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Abstract—Hyperproperties generalize traditional trace proper-
ties by relating multiple execution traces rather than reasoning
about individual runs in isolation. They provide a unified way
to express important requirements such as information flow and
robustness properties. Temporal logics like HyperLTL capture
these properties by explicitly quantifying over executions of a sys-
tem. However, many practically relevant hyperproperties involve
quantifier alternations, a feature that poses substantial challenges
for automated verification. Complete verification methods require
a system complementation for each quantifier alternation, making
it infeasible in practice. A cheaper (but incomplete) method
interprets the verification of a HyperLTL formula as a two-player
game between universal and existential quantifiers. The game-
based approach is significantly cheaper, facilitates interactive
proofs, and allows for easy-to-check certificates of satisfaction. It
is, however, limited to V*3* properties, leaving important prop-
erties out of reach. In this paper, we show that we can use games
to verify hyperproperties with arbitrary quantifier alternations
by utilizing multiplayer games under partial information. While
games under partial information are, in general, undecidable,
we show that our game is played under hierarchical information
and thus falls in a decidable class of games. We discuss the
completeness of the game and study prophecy variables in the
setting of partial information.

I. INTRODUCTION

In 2008, Clarkson and Schneider [1] coined the term hy-
perproperties for the rich class of system requirements that
relate multiple executions. In contrast to trace properties —i.e.,
properties over individual executions, expressed, e.g., in linear-
time temporal logics (LTL) [2] — hyperproperties can express
important properties related to information flow, knowledge,
and robustness. As an example, consider a system with secret
input h, public input [, and public output o, and assume we
want to express that the public behavior does not leak any
information about the secret input. We cannot express such an
information-flow requirement as a trace property in, e.g., LTL;
we need to compare multiple executions to see if (and how)
the secret input impacts the output. Instead, we can express it
as a hyperproperty in HyperLTL [3], an extension of LTL with
explicit quantification over execution traces. For example,

V1 Vme.O(lr, < lry) = O(0r, < 0r,)- (OD)

requires that any pair of executions my, 7o with identical
public input also has the same output, i.e., the output is fully
determined by the public input and thus cannot possibly leak
the secret input (cf. observational determinism [4]).
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While originating in the study of information flow, hyper-
properties have since been established as a much more general
framework that captures properties from many different areas,
including, e.g., knowledge properties in multi-agent systems
(MAS) [5], [6]. As an example, consider some MAS with
agents 1,...,n, and some LTL property ¢, and assume that
we want to verify that there exists at least one execution of
the MAS such that agent ¢ knows that v holds (e.g., some
adversary knowing some secret). Formally, knowing that v
holds on some execution trace 7; means that 1) must hold
on all traces mo that are indistinguishable from m; for agent ¢
(cf. [7]), which is a hyperproperty. We can easily express this
property in HyperLTL, as follows

(Kp)

where we write [m2] to indicate that ¢ holds on trace
w9, and m =; mo denotes that executions 7 and me ap-
pear indistinguishable under agent i’s observations. Using
the flexibility of quantification, we can also express nested
knowledge properties. For example, we can express that, on
some execution, agent ¢ knows that agent j does not know
whether v holds:

3771.V7T2.37T3.37T4.7T1 =; o —
(72 =, m3 Ao =5 ma AP[ms] A _‘MMD;

i.e., for every trace 7y that agent ¢ cannot distinguish from 7y,
there exist two traces ms, w4 that agent j cannot distinguish
from 7o, one of which satisfies 1) and one violates ).

Verification of HyperLTL: In this paper, we study the
model-checking problem for HyperLTL (or, more generally,
of hyperproperties that can be expressed using HyperLTL-
style quantification over system paths or traces [8]-[10]).
Unsurprisingly, the quantifier prefix of the HyperLTL formula
directly impacts the complexity of this verification problem.
For alternation-free formulas (e.g., OD), verification can be
reduced to the verification of an LTL property on the self-
composition of the system [11], [12], which is very efficient.
Verification gets much more challenging when the formula
includes quantifier alternations as used in Ky, Ky, and many
other HyperLTL formulas studied in the literature [13]-[15].
Complete approaches require one system complementation for
each alternation in the formula [3], [12], making it infeasible
in practice.

37T1.V7T2.7T1 =; Ty — dj[ﬂ'Q]a

(Kz)
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Game-based Verification: A cheaper (but incomplete)
verification method for V*3* formulas (i.e., formulas where
an arbitrary number of universal quantifiers is followed by
an arbitrary number of existential quantifiers) is based on a
strategy-based interpretation of existential quantification [16],
[17]. The key idea is to interpret the verification of a HyperL'TL
formula of the form Vm;.3ms.9) (where 9 is the LTL body) as
a game between two players. A refuter controls the universally
quantified trace by moving through a copy of the underlying
system, thereby constructing a concrete trace for m;. The
verifier reacts to the moves by the refuter and moves through
a separate copy of the system, thereby producing a concrete
trace for my. The goal of the verifier is to ensure that 7; and
o, together, satisfy 1. We can think of the verifier’s strategy
as providing a step-wise construction of a concrete witness
trace for mo (akin to a Skolem function). This game-based
approach is sound (i.e., if the verifier wins, the hyperprop-
erty is satisfied by the system) and computationally cheaper
than complementation-based approaches. Moreover, the game-
based approach also allows for interactive proofs and witnesses
of satisfaction. For example, we can use the game-based
framework to let the user construct a strategy interactively
[18], allowing verification even in situations where automated
techniques do not scale. Likewise, we can use a winning
strategy for the verifier as an (easy-to-check) certificate that
the property is satisfied [19].

Unsoundness Beyond V*3*: The game-based verification
approach of Coenen et al. [16] and its descendants have proven
themselves in many situations (cf. Section VII). However,
since its inception, the approach has been limited to V*3*
properties. Intuitively, as soon as we consider properties
beyond V*3*, the step-wise selection of the traces leads
to unsoundness, i.e., cases where a winning strategy exists
even though the property is violated; we give a concrete
instance in Example 1. Consequently, for properties outside the
v*3* fragment, no effective verification approximation exists
(cf. Section VII), nor does there exist any approach that allows
interactive proofs or satisfaction certificates.

