
Formal Methods in Computer-Aided Design 2025

“How Does my Circuit Work?”: Local Explanations
for the Behavior of Sequential Circuits

Amirmohammad Nazari∗ , Matin Amini∗ and Mukund Raghothaman∗
∗University of Southern California

Los Angeles, CA, USA
{nazaria, matinami, raghotha}@usc.edu

Abstract—There has been a massive amount of work on
algorithms to verify and synthesize systems from temporal
specifications. In contrast, there has been less work devoted
to the problem of helping engineers to understand how and
why their systems exhibit certain behaviors. Such understanding
is important for them to debug, validate, and modify their
implementations in response to changing needs. In this paper, we
present one possible formalization of this problem as the task
of recovering specifications that locally describe the behavior
of individual parts of the circuit, given LTL specifications that
globally describe the behavior of the entire circuit. We study
the theoretical properties of these temporal subspecifications, and
show that they are not always expressible in LTL, but can always
be described by ω-regular languages. We show that our algorithm
can efficiently generate compact subspecifications when applied
to benchmarks from the SYNTCOMP 2023 competition. Finally,
through a user study, we show that subspecifications improve the
accuracy of engineers by a factor of 17 when answering questions
about these circuits.

Index Terms—Explainability, linear temporal logic, sequential
circuits

I. INTRODUCTION

This paper is about helping engineers understand and debug
sequential circuits. Despite a massive amount of research on
verification [1], [2], [3], [4], synthesis [5], [6], [7] and repair [8],
[9], there has been comparatively less attention given to the task
of aiding engineers in debugging, validating and optimizing
their designs. There is admittedly some work on helping
engineers automatically derive temporal specifications from
their code [10], [11], translating these specifications into natural
language descriptions [12], and automatically deriving LTL
specifications from natural language text [13], [14]. However,
these are focused more on the tasks of specification engineering,
rather than on helping engineers develop and validate beliefs
about different parts of their system.

Indeed, as we will see in our user study, participants struggle
to explain the operation of even relatively simple sequential
circuits. Although it is easy to obtain execution traces of these
systems, design, modification and debugging fundamentally
involve reasoning about counterfactual (“what if?”) behaviors
of different parts of the system.

While studying a similar problem in the context of SyGuS
program synthesizers, Nazari et al. [15] proposed the concept
of subspecifications—i.e., automatically derived specifications
of individual subexpressions—as a way of locally explaining
what different parts of a loop-free program should do. Our

present paper may be alternatively viewed as asking whether
a similar notion of subspecifications can be developed in the
context of reactive systems.

In our setting, the subspecification corresponds to the set
of valid signals that can be produced by individual latches
so that the rest of the system satisfies the desired global
specification. In other words, subspecifications connect system
inputs to possible latch outputs. They therefore provide a way
for engineers to characterize the space of valid behaviors of
different components, while abstracting away surrounding parts
of the system.

The first question that arises when extending the idea of sub-
specifications to sequential circuits and temporal specifications
involves asking what an appropriate language for expressing
these temporal subspecs would even be. As we will see in
Section IV, it is easy to design circuits where the subspecs for
individual components are inexpressible in LTL, even though
the global circuit behavior was specified as an LTL formula.
We will then show that these subspecs are always ω-regular
and may be conveniently expressed as Büchi automata.

We will report on a user study showing that subspecifications
massively help users in a range of debugging and validation
tasks (improving their response accuracy by 17×). Finally, we
will present an experimental evaluation in which we observe
that our algorithm can rapidly derive simple subspecs.

II. FORMALLY DEFINING SUBSPECIFICATIONS

We adapt the following example from the website of the
ltlsynt tool,1 distributed as part of the Spot framework [16].
Say an engineer wishes to synthesize a circuit that accepts
two Boolean-valued signals i and j as input, and produces an
output signal x such that x eventually drops from true to
false iff i and j are both true in the initial time step:

(i ∧ j) ⇐⇒ F(x ∧ X ¬x). (1)

In response, ltlsynt synthesizes the controller shown in
Figure 1, both as a state machine and the corresponding and-
inverter graph [17], [18].

At this point, say the engineer wishes to understand the
purpose of the latch labelled b, with the goal of either
optimizing, debugging, or otherwise modifying the circuit. As
a first attempt, they might draw a state machine describing the

1https://spot.lre.epita.fr/ltlsynt.html

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6 7
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://spot.lre.epita.fr/ltlsynt.html
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_7
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_7
https://creativecommons.org/licenses/by/4.0/
mailto:raghotha}@usc.edu

j

¬i ∨ ¬j ∨ b

true/¬x true/¬b

q1

i ∧ j/x

(b)

s1

s2

i
b ∧∧ j ∧∧ ¬

i b

s0
i ∧ j ∧ ¬b

start

¬i ∨ ¬j

q1

q2

i ∧ j/¬b

¬i ∨ ¬j/¬b

start q0 start q0

q2

¬i ∨ ¬j/x

true/x true/b

(a) (c)

s3

¬i ∨ ¬j ∨ b

(d)

Fig. 1: The controller generated by Spot (ltlsynt) for the specification in Equation 1 (1a) and its corresponding and-inverter
graph (1b). The numbered circles represent AND gates, and the smaller shaded circles represent inverters. Rectangles represent
the input and output sides of latches, and occur in pairs, indicated as Xin and Xout respectively. Each latch represents a unit
time delay and is initialized to false. The engineer wishes to know the purpose of the latch b. (1c) Behavior of the latch b
from the circuit in Figure 1b. Observe its similarity to the original controller from Figure 1a. (1d) Description of all possible
legal behaviors of the latch—i.e., its subspecification—so that the entire circuit satisfies Equation 1. Notice that this machine
reveals additional possibilities that are not exhibited by the current implementation.

value produced by the latch in response to the history of inputs
i and j. See Figure 1c. We observe (unsurprisingly) that this
state machine is remarkably similar to the original controller
from Figure 1a.

Note however, that although this machine accurately de-
scribes the output of latch b, there is a class of questions that
it leaves unresolved: For example, if the engineer wishes to
optimize or modify this part of the circuit, they would be
interested in not just its current behavior, but all possible
behaviors of the latch. They would similarly be interested in
possible legal alternative behaviors if changing requirements or
faults elsewhere in the circuit need to be mitigated by repairs
in this part. Therefore, instead of inquiring about the current
behavior of latch b, we are interested in the question: What
values should the latch b produce, so that the rest of the circuit
satisfies the specification in Equation 1?

