 5SEnSU future-state VSM4S (Serafim Silva et al., 
2024) 

Finally, the most effective Kaizen project regarding SSIS, B/C and FTE is implemented 
to achieve the desired future state of the production system (Serafim Silva et al., 2024). 
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While VSM4S integrates economic, environmental, and social dimensions to assess 
sustainability, Environmental VSM narrows the focus specifically to the environmental 
aspects of the value stream. 

Environmental VSM 

Environmental VSM (EVSM) is an extension of the traditional VSM methodology, 
specifically focusing on the environmental dimensions of a value stream. The primary 
objective of EVSM is to evaluate the environmental performance of production 
processes and identify opportunities for mitigating ecological impacts (Li et al., 2017). 
This is accomplished through the analysis of material and information flows, thereby 
making the environmental consequences across different stages of the value stream 
visible (Litos et al., 2017). Consequently, EVSM incorporates both economic and 
environmental KPIs. According to (Litos et al., 2017), EVSM consists of five distinct 
phases, as depicted in Figure 27. 

 

Figure 27: Phases in EVSM, adapted from (Litos et al., 2017) 

The initial phase of EVSM involves the visualization of production steps through the 
mapping of material and information flows. Subsequently, the second phase focuses 
on defining the parameters and performance dimensions necessary for assessing of 
environmental impacts (Litos et al., 2017). The third phase involves the calculation of 
the environmental impacts of each production step using LCA software and then 
integrated into the EVSM. In the use case documented by (Litos et al., 2017), the LCA 
results are validated by comparing them against threshold values established by the 
European Resilient Flooring Manufacturers’ Institute (ERFMI). This benchmarking 
enables the identification of sustainability bottlenecks and potentials within the 
production system. In the final phase, improvement initiatives are defined, and their 
potential impacts on the environmental footprint are evaluated through LCA software, 
facilitating the identification of strategies for reducing environmental impacts across 
the value stream (Litos et al., 2017). 

A method for the visualization of the sustainability bottlenecks and potentials is the 
Sustainability Cockpit (SC), as proposed by (Li et al., 2017) and (Horsthofer-Rauch et 
al., 2024). Production data are integrated into SC and subsequently visualized using a 
Sankey diagram, as illustrated in Figure 28. The Sankey diagram is generated via an 
EVSM Sankey generator and is presented to the user through and Microsoft Excel-
based user interface (Li et al., 2017). 
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Figure 28: Sankey diagram (Li et al., 2017) 

The primary advantage of a Sankey diagram lies in its ability to depict real-time data 
from the current state map of a value stream, while also enabling the evaluation and 
visualization of simulated scenarios, including what-if analyses. In this context, only 
economic and environmental KPIs are considered, which may encompass energy 
consumption, material usage, value-added time, and non-value-added time. The flow 
direction within the diagram is represented by arrows, where the width of the arrows 
corresponds to the quantity of the flow. This graphical representation allows users to 
pinpoint which work steps have the most significant environmental impact, facilitating 
targeted sustainability improvements (Li et al., 2017). 

Building on the environmental focus of EVSM, the Green-Integrated VSM (GIVSM) 
further refines the methodology by adding lean principles, which helps identify 
sustainability bottlenecks and opportunities across both economic and environmental 
dimensions. 

Green-Integrated VSM 

Green-Integrated VSM (GIVSM) is a methodology that extends traditional VSM by 
incorporating lean and green aspects to identify sustainability bottlenecks and 
potentials (Choudhary et al., 2019). The phases of GIVSM are illustrated in Figure 29. 

 

Figure 29: Phases in GIVSM, adapted from (Choudhary et al., 2019) 
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The first phase involves the visualization of GIVSM for the current state, utilizing data 
on material and information flows to identify various types of lean and green wastes 
and incorporating sustainability KPIs. This approach encompasses only economic and 
environmental KPIs. According to (Choudhary et al., 2019), besides the seven Lean 
Wastes, the seven Green Wastes are defined. These include waster of energy, water, 
and material, garbage, transportation, emissions, and biodiversity. Most of these 
wastes can be quantified in terms of total GHG emissions, which are expressed as 
CO2e (Choudhary et al., 2019). 

For the analysis of lean and green wastes, (Choudhary et al., 2019) propose the 
application of Root Cause Analysis for Lean and Green Waste, aimed at developing 
strategies to enhance efficiency and reduce the environmental impact of the production 
processes. The subsequent phase in GIVSM involves the creation of a GIVSM for the 
future state, which incorporates the implementation of the proposed improvement 
initiatives. Finally, these initiatives should be supported by a continuous Plan-Do-
Check-Act (PDCA) – cycle, to ensure the long-term sustainability and effectiveness of 
the GIVSM framework (Choudhary et al., 2019). 

In addition to GIVSM, another methodology that similarly addresses both economic 
and environmental KPIs is Circular VSM, which incorporates the principles of Circular 
Economy into value stream mapping. This approach emphasizes the optimization of 
resource flows and the reduction of waste, aligning with the core objectives of 
sustainability. 

Circular VSM 

Circular VSM (CVSM) is a methodology designed to visualize value streams by 
integrating Circular Economy principles with Lean tools (Kalemkerian et al., 2024). As 
shown in Figure 30, the approach is structured into four distinct phases and primarily 
focuses on assessing economic and environmental KPIs. 

 

Figure 30: Phases in CVSM, adapted from (Kalemkerian et al., 2024) 

In order to enhance the sustainability performance of an organization, CVSM employs 
the concept of the "Circular Resource Box (CRB)", which provides a clear and 
structured representation of resources and wastes associated with each production 
process, as illustrated in Figure 31 (Kalemkerian et al., 2024). 
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Figure 31: Circular Resource Box (Kalemkerian et al., 2024) 

According to (Kalemkerian et al., 2024), the CRB encompasses categories such as 
energy, water, materials, by-products and waste. Each of these categories is 
represented by specific color codes, which can be adapted or extended depending on 
the specific application context. The CRB consists of two concentric circles, 
symbolizing potential resource flows both within and outside the organizational 
boundaries. For example, in the "Energy" category, the inner circle represents the 
portion of energy generated or sourced from various streams or flows within the 
process, while the outer circle reflects the utilization of renewable energy sources, such 
as solar, wind, and biomass. Since CRB provides qualitative information, sustainability 
KPIs are used for the quantitative assessment of a production step (Kalemkerian et al., 
2024). 

To identify potential improvements in environmental performance, it is essential to 
develop a current state map for the production process. CRB for each individual 
production step is generated, as demonstrated in Figure 32. 

 

Figure 32: Circular Value Stream Mapping (Kalemkerian et al., 2024) 
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By analyzing each category and its associated sustainability KPIs, opportunities for 
improvement can be identified. Based on an assessment of the expected outcomes of 
proposed improvements, a future state map is then developed, outlining the potential 
benefits and impacts of the recommended strategies. Once the impacts of the 
improvement initiatives shown in the future state map are evaluated, they need to be 
compared with the targeted sustainability KPIs and desired outcomes. When these 
impacts align with the goals set, the organization can proceed with implementing the 
initiatives. This ensures that the planned improvements effectively contribute to the 
intended sustainability objectives (Kalemkerian et al., 2024). 

Building upon the principles of Circular VSM, the Overall Greenness Performance 
(OGP) - VSM methodology also emphasizes both economic and environmental KPIs, 
offering a more comprehensive view of production processes and their environmental 
performance. 

Overall greenness performance VSM 

Overall Greenness Performance (OGP) - VSM is a tool for representing production 
processes that integrates both economic and environmental KPIs. This extended 
mapping approach demonstrates the interdependencies of activities and provides 
environmental performance-related insights. The OGP-VSM methodology 
encompasses five distinct phases, as illustrated in Figure 33. 

 

Figure 33: Phases in OGP-VSM, adapted from (Muñoz-Villamizar et al., 2019) 

The initial phase involves the visualization of the current state map of the value stream. 
According to (Muñoz-Villamizar et al., 2019), it is crucial for organizational decision-
makers to define, in advance, the specific economic and environmental KPIs that will 
be applied throughout the mapping process. In the second phase, the identification of 
the seven types of Lean Management wastes is carried out by domain experts and 
allocated to the OGP categories, which are depicted in Figure 34. 
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Figure 34: OGP categories (Muñoz-Villamizar et al., 2019) 

In the OGP-VSM, Lean Management wastes that directly affect the environmental 
performance of production processes are shown with a drop icon called the 
"environmental burst" (Muñoz-Villamizar et al., 2019). 

In the third phase, a Lean state map is created, in which improvement strategies for 
waste reduction are formulated. This phase only focuses on identifying and eliminating 
inefficiencies within the production process based on Lean Management principles 
(Muñoz-Villamizar et al., 2019). 

Subsequently, company experts assess the proposed waste reduction strategies. The 
impact of these strategies on the environmental performance of the production process 
is evaluated using environmental KPIs, allowing for a measurable assessment of 
sustainability improvements (Muñoz-Villamizar et al., 2019). 

In the final phase, the Lean-Green-State map is developed, which encompasses a 
comprehensive implementation plan that incorporates strategies for improving both 
economic and environmental KPIs. This phase integrates lean principles with 
environmental considerations to create a holistic approach for optimizing production 
processes (Muñoz-Villamizar et al., 2019). 

Summary of the key characteristics of the methodologies 

In this chapter, Table 1 summarizes the key characteristics of the methodologies 
identified through SLR. 
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Methodologies Key characteristics 
SVSM • Integrative Approach: Incorporates economic, 

environmental and social dimensions 
• Selection of sustainability KPIs through the Delphi method 

and AHP 
• Assessment of sustainability Performance through the 

calculation of MSI or Overall SI 
• Improvement through utilization of expert knowledge and 

monitoring through tools like SPC and check charts 
LC-VSM • Integrative Approach: Incorporates economic, 

environmental and social dimensions 
• LC-VSM considers all stages of a product's lifecycle 
• Environmental impact assessment using LCA software: 

Quantifies environmental impacts in terms of kg CO2e for 
each lifecycle phase 

• Improvement through the highlighting of phases with the 
highest and lowest environmental impacts 

EVSM • Integration of economic and environmental KPIs 
• Environmental impact assessment using LCA software 
• Validation of LCA results through benchmarking against 

thresholds established by ERFMI 
• Visualization of the environmental impacts using a Sankey 

diagram 
TBL-VSM • Integrative Approach: Incorporates economic, 

environmental and social dimensions 
• Incorporation of traditional Lean Management KPIs, GRI 

standards, SBTi, and GHG protocol for selecting 
sustainability KPIs 

• Waste Assessment and Improvement Identification: 
Focuses on analyzing waste in production processes and 
identifying opportunities for improvement 

GIVSM • Focus on economic and environmental KPIs 
• Definition of the seven green wastes 
• Utilizes the Root Cause Analysis for enhancing efficiency 

and reducing environmental impact 
• Continuous Improvement Cycle to ensure the ongoing 

sustainability and effectiveness of the GIVSM 
CVSM • Combines Circular Economy concepts with Lean tools to 

visualize and optimize value streams 
• Utilizes Circular Resource Box (CRB) for the structured 

representation of resources and wastes 
• Assessment of the sustainability Performance through 

economic and environmental KPIs 
OGP-VSM • Integration of economic and environmental KPIs 

• Lean-Green-State Mapping: Integrates both Lean 
principles and environmental considerations into a 
comprehensive improvement plan for sustainable 
production 
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Methodologies Key characteristics 
• Environmental Strategy Assessment: Evaluates strategies 

for reducing environmental wastes by analyzing their 
effectiveness through environmental KPIs 

VSM4S • Integrative Approach: Incorporates economic, 
environmental and social dimensions 

• Relies on the 5SEnSU model and goal programming 
philosophy 

• Assessment of sustainability Performance through the 
calculation of SSIS 

• Decision-Making Framework: Uses SSIS, benefit-cost 
ratio (B/C), and full-time equivalent (FTE) indicators to 
select the optimal Kaizen project 

Table 1: Key characteristics of the methodologies 

After providing an in-depth explanation of the methodologies employed in this work, it 
is essential to explore the application areas of these approaches. Understanding where 
these methodologies are applied offers valuable insights into their practical relevance 
and effectiveness across various sectors. 

4.2.2 Application Domains of Sustainability Assessment Methods 
Figure 35 provides a detailed overview of the distribution of applications across various 
industries. The Automotive Industry ranks first with ten publications, of which nine 
utilize SVSM, while one explores the use of OGP-VSM. Close behind are the 
Mechanical Engineering & Manufacturing sector and the Food Production sector, each 
with seven publications, predominantly focused on SVSM and LC-VSM. 

The Metals and Plastics sector contribute five publications, while the Wood and 
Furniture sector contributes four publications, all utilizing SVSM to assess the 
sustainability performance of production systems. In comparison, the Construction 
Materials and Renewable Energy & Environmental Industries sectors have three 
publications each, with SVSM usage notably prevailing in the Renewable Energy & 
Environmental Industries sector. 

The Consumer Goods and Apparel sectors is represented by two publications 
addressing sustainability, along with one publication presenting concepts without 
specifying particular application areas. Finally, the Pharmaceutical and Chemicals 
Industry and the Packaging and Labelling Industries each contribute one publication 
focusing on sustainability in production systems. 

A clear trend emerges across industries, showing that SVSM is the dominant 
methodology in most sectors. In contrast, other methodologies tend to be more 
industry specific. LC-VSM appears mainly in the Food Production and Mechanical 
Engineering & Manufacturing sectors. EVSM is applied in Renewable Energy & 
Environmental Industries and Construction Materials. TBL-VSM and GIVSM are 
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observed in the Pharmaceutical and Chemical sector and the Packaging & Labelling 
Industries, respectively. This indicates that SVSM represents a widely adopted 
methodology across multiple industries, while other VSM variants are applied in a more 
targeted manner to accommodate specific sustainability objectives or industry-specific 
constraints. 

 

Figure 35: Identified application areas through SLR 

Building upon the insights from the application areas, it is crucial to investigate the data 
collection methods employed within these industries. A comprehensive understanding 
of how data is systematically gathered and analyzed provides a deeper perspective on 
how effectively the methodologies are applied and their relevance to the specific 
sustainability objectives of each sector. 