Partial Information: In this paper, we present a novel
game-based method that allows us to soundly verify arbitrary
quantifier structures. Our key contribution is the observation
that we need to reason about partial information. In our
game-based encoding, we consider multiple players, each of
whom controls a unique trace in the HyperLTL formula. We
then carefully design an observation model for each player
to ensure soundness. Intuitively, our observations ensure that
each player controlling some trace 7 can only observe the state
sequence from traces that are quantified before m. We thus
obtain a multiplayer game played under partial information
that, if won by a certain group of players, ensures that the
formula holds on the given system (Section IV).

Hierarchical Information: In general, multiplayer games
under incomplete information are undecidable. We show that
our verification game falls in a well-known class of games
that can be solved effectively. Namely, games where the
information of the players is hierarchical [20]-[26].
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Completeness and Prophecy Variables: Similar to the
V*3* game [16], [17], our game-based approach using par-
tial information is incomplete: In some cases, the property
holds, but no winning strategy exists. While incomplete for
vV*3* properties, we show that our approach is complete for
3*V* properties (Section V). This gives rise to a sound-and-
complete verification method for all properties with at most
one quantifier alternation (via complementation), at the cost of
introducing partial information. More generally, we study the
use of prophecy variables [17], [27] in our verification game,
allowing a player to peek at the future temporal behavior of
other players (Section VI).

Applications: The core contribution that partial informa-
tion enables game-based verification of arbitrary hyperproper-
ties creates a plethora of new possibilities for hyperproperty
verification: Our game-based view (1) leverages techniques
for solving partial information games (cf. Section VII) for
automated verification; (2) facilitates interactive proof of hy-
perproperties beyond V*3* by letting the user construct strate-
gies; (3) enables strategies as easy-to-check certificates for
satisfaction; and (4) supports prophecies to soundly strengthen
the approach, both in automated and interactive verification.

Full Version: Proofs of all results can be found in the
full version [28].

II. PRELIMINARIES

Kripke Structures: As the basic system model, we use
finite-state Kripke structures. We assume that AP is a fixed
set of atomic propositions (AP). A Kripke structure (KS) is
a tuple X = (S, sinit, D, k,£), where S is a finite set of
states, S;,;; & S is a dedicated initial state (not part of S),
D is a finite set of directions, x : (S W {Sinit}) x D — §
is the transition function, and ¢ : (S W {sii}) — 247
labels each state with an evaluation of the APs.! A path
in IC is an infinite sequence 7 € (S W {Sinit})* such that
7(0) = Sinit, and for every i € N, there exists some d € D
such that 7(: + 1) = k(7(i),d). We define Paths(KC) as
the set of all paths in K. Each path 7 denotes an associated
trace £(7) := £(T(0))(T(1))4(7(2)) - -- € (24F)* defined by
applying ¢ pointwise. We define Traces(K) := {{(7) | T €
Paths(KC)} C (247)% as the set of all traces generated by .

Linear-Time Temporal Logic: Linear-time temporal logic
(LTL) [2] formulas are defined as follows

Yi=al YA |9 [OY [ YUY,

where a € AP is an atomic proposition. The basic formula
a requires that the AP a holds in the current state, QO
requires that ¢ holds in the next step, and )1 U 12 requires
that v holds until 1o eventually holds. We use the usual
derived constants and connectives true, false,V,—, <>, and

'We use slightly unconventional notation in two places: Firstly, we assume
a dedicated initial state s;y,;¢, simplifying the addition of prophecies. Secondly,
we use directions to uniquely identify successor states, simplifying our
game construction. Traditionally, transition functions in Kripke structures are
functions S — 25\ {0} that map each state to a non-empty set of successor
states. We can easily transform such a transition function into a directed
function S X D — S by using sufficiently many directions.



the temporal operators eventually 1 = trueld v, and
globally (1) := —<>—). Given a trace t € (247)*, we define
the semantics of LTL for each time point ¢ € N as follows:

tiEa iff  aeti)
til i A iff £ =1 and £ = o
- it ti ey

til= O it i+ 1=

il viUes it 3k >tk = o and

VZ§J<kt7]’:1/}1

We write t =, ¢ if ¢ satisfies 1, i.e., t,0 | 1.

Deterministic Parity Automata: A deterministic parity
automaton (DPA) is a tuple A = (%, Q, qo, d, ¢) where ¥ is
a finite alphabet, () is a finite set of states, gy € @ is an
initial state, 6 : @ x ¥ — (@ is a transition function, and
¢ : @ — N colors each state with a natural number. For an
infinite word v € ¥¢, we define run(A,u) € Q¥ as the
unique run of A on w. Formally, run(A,u) is the unique
word in Q“ such that run(A, u)(0) = go and for every i € N,
run(A,u)(i + 1) = §(run(A,u)(i),u(i)). That is, we start
the run in the initial state go and progress by following A’s
transition function using the letters from u. The acceptance
condition in DPAs is based on the color of the states (as given
by ¢). An infinite run in Q* is accepting if the minimal color
that occurs infinitely often is even. We write £(A) C X¢ for
the language of the automaton, which consists of all words
where the unique run is accepting. In this paper, we use a
parity acceptance condition as DPAs capture every w-regular
property and thus every LTL-expressible property:

Lemma 1 ([29], [30]). For every LTL formula 1), we can
effectively construct a DPA Ay (24P, Qyp, G0, 61y Cyp)
such that L(Ay) = {t € (247)“ | t Epr ¥}

We emphasize that our construction also applies to other
automaton types. For example, if the LTL body of our
hyperproperty can be expressed as a deterministic Biichi
(resp. safety) automaton, our later construction in Section IV
yields a Biichi (resp. safety) game.