We can show that b can be replaced by any signal that
satisfies the property:

(i ∧ j) ⇐⇒ F(i ∧ j ∧ ¬b). (2)

This formula may be equivalently viewed as uchithe B¨
automaton in Figure 1d. Because the future values of i and j
are unconstrained, it follows that whenever i and j are true in
the first time step, b must also produce the initial value false.
Its output for the rest of time is unconstrained. Alternatively, if
either i or j were initially untrue, then it is obligated to obey
the constraint G(i ∧ j =⇒ b). Our central goal with the idea
of subspecifications, that we will now formalize, is to provide
a uniform answer to counterfactual questions of this kind.

a) Background: Sequential circuits, linear temporal logic
(LTL), and B¨ Sequential circuits will formuchi automata:
our objects of study in this paper. In brief, a sequential
circuit C = (I, O, L, f) is specified by finite sets of Boolean-

valued input and output signals, I = {i1, i2, . . . , im}, O =
{x1, x2, . . . , xn}, a finite set of latches, L = {a1, a2, . . . , al},
and associated update functions, fv : Boolm+l → Bool, for
each v ∈ O ∪ L.

The inputs supplied to the circuit may be modeled as an
infinite sequence of valuations, σ = σ1, σ2, . . . , of each of the
input signals I . The circuit responds by iteratively computing
the values of its latches, ρ, and output signals, τ , as follows:

ρ0(a) = false,
ρi+1(a) = fa(σi, ρi), and

τi(x) = fx(σi, ρi),

for a ∈ L, x ∈ O, and i ∈ N. For example, the circuit in
Figure 1b may be represented using the set of update functions:

an+1 = inanbn + injnanbn + injnbn, �
bn+1 = inan + injnan + injnanbn, and (3)�

xn = an.

Because of limited column width, we will sometimes use
(+, ·, •) notation instead of (∨, ∧, ¬).

We specify properties of these sequential circuits using
formulas in LTL. Recall that an LTL formula φ is a production
of the grammar:

φ ::= true | false | v | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

| X φ | F φ | G φ | φ1 U φ2,

where v ∈ I ∪ O ∪ L. The interpretation of these formulas over
infinite traces is standard. We refer the reader to Clarke et al.’s
textbook on model checking [19].

One may alternatively specify properties of infinite signals
using B¨ uchi automaton is a structure Muchi automata. A B¨ =
(Q, Σ, Δ, q0, F), where Q is a finite set of states, Σ is a finite

9

���
���

alphabet (in our case, most commonly Boolm+n), Δ ⊆ Q ×
Σ × Q is the transition relation, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of accepting states. The machine in
Figure 1d is an example. We say that the machine accepts an
ω-string w = w1, w2, . . . if there exists a corresponding run
q0 →w1 q1 →w2 q2 →w3 · · · in which some state qf ∈ F
occurs infinitely often. We refer to the language that M accepts
as L(M) ⊆ Σω . Once again, we refer the reader to [19].

b) Sequential subspecifications: Let C = (I, O, L, f) be
a sequential circuit, and let φ be an LTL specification with
variables from I ∪ O. Let b ∈ L be a latch that the engineer
wishes to investigate. We can use C to construct a new circuit:

C|b = (I ∪ {b}, O, L \ {b}, f \ {b ↦→ fb}).

Informally, this amounts to promoting b, currently calculated
by a latch, to the status of a new input, while leaving the rest
of the circuit unchanged. We say that an LTL formula ψ is
a subspecification of the latch b with respect to the global
specification φ if for each sequence of inputs σ̃ supplied to
C|b, we have:

σ̃ |= ψ ⇐⇒ (σ, τ) |= φ, (4)

where τ is the corresponding sequence of outputs produced
by C|b, and σ is the projection of σ̃ obtained by eliminating
the values of b.

Note II.1. 1) Informally: The subspec ψ specifies all possible
alternative values that could have been produced by b, so
that the rest of the circuit C|b still satisfies φ.

2) Also note that we do not require the initial circuit C to
itself satisfy φ. This flexibility is useful when engineers
are concerned with problems of debugging and repair, as
we will see in the example in Section III-A.

3) By considering sequential circuits and temporal properties
rather than stateless expressions, the definition of subspecs
in Equation 4 is a strict generalization of the idea initially
developed by [15].

4) As discussed by [15], it is possible to introduce the idea
of joint subspecs which characterize how subspecs of
multiple components interact and compose. However, it
requires technical assumptions, see Theorem 5.7 of [15].

Ideally, one would like to express the specification and
subspec in the same language. However, it is easy to construct
circuits where the subspec is inexpressible as an LTL formula.
We will see an example in Section IV-A. We will therefore
primarily be interested in situations where the subspec is repre-
sented as a B¨ uchi automatonuchi automaton. We say that a B¨
M with alphabet Σ = Bool|I∪{b}| is the subspecification of b
with respect to φ if:

σ̃ ∈ L(M) ⇐⇒ (σ, τ) |= φ,

where (as before) τ is the sequence of outputs produced by
C|b, and σ is the sequence of valuations obtained from σ̃ by
projecting out the values of the “real” inputs, i ∈ I .

c) Paper outline: In Section III, we will present two
additional examples illustrating the utility of subspecs for
validation and debugging. Then, in Section IV, we will present
an algorithm to automatically derive these subspecifications.
Finally, in Sections V and VI, we will focus on empirically
validating their usefulness and our effectiveness in producing
compact subspecs.

III. EXAMPLE APPLICATIONS

Our examples in this section will be drawn from the
Reactive Synthesis Competition, SYNTCOMP 2023 [6]. Like
for the example in Section II, automatically synthesized
controllers provide a convenient source of specifications and
implementations that are tricky to comprehend.

A. Debugging Circuits

We consider the example of lilydemo12.tlsf [20]. The
original goal was to synthesize a controller that maps a pair of
input signals, i, j, to a pair of output signals, x and y, such
that:

G ¬x ∨ G(i =⇒ F y) ∨ G(j =⇒ F x).

In response, Spot produces a controller implemented using the
following two-latch circuit: 

an+1 = jnanbn, �bn+1 = jnan + anbn + anbn,
(5)

xn = jnanbn + anbn, and � yn = inan + inbn.

Assume that an engineer mistakenly designs the circuit as
follows:

′ ′ x = ¬xn and y = (¬in) ∨ (¬in). (6)n n⏞⏟⏟⏞ ⏞⏟⏟⏞ ∧¬an ⏞⏟⏟⏞ ∧¬bn

In other words, two mistakes were made: the output x was
incorrectly negated, and the input i was incorrectly negated
while being used to compute y. Note that these mistakes
correspond to two bit flips in the AIGER-encoded circuit.

