
1 INTRODUCTION 

Pavements are part of the critical infrastructure of a 
country, and fulfill the important task of providing 
connectivity as a medium for transport of people and 
goods. The suitable design of pavements is therefore 
crucial. In order to facilitate the design of such struc-
tures, techniques like the Finite Element Method 
(FEM) in a Lagrangian setting are typically used. 
When simulating the response of the pavement sub-
jected to a moving load, if these traditional tech-
niques are used, the associated domain of the pave-
ment that needs to be discretized is quite large, and 
therefore computationally inefficient. Additionally, 
restrictions are imposed on the mesh discretization 
when the vehicle load is accelerating or decelerating. 
Further, a moving load formulation is needed to 
simulate the movement of the vehicle on the pave-
ment. The speed of the vehicle also imposes re-
strictions on the time steps of the simulation. The re-
cent development proposed by (Anantheswar et al. 
2024a) utilizes the Arbitrary Lagrangian Eulerian 
(ALE) simulation strategy to improve computational 
efficiency. 

Traditionally, ALE simulation techniques are 
used in the field of fluid mechanics (Benson 1989, 
Venkatasubban 1995, Souli et al. 2000, Codina et al. 
2009, Basting et al. 2017). Another typical use-case 
of ALE strategy is as a mesh adaptation technique, 
to improve the mesh quality when extreme distor-
tions are encountered (Liu et al. 1986, Rodríguez-
Ferran et al. 1998, Bayoumi & Gadala 2004, Donea 
et al. 2004, Nazem et al. 2009, Berger & Kaliske 
2022). The pioneering work of (Nackenhorst 2004) 

described the use of the ALE methodology to im-
prove efficiency in analyses of rolling tire structures. 
Following this, (Wollny & Kaliske 2013, Wollny et 
al. 2016) implemented the ALE formulation for 
pavements considering constant velocity load 
movement. Recent developments by (Anantheswar 
et al. 2024a) extend the ALE formulation for pave-
ments to the dynamic case, and further to inelastic 
materials (Anantheswar et al. 2024b). This contribu-
tion highlights applying the dynamic ALE formula-
tion to multilayered inelastic pavements. 

2 THE MOVING ALE REFERENCE FRAME 

The central theme involved in adopting the dynamic 
ALE formulation for pavements is a change in the 
reference frame of the observer. Instead of a station-
ary reference frame as in the conventional Lagrangi-
an formulation, the reference frame moves with the 
vehicle load in the ALE formulation. An observer in 
this moving reference frame would perceive the load 
as stationary, while the material of the pavement 
would appear to flow beneath the load. The main 
advantage offered by this perspective is that only a 
relevant portion of the pavement in the vicinity of 
the moving vehicle load would need to be consid-
ered in the analyses. This is shown to significantly 
improve computational efficiency (Anantheswar et 
al. 2024a). A kinematic description of the various 
configurations involved when adopting the ALE 
formulation for pavements is shown in Figure 1. 
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Figure 1. Kinematics of the moving ALE reference frame. 

 
It should be noted that in Figure 1, for pavements, 
there is no rigid body displacements (translations or 
rotations) and so urig = 0. This implies that the initial 
configuration and the ALE reference configuration 
are the same. But, over time, the ALE reference 
frame ei

ALE travels with the same velocity as the ve-
hicle load. Thus, a new portion of the pavement ma-
terial in the vicinity of the load would be considered 
at each time step. The velocity with which the mate-
rial of the pavement appears to flow through the 
mesh (in a Finite Element framework) is termed 
‘guiding velocity’ (Nackenhorst 2004), given by 

 (1) 

where the positions and displacements of a material 
point in various configurations depicted in Figure 1, 
are related by 

 (2) 

Further, adhering to the balance of linear momen-
tum, the weak formulation in the ALE reference 
configuration can be expressed as 

 (3) 

where  is the density,  denotes the acceleration, 
 refers to the second Piola-Kirchhoff stress,  re-

fers to body forces,  denotes surface traction,  re-
fers to an arbitrary test function, and  and  are 
infinitesimal volume and area elements, respective-
ly, on domain  in the ALE reference configura-
tion. In Equation 3, the terms on the left-hand side 
describe the internal forces developed in response to 
the externally applied forces, which are on the right-
hand side. Of particular interest is the first term in 
Equation 3, which refers to the inertial forces. This 
term depends on the acceleration, which is defined 
as the material time derivative of the velocity field. 
One characteristic of the ALE approach is that 
whenever a material time derivative of a quantity  
is encountered, advection effects need to be consid-

ered. For pavements, where the advection velocity is 
known, this is described as  

 (4) 

Thus, according to Equation 4, the velocity and ac-
celeration fields need to be advected through the 
mesh. This results in additional terms that need to be 
considered during the linearization and implementa-
tion into a finite element framework (Anantheswar 
et al. 2024a). Additionally, since the displacement 
field at any given time step depends on the dis-
placement field at the previous time step, a suitable 
update of the displacement field also needs to be car-
ried out.  

Moreover, when inelastic material models are 
used, evolution of inelastic effects (like viscosity, 
plasticity etc.) are typically expressed as rate equa-
tions of certain internal variables . Therefore, ad-
vection of such internal variables also needs to be 
accounted for, using 

 (5) 

The advection procedure for internal variables is as 
per the Gauss point sub-mesh interpolation tech-
nique (DGPA) from the work of (Anantheswar et al. 
2024b). This technique utilizes an operator split to 
first solve for internal variables in the Lagrangian 
phase. Then, interpolation and update of the internal 
variables in a sub-mesh of Gauss points takes place 
during the Eulerian phase. This procedure is per-
formed after every iteration in the global Newton-
Raphson solution scheme. 

