
1 INTRODUCTION 

Fast, efficient simulations are crucial in technologies 
such as digital shadows or twins. These allow realistic 
predictions that are also accurate, therefore enabling 
governing authorities to take quick, meaningful and 
impactful decisions based on sound and structured 
logic. Particularly for pavement structures subject to 
moving wheel loads, the Arbitrary Lagrangian Eu-
lerian methodology has been proven to be far more 
efficient than conventional simulation techniques 
(Wollny et al. 2016, Anantheswar et al. 2024). How-
ever, this methodology is still incapable of real-time 
simulations, and a further speedup is necessary. In 
this work, the application of Model Order Reduction 
(MOR) techniques to ALE simulations of the pave-
ment structure is explored, to reduce the computa-
tional effort even further. 

2 ALE FORMULATION 

The concept that is at the core of ALE simulations of 
pavements is the adoption of a moving reference 
frame, see Figure 1. 

This moving reference frame conveniently shows 
the same velocity as the applied wheel load. Thus, to 
an observer in this moving reference frame, the load 
would appear stationary, and the material of the pave-
ment would appear to flow under the load. The main 
advantage of this ALE technique is that only the rele-
vant region of the pavement in the immediate vicinity 
of the load needs to be discretized and simulated. This 
is in contrast to conventional simulation techniques, 

where the entire structure in the path of the wheel load 
would need to be discretized and analyzed. For a de-
tailed description of the implementation of the ALE 
formulation, the reader may refer to the work of (An-
antheswar et al. 2024).  

 
Figure 1. Moving reference frame in ALE simulations. 

 
One interesting aspect of the ALE formulation is that 
it does not change the overall structure of the global 
system of equations in a nonlinear finite element 
framework. This means that the system can still be 
assembled into the well-known system of equations 
that has to be solved in every iteration of the solution 
scheme 

𝑴 Δ𝒖̈ + 𝑫 Δ𝒖̇ + 𝑲𝑇 Δ𝒖 = 𝒈, (1) 

where M, D and KT refer to the global mass, damping 
and tangential stiffness matrices, respectively, and 
Δü, Δu̇, Δu and g denote the assembled incremental 
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nodal vectors of acceleration, velocity, displacement 
and the residual vector, respectively. The Newmark-
beta method is used for the time-integration, which 
results in the system of equations 

𝑲𝑇,𝑑𝑦𝑛 Δ𝒖 = 𝒈, (2) 

with the (n × n)-dimensional dynamic tangential stiff-
ness matrix KT,dyn. With the global system of equa-
tions in this standard structure, it is possible to apply 
MOR techniques in a relatively simple and straight-
forward manner.  

3 POD-BASED MOR 

In this contribution, the proper orthogonal decompo-
sition (POD) method is applied to the problem at hand 
according to (Radermacher & Reese 2013) and 
(Kehls et al. 2023). The POD is a projection-based 
technique for reduced order modeling. In the follow-
ing, the POD will be shortly explained for the present 
case. For a more detailed description of POD and pro-
jection-based MOR in general, the reader is kindly re-
ferred to the work of (Benner et al. 2015) and (Schil-
ders 2008). For the problem described in Equation 
(2), it is assumed that an (n × m)-dimensional projec-
tion matrix Φ can be found, such that the Galerkin 
projection of Equation (2) leads to the reduced system 
of equations  

𝜱𝑇𝑲𝑇,𝑑𝑦𝑛𝜱 Δ𝒖𝑟𝑒𝑑 = 𝜱𝑇𝒈. (3) 

After the solution has been computed in the reduced 
subspace, the (m)-dimensional reduced solution vec-
tor Δured can be projected to the (n)-dimensional full 
solution space by the relation ΔU = Φ Δured. If m << 
n, solving the system of equations in the reduced sub-
space is much faster than solving it in the full solution 
space, leading to a significant reduction in computa-
tion time. 

To construct the projection matrix Φ, solution vec-
tors ui are sampled in precomputations and collected 
in the so-called snapshot matrix D = [u1 u2 … ul]. The 
sampled solution vectors can be e.g. time-series solu-
tions from a precomputation but also solutions from 
simulations with varying material parameters or in the 
case of ALE varying material flow velocities. A sin-
gular value decomposition is then applied to the snap-
shot matrix such that D = V Σ WT. The matrices V and 
WT contain the left and right singular vectors and the 
matrix Σ contains the decreasing singular values on 
its diagonal. Each singular value Σii corresponds to a 
singular vector vi and indicates its importance for the 
reconstruction of the snapshot matrix D. The number 
of POD modes vi that leads to a good approximation 
of sampled snapshots can, therefore, be derived from 
the decay of the singular values. At last, the projection 
matrix is truncated at the specified index m such that 
the projection matrix is defined as Φ = [v1 v2 … vm]. 

4 NUMERICAL EXAMPLE 

To test the proposed methodology, both methods pre-
sented above are implemented into the finite element 
research software FEAP (Taylor 2014) and a numeri-
cal example is computed and analyzed. The example 
is based on (Anantheswar et al. 2024) and uses the 
same material described therein. The boundary value 
problem is depicted in Figure 2. The structure is fixed 
on all sides and on the bottom and the distributed load 
p is applied in the center of the upper surface. The 
ALE material guiding velocity is denoted by w. The 
structure is simulated for t = 12.5 s with time 
increments of Δt = 0.1 s. At the beginning of the 
simulation, the load is increased linearly until the 
desired value P = 200 MPa is reached at t = 1 s and 
held constant thereafter. The guiding velocity starts 
increasing linearly after t = 2 s and reaches its 
maximum value at t = 4 s. It is then constant until t = 
10 s, after which it linearly decreases until the 
material stops ‘flowing’ through the mesh at t = 11.2 
s. Due to the time discretization, one precomputation 
yields 125 solution states that are used to construct 
the snapshot matrix and, therefore, the projection ma-
trix. For the first investigation, only one precomputa-
tion is conducted where the material guiding velocity 
is chosen as w = 25 m/s. The influence of the number 
of POD modes m is then investigated by running the 
simulation with the same guiding velocity but an in-
creasing number of modes. 

 
Figure 2. Geometry and boundary conditions of the example. 

 
Figure 3. Comparison of the displacement uz,center over time t for 
reduced order models with an increasing number of modes m. 
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In Figure 3, the results of the investigation are shown 
by plotting the displacement in z-direction in the cen-
ter of the upper surface of the structure over the time 
t. It can be seen that with m = 10 POD modes, the 
displacements are very far from the reference solution 
of the full order model (FOM). Increasing the number 
of modes, the curves get closer to the reference solu-
tion. Using m = 40 or more modes in the ROMs, the 
curves show good agreement with the reference. To 

illustrate this relation, the average error as well as the 
simulation time ratio of the ROMs over the whole 
simulation are shown in Figure 4. The error is defined 
as  

𝜖 =
1
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∑
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where uz,center,prec and uz,center,POD describe the displace-
ment in the center of the upper surface of the full or-
der precomputation and the POD-reduced simulation, 
respectively. nt describes the number of total 
timesteps. The simulation time ratio is calculated as 

𝜏 =
TPOD

T𝐹𝑂𝑀
, (3) 

where T denotes the CPU time a FOM or a POD-re-
duced simulation took. It can be seen that with m = 40 
and more POD modes the error is about 1 % and ap-
proximately 80 % of simulation time is saved. 

Until now, the ROM only reconstructed the results 
that are contained in the snapshots. To investigate the 
predictive qualities of the proposed approach, the 
same snapshot matrix as before is used, but the guid-
ing velocity is changed to w = 20 m/s and w = 30 m/s, 
respectively. Figure 5 shows the results of the reduced 
order simulation (m = 60) as well as the results of a 
FOM with the same guiding velocities to test the ac-
curacy of the ROMs. It can be seen that even though 
the ROMs are used to predict unseen cases, the qual-
itative behavior of the structure is captured nicely. Es-
pecially the minima and maxima approximated by the 
ROMs are well aligned with the corresponding refer-
ence result. Looking at the overall agreement of the 
displacement field in z-direction in  

 
Figure 4. Relative error and simulation time ratio of the reduced 
order models. 

 
Figure 5. Reduced order simulation for different guiding veloc-
ities. All ROMs are created only with the snapshots from the full 
order ALE simulation with guiding velocity w = 25 m/s and m = 
60 POD modes are used. 

 
Figure 6. Comparison of the displacement field uz of the full or-
der model and reduced order model with a guiding velocity of w 
= 20 m/s and m = 60 POD modes at time t = 5.0 s. 

 
Figure 7. Comparison of the displacement field uz of the full or-
der model and reduced order model with a guiding velocity of w 
= 20 m/s and m = 60 POD modes at time t = 12.5 s. 

 
Figures 6 and 7, it is seen that the displacements in 
the center of the structure are approximated with high 
accuracy, while the displacements behind the region, 
where the load is applied, show some inaccuracies. 
Lastly, it is investigated whether the accuracy of the 
ROM can be increased by using more snapshots. 
Therefore, the snapshots of the full order simulations 
with guiding velocities w = 20 m/s and w = 30 m/s are 
used to construct the snapshot matrix and a reduced 
order simulation with guiding velocity w = 25 m/s is 
carried out to check the accuracy. The results of this 
study are shown in Figure 8, and it is seen that the 
ROM based on the two simulations has better agree-
ment with the reference solution than the ROM based 



on the single simulation that it is reconstructing. It 
should be noted that both ROMs used the same num-
ber of POD modes (m = 60).  

 
Figure 8. Comparison of two ROMs created from different snap-
shot matrices for a guiding velocity of w = 25 m/s. One ROM is 
created by taking the snapshots from the full order simulation 
with w = 25 m/s, whereas the other one is created by taking the 
snapshots from full order simulations with w = 20 m/s and w = 
30 m/s. 

5 CONCLUSION  

In this work, an approach to accelerate simulations of 
road structures is presented. To this end, POD is ap-
plied to a problem which has been defined in the ALE 
framework. It was investigated whether this method-
ology can reduce the simulation time, while maintain-
ing high accuracy. The results of a numerical example 
show that the structural response of the full order sim-
ulation can be approximated by the ROM with mini-
mal error of about 1 % whilst saving about 80 % of 
simulation time. It is also shown that the ROM can be 
used to predict unseen behavior although this shows 
slightly higher errors. Lastly it is shown that the snap-
shot creation process plays an important role in creat-
ing a performant ROM. In future works it will be in-
vestigated whether the approach can be developed 
further to obtain higher accuracy. For example, a 
more sophisticated snapshot sampling approach 
could already improve the ROM significantly. It 
might also be worthwhile to use clustering ap-
proaches on a structural level to approximate the 
structural behavior in certain regions better. Another 
important aspect is the extension to hyper-reduction, 
where the number of element evaluations is reduced, 
saving more computation time. Here, one major chal-
lenge will be the hyper-reduction of simulations in-
cluding inelastic materials, as the inelastic evolution 
of the material is commonly modeled by internal his-
tory variables. When the material is ‘flowing’ through 
the mesh, so do the internal variables corresponding 
to an integration point. If only some elements are then 
evaluated, the material history is lost or incorrect 
when it ‘flows’ though an element that is not evalu-
ated. 
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