CONFERENCE SERIES: FORMAL METHODS IN COMPUT ;& |p) 5 s Rol =5y (el 6

Ahmed Irfan / Daniela Kaufmann (Eds.)

PROCEEDINGS OF THE 25TH
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN - FMCAD 2025

M Ncademic Pressw) fmcad

Ahmed Irfan / Daniela Kaufmann (Eds.)
PROCEEDINGS OF THE 25TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN — FMCAD 2025

Conference Series: Formal Methods in Computer-Aided Design
Volume 6

Conference Series: Formal Methods in Computer-Aided Design

Series edited by:
Warren A. Hunt, Jr., The University of Texas at Austin
Austin, TX 78705 | hunt@cs.utexas.edu
Georg Weissenbacher, TU Wien
Karlsplatz 13, 1040 Vienna, Austria | georg.weissenbacher@tuwien.ac.at

The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical
results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification,
synthesis, and testing.

Information on this publication series and the volumes published therein is available at www.tuwien.ac.at/academicpress.

Volume 6 edited by:
Ahmed Irfan, SRI, 333 Ravenswood Ave, Menlo Park, CA 94025 USA | ahmed.irfan@sri.com
Daniela Kaufmann, TU Wien, Favoritenstrasse 9-11, 1040 Vienna, Austria | daniela.kaufmann@tuwien.ac.at

http://www.tuwien.ac.at/academicpress

Ahmed Irfan / Daniela Kaufmann (Eds.)

PROCEEDINGS OF THE 25TH
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN - FMCAD 2025

m Ncademic Pressw\

Cite as:
Ahmed, I., & Kaufmann, D. (Eds.). (2025). Proceedings of the 25th Conference on Formal Methods in Computer-Aided
Design — FMCAD 2025. TU Wien Academic Press. https://doi.org/10.34727/2025/isbn.978-3-85448-084-6

TU Wien Academic Press, 2025

c/o TU Wien Bibliothek

TU Wien

Resselgasse 4, 1040 Wien
academicpress@tuwien.ac.at
www.tuwien.at/academicpress

@ This work is licensed under a Creative Commons attribution 4.0 international license (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/
ISBN (online): 978-3-85448-084-6
ISSN (online): 2708-7824
Available online: https://doi.org/10.34727/2025/isbn.978-3-85448-084-6

Media proprietor: TU Wien, Karlsplatz 13, 1040 Wien

Publisher: TU Wien Academic Press

Publication series editor: Warren A. Hunt, Jr. and Georg Weissenbacher
Editors (responsible for the content): Ahmed Irfan and Daniela Kaufmann

https://doi.org/10.34727/2025/isbn.978-3-85448-084-6
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6
http://www.tuwien.at/academicpress
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Preface

These are the proceedings of the twenty-fifth International Conference on Formal Methods in Computer-Aided
Design (FMCAD), held in Menlo Park, California, USA, from October 610, 2025. The first FMCAD was organized
in 1996, and the conference was held biennially until 2006, when it merged with the CHARME conference to
become a single annual event. Since then, FMCAD has been held every year. FMCAD 2025 marked the twenty-fifth
edition in the series, covering formal aspects of computer-aided system design, including verification, specification,
synthesis, and testing. It served as a leading forum for researchers from academia and industry to present and
discuss groundbreaking methods, technologies, theoretical results, and tools for formal reasoning about computing
systems. The FMCAD 2025 program included two tutorials, two invited talks, the presentation of the Hardware
Model Checking Competition (HWMCC’25), a student forum, and the main program featuring presentations of 27
peer-reviewed, accepted papers.

FMCAD 2025 was co-located with the VSTTE 2025 conference, which took place on October 6-7.

