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Abstract—As neural networks (NNs) become increasingly
prevalent in safety-critical neural network-controlled cyber-
physical systems (NNCSs), formally guaranteeing their safety
becomes crucial. For these systems, safety must be ensured
throughout their entire operation, necessitating infinite-time hori-
zon verification. To verify the infinite-time horizon safety of
NNCSs, recent approaches leverage Differential Dynamic Logic
(dL). However, these dL-based guarantees rely on idealized, real-
valued NN semantics and fail to account for roundoff errors
introduced by finite-precision implementations.

This paper bridges the gap between theoretical guarantees
and real-world implementations by incorporating robustness
under finite-precision perturbations—in sensing, actuation, and
computation—into the safety verification. We model the problem
as a hybrid game between a good Demon, responsible for control
actions, and a bad Angel, introducing perturbations. This formu-
lation enables formal proofs of robustness w.r.t. a given (bounded)
perturbation. Leveraging this bound, we employ state-of-the-
art mixed-precision fixed-point tuners to synthesize sound and
efficient implementations, thus providing a complete end-to-end
solution. We evaluate our approach on case studies from the au-
tomotive and aeronautics domains, producing efficient NN imple-
mentations with rigorous infinite-time horizon safety guarantees.

Index Terms—Differential Dynamic Logic, Mixed-Precision
Fixed-Point Tuning, Neurally-Controlled Systems

I. INTRODUCTION

Neural networks (NNs) are increasingly integrated into
critical systems, such as adaptive cruise control in cars [1]-[3]
or collision avoidance in airplanes [4], [5]. Thus, ensuring the
safety of NN Control Systems (NNCSs) becomes imperative.

Recent research has made significant progress toward this
goal. Some approaches [6]-[19] only analyze the input-output
behavior of the NN but ignore the essential feedback-loop
dynamics between the NN and its physical environment.
Others [20]-[31] consider this feedback loop but only verify
safety for a finite-time horizon, which may be insufficient. A
recent technique, VerSAILLE [32], addresses this limitation
by proving safety throughout the entire operation (infinite-time
horizon) of the NNCS using Differential Dynamic Logic (dL).

However, VerSAILLE’s strong guarantees rely on idealized,
real-valued NN semantics and do not account for roundoff
errors arising from practical finite-precision (floating- or fixed-
point) implementations. As recently also demonstrated em-
pirically [33], finite-precision arithmetic introduces errors at

This work was supported by funding from the pilot program Core-
Informatics of the Helmholtz Association (HGF).

d https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_12

2™ Debasmita Lohar
Karlsruhe Institute of Technology
Karlsruhe, Germany
debasmita.lohar @kit.edu

3" Bernhard Beckert
Karlsruhe Institute of Technology
Karlsruhe, Germany
beckert@kit.edu

potentially every operation, which can accumulate and lead
to incorrect or unsafe decisions [34]. Furthermore, efficiency
demands often require implementations in low-precision fixed-
point arithmetic [35], [36], introducing larger numerical errors
in the computation. Thus, to ensure real-world safety, it is
crucial to bridge this implementation gap [37] by verifying that
safety guarantees are valid under finite-precision semantics.

While verification of quantized NNs has been explored [38],
it is known to be PSPACE-hard and typically focuses on
input-output specifications rather than closed-loop dynamics,
which must simultaneously account for the continuous, real-
valued behavior of physical dynamics. Sound quantization
techniques [39] automate precision tuning but leave the burden
of safety verification to the user. A recent work [40] has
combined safety analysis with bounded roundoff errors, but
their guarantees are limited to finite-time horizons.

This leaves a critical gap: the need for an efficient and
practical method to guarantee infinite-time horizon safety of
NNCSs while accounting for finite-precision errors.

In this paper, we propose a general infinite-horizon safety
verification methodology, building on VerSAILLE [32], that
accounts for finite-precision errors in sensing, actuation, and
computation. We observe that some "safe" dL control strate-
gies (envelopes) can become unsafe even under miniscule input
or output perturbations, making them unsuitable for verifying
realistic (NN) controllers. To address this, we introduce a new
notion of robustness for control envelopes, which is also of
independent interest beyond handling roundoff errors. Finally,
we integrate our approach with mixed-precision tuning to
generate sound and efficient fixed-point implementations that
can be directly compiled using standard high-level synthesis
tools for FPGAs, providing a complete end-to-end solution.
To summarize, we make the following contributions:

(C1) We formalize robustness for control envelopes under per-
turbation — a necessary condition for finite-precision d.£-
based NN verification — using Differential Game Logic
(dGL), as a hybrid game between a good Demon (control
actions) and a bad Angel (perturbations). We present a
decidable, sufficient criterion for robustness.

We propose a novel, decidable criterion for guaranteeing
the infinite-time horizon safety of NNs under given per-
turbations leveraging existing real-valued NN verifiers.