When multiple inelastic materials are used (as in 
the case of pavements, see Figure 2), advection of 
the internal variables of each layer should be treated 
separately. For the DGPA scheme, this means that 
each material layer gets its own sub-mesh of Gauss 
points, where the interpolation and update procedure 
is carried out. This ensures that the advection proce-
dure does not transfer internal variables of one mate-
rial to another. The extension of the DGPA scheme 
to allow for multiple materials is the novelty of the 
work at hand. Figure 2 illustrates the use of separate 
Gauss point sub-meshes for advection of internal 
variables in each layer of the pavement, for a simple 
mesh in two dimensions. 

3 NUMERICAL STUDY 

In this study, a four layered asphalt pavement with 
similar structure as in Figure 2 is analyzed. The non-
linear viscoelastic material described in (Anan-
theswar et al. 2024b) with one viscous branch is 
used to model each of the layers. 
 



 
Figure 2. Separate Gauss point sub-meshes for each material, 
to accurately perform advection of internal variables. 

 
The material parameters of the layers are listed in 
Table 1. The mesh and loading are depicted in Fig-
ure 3. The geometry of the specimen is a cuboid 8 m 
x 8 m x 3 m along x-, y- and z-directions, respective-
ly. The boundary conditions are such that all surfac-
es except the top surface are restrained from transla-
tion in the direction normal to the surface. In the 
analysis, the transient response of the pavement 
when subjected to a moving truck tire load is simu-
lated. The load is initially applied as a ramp over a 
period of 1 s. Then, it is maintained at this constant 
amplitude for the rest of the simulation. A guiding 
velocity is applied such that the load appears to ac-
celerate from 0 m/s to 16.667 m/s (60 km/h) starting 
at 2 s, over a period of 2 s. Then, this velocity is 
maintained until 10 s. The guiding velocity is, then, 
ramped down such that the load appears to deceler-
ate to 0 m/s over a period of 1.2 s. It is then main-
tained at 0 m/s for the rest of the simulation, ending 
at total time of 12.5 s. The Newmark time integra-
tion scheme (Newmark 1959) with a time step of 0.1 
s and linear eight node brick type finite elements are 
used in the simulation. 
 
Table 1.  Material properties used in the simulation. ______________________________________________ 
Layer   Elastic branch              Viscous branch       __________________        ____________ _ 
                                  κ*          µ*           µv*          ηv* 
     kg/m3     MPa      MPa     MPa  Ns/m2 ______________________________________________ 
Asphalt   2.3E+3   822.50   200.00    179.62    1.0E+8 
Base course 2.2E+3   175.83     40.00      31.15    1.0E+8 
Sub-base   2.0E+3   105.50     24.00      18.69    1.0E+8 
Subsoil   1.9E+3     60.83     14.00      14.08    1.0E+8 ______________________________________________ 
*  κ: Bulk modulus, µ: Shear modulus, µv: Shear modulus of 
viscous branch, ηv: Viscous parameter. 

 
The thickness of the subsoil layer is 2 m, the sub-
base course is 0.4 m, and both the base course and 
the asphalt layer on top have thicknesses of 0.3 m 
each. 

 
Figure 3. (a) Perspective view of the mesh and (b) top view 
(close-up) of the loaded area in the centre of the mesh. 

 
The mesh used has 10192 finite elements, and the 
simulation took approximately 4.12 hours to run on 
a desktop computer with an Intel Core i5 10400 pro-
cessor and 32 GB of RAM. The obtained results in 
terms of the displacements at the centre of load be-
tween the two tires are shown in Figure 4. Contours 
of the strain component ezz are depicted in Figure 5, 
at various time points in the simulation. 

 
Figure 4. Displacement component uz of the central node under 
the load plotted against time. 

 
The results shown in Figures 4, 5 clearly demon-
strate the capability of the dynamic ALE framework 
to simulate the transient response of inelastic multi-
layered pavement structures in a computationally ef-
ficient manner. It is worth mentioning, that if a cor-
responding simulation was run using conventional 
techniques, it would necessitate the discretization of 
a domain of length 154.67 m. With the ALE ap-
proach, this length is reduced to just 8 m, making the 
simulation possible on a desktop computer, even 
without parallelization. Further, the conventional 
techniques would necessitate the implementation of 
a cumbersome moving load formulation. This im-
poses further restrictions on the time step size and 
discretization used in the conventional simulation, as 
a sufficiently fine mesh would be required to ensure 
that the load is applied on the nodes in synchronicity 
with its movement as well. The need to discretize a 
large domain, along with restrictions imposed on 
time step and fineness of the mesh, are overcome us-
ing the dynamic ALE formulation. This formulation 
offers a substantial improvement to computational 



performance, when simulating the transient response 
of inelastic multilayered pavement structures. 

 
Figure 5. Contour plots of strain component ezz at various stag-
es in the simulation. 

 
Future research towards improving the performance 
of the ALE formulation could be in the direction of 
utilizing model order reduction techniques or 
through parallelization. This is relevant in applica-
tion cases such as in digital twins, which require fast 
and efficient calculations. These tools would indubi-
tably lead to improved and informed decisions by 
engineers and policy makers alike. 
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