4.2.3 Data Sources and Acquisition in Sustainability Assessment 
Methods 

A fundamental prerequisite for assessing sustainability performance in production 
systems is the availability of relevant and reliable data. Across all sectors, most studies 
rely on primary data obtained through direct observations, measurements at the shop 
floor level, or discussions with stakeholders. In several publications, case studies were 
conducted within each sector to contextualize and analyze sustainability practices. For 
instance, (Swarnakar et al., 2020), (Swarnakar et al., 2021) and (Marie et al., 2022) in 
the automotive sector, (Helleno et al., 2017) in the metals and plastics industries and 
(Kalemkerian et al., 2024) in the food production sector collected data through direct 
observation and interaction with company personnel, a practice mirrored by (Sari et 
al., 2022) and (Jamil et al., 2020) in the metals and plastics industries. 
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In the domain of construction materials production, (Litos et al., 2017) and (Salvador 
et al., 2021) evaluated the environmental impacts of production processes using LCA. 
Due to the comprehensive and cross-system nature of Life Cycle Assessment, these 
studies rely on external databases to obtain consistent and comparable inventory data. 
External databases are typically used in LC-VSM to provide consistent and 
comprehensive data across all life cycle phases. Especially, (Litos et al., 2017) 
employed the LCA software “GABI by Thinkstep”, while (Salvador et al., 2021) utilized 
data from the “Ecoinvent” database. Similarly, in the mechanical engineering and 
manufacturing sector, (Samant & Prakash, 2020) analyzed the environmental impacts 
derived from the LCI (mass and energy flows) to assess the overall Life Cycle 
Environmental Impact, utilizing the “lcacalculator” tool, which incorporates data from 
the “Ecoinvent” database. 

For instance, (Lindström & Ingesson, 2016) and (Ferrazzi & Portioli-Staudacher, 2023) 
in the automotive sector, (Soltani et al., 2019) in the metals and plastics industries and 
(Antomarioni et al., 2018) all assessed energy consumption at the machine level and 
material consumption based on process and product data. Similarly, (Hartini et al., 
2018) in the wood and furniture industry analyzed material input-output balances and 
theoretically calculated the material consumption. 

Several studies also used mathematical calculations and formulas to derive 
sustainability metrics, such as the work by (Edtmayr et al., 2016) in the automotive 
sector. Furthermore, (Vinodh et al., 2016) examined noise levels and water usage 
during machining processes in the automotive industry, while (Lindström & Ingesson, 
2016) evaluated ergonomic conditions in the same sector. Similarly, (Hartini et al., 
2019) analyzed ergonomic conditions in the food production sector using the method 
“Rapid Entire Body Assessment (REBA)”. 

According to (Phuong & Guidat, 2018), in the consumer goods and apparel sector, 
data collection is conducted through time studies or by calculating the process cycle 
time. Inventory levels are updated daily to ensure real-time accuracy and effective 
resource management. For environmental and social KPIs, theoretical values are 
calculated, while actual data is measured for validation. The available data used in 
these assessments is provided directly by production management, ensuring reliability 
and alignment with operational practices. 

Similarly, in the metals and plastics industries, (Jamil et al., 2020) conducted direct 
measurements on machines, assessing energy, water, and chemical consumption, as 
well as noise levels, while (Li et al., 2017) in the renewable energy & environmental 
industry, estimated the power rate of each process based on the rated power and 
experts experiences. 
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Building on the insights from data collection, the following section delves into the 
specific sustainability dimensions that are addressed in the literature. This examination 
provides a deeper understanding of how these dimensions are integrated into the 
assessment of sustainability performance across different sectors. 

4.2.4 Sustainability Dimensions in Assessment Methods 
Figure 36 illustrates the frequency of the sustainability dimensions considered in the 
relevant publications. A total of 30 publications incorporates all three dimensions of 
sustainability to visualize and evaluate the performance of production systems. In 
contrast, 14 publications focus solely on the economic and environmental dimensions. 
This observation suggests that, despite the principles of the Triple Bottom Line 
advocating balanced consideration of economic, environmental, and social aspects, 
some literature still tends to prioritize economic and environmental criteria, while social 
dimensions receive comparatively less attention. 

 

 

Figure 36: Considered dimensions of sustainability in the relevant publications 

The assessment of sustainability in different industries shows interesting differences 
and similarities. Most publications refer to the TBL framework, which analyzes the 
economic, environmental and social KPIs to assess sustainability performance. While 
the importance of the economic dimension is generally recognized, the relative 
weighting of the individual TBL pillars varies within different companies. 
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The relative importance of sustainability KPIs is intrinsically tied to a company’s 
strategy and sustainability goals. Organizations prioritize different dimensions of the 
TBL based on their overarching objectives and the challenges they face within their 
industry. For instance, in the case studies which are conducted in the automotive 
industry, economic factors dominate, while environmental KPIs receive little attention 
(Sari Emelia et al., 2021) and (Marie et al., 2022). In the study conducted by (Marie et 
al., 2022), social KPIs have a relative importance of 44%, indicating a high priority after 
economic factors. On the other hand, (Dewi et al., 2023), (Ferrazzi & Portioli-
Staudacher, 2023), (Lindström & Ingesson, 2016) and (Vinodh et al., 2016) present a 
contrasting perspective. (Dewi et al., 2023) assign equal importance to all three TBL 
dimensions (each 33.3%), whereas (Ferrazzi & Portioli-Staudacher, 2023), (Lindström 
& Ingesson, 2016) and (Vinodh et al., 2016) primarily focus on improving 
environmental KPIs. 

In the case study conducted by (Hudy et al., 2023) in the mechanical engineering and 
manufacturing industry, the relative importance of economic, environmental, and social 
KPIs is 50%, 22%, and 28%, respectively, indicating that environmental and social 
factors remain secondary to economic considerations. Due to the lower importance of 
environmental aspects, this dimension performs poorly, while social KPIs perform 
better. According to (Ikatrinasari et al., 2018), the case study focused on economic and 
environmental KPIs, specifically electrical energy consumption. (Khakpour et al., 2023) 
take all three sustainability KPIs into account. However, the experts in the case study 
primarily focus on economic factors by developing improvement strategies specifically 
to enhance economic KPIs. Nevertheless, these measures also positively influence 
environmental and social KPIs. 

In the metals and plastics industry, (Sari et al., 2022), (Mubin et al., 2023), and (Soltani 
et al., 2019) analyze case studies that all consider economic, environmental, and social 
KPIs. However, their results differ in terms of the relative importance of each 
dimension. (Soltani et al., 2019) report a distribution in which economic KPIs are more 
important (49%) than environmental KPIs (26%) and social KPIs (25%). In contrast, 
(Mubin et al., 2023) find a much stronger emphasis on economic factors (54%), 
followed by social (30%) and environmental (16%) considerations. Despite the 
relatively high importance of social KPIs, their study points to inefficiencies in the social 
dimension, indicating the greatest need for improvement. (Chaparin et al., 2023) 
concentrate exclusively on economic and environmental KPIs within the food 
production sector, emphasizing the significance of these two dimensions. 

In the case study conducted by (Larsson & Ratnayake, 2024) in the renewable energy 
and environmental industry, environmental factors are assigned significantly greater 
importance compared to most other sectors, with a relative importance of 31.1%. In 
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contrast, the economic and social dimensions are assigned relative importance values 
of 49.3% and 19.6%, respectively. 

According to (Marie Iveline Anne et al., 2022) and (Utama et al., 2022), the consumer 
goods and clothing industry as well as the wood and furniture industry, largely reflects 
the trend observed in the automotive sector, where economic factors are the main 
focus, accounting for approximately 65-70% of relative importance, followed by 
environmental (17-25%) and social (7-9%) considerations. Consequently, the social 
KPIs in the case studies exhibit a relatively low efficiency score, indicating a need for 
immediate action.  

In conclusion, the assessment of sustainability across industries reveals both notable 
differences and shared patterns in the application of TBL framework. While the 
economic dimension is generally prioritized, the weighting of environmental and social 
KPIs varies significantly, reflecting each company’s strategic focus and the unique 
challenges within its industry. 

Building on the assessment of sustainability KPIs across industries, the following 
section presents how these indicators are used to identify specific sustainability 
bottlenecks and potentials. This process is essential for pinpointing areas where 
improvements can be made, ultimately enhancing the sustainability performance of 
production systems. 

4.2.5 Identification of sustainability bottlenecks and potentials 
In this section, the methods employed for identifying sustainability bottlenecks and 
potentials in production systems are examined. The bar chart presented in Figure 37 
illustrates these methods and their respective frequencies. The most prevalent 
approach is the application of expert knowledge, referred to as the " Expert- and Lean-
based Methods" in the chart. The second most utilized method involves the "Defining 
of Critical Target Values for Sustainability KPIs" while “Algorithmic Approaches” are 
also applied to identify sustainability bottlenecks and potentials within production 
processes. It is noteworthy that five publications do not address sustainability aspects. 

In the following, a more detailed discussion of the methods used to identify 
sustainability bottlenecks and potentials will be provided. 
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Figure 37: Frequency of methods for the Identification of sustainability bottlenecks and 
potentials in production systems 

Expert- and Lean-based Methods 

Expert knowledge and lean-based methodologies play a central role in identifying 
inefficiencies and enhancing sustainability performance in production systems. To this 
end, a variety of approaches grounded in expert judgment and traditional lean tools 
have been applied across different studies. Kaizen actions, including 5S, TPM, SMED, 
and Poka Yoke, are frequently implemented to address inefficiencies in processes and 
to optimize resource usage. 

These actions, supported by expert judgment and analysis of historical data, not only 
reduce nonvalue-adding activities but also contribute to environmental and social KPIs, 
particularly by lowering resource consumption, energy usage, waste generation, and 
improving PLI scores (Antomarioni et al., 2018), (Chaparin et al., 2023), (Swarnakar et 
al., 2021) and (Vinodh et al., 2016). Additionally, (Salvador et al., 2021) emphasizes 
the 5W method in Kaizen action planning, which ensures that improvement measures 
specifically target sustainability-related inefficiencies. Similarly, (Ikatrinasari et al., 
2018) explore how lean tools like SMED can reduce environmental inefficiencies, 
particularly in energy usage, by categorizing electrical consumption in production 
processes. The implementation of lean practices such as Gemba Walks, Kanban 
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systems, and supermarket pulling further underscores the role of lean methodologies 
in optimizing sustainability performance (Khakpour et al., 2023). 

Root cause analysis tools, like Fishbone Diagrams and FMEA, have been utilized to 
identify inefficiencies and propose corrective measures (Choudhary et al., 2019), (Sari 
et al., 2022), (Utama & Abirfatin, 2023) and (Djatna & Prasetyo, 2019). For example, 
(Choudhary et al., 2019) defined seven green wastes alongside traditional lean waste, 
providing a novel perspective for identifying environmental inefficiencies. Similarly, 
(Hartini et al., 2019) utilize the type of waste, cause and effect approach for identifying 
inefficiencies and implementing corrective measures. Furthermore, (Muñoz-Villamizar 
et al., 2019) emphasizes the integration of green waste into VSM, utilizing drop 
symbols to mark inefficiencies. These efforts ensure targeted improvements in 
sustainability and lean outcomes. 

Incorporating sustainability KPIs into the current state SVSM enables experts to 
assess inefficiencies in the value stream based on their knowledge and experience. 
Additionally, experts apply lean tools to develop a scenario for the future state map, 
outlining targeted measures to improve efficiency and sustainability in the production 
process (Phuong & Guidat, 2018), (Kluczek & Bartlomiej, 2020) and (Hartini et al., 
2018). Statistical Process Control (SPC) tools, for instance, enable monitoring and 
controlling critical parameters to ensure sustained improvements (Jamil et al., 2020). 

The integration of visual tools, such as Sankey diagrams and CRB, further facilitates 
the identification and reduction of resource-intensive processes (Li et al., 2017) and 
(Kalemkerian et al., 2024). These methods enable experts to pinpoint inefficiencies 
and propose targeted measures. Furthermore, (Samant & Prakash, 2020) uses LCIA 
to identify environmentally high-impact production processes and ultimately 
recommending improvement initiatives. 

According to (Saraswati et al., 2024), the 3R analysis (reuse, reduce, recycle) can also 
be used to emphasize sustainability aspects. It helps make processes not only more 
efficient but also more environmentally friendly, integrating lean practices with 
sustainability goals. Interdisciplinary approaches leveraging expert interviews and 
collaborative analysis have also been instrumental. For instance, (Chavez et al., 2023) 
emphasize the improvement of GRI 306 and 403 KPIs through systematic evaluation 
of historical data. 

Overall, these studies highlight the critical role of expert knowledge combined with 
innovative tools in enhancing sustainability, reducing waste, and fostering continuous 
improvement in production processes. 

While expert- and lean-based methods are used to identify sustainability bottlenecks 
and potentials, another key approach is the establishment of target values for 
sustainability KPIs. 



State of the art / Literature analysis  63 

Defining Critical Target Values for Sustainability KPIs 

To systematically manage and improve sustainability performance within value 
streams, it is crucial to define critical target values for sustainability KPIs. These targets 
provide benchmarks that help identify inefficiencies and guide improvement initiatives. 
According to (Antomarioni et al., 2018), (Phuong & Guidat, 2018), (Hartini et al., 2020), 
(Marie et al., 2022), (Marie Iveline Anne et al., 2022), (Utama et al., 2022), (Utama & 
Abirfatin, 2023), (Hudy et al., 2023), (Dewi et al., 2023), (Mubin et al., 2023) and 
(Rosiani et al., 2024), all publications employed TLS within SVSM to systematically 
visualize inefficiencies and facilitate decision-making. This approach enhances 
analytical precision by visually representing critical KPIs, thereby helping to prioritize 
areas for improvement. The selected sustainability KPIs were calculated to determine 
efficiency based on the formula provided in Table 7. 

By employing TLS, sustainability performance levels are indicated with red, yellow, and 
green colors. According to (Hartini et al., 2020) and (Marie Iveline Anne et al., 2022), 
the color coding for critical efficiency values varies based on the capacity level and 
company policy. According to (Hartini et al., 2020), (Utama & Abirfatin, 2023), (Hudy 
et al., 2023), (Utama & Abirfatin, 2023), (Dewi et al., 2023), (Mubin et al., 2023) and 
(Rosiani et al., 2024), the color red indicates manufacturing efficiency values below 
60%, the color yellow represents efficiency values between 60% and 90%, and the 
color green signifies that the efficiency exceeds the set target, which is above 90%. 
However, (Marie et al., 2022) defined the color red for values below 65%, the color 
yellow for values ranging from 66% to 89%, and the color green for values between 
90% and 100%. 

The color red indicates that the performance of the sustainable manufacturing indicator 
needs to be improved immediately. The color yellow denotes that the attained value is 
suboptimal and requires further improvement. The color green signifies that the 
indicator value meets the established target. This visual methodology facilitates the 
rapid assessment and communication of sustainability performance status, thereby 
enabling timely and informed interventions as necessary (Hartini et al., 2020). 