At this point, the engineer might wish to explore ways
of repairing the system. Among other questions, they might
wonder whether its functionality can be restored by changing
the values produced by latch b. Although one might draw the
state machine corresponding to the current computation of b in
a manner similar to what we did in Figure 1c—see Figure 2a—
we note that this is useless, because we are uninterested in
what b currently does, and instead interested in what the latch
should now be doing.

As part of our user study in Section V, we asked a group
of students to suggest possible ways of repairing the circuit
by modifying the behavior of b. Notably, without additional
assistance, only one participant of nine was able to solve the
task, and required approximately 8 minutes to identify a fix.

Alternatively, using our subspecification derivation algorithm
from Section IV-B, one discovers that the latch can be replaced
with any component all of whose behaviors are accepted by
the Büchi automaton shown in Figure 2b. Observe now that

10

��
��

i ∧
b

′′ y = ¬in. This repaired implementation would therefore satisfyn
the specification by fulfilling its leftmost term, G ¬x.

Eight of the 9 participants in the intervention group in our
user study suggested this method of fixing the system. The
remaining participant identified the following (only slightly
more complicated) fix. They observed that state q3 was the only
non-accepting state in the subspec automaton in Figure 2b and
pointed out that all transitions leading to this state would be
disabled if b ′′ = ¬in. Plugging in this fix into the faulty updaten
expressions in Equation 6 and simplifying reveals that, in this

′′ case, y = in, so that the repaired implementation works byn
fulfilling the second term in the specification, G(i =⇒ F y).

B. Validating Sequences

We now look at example72.tlsf from the SYNTCOMP
2023 benchmark suite. Here, we are interested in a two-input
(i, j) two-output (x, y) controller such that:

G(¬x ∨ ¬y) ∧ G(i =⇒ x ∨ X x) ∧ G(j =⇒ y ∨ X y). (7)

The two-latch circuit in question is specified by the following
update expressions: 

an+1 = injnan + injnan ∧ bn, �bn+1 = anbn ∧ in,
(8)

xn = injnanbn + injnan + inan, and �
yn = inbnan + injnbn + injnanbn.

i ∧ b

s0

start

s1s2

s3

s4

b
¬j

∧ ¬
bj ∧ ¬b

¬j ∧ ¬b

¬i ∧
j ∧

b

i ∧
j
∧ b

¬j ∧ ¬b

j ∧
¬b

¬i ∧ b

¬
j ∧ ¬

b

j
∧ ¬

b

¬
i ∧

 b

true/b

q0

start

q1 q2

j/¬
b ¬j/

¬b
true/¬b

(¬
j
∧

b)
 ∨

 (j
 ∧

 ¬
b)

(a)

(b)

Fig. 2: (2a) The controller for the latch b in the circuit of
Equation 5. (2b) A description of all possible behaviors of
the latch b so that the rest of the faulty circuit from Equation 6
nevertheless satisfies the specification in Equation III-A.

the erroneous circuit would satisfy the specification if b were
to simply be replaced with a signal that produces the constant
value true. By replacing value of b in Equation 5 with
this new signal, b ′ = true, one observes that it resultsn ′′in the new sequence of output values x = false andn

i

j

a

b

x

y

(a) (b) (c)

Fig. 3: (3a) Original behavior of the system resulting from
signal i turning off and j turning on for one clock cycle in the
second time step. The engineer wonders why the circuit would
not work if b were to produce the constant value true. (3b)

′ ′ ′The values produced by a , x and y in this counterfactual
′scenario. This execution trace fails the specification because y

never goes high in response to the impulse on j. (3c) Analyzing
the subspec for b reveals that pushing it to false in the third
time step would restore global correctness.

¬j

q0 q1 q2

(¬i ∧ ¬b) ∨ ¬j

¬i ∧ ¬b (i ∧ j) ∨ (j ∧ b)
start

(i ∧ j) ∨ (j ∧ b) i ∧ ¬b

Fig. 4: A description of all possible legal behaviors of the latch
b so that the circuit from Equation 8 satisfies Equation 7.

As part of their validation process before incorporating
this system in their designs, the engineer might simulate the
controller under a variety of test inputs. We show an example
trace in Figure 3a. In this situation, they observe that both
latches a and b uniformly remain at false. They ask whether
the circuit still works if b is forced to be constantly true.
Questions like this might conceivably also arise when they are
modifying the circuit and running test cases.

Modifying the behavior of latch b in this manner would
affect the computation both of the remaining latch a and of the
outputs x, y, resulting in the alternative execution trace shown
in Figure 3b. It can be seen that this trace does not satisfy the
specification in Equation 7.

We now observe that subspecifications can provide greater
insight into the causes for this failure. We show the automati-
cally calculated subspec automaton in Figure 4. It turns out
that the new trace for b causes this machine to pass through
the sequence of states q0 → q0 → q1. At this point, the run
would terminate because both outgoing transitions from q1 are
disabled. This analysis allows us to localize the fault within
this alternative trace to the third time step. Pushing b to false
for one clock cycle at this point would cause the resulting trace
to once again satisfy the global specification. See Figure 3c.

IV. EXPRESSIBILITY AND AUTOMATIC DERIVATION OF
SUBSPECS

The principal contribution of this paper over [15] is in extend-
ing the idea of subspecifications from the setting of stateless,
loop-free expressions to the more general setting of sequential
circuits. Naturally, we need to reconsider questions related to

11

expressiveness and develop new algorithms to automatically
derive these subspecs (if they exist). Unfortunately, it is easy
to show that even if the global specification is provided as an
LTL formula, the subspecification of a latch need not itself
always be expressible using LTL. See Theorem IV.1. On the
other hand, in Section IV-B we show that the subspec is always
expressible as a Büchi automaton. Our proof of this second
result also provides an algorithm to automatically derive these
subspecifications.

A. Inexpressibility of Subspecifications as LTL Formulas

We start with the simple two-latch circuit shown in Figure 9a
in Appendix A. Each latch flips its value from the previous
time step:

an+1 = ¬an and bn+1 = ¬bn. (9)

Recall that both latches are initialized as a0 = b0 = false.
The circuit calculates its single output bit as follows:

xn = an ∨ ¬bn.

Naturally, this circuit always produces the output true, thereby
satisfying G x. We will now show that:

Theorem IV.1. There is no LTL formula which describes
the subspecification of latch b in the circuit of Figure 9a in
Appendix A and with respect to the global specification, G x.

