
1 INTRODUCTION AND RELATED WORK 

In civil engineering, the use of CCPs in road construc-
tion raises significant environmental concerns due to 
the potential leaching of harmful trace elements, such 
as cadmium, into the groundwater (Eighmy, 2001). 
Estimating the concentration of these solutes is cru-
cial for assessing and mitigating the environmental 
impact of such materials. Several studies have mod-
eled the leaching behavior of trace elements from 
CCPs in road construction, relying on known physical 
and chemical parameters, such as soil permeability, 
porosity, and hydraulic conductivity, to predict solute 
movement (Kim, 2002; Mudd, 2004; Praharaj, et al., 
2002). However, these parameters are often difficult 
to measure accurately due to the inherent variability 
in soil composition, changes in material properties 
over short spatial scales, and the influence of environ-
mental factors such as moisture content, temperature, 
and pressure gradients. Additionally, measuring these 
properties often requires controlled laboratory tests 
on extracted samples, which are not only time-con-
suming and labor-intensive but also impractical for 
in-field applications without causing damage to the 
pavement structure. 

One of the most critical parameters for predicting 
the transport of contaminants is the seepage velocity, 
which influences the rate at which pollutants migrate 
through soil layers. This parameter is challenging to 
measure directly, as it is dependent on soil properties 

such as porosity, tortuosity, and hydraulic conductiv-
ity, all of which are spatially variable and difficult to 
obtain in practice. Without accurate knowledge of 
these parameters, reliable predictions of solute con-
centrations become extremely difficult, undermining 
risk assessments and decision-making in environ-
mental management. Moreover, road materials and 
the underlying soil layers are inherently heterogene-
ous, meaning that the seepage velocity must be mod-
eled as a field parameter to reflect this spatial varia-
bility. 

In recent years, machine learning tools, particu-
larly Physics-Informed Neural Networks (PINNs), 
have shown promise in estimating the parameters 
needed to solve partial differential equations (PDEs) 
governing solute transport. PINNs have been used 
successfully to predict material properties and flow 
characteristics in civil engineering problems, leverag-
ing available data and solving the PDEs directly with-
out needing traditional numerical methods (Raissi, et 
al., 2019; Bolandi, et al., 2023). These models learn 
the underlying physical laws governing the system 
and can predict unknown parameters with fewer 
measurements, making them highly efficient. How-
ever, PINNs still require substantial data for training 
and may not be as efficient in cases with limited data. 
In our previous work, we demonstrated several meth-
ods that have significant potential in estimating pa-
rameters for partial differential equations (PDEs) us-
ing limited or sparse data. These methods have been 
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successfully applied across various domains, includ-
ing beam vibration, heat conduction, and electrophys-
iology (Li, et al., 2022; Li, et al., 2024; Masmoudi, et 
al., 2024). Other traditional and alternative parameter 
estimation methods require significantly large 
amount of data or parameter measurements that are 
not feasible in most real world applications. 

Our approach offers a more data-efficient solution 
by predicting the seepage velocity with significantly 
less data, using only response data (i.e., the observed 
concentration of pollutants over time) without the 
need for direct measurements of soil properties. This 
is particularly advantageous in real-world scenarios 
where obtaining extensive datasets for all relevant pa-
rameters can be costly and time-consuming. Further-
more, our method is capable of extrapolating future 
outcomes, allowing for predictions about when pollu-
tants will reach the groundwater table. This predictive 
capability makes our approach a valuable tool for 
long-term environmental risk assessment, offering 
actionable insights into the environmental impact of 
using CCPs in road construction with far less data 
than traditional models. 

2 MODELING SETUP 

The proposed method discretizes PDEs spatially us-
ing Finite Difference discretization. The seepage ve-
locity 𝑉𝑧 is modeled by a feed-forward neural network 
with spatial coordinates inputs x and y, which corre-
spond to the coordinates of the nodes. The network in 
this study consists of 6 layers, each of the middle four 
layers containing 50 neurons and featuring skip-con-
nections. The network parameters are denoted as θ, 
and the seepage velocity is modeled as 𝑉𝑧(𝑥, 𝑦) =
𝑁(𝑥, 𝑦, θ). The estimated seepage velocity from the 
neural network is inserted into differential equations 
for forward inference (state variable prediction). The 
inference is compared with available observations in 
mini-batches to compute the loss. We employed the 
L1 loss function 𝐿(𝜃) = ∑ ⃒𝐶𝑝𝑟𝑒𝑑

 
  − 𝐶𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ⃒ 

as it provided superior results compared to both L2 
and normalized L2 loss. To optimize the parameters 
and train the network, the adjoint sensitivity method, 
combined with reverse-mode automatic differentia-
tion techniques is utilized for solving differential 
equations and efficiently computing the gradient of 
the loss function through the PDE solver 
(Rackauckas, et al., 2019; Chen, et al., 2018). 