The joint VSTTE/FMCAD tutorial day (October 7) featured three tutorials:

e The VSTTE tutorial: EasyCrypt, by Pierre-Yves Strub
e The FMCAD tutorials:

— Verification Modulo Theories, by Alberto Griggio
— Systems Correctness Practices at AWS: Leveraging Formal and Semi-formal Methods, by Ankush Desai

The main FMCAD conference (October 8—10) featured two invited talks:

e Program Synthesis: Pre-LLM and Post-LLM by Ashish Tiwari
o Integrating Large Language Models in Automated Program Verification by Nina Narodytska

FMCAD 2025 received 82 abstracts, which resulted in 64 full submissions. Of these, the program committee
selected 27 papers for publication. Each submission underwent a rigorous review process, receiving at least four
reviews. The topics of the accepted papers span hardware and software validation, model checking, machine learning,
SAT and SMT solving, and proof generation. Among the accepted papers, 17 are regular papers (15 long and 2
short), and 10 are tool or case study papers (6 long and 4 short). This year, FMCAD introduced voluntary artifact
evaluation for the first time. The artifacts were assessed by selected members of the program committee. A total
of 20 submissions included artifacts, 12 of which were associated with accepted papers.

FMCAD 2025 hosted the thirteenth edition of the FMCAD Student Forum, which has been held annually since
2013. The forum provides a platform for graduate students at any stage of their academic career to present their
research to the FMCAD community. The FMCAD Student Forum 2025 was organized by Tanja Schindler and Lee
Barnett and featured short presentations of 20 accepted contributions. The proceedings include a detailed description
of the Student Forum and list all accepted contributions.

FMCAD 2025 was made possible through the support of many individuals and our generous sponsors. The
program committee members and additional reviewers, listed on the following pages, provided detailed and insightful
reviews. Their efforts not only helped us assemble a strong technical program but also guided authors in improving
their submissions. We sincerely thank each and every one of them for dedicating their time and expertise.

We would like to thank the local organization chair, Stéphane Graham-Lengrand, and the registration chairs,
Jenny McNeill and Trish Carrillo, who expertly managed the logistics and practical aspects of the conference. We
thank our web master Thomas Hader, our sponsorship chair Alex Ozdemir, and the Student Forum organizers Tanja
Schindler and Lee Barnett. We also thank the organizers of the HWMCC competition, Armin Biere, Nils Froleyks,
and Mathias Preiner. Special thanks go to Georg Weissenbacher for his exceptional assistance in organizing the
event, for serving as a liaison with the steering committee, and for his role as publication chair.

A conference like FMCAD would not be possible without the support of our sponsors. We gratefully acknowledge
the contributions of (listed in alphabetical order): AWS, Cadence Design Systems Inc., Futurewei, General Electric
Aerospace, Siemens, SRI, and TU Wien.

Last but not least, we thank all the authors who submitted their work to FMCAD 2025. Their contributions and
presentations form the heart of the conference.

The conference proceedings are published as Open Access by TU Wien Academic Press, and are also available
through the IEEE Xplore Digital Library.

We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD an engaging and enjoyable event.

October 2025 Daniela Kaufmann TU Wien, Austria
Ahmed Irfan SRI, USA

VI

Organizing Committee

Program Co-Chairs

Ahmed Irfan
Daniela Kaufmann

Local Organization Chair

Stéphane Graham-Lengrand

Registration Chairs

Jenny McNeill
Trish Carrillo

Student Forum Chairs

Tanja Schindler
Lee A. Barnett

Sponsorship Chair

Alex Ozdemir

Web Chair

Thomas Hader

Publication Chair

Georg Weissenbacher

SRI, USA
TU Wien, Austria

SRI, USA

SRI, USA
SRI, USA

University of Basel, Switzerland
Amazon Web Services, USA

Stanford University, USA

TU Wien, Austria

TU Wien, Austria

VII

FMCAD Steering Committee

Clark Barrett

Armin Biere

Ruzica Piskac

Anna Slobodova
Georg Weissenbacher

Stanford University, CA, USA
University of Freiburg, Germany
Yale University, CT, USA

Arm, TX, USA

TU Wien, Austria

Board of the FMCAD Association

Armin Biere
Roderick Bloem
Georg Weissenbacher
Florian Zuleger

University of Freiburg, Germany

Graz University of Technology, Austria
TU Wien, Austria

TU Wien, Austria

VIII

Program Committee

FMCAD 2025 Program Committee

Ahmed Irfan (co-chair) SRI International
Daniela Kaufmann (co-chair) TU Wien
Erika Abrahdm RWTH Aachen University