According to (Antomarioni et al., 2018), TLS is used in every step of the process to 
show the amount of CO2 released. The color green indicates values below 30 
gCO2/1000pz, the color yellow represents values ranging from 30 gCO2/1000pz to 120 
gCO2/1000pz, and the color red corresponds to values above 120 gCO2/1000pz. 
According to (Phuong & Guidat, 2018), the generation of green waste in a production 
process is also illustrated using TLS, providing a clear visualization of risk levels 
associated with waste management. TLS employs a color-coded legend to indicate the 
degree of risk. The color red signifies "dangerous", representing hazardous green 
waste that poses significant risks, the color “yellow” denotes "alert", indicating waste 
that requires caution and monitoring, and the color “green” signifies "safe", 
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representing waste deemed non-harmful and manageable within standard practices. 
This visualization facilitates an effective risk assessment of green waste, enabling 
decision-makers to identify critical areas and implement strategies for improved 
sustainability and safety in the production process. 

Furthermore, (Litos et al., 2017) and (Helleno et al., 2017) compare the sustainability 
KPIs with target values determined by production leaders and HR experts or 
predefined European industry performance levels in order to identify inefficiencies in 
the production process. 

Building on the establishment of target values for sustainability KPIs, algorithmic 
approaches present an advanced methodology to further streamline decision-making 
processes regarding sustainability aspects in production systems. 

Algorithmic Approaches 

Various algorithmic methods have been developed to support the assessment of 
sustainability in manufacturing, enabling the identification of critical processes and the 
ranking of production steps and improvement initiatives based on their impact on 
environmental, social, and economic KPIs. For the purpose of sustainability 
assessment in manufacturing, (Soltani et al., 2019) conducted an empirical study 
within the metal industry, examining the production process of gas bottles. In their 
approach, the TOPSIS algorithm was employed to rank individual manufacturing 
operations according to their contribution to the overall process sustainability. The 
determination of the relative importance of the sustainability-related KPIs was carried 
out using the AHP methodology. The analysis resulted in a ranked list of production 
steps, providing insights into which operations exert the most significant influence on 
the sustainability performance of the overall manufacturing system. 

Another methodological approach was presented in the study by (Aouag & Soltani, 
2023). In this work, the weights of the sustainability KPIs were determined using 
Shannon’s Entropy Method, an objective weighting technique based on the dispersion 
of data. The primary objective of the study was to evaluate the effectiveness of various 
Lean tools, including Kanban, 5S, TPM, SMED, in improving sustainability 
performance. 

To perform the multi-criteria evaluation, the authors applied both the fuzzy EDAS 
method and the fuzzy TOPSIS algorithm. The comparative analysis showed a very 
high correlation between the ranking results generated by fuzzy EDAS and fuzzy 
TOPSIS, regardless of the type of weighting technique applied. This consistency 
confirms the robustness of the chosen methodological framework and reinforces the 
credibility of the sustainability-oriented evaluation of Lean interventions (Aouag & 
Soltani, 2023). 
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Another approach to assessing the sustainability performance of a value stream was 
presented by (Serafim Silva et al., 2024). The VSM4S methodology applies a goal 
programming-based algorithm to quantitatively evaluate sustainability by integrating 
economic, environmental, and social dimensions through selected KPIs. The algorithm 
begins with the identification and calculation of relevant KPIs, each assigned specific 
targets, penalties for deviations, and weights reflecting their importance. Deviations 
from targets are penalized according to goal programming principles, distinguishing 
whether an indicator should be minimized or maximized. These penalized deviations 
are aggregated into a Synthetic Sustainability Indicator of the System (SSIS), providing 
a comprehensive KPI for current and future sustainability states. The algorithm further 
supports decision-making by evaluating various improvement initiatives (Kaizen 
projects) through comparison of their projected SSIS values alongside B/C and FTE 
indicators. This multi-criteria evaluation facilitates selecting the most effective 
sustainability improvement project (Serafim Silva et al., 2024). 

Synthesis of the Key Findings 

The review of relevant literature revealed that all identified methodologies are 
fundamentally based on VSM and are consistently extended to incorporate the TBL 
perspective. By integrating sustainability KPIs, these methodologies enable the 
quantitative assessment of a company’s sustainability performance. In addition, the 
inclusion of algorithmic approaches, such as the TOPSIS algorithm, allows the 
identification of improvement areas within the value stream without relying on expert 
judgment or predefined KPI target values. This represents a distinctive advantage, as 
sustainability performance can be evaluated objectively and in an automated manner. 
Such algorithmic frameworks, when appropriately implemented, hold the potential for 
cross-industry application, enabling the systematic identification of sustainability 
potentials within production processes. The findings of this review serve as the 
methodological foundation for the subsequent development of SPDA and its practical 
implementation. 
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5 Development of an Algorithm for Identifying 
Sustainability Potentials in Value Streams 

Based on the findings of the literature review, the objective of this section is to develop 
an algorithm capable of automatically identifying sustainability potentials within value 
streams. Previous methodologies identified in the literature, such as SVSM, LC-VSM, 
and others, integrate sustainability KPIs to quantitatively evaluate the sustainability 
performance of production processes. Building on this, the SPDA can systematically 
detect areas for improvement and provide decision support to practitioners. This 
algorithm, referred to as the Sustainability Potentials Detection Algorithm (SPDA), 
combines the AHP methodology with the TOPSIS algorithm. The AHP methodology is 
used to derive consistent and rational weights for sustainability KPIs based on user 
input obtained through pairwise comparisons. These weights are subsequently 
employed by the TOPSIS algorithm to rank alternative process steps according to their 
relative distance from an ideal and an anti-ideal solution. The SPDA thus enables 
structured, scalable, and transparent decision-making, including the identification of 
the key KPIs that most significantly influence the sustainability performance of 
processes requiring improvement. Collectively, this approach provides a robust 
methodological foundation for assessing and enhancing sustainability performance 
within production systems. 

On this basis, the following section specifies the functional and technical requirements 
for the SPDA, ensuring that the algorithm effectively translates the methodological 
insights into practical and actionable evaluations of sustainability performance. 

5.1 Requirements 
The subsequent section defines the essential functional and technical specifications of 
SPDA. These specifications ensure that SPDA can systematically process input data, 
derive criteria weights, perform multi-criteria evaluations, and generate actionable 
insights to identify sustainability potentials within production processes. 

• Prioritization of sustainability KPIs: 
The algorithm must be capable of prioritizing sustainability-related criteria based 
on their relative importance, in alignment with the organization’s strategic 
objectives. It should allow users to express their preferences between different 
sustainability KPIs in a structured and transparent way. Additionally, the system 
must assess the consistency and reliability of user inputs and inform users when 
revisions are needed to ensure valid and meaningful prioritization results. The 
outcome of this prioritization process shall serve as input for the overall 
decision-making mechanism within the algorithm. 
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• Identification of sustainability potentials within Value Streams: 
The algorithm must be capable of identifying sustainability potentials within 
production value streams based on quantitative KPI data. The analysis shall 
deliver robust, interpretable, and decision-supportive results, regardless of the 
specific weighting configuration applied to the sustainability KPIs. To reflect 
user-defined strategic priorities, the algorithm must allow users to specify the 
desired direction of improvement (e.g., maximization or minimization) for each 
KPI. Based on this classification, the algorithm should determine the relative 
sustainability performance of each process step and provide a comprehensible 
ranking of all evaluated processes. The results must clearly highlight which 
process steps deviate most from optimal sustainability performance, enabling 
users to identify and prioritize critical areas for targeted improvement. 
Furthermore, the algorithm shall indicate which KPIs most significantly influence 
the performance of each process, supporting users in conducting focused and 
effective optimization efforts. In addition, for processes that do not lie on the 
main production path but are part of an alternative path (e.g., involving rework 
or refinement), the algorithm must display the corresponding Path Factor. This 
factor serves as a decision-support metric that helps interpret the sustainability 
performance of processes in a structured and user-comprehensible way. 

• Integration, Maintainability, and Extensibility: 
The solution must be designed in a modular, maintainable, and platform-
independent manner. It shall support dynamic adjustments to both the number 
of evaluation criteria (e.g., sustainability KPIs) and the number of production 
processes to be analyzed. Adding or removing KPIs or processes must not 
require fundamental changes to the overall system architecture. The algorithm 
shall be scalable to accommodate large numbers of process steps while 
ensuring user-friendly operation. Its modular design must also support future 
extensions and updates with minimal development effort, ensuring long-term 
adaptability to evolving sustainability assessment requirements and standards. 

• Transparency, Traceability, and Reproducibility: 
The system must ensure transparency, traceability, and reproducibility of all 
final computational results, and document the procedures used for evaluation 
and prioritization. Relevant input parameters and computed outputs must be 
provided in a structured and accessible format, enabling users to understand 
and validate the results. The system shall exhibit deterministic behavior, 
ensuring consistent outputs for identical inputs. This is a critical requirement for 
reproducibility in both academic and industrial contexts. 

• Robustness: 
The system must ensure robustness, reliability, and operational integrity 
through comprehensive validation mechanisms. These mechanisms shall verify 
the structural correctness, logical consistency, and plausibility of all input data 
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and intermediate computational results. Validation must include checks that 
confirm the completeness and correctness of evaluation criteria, input matrices, 
and output data to prevent computational errors and ensure reproducibility of 
results. The system shall enforce that subsequent computational steps proceed 
only if prior validations are successfully passed, thereby preventing the 
propagation of errors through the analysis workflow. 

Building on the defined requirements, the following section introduces the conceptual 
framework of SPDA, detailing its methodological approach. 

5.2 Concept presentation 
SPDA is an integral component of the Sustainability Monitoring Platform (SMP) and 
provides the necessary results for further processing by other modules within SMP. 
The conceptual design of this integration is structured to ensure minimal user effort 
while maximizing automation, reproducibility, and data integrity throughout the 
decision-making process. 

The workflow begins when users enter sustainability-related data into SMP, as 
illustrated in Figure 38. This data typically includes sustainability KPIs associated with 
various processes in the value stream, such as energy consumption, machine 
downtime rate, scrape rates, or cycle times. Upon data submission, an internal 
controller component within SMP is triggered. This controller is responsible for 
extracting, validating, and formatting the user-provided data into a structured JSON 
format. This ensures that the data adheres to the input schema required by SPDA. 

Once the input JSON is generated, it is transmitted to SPDA, which operates as a 
backend decision-support engine. The algorithm performs a series of computational 
steps, and the results of this computation are encapsulated in an output JSON file 
containing four key elements: 

• Original Input Data – Ensures traceability and allows comparison between input 
and result. 

• TOPSIS Scores – Quantitative evaluation scores for each process, indicating 
their relative sustainability performance. For processes with identified 
improvement potential, the key KPIs significantly influencing the scores are 
highlighted to enable targeted optimization measures. 

• CR – A numeric indicator of the reliability of the pairwise comparison judgments 
used in the AHP methodology. 

• Explanations – Provides descriptive insights into which KPIs have a significant 
influence on the sustainable performance of each process and shows the 
corresponding Path Factor 
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The output JSON is retrieved by the controller and forwarded to SMP, where it 
becomes available for further processing by other modules. Depending on the 
implementation of SMP, this may include storage, visualization, or integration into 
broader decision-support systems. 

By decoupling the user interface from the analytical engine and ensuring standardized 
data exchange through JSON, the overall architecture achieves a high degree of 
modularity, interoperability, and scalability. This modular setup ensures that the 
algorithm remains adaptable and can grow alongside future developments in the 
platform or data environment. 

 

Figure 38: Conceptual framework 

5.3 Proposed Approach 
The subsequent chapter begins with a concise overview of the software environment 
used throughout the development process, including the programming language, 
relevant libraries, and FastAPI employed. This is followed by a detailed examination of 
the technical implementation of SPDA, with particular attention paid to the code 
structure and data flow. To enhance understanding and improve the clarity of the 
documentation, selected excerpts of the source code are presented. These code 
snippets are intended to illustrate key programming logic without overwhelming the 
reader with excessive detail. The objective is to provide a transparent and 
comprehensible representation of the algorithmic workflow while preserving the overall 
readability of the thesis. 
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Overview of the Software Environment 

SPDA was developed using the Python programming language in conjunction with the 
Visual Studio Code development environment. Python, originally introduced in 1991 
by Guido van Rossum (Hart-Davis & Hart-Davis, 2022), is a high-level, interpreted 
language that has gained widespread popularity due to its simplicity, readability, and 
broad applicability (Donaldson, 2013). It is frequently utilized in a variety of domains, 
including automation through scripting, data analysis, scientific computing, and web 
development (Donaldson, 2013). A key advantage of Python is its high degree of 
platform independence, as most Python scripts can be executed across all major 
operating systems without requiring significant modifications, thereby ensuring a high 
level of script portability (Lutz, 2010). 

In the context of this work, the Visual Studio Code editor served as both a code editor 
and an integrated development environment (IDE) for authoring, testing, and 
debugging the Python source code (Hart-Davis & Hart-Davis, 2022). Visual Studio 
Code provides a wide array of extensions and features, such as syntax highlighting, 
code completion, version control integration, and debugging tools, which significantly 
enhance developer productivity and support the development of complex algorithmic 
workflows (Microsoft, n.d.). 

Furthermore, FastAPI was employed to implement the web API interface for SPDA. 
FastAPI is a contemporary, high-performance web framework for building APIs with 
Python, leveraging standard Python type annotations to enable robust code (Ramírez, 
n.d.-a). Its features include automatic generation of interactive API documentation 
(Ramírez, n.d.-a), seamless integration with Python codebases (Ramírez, n.d.-b), and 
compatibility with Pydantic for data validation (Ramírez, n.d.-b). These advantages 
facilitate rapid development and deployment of web-based algorithms. 

Following the definition of SPDA's software environment, the subsequent section 
presents the overall workflow, which illustrates how the system processes and 
analyzes input data to support sustainability assessment. 

5.3.1 Workflow of SPDA 
The workflow of SPDA is structured into three main phases. Each phase details the 
core processing steps, from data preparation and the weighting of sustainability criteria 
to the prioritization of production processes, as illustrated in Figure 39. 

Phase 1 – Data Preparation 

In the first phase, the SPDA development focuses on defining the computational 
workflow and ensuring that the algorithm can process input data in a structured format. 
The input data includes the number of processes, the number of sustainability KPIs for 
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each process (such as energy consumption, machine downtime, scrap rates, or cycle 
times) along with their corresponding values, the pairwise comparison matrix, the list 
of benefit criterias, and the path factors. 