Proof. It is easy to see that for this global property, G x to hold,
the latch b must produce the value false in even time steps,
t = 0, 2, 4, Its value in odd time steps, t = 1, 3, 5, . . . , is
unconstrained. This subspecification may be represented using
the Büchi automaton in Figure 9b, but is famously inexpressible
as an LTL formula [21].

B. Automatically Deriving Subspecs as Büchi Automata

We will now describe an algorithm to obtain the subspecifi-
cation of a latch b when it is requested as a Büchi automaton.
Recall that the problem is to replace the latch with a new
“magic” input signal, and determine all possible sequences of
inputs that can be supplied to this new circuit C|b so that the
execution of the rest of the circuit satisfies the given global
specification φ. For the purpose of illustration, we will continue
with the example from Section II.

As a first step, we write down an LTL formula that describes
all possible executions of the circuit C = (I, O, L, f):⋀

χ(C) = G(x ⇐⇒ fx(I, L)) ∧
x∈O⋀

(¬a ∧ G(X a ⇐⇒ fa(I, L))). (10)
a∈L

This formula, χ(C), ranges over the free variables I ∪ O ∪ L,
and functions in a manner similar to the Tseitin transform [22]:

Lemma IV.2. A sequence of valuations (σ, τ , ρ) of I ∪ O ∪ L
satisfies χ(C) iff the circuit C produces the output sequence τ
and latch values ρ when provided with the input sequence σ.

Proof. By induction on the timestep i and repeated application
of the circuit semantics from Section II.

Observe that χ(C|b) therefore describes all possible execu-
tions of the promoted circuit C|b. For example, for the circuit
in Equation 3, χ(C|b) would be:

G(x ⇐⇒ a) ∧ a ∧ G(X a ⇐⇒ iab + ijab + ijb).

We are interested in executions of C|b that also satisfy
φ. Naturally, the formula of interest is χ(C|b) ∧ φ. This
formula can be readily transformed into an equivalent Büchi
automaton MC,b,φ. Figure 8 in Appendix A shows the resulting
construction when applied to our running example. The main
outstanding challenge is that χ(C|b)∧φ (and therefore MC,b,φ)
ranges over all variables, I ∪ O ∪ L, while the desired subspec
in Figure 1d only relates the values of the inputs I and the
latch b that is currently being investigated.

Our key insight is that because every execution of MC,b,φ
corresponds to an execution of C|b, we can obtain the subspec
by simply erasing the irrelevant fields of the input alphabet,
Σ = Bool|I∪O∪L|. Let MC,b,φ = (Q, Σ, Δ, q0, F). Formally,
we propose to construct the projected-down automaton,

↓M = (Q, Σ↓ , Δ↓ , q0, F), (11)C,b,φ

by selecting the fields in Σ corresponding to I ∪ {b}, so that
Σ↓ = Bool|I∪{b}| and

↓Δ↓ = {(q, a , q ′) | (q, a, q ′) ∈ Δ},
↓and where a ∈ Bool|I∪{b}| is the symbol obtained by

eliminating the unnecessary field of a ∈ Bool|I∪O∪L|. We
can now establish a correspondence between the executions of

↓MC,b,φ and the executions of M :C,b,φ

Lemma IV.3. Whenever the ω-path π = q0 →a0 q1 →a1

q2 → · · · is accepted by MC,b,φ, the corresponding path
↓

1π↓ = q0 →a0
↓

q1 →a ↓
q2 → · · · is also accepted by MC,b,φ.

↓Conversely, for every path π↓ accepted by MC,b,φ, there exists
a path π accepted by MC,b,φ such that π↓ is the projection of
π.

Proof. The forward direction is immediate. In the converse
↓direction, recall that every transition (q, a , q ′) ∈ Δ↓ corre-

sponds to some transition (q, a, q ′) ∈ Δ of MC,b,φ. For each
transition qi →a ↓

qi+1 in π↓ , arbitrarily pick ai ∈ Σ so thati

→a0

q1 →a2 q2 → · · · is a valid path through MC,b,φ. Furthermore,
(qi, ai, qi+1) ∈ Δ. It must be the case that π = q0

↓because M preserves the acceptance conditions, it mustC,b,φ
be the case that π is also accepted by MC,b,φ, thus completing
the proof.

Note IV.4. Recall that because C|b is deterministic, it is possible
to uniquely recover the values of all latches a ∈ L and output
signals in x ∈ O by simply examining the history of the values

↓i ∈ I∪{b}. Furthermore, because every path π↓ through MC,b,φ
corresponds to some path π of MC,b,φ, and every execution of
MC,b,φ corresponds to an execution of C|b, the reconstruction

12

guaranteed by Lemma IV.3 must be unique: i.e., there must
be a unique reconstructed path π for each π↓ .

Combining Lemmas IV.2 and IV.3, we have:

Theorem IV.5. For each circuit C = (I, O, L, f), specification
φ, and latch b ∈ L, uchi automaton M is athe B¨ ↓

C,b,φ
subspecification of b with respect to φ.

Proof. Recall that C|b is the circuit obtained by promoting the
latch b to the status of a new input signal, and that MC,b,φ
is the Büchi automaton accepting the same set of traces as
χ(C|b) ∧ φ. Therefore, by Lemma IV.2, MC,b,φ accepts exactly
those traces of C|b that also satisfy φ. From Lemma IV.3,
there is a correspondence between the traces of MC,b,φ and

↓ ↓MC,b,φ, so it follows that M accepts only those signalC,b,φ
traces such that the reconstructed execution of C|b would

↓satisfy the specification φ. Because M only considers theC,b,φ
values of the extended set of input signals, I ∪ {b}, we can

↓ now say that M is the subspec of latch b with respect toC,b,φ
the specification φ. The theorem follows.

a) Implementation details: (a) We use Owl [23] for the
LTL-to-Büchi automaton translation, and the autfilt tool
in Spot [16] for simplifying the resulting automata. (b) We use
Spot to translate transition guards into DNF form. The minterms
of this formula can be easily subject to the downward projection
operation. (c) Although the definition of subspecs in Section II
focused on latches, our implementation more generally allows
for the computation of subspecs for any component in the
AIGER-encoded circuit. Notice that defining subspecs for
these components is an easy generalization. In particular, if
these Boolean functions are themselves representable using
combinational circuits, then we can perform similar reasoning
with any of its internal components as well. In particular,
we can replace the output of each internal logic gate b with a
hypothetical new input signal, and consider the conditions under
which the revised circuit would satisfy the global specification.
This would constitute a minor extension of the more restricted
idea of subspecs as presented in this paper, but the computation
algorithm would remain the same: Construct C|b, and use this

↓to calculate (in sequence,) χ(C|b), MC,b,φ, and MC,b,φ, and
finally simplify.