Guy Amir
Kshitij Bansal
Haniel Barbosa
Per Bjesse
Nikolaj Bjgrner
Martin Blicha
Roderick Bloem
Aleksandar Chakarov
Supratik Chakraborty
Rayna Dimitrova
Katalin Fazekas
Pascal Fontaine
Divya Gopinath
Alberto Griggio
Arie Gurfinkel
Liana Hadarean
Osman Hasan
Paula Herber
Marijn Heule
Antti Hyviérinen
Alexey Ignatiev
Mitesh Jain
Mikolas Janota
Susmit Jha
Martin Jonas
Jianwen Li
Enrico Magnago
Sergio Mover
Antonina Nepeivoda
Aina Niemetz
Mathias Preiner
Stefan Ratschan

Kristin Yvonne Rozier

Philipp Riimmer
Mark Santolucito
Christoph Scholl
Martina Seidl
Natarajan Shankar
Natasha Sharygina

Cornell University

Google

Universidade Federal de Minas Gerais
Synopsys Inc.

Microsoft

University of Lugano

Graz University of Technology

Phase Change Software LLC

IIT Bombay

CISPA Helmholtz Center for Information Security
TU Wien

Université de Licge, Belgium

NASA Ames (KBR Inc.)

Fondazione Bruno Kessler

University of Waterloo

Amazon Web Services

National University of Sciences and Technology (NUST)
University of Miinster

Carnegie Mellon University

Certora

Monash University

Northeastern University

Czech Technical University in Prague
SRI International

Masaryk University, Czechia

East China Normal University
Amazon Web Services

Ecole Polytechnique

Program System Institute of RAS
Stanford University

Stanford University

Institute of Computer Science, Czech Academy of Sciences
Iowa State University

University of Regensburg

Barnard College

University of Freiburg

Johannes Kepler University Linz

SRI International

University of Lugano, Switzerland

IX

Anna Slobodova
Mate Soos

Christoph Sticksel
Ashish Tiwari
Nestan Tsiskaridze
Georg Weissenbacher
Haoze Wu

Nisansala Yatapanage
Cunxi Yu

Emily Yu

Hongce Zhang

Zhen Zhang

Yoni Zohar

Arm

Ethereum Foundation

The MathWorks

Microsoft

Stanford University

TU Wien

Ambherst College

Australian National University

University of Maryland, College Park
Institute of Science and Technology Austria

Hong Kong University of Science and Technology (Guangzhou)

Utah State University
Bar-Ilan University

FMCAD 2025 Student Forum Committee

Tanja Schindler (co-chair)

Lee Barnett (co-chair)

Armin Biere
Roderick Bloem
Julie Cailler

Rayna Dimitrova
Deepak D’Souza
Constantin Enea
Mathias Fleury
Arie Gurfinkel
Clemens Hofstadler
Petra Hozzova
Marie-Christine Jakobs
Tim King
Katherine Kosaian
Kasper Luckow
Jan Strejcek

Jiyuan Wang

Emily Yu

University of Basel
Amazon Web Services

University of Freiburg

Graz University of Technology

University of Lorraine, CNRS, Inria, LORIA, Nancy, France
CISPA Helmholtz Center for Information Security
Indian Institute of Science

Ecole Polytechnique

University of Freiburg

University of Waterloo

Johannes Kepler University Linz

Czech Technical University
Ludwig-Maximilians-Universitdt Miinchen

AWS

University of Iowa

Amazon Web Services

Masaryk University

University of California, Los Angeles

Institute of Science and Technology Austria

Ashraf, Sobia
Aurandt, Alexis

Ciesielski, Maciej
Cobb, Adam

Davis, Mason
Dutta, Souradeep

Elderhalli, Yasmeen
Fleury, Mathias

Jacks Jr, Michael

Karimi, Mahyar
Kauers, Manuel
Kaur, Ramneet
Kolarik, Tomas
Konrad, Alexander
Kovacs, Jozsef
Kumar, Ankit

Leopardi, Fabrizio
Liang, Chencheng
Lu, Zhengyang

Maderbacher, Benedikt
Mascarenhas, Tomaz

Nukala, Karthik

Otoni, Rodrigo

XI

Additional Reviewers

Priya, Siddharth

Rao, Vikas
Reichl, Franz-Xaver
Ribeiro, Caio

Saidi, Hassen

Sarwar, Muhammad Bilal
Seufert, Tobias

Soldevila, Mallku

Su, Yusen

Swords, Sol

Tafese, Joseph

Zaman, Eshita

Table of Contents

Tutorials

Verification Modulo Theories e
Alberto Griggio

Systems Correctness Practices at AWS: Leveraging Formal and Semi-formal Methods
Ankush Desai