Before applying the decision-making methodology, the input data undergoes validation 
to ensure structural correctness and logical consistency, including checks on matrix 
dimensions, reciprocal properties for AHP, and alignment of the number of KPIs with 
the expected input. This phase establishes the foundational structure of the algorithm 
and ensures that subsequent computations are robust and reproducible. 

Phase 2 – Determination of criteria weights using AHP 

In the second phase, the AHP approach is applied to quantify the relative importance 
of the selected sustainability KPIs. This begins with the normalization of a pairwise 
comparison matrix based on the user input, using an adapted Saaty scale to express 
the relative preference of one criterion over another. While this scale allows for 
nuanced comparisons, its complexity can pose a challenge in practical applications, 
particularly when involving users without prior experience with AHP.  

To address this issue, the original 1–9 scale was simplified to a three-level scale in this 
work, aiming to enhance usability and reduce cognitive load in the decision-making 
process, as illustrated in Table 2. 

User Input/Saaty Equivalent Interpretation 
1/3 Less important 
1 Equally important 
3 More important 

Table 2: Adapted Saaty’s scale 

Following the pairwise comparison, the relative weights of each sustainability KPI is 
derived. A consistency analysis is subsequently performed to evaluate the logical 
coherence of the pairwise comparisons. Specifically, the CI, CR, and the maximum 
eigenvalue λmax are computed. A CR value below the threshold of 0.1 is considered 
acceptable, the resulting KPI weights are deemed reliable. 

Phase 3 – Prioritization of production processes using TOPSIS 

In the final phase, the TOPSIS algorithm is applied to prioritize the manufacturing 
operations based on their potential for sustainability-oriented improvement. The 
process begins with the normalization of the decision matrix that incorporates the SMP 
data for each production process with respect to the predefined sustainability KPIs. To 
ensure comparability across criteria with different units and scales, each value in the 
matrix is normalized using vector normalization. 

Subsequently, the normalized matrix is weighted using the criteria weights obtained 
from the AHP analysis. This results in a weighted and normalized decision matrix, 
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which serves as the basis for identifying the ideal solution and anti-ideal solution. The 
ideal solution represents the best attainable performance, while the anti-ideal solution 
reflects the worst. 

The Euclidean distances of each production process to the ideal and anti-ideal solution 
are calculated based on its performance across all sustainability KPIs. These distances 
are then used to determine the relative closeness coefficient Ci (TOPSIS score) of 
each alternative to the ideal solution, where higher values indicate better performance 
and closer proximity to the ideal solution. 

After completing the computational steps, the algorithm generates output data that 
includes the calculated TOPSIS scores for each process and the AHP consistency 
ratio. As an extension to the computed TOPSIS scores, the key KPIs that 
predominantly influence the sustainability performance of processes requiring 
improvement are identified and presented, enabling targeted decision-making. These 
outputs are also returned in JSON format. Before the JSON output data is retrieved, 
the results undergo a final validation step to ensure structural correctness and 
completeness. Once validated, the output data is transmitted back to the SMP, where 
it becomes available for further processing. 

By combining the structured and transparent weighting capabilities of AHP with the 
TOPSIS algorithm, the proposed framework enables a comprehensive, objective, and 
data-driven identification of sustainability potentials within values streams. The 
integration of real-time data ensures that decision-making is not only evidence-based 
but also dynamically adaptable to evolving operational contexts. 
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Figure 39: Proposed Approach – Combination of the AHP methodology and the TOPSIS 
algorithm 
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After presenting the overall workflow of SPDA, the following section provides a code-
level analysis, offering a detailed examination of the underlying implementation. 

5.3.2 Code-Level Analysis of SPDA using Python 
This section examines the implementation of SPDA at the code level, detailing the key 
functions, logical structure, and Python libraries involved. The aim is to foster 
transparency and reproducibility while offering insights into the algorithmic structure. 

Use of Python Libraries in Algorithm Implementation 

The integration of libraries plays a crucial role in streamlining the programming 
workflow and enabling robust functionality. In this work, several Python libraries are 
employed to implement a web-based decision-support algorithm based on the 
combination of AHP method and TOPSIS algorithm. These libraries are imported at 
the beginning of the program to ensure consistent availability throughout the code 
execution. Figure 40 illustrates the technical implementation of these libraries. 

 

 

 

 

 

 

 

 

At the beginning of the code, essential libraries are imported to support both numerical 
computation and API functionality. The FastAPI framework is used to expose the 
algorithm as a web-based API, allowing users to interact with it through a user-friendly 
interface via Swagger UI. The BaseModel class from the pydantic library ensures strict 
data validation for the input parameters, which is critical for the reliability and integrity 
of the computations. 

Numerical operations, especially matrix calculations required by the AHP method and 
TOPSIS algorithm, are performed using the numpy library. The math module is also 
imported to provide additional mathematical functions. The fractions module enables 
precise handling of ratio-based comparisons using rational numbers, enhancing the 
accuracy of the pairwise comparison matrices. The code further leverages modern 

from fastapi import FastAPI 
from pydantic import BaseModel, model_validator 
from typing import Self 
from typing import Annotated 
from typing import List 
from typing import Union 
from fractions import Fraction 
import numpy as np 
import math 

Figure 40: Imported libraries 
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Python features such as type annotations (Annotated, List, Union) to ensure type 
safety and clarity of the data model. 

Together, these libraries form the technical foundation of SPDA by enabling robust 
input validation, efficient numerical analysis, and seamless web-based access. This 
architecture ensures that the decision-making logic is both accessible to users and 
transparent in its execution. 

Following the integration of the required libraries, the next step involves initializing the 
FastAPI application, which establishes a secure and structured interface for web-
based data exchange. 

Initialization of the FastAPI Application and Definition of the Input Data and 
Output Model 

This initialization step is critical for enabling automated data exchange between SPDA 
and the “controller” component of SMP. The FastAPI application is instantiated with 
the statement app = FastAPI(title="SPDA API"), thus establishing the foundation for 
deploying the decision-support algorithm as a web-accessible API endpoint. 

At the core of the application’s data handling are two rigorously defined data models, 
implemented as subclasses of Pydantic’s BaseModel, which ensure structured, 
consistent, and traceable communication between client and server. For a clear 
overview of the data structures and their relationships, Figure 41 visually depicts the 
input and output data models of SPDA, illustrating the flow and composition of 
information throughout the evaluation process. 

The input data model “SPDAInput” precisely defines the structure and types of the 
expected input parameters required by SPDA. It consists of: 

• kpi_count: An integer specifying the number of sustainability KPIs considered 
in the decision-making process. 

• process_count: An integer denoting the number of production processes to be 
evaluated. 

• pairwise_rankings: A two-dimensional list representing the pairwise comparison 
matrix used in the AHP method. This matrix contains either floats or strings 
convertible to rational numbers, reflecting the relative importance of each 
sustainability KPI compared to the others. 

• kpi_values: A two-dimensional list containing the actual numerical sustainability 
KPI values associated with each process. 

• benefit_criterias: A list of integers where each element is either 0 or 1, indicating 
for each sustainability KPI whether it has to be minimized (0) or maximized (1). 

• path_factor: A list of integers representing the path factor for each process, 
which serves as a decision-support metric to facilitate the interpretation of 
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TOPSIS results and to highlight improvement potential in a structured and user-
comprehensible manner. 

This configuration block is a prerequisite for all following API operations, including data 
retrieval and ensures secure, structured, and consistent communication with the 
remote data source. 

 

Figure 41: Input and Output of SPDA 

The output data model “SPDAOutput” formally defines the structure and type 
constraints for the results returned by SPDA. It contains the following fields: 

• input: An annotated instance of “SPDAInput”, representing the exact input data 
used in the current evaluation run. This ensures full traceability and 
reproducibility of the results. 

• scores: A list of floating-point numbers that represent the TOPSIS scores for 
each evaluated process. 

• consistency_ratio: A single float value representing the consistency ratio 
derived from the AHP pairwise comparison matrix. It quantifies the logical 
coherence of the provided rankings and ensures that the weighting process was 
methodologically sound. 

• explanations: A list of descriptive strings providing interpretative explanations 
on which KPIs significantly influence the sustainability performance of each 
process and indicating whether the process is on the main path or on a path 
that requires additional processing steps (rework, refinement etc.). These 
additional steps are represented by the Path Factor. This information is 
particularly relevant for processes identified as needing improvement, 
supporting targeted and evidence-based decision-making. 

Together, these models provide a robust, well-structured framework for input validation 
and output representation, facilitating reliable downstream processing within SMP. 

Building on this validated data structure, the next step involves the application of AHP 
to determine the relative importance of the sustainability KPIs. 
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Implementation of the AHP methodology 

Figure 42 illustrates the application of the AHP method to derive relative weights for a 
set of sustainability KPIs and to perform a consistency analysis to ensure logical 
coherence in the pairwise comparisons. 

 

Figure 42: Application of the AHP methodology within the SPDA algorithm 

The process of deriving weights starts by calculating the AHP weights from a pairwise 
comparison matrix, reflecting the relative importance of each sustainability KPI. When 
the pairwise comparison matrix may contain fractional strings (e.g. “1/3”), these are 
converted into floating-point values by parsing the input using Python’s Fraction class. 
The resulting numeric matrix is transformed into a structured format, and the values 
are normalized column-wise to ensure comparability. The weight for each sustainability 
KPI is subsequently calculated by averaging the elements of each row in the 
normalized matrix. This results in a vector representing the relative importance of each 
KPI, which serves as the output of the AHP method. 



Development of an Algorithm for Identifying Sustainability Potentials in Value Streams
  78 

After the weight derivation, a consistency check is performed on the comparison matrix 
in order to ensure the reliability of the user’s pairwise comparisons, as illustrated in 
Figure 42. This process involves calculating the eigenvalues λ of the pairwise 
comparison matrix, which reflects the degree of consistency in the judgments. The 
Consistency Index (CI) is derived from the principal eigenvalue λmax and measures the 
deviation from perfect consistency. Using the CI together with predefined Random 
Index (RI) values proposed by Saaty, the Consistency Ratio (CR) is calculated. The 
CR quantifies the overall consistency of the comparisons, providing an objective metric 
to determine whether the judgments are logically coherent or require revision. If CR < 
0.1, the level of consistency is considered acceptable, and the decision process is 
deemed reliable. Otherwise, inconsistencies are present, and it is recommended to 
review and revise the pairwise comparisons. 

Following the determination of criteria weights using AHP, the TOPSIS method is 
applied to rank the production processes based on their sustainability performance. 

Implementation of the TOPSIS algorithm for Multi-Criteria Decision Making and 
KPI Influence Analysis 

Figure 43 illustrates the TOPSIS procedure and the subsequent KPI influence analysis 
within SPDA. First, the decision matrix is normalized using vector normalization based 
on the Euclidean norm, with special handling of zero-norm columns to prevent division 
by zero errors. Subsequently, the normalized matrix is weighted by multiplying each 
sustainability KPI by its associated weight, yielding the weighted decision matrix. This 
matrix serves as the foundation for determining the ideal and anti-ideal solutions. The 
ideal and anti-ideal solutions are derived by selecting either the maximum or minimum 
value for each sustainability KPI, depending on the corresponding entry in the benefit 
criterias list. Once the ideal and anti-ideal solutions are determined, the Euclidean 
distance of each production process from both solutions are calculated. These 
distances indicate how close a process is to the best or worst possible performance 
across all sustainability KPIs. The final TOPSIS score for each process is computed 
as the ratio of its distance to the anti-ideal solution to the sum of its distances from both 
the ideal and anti-ideal solutions. A lower TOPSIS score indicates a greater potential 
for improvement with respect to sustainability KPIs. In contrast, a higher TOPSIS score 
signifies that the process is nearer to the ideal solution, demonstrating stronger 
performance regarding sustainability KPIs. 
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Figure 43: Implementation of the TOPSIS algorithm within SPDA 

As illustrated in Figure 43, the analysis evaluates the contribution of each sustainability 
KPI to the distance of each process from the ideal and anti-ideal solutions within the 
TOPSIS framework. The underlying data comprise the weighted KPI values for each 
process, as well as the ideal and anti-ideal reference points. For each process, the 
squared deviations between the weighted KPI values and the corresponding values in 
the ideal and anti-ideal solutions are calculated. These differences are subsequently 
normalized to express the relative influence of each KPI on the process’s distance to 
the ideal and anti-ideal solution. The output consists of two sets of values per process, 
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each representing the KPI-specific contribution to the distance from one of the 
reference points, namely the ideal and the anti-ideal solution. 

After the calculation of the TOPSIS scores and the corresponding KPI influence values, 
a qualitative interpretation is performed to support decision-making. This interpretation 
step uses the TOPSIS score of each process and the relative influence of each 
sustainability KPI on the process’s distance from the ideal solution. 

If the TOPSIS score is 0.50 or lower, the process is considered to have low conformity 
with the ideal solution. In such cases, KPIs with a high influence (influence value ≥ 
0.25) are identified as potential contributors to the weak performance. These KPIs are 
explicitly mentioned in the interpretation to indicate where targeted improvements may 
be most effective. 

If the TOPSIS score is between 0.51 and 0.75, the process s interpreted as having 
moderate conformity. The KPIs with the greatest influence are again reported, 
indicating possible levers for optimization. 

When the TOPSIS score exceeds 0.76, no interpretation is generated, as the process 
is already performing well in terms of sustainability and shows little immediate potential 
for improvement. 

If no KPIs significantly influence the process’s distance (influence value ≤ 0.25), the 
explanation notes that no single KPI has a significant impact. By translating numerical 
results into descriptive statements, this step enables a clearer understanding of the 
evaluation outcomes and helps decision-makers identify meaningful starting points for 
process improvement. 

Once the AHP and TOPSIS methods have been applied to generate weighted rankings 
of production processes, SPDA performs a series of validation steps to safeguard the 
accuracy of inputs and the robustness of analytical outcomes. 

Validation Procedures within SPDA 

Within SPDA, several validation steps have been implemented to identify and manage 
issues such as incomplete data, inconsistent input values, or structural irregularities 
before the core analytical computations are performed. By verifying the accuracy and 
integrity of the input data and intermediate results, the algorithm minimizes the risk of 
errors and improves the consistency of its outputs. This contributes to the reliability 
and general applicability of the algorithm across different use cases involving 
sustainability assessment and multi-criteria decision-making. 