V. EMPIRICALLY MEASURING THE UTILITY OF
SUBSPECIFICATIONS

The first part of our evaluation consisted of a user study to
determine whether subspecifications were helpful to engineers.
Our goal was to answer the following research questions:
RQ1. Do subspecs help users in distinguishing valid and

invalid execution traces?
RQ2. Do subspecs help users in explaining the purpose of

individual components?
RQ3. Do subspecs help users in repairing faulty circuits?

A. Participants, Tasks, and Study Structure

a) Participant selection and screening process: The study
was conducted after obtaining IRB approval. We recruited

18 graduate students (2 Masters and 16 Ph.D. students) from
the Computer Science (CS), Electrical Engineering (EE), and
Industrial and Systems Engineering (ISE) departments of two
prominent American and Canadian universities. These partic-
ipants had a range of specializations, including optimization
algorithms, human-computer interaction, machine learning and
natural language processing, software engineering, MEMS and
robotics, computer networking, and theoretical CS.

We started by providing the participants with an introduction
to the study, and briefly introducing them to temporal logic
and the idea of subspecifications. We then administered a
screening quiz with 5 questions to ensure that participants had
a baseline level of understanding of these background ideas.
All participants received perfect scores in the screening quiz,
and were therefore included in the main study.

b) Tasks and study structure: The study consisted of
three tasks. The first task was based on the specification-
implementation pair discussed in Section III-B. It consisted of
4 questions in which participants were asked to predict whether
a presented counterfactual trace would cause the rest of the
circuit to produce an output trace that satisfied the specification.
We also asked participants to justify their responses. The second
task built on our introductory example in Section II, and asked
participants to explain, in natural language, the constraints
that specific parts of the circuit must satisfy. The last task
involved the faulty system discussed in Section III-A. We
pointed participants to different parts of the circuit, and asked
them to suggest fixes. We also asked them to justify their
responses if implementing a repair was impossible.

The study was formulated as a repeated measures design,
i.e., one in which each participant attempted at least one task
with access to subspecs and at least one other task without
access to subspecs. For each task, participants were randomly
assigned to either the intervention or control arms, with exactly
9 participants attempting each task under each condition. The
screening quiz, study materials, and (anonymized) participant
responses will be included as part of our artifact.

All authors of this paper independently graded participant
responses. The pairwise correlation coefficients between our
grades were 0.85, 0.88 and 0.90 respectively. We present our
average grades (indicating our assessment of their accuracy)
in Figure 6.

B. RQ1: Distinguishing Valid and Invalid Execution Traces

We draw our conclusions from Questions 1.1–1.4 of the
user study. We expected each response to include both a
summary Boolean-valued judgment (“Counterfactual trace
leads to valid behavior” vs. “Counterfactual trace leads to
erroneous behavior”) and a justification.

Two trends are obvious from Figure 6a: Participants without
access to subspecs were broadly unsuccessful at the task while
participants with access to subspecs were significantly more
effective. With and without our intervention, average participant
accuracy was 94% and 3% respectively.

In the baseline-without-subspec condition, participants would
have had to first mentally simulate the circuit from the provided

13

φ

C

b

ENCODE χ(C|b) LTL-to-Büchi MC,b,φ PROJECT M↓
C,b,φ

Fig. 5: Schematic overview of the algorithm to derive subspecifications. The procedure takes as input the global specification φ,
the circuit C, and the latch b whose subspec is being queried. We use Equation 10 to convert C|b into a corresponding LTL

↓formula and obtain MC,b,φ by using a standard LTL-to-B¨ usinguchi automaton translator. Next, we obtain the subspec MC,b,φ
the construction described in Equation 11 and subsequently simplify.

 1
.1

 1
.2

 1
.3

 1
.4

 2
.1

 2
.2

 2
.3

 3
.1

 3
.2

Task and Question

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 S

c
o
re

0 10 20 30

Time (minutes)

T3

T2

T1

(a) (b)

With Subspec Without Subspec

Fig. 6: Accuracy of participant responses and distribution of
time needed to complete each of the study tasks. Questions 1.1–
1.4 assessed the ability of participants to validate counterfactual
traces, Questions 2.1–2.3 asked them to explain what different
components should do, and Questions 3.1 and 3.2 assessed
their ability to repair faulty circuits.

update equations, and then determine whether the induced
response satisfied the provided specification. Anecdotally, given
the complexity of the update equations, most participants were
unable to even simulate the circuit. In the post-study debrief,
several of these participants complained about the complexity
of the update equations.

Accordingly, we observed two distinct response patterns
from the control group: The first subgroup opted to skip the
question after spending a considerable amount of time (Notice
the massively larger length of time that these participants
spent on Task 1), while the second subgroup provided guesses
without sound reasoning or justification. We also noticed that
participants gradually became tired, so their response accuracy
for Q1.1 was noticeably higher than for the remaining questions.

In contrast, the subspec eliminated the need to mentally
simulate the circuit. Participants simply had to trace the
behavior of the subspec automaton in response to the inputs and
counterfactual latch values. The subspec therefore allowed the
participants to visualize and locally reason about the execution
trace, without having to engage with the rest of the circuit’s
components.

C. RQ2: Explaining the Purpose of Individual Components

Now, we draw our conclusions from observing participant
responses to Questions 2.1–2.3. Specifically, these questions

asked participants to describe the required behavior of in-
dividual latches so that the rest of the circuit satisfied the
specification. As a point of elaboration, we asked participants
for the considerations that designers must keep in mind while
modifying the implementation.

Notice that, unlike the first task (which admitted a clear
solution strategy even without access to subspecs,) this second
task was open-ended. Here, most participants in the control
group confessed to not even knowing where to start. Participants
who had access to subspecs tended to approach the problem
by performing a case analysis on the subspec automaton.

The components of interest in Questions 2.1 and 2.2 admit-
ted relatively simple subspecs which only constrained their
behavior in the initial time step. Consequently, all participants
had a relatively higher accuracy for these two questions. In
contrast, Question 2.3 was exactly the setting of latch b that
we examined while initially motivating subspecs in Section II.

In this case, subspecs made some behaviors obvious: In
particular, if i ∧ j was false in the initial time step, then b
was required to satisfy G(i ∧ j =⇒ b). Similarly, if i ∧ j ∧¬b
held in the initial time step, then all requirements were lifted
for the rest of time. On the other hand, if i ∧ j was true in
the first time step, and b also assumed the value true, then
the subspec automaton would transition to the state s1, which
did not admit a winning strategy. It was therefore crucial for
the latch b to produce the initial value false when initially
i ∧ j. Four of the nine participants who had access to subspecs
(and nobody in the control group) were able to completely
articulate this requirement.

D. RQ3: Repairing Faulty Circuits

Finally, we focus on our observations of participant responses
to Questions 3.1 and 3.2. Both these questions involve the
specification-implementation pair from Section III-A.

Once again, participants in the control group complained
about having insufficient information to complete the task. We
also noticed them becoming tired: after spending considerable
effort and still being unsuccessful in Question 3.1, some of
them chose to skip Question 3.2.

While designing the user study, we expected this to be the
hardest of the three tasks. We were surprised that participants
with access to subspecs achieved an average score of 93%, and
needed the least amount of time among all three tasks. Another
notable observation was that the circuit could not be repaired

14

by modifying the component highlighted in Question 3.2. We
show its subspec in Figure 10 in Appendix A. For this question,
the average score of participants in the intervention group was
92%, indicating that most of them successfully identified and
justified the unrepairability of component m.

VI. EFFECTIVENESS OF THE SUBSPEC GENERATION
PROCEDURE

Next, we measured the effectiveness of our algorithm for
deriving simple subspecifications. We were interested in two
research questions:
RQ4. Does the algorithm generate “simple” subspecs?
RQ5. How long does the procedure take to construct these

subspecs?

A. Benchmarks

We ran Strix [7], the winner of the SYNTCOMP 2023
Competition on all benchmark specifications used in the compe-
tition. We collected the generated controllers and corresponding
circuit implementations. We set a 5 minute timeout on the
synthesizer, within which the solver was able to synthesize
635 controllers. Recall from the discussion in Section IV-B
that our tool is able to calculate subspecs for not just latches,
but more generally, for any component in an AIGER-encoded
circuit. We focused on controllers which had less than 100
such components, resulting in 545 specification-implementation
pairs, and which collectively contained 13,208 components. We
ran the subspec generation tool on each of these components
with a timeout of 10 minutes per run. At the end of this
data collection process, we had access to subspecs for 11,453
components.

B. RQ4: Effectiveness in Simplification

We measured the sizes of the generated subspecs. As such,
one would expect that the size of these subspecs is dependent
on the complexity of the specification or the controller being
investigated. Therefore, in Figures 7a and 7b, we present the
distributions of subspec size (# of states) when compared to
the size of the original specification (# of AST nodes) and the
size of the implementation respectively.

We notice that as many of 46% of the components in question
admit subspecs that are less than 20% of the size of the original
specification. Furthermore, in 75% of the cases, the subspec is
smaller than the original specification. In only 7% of the cases
is the subspec > 10× of the size of the original specification.
We make similar observations when comparing the size of the
subspec to the size of the circuit that surrounds the component
of interest: in this case, the corresponding numbers are 22%,
55%, and 6% respectively. Of course, all these comparisons
need to be interpreted with some care, because of the different
units of measurement associated with the subspec and the
original specification / implementation.

Nevertheless, we may broadly conclude that our algorithm is
effective in generating simple subspecifications. We also note
that we post-process the subspec initially produced by our pro-
cedure using the automata simplification routine implemented

in Spot’s autfilt tool. Figure 7c shows measurements of
the effectiveness of this simplification procedure. It achieves
a ≥ 50% compression in 50% of all cases. This appears to
be because most of the states in the originally constructed
automaton, MC,b,φ reason about other parts of the circuit,

↓and are useless after the downward projection into MC,b,φ. We
therefore believe that such post-processing passes are important
in obtaining simple subspecs.

C. RQ5: Time Needed to Derive Subspecifications

We present the running time measurements of the subspec
generation procedure in Figures 7d and 7e: These figures re-
spectively describe the absolute running time and a comparison
to the time needed to synthesize the original controller.

Note that 57% of cases require less than a second for subspec
generation, and we are faster than the original synthesis run
in 66% of cases. Only 5% of cases require long periods of
waiting. Our long-term goal is for engineers to consult subspecs
interactively during system design. The algorithm’s current
performance appears adequate for this.

VII. RELATED WORK

a) Verification and synthesis of reactive systems: Auto-
matic verification and synthesis are foundational and widely
studied problems [24]. Numerous algorithms and tools have
been proposed [7], [4], with annual competitions highlighting
recent advances [3], [6].Verification tools aid reliable system
design by finding bugs and certifying correctness. Indeed, one
of the important attractions of model checking is its ability to
generate counter-example traces when the system fails to satisfy
the desired property [25]. However, these counter-example
traces describe executions of the entire system, and are not
immediately helpful in localizing the fault or in devising repairs.
As such, these are not questions about the current behavior of
the system, but rather, of its desired behavior.

b) Deriving and explaining LTL specifications: There has
also been some concern about the inaccessibility of formal
specification languages for engineers in applied fields like
robotics, who may lack expertise in verification. To address
this, some efforts have aimed to make these formalisms more
accessible: for example, by automatically deriving temporal
logic specifications from system models [10], [11], translating
LTL formulas into natural language descriptions [12], and using
various kinds of translation technology to convert requirements
expressed in natural language into LTL, STL, MTL, and other
kinds of temporal logic formulas [13], [14]. Of course, these
techniques focus more on issues of understanding and obtaining
good specifications, rather than on the task of explaining the
mechanics of the system under consideration.

c) Modular verification and local reasoning: The key
idea in this paper was to reverse-engineer (temporal) specifi-
cations for individual components in a composite system. As
such, this task is intimately tied to the problem of modular
verification [26]. The promise of modular verification is that
proving and composing component-level properties can lead to
more scalable verification. In a sense, our hope with subspecs

15

0.0 2.5 5.0 7.5 10.0
|subspec| / |spec|

0

10

20

30

40

F
ra

c
ti

o
n
 o

f
h
o
le

s
 (

%
)

0.0 2.5 5.0 7.5 10.0
|subspec| / |circuit|

0

5

10

15

20

F
ra

c
ti

o
n
 o

f
h
o
le

s
 (

%
)

0.00 0.25 0.50 0.75 1.00
|final subspec| / |initial subspec|

0

2500

5000

7500

10000

#
 o

f
h
o
le

s
 (

c
u
m

u
la

ti
v
e
)

0 200 400 600
Runtime of our tool (seconds)

7000

8000

9000

10000

11000

#
 o

f
h
o
le

s
 (

c
u
m

u
la

ti
v
e
)

1X 10X 100X >100X
0

20

40

60

80

F
ra

c
ti

o
n
 o

f
h
o
le

s
 (

%
)

(a) (b) (c) (d) (e)

Fig. 7: (7a) Distribution of the size of the generated subspec (measured as the number of states in the subspec automaton), in
comparison to the size of the original specification (measured as the number of AST nodes). By holes we are referring to the
fraction of target components with a given |subspec|/|spec| ratio. The red colored bar indicates cases where the subspec size
was > 10× of the specification. (7b) Distribution of subspec size when compared to the size of the controller (measured as
the number of components in the AIGER implementation). (7c) Effectiveness of the subspec simplification pass described in
Section IV-B. Cactus plot of the subspec derivation time (7d) and comparison to the time needed for originally synthesizing
the circuit (7e).

is the same: that engineers will find properties of specific parts satisfy the corresponding subspec. Program repair has been
intuitive and easy-to-reason about when isolated from the rest extensively studied, both in the setting of large-scale code [30],
of the system. Of course, one challenge with modular verifiers [31] and in the setting of reactive systems [32]. Another notable
is inferring properties of individual modules. Similar challenges body of research focuses on program comprehension: one
might also arise when applying subspecs to very large systems. approach involves sophisticated techniques to visualize program

d) The unknown component problem: Subspecs are for- executions [33], while the other—for e.g., the famous Whyline
mally similar to the quotient operation over assume-guarantee tool [34]—once again involves counterfactual questions.
contracts [27], [28]: Given a global specification C = (A, G)

VIII. CONCLUSIONand a contract for the rest of the implementation C ′ = (A ′ , G ′),
the quotient, C/C ′ is the weakest specification of the unknown We introduced temporal subspecifications, a new way to
component [29] C ′′ such that their composition, C ′ ⊗C ′′, satisfies explain the behavior of individual components in sequential
C. Incer et al. [27] explicitly characterize the quotient as circuits. Our algorithm efficiently extracts these localized
C/C ′ = (A∩G ′ , A ′ ∩G∪¬(A∩G ′)). The principal difference is specifications, often producing simpler representations than
that this formula ranges over all variables in the system, while the original design. In a user study, subspecs greatly improved

engineers’ accuracy in understanding, debugging, and repairingthe subspec (obtained by downward projection in Equation 11)
circuits. This approach opens the door to more intuitive,constrains the behavior of the unknown component with
component-level reasoning and future integration into practicalrespect to only the global system inputs. In a sense, quotients
circuit design and debugging tools.correspond to the control group in our user study, where

participants had access to the actual implementation of the rest ARTIFACT AVAILABILITY STATEMENT
of the system. We have therefore demonstrated the value of The artifact supporting the claims made in this paper may
information hiding (i.e., of erasing irrelevant variables from be downloaded from Zenodo [35].
the subspec) during system engineering tasks.

e) Program comprehension and repair: Subspecs are also ACKNOWLEDGMENTS
closely connected to the problem of program repair. Most This research was supported in part by the National Science
simply, the behaviors exhibited by the program patch must Foundation under Grants CCF-2146518 and CCF-2107261.

16

REFERENCES [17] A. Biere, “The AIGER And-Inverter Graph (AIG) format version

[1] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic,” in Workshop on
logic of programs. Springer, 1981, pp. 52–71.

[2] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in cesar,” in International Symposium on programming. Springer,
1982, pp. 337–351.

[3] A. Biere, N. Froleyks, and M. Preiner, “Hardware model checking
competition 2024,” in Proceedings of the 24th Conference on Formal
Methods in Computer-Aided Design, ser. FMCAD, 2024.

[4] A. Goel and K. Sakallah, “Avr: abstractly verifying reachability,” in
Tools and Algorithms for the Construction and Analysis of Systems: 26th
International Conference, TACAS 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part I 26. Springer,
2020, pp. 413–422.

[5] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1989, pp. 179–190.

[6] S. Jacobs, G. Perez, and P. Schlehuber-Caissier, “Data, scripts,
and results from SYNTCOMP 2023,” 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8161423

[7] P. J. Meyer, S. Sickert, and M. Luttenberger, “Strix: Explicit reactive
synthesis strikes back!” in International Conference on Computer Aided
Verification. Springer, 2018, pp. 578–586.

[8] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in Computer Aided Verification: 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings 17.
Springer, 2005, pp. 226–238.

[9] A. Griesmayer, R. Bloem, and B. Cook, “Repair of boolean programs
with an application to c,” in Computer Aided Verification: 18th Interna-
tional Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006.
Proceedings 18. Springer, 2006, pp. 358–371.

[10] C. Lemieux, D. Park, and I. Beschastnikh, “General ltl specification
mining (t),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 81–92.

[11] D. Neider and R. Roy, “What is formal verification without specifications?
a survey on mining ltl specifications,” in Principles of Verification:
Cycling the Probabilistic Landscape: Essays Dedicated to Joost-Pieter
Katoen on the Occasion of His 60th Birthday, Part III. Springer, 2024,
pp. 109–125.

[12] H. Cherukuri, A. Ferrari, and P. Spoletini, “Towards explainable formal
methods: From ltl to natural language with neural machine translation,”
in International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2022, pp. 79–86.

[13] F. Fuggitti and T. Chakraborti, “NL2LTL: A Python package for
converting natural language (NL) instructions to linear temporal logic
(LTL) formulas,” in AAAI, 2023, system Demonstration.

[14] ——, “NL2LTL: A Python package for converting natural language (NL)
instructions to linear temporal logic (LTL) formulas,” in ICAPS, 2023.

[15] A. Nazari, Y. Huang, R. Samanta, A. Radhakrishna, and M. Raghothaman,
“Explainable program synthesis by localizing specifications,” Proceedings
of the ACM on Programming Languages, vol. 7, no. OOPSLA2, 2023.
[Online]. Available: https://doi.org/10.1145/3622874

[16] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard, and
H. Lauko, “From Spot 2.0 to Spot 2.10: What’s new?” in Proceedings
of the 34th International Conference on Computer Aided Verification
(CAV), ser. Lecture Notes in Computer Science, vol. 13372. Springer,
2022, pp. 174–187.

20071012,” Institute for Formal Models and Verification, Johannes Kepler
University, Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 07/1, 2007.

[18] S. Jacobs, “Extended AIGER format for synthesis,” CoRR, vol.
abs/1405.5793, 2014. [Online]. Available: http://arxiv.org/abs/1405.5793

[19] E. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
Checking, 2nd ed. MIT Press, 2018.

[20] B. Jobstmann and R. Bloem, “Optimizations for ltl synthesis,” in Formal
Methods in Computer Aided Design, ser. FMCAD, 2006, pp. 117–124.

[21] P. Wolper, “Temporal logic can be more expressive,” Information
and Control, vol. 56, no. 1, pp. 72–99, 1983. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0019995883800515

[22] G. S. Tseitin, “On the complexity of derivation in propositional calculus,”
1983. [Online]. Available: https://api.semanticscholar.org/CorpusID:
123007433

[23] J. Křetı́nský, T. Meggendorfer, and S. Sickert, “Owl: A library for ω-
words, automata, and LTL,” in Automated Technology for Verification
and Analysis, ser. ATVA. Springer, 2018, pp. 543–550.

[24] A. Church, “Application of recursive arithmetic to the problem of circuit
synthesis,” Journal of Symbolic Logic, vol. 28, no. 4, 1963.

[25] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: algorithmic
verification and debugging,” Communications of the ACM, vol. 52, no. 11,
pp. 74–84, 2009.

[26] O. Grumberg and D. E. Long, “Model checking and modular verification,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 16, no. 3, pp. 843–871, 1994.

[27] I. Incer Romeo, A. Sangiovanni-Vincentelli, C.-W. Lin, and E. Kang,
“Quotient for assume-guarantee contracts,” in 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System
Design (MEMOCODE), 2018, pp. 1–11.

[28] I. Incer, A. Badithela, J. B. Graebener, P. Mallozzi, A. Pandey,
N. Rouquette, S.-J. Yu, A. Benveniste, B. Caillaud, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. A. Seshia, “Pacti: Assume-guarantee
contracts for efficient compositional analysis and design,” ACM Trans.
Cyber-Phys. Syst., vol. 9, no. 1, Jan. 2025. [Online]. Available:
https://doi.org/10.1145/3704736

[29] T. Villa, N. Yevtushenko, R. K. Brayton, A. Mishchenko, A. Petrenko,
and A. Sangiovanni-Vincentelli, The Unknown Component Problem:
Theory and Applications. Springer US, 2012. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-68759-9

[30] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691–
701.

[31] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” Ieee transactions on software
engineering, vol. 38, no. 1, pp. 54–72, 2011.

[32] D. Harel, G. Katz, A. Marron, and G. Weiss, “Non-intrusive repair of
reactive programs,” in 2012 IEEE 17th International Conference on
Engineering of Complex Computer Systems. IEEE, 2012, pp. 3–12.

[33] P. J. Guo, “Online python tutor: embeddable web-based program
visualization for cs education,” in Proceeding of the 44th ACM technical
symposium on Computer science education, 2013, pp. 579–584.

[34] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging interface
for asking questions about program behavior,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, 2004, pp.
151–158.

[35] A. Nazari, M. Amini, and M. Raghothaman, ““How Does my Circuit
Work?”: Local explanations for the behavior of sequential circuits
(Artifact),” Zenodo, 2025. [Online]. Available: https://doi.org/10.5281/
zenodo.16884535

17

https://doi.org/10.5281/zenodo.8161423
https://doi.org/10.1145/3622874
http://arxiv.org/abs/1405.5793
https://www.sciencedirect.com/science/article/pii/S0019995883800515
https://api.semanticscholar.org/CorpusID:123007433
https://api.semanticscholar.org/CorpusID:123007433
https://doi.org/10.1145/3704736
http://dx.doi.org/10.1007/978-0-387-68759-9
https://doi.org/10.5281/zenodo.16884535
https://doi.org/10.5281/zenodo.16884535

g11

s0

s1

s2

s3

s4
g 0

1

g02

g
03

g
1
2

g22

g24

g33

g42

g44

start

Fig. 8: Büchi automaton MC,b,φ for the latch b in the circuit
described in Equation 8, and with respect to the specification
of Equation 7. The transition guards are provided by g01 =
i∧j ∧¬a∧b∧x, g02 = i∧j ∧¬a∧¬b∧x, g03 = (¬a∧¬i∧x)∨
(¬a∧¬j ∧x), g11 = (¬a∧¬i∧x)∨(¬a∧¬j ∧x)∨(¬a∧b∧x),
g12 = i ∧ j ∧¬a ∧¬b ∧ x, g22 = a ∧¬b ∧¬x, g24 = a ∧ b ∧¬x,
g33 = (¬a ∧¬i∧x)∨(¬a∧¬j ∧ x)∨ (¬a ∧ b ∧ x), g42 = ¬a ∧
¬b∧i∧j∧x, and g44 = (¬a∧¬i∧x)∨(¬a∧¬j∧x)∨(¬a∧b∧x)
respectively.

(a)

¬b

start s0 s1

(b)

Fig. 9: (9a) Representation of the circuit from Equation 9 as
an and-inverter graph. (9b) Subspec of the latch b with respect
to the global specification, G x. Observe that the output value
is unconstrained in odd-indexed time steps.

APPENDIX

a) Experimental setup: We ran our experiments on a
four-year old workstation machine with an AMD Ryzen 9
5950X CPU and 128 GB of memory running Ubuntu 21.04.
We expect similar results to be obtained on most recent desktop
and laptop computers.

j ∧ ¬m ¬i

start s0 s1 s2 s3 s4
¬m ¬j ∨ m ¬i ∧ j i

¬i

m i ∧ j¬j

Fig. 10: Subspecification of a component m of the circuit from
Equation 6 with respect to the specification in Equation III-A.

18

i

	Introduction
	Formally Defining Subspecifications
	Example Applications
	Debugging Circuits
	Validating Sequences

	Expressibility and Automatic Derivation of Subspecs
	Inexpressibility of Subspecifications as LTL Formulas
	Automatically Deriving Subspecs as Büchi Automata

	Empirically Measuring the Utility of Subspecifications
	Participants, Tasks, and Study Structure
	RQ1: Distinguishing Valid and Invalid Execution Traces
	RQ2: Explaining the Purpose of Individual Components
	RQ3: Repairing Faulty Circuits

	Effectiveness of the Subspec Generation Procedure
	Benchmarks
	RQ4: Effectiveness in Simplification
	RQ5: Time Needed to Derive Subspecifications

	Related Work
	Conclusion
	Artifact Availability Statement
	Acknowledgments
	References
	Appendix