HyperLTL: HyperLTL [3] extends LTL with explicit
quantification over (execution) traces of the system. Let V =
{m1,m2,...} be a set of trace variables. HyperLTL formulas
are generated by the following grammar

Yi=ar [YAY [ [OY [ YUY
p:=Vr.o|3Im.p| ¢

where a € AP is an atomic proposition, and 7 € V is a
trace variable. Each HyperLTL formula thus has the form
o = Q... Qum,. ¥, wWhere Q,...,Q, € {V,3} are
quantifiers, m,...,m, € V are trace variables, and ) is an
LTL formula over trace-variable-indexed APs. The formula
quantifies over traces 7y, . .., T, in the system (in typical first-
order semantics) and requires that the resulting combination
of n traces satisfies the temporal requirement expressed by the
trace-variable-indexed LTL formula 1.
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A trace assignment is a partial function IT : V — (24F)«
that maps trace variables to traces. Given II we can evaluate
the LTL body v in each time point ¢ € N:

ILi = ax iff a € TI(7)(4)

ILi =y Ao iff 1L |= ¢y and 11,4 = 1o
i | F IL 7 e o

I,i = O i TLi 4+ 1 = o

ILi =g Unps  iff 3k > 0.1k = 1o and

Vi <j < kILj E

Temporal and Boolean operators are evaluated as for LTL.
Whenever we evaluate an indexed AP a,, we look at the trace
bound to 7 and check if a currently holds on this trace. Given
a KS IC, the quantifier prefix in HyperLTL then adds traces to
the trace assignment in typical first-order fashion:

Mgy iff L0
Ik Vr.e iff YVt € Traces(K).I[r — t] Ex ¢
I 3r.e iff 3te Traces(K).I[r —t] Ex ¢

We say K satisfies o, written K | ¢, if § = ¢, where 0
denotes the trace assignment with empty domain.

III. GAME-BASED VERIFICATION OF V*3*

Model-checking a HyperLTL formula with %k quantifier
alternations is k-fold exponential [3], [8], and complete
methods typically utilize expensive operations like automata
complementation [12] and inclusion checking [31]. For V*3*
properties, we can soundly (but incompletely) approximate the
expensive model-checking problem by, instead, constructing a
game and searching for a strategy that defines witness paths
for existentially quantified traces [16], [17].

A. Farity Games

To model the dynamics of the verification game, we use a
turn-based game played between a verifier and a refuter (as
done by [17]).

A parity game (PG) is a tuple G = (Vig, Vg, vinit, D, E, ¢),
where V := Vi W Vix is the set of game vertices, partitioned
into vertices controlled by the verifier (Vi) and refuter (Viy),
Vingt € V is the initial vertex of the game, D is a set of
directions, F : V x D — V is the transition function of the
game, and c : V — N assigns each state a color used for the
parity acceptance condition.

The game is played on an underlying graph whose vertices
are controlled by the verifier () or refuter (!R). Whenever the
game is in a vertex controlled by a player p € {0, R}, the re-
spective player can determine to which vertex the game should
progress by choosing some direction from . A strategy for
the verifier is a function o : V* - Viy — D. The strategy
reads a sequence of vertices v ---v, (ending in a vertex
vy, € Vi controlled by the verifier) and determines a direction
o(vy---v,) € D in which the game should progress. A play
p € V¥ is compatible with a strategy o for U if p(0) = vt
(i.e., the play starts in G’s initial vertex), and for every ¢ € N,



with p(i) € Vig, we have p(i + 1) = E(p(i), o(p[0,4])). That
is, we construct the play iteratively; Whenever the game is in
a vertex controlled by the verifier, we query strategy o on the
current prefix to obtain a direction and update the vertex based
on G’s transition function. We say a play p € V* is even if the
minimal color that appears infinitely often on p (according to
coloring c) is even (similar to the acceptance condition used
for DPAs). The verifier wins G if there exists a strategy o for
the verifier such that every play compatible with o is even.

B. The Verification Game for ¥*3*

Assume a fixed system K = (5, $jnit, D, K, ¢) and a V3
HyperLTL formula V7;.3m5.7). For our game construction, we
represent the temporal requirement expressed by v — the LTL
body of ¢ — as a deterministic automaton. Recall that the
atomic propositions in 1 are indexed with trace variables, i.e.,
1 is an LTL formula over

APy = {ar |a € AP, 7 € {m,m}}.

We assume that Ay, = (247% Qy, qo.p, 5y, cy) is a DPA
over alphabet 24P+ that recognizes 1, i.e., L(Ay) = {t €
(24Pw) | t l=ppp ) (cf. Lemma 1). We can then define
a parity game, denoted g}@a, that captures the iterative con-
struction of traces [17]:

Definition 1 (G{", [17]). Define the parity game G- by
gl\éio = (Vag, Vim, Vinat, D, E, ), where

o Vg = ?31752,(],%) | 51,82 € SW{Sinit} Aq € Q¢},
o V= <51,32,q,9%> | S1,82 € Sy {sim't} Nq € qu},
o Uinit ‘= (Sinit, Sinit> Q0,155 R),

o the set of direction D is the same as in K,

e the transition function E : V x D — V is defined by

E(<815827q5m>5d) = <81,K}(827d>,q,m>
E(<513827Qam>5d) =

<K(81,d),82,5¢ (q, CJ {ar, |a € E(si)}>,m>,

. C(<81,82,q,p>) = cy(q).