The validation process begins with a thorough examination of the input parameters. 
This validation is implemented using a model_validator method within a Pydantic 
model, which is executed automatically after the input data has been parsed. As a first 
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step, as illustrated in Figure 44, the pairwise comparison matrix is validated. The 
routine checks whether the matrix has the correct square shape, specifically with 
dimensions kpi_count x kpi_count. This structural requirement ensures that each 
sustainability KPI can be consistently and systematically compared to every other KPI.  

 

Figure 44: Validation of the Pairwise Comparison Matrix 

Furthermore, the matrix is subjected to a reciprocity check, a core requirement of the 
AHP methodology. According to this principle, for any two criteria i and j, the element 
at position (i, j) must be the mathematical reciprocal of the element at position (j, i), that 
is, aij = 1 / aji. 
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Additionally, all diagonal elements (i, i) must be equal to 1, reflecting that each criterion 
is equally important when compared to itself. To ensure numerical precision and 
robustness, the validation also accommodates fractional string representations by 
converting them to rational numbers using Python’s Fraction class. 

This rigorous validation safeguards against inconsistent or malformed input, which 
could otherwise distort the outcome of the AHP weighting process and compromise 
the decision-making reliability of SPDA. 

Another validation step is applied to the decision matrix used in the TOPSIS algorithm, 
as shown in Figure 45. This step ensures the structural consistency of the decision 
matrix, which contains the sustainability KPI values for each process. Specifically, the 
number of rows must match the number of processes (process_count), and the 
number of columns must equal the number of sustainability KPIs (kpi_count). Any 
deviation from this expected structure would compromise the validity of subsequent 
computations and may result in incorrect or misleading outcomes. By enforcing this 
structural requirement, the algorithm enhances both reliability and robustness of the 
decision-making process. 

 

Figure 45: Validation of the Decision Matrix 

Further validation is required for the benefit criteria list, which plays a fundamental role 
in the execution of the TOPSIS algorithm, as illustrated in Figure 46. Firstly, it verifies 
that the length of the benefit_criterias list corresponds exactly to the number of 
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sustainability KPIs, as defined by the variable kpi_count. This requirement ensures that 
each criterion is explicitly associated with a corresponding benefit directive. 

 

Figure 46: Validation of the benefit criterias list 

Secondly, the validator enforces strict admissibility of values within the benefit_criterias 
list. Each element must be either 0 or 1, where 0 denotes a criterion to be minimized 
and 1 denotes a criterion to be maximized. These binary indicators are indispensable 
for correctly identifying the ideal and anti-ideal solutions, which underpin the TOPSIS 
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ranking procedure. Any deviation from these constraints results in a validation error, 
thereby preventing incorrect data from being used and ensuring the decision-making 
process remains reliable. 

An additional validation step is applied to the Path Factor input, which is used to 
support the interpretation of the TOPSIS results. This step ensures that the length of 
the path_factor list matches exactly the number of processes (process_count), as 
illustrated in Figure 47. Any discrepancy would indicate a mismatch between process-
specific data and the Path Factor information, potentially undermining the interpretative 
explanations and the reliability of the decision-support output. By enforcing this 
consistency, the algorithm guarantees that each process is properly associated with 
its corresponding Path Factor, thereby enhancing the accuracy and interpretability of 
the results. 

 

Figure 47: Validation of the path factor list 

After the input data has been successfully validated, an additional verification step is 
applied to the output data. This validation ensures structural consistency between the 
computed TOPSIS scores and the defined process configuration, as illustrated in 
Figure 48. Specifically, it checks whether the number of generated scores matches the 
number of production processes specified in the input via the process count. This 
alignment is critical to ensure that each evaluated process is accurately represented 
by a single corresponding score, thereby preserving the interpretability and 
correctness of the final ranking. 



Development of an Algorithm for Identifying Sustainability Potentials in Value Streams
  85 

Any discrepancy between the number of scores and the declared number of processes 
would indicate a structural inconsistency within the evaluation pipeline. If such a 
mismatch occurs, the validation mechanism raises an error, halting further processing 
to prevent the propagation of incorrect or misleading results. 

 

Figure 48: Validation of the TOPSIS Scores list 

By enforcing this constraint, the validation contributes significantly to the robustness, 
transparency, and reliability of SPDA, ensuring that its outputs remain trustworthy and 
analytically sound. 

As a final step, all previously validated inputs and algorithmic components are brought 
together within an integrated execution flow. This step ensures that the weight 
calculation, consistency assessment, process evaluation, and explanation generation 
are carried out in the correct sequence and with verified data. By consolidating these 
operations into a single coherent process, the algorithm delivers a complete and 
reliable decision output. This structured orchestration enables automated, transparent, 
and robust evaluation of production processes, making the results directly accessible 
for decision-making purposes. 

Having detailed SPDA, the following chapter evaluates its performance by applying it 
to a practical case study. 
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6 Evaluation / Results 

To evaluate SPDA, the proposed approach is applied to a case study conducted in a 
refrigerator and freezer manufacturing facility described by (Khakpour et al., 2023). 
The factory produces a variety of white goods, including different models of 
refrigerators and freezers. For this study, a specific refrigerator-freezer model is 
selected. The following sections provide a detailed description of the value stream, 
followed by the application of SPDA to the case study and a critical discussion of the 
results. 

6.1 Value Stream of the refrigerator-freezer 
The selected refrigerator-freezer model is produced through a sequence of discrete 
manufacturing processes, including Sheet Extruding, Liner Forming, Cabinet 
Assembling, Cabinet Metal Forming, Cabinet Foaming, Refrigerant Cycle Assembling, 
Panel Forming, Pressing, Door Assembly, Door Foaming and Final Assembling 
(Khakpour et al., 2023). The corresponding value stream map is illustrated in Figure 
49. The manufacturing process is divided into two primary streams. The upper stream 
represents the cabinet manufacturing process, while the lower stream corresponds to 
door production. These two streams are subsequently integrated during the final 
assembly process, where the complete refrigerator-freezer unit is assembled. Since 
the cabinet manufacturing process constitutes the critical stream within the value 
stream, this process is used as the basis for evaluating the system. 

Sustainability KPIs employed in this analysis are adopted from the case study by 
(Khakpour et al., 2023), which delineates a robust set of quantitatively defined KPIs 
specifically tailored to the cabinet manufacturing process. These KPIs encompass 
various dimensions.  

Owing to the specificity and completeness of the sustainability metrics provided for the 
cabinet manufacturing stream, the inclusion of the Path Factor, typically utilized to 
account for secondary or auxiliary process streams, was considered methodologically 
unnecessary for the present evaluation. Consequently, the Path Factor was excluded, 
ensuring analytical focus and interpretative clarity within the critical stream under 
investigation. 
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Figure 49: Value Stream map of the refrigerator-freezer (Khakpour et al., 2023) 

For each process within the cabinet manufacturing stream, input data were collected, 
encompassing the three pillars of sustainability, as detailed in Table 3. 

Sustainability Pillar Sustainability KPI Unit 
Economic Lead time (LT) sec 

Process costs (PC) monetary units 
Inventory time (IT) sec 

Environmental Material consumption (MC) kg 
Energy consumption (EC) kWh 
Waste of energy consumption 
(WoEC) 

kWh 

Social Noise level (NL) dB(A) 
Accident rate (AR) % 
Skilled manpower (SM) % 
Table 3: Selected sustainability KPIs 

Furthermore, material consumption specifically refers to the consumption of petroleum-
based materials (in kg), including Acrylonitrile Butadiene Styrene (ABS), Methylene 
Diphenyl Diisocyanate (MDI) and Polyol (P). Process costs comprise petroleum-based 
material costs, manpower costs, facilities and equipment depreciation costs, energy 
consumption costs, and operational costs. 

The sustainability KPI values for each discrete manufacturing process within the 
cabinet manufacturing stream are summarized in the Table 4. This compilation 
provides a comprehensive overview of the input data utilized for the evaluation of 
SPDA. 
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Process LT PC IT MC EC WoEC NL AR SM 
Sheet Extruding 800 41.725 0 20.55 32.48 2.63 84 2 90 
Liner Forming 780 8.107 14 0 20.25 3.54 85 0 87 
Cabinet Assembling 796 3.588 2 0 1.95 0 77 2 78 
Cabinet Metal Forming 300 5.08 0 0 2.5 0 77 2 79 
Cabinet Foaming 1195 55.04 0 13.6 14 0.15 82 0 87 
Refrigerant Cycle 
Assembling 

728 2.393 1 0 0.6 0 72 0,5 84 

Final Assembling 1601 5.14 0 0 1.03 0 72 0 91 
Table 4: Sustainability KPIs per process in cabinet manufacturing 

6.2  Assumptions and Scenario-Based Evaluation of SPDA 
The case study presented by (Khakpour et al., 2023) provides comprehensive 
sustainability-related performance data for each process step within the cabinet 
manufacturing stream. However, the original study does not include an evaluation or 
weighting of the relative importance of the sustainability KPIs. As SPDA requires a 
pairwise comparison matrix to determine the weights of the sustainability KPIs, 
assumptions were made to facilitate the evaluation process. 

To ensure a structured and meaningful evaluation of the algorithm, three different 
weighting scenarios (S1, S2, S3) were defined, each placing the primary focus on one 
of the three sustainability dimensions. For each scenario, the respective criteria were 
prioritized in the pairwise comparison matrix to reflect a dominant sustainability 
perspective. This approach allows for the assessment of the algorithm’s 
responsiveness and plausibility under varying strategic priorities. 

To ensure consistency in the evaluation, each sustainability KPI was assigned a 
corresponding benefit criterion based on its intended improvement direction. As shown 
in Table 5, most KPIs are to be minimized, while the proportion of skilled manpower is 
to be maximized. These benefit criteria were consistently applied across all scenarios. 

Sustainability Pillar Sustainability KPI Benefit Criteria 
Economic Lead time (LT) Minimize 

Process costs (PC) Minimize 
Inventory time (IT) Minimize 

Environmental Material consumption (MC) Minimize 
Energy consumption (EC) Minimize 
Waste of energy consumption 
(WoEC) 

Minimize 

Social Noise level (NL) Minimize 
Accident rate (AR) Minimize 
Skilled manpower (SM) Maximize 

Table 5: Benefit criteria assigned to the sustainability KPIs in the evaluation process 

The following section presents and analyzes the results obtained by applying SPDA 
under the three assumed weighting schemes. To facilitate the interpretation of the 
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TOPSIS scores for each process across all three weighting scenarios, a traffic light 
system was implemented. This visual classification supports the identification of 
processes with the highest improvement potential based on their relative alignment 
with the sustainability configuration. Specifically, scores between 0.00 and 0.50 are 
marked in red, indicating low conformity with the ideal solution and thus a high need 
for improvement. Scores from 0.51 to 0.75 are colored orange, representing moderate 
conformity, where some improvements may still be necessary. Finally, scores in the 
range of 0.76 to 1.00 are shown in green, signaling strong conformity with the ideal 
solution and indicating processes with relatively good sustainability performance. This 
traffic light system enables a clear and intuitive assessment of the results and supports 
decision-makers in identifying critical areas for sustainability improvement. 

Weighting Scenario 1: Focus on economic KPIs 

In the first evaluation scenario, the pairwise comparison matrix was constructed to 
emphasize economic sustainability KPIs. This scenario simulates a decision-making 
context in which economic performance is the primary concern. Based on the pairwise 
comparison matrix, the relative weights of all nine sustainability KPIs were derived 
using AHP. The resulting weights are visualized in a horizontal bar chart, as illustrated 
in Figure 50. 

 

Figure 50: AHP-derived weights of sustainability KPIs – Scenario 1: Focus on economic KPIs 

As expected, the most influential criteria in this scenario are inventory time, lead time, 
and process costs, which together account for 59.66% of the total weight. These 
indicators are all associated with the economic performance of the manufacturing 
system. In contrast, environmental (26.61%) and social (13.73%) KPIs receive lower 
weights, reflecting their subordinate priority within this weighting scenario. 
Consequently, the final process ranking is primarily driven by the performance of each 
process with respect to the economic indicators. 
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The TOPSIS scores and corresponding process ranking are shown in Figure 51. The 
highest-ranking processes in this scenario are Cabinet Metal Forming (0.91) and 
Refrigerant Cycle Assembling (0.89). Both processes exhibit low lead times (300 sec 
and 728 sec, respectively), minimal or no inventory times, and low process costs (5.08 
and 2.39 monetary units). These favorable values in the most heavily weighted 
economic KPIs result in high TOPSIS scores, positioning them close to the ideal 
solution under the given weighting scheme. 

In contrast, Liner Forming receives the lowest TOPSIS score (0.36), primarily due to a 
combination of moderately high lead time (780 sec) and noticeable inventory time (14 
days). Similarly, Sheet Extruding (score: 0.61) shows a very high process cost (41.73 
monetary units) and moderately high lead time (800 sec), which significantly reduce its 
performance score despite favorable values in other dimensions. 

Cabinet Foaming receives intermediate scores (0.64). Although Cabinet Foaming has 
the highest lead time (1195 sec) and highest process cost (55.04 monetary units) 
among all processes, it performs moderately well in environmental and social KPIs. 
However, due to the lower weights of these dimensions in this scenario, these 
strengths only partially offset its economic disadvantages. 

Interestingly, Final Assembly and Cabinet Assembling achieve comparatively high 
TOPSIS scores (0.76 and 0.82, respectively), despite their high or moderate lead times 
(1,601 seconds and 796 seconds). This favorable outcome can be attributed to their 
low process costs (5.414 and 3.59 monetary units) and no or low inventory times (0 
days and 2 days), which are closely aligned with the dominant economic criteria in this 
scenario. These advantageous values in the most heavily weighted KPIs offset the 
longer lead times and contribute significantly to the overall sustainability performance 
of the processes. 

The ranking of the processes clearly reflects the relative weighting derived from the 
pairwise comparison matrix. The AHP-derived weights emphasize economic 
performance, and the TOPSIS method integrates these preferences into a composite 
score for each process. This alignment between input data and results confirms the 
consistency of the algorithm and suggests that the outcomes are plausible and reliable. 
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Figure 51: Scenario 1 – TOPSIS scores 

Weighting Scenario 2: Focus on environmental KPIs 

In the second evaluation scenario, the pairwise comparison matrix was constructed to 
focus on environmental sustainability KPIs. This scenario reflects a decision-making 
context in which ecological performance is prioritized over economic and social 
considerations. The AHP-derived weights for all nine sustainability KPIs are shown in 
Figure 52 as a horizontal bar chart. 