3 PROBLEM SETUP 

In previous studies (Li, et al., 2006; Zheng & Bennett, 
Gordon D, 2002), seepage velocity has been modeled 
as a scalar parameter, assuming that the CCP layer 
and subgrade layer exhibit homogeneity in key prop-
erties such as porosity, hydraulic conductivity, and 

hydraulic gradient. This simplification directly ne-
glects the spatial variability that is often present in 
real-world systems. In this work, we address this lim-
itation by modeling seepage velocity as a spatially de-
pendent field parameter, capturing the inherent heter-
ogeneity in these layers. By defining seepage velocity 
as a nonlinear function, we account for variations in 
material properties and hydraulic conditions, ena-
bling a more realistic representation of the flow dy-
namics. This approach provides a significant im-
provement over traditional models, offering a 
framework better suited for analyzing complex sub-
surface systems. 

The pavement configuration depicted in Fig. 1 is 
analyzed in this study, which focuses on modeling the 
concentration of cadmium (Cd) within the CCP and 
subgrade layers. The objective is to predict the timing 
and concentration at which this pollutant may reach 
the groundwater table. To achieve this, the advection–
dispersion–reaction equation (ADRE) is solved 
within these layers (Bear, 2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.1 Governing equations 

Leaching occurs as water moves downward through 
the CCP layer, following different patterns such as 
first-flush, lagged response, or empirically defined 
behaviors. First-flush leaching is modeled using the 
ADRE with linear, instantaneous, and reversible 
sorption, while lagged or other patterns are described 
empirically based on concentration and flow data. In 
the vadose zone below the CCP layer, transport is 
modeled using the ADRE for 1D steady-state vertical 
flow with 2D dispersion and linear, instantaneous 
sorption. 

𝑅
𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2 +  𝐷𝑧
𝜕2𝐶

𝜕𝑧2 − 𝑣𝑧
𝜕𝐶

𝜕𝑧
 (1) 

In this equation, 𝐶 represents the solute concentra-
tion, 𝑡 is time, 𝑥 is the horizontal distance from the 
pavement centerline, 𝑧 is the depth below ground sur-
face, 𝑣𝑧  is the vertical seepage velocity, 𝐷𝑥 and 𝐷𝑧 
are the dispersion coefficients in the x and z direc-
tions, and 𝑅 is the retardation factor. The vertical 
seepage velocity (𝑣𝑧) is to be predicted. The hydrody-
namic dispersion coefficients are calculated using 

Figure 1. Layers of pavement: CCP layer and subgrade are con-
sidered heterogeneous materials, resulting in spatially dependent 
seepage velocity. 



𝐷 = α 𝑣𝑧 + 𝜏𝐷0, where α is the dispersivity (vertical 
or horizontal), and 𝐷0 is the molecular diffusion co-
efficient (Leij, et al., 1991). It is assumed that chemi-
cal and biological reactions, which might alter or con-
sume trace elements, are absent.  

3.2 Boundary and initial conditions 

To solve the ADRE, appropriate initial and boundary 
conditions are specified. 

𝐶(𝑥, 𝑧, 𝑡 = 0) = 𝐶0  (2) 

(𝑣𝑧𝐶 − 𝐷𝑧
𝜕𝐶

𝜕𝑧
)|

𝑧=𝑧𝑡𝑜𝑝

= 𝑣𝑧 𝑓(𝑥, 𝑧𝑡𝑜𝑝, 𝑡) (3) 

(
𝜕𝐶

𝜕𝑥
)|

𝑥=𝑥0,𝑥𝐿

= 0 (4) 

Where, 𝑥0 = 0,  𝑥𝐿 =  2𝑚,  𝑧𝑡𝑜𝑝,𝐶𝐶𝑃   =  0𝑚 , and  
𝑧𝑡𝑜𝑝,𝑆𝑢𝑏𝑔𝑟𝑎𝑑𝑒   =  0.3𝑚 . 𝑓(𝑡) is the concentration 
from the previous layer and 𝐶0 is the initial concen-
tration. Equation (3) defines a flux boundary at the 
top, driven by seepage from the upper layer, while 
Equation (4) sets no-flux (Neumann) conditions at the 
sides, assuming horizontal symmetry or isolation. 