In our game, each vertex (si,s2,q,p) tracks a state s;
for m; (called the 7i-copy), a state sy for my (called the
ma-copy), the current state ¢ of Ay, and the current player
p € {U,MR}. In the initial vertex v;,;, every system copy
starts in the initial state, and A, begins tracking in its initial
state qo,y. Intuitively, in each round of the game, the refuter
can update the 7;-copy by moving along some transition in i,
followed by the verifier updating the m,-copy; afterward, the
game repeats. Formally, whenever in a vertex (si, s2,q, D),
the verifier can choose a direction d € D, and the my-copy
is updated to x(s2,d) (the first case in the definition of FE).
Analogously, when in vertex (si,ss,q,R) the refuter can
update the m1-copy along some direction (the second case in
the definition of E). When the refuter moves a round of the
game has concluded, so we update the state of A,. For each
i € {1, 2}, we thus read of the APs that currently hold in state

0 0 {a)
() ?.?

Fig. 1: Simple Kripke structure over AP = {a}

s; (£(s;) € AP) and index all these APs with 7; to obtain a
letter |J?_, {anr, | a € £(s;)} € 24P, which we feed to Ay’s
transition function.

As we track separate states for m; and 7o, every infinite
play in G defines two paths in K; one for 7, (where each
step is controlled by the refuter), and one for 7y (controlled
by the verifier). In g}ﬁo, each vertex (s1, so,q,p) is assigned
color ¢y (q) using Ay’s coloring function, so an infinite play in
G, is won by the verifier iff the paths constructed for 7y, 75
during the gameplay are accepted by A, and thus satisfy ).
Any winning strategy for °J thus step-wise constructs a witness
trace for 72, no matter how the refuter constructs 1. It is not
hard to see that the existence of a winning strategy for the
verifier thus implies that we can always find a witness trace
for 7y in the HyperLTL semantics:

Lemma 2 ([17]). If the verifier wins g}ﬁa, then K |= .

Remark 1. The game-based approach can be used for
automated verification by constructing the game and solving
it via an off-the-shelf parity solver (the original motivation of
[16], [17]). However, the appeal of Lemma 2 is much broader.
For example, the user can construct a strategy by using
domain knowledge, which enables interactive verification even
in situations where automated model-checking does not scale
(see, e.g., [18]). Likewise, checking if a given strategy for the
verifier wins Q,\ﬁo is often easier than computing a strategy
from scratch; strategies are easy-to-check certificates.

IV. GAME-BASED VERIFICATION BEYOND V*3*

The game-based approach from the previous section soundly
approximates the semantics of V*3* formulas. Unfortunately,
the approach is limited to V*3* properties and becomes
unsound when considering properties beyond V*3*.

Example 1. Consider the Kripke structure K over AP =
{a} in Figure 1 and the 3'V* HyperLTL formula

¢ = Im .Vma. (OO0 ax,) < (OO0 axr,),

where the LTL body expresses that AP a should hold in the
third step on 1 iff it holds in the second step on mo. Clearly,
IC = @; no matter what fixed trace we choose for w1, we can
always find a trace for o that violates the LTL body.

Now let us naively adopt the game used in Section Il to this
3V property. That is, we, again, maintain states for all trace
variables and let the verifier and refuter iteratively update
the existentially and universally quantified system copies,
respectively. The resulting game is won by the verifier: During
the gameplay, the refuter (who controls the state for the
universally quantified 7o) has to decide in the second step
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whether or not AP a should hold (by moving to s or Sa).
Only later in the game (in the third round) does the verifier
choose if a holds on 1. By that time, the verifier can thus react
to what the refuter has done in the previous step and set a
on w1 appropriately, ensuring that (OOQ axr,) > (OO0 ax,)
is satisfied. The game is won by the verifier, even though the
property does not hold.

A. Multiplayer Games and Partial Information

In this paper, we propose a novel game-based approximation
that applies to arbitrary quantifier structures. Our simple yet
powerful observation is that the unsoundness is directly linked
to the knowledge of the player. In Example 1, the verifier could
win the game as it can observe what the refuter did in the
previous steps. In contrast, in the semantics of an 3V property,
any witness for the existential quantifier must be independent
of the choice for the universal quantifier. By identifying
knowledge as the core reason for unsoundness, we can extend
the game-based approach to arbitrary HyperLTL formulas by
utilizing partial information. The technical challenge is then
to link the knowledge/information of a player to the first-order
semantics of HyperLTL.

As our underlying game formalism, we use (sequential)
multiplayer parity games [32], which extend parity games with
multiple players and partial information. A multiplayer parity
game under incomplete information (MPGj;) is a tuple

g= (]Pv {Vp}pEPv Vinat, D, F, {Np}pG]P’v C),

where P is a finite set of players; for each p € P, V}, is a
finite set of vertices controlled by p. We write V' := L‘ﬂpep Vi
for the set of all vertices in the game (which we assume to
be disjoint). v;n;; € V is the initial vertex of the game, D
is a set of directions, and F : V x D — V is the transition
function of the game. For each player p € P, ~,C V xV is an
equivalence relation on the set of vertices. Lastly, c: V — N
assigns each vertex a color.

An MPG,; models the joint behavior of the players in P,
where each player p € P controls a disjoint set of vertices
Vp. If the game is currently in a vertex in V), player p can
determine where the game should move next by choosing
some direction from ). We obtain a standard two-player game
(cf. Section IIT) by setting P = {0, R}. Moreover, each player
p € P is assigned an indistinguishability relation ~,, i.e., if
v ~, v/, player p cannot distinguish between v and v’. As
usual, we assume that each player is at least able to distinguish
whether or not it controls the current vertex. That is, for every
v ~, v, we either have v, v’ € V,, or v,0" € V'\ V.