 

Figure 52: AHP-derived weights of sustainability KPIs – Scenario 2: Focus on environmental 
KPIs 

Accordingly, the AHP-derived weights place the greatest emphasis on material 
consumption, energy consumption, and waste of energy consumption, each 
contributing approximately 19.5% to the total. Combined, these environmental 
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indicators account for over half of the total weighting (58.47%), clearly dominating the 
evaluation. Economic criteria (25.59%) and social indicators (15.95%) play a 
subordinate role in this scenario. As visualized in Figure 52, this distribution shifts the 
focus of the analysis towards ecological performance, ensuring that the subsequent 
ranking of manufacturing processes is primarily influenced by their environmental 
impact. 

The TOPSIS scores for Scenario 2 are illustrated in Figure 53. The highest-ranking 
process is Refrigerant Cycle Assembling (0.95), followed closely by Cabinet Metal 
Forming (0.89) and Final Assembling (0.89). These processes achieve strong scores 
primarily due to minimal or zero material and energy consumption as well as zero 
waste of energy, which are the criteria that dominate the weighting in this scenario. For 
example, Refrigerant Cycle Assembling records only 0.6 kWh of energy consumption 
and exhibits zero material consumption and energy waste, which aligns closely with 
the prioritized environmental KPIs. 

Despite favorable performance in selected social indicators, Sheet Extruding (0.32) 
and Liner Forming (0.47) receive the lowest scores due to their relatively high energy 
consumption. For example, Sheet Extruding requires 20.55 kg of petroleum-based 
material and 32.48 kWh of energy, which substantially reduces its score within the 
environmentally weighted scenario, where social KPIs have comparatively less impact. 

Cabinet Assembling (0.87) attains a high TOPSIS score, primarily due to its low energy 
consumption combined with zero material consumption and the absence of energy 
waste. These attributes lead to higher scores due to the environmentally focused 
weighting applied in this scenario. In contrast, Cabinet Foaming (0.60) receives only a 
moderate score, as its substantial energy and material consumption detracts from its 
performance under the environmentally focused weighting scheme.  

The results demonstrate consistent and plausible outcomes, confirming the algorithm’s 
correctness and its robustness in evaluating processes under environmental priorities. 
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Figure 53: Scenario 2 – TOPSIS scores 

Weighting Scenario 3: Focus on social KPIs 

In the third evaluation scenario, the pairwise comparison matrix was structured to 
prioritize social sustainability KPIs, representing a decision-making context where 
social factors are given precedence over economic and environmental concerns. The 
resulting weights are visualized in a horizontal bar chart, as depicted in Figure 54. 

 

Figure 54: AHP-derived weights of sustainability KPIs – Scenario 3: Focus on social KPIs 

The weights assign the highest importance to social indicators, notably accident rate, 
noise level, and skilled manpower, which collectively account for 55,85% of the total 
weighting. Economic KPIs represent around 29.49%, while environmental criteria 
contribute a smaller share of roughly 14.66%. This weighting scheme clearly shifts the 
evaluation emphasis towards social performance, ensuring that the ranking of 
manufacturing processes is primarily driven by their social impact. 
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Figure 55 visualizes the TOPSIS scores and the resulting ranking of the evaluated 
processes. In this scenario, Refrigerant Cycle Assembling (0.82) and Final Assembling 
(0.82) achieve the highest scores. Both processes demonstrate strong performance in 
socially relevant criteria, such as the lowest noise level (72 dB(A)) among all 
processes, as well as low accident rates (0 and 0.5 %, respectively). 

Cabinet Foaming ranks in the mid-range with a score of 0.71. While it exhibits high 
lead time and process costs, it benefits from favorable social indicators, most notably 
a zero accident rate and a high proportion of skilled labor (87%), which significantly 
contribute to its score in this socially focused assessment. 

Similarly to Cabinet Foaming, Liner Forming benefits from strong social performance 
indicators. An excellent accident rate of 0% and a relatively high proportion of skilled 
labor (87%) support its ranking. However, these strengths are partially 
counterbalanced by a long inventory time of 14 days, which negatively impacts its 
TOPSIS score. As a result, the process achieves a moderate performance level with a 
score of 0.57. 

Cabinet Metal Forming (0.51) and Cabinet Assembling (0.48) achieve lower scores 
due to relatively high accident rates (2%) and lower proportions of skilled labor (79% 
and 78%). These factors reduce their evaluation in the socially weighted scenario, 
despite strengths in other sustainability dimensions. Sheet Extruding ranks lowest 
(0.41), primarily due to a combination of a high accident rate (2%) and relatively high 
noise levels (84 dB(A)). These factors place this process at the bottom of the ranking. 

Overall, the results of scenario 3 provide strong evidence of the algorithm’s accuracy 
and robustness. 

 

Figure 55: Scenario 3 – TOPSIS scores 
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6.3 Results 
To evaluate the performance and applicability of SPDA, three distinct scenarios were 
tested using a case study from the manufacturing sector. Each scenario reflects 
different prioritizations of sustainability criteria, allowing for a comprehensive 
assessment of the algorithm’s adaptability and decision logic. The resulting process 
rankings are analyzed in terms of consistency with the input preferences and the 
resulting trade-offs between economic, environmental, and social KPIs. To facilitate 
comparison and highlight performance patterns across all scenarios, Table 6 visualizes 
a heatmap displaying the TOPSIS scores of the seven evaluated processes across the 
three sustainability scenarios. 

Process Economic (S1) Environmental (S2) Social (S3) 
Sheet Extruding 0,61 0,32 0,41 
Liner Forming 0,36 0,47 0,57 
Cabinet Assembling 0,82 0,87 0,48 
Cabinet Metal Forming 0,91 0,89 0,51 
Cabinet Foaming 0,64 0,6 0,71 
Refrigerant Cycle Assembling 0,89 0,95 0,82 
Final Assembling 0,76 0,89 0,82 
Table 6: TOPSIS scores of manufacturing processes across different sustainability scenarios 

Sheet Extruding exhibits the lowest performance in both in S2 and S3, indicating a high 
need for improvement regarding ecological and social sustainability. In S1, it achieves 
a moderately low score, ranking as the second-worst performing process, further 
confirming its overall optimization potential. These findings highlight a significant 
opportunity for targeted measures to enhance its sustainability performance across 
multiple dimensions. 

Similarly, Liner Forming shows considerable potential for improvement, especially in 
scenarios where economic and environmental factors receive higher emphasis, as 
reflected in S1 and S2. Although Liner Forming performs comparatively better in S3, 
which likely shifts focus toward the social dimension, its aggregate performance 
remains comparatively weak. This suggests that tailored interventions could effectively 
elevate its sustainability profile. These results clearly indicate existing improvement 
potential, suggesting that tailored measures could effectively enhance its sustainability 
profile. 

In contrast, the processes Refrigerant Cycle Assembling and Final Assembling 
consistently achieve high performance levels across all three scenarios, positioning 
them as benchmarks for sustainable manufacturing practices within the case study. 

The analysis of the results visualized in the heatmap underscores a need for 
improvement and targeted measures in several production processes to enhance their 



Evaluation / Results  96 

performance across economic, environmental, and social dimensions. SPDA 
effectively distinguishes between processes, consistently identifying those with the 
highest optimization potential. This reliable differentiation not only validates the 
algorithm’s capability to integrate multi-criteria preferences but also attests to its 
robustness and practical applicability as a comprehensive decision-support instrument 
in sustainable manufacturing contexts. Consequently, these findings reinforce the 
algorithm’s value in guiding strategic improvement efforts by pinpointing priority areas 
for sustainable development within complex production systems. 
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7 Conclusion and Limitations 

This chapter presents the main findings of this work, discusses their implications, and 
reflects on the contributions made. It also addresses methodological and data-related 
limitations encountered during the research. Finally, directions for future development 
are proposed, with the aim of further advancing the presented approach. 

In recent years, a variety of extended VSM approaches have been developed to 
address the increasing need for integrating sustainability considerations into 
production systems. These methods vary in scope, focus, and methodological depth, 
yet all aim to incorporate the TBL perspective, as summarized in Table 1. SVSM, LC-
VSM, TBL-VSM, and VSM4S encompass all TBL indicators, while EVSM, GIVSM, and 
OGP-VSM focus solely on economic and environmental KPIs. The dominance of 
SVSM is particularly evident, as 31 out of the 44 relevant documents employ this 
methodology. To make sustainability performance measurable in manufacturing 
companies, sustainability KPIs were defined and measured. Based on these KPIs, the 
current state of a company was visualized. Some studies defined critical thresholds for 
sustainability KPIs and applied them within a Traffic Light System to enhance the 
visibility of inefficiencies in the production system.  

While existing methodologies and approaches to sustainable VSM often rely heavily 
on expert judgment, historical data analysis, or the establishment of critical thresholds 
for each sustainability KPI, these processes are typically time-consuming and resource 
intensive. (Soltani et al., 2019) introduced the TOPSIS algorithm to systematically rank 
production steps based on their sustainability impact, thereby providing a quantitative 
foundation for prioritization. However, a research gap exists due to the absence of a 
practical software implementation of the TOPSIS-based prioritization method, which, 
although conceptually sound, was not accompanied by an operational tool. 

To address this gap, the Sustainability Potential Detection Algorithm (SPDA) was 
developed, combining the AHP methodology with the TOPSIS algorithm to identify 
sustainability potentials by prioritizing production steps based on their sustainability 
impact. To facilitate ease of use, especially for users with limited experience in VSA, 
the AHP implementation employs an adapted, simplified version of Saaty’s scale, as 
detailed in Table 2. This simplification aims to enhance usability and reduce cognitive 
load in the decision-making process. 

A distinctive strength of SPDA lies in the incorporation of rigorous validation steps via 
Pydantic, which ensures that inputs are thoroughly checked for consistency and 
correctness before processing. These validation mechanisms serve as robust 
safeguards against malformed or inconsistent data, thereby enhancing the overall 
reliability and reproducibility of the algorithm’s results. 
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Beyond identifying processes with potential for sustainability-oriented improvement, 
SPDA introduces a novel approach by systematically analyzing the influence of 
individual KPIs on the overall sustainability performance of each process. By 
quantifying the impact of each KPI on deviations from the ideal solution, and by 
integrating the Path Factor to indicate whether a process lies on the main path or 
requires additional processing steps (e.g., rework, refinement), the algorithm offers a 
unique diagnostic perspective that allows for precise attribution of performance deficits 
to specific sustainability criteria. This analytic depth facilitates root-cause analysis and 
supports more precise, criterion-specific intervention strategies. Together, these 
technical features make SPDA not only a robust decision-support tool for sustainable 
production but also a user-friendly and transparent system, capable of bridging the gap 
between complex multi-criteria decision methods and practical industrial applications. 

The developed algorithm was evaluated using a case study from a refrigerator and 
freezer manufacturing factory, as described by (Khakpour et al., 2023). The value 
stream of a specific refrigerator-freezer model served as the basis for the analysis. In 
this case study, the sustainability performance of the production process was assessed 
using KPIs that reflect the three pillars of sustainability. 

To test the algorithm under realistic industrial conditions, the pairwise comparison 
matrix was adjusted to reflect three different decision-making perspectives, resulting 
in scenarios S1, S2, and S3. These variations simulated typical situations in which 
stakeholders assign different priorities to sustainability objectives based on strategic 
goals or regulatory requirements. The algorithm responded effectively to these 
changes, producing reliable and meaningful prioritizations of production steps. This 
demonstrates its suitability for dynamic industrial environments, where decision-
making must account for varying sustainability targets. The ability to integrate user-
defined preferences in a transparent and automated manner underscores the 
algorithm’s potential as a practical decision-support tool for sustainable production 
planning. 

Despite the promising results achieved with SPDA, several limitations must be 
acknowledged. First, the AHP methodology employs a simplified form of the Saaty 
scale for pairwise comparisons. While this choice improves user-friendliness and 
consistency in the judgment matrix, it reduces the granularity of expressed 
preferences. As a result, nuanced or more differentiated expert judgments may not be 
adequately captured. 

Second, CR calculation is based on Saaty’s RI values, which are only defined for 
comparison matrices with up to 10 criteria. This restricts the use of the algorithm to 
decision problems involving a relatively small number of KPIs. For larger matrices, 
suitable RI approximations or alternative inconsistency metrics would be required. 
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8 Outlook and Future Work 

Regarding future development, a promising extension of SPDA would be the 
integration of multiple expert evaluations through group decision-making frameworks. 
Currently, the algorithm processes a single pairwise comparison matrix representing 
the preferences of one decision-maker for the AHP weighting of sustainability KPIs. 
However, in practical industrial settings, decisions on sustainability priorities often 
require consensus among several experts with potentially divergent perspectives. To 
address this, the algorithm could be enhanced to aggregate multiple pairwise 
comparison matrices obtained from different experts into a collective preference 
structure. Established aggregation methods, such as the geometric mean of individual 
comparison matrices, can be employed to synthesize a consensus pairwise matrix. 
This aggregated matrix would then be used to derive a unified set of criterion weights, 
reflecting a balanced group judgment. 

Furthermore, when the number of KPIs becomes very large, conducting pairwise 
comparisons using AHP can become impractical due to the rapidly increasing number 
of comparisons and the cognitive burden on experts. In such cases, a hierarchical 
structuring of KPIs into group clusters can significantly simplify the weighting process. 
For instance, when KPIs naturally group into clusters such as economic, 
environmental, and social dimensions, a two-level AHP approach can be applied. First, 
experts assess the relative importance of these main KPI clusters through pairwise 
comparisons, resulting in a manageable comparison matrix at the cluster level. Then, 
within each cluster, the KPIs are compared pairwise separately to establish local 
weights. Finally, the overall weights for individual KPIs are obtained by multiplying their 
local weights by the weight of their respective cluster. This hierarchical decomposition 
into group clusters reduces the number of comparisons required at each step, easing 
the cognitive load on experts while preserving the interpretability of the results. 
Moreover, distributing comparison tasks across multiple experts and aggregating their 
judgments further enhances the robustness and reliability of the weighting process. 