3.3 Problems parameters 

Table 1.  Simulation Parameters. 
Parameters CCP Layer Subgrade 

Initial concentration 𝐶0(𝜇𝑔/𝑙)  4 0 

Tortuosity 𝜏 0.7 0.7 

Longitudinal dispersivity 𝛼𝐿 0.1 0.1 

Transverse dispersivity 𝛼𝑇 0.01 0.01 

Retardation factor 𝑅 3.5 3.5 

Molec`ular diffusion coeffi-

cien𝐷0 (10−10𝑚2/s) 

6.0 6.0 

 
We conducted contaminant leaching analysis on the 
CCP and subgrade layers using a computational mesh 
with 400 nodes per layer. The system dimensions in-
cluded a 2𝑚  width, a 0.3𝑚 deep CCP layer, and a 
4.5𝑚 deep subgrade layer. The subgrade material was 
modeled as silt loam. The seepage velocity in the 
CCP layer was modeled with a nonlinear distribution 
ranging from 0.19 to 0.26, while for the subgrade 
layer, it ranged from 0.91 to 1.12.  

4 NUMERICAL RESULTS 

We demonstrate the efficacy of our method in pre-
dicting a nonlinear field seepage velocity distribution, 
achieving a mean absolute percentage error (MAPE) 
as low as 1.6%. We also analyze the system's re-
sponse at 𝑡 = 40 years, where the response mean ab-
solute error (MAE) remains below 3 × 10−4 𝜇𝑔/𝑙 
when utilizing the predicted field seepage velocity. 

To provide a comprehensive comparison and em-
phasize the importance of modeling the parameter as 
a field rather than a scalar, we also present the system 
response based on scalar parameter prediction. In this 
case, a single neuron predicts the scalar parameter, 
which typically converges to the mean of the ground 
truth field parameter distribution. However, this ap-
proach results in substantial errors, with a forward in-
ference MAE of 2.6 × 10−2𝜇𝑔/𝑙 compared to just 
3 × 10−4𝜇𝑔/𝑙 for the field-based approach by our 
method. Furthermore, we evaluate our method’s ex-
trapolation performance at 𝑡 = 50 years, where it 
achieves an MAE of 8 × 10−3𝜇𝑔/𝑙 relative to the 
ground truth. In contrast, the extrapolated response 
using the scalar parameter model shows a signifi-
cantly higher error of 8 × 10−5𝜇𝑔/𝑙. We successfully 
trained our model using only 600 measurements per 
layer, distributed across both temporal and spatial di-
mensions.  

 
 
 
 

Figure 2. Accurate estimation of the field seepage velocity 𝑉𝑧 
with a MAE of 1.6%. 



5 CONCLUSION 

This paper introduces a novel approach for modeling 
seepage velocity as a spatially dependent field param-
eter, significantly improving prediction accuracy. 
The method reduces error to 3 × 10−4𝜇𝑔/𝑙, a sub-
stantial enhancement compared to the previous accu-
racy of 2.6 × 10−2𝜇𝑔/𝑙 in predicting contaminant 
transport through heterogeneous pavement layers. It 
outperforms scalar-based models and shows strong 
extrapolation capabilities, enabling reliable predic-
tions of when and at what concentration pollutants 
reach groundwater. This makes it a valuable tool for 
timely interventions and mitigating groundwater con-
tamination risks in CCP-based road construction. 
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Figure 3. Forward inference using the predicted parameter 
shows our method’s robust performance in both interpolation 
and extrapolation tasks. Field parameter modeling achieves a 
forward inference MAE of 3 × 10−4𝜇𝑔/𝑙 (first column), sig-
nificantly outperforming scalar parameter modeling (MAE of 
2.6 × 10−2𝜇𝑔/𝑙. Extrapolation at 𝑡 = 50 years (second col-
umn) results in an MAE of 8 × 10−3𝜇𝑔/𝑙, compared to 
8 × 10−5𝜇𝑔/𝑙 for the scalar model. 