Strategies and Plays: Two finite plays pi,p2 € V* are
indistinguishable for player p € P, written p; ~, po, if
|p1| = |p2| and for every 0 < i < |p1], p1(i) ~p pa(i). A
strategy for player p € P is a function o), : V*-V,, — DD, such
that o,,(p1) = 0, (p2) Whenever p; ~,, ps. The strategy reads a
sequence of vertices vy - - - v, (ending in a vertex v,, € V},) and
determines a direction op(v; ---v,) € D in which the game
should progress. This decision must conform to the agent’s
observations, i.e., if two finite plays appear indistinguishable

for p, strategy o, must choose the same direction on both
plays. Within the game, we obtain infinite plays in G by
letting strategies for all players interact. A global strategy
{op}pep assigns each player p € P a strategy o,,. Every global
strategy {0, } pep defines a unique infinite play p € V', where
p(0) = vinir (i-e., the play starts in G’s initial vertex), and for
every i € N, we have p(i + 1) = E(p(i),0,(p[0,])) where
p € P is the unique player with p(i) € V,. That is, whenever
the game is currently in a vertex controlled by player p, we
query p’s strategy on the current prefix p[0,i] to obtain a
direction and update the game’s vertex along that direction.
As before, we say a play p is even if the minimal color
that appears infinitely often on p is even. We are interested
in checking if a given coalition of players A C P can win
the game. A coalition A C P wins G, written wins(A,G),
if there exists strategies {0, }pca for the players in A, such
that, no matter what strategies other players use, i.e., for every
possible {0, },cp\ 4, the play resulting from the combined
global strategy {o,},cp is even. That is, if the players in A
follow their strategies in {0, },c 4, the resulting play satisfies
the parity winning condition no matter how the other players
behave.

B. HyperLTL Verification as an MPGj;

We now present the core contribution of this paper: MPGj;s
allow for the sound verification of arbitrary HyperLTL formu-
las. For this, assume

Y= QlTrl v Qnﬂ-n-’d}

is a fixed HyperLTL formula over trace variables my,...,m,
with arbitrary quantifier structure. As in Section III, we
assume that Ay = (247% Qy, g0y, 0y, cy) is a DPA over
alphabet APy := {ar | a € AP,m € {m,...,m,}} that
recognizes v (cf. Lemma 1).

Definition 2 (Gi, ). Define the MPG;; G, by
glC,go = (Pa {VZD}pE]P% Vinity D7 Ea {Np}pEIP’7 C)a
where

o P:= {1,...,71},
e for each p € P,

Vp = {<Sla .. '7Sn7Q7p> ‘
S1,.., 80 € SW{Sinit},q € Qu},

o Vinit = (Sinits - - - » Sinit> Q0,5p5 1),
o the set of direction D is the same as in K,
o the transition function E : V x D — V is defined by

E(<31,...,sn,q,p>,d) =
<317...,sp,l,ﬁ(sp,d),spﬂ,...,sn,q, nmt(p)>,
for p > 1 and for p =1 define
E(<51,...,5n,q,1>,d) = <H(81,d),32,...,8n,

Oy (q, 0 {am | a € 5(57)}), nxt(1)>,

=1



where nat(p) :=p+1if p < n and nat(n) := 1,
e for each p € P,

NP::{<<817~'~7snvqap/>a <sll7"‘7s;wq/’p”>) |
P =0 AVIj<pos; =),

S0, 0 D)) = cp(q).

The first key idea is to represent each trace variable in
the formula as a separate player, so P = {1,...,n}. The
vertices in Gi , are of the form (si,...,s,,q,p), where
., Sn track the current state of the system copies for
m,..., Ty, respectively,, g € @ tracks ©, and p € P
determines which player controls this vertex. Each infinite
play in Gy ,, therefore, defines n concrete paths (and thus
traces) for my,...,m,. As expected, we start each system
in K’s initial state s;,;, start Ay in go ., and let player
1 begin. Similar to Section III, a vertex (s1,...,Sn,q,p) is
assigned color ¢y (q). The transition function then allows the
players to update their system copy. Whenever in a vertex
(S15-..,8n,q,p) where p > 1 (the first case in the definition
of E), the direction d (which is chosen by player p controlling
this vertex) updates the m,-copy by moving along the chosen
direction d € D to k(sp,d). Afterward, it is the next player’s
turn: nat(p) increases p by 1 and cycles back to player 1
once the last player (player n) has acted. The players thus
take turns updating their system state; first, player 1 updates
the state of the m;-copy, then player 2 updates the state of the
mo-copy, and so forth, until, finally, player n updates the state
of the m,-copy, and the game repeats with player 1. When it is
player 1’s turn (the second case in the definition of E), a game
round has just concluded. In this case, the direction chosen by
player 1 is used to update the 7, copy (similar to the other
rounds). At the same time, we update the automaton state of
Ay by reading the AP evaluation of si,...,s,, obtaining a
letter U, {ax, | a € £(s;)} € 24F».

The last key ingredient is the partial information of each
player. The core problem of the game from Section III
was that the players could observe the global state of the
game, leading to unsound behavior. MPG,s allow us to
precisely determine the information that each player can
act on. Once we have observed that knowledge is the key
to a sound verification game, we can align the player’s
information with the HyperLTL semantics: In a HyperLTL
formula Qmy ... Qﬁi_l.aﬂi.Qﬂi+1 . Q. 1), the choice for
m; is only based on the traces my,...,m;—1 as those are
the traces that are already added to the trace assignment in
the semantics of HyperLTL. We can directly express this
in our game definition: For a player p (that controls 7,),
two vertices (S1,...,8n,q,p') and (s},..., s, ¢ ,p") appear
indistinguishable if it is the same player’s turn (p’ = p”’) and
s; = s;- for all 5 < p, i.e., the state of all traces quantified
before m, agrees.

. C(<51, ..

S1,--

C. Soundness

To use our game as a verification method, we are interested
in the strategic ability of all players controlling existentially

quantified system copies. That is, we define
Py:={ieP|Q; =3}

We can then show that our game under partial information
constitutes a sound verification approach:

Theorem 1. If wins(P3,Gx ), then K = .

Example 2. Consider some formula ¥m1.375.V73.9. In our
game definition, the player controlling mo can observe the
current state of the mi-copy and thus react to the behavior of
player 1. However, it cannot base its decision on the behavior
of player 3. In the special case of Imi.Nme properties (like
in Example 1), player 1 can only observe its own state. It
must thus use the same sequence of directions (and thus
define the same witness paths), no matter how player 2
behaves (cf. [33]). In Example 1, player 1 would thus lose this
game; there is no winning behavior in the third step without
observing player 2’s behavior in the second step.