Moreover, another key objective for the future development of SPDA would be the 
deployment of the algorithm as an online service using Docker within the SMP platform. 
Currently, the tool operates locally, which limits its accessibility and integration into 
broader digital infrastructures. By deploying the algorithm to a cloud environment and 
linking it directly with SMP, real-time access and scalability across various industrial 
use cases can be achieved. Additionally, a dedicated front-end dashboard could be 
developed, enabling the interactive visualization of decision-making outcomes. For 
instance, radar charts could be used to compare process performance across 
sustainability KPIs, while time-series plots could help monitor TOPSIS scores over 
multiple evaluations. Such visual analytics would support users in better 
understanding, evaluating, and communicating results more effectively. 
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9 Appendix 

9.1 Identified sustainability KPIs through SLR 
Sustainability KPIs Equation Legend of 

Abbreviations 
References 

Economic    
Time efficiency (%) TE=(VAT/TT) 

*100% 
TE: Time efficiency 
VAT: Value added time 
TT: Total time 

(Utama et al., 2022), (Dewi et al., 2023),  
(Atoillah & Hartini, 2021), (Saraswati et al., 2024), (Marie et al., 
2022), (Marie Iveline Anne et al., 2022), (Hudy et al., 2023), 
(Sari Emelia et al., 2021), (Hartini et al., 2019), (Vinodh et al., 
2016), (Mubin et al., 2023), (Hartini et al., 2020), (Utama & 
Abirfatin, 2023), (Sari et al., 2022), (Phuong & Guidat, 2018), 
(Chaparin et al., 2023), (Rosiani et al., 2024), (Hartini et al., 
2018), (Ikatrinasari et al., 2018) 
 

Inventory efficiency 
(%)  

IE = (NI/TM) *100% IE: Inventory efficiency 
NI: Number of 
inventories 
TM: Total material 

(Utama et al., 2022), (Dewi et al., 2023), (Marie Iveline Anne et 
al., 2022), , (Hartini et al., 2020; Rosiani et al., 2024) 

Quality efficiency 
(%) 

QE = (1 - (ND/TM)) 
*100% 

QE: Quality efficiency 
ND: Number of defects 
TM: Total material 

(Utama et al., 2022), (Dewi et al., 2023), (Atoillah & Hartini, 
2021), (Saraswati et al., 2024), (Marie et al., 2022), (Hudy et al., 
2023), (Djatna & Prasetyo, 2019), (Sari Emelia et al., 2021), 
(Mubin et al., 2023), (Hartini et al., 2020), (Hartini et al., 2018) 
 

Cost efficiency (%) CE = (VAC/TC) 
*100% 

CE: Cost efficiency 
VAC: Value added cost 
TC: Total cost 

(Utama et al., 2022), (Dewi et al., 2023), (Hartini et al., 2020), 
(Utama & Abirfatin, 2023), (Rosiani et al., 2024), (Hartini et al., 
2018) 

Operating Cost 
(currency per unit) 

OC=CT*(LabC + 
MC + DC) 

OC: Operating Cost 
CT: Cycle Time 

(Swarnakar et al., 2020), (Khakpour et al., 2023) 
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LabC: Labor cost 
MC: Management cost 
DC: Depreciation cost 

Overall Equipment 
Efficiency (%) 

OEE=A*P*Q 
A=((LT-TD)/LT) 
*100% 
P=((IC*O)/OP) 
*100% 
Q=((TP-DP)/TP) 
*100% 

OEE: Overall 
Equipment Efficiency 
A: Availability Rate 
LT: Loading Time 
TD: Total Downtime 
P: Performance Rate 
IC: Ideal Cycle time 
O: Output 
OP: Operating Time 
Q: Quality Rate 
TP: Total Product 
DP: Defect Product 

(Dewi et al., 2023), (Swarnakar et al., 2020), (Rosiani et al., 
2024) 
 

Effective cost 
(currency per unit) 

EC=OC/OEE EC: Effective cost 
OC: Operating Cost 
OEE: Overall 
Equipment Efficiency 

(Swarnakar et al., 2020), (Khakpour et al., 2023) 

Environmental    
Material efficiency 
(%) 

ME = (VAM/TM) 
*100% = = 
(MC/PR) *100% 

ME: Material efficiency 
VAM: Value added 
material 
TM: Total material used 
MC: number of 
materials consumed 
PR: number of products 
released 

(Utama et al., 2022), (Dewi et al., 2023), (Atoillah & Hartini, 
2021), (Saraswati et al., 2024), (Marie et al., 2022), (Marie 
Iveline Anne et al., 2022), (Hudy et al., 2023), (Djatna & 
Prasetyo, 2019), (Mubin et al., 2023), (Hartini et al., 2020), 
(Rosiani et al., 2024), (Hartini et al., 2018) 

Raw material 
consumption (kg) 

  (Vinodh et al., 2016), (Lindström & Ingesson, 2016), (Sari et al., 
2022), (Ikatrinasari et al., 2018), (Khakpour et al., 2023) 

Energy/Power 
consumption (kWh) 

  (Vinodh et al., 2016), (Lindström & Ingesson, 2016), 
(Antomarioni et al., 2018), (Sari et al., 2022), (Phuong & Guidat, 
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2018), (Chaparin et al., 2023), (Ikatrinasari et al., 2018), 
(Khakpour et al., 2023), (Swarnakar et al., 2020) 

Total energy 
consumption (mPt) 

  (Vinodh et al., 2016) 

Energy efficiency 
(%) 

EE = (VAE/TE) 
*100% = (EP/TE) 
*100% 

EE: Energy efficiency 
VAE: Value added 
energy 
TE: Total energy 
EP = Amount of energy 
used for production 

(Utama et al., 2022), (Dewi et al., 2023), (Marie et al., 2022), 
(Marie Iveline Anne et al., 2022), (Hudy et al., 2023), (Mubin et 
al., 2023), (Hartini et al., 2020), (Utama & Abirfatin, 2023), 
(Rosiani et al., 2024), (Hartini et al., 2018) 

Efficiency of waste 
recycling (%) 

WE = (1 - 
(WL/TW)) *100% 

WE: Waste recycling 
Efficiency 
TW: Total waste 
WL: Number of wastes 
to landfill 

(Utama et al., 2022), (Marie et al., 2022), (Marie Iveline Anne et 
al., 2022), (Hartini et al., 2020), (Utama & Abirfatin, 2023), (Sari 
et al., 2022) 

Water 
Consumption/Efficie
ncy (%) 

WE=(AW/TW) 
*100% 

WE: Water 
Consumption/Efficiency 
AW: Amount of Water 
TW: Total Water 

(Dewi et al., 2023), (Marie Iveline Anne et al., 2022), 
(Swarnakar et al., 2020), (Hudy et al., 2023), (Djatna & 
Prasetyo, 2019), (Vinodh et al., 2016), (Mubin et al., 2023), 
(Lindström & Ingesson, 2016), (Utama & Abirfatin, 2023), 
(Phuong & Guidat, 2018), (Rosiani et al., 2024), (Ikatrinasari et 
al., 2018) 
 

Waste water 
recycling (%) 

WE=(WR/TW) 
*100% 

WE: Waste water 
recycling efficiency 
WR: Waste recycling 
TW: Total waste 

(Saraswati et al., 2024), (Sari Emelia et al., 2021) 

Waste Generation 
(%) 

WGEeff=(WGact/W
Gmax)* 100% 

WGEeff: Waste 
generation efficiency 
WGact: Actual waste 
generation value  
WGmax: highest waste 
generation is 

(Rosiani et al., 2024), (Khakpour et al., 2023) 
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considered the worst 
performance 

B3 Consumption (%) BB=(TB/FN) 
*100% 

BB: Raw materials that 
are hazardous 
TB: Total weight of 
hazardous raw 
materials 
FN: Normal Factor 
(normal weight of the 
product) 

(Dewi et al., 2023) 

Land Use (%) LT=(LA/TL) *100% LT: Land Covered 
LA: Building Covered 
Area 
TL: Total Manufacturing 
Area 

(Dewi et al., 2023) 

Carbon footprint 
(mPt) 

  (Vinodh et al., 2016) 

Water 
eutrophication (mPt) 

  (Vinodh et al., 2016) 

Air acidification 
(mPt) 

  (Vinodh et al., 2016) 

Oil and coolant 
consumption (Liters) 

  (Vinodh et al., 2016) 

Emitted carbon 
dioxide CO2I (kg) 

  (Antomarioni et al., 2018) 

Overall 
Environmental 
Equipment 
Effectiveness 
(dimensionless) 
 
 

  (Antomarioni et al., 2018) 
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Social    
Satisfaction level 
(%) 

Sat_L = (1 - 
(TO/NE)) *100% 

Sat_L: Satisfaction level  
TO: Number of 
employee turnover 
NE: Number of 
employees 

(Utama et al., 2022), (Dewi et al., 2023), (Saraswati et al., 
2024), (Marie et al., 2022), (Marie Iveline Anne et al., 2022), 
(Hudy et al., 2023), (Sari Emelia et al., 2021), (Hartini et al., 
2020), (Utama & Abirfatin, 2023), (Rosiani et al., 2024) 

Health level (%) HL = (1 - (NA/NE)) 
*100% 

HE: Health level 
NA: Number of absent 
employees  
NE: Number of 
employees 

(Utama et al., 2022), (Dewi et al., 2023), (Atoillah & Hartini, 
2021), (Hudy et al., 2023), (Hartini et al., 2020), (Utama & 
Abirfatin, 2023), (Sari et al., 2022), (Rosiani et al., 2024), 
(Hartini et al., 2018) 

Absent rate 
(dimensionless) 

AbsR=TAT/TWT AbsR: Absent rate 
TAT: total absentee 
time (in h) 
TWT: total working time 
(in h) 

(Swarnakar et al., 2020), (Khakpour et al., 2023) 

Safety level (%) Saf_L = (1 - 
(NR/Nac)) *100% 

Saf_L: Safety level 
NR: Number of activities 
with risk 
Nac: Number of 
activities 

(Utama et al., 2022), (Dewi et al., 2023), (Atoillah & Hartini, 
2021), (Marie et al., 2022), (Marie Iveline Anne et al., 2022), 
(Hartini et al., 2020), (Utama & Abirfatin, 2023), (Sari et al., 
2022), (Rosiani et al., 2024), (Hartini et al., 2018) 

Accident rate 
(dimensionless) 

AR=NoA/NoW AR: Accident rate 
NoA: Number of 
accidents 
NoW: Number of 
working employees 

(Swarnakar et al., 2020), (Khakpour et al., 2023) 

Employee training 
level (%) 

E_TL = (NT/NE) 
*100% 

E_TL: Employee 
training level 
NT: Number of 
employees who 
attended the training 

(Utama et al., 2022), (Dewi et al., 2023), (Saraswati et al., 
2024), (Marie et al., 2022), (Marie Iveline Anne et al., 2022), 
(Hudy et al., 2023), (Sari Emelia et al., 2021), (Hartini et al., 
2020), (Utama & Abirfatin, 2023), (Rosiani et al., 2024), 
(Khakpour et al., 2023) 
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NE: Number of 
employees 

Mental Load 
(dimensionless) 

MLIE=1 - (Score of 
NASA TLX/max 
NASA TLX) 

MLIE: Mental Load 
Index efficiency 

(Dewi et al., 2023), (Mubin et al., 2023), (Utama & Abirfatin, 
2023), (Rosiani et al., 2024) 

Physical Load 
(dimensionless) 

PLIE=1 - (Score of 
PLI/max Score PLI) 

PLIE: Physical Load 
Index efficiency 
PLI: Physical Load 
Index 

(Dewi et al., 2023), (Djatna & Prasetyo, 2019), (Vinodh et al., 
2016), (Mubin et al., 2023), (Utama & Abirfatin, 2023), (Phuong 
& Guidat, 2018), (Rosiani et al., 2024) 

Noise Level (dB)   (Marie Iveline Anne et al., 2022), (Atoillah & Hartini, 2021), 
(Saraswati et al., 2024), (Khakpour et al., 2023), (Sari Emelia et 
al., 2021), (Vinodh et al., 2016), (Sari et al., 2022), (Phuong & 
Guidat, 2018), (Khakpour et al., 2023) 

Lighting Level (Lux)   (Sari Emelia et al., 2021) 
Work environmental 
risks 
(dimensionless) 

  (Vinodh et al., 2016)  

Overall 
sustainability 
Performance 

   

Economic index (%) Ec_I=Σwi*Ei Ec_I: Economic index 
wi: weight of economic 
indicator i 
Ei: score of economic 
indicator i 

(Dewi et al., 2023), (Marie et al., 2022), (Hartini et al., 2020) 
 

Environment index 
(%) 

En_I=Σwi*Vi En_I: Environment 
index 
wi: weight of 
environment indicator i 
Vi: score of environment 
indicator i 

(Dewi et al., 2023), (Marie et al., 2022), (Hartini et al., 2020) 
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Environmental 
Performance Index 
(%) 

EPI= Sustainability 
*100 % 
Sustainability=1-
(Environmental 
impact of 
the workstation 
state)/(Total 
environmental 
impact of 
initial state 
production) 

EPI: Environmental 
Performance Index 

(Antomarioni et al., 2018) 

Social index (%) S_I=Σwi*Si S_I: Social index 
wi: weight of social 
indicator i 
Si: score of social 
indicator i 

(Dewi et al., 2023), (Marie et al., 2022), (Hartini et al., 2020) 

Manufacturing 
sustainability index 
(%) 

MSI=α* Ec_I + β* 
En_I + γ* S_I 

α: weight of economic 
dimension 
β: weight of 
environment dimension 
γ: weight of social 
dimension 

(Dewi et al., 2023), (Marie et al., 2022), (Hartini et al., 2020) 

Table 7: Identified sustainability KPIs through SLR 
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9.2 Relevant Publications identified through SLR 
First Autor Year Methodologies Application areas Dimensions of 

sustainability 
Identification of sustainability 
bottlenecks and potentials 

Antomarioni 2018 SVSM Food Production Economic, environmental Manual 
Aouag 2023 SVSM Renewable Energy & 

Environmental 
Industries 

Economic, environmental, 
social 

Algorithm 

Atoillah 2021 SVSM Wood and Furniture Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Chavez 2023 TBL-VSM Pharmaceutical and 
Chemical Industry 

Economic, environmental Manual 

Choudhary 2019 GIVSM Packaging and Labelling 
Industries 

Economic, environmental Manual  

Chaparin 2023 SVSM Food Production Economic, environmental Manual 

Dewi 2023 SVSM Automotive Industry Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Djatna 2019 SVSM Food Production Economic, environmental, 
social 

Manual 

Edtmayr 2016 SVSM Automotive Industry Economic, environmental No 
Ferrazzi 2023 SVSM Automotive Industry Economic, environmental Setting critical targets for 

sustainability KPIs 
Hartini 2019 SVSM Wood and Furniture Economic, environmental, 

social 
Setting critical targets for 
sustainability KPIs 

Hartini 2019 LC-VSM Food Production Economic, environmental, 
social 

Manual 

Hartini 2018 SVSM Wood and Furniture Economic, environmental, 
social 

Manual 

Helleno 2017 SVSM Metals and Plastics 
Industries 

Economic, environmental, 
social 

Manual 
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First Autor Year Methodologies Application areas Dimensions of 
sustainability 