Invited Talks

Program Synthesis: Pre-LLM and Post-LLM e
Ashish Tiwari

Integrating Large Language Models in Automated Program Verification...........................
Nina Narodytska

Student Forum

The FMCAD 2025 Student FOrumt
Tanja Schindler and Lee Barnett

Hardware Model Checking Competition

Hardware Model Checking Competition 2025 oo
Armin Biere, Nils Froleyks and Mathias Preiner

Temporal Logic
“How Does my Circuit Work?”: Local Explanations for the Behavior of Sequential Circuits........

Amirmohammad Nazari, Matin Amini, and Mukund Raghothaman

On Hyperproperty Verification, Quantifier Alternations, and Games under Partial Information.......
Raven Beutner and Bernd Finkbeiner

Scalable MLTL Runtime Monitoring and Satisfiability via Bit-Vector Encoding....................
Christopher Johannsen, Phillip H. Jones, Kristin Yvonne Rozier, and Tichakorn Wongpiromsarn

Neural Networks and Large Language Models

PolyVer: A Compositional Approach for Polyglot System Modeling and Verification...............
Pei-Wei Chen, Shaokai Lin, Adwait Godbole, Ramneet Singh, Elizabeth Polgreen, Edward A.
Lee, Sanjit A. Seshia

Quantifying Robustness of Medical Image Segmentation Networks Using TensorStars..............
Meghan Stuart and Parasara Sridhar Duggirala

X1II

Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision.............. 65
Samuel Teuber, Debasmita Lohar, and Bernhard Beckert

Can Large Language Models Autoformalize Kinematics? ...ttt 78
Aditi Kabra, Jonathan Laurent, Sagar Bharadwaj, Ruben Martins, Stefan Mitsch, and André
Platzer

SAT and SMT

Towards SMT Solver Stability via Input Normalization iiiiiiiiiiieeenn.... 84
Daneshvar Amrollahi, Mathias Preiner, Aina Niemetz, Andrew Reynolds, Moses Charikar,
Cesare Tinelli, and Clark Barrett

Per-Instance Subproblem Generation for Strategy Selection in SMT............................ ... 94
Amalee Wilson, Nina Narodytska, Clark Barrett, and Haoze Wu

Solving Set Constraints with Comprehensions and Bounded Quantifiers 104
Mudathir Mohamed, Nick Feng, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Marsha
Chechik

Learning Short Clauses via Conditional Autarkiesc..oueiieieeenniniiiiiiiinnen.. 115
Amar Shah, Twain Byrnes, Joseph Reeves, and Marijn J. H. Heule

Tools

R2U2 Playground: Visualization of a Real-time, Temporal Logic Runtime Monitor 126
Alexis Aurandt, Kristin Yvonne Rozier, and Phillip H. Jones

S2S: An Eager SMT Solver for Strings 133
Kevin Lotz, Mitja Kulczynski, and Dirk Nowotka

FastPoly: An Efficient Polynomial Package for the Verification of Integer Arithmetic Circuits 139
Alexander Konrad and Christoph Scholl

OSTRICH2: Solver for Complex String CONStraintscoueeeeeiinnnnnnniiiiieeeen.. 145

Matthew Hague, Denghang Hu, Artur Jez, Anthony W. Lin, Oliver Markgraf, Philipp Riimmer,
Zhilin Wu

Case Studies

A Formal Y86 Simulator with CHERI Features 159
Carl Kwan, Yutong Xin, and William D. Young

A Method for the Verification of Memory Management Software in the Presence of TLBs......... 169
Yahya Sohail and Warren A. Hunt, Jr.