It is not hard to see that in the special case of V*3*
properties, the MPG;; Gi ., coincides with the game g}@,
from Section III.

Lemma 3. Let ¢ = V. 3ma. ). Then wins({2},Gx.,) if
and only if the verifier wins g}@w (cf. Section III).

Similar to the V*3* game from Section III, we can use G
not only for automated verification but also as a foundation
for interactive verification and certificates (cf. Remark 1).

D. Hierarchical Information

Multiplayer games under imperfect information are often
undecidable [20], [34], i.e., there exists no general algorithm
to check if a given group of players can win the game.
Fortunately, there exists a well-known class of imperfect
information games that we can solve effectively. An MPGy;
(P, {V, }peps Vinit, D, E, {~p }pep, ¢) is played under hierar-
chical information if there exists a total order < on P such
that for every p’ < p, we have ~pC~,r. That is, we can order
the players such that the information is hierarchical, i.e., player
p observes at least as much as all smaller players (w.r.t. <).
By adopting standard techniques, we can show that we can
decide if a given group of players can win a game played
under hierarchical information [35]-[37].

Lemma 4. The MPG;; Gk, from Definition 2 is played
under hierarchical information. Consequently, it is decidable
if wins(P3, Gr. ).

V. COMPLETENESS FOR F*V*

In our game-based view, we let players construct witness
traces for existentially quantified traces. Compared to the
HyperLTL semantics, this limits the power of existential
quantification. For example, in the semantics of a V. 3mo. ¢
formula, the choice for 75 can be based on the entire trace
assigned to 7. In the game-based view, 7o is constructed
step-wise by a player, so the decision in the ¢th round of the
game can only depend on 7;’s prefix of length ¢. This leads
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to incompleteness, i.e., situations where a property holds, but
the game is not won by P3.

Example 3 ([17]). Consider the Kripke structure KC in Fig-
ure 1 and the HyperLTL formula ¢ = V1. 3me. O (an, <
Oay,) which requires that wo predicts the next value of m
infinitely often. Clearly, K = ¢, but —wins({2}, Gk ,): In
Gk, p» player 2 has to decide in each step whether AP a should
hold but does not know what player 1 will do on trace 7 in
the future. No matter what player 2 does, player 1 can thus
always ensure that ar, > Oar,.

Our game is thus incomplete; already on V*3* properties
where our game coincides with the full-information games
from [17], cf. Lemma 3. While incomplete for V*3*, our game
is, perhaps surprisingly, complete for 3*V* properties.

Theorem 2. Assume o is a 3*V* HyperLTL formula. Then
wins(P3, Gi,,) if and only if K |= .

Note that we can check any V*3* property by checking the
negated property (which is 3*V*). Our game-based approach,
therefore, constitutes a sound-and-complete model-checking
technique for all HyperLTL formulas with at most one quanti-
fier alternation. The cost of this completeness manifests itself
in the additional complexity; our game-based approach for
vV*3* properties (which coincides with [17]) is incomplete
but results in a standard game under full information. If we,
instead, check the negated 3*V* formula, our game is com-
plete, but the game uses partial information, making automated
game-solving more challenging.

VI. PROPHECY VARIABLES

For properties beyond 3*V*, we need additional tools to
counteract the incompleteness. In this section, we study the
use of prophecy variables in our game-based framework; a
technique originally studied in [16], [17] for the verification
of V*3* hyperproperties (building on the seminal work by
Abadi and Lamport [27]). At a high level, a prophecy provides
limited information about the future behavior of other players.
For example, in the setting of a V7r;. 3m. ¢ formula, the player
controlling 75 only observes the past behavior of the player
controlling m;. For such a formula, a prophecy is an LTL
formula ¢ over trace variable 71 (cf. [17]). In each step of
the game, the player controlling 7o can then query an oracle
that tells them whether or not the future behavior of 7 will
satisfy &, and base its decision on the additional information
provided by the oracle.

Example 4. In Example 3, the player controlling 7o does
not have a winning strategy as it does not know if a will hold
on w1 in the next step. In this example, it suffices for the player
controlling o to have access to an oracle that, in each step,
predicts whether prophecy § := Qar, holds (cf. [17]). If &
holds (so O ar, ), the player can move the wa-copy to state sp
(where a holds, cf. Figure 1), thus ensuring that ar, <> QOar,.

Prophecies essentially combat the problem of having too
little information about the future, which already leads to
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incompleteness in the V*3* setting. The main contribution
of this paper is that we can use partial information to avoid
players having foo much information about the behavior of
(certain) other players, which would lead to unsoundness. In
this section, we extend the prophecy framework of [17] from
V*3* to arbitrary quantifier prefixes. Our prophecy construc-
tion combines two ideas: our observation model ensures that
players do not observe too much (to ensure soundness), while
prophecies provide missing information about future events.

A. Prophecies and Partial Information

To keep notation simple, we assume for the remainder of
this section — and w.l.o.g. — that the hyperproperty in question
is of the form ¢ = Vmy.3me. Vs, .. Vre,—1. Ima,. 2, ie.,
strictly alternates between universal (at odd indices) and
existential (at even indices) quantification.

Example 5. Consider the formula

@ 1= Vry. Ime. V3. Imy. OO (any, < Oany)A

OO (ar, <> Dar, > Qry Aty <> ary)).

It requires w5 to globally predict the next step of w1, and 7y
should, in the second step, predict whether w1, T, and T3
agree on a. The KS K in Figure 1 satisfies p, yet coalition
{2,4} loses Gx.,. To win this game, the player controlling
mo needs (in every step) information about the future of m,
and the player controlling w4 needs (in the second step)
information about the joint future of w1, ms, and Ts.

B. Prophecies and Prophecy Variables

To ensure soundness, we need to ensure that each player
1 is (via the prophecies) only given information over traces
quantified before ;. For each existentially quantified trace ma;,
we therefore track a separate set of prophecies:

—
— —
i

Definition 3. A prophecy family is a collection
{E2i—1}_, where Zo,_1 is a finite set of LTL formulas over
trace variables from {my,... m;_1}.

Intuitively, =9,_1 contains all prophecies that provide infor-
mation to the player controlling trace my;. Consequently, the
formulas in Zo;_; only reason about traces {m1,...,m2;—1},
which are exactly the traces player ¢ can observe in the game.

Example 6. Consider the property in Example 5. We can
construct the prophecy family {1, E3}, where 21 := {Oan, },
and =3 := {0(an, € Qny A Qxy &> any)}. These prophecies
provide exactly the information needed by players 2 and 4.
That is, if players 2 and 4 could, in each step of the game,
determine if the prophecies in =1 and =3 hold, respectively,
they can construct appropriate witness traces and win G .

Now assume we have a fixed family of LTL formulas
== {E2i;—1}"_;. The intuition behind the prophecies is that
each player mo; is provided with an oracle that — in each step
of the game-— tells her which of the formulas in Z5;_; hold.
Following [17], we will use prophecy variables to formalize
this oracle. A prophecy variable is essentially an AP that we



add to the system, and we ensure that the value of this variable
(AP) reflects the truth value of the prophecy formula. For this,
we assume that P is a set of prophecy variables for g, i.e., for
each 1 < i < n and ¢ € Zy;_1, there exists a corresponding
prophecy variable p¢ € P. A player can thus query an oracle
on whether prophecy ¢ currently holds, by simply reading the
prophecy variable (AP) p¢. The key idea now is that we can
attach these prophecy variables to universally quantified traces
[17]. That is, we let the opposing players P\ P5 (controlling
the universally quantified traces) determine the truth value of
the prophecy variables, and then ensure, within the HyperLTL
formula, that the prophecy variables are set correctly: That is,
we modify the HyperLTL formula to ensure that £ € Zo;_1
holds iff the prophecy variable p¢ is set to true on trace mo;_.
This ensures that the player 2i controlling 7y; can query the
prophecies in =9;_; by looking at the current state of mo;_;
(and the Boolean value of the prophecy variables, i.e., AP, in
that state), but the players controlling 7, ..., 72;_o cannot.

As a first step, we add the variables in P to the system,
which can be set arbitrarily in each step:

Definition 4 (X©). Given a KS K = (S, sinit, D, k, £) over
AP and a disjoint set of prophecy variables P (APNP = (),
define the modified KS K := (S x 2F sipi, D x 28 k7 4F)
over AP W P where for each direction (d, A) € D x 2F, we
define k¥ by

HP(Sinit, (d, A)) = (K'(sinit7 d)7 A)
kP ((s,A"), (d, A)) := (k(s,d), A)

and 0F (sinis) = U(Sinis) and €F (5, A) := £(s) U A.

Intuitively, ¥ generates all traces of X extended with all
possible evaluations on the prophecy variables.

We then modify the body of the HyperLTL formula such
that the original property is only required to hold if all
prophecies are set correctly, i.e., a prophecy variable in p¢
is set to true iff the future traces satisfy &.

—
—_
=

Definition 5 (p” é). Given a prophecy family
{E2i—1}_; and a corresponding set of prophecy variables
’é = V7T1.37T2.V7T3 .. -V7T2n71- Hﬂ'gn.

P, define the modified HyperLTL formula ©"= by

i=1 £€H2;1

That is, we require v (the original LTL body of ¢) to hold,
if in every step, for every 1 < ¢ < n, and every prophecy
formula § € =9;1, § holds iff the corresponding prophecy
variable p¢ holds on trace mo;_;. Note how = connects
the prophecy variables with the underlying prophecy. If some
prophecy variable p¢ for £ € Z;_; is set on (the universally
quantified) trace m9;_1, the player 2¢ € P35 controlling the
existentially quantified trace 7o; can assume that ¢ holds, and
vice versa. If this is not the case, i.e., player 2 — 1 sets p5
incorrectly, the premise of ©P= is violated, so the LTL body of

©P= is vacuously true, and P5 wins the game in Definition 2.

—

(PP
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Note that trace 7o;_; is universally quantified, so we consider
all possible valuations of the prophecy variables, including the
unique valuation where the prophecy variables are set correctly
in each step, i.e., O /\5652171 ((pﬁ)ﬂ%_l > f). Observe that
we only require the prophecies to be set correctly after the first
step (using a single ©O), as the unique initial state s;,;; of a
KS does not record prophecy variables.

C. Prophecies and Games

We can use the information provided via prophecies in our
game-based approach. Instead of checking if the players in
P5 win Gi ,, we can then check if they win g,cpy@pé. In
the latter game, the additional premise in (!’ = ensures that
the players can use prophecies to peek at future moves of the

universal traces.

Example 7. We consider the example from Examples 5
and 6. We already argued that P35 = {2,4} loses Gi .
Now consider the prophecy family =) from Example 6, with
corresponding prophecy variables P := {{p},{pp}}. Using
Definition 5, we construct

@P’E = V. dme. V3. Iy, | OO (p7T1 <~ Oam)/\

og (ppﬂ's < O, € Qry A gy < am)) — 1,

where 1) is the original LTL body (cf. Example 5). It is easy
to see that {2,4} wins gicP,gaPé" the prophecy variable p on
w1 hints at the next move of m1. If, for example, player 1 sets
p to true, player 2 can assume that O ar, holds (if it does not,
the premise of ¢T'=’s LTL body is violated, and so the play
is trivially won by {2,4}). Likewise, the prophecy variable pp
provides the necessary information for player 4.

D. Soundness

The key result we are left to prove is that the addition of
prophecies does not change the HyperLTL semantics, even
though the LTL body of ¢'*= is weaker than the body of .