Identification of sustainability 
bottlenecks and potentials 

Horsthofer-
Rauch 

2021 LC-VSM Concept Economic, environmental, 
social 

No 

Horsthofer-
Rauch 

2024 LC-VSM  Mechanical Engineering 
and Manufacturing 

Economic, environmental, 
social 

No 

Hudy 2023 SVSM  Mechanical Engineering 
and Manufacturing 

Economic, environmental, 
social 

No 

Ikatrinasari 2018 SVSM Mechanical Engineering 
and Manufacturing 

Economic, environmental Manual 

Jamil 2020 SVSM  Metals and Plastics 
Industries 

Economic, environmental, 
social 

Manual 

Kalemkerian 2024 CVSM Food Production Economic, environmental Manual 
Khakpour 2023 SVSM  Mechanical Engineering 

and Manufacturing 
Economic, environmental, 
social 

Manual 

Kluczek 2020 LC-VSM Food Production Economic, environmental Manual 
Larsson 2024 SVSM  Renewable Energy & 

Environmental 
Industries 

Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Li 2017 EVSM Renewable Energy & 
Environmental 
Industries 

Economic, environmental Manual 

Lindström 2016 SVSM Automotive Industry Economic, environmental, 
social 

No 

Litos 2017 EVSM Construction Materials Economic, environmental Manual 
Marie 2022 SVSM  Automotive Industry Economic, environmental, 

social 
Setting critical targets for 
sustainability KPIs 

Marie Iveline 
Anne 

2022 SVSM  Consumer Goods and 
Apparel 

Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Mubin 2022 SVSM  Metals and Plastics 
Industries 

Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 
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First Autor Year Methodologies Application areas Dimensions of 
sustainability 

Identification of sustainability 
bottlenecks and potentials 

Muñoz-
Villamizar 

2019 OGP-VSM Automotive Industry Economic, environmental Manual 

Phuong 2018 SVSM  Consumer Goods and 
Apparel 

Economic, environmental, 
social 

Manual 

Rosiani 2023 SVSM  Construction Materials Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Salvador 2021 LC-VSM Construction Materials Economic, environmental Manual 
Samant 2020 LC-VSM Mechanical Engineering 

and Manufacturing 
Economic, environmental Manual 

Saraswati 2024 SVSM  Mechanical Engineering 
and Manufacturing 

Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Sari 2021 SVSM Automotive Industry Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Sari 2022 SVSM  Metals and Plastics 
Industries 

Economic, environmental, 
social 

Manual 

Serafim Silva 2024 VSM4S Mechanical Engineering 
and Manufacturing 

Economic, environmental, 
social 

Algorithm 

Soltani 2019 SVSM Metals and Plastics 
Industries 

Economic, environmental, 
social 

Algorithm 

Swarnakar 2020 SVSM Automotive Industry Economic, environmental, 
social 

Manual 

Swarnakar 2021 SVSM Automotive Industry Economic, environmental, 
social 

Manual 

Utama 2023 SVSM Food Production Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Utama 2022 SVSM Wood and Furniture Economic, environmental, 
social 

Setting critical targets for 
sustainability KPIs 

Vinodh 2015 SVSM Automotive Industry Economic, environmental, 
social 

Manual 

Table 8: Relevant Publications identified through SLR 
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9.3 Source Code of SPDA 
 

  

from fastapi import FastAPI 

from pydantic import BaseModel, model_validator 

from typing import Self 

from typing import Annotated 

from typing import List 

from typing import Union 

from fractions import Fraction 

import numpy as np 

import math 

 

app = FastAPI(title="SPDA API") 

 

# Input data model 

class SPDAInput(BaseModel): 

    kpi_count: Annotated[int, "Number of sustainability KPIs"] 

    process_count: Annotated[int, "Number of processes"] 

    pairwise_rankings: Annotated[List[List[Union[float, str]]], "pairwise 
comparison matrix"] 

    kpi_values: Annotated[List[List[float]], "Value of sustainability 
KPIs"] 

    benefit_criterias: Annotated[List[int], "1 = maximize, 0 = minimize"] 

    path_factor: Annotated[List[float], "Pathfactor"] 

 

# AHP method: Validation of the pairwise comparison matrix - shape, 
diagonal elements and reciprocal values 

    @model_validator(mode="after") 

    def validate_pairwise_rankings(self) -> Self: 

        check_matrix_shape(self.pairwise_rankings, (self.kpi_count, 
self.kpi_count), "pairwise_rankings") 
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        for i in range(self.kpi_count): 

            if self.pairwise_rankings[i][i] != 1.0: 

                raise ValueError(f"pairwise_rankings[{i}][{i}] must be 
1") 

            for j in range(i + 1, self.kpi_count): 

                if not 
math.isclose(float(Fraction(str(self.pairwise_rankings[i][j]))), 

                                    1 / 
float(Fraction(str(self.pairwise_rankings[j][i])))): 

                    raise ValueError(f"pairwise_rankings[{i}][{j}] must 
be the reciprocal of [{j}][{i}]") 

        return self 

 

# TOPSIS algorithm: Check if the decision matrix has exactly as many rows 
and columns as expected;  

# rows = number of processes, columns = number of criteria (sustainability 
KPIs) 

    @model_validator(mode="after") 

    def check_kpi_values(self) -> Self: 

        check_matrix_shape(self.kpi_values, (self.process_count, 
self.kpi_count), "kpi_values") 

        return self 

    # Check if the benefit_criterias list has exactly the same length as 
the number of criteria (sustainability KPIs) 

    @model_validator(mode="after") 

    def check_benefit_criterias(self) -> Self: 

        if len(self.benefit_criterias) != self.kpi_count: 

            raise ValueError("benefit_criterias must have the same length 
as kpi_count") 

        # check values, if benefit_criterias list contains only values "0" 
or "1" 

        for i in range(self.kpi_count): 
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            if self.benefit_criterias[i] not in [0, 1]: 

                raise ValueError(f"benefit_criteria[{i}] = 
{self.benefit_criterias[i]} must be 0 or 1") 

        return self 

    # Check if the pathfactor list has exactly the same length as the 
number of processes 

    @model_validator(mode="after") 

    def check_path_factor(self) -> Self: 

        if len(self.path_factor) != self.process_count: 

            raise ValueError("path_factor must have the same length as 
process_count") 

        return self 

 

# Output data model 

class SPDAOutput(BaseModel): 

    input: Annotated[SPDAInput, "Original Input data"] 

    scores: Annotated[List[float], "TOPSIS scores of processes"] 

    consistency_ratio: Annotated[float, "AHP consistency ratio"] 

    explanations: Annotated[List[str], "Explanations of KPIs with 
significant influence on sustainable performance and Pathfactor"] 

 

# Check if the number of scores (TOPSIS results) exactly matches the number 
of processes (process_count) 

@model_validator(mode="after") 

def check_scores(self) -> Self: 

    if len(self.scores) != self.input.process_count: 

        raise ValueError("scores must have the same length as 
process_count") 

    return self 

# check_matrix_shape is a auxiliary function that strictly verifies if the 
matrices have the correct size, 

 



Appendix         113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# for example, whether pairwise_rankings is a square matrix of size 
kpi_count x kpi_count, 

# and whether kpi_values has the size process_count x kpi_count 

def check_matrix_shape(matrix: list[list[float]], shape: tuple[int, int], 
name: str) -> None: 

    """ 

    Check if the given 2D matrix has the correct shape. 

    """ 

    if len(matrix) != shape[0]: 

        raise ValueError(f"{name} must have {shape[0]} rows") 

    for row in matrix: 

        if len(row) != shape[1]: 

            raise ValueError(f"{name} must have {shape[1]} columns") 

 

# AHP method     

# Calculation of the weights 

def calculate_weights_from_input(input_data): 

    matrix = np.array(input_data.pairwise_rankings) 

    column_sums = np.sum(matrix, axis=0) 

    normalized_matrix = matrix / column_sums 

    weights = np.mean(normalized_matrix, axis=1) 

    return normalized_matrix, weights 

# Converts all elements in the pairwise comparison matrix to floats. 

def parse_pairwise_matrix(matrix): 

    return [[float(Fraction(cell)) if isinstance(cell, str) else 
float(cell) for cell in row] for row in matrix] 

# Consistency analysis 

def consistency_analysis(matrix): 

    matrix = np.array(matrix) 

    n = matrix.shape[0] 
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    eigvals, _ = np.linalg.eig(matrix) 

    lambda_max = np.max(eigvals).real  # only real component 

    CI = (lambda_max - n) / (n - 1) 

    RI = {1: 0.00, 2: 0.00, 3: 0.58, 4: 0.90, 5: 1.12, 6: 1.24, 

          7: 1.32, 8: 1.41, 9: 1.45, 10: 1.49}  # Saaty RI, valid only for 
kpi_count up to 10 

    CR = CI / RI.get(n, 1) if RI.get(n, 1) > 0 else 0 

    return lambda_max, CI, CR 

 

# TOPSIS algorithm 

def topsis(input_data, weights): 

    decision_matrix = np.array(input_data.kpi_values, dtype=np.float64) 

    benefit_criteria = np.array(input_data.benefit_criterias) 

    # Normalization of decision matrix  

    column_norms = np.sqrt(np.sum(np.square(decision_matrix), axis=0)) 

    column_norms[column_norms == 0] = 1 # Prevents division by zero 

    normalized_matrix = decision_matrix / column_norms 

    # Weighting 

    weighted_matrix = normalized_matrix * weights 

    # Ideal- und Anti-Ideal solution 

    ideal_solution = np.max(weighted_matrix, axis=0) * benefit_criteria + 
np.min(weighted_matrix, axis=0) * (1 - benefit_criteria) 

    anti_ideal_solution = np.min(weighted_matrix, axis=0) * 
benefit_criteria + np.max(weighted_matrix, axis=0) * (1 - 
benefit_criteria) 

   # Distance to Ideal/Anti-Ideal solution of each criteria 

    distance_to_ideal = np.sqrt(np.sum((weighted_matrix - ideal_solution) 
** 2, axis=1)) 

    distance_to_anti_ideal = np.sqrt(np.sum((weighted_matrix - 
anti_ideal_solution) ** 2, axis=1)) 

    # TOPSIS-Scores 

    topsis_scores = distance_to_anti_ideal / (distance_to_ideal + 
distance_to_anti_ideal) 
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    return topsis_scores, normalized_matrix, weighted_matrix, 
ideal_solution, anti_ideal_solution 

# KPI Influence Analysis 

def analyze_kpi_influence(weighted_matrix, ideal_solution, 
anti_ideal_solution): 

    num_processes = weighted_matrix.shape[0] 

    influence_ideal = np.zeros_like(weighted_matrix) 

    influence_anti_ideal = np.zeros_like(weighted_matrix) 

    for i in range(num_processes): 

        diff_ideal = (weighted_matrix[i] - ideal_solution) ** 2 

        diff_anti = (weighted_matrix[i] - anti_ideal_solution) ** 2 

        sum_diff_ideal = np.sum(diff_ideal) if np.sum(diff_ideal) > 0 else 
1 

        sum_diff_anti = np.sum(diff_anti) if np.sum(diff_anti) > 0 else 1 

        influence_ideal[i] = diff_ideal / sum_diff_ideal 

        influence_anti_ideal[i] = diff_anti / sum_diff_anti 

 

    return influence_ideal.tolist(), influence_anti_ideal.tolist() 

#Interpretive Explanations 

def generate_explanations(scores, influence_ideal, path_factor): 

    explanations = [] 

    for i, score in enumerate(scores): 

        if score <= 0.50: 

            influencing_kpis = [ 

                f"KPI {j}" for j, value in enumerate(influence_ideal[i]) 
if value >= 0.25 

            ] 

            if influencing_kpis: 

                cause = ", ".join(influencing_kpis) 

            else: 

                cause = "is not significantly influenced by any KPI" 
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            explanations.append( 

                f"Process {i} exhibits a low degree of conformity with the 
ideal solution – Improvement potential -> {cause} -> 
PathFactor={path_factor[i]}." 

            ) 

        elif 0.51 <= score <= 0.75: 

            influencing_kpis = [ 

                f"KPI {j}" for j, value in enumerate(influence_ideal[i]) 
if value >= 0.25 

            ] 

            if influencing_kpis: 

                cause = ", ".join(influencing_kpis) 

            else: 

                cause = "is not significantly influenced by any KPI" 

            explanations.append( 

                f"Process {i} demonstrates a moderate degree of conformity 
with the ideal solution – Improvement potential -> {cause} -> 
PathFactor={path_factor[i]}." 

            ) 

        else: 

            explanations.append("")  # Skip explanations for processes 
with scores > 0.76 

    return explanations 

 

@app.post("/run-SPDA", response_model=SPDAOutput) 

def run_SPDA3(input_data: SPDAInput): 

    # AHP Weighting 

    pairwise_matrix = 
np.array(parse_pairwise_matrix(input_data.pairwise_rankings)) 

    _, weights = calculate_weights_from_input( 

        input_data.model_copy(update={"pairwise_rankings": 
pairwise_matrix.tolist()}) 

    ) 
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Figure 56: Source Code of SPDA 

    # Consistency analysis 

    n = input_data.kpi_count 

    eigvals, _ = np.linalg.eig(pairwise_matrix) 

    lambda_max = np.max(eigvals).real 

    CI = (lambda_max - n) / (n - 1) if n > 1 else 0 

    RI = {1: 0.00, 2: 0.00, 3: 0.58, 4: 0.90, 5: 1.12, 6: 1.24, 

          7: 1.32, 8: 1.41, 9: 1.45, 10: 1.49} 

    CR = CI / RI.get(n, 1) if RI.get(n, 1) > 0 else 0 

 

    # Execution of TOPSIS 

    scores, _, weighted_matrix, ideal_solution, anti_ideal_solution = 
topsis(input_data, weights) 

 

    # Impact analysis 

    influence_ideal, influence_anti_ideal = 
analyze_kpi_influence(weighted_matrix, ideal_solution, 
anti_ideal_solution) 

 

    # Explanations 

    explanations = generate_explanations(scores, influence_ideal, 
input_data.path_factor) 

 

    # Return API result 

    return SPDAOutput( 

        input=input_data, 

        scores=[round(s, 2) for s in scores.tolist()], 

        consistency_ratio=round(CR, 2), 

        explanations=explanations 

    ) 
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