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A B S T R A C T

CMOS-based microelectrode arrays (MEAs) are used to record the electrical activity in neural tissues down to 
micron-scale cellular structures at high spatiotemporal resolution. Continuous recording of extracellular voltages 
would, however generate large datasets with very sparse spatial and temporal information. Towards an efficient 
strategy, we propose here a Field Programmable Gate Array (FPGA) which filters the continuous CMOS MEA data 
stream sampled at 28 kHz and extracts electrophysiological relevant information.

In a first step, sensors of interest are selected based on the electrical label-free identification of those sensors 
covered by the neural tissue via adhesion noise spectroscopy. The adhesion noise-based electrical imaging is 
validated against light microscopic images. The FPGA finite impulse response (FIR)-filtered data is validated 
against software-based post-processed data.

In a second step, we implement a spike-triggered average (STA) algorithm to identify and visualize electrical 
activity at subcellular resolution in retinal neurons, which allows for the tracking of axonal signal propagation 
within the neural tissue.

This label-free, non-invasive method enables the localization of sensors of interest for electrophysiological 
recordings and the extraction of neuronal signals. It represents a significant advancement in neuroscience tools, 
which facilitates the study of neuronal network dynamics at unprecedented spatiotemporal resolution.

1. Introduction

The neuronal signaling pathway conveys information from the site of 
initiation to synaptically connected cells within neuronal networks 
using electrical signals (e.g., action potentials, APs). Monitoring 
neuronal activity, reflected by small voltage deflections, provides in
sights into the communication within these neuronal networks. Under
standing the mechanisms and features of these networks requires 
methods that enable the interaction with neuronal functional subunits 
and ensembles – somas, axons, dendrites, single neurons, as well as 
entire networks – at high spatiotemporal resolution and in real-time 
[1–3].

Commercially available standard microelectrode arrays (MEAs) 
constitute an established technology to record from single neurons and 
networks thereof [4–6]. However, passive MEAs suffer from their low 
spatial resolution (electrode pitch >30 μm) and constrained number of 
electrodes (<300), and therefore neither allow for recording 

morphological details of individual neurons nor for monitoring large 
neural networks [7,8].

Progress in complementary metal-oxide-semiconductor (CMOS) 
technology also enabled the translation of MEAs into biotechnology. 
CMOS MEAs comprise thousands of densely packed recording sites and 
are used to study biological network activity at high spatial (<10 μm, 
thus smaller than cell body size) and high temporal resolution (~20 kHz 
bandwidth) [8,9]. Hence, CMOS MEAs have been used to record spon
taneously occurring axonal signals in the retina [10,11] and axonal and 
potentially dendritic signals in elaborate neurites of dissociated neurons 
[12]. These high-density MEA arrangements enable us to record the 
electrophysiological activity of neuronal tissue with subcellular resolu
tion, which presents a key technical challenge in neuroscience to sample 
fine-scale structures [13].

However, the recorded extracellular voltage signals are impaired by 
biological and electronic noise sources, which makes it impossible to 
detect neuronal APs (spikes) without filtering the raw data. The online 
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processing of a data stream of numerous sensors (>10 k) at high sam
pling frequency demands powerful computational performance, which 
is not easily achievable on a standard computer architecture. Therefore, 
we propose here a CMOS MEA data streaming setup that extracts the 
neuronal activity of an active neural tissue by filtering the recorded 
signal with a field programmable gate array (FPGA), meeting real-time 
requirements. Since a full readout of all sensor sites is currently not 
feasible at a sampling frequency of 20 kHz, we electrically determine the 
sensors of interest covered by the retina tissue [14] using adhesion noise 
spectroscopy [15]. The electrical identification of the retina tissue al
lows for the recording of sparsely distributed regions on the CMOS MEA, 
where retina patches with densely packed ganglion cells require high- 
density arrangements. We localize single retina neurons in terms of 
spatiotemporal maps to track the neuronal signal with subcellular res
olution. The most common method to electrically image signal propa
gation is based on spike-triggered average (STA) algorithms. The STA is 
computed by extracting and aligning multiple AP snippets of the 
extracellular recording. Next, averaging the spike traces reduces the 
noise and visualizes the AP [16].

The electrical image of retina tissue based on the adhesion noise map 
is compared with ground truth light microscopic images, and the FPGA- 
filtered data of the electrophysiological recording is compared with 
software-filtered post-processed data. The technology presented in this 
work provides a label-free, non-invasive, and fast tool to locate sensors 
of interest for neural tissue recordings and filtering data via FPGA to 
extract electrophysiological relevant information suited for real-time 
applications.

2. Methods

2.1. Electrical recording with CMOS microelectrode arrays

The CMOS microelectrode array (MEA) system CAN-Q Station with 
the biosensing platform CAN-Q Chip (obtained from formerly Venneos 
GmbH) features 256 × 384 capacitive recording sites with a sensor pitch 
of 5.6 μm × 6.5 μm covering an active area of 1.6 mm × 2.5 mm as 
described in [17,18]. The sensor array was covered with an inert 30 nm 
ALD-TiO2 top oxide layer to enable the capacitive coupling of a bio
logical sample with the underlying field-effect transistor [14]. A Perspex 
culture chamber was glued on the chip, which insulated the bond con
tacts and exposed the recording sites to the retina and medium [19]. We 
employed an external Ag/AgCl electrode (VWR International GmbH) as 
a reference electrode to calibrate the MEA using the CAN-Q Acquisition 
software (Venneos GmbH) with default settings.

2.2. Extracellular electrophysiology of the ex vivo retina

We recorded extracellular voltages from the ex vivo retina of adult 
mice using the CMOS MEA. The dissection of the retina was conducted 
following previously established protocols [16,20]. Before placing the 
retina, we cleaned the MEA with Tickopur R60 (5 % v/v at 80 ◦C, Dr. H. 
Stamm GmbH Chemische Fabrik), sterilized it with 70 % v/v ethanol 
and UV light for 30 min, and rinsed it with distilled water. The MEA's 
recording sites were coated with 0.01 μg/μL Poly-L-lysine (PLL) (50 μL, 
MW 150–300 kDa, Sigma-Aldrich GmbH) for 2 h at room temperature to 
ensure tight tissue adhesion. Afterwards, we washed the MEA with PBS 
(1×) to remove the excessive coating solution. Next, a portion of the 
isolated retina (ca. 3–4 mm2) was placed on the MEA, which we gently 
pressed with a membrane for a few seconds to flatten it completely. The 
chip's chamber containing the retina sample was filled with appropriate 
electrolyte to guarantee cell viability. We assessed the spectral power 
density (SV) of the extracellular voltage at 300 kHz to probe the retina- 
chip interface for sufficient electrical recording capability. Next, we 
recorded neural activity with the CMOS MEA at a 28 kHz sampling rate. 
The MEA and recording hardware were placed in a safety cabinet at 
room temperature without additional shielding during the recordings.

2.3. Datastream setup

The CMOS MEA system (CAN-Q Station) is the central hub (s. Fig. 1A 
top) and is equipped with on-board ADCs (Supplementary Fig. S1), 
which amplify and digitize the extracellular voltage signals at a reso
lution of 14 bits and a total sampling rate of 14.4 MHz [21]. The 
recorded data are streamed from the CAN-Q Station to the host-PC with 
a remote procedure call (RPC) server connected via an Ethernet hub.

2.4. Field programmable gate array (FPGA) filter

Filtering reduces the total noise amount and removes the offset and 
the local field potential (LFP) components, which are low-frequency 
extracellular voltages generated by the summed electric current flow
ing from multiple nearby neurons [22,23]. The recorded raw extracel
lular voltages were high-pass-filtered with a finite impulse response 
(FIR) filter with a cutoff frequency of 400 Hz. Therefore, we designed the 
filter on an FPGA using Vivado Design Suite (version 2018.2, provided 
by AMD / Xilinx) for the hardware integration (s. Fig. 1B top). We 
operated with the PYNQ-Z1 Board (Digilent) as the development kit, 
which is compatible with the ZYNQ MP ZU4EG Board of the data stream 
hub architecture. We designed the filter using the FIR Compiler IP core 
from the Vivado Design Suite. The high-pass filter coefficients (taps) 
were extracted from MATLAB's extension Filter Design HDL Coder. We 
then imported the taps into the IP core to build the FIR Compiler. Next, 
we configured the AXI Stream interface and the remaining parameters 
with the Vivado GUI. We selected the systolic multiply-accumulate ar
chitecture with a pipelined direct-form structure, which is optimized for 
digital signal processor (DSP) slice utilization with area-efficient and 
high-performance implementation as described in [24–26]. Further
more, the direct-form structure saves resources by exploiting coefficient 
symmetry. Finally, we implemented the configured IP core on the 
FPGA's programmable logic (PL) (i.e., PYNQ-Z1 Board) [27].

We used the Advanced eXtensible Interface (AXI)-Stream Protocol as 
the on-chip communication system between the FPGA components, 
which is optimized for large data real-time processing (Fig. 2B). The AXI 
direct memory access (DMA) engine provides high-performance mem
ory access between the system memory and AXI4-Stream type target 
hardware components, allowing the central processing unit (CPU) (i.e., 
host-PC) to offload data transfer control and filtering execution to 
hardware automation [28]. We designed the FIR Compiler using Viva
do's IP Core FIR filter block design (s. Fig. 2C and D). The high-pass filter 
coefficients (taps) were generated using the MATLAB (version 
24.1.0.2603908 (R2024a) Update 3) extension Filter Design HDL Coder 
(version 24.1 (R2024a)). Next, we configured the FIR Compiler with the 
estimated taps in Vivado (s. Fig. 2C). Afterwards, Vivado's behavioral 
simulation confirmed the logical integrity of the filter design's syntax, 
functionality, and various connections. We converted the VHDL design 
into logic gates via Synthesis to optimize the timing constraints of the 
circuit components. The Implementation then mapped the synthesized 
design to the FPGA's resources [29]. Finally, we generated a bitstream to 
configure the hardware logic, routing, and initial values on the PYNQ-Z1 
Board, enabling the FPGA-based FIR filtering of the retina sample data 
(s. Fig. 1C).

2.5. Filter setup

For the FIR filter setup, we determined the filter coefficients using 
the MATLAB Filter Design HDL Coder to 198 as the minimum order for a 
proper magnitude response and minor oscillations at a cutoff frequency 
of 400 Hz (s. Fig. 1B) [30]. With this configuration, the hardware uses 
8446 LUTs, 2 BRAMs, and 100 DSP slices with a power consumption of 
1.54 W, as reported by Vivado.
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2.6. Filter validation

To validate the FIR filter against ground truth, the raw data was FIR- 
filtered via FPGA and high-pass filtered using a 4th-order Butterworth 
filter via Python (version 3.9.5). We analyzed the two signals (i.e., 
hardware- and software-filtered) on inconsistencies.

2.7. CMOS MEA voltage noise analysis

We analyzed the spectral power density SV like an electrical image 
with image processing techniques using the OpenCV Library via custom 
Python scripts [15]. Firstly, we subtracted the SV of the bare electrodes 
(i.e., background noise) from the retina recordings to extract the adhe
sion noise, assuming uncorrelated noise sources [14]. Secondly, a 
Gaussian Blur filter reduced the amount of image noise via grey-scaling 
and blurring, which enhanced the identification of objects of interest (i. 
e., the retina) [31]. Thirdly, we determined the segmentation threshold 
using Otsu's Binarization method [32]. Lastly, morphological operations 
(i.e., opening, closing) fine-tuned the object detection and recognition.

To recover axon positions of the retina tissue, we performed spike- 
triggered averaging (STA) of the FIR-filtered extracellular voltage 
traces. The STA algorithm computes the mean voltage signal of a spike 
across the MEA by aligning multiple spikes of a single neuron to their 
timing and averaging the resulting waveforms. The result yields a 
voltage trace with reduced noise, enabling the detection and tracking of 
the axonal signal [10,33] and to obtain electrical images of one single 
ganglion cell neuron in terms of spatiotemporal maps [34]. Spike 
detection was performed by FIR-filtered voltage trace thresholding.

2.8. Microscopy validation of electrical imaging

We related the brightfield images, taken with an upright light mi
croscope (Zeiss Axioplan, ×10 objective, Carl Zeiss AG), to the electri
cally estimated tissue position to ground truth. For the CMOS MEA 
imaging, we stitched together the whole microscopic image from 

individual image parts with the Fiji (Fiji is just ImageJ, version 1.54f) 
plugin Stitching described in [35]. For the brightfield microscopy im
aging, we segmented the retina tissue via Photos' (version: 
2024.11100.16009.0, Microsoft) Background Remove Editor.

3. Results

The presented work designed a filter on a field programmable gate 
array (FPGA) for real-time analysis of the electrophysiological activity of 
retina tissue. The implemented capabilities of the FPGA finite impulse 
response (FIR) filter were tested and experimentally characterized by 
processing the signal from an ex vivo retina sample. The CMOS micro
electrode array (MEA) in operation with the FPGA FIR filter enabled 
simultaneous spike recordings of the same neuron from different sensor 
sites with high temporal resolution and the electrical imaging of single 
neurons in terms of spatiotemporal maps.

For the retina experiment, we first electrically identified the sensors 
(i.e., electrolyte-oxide‑silicon field-effect transistors) of interest on the 
CMOS MEA, which are in contact with the retina (Fig. 3A, red contours). 
The electrical detection of biological samples on the CMOS MEA via 
adhesion voltage noise spectroscopy is described in [15]. In brief, we 
recorded the voltage generated in the cleft between the retina tissue and 
a sensor's oxide surface and estimated the spectral power density (SV) of 
the voltage fluctuations. The resistive cleft below the retina gives rise to 
the adhesion voltage noise, which allows us to distinguish this value 
from that of a bare sensor site (s. Fig. 3Ci) [14], [36,37]. The adherent 
retina was detected by evaluating the SV spectrum. We assessed the SV 
spectrum of the voltage noise from three different positions on the chip, 
i.e., i) adhesion area of the retina (Fig. 3A Δ), ii) sensor under the retina 
with poor attachment (Fig. 3A ◊), and iii) bare, uncovered sensor 
(Fig. 3A ✶). Fig. 3Ci demonstrates that the retina adhered to recording 
sites increased the SV across the entire frequency spectrum (Δ, red 
trace), which is attributed to the resistive cleft [14,38]. For the retina 
segmentation, we selected a frequency value in the middle of this fre
quency range, i.e., 300 kHz, and extracted the contours (Fig. 3A, red 

Fig. 1. Data stream processing of real-time filter setup. (A) Top: Data acquisition from a biological sample using a CMOS microelectrode array (MEA) biosensing 
platform. Bottom: Raw extracellular voltage traces of selected sensor sites on the MEA (blue: voltage trace from bare sensor site, grey: voltage trace from a sensor with 
retina attached). (B) Top: Field programmable gate array (FPGA) board used for data filtering with a finite impulse response (FIR) filter. Bottom: Magnitude response 
of designed FIR filter. (C) Top: Host-PC as central processing unit. Bottom: FPGA-FIR-filtered data of selected sensor sites (blue: FIR-filtered voltage trace from bare 
sensor site, grey: FIR-filtered voltage trace from a sensor with retina attached with action potentials, exemplary marked red). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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contours) as described in the method section (following [15]). Fig. 3Ci 
also illustrates that the SV spectrum of sensors under the retina at po
sition ◊ (Fig. 3A) aligned with the SV spectrum of bare sensors (Fig. 3A 
✶), which showed poor attachment and therefore no significant contri
bution of the cleft to the voltage noise. We found 85 % accuracy in the 
estimated retina position from the voltage noise SV and brightfield mi
croscopy via overlay (Fig. 3A and B).

Next, we recorded the extracellular voltage at the three indicated 
sensor positions on the CMOS MEA in Fig. 3A, i.e., Fig. 3Cii at position Δ, 
Fig. 3Ciii at position ◊, and Fig. 3Civ at position ✶, and high-pass- 
filtered the data with the FPGA FIR filter, meeting real-time re
quirements. The voltage trace in Fig. 3Cii revealed an active retina in the 
electrically identified adhesion area detected by action potentials that 

cross the spike threshold. We calculated the retina's firing rate (FR) to 
122 Hz over 500 ms, indicating a highly active retina tissue [39]. The 
sensor under the retina in the area of poor tissue attachment (position ◊) 
did not record spikes but voltage noise only (Fig. 3Ciii) and aligned with 
the voltage recording of a bare sensor (Fig. 3Civ, position ✶).

After successful electrical detection of the retina on the CMOS MEA 
via adhesion voltage noise spectroscopy, we analyzed the retina spikes 
from side-by-side sensors to demonstrate our biosensing system's capa
bility to simultaneously record spikes of the same neuron from neigh
boring sensors with high spatiotemporal resolution. This allows us to 
detect different signals on different sensors of many cells and subcellular 
structures. The FIR and digital filters were compared in terms of signal- 
to-noise ratio (SNR).

Fig. 2. Configuration scheme of finite impulse response (FIR) filter periphery. (A) Data acquisition via CMOS microelectrode (MEA) system with biosensing platform. 
(B) Field programmable gate array (FPGA) Zynq-7020 SoC architecture. The processing system (PS) works with two Cortex A9 processors, and the finite impulse 
response (FIR) filter (highlighted in orange) is configured in the programmable logic (PL) part. Direct memory access (DMA) provides high-performance memory 
access between the system memory and the FIR filter. On-chip communication between the FPGA components PS and PL is enabled via advanced eXtensible interface 
(AXI)-Stream Protocol. The first in first out (FIFO) handles data buffering applications. (C) Vivado block design of FIR filter periphery. Highlighted in orange: IP Core 
FIR filter block design with AXI direct memory access (DMA) interface and FIR Compiler. (D) Direct form discrete-time FIR filter of order N. z− 1 units work as delay 
operators, b0-bN are the filter coefficients (i.e., taps).
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We studied the voltage traces of neighboring sensors after FIR and 
digital filtering (Fig. 4). The insets A and B indicate the sensor positions 
on the CMOS MEA sensor grid (Fig. 4, top) and the corresponding FIR- 
and digital-filtered voltage recordings. Two features could be extracted 
from the recordings: i) the recorded spikes maintained the same shape 
for both filter types (Fig. 4A Overlay), but ii) the spikes exhibited higher 
amplitudes for the FIR filter (− 233 μV, Fig. 4A top and 4B top) than for 
the digital filter (− 138 μV, Fig. 4A and B center). We determined the 
SNR for the FIR filter to be 13.2 dB and for the digital filter to be 12.7 dB 
(Fig. 4C, statistically significant with p < 0.05). Filtering increased the 
SNR for both filter types, i.e. by 1.1 dB for the FIR filter and by 5.2 dB for 
the digital filter (s. Supplementary Fig. S2).

Based on the FPGA FIR and digital filter comparison (Fig. 4A), we 
confirmed that the FPGA FIR filter operated correctly by maintaining the 
same spike patterns for FIR- and digital-filtered voltage traces of 
neighboring sensors. Next, we recovered neuron positions from spike- 
triggered averaging (STA) of the extracellular voltages by electrical 
images in terms of spatiotemporal maps [10,33,34].

We generated an electrical image from the STA's standard deviation 
to locate a single retina neuron on the CMOS MEA (Fig. 5A). The location 
of the soma is determined on or next to the sensor. The STA's standard 
deviation enabled us to identify a sensor with i) highly active spiking 
activity (i.e., high standard deviation, Fig. 5A-1), ii) moderately active 
spiking activity (i.e., moderate standard deviation, Fig. 5A-2), iii) 
attenuated spiking activity (i.e., low standard deviation, Fig. 5A-3), and 
iv) a sensor without recorded spikes (i.e., lowest standard deviation, 
Fig. 5A-4) (note: sensor position 3 and position 4 are equally distant 
from position 1). In Fig. 5B, we inferred the average voltage traces 
corresponding to the sensor positions on the CMOS MEA. At position 1, 
we recorded the STA with the highest amplitude (− 237 μV) (Fig. 5B-1). 
At position 2, the STA's amplitude decreased to − 105 μV (Fig. 5B-2) and 
further attenuated to − 19 μV at position 3 (Fig. 5B-3). The STA of the 

sensor at position 4 revealed no spike activity (Fig. 5B-4).
As the action potentials propagate along the axon and the neuron cell 

network of the retina, we recorded spikes of different patterns. The STA 
then allows for tracking the spike across the CMOS MEA. We normalized 
the FIR-filtered voltage traces from positions 1 and 3 (Fig. 5C). Sensor 3 
recorded the spike 0.14 ms earlier than sensor 1, indicating the signal 
propagation from sensor 3 to 1 (as highlighted in Fig. 5A). With a sensor 
distance of 70 μm, we determined the action potential propagation 
speed to 0.5 m/s. The action potential propagation velocity is lower than 
in the literature [11,40,41] since we recorded at room temperature and 
not between 35 and 37 ◦C [10].

4. Discussion

In this study, we demonstrated a high-density CMOS microelectrode 
array (MEA) with the data stream finite impulse response (FIR) filter on 
a field programmable gate array (FPGA) for the electrophysiological 
recording of retina tissue. The electrical detection of the retina via 
adhesion noise spectroscopy enabled us to select the sensors of interest 
(i.e., retina-covered sensors), yielding high-quality recordings of 
neuronal action potentials. Optical microscopy validated the electrical 
retina detection. With the high spatiotemporal resolution, the CMOS 
MEA system allowed for single-cell studies at subcellular resolution and 
spike recordings of different patterns from different sensor sites with 
high temporal resolution.

After placing the retina on the CMOS MEA, optical microscopy failed 
to identify the sensor sites with tight retina tissue attachment, which is 
needed for the electrophysiological voltage recordings (Fig. 3B). Hence, 
the electrical retina detection using the spectral power density (SV) of 
the voltage fluctuations proposes an accurate way to determine the 
sensors of interest (i.e., retina-covered and -detecting sensors) (Fig. 3A 
and Cii). Recording sites with tight retina attachment exhibit a higher SV 

Fig. 3. Experimental workflow of electrical retina detection with spectral power density (SV, evaluated at 300 kHz) and sensor selection with field programmable 
gate array (FPGA) finite impulse response (FIR) filter-extracted action potentials. (A) Overlay of electrical imaging of retina tissue on the CMOS microelectrode array 
(MEA) (red contours via SV-analysis at 300 kHz) with brightfield microscopy imaging (dark grey/black: retina sample, light grey: sensor sites as background). The 
symbols (Δ, ◊, and ✶) indicate different sensor positions on the CMOS MEA, i.e., Δ: sensor with attached and electrically identified retina, ◊: sensor under elec
trically undetected retina, and ✶: bare sensor from area without retina. (B) Brightfield microscopy image with Photos-based retina segmentation (red contours). (Ci) 
Electrical retina detection via adhesion voltage noise spectroscopy [15]. A retina-covered sensor (Δ, red trace) exceeded the sum of ΔSV and the values of SV of bare 
sensors (i.e., ✶, grey trace). The SV of a sensor under the retina with poor tissue attachment aligned with the SV of bare sensors (◊, blue trace). (Cii) FIR-filtered 
voltage trace of retina-covered and -detected sensor at position Δ in (A) with spikes exceeding the spike threshold of 140 μV. (Ciii) Recorded voltage without 
spikes after FIR filtering of a sensor under the retina tissue at position ◊ in (A), which was not electrically identified via adhesion voltage noise spectroscopy. (Civ) 
FIR-filtered voltage trace of an uncovered, bare sensor at position ✶ in (A). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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Fig. 4. Finite impulse response (FIR) and digital-filtered voltage traces of simultaneously recorded spikes from different neighboring sensors compared in terms of 
signal-to-noise ratio (SNR). (A) Voltage recordings of sensors side-by-side demonstrated the CMOS microelectrode array (MEA)’s simultaneous recording capability of 
the same signal from different sensors. FIR and digital-filtered voltage recordings of position A in the CMOS MEA sensor grid (top) showed spikes at the same time but 
with different amplitudes. The FIR-filtered voltage recording exhibited spike amplitudes from − 146 μV to − 233 μV and digital-filtered spikes from − 92 μV to − 138 
μV (Overlay: FIR-filtered data (red trace), digital-filtered data (orange trace). (B) Recorded voltage traces of sensor position B in the CMOS MEA sensor grid. FIR- 
filtered spike amplitudes ranged from − 143 μV to − 194 μV, and digital-filtered amplitudes were between − 85 μV and − 111 μV. (C) The signal-to-noise ratio (SNR) 
of the FIR filter was 13.2 dB, and of the digital filter 12.7 dB; error bars indicate the standard deviation (FIR filter: 0.12 dB, digital filter: 1.2 dB. Asterisks: ns, not 
significant. *, p ≤ 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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amplitude than sensors with poor attachment or bare sensors over the 
whole frequency range (Fig. 3Ci), which is in accordance with prior 
studies on the neuron-transistor interface [14,19,38]. From a method
ological perspective, future work could avoid retina protrusions while 
placing the tissue on the chip or enable a retina flattening workflow to 
enhance the tissue attachment to the CMOS MEA's surface. Moreover, an 
algorithm could enable an automated sensor selection for the voltage 
recording of electrically detected retina tissue.

The sensors with the electrically identified retina demonstrated spike 
recording capabilities with high temporal resolution (Fig. 3Cii), suffi
ciently high for reliable spike identification. In the future, to fine-tune 
the automated sensor selection for the electrophysiological recordings, 
the FPGA FIR filter could implement a threshold spike detector after 
filtering while meeting real-time requirements. Moreover, to handle 
more channels at once, we (i) add extra one-dimensional filter chains, or 
(ii) group channels into a small 2-D systolic grid, by keeping the same 
multiply accumulate (MAC) structure for both options [24–26].

The CMOS MEA offers both the capability to record spikes simulta
neously from neighboring sensors (Fig. 4A) and spikes from distant 

sensors with various patterns (Fig. 5B). To validate the data filter pro
cess, we compared the FIR and digital filter in terms of signal-to-noise 
ratio (SNR). Both filters revealed the same spike patterns, but the FIR 
filter provided a higher SNR (Fig. 4C). This is due to the high number of 
used taps (i.e., 198 [30]) for the FIR filter. However, a 4th-order But
terworth filter (i.e., the digital filter) performs better for real-time ap
plications [42,43]. Therefore, we must consider the tradeoff between 
SNR and speed performance for future applications to meet real-time 
requirements.

The high spatial resolution of the CMOS MEA localized a single retina 
neuron from spike-triggered averaging (STA) of the extracellular volt
ages in terms of spatiotemporal maps (Fig. 5A) [10,33,34]. Moreover, 
we recovered the soma and axon by tracking the action potential 
propagation over multiple electrodes (Fig. 5B1-3), while equally distant 
sensor sites revealed no electrophysiological activity (Fig. 5B-4). The 
resulting electrical image from spatiotemporal maps holds the potential 
to track the axonal signal with subcellular resolution, which may pro
vide new insights into the initiation of action potentials [34,44] and 
signaling pathways within neural networks [45,46]. We inferred from 

3
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standard deviation voltage (
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Fig. 5. Electrical imaging and spike analysis of one neuron in the retina obtained by spike-triggered average (STA) of voltage recordings. (A) Electrical image of one 
single neuron in terms of a spatiotemporal map, shown as a heat map of the standard deviation of the STA. A high standard deviation (i.e., green-yellow area) of the 
STA indicates the region of the firing neuron. A low STA's standard deviation is areas with low or no neural activity. (B) Numbered voltage waveforms (i.e., 1–4) 
inferred from the CMOS MEA positions in (A). We calculated the mean voltage signal of a spike (red trace) by averaging multiple spikes of a single neuron (grey 
traces) aligned by the spike timing [10]. Sensor positions 3 and 4 are equally distant from position 1; the sensor at position 3 recorded an attenuated action potential, 
and the sensor at position 4 recorded voltage noise. (C) Normalized FIR-filtered voltage trace of sensor at positions 1 and 3 revealed signal propagation from 3 to 1 in 
0.14 ms. (D) Normalized bandpass-filtered voltage traces of the same sensors as in (C). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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the STA that the signal propagated from the axon to the soma with a 
velocity of 0.5 m/s (Fig. 5C). Although the bandpass-filtered signal 
(Fig. 5D) revealed a more accurate spike pattern than the FIR-filtered 
one (Fig. 5C), the presented FIR filter on FPGA is designed for the 
real-time analysis of the neuronal signals and qualitatively matches the 
post-recording analyses.

The presented CMOS MEA system offers one of the smallest electrode 
pitches (~6 μm) among published systems and therefore provides one of 
the highest spatial resolutions reported in literature for extracellular 
neural signal detection [8–13]. State-of-the-art recording systems allow 
for recording at spatial resolution ranging between 6 and 17.5 μm. Some 
systems provide full readout of all sensors at the cost of increased noise 
level (rms of few tens of μV) [10,11,14], while others systems are 
optimized for low-noise recording (rms of few μV) at the cost of a 
reduced number of simultaneously recorded channels [8,13]. Note, that 
CMOS technology enables the detection of particles at even smaller 
resolution (~1 μm) using capacitive sensors, which operate in the MHz 
range [47–49] are beyond the scope of this study. Adhesion noise 
spectroscopy electrically images only the parts of the retina that are 
tightly attached to the CMOS MEA's sensors and therefore suited for 
electrophysiological recordings, while brightfield microscopy images 
the whole tissue on the chip, adhered and or not.

5. Conclusion

We successfully developed and implemented an FPGA-based finite 
impulse response (FIR) filter into our CMOS microelectrode array (MEA) 
setup to extract electrophysiological relevant information from retina 
tissue. The key innovation of this work is the neural signal processing 
pipeline, which identifies the sensors of interest (i.e., sensors with the 
attached retina) on a high-density CMOS MEA using adhesion noise 
spectroscopy and filters the dataset via an FIR filter on an FPGA to reveal 
action potentials (APs), meeting real-time requirements. The noise- 
based imaging proved superior to optical microscopy for selecting 
electrophysiological active recording sites, as it also unveiled sensors 
below the retina tissue with poor tissue attachment, which are not 
suitable for AP recording and which were optically not visible 
(Fig. 3Ciii). The selected sensors yielded high-quality neuronal action 
potentials (Fig. 3Cii).

To achieve a fully automated neural signaling pipeline for high- 
quality electrophysiological recording, future work will focus on (i) 
refining the automated sensor selection process [34], (ii) incorporating 
threshold spike detection via FPGA for real-time AP analysis, and (iii) 
exploring detailed physiology [46] using the high spatial resolution of 
the CMOS MEA.
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