Theorem 3. Assume a prophecy family = = {Egi_1 i,
and a corresponding set of prophecy variables P. Then K Eoe
if and only if KF = oP=.

Theorem 3 allows us to soundly combine prophecies with
the game-based approach: If wins(P3, g)CP,gopé)’ then, by
Theorem 1, we have KF = =, so, by Theorem 3, we
have K = . Prophecy variables thus constitute a tool that can
strengthen game-based verification in the presence of arbitrary
quantifier alternations. This is particularly relevant when using
our approach as an interactive proof technique. Once a suitable
set of prophecies is found (i.e., a family Z st P53 wins
g ICP,Lij)’ the prophecies, together with the winning strategies
for P, are an easy-to-check certificate of satisfaction.

VII. RELATED WORK

Logics for Hyperproperties: Most logics for expressing
temporal hyperproperties use HyperLTL-style quantification



over execution traces [8]-[10], [38]. In such logics, quantifier
alternations are frequently used to, e.g., reason about non-
determinism in the system. Our paper proposes a principled
approach to deal with quantifier alternations that can be
easily extended to other logics that feature HyperLTL-style
quantification over system paths/traces.

HyperLTL Verification: Finite-state model-checking of
HyperLTL is decidable [3], and complete algorithms rely on
expensive automata complementation or language inclusion
checks [12], [31]. To approximate this expensive problem,
Hsu et al. [39], [40] propose a bounded model-checking
approach for HyperLTL by unrolling the system and property
into a QBF formula. The other prominent approximation for
HyperLTL is the game-based approach [16], [17], which forms
the foundation of the present paper. Both approximations are
orthogonal to each other. In the game-based approach, we
use strategies to resolve existential quantification and can
thus reason about temporal behavior along infinite paths. In
contrast, the QBF-based encoding features the same first-order
semantics used in HyperLTL, but bounds the length of the
traces, limiting the approach to properties that can be verified
or refuted within a bounded timeframe.

Advantages of Game-based Verification: The game-
based approach has multiple advantages over automata-
complementation-based methods. Firstly, it allows verification
in settings where complementation-based approaches fail. For
example, the game-based approach can be used to verify
infinite-state systems by constructing abstract games [41],
[42], or utilizing infinite-state game solvers [43]-[47]. Sec-
ondly, the game-based approach allows for interactive proofs,
i.e., the user can manually construct a proof by incremen-
tally defining a winning strategy [18]. This facilitates proofs
in situations where automated methods do not scale. And
lastly, the game-based approach naturally yields certificates
of satisfaction, i.e., the computed winning strategy (combined
with a set of prophecies, if needed) can easily be checked by
independent strategy checkers [19].

In this paper, we propose an extension of the game-based
approach to arbitrary quantifier structures, based on the key
conceptual contribution of leveraging partial information, ex-
tending our earlier extended abstract [48]. Based on this key
conceptual idea, we provide a sound framework that allows
us to utilize the benefits of game-based verification for arbi-
trary quantifier structures. While solving games under partial
information is expensive, our paper also allows for cheaper
approaches that build upon the game-based interpretation. For
example, we can attempt to find positional strategies for P3.
Finding positional strategies is much cheaper than finding
strategies under perfect recall (i.e., unbounded memory), and,
if winning positional strategies for P3 are found, our results
allow us to soundly conclude that K = . This creates a
spectrum of techniques with varying complexity and expres-
siveness (i.e., in some instances, positional strategies suffice,
in others, we might need bounded memory or even perfect
recall). In the case of 3*V* properties, our definition yields
a game where the player acts without any information, a
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setting explored extensively within the planning community
(cf. conformant planning) [33], [49].

Solving Games Under Incomplete Information: We be-
lieve that the primary use case of our approach lies in its
ability to construct sound-by-design interactive proofs and
certificates. Nevertheless, if paired with a solver for games
under partial information, our approach could underpin a fully-
automated verification pipeline. The study of (multiplayer)
games under incomplete information has a long tradition,
mostly relying on using a powerset construction or lattice
framework to track belief states [24], [25], [35], [36], [50],
[51]. Strategy-based logic can explicitly reason about the
strategic abilities of players, and extensions to incomplete
information exist [20], [23], [52]-[54]. Many of the frame-
works used to study incomplete information can be used in
our setting: for example, partially observable non-deterministic
(POND) planning reasons about an agent that acts in a non-
deterministic environment, essentially defining a game under
partial information [55], which we can use for hyperproperty
verification [33], [56]. Likewise, multi-agent planning [57],
[58], partially observable Markov decision processes with mul-
tiple agents [59], [60], or multi-agent reinforcement learning
[61] study strategy synthesis in partially observable domains.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel hyperproperty
verification method using games. In contrast to previous game-
based approaches, our method is not limited to V*3* proper-
ties but soundly approximates arbitrary quantifier structures.
Moreover, we designed a prophecy mechanism that aligns
with the partial information of the player. Our work creates
numerous avenues for future work, both in theory and practice.
In theory, it is interesting to study the expressive power
of our game-based approximation when using prophecies.
Prophecies are a complete proof technique in the setting
of V*3* properties, i.e., whenever a property holds, there
exists some finite set of w-regular (not necessarily LTL-
definable) prophecies such that the game is won by the
verifier [17]. The high-level idea of this construction is to
construct prophecies that directly determine successor states,
i.e., prophecies & .- that hold iff, when in state s, moving
to s’ is the “optimal” move for the verifier (see [17] for
details). We conjecture that completeness also holds in the
presence of arbitrary quantifier alternations: For a property
Ql’frl . Ql—_lm_lﬂm.QiHmH . Qn’frn. l/}, weE can design
prophecies that precisely define the optimal behavior for player
1 (for a fixed system K, Q;+17iq1 ... Qn7yp. 1 is just an w-
regular property over 71, ...,7T;). In practice, we can utilize
our games as an interactive proof technique, e.g., using the
coinductive framework of [18].
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