Verification Application

Making Rabbit Run for Security Verification of Networked Systems with Unbounded Loops 178
Sewon Park and Atsushi Igarashi
Modeling the AWS Authorization Engine oo 188

Lee A. Barnett, Loris D’Antoni, Amit Goel, Rami Gokhan KKici, Neha Rungta, Mary Southern,
and Chungha Sung

XIII

Automated Translation Validation of a Compiler for Statically Scheduled Accelerators............. 198
Jackson Melchert, Caleb Terrill, Aron Ricardo Perez-Lopez, Clark Barrett, and Priyanka Raina

Unifying DQMax#SAT and DSSAT: Polynomial-Time Reduction and Applications 209
Ilo Chen, Che Cheng, and Jie-Hong Roland Jiang

Synthesis

Synthesiz3 This: an SMT-Based Approach for Synthesis with Uncomputable Symbols 215
Petra Hozzovd, Nikolaj Bjgrner

Guiding Likely Invariant Synthesis on Distributed Systems with Large Language Models........... 226
Yuan Xia, Aabha Shailesh Pingle, Deepayan Sur, Srivatsan Ravi, Mukund Raghothaman, and
Jyotirmoy V. Deshmukh

Unlocking Hardware Verification with Oracle Guided Synthesis 235
Leiqi Ye, Yixuan Li, Guy Frankel, Jianyi Cheng, and Elizabeth Polgreen

Software Verification

Automated Formal Verification of a Software Fault Isolation System.............................. 246
Matthew Sotoudeh and Zachary Yedidia

Static Coverage in Deductive Software Verificationo, 251
Aaron Tomb and Anjali Joshi

A Tale of Two Case Studies: A Unified Exploration of Rust Verification with SEABMC........... 262

Joseph Tafese, Siddharth Priya, Giuliano Losa, Arie Gurfinkel, and Graydon Hoare

X1V

The Conference on Formal Methods in Computer-Aided
Design (FMCAD) is an annual conference on the theory
and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers
in academia and industry for presenting and discussing
groundbreaking methods, technologies, theoretical results,
and tools for reasoning formally about computing systems.
FMCAD covers formal aspects of computer-aided system
design including verification, specification, synthesis, and
testing.

ISBN 978-3-85448-084-6

9" 783854 " 480846
www.tuwien.at/academicpress

	Cover
	Front Matter
	Preface
	Organizers
	Program Committee
	Additional Reviewers
	Table of Contents
	01
	02
	03
	04
	05
	References

	06
	References

	07
	Introduction
	Formally Defining Subspecifications
	Example Applications
	Debugging Circuits
	Validating Sequences

	Expressibility and Automatic Derivation of Subspecs
	Inexpressibility of Subspecifications as LTL Formulas
	Automatically Deriving Subspecs as Büchi Automata

	Empirically Measuring the Utility of Subspecifications
	Participants, Tasks, and Study Structure
	RQ1: Distinguishing Valid and Invalid Execution Traces
	RQ2: Explaining the Purpose of Individual Components
	RQ3: Repairing Faulty Circuits

	Effectiveness of the Subspec Generation Procedure
	Benchmarks
	RQ4: Effectiveness in Simplification
	RQ5: Time Needed to Derive Subspecifications

	Related Work
	Conclusion
	Artifact Availability Statement
	Acknowledgments
	References
	Appendix

	08
	Introduction
	Preliminaries
	Game-Based Verification of ∀*∃*
	Parity Games
	The Verification Game for ∀*∃*

	Game-Based Verification Beyond ∀*∃*
	Multiplayer Games and Partial Information
	HyperLTL Verification as an MPGii
	Soundness
	Hierarchical Information

	Completeness for ∃*∀*
	Prophecy Variables
	Prophecies and Partial Information
	Prophecies and Prophecy Variables
	Prophecies and Games
	Soundness

	Related Work
	Conclusion and Future Work
	References

	09
	Introduction
	Preliminaries
	Mission-time Linear Temporal Logic (MLTL)
	Bit-vector Operations

	MLTL Bit-vector Encoding
	Satisfiability Checking via MLTL-BV
	Problem Encoding and Algorithm
	Experimental Evaluation

	Monitoring
	Experimental Evaluation

	Conclusion
	References
	Appendix

	10
	Introduction
	Motivation and Background
	Problem Formulation
	Polyglot Verification through a Contract IL
	An Abstraction Synthesis Approach for Polyglot Model Verification
	Background: CEGIS and CEGAR
	Approach Overview
	Oracles
	Contract Synthesis via CEGIS Loop
	Spuriousness Check
	Correctness Guarantee

	PolyVer Implementation
	Synthesis Oracle Interface
	LLM-based Synthesizer
	SyGuS/SyMO-based Synthesizer

	Verification Oracle Interface

	Case Study: LF Program Verification
	Our Running Example as a Lingua Franca Program
	Methodology: Mapping LF Programs to Polyglot Models

	Experimental Evaluation
	RQ1: Comparison to prior LF verification work
	RQ2: Can PolyVer handle full-fledged LF examples?
	RQ3: Can PolyVer verify multi-language systems?

	Related Work
	Conclusions
	References
	Appendix
	Appendix A: Large Language Model (LLM) Prompting
	Appendix B: State Space Diagram for LF Program Verification

	11
	Introduction
	Problem Formulation
	Biomedial Image Segmentation Using U-Nets
	Verification of Image-Net Neural Networks Using TensorStars
	Operations on Tensor Stars

	Leveraging Accelerators and Parallelism for Improved Efficiency of Tensor Star Verification
	Evaluation
	Training of Kidney Segmentation Network
	Perturbation of Input Using Noise Models
	Verification Results
	Comparison with Other Tools and Verification Benchmarks

	Conclusion and Future Work
	References

	12
	Introduction
	Approach at a Glance
	Background
	Safety Verification
	Differential Dynamic Logic
	Differential Game Logic
	Verifying NN with VerSAILLE

	Efficient Code Generation
	Fixed-Point Arithmetic
	Mixed-Precision Tuning

	Safety under Perturbation
	Setup: Idealized Implementation Safety with VerSAILLE
	Formalizing Perturbations
	Envelope Robustness
	Implementation Safety under Perturbation
	Implementation Synthesis
	Limitations

	Evaluation
	Experimental Setup
	Case Study 1: Continuous Adaptive Cruise Control
	Case Study 2: Discrete Adaptive Cruise Control
	Case Study 3: Vertical Airborne Collision Avoidance
	Discussion

	Related Work
	Conclusion
	References

	13
	Introduction
	Overview
	Methodology
	Related Work
	Evaluation
	Discussion
	Conclusion and Future Work
	References

	14
	Introduction
	Background
	Formalization
	Complexity
	Anti-symmetric Operators
	Relation to Permutation Groups, Graph Isomorphism, and Symmetry Breaking

	Approximating a Normalization Algorithm
	Code Optimizations

	Experiments
	Normalization Effectiveness
	Stability

	Conclusion
	References

	15
	Introduction
	Preliminaries
	Related Work
	Subproblem generation
	Per-instance strategy selection
	Online learning

	Subproblem Generation for Strategy Selection
	Overview
	Subproblem Generation
	Solving Subproblems
	Subproblem-based Strategy Ranking

	Implementation Details
	The Dump and Abort Conditions
	Making Subproblems
	Solving Subproblems and Ranking

	Experimental Evaluation
	Experimental Setup
	Comparison of Techniques for Subproblem Selection
	Evaluation of the predictive power of rankings
	Comparison of online tuning with parallel portfolio

	Conclusion and Future Work
	References

	16
	Introduction
	Related Work

	Formal Preliminaries
	A Theory of Finite Relations
	A Calculus for TRel'
	Configurations and Derivation Trees
	The Derivation Rules

	Decidability of Restricted Filter
	Termination
	Refutation Soundness
	Refutation Completeness
	Undecidability with Unrestricted Filter Predicates

	Bounded Set Quantifiers
	Implementation and Experimental Evaluation
	Conclusion and Future Work
	References

	17
	I Introduction
	II Background
	II-A Conditional Autarkies
	II-B Related Work

	III Methodology
	III-A Motivating Example
	III-B PR Clause Learning Framework
	III-C Learning PR Clauses
	III-D Shrinking PR Clauses

	IV Implementation
	V Evaluation
	V-A Pigeonhole results
	V-B SAT competition results
	V-C Discussion of Benchmark Families
	V-D Heuristics
	V-E Research Questions

	VI Future Work
	VII Conclusion
	VIII Acknowledgements

	18
	Introduction
	Current Visualizations for Runtime Monitors
	Playground Functionality
	Mission-time Linear Temporal Logic (MLTL) and past-time MLTL (ptMLTL) AJR2025,EGSTWR2023,LVR19,RRS14
	Configuration Compiler for Property Organization (C2PO) JJKRZ23 Specification and R2U2 Configuration Output
	R2U2 Execution

	Implementation
	Discussion
	References

	19
	Introduction
	Solver Architecture
	Context
	Preprocessing
	Simplification
	Normalization
	-Reduction
	Abstraction

	Solving Process
	Incremental Encoding
	Bound Refinement

	Evaluation
	Conclusion
	References

	20
	Introduction
	Tool Description
	Requirements
	Implementation
	Polynomials
	Monomials

	Additional Features

	Tool Usage
	Experimental Results
	Conclusions and Future Work
	References

	21
	Introduction
	Specification Language
	SMT-LIB Standard for Unicode Theory of Strings
	SMT-LIB Constraints

	Extensions Beyond the SMT-LIB Standard
	Transducer-based Operations
	Extended Regular Expression Support
	Automata Representations
	SMT-LIB Standard for Unicode Theory of Strings

	System Architecture
	ADT-Str: List-Based Solver
	RCP: Regular Constraint Propagation
	CE-Str: Cost-Enriched String Engine

	String Theory Algorithms
	Preprocessing
	Common Preprocessing
	RCP Preprocessing

	Inprocessing Rules
	Inference Rules

	Completeness Results
	Extensibility
	Experiments
	Benchmark suites and experimental setup
	Performance evaluation

	Conclusion
	References
	Appendix A: Automata Definition
	Appendix B: Transducer Definitions
	Example 1: General Template
	Example 2: toUpper
	Example 3: extract1st
	Grammar for OSTRICH transducers

	22
	Introduction
	Related Work
	Formalized CHERI Features
	CHERI Concentrate
	Architectural Capabilities

	The ACL2 CHERI-Y86 Model
	The CHERI-Y86 State Object
	Symbolic Simulation
	Step & Run Functions
	CHERI-Y86 Instruction Semantic Functions

	Verifying Basic CHERI-Y86 Properties
	Verifying CHERI Concentrate
	Conclusions and Future Work
	References

	23
	Introduction
	Related Work
	Background
	Our Technique
	Implementation for x86 in ACL2
	TLB Implementation
	Reasoning Implementation

	Case Study: Zero-Copy
	Conclusion & Future Work
	References

	24
	Introduction
	Syntax
	Expressions
	Facts
	Tags
	Commands
	Examples
	Unbounded Loops
	Remote Procedure Call (RPC)
	File System

	Process, System, and Assertions

	Semantics
	Transition Graph
	Traces and Assertions
	Graph Compression
	Example – File System

	Parameterization
	Translation to Tamarin
	Reuse Lemmas
	Main Lemmas

	Evaluation
	The Cam-Image System
	Evaluation Results
	Comparison to SAPIC+ and ProVerif for the file system

	Future Work
	References

	25
	Introduction
	Modeling AWS Authorization
	A Modular Formal Model for AWS Authorization
	Zelkova: From Individual Policies to SMT
	AuthEngine: AWS Authorization Engine
	IAM-MultiPolicyAnalyzer: From Sets of Policies to SMT via Zelkova
	Main Program
	Evaluation under Context
	Predicates for Constraining Principals
	Translation to SMT

	Evaluation
	Implementation
	Conformance of the Model to the Code and Documentation
	Applications of IAM-MultiPolicyAnalyzer
	Performance

	Related Work
	Conclusion
	References

	26
	Introduction
	Related Work
	Background
	CGRA Architecture and Application Compiler
	SMT-based Model Checking

	Symbolic Representations in SMT
	Application Specification
	Compute-Mapped Dataflow Graph of PEs
	Fully-Mapped Dataflow Graph of PEs and MEMs
	Place and Route and Pipelining
	CGRA Verilog

	Translation Validation
	Compute Mapping Verification
	Memory Mapping Verification
	Place and Route Verification
	Pipelining Verification
	Bitstream Generation Verification

	Symbolic Starting States with Automatic Constraint Generation
	Experimental Evaluation
	Symbolic Starting States
	Runtime of Translation Validation
	Compute Mapping Verification
	Memory Mapping Verification
	Place and Route Verification
	Pipelining Verification
	Bitstream Generation Verification

	Bug Coverage
	Introducing Bugs into the Compiler
	Bugs Found in the Application Compiler

	Conclusion
	Acknowledgments
	References
	Appendix
	Compute Kernels
	Loop Nests
	Compute-Mapped Dataflow Graph of PEs
	Fully-Mapped Dataflow Graph of PEs and MEMs
	Place and Route and Pipelining
	CGRA Verilog

	27
	Introduction
	Preliminaries
	DSSAT
	DQMax#SAT

	Equivalence Between DQMax#SAT and DSSAT
	Transforming Existential-Free DQMax#SAT into DSSAT
	Transforming DQMax#SAT into Existential-Free DQMax#SAT
	Transforming DQMax#SAT into DSSAT

	Experimental Results
	Conclusion
	References

	28
	Introduction
	Preliminaries
	Synthesis of Total and Partial Functions
	Specifications and Realizers
	The Expressivity of the Uncomputable Symbols
	Partial Function Synthesis
	A Synthesis Algorithm
	Unique Realizers

	Quantifier Projection
	Existential Projection
	Universal Projection

	Synthesizing Unique Functions
	EUF
	LRA
	EUF + LRA

	Implementation and Evaluation
	Implementation
	Evaluation

	Related Work
	Conclusions
	References

	29
	Introduction
	Preliminaries
	Program structure and modeling assumptions
	Basics of LLM-based analysis

	Overview
	Predicate LLM Synthesizer
	Expansion to LLM-Guided Quantifier Synthesis

	Invariant LLM Synthesizer
	Experimental Evaluation
	Benchmarks and Measurements
	Prompt Engineering Ablation Study
	Invariant Quality Evaluation
	Invariant Generation Efficiency Evaluation

	Validity Threats
	Related Work
	Conclusion
	References

	30
	Introduction
	Motivating Example
	Background
	Verilog and SystemVerilog Assertions (SVAs)
	Syntax-Guided Synthesis (SyGuS)
	Oracle Guided Inductive Synthesis

	Overview
	Problem Statement
	Proposed SMART Framework

	Trace Collection & Grammar Construction
	Verilog Simulation
	Identifying the Variable Sets: Verilog Analysis

	Oracle-Guided Synthesizer
	Constructing the Grammar G
	Positive and Negative Examples
	Counterexamples
	Assertion Analysis

	Evaluation
	Evaluation Metrics
	Correctness of Assertion Sets
	Meaningfulness of Assertion Sets

	Baselines
	Results
	Readability
	Rewrite system

	Evaluation Details
	Behavioral vs. Structural Verilog
	Effect of Counterexample Refinement
	Limitations

	Related Work
	Conclusions
	References

	31
	Introduction
	Background on Lightweight Fault Isolation
	Reserved Registers for Memory Isolation
	Handling the Stack
	Compiler Instrumentation to Generate LFI-Passing Code

	Verification of LFI
	Register Invariants
	Detecting Bad Side Effects
	Memory Mapping Assumptions and Detecting Faults
	Handling Faults
	Implementation and Formal Model of ARM64
	Parallel Verification and Results

	Limitations and Future Work
	Related Work
	References

	32
	Introduction
	Examples
	Overview of Paper

	Prior Work
	Verification Coverage
	Definition
	Interpretation
	VC Generation with Coverage Tracking
	Desugaring with Labels
	Finer Granularity
	Impact of Trigger-Based Quantifier Instantiation

	Implementation
	Implementation Caveats

	Experiments
	Results on Examples
	Overhead of Coverage Analysis
	Impact on Brittleness
	Comparison with Smoke Testing
	Quality of Warnings

	Conclusion
	References
	Appendix
	Experimental Reproduction
	Common Options
	STD
	MPL
	ESDK

	33
	Introduction
	Engineering SeaBMC for Rust
	Verifying Rust
	Benchmarking
	Applying SeaBMC to Winch
	Carving out the System under Test
	Discovering Invariants with Executable Counter Examples
	Results and Takeaways

	Future direction
	Related Work
	Conclusion
	Acknowledgments
	References

	Back