(C2)
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(C3) We integrate precision tuning (with Daisy [41]) to syn-
thesize efficient mixed-precision fixed-point implemen-
tations that guarantee a provided error bound and are
compatible with standard hardware synthesis tools [42].

We evaluated our approach on three realistic case studies: an
Adaptive Cruise Control (ACC) system [1], [32] with discrete
and continuous acceleration control, and a Vertical Airborne
Collision Avoidance System (VCAS) [4]. Our analysis shows
that the continuous ACC control envelope from [32] is not
robust to output perturbations; we propose modifications and
verify safety under bounded errors. For VCAS, our results
imply (limited) robustness of the original control envelope.
Using the computed perturbation bounds, we synthesized
mixed-precision fixed-point implementations for all case stud-
ies, compiled them with Xilinx Vivado [42], and measured
their latency (running time) in machine cycles. An extended
version of this paper (including the Appendix) can be found
on arXiv [43].

II. APPROACH AT A GLANCE

This section provides a high-level overview using a simpli-
fied ground robot from [45]. The technical background and the
proposed approach are presented in the subsequent sections.

a) Ground Robot Example:
The robot, at distance p € R to an
obstacle, moves along a corridor v
(see Figure 2). It controls velocity i - & o
Fig. 2. A robot at distance
p controls its velocity v and
avoids an obstacle (p > 0).

v, which can be updated once
per control cycle of duration of
at most 7". To ensure safety, the
robot must maintain p > 0.

Let us consider the case where the robot can only move
toward the wall (i.e., v > 0). Since the robot has full control
over its velocity, a safe strategy is to choose any v > 0 such
that p—T'v > 0, ensuring it does not collide with the obstacle
within one control cycle. The aim is to formally prove that the
robot remains safe under this strategy.

b) Nomenclature: As we discuss control strategies at
different levels, we unify the terminology as follows: First,
nondeterministic control strategies modeled and verified in dL
are referred to as control envelopes. Second, concrete real-
valued NNs that deterministically provide a control action for
a given input are called idealized implementations, and will
be verified against control envelopes. Finally, hardware-level
realizations of idealized implementations using fixed-point
arithmetic are termed fixed-point implementations. We will
bound their numerical errors w.r.t. their idealized counterparts.

c) Verifying Control under Finite Precision: A control
envelope, where v is chosen arbitrarily such that p — Tv >
0 A v >0, can be proven safe in real-valued d..

In practice, real-valued arithmetic does not exist, and finite
precision introduces pitfalls: When p is close to 0, even
infinitesimal perturbations to v can cause p < 0, leading
to a collision. Braking earlier cannot resolve this, as similar
perturbations could, by induction, still push the robot into an
unsafe region. This illustrates a non-robust control envelope,
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highlighting the need to rethink the system structure—or at
least the model—by, e.g., also admitting negative velocities.

d) Our Approach: Our work extends dL-based safety
guarantees to finite-precision NNs while: 1) still providing
guarantees w.r.t. precise real-valued physical dynamics
modeled in d£ and 2) leveraging efficient, state-of-the-art re-
al-valued NN verification tools. We build on VerSAILLE [32],
which proves real arithmetic refinement relations between
NNs and provably safe dL control envelopes. Just as
VerSAILLE, and as indicated in Figure 1, our approach
assumes the availability of a safe d£ model of the analyzed
control system. In particular, this d£ model comprises a
(nondeterministic) control envelope which encodes provably
safe control actions. To consider perturbations arising
from sensing, computation (e.g., fixed-point arithmetic), or
actuation, we model such perturbations as real-valued hybrid
programs, termed as angelic perturbations. For example, in
our robot example, we define an angelic perturbation coise
executed after the original control envelope chooses v: It
nondeterministically selects a bounded perturbation |e,| < 4,
and then updates v via v := v + ¢,. This captures bounded
perturbation of up to J, for the robot’s actuation, whether
due to numerical imprecision or actuator inaccuracies.

As can be seen in Figure 1, these angelic perturbations can
be used to multiple ends: First, we can use them to analyze the
robustness of a given d£ model/control envelope. To this end,
we provide a game-based robustness definition and decidable
sufficient criteria for robustness. Second, for a robust control
envelope, we extend VerSAILLE’s analysis to take account of
angelic perturbations in a decidable manner. This allows us to
prove infinite-time horizon NNCS safety under perturbation.
Finally, for NNs that are safe under perturbation, we can
leverage sound quantization techniques, which synthesize a
fixed-point implementation of the real-valued NN where the
maximal error bound matches our angelic perturbation.

Towards our contribution (C1), we provide a game-theoretic
definition for the robustness of control envelopes: There must
exist control actions that keep the system safe irrespective
of the environment’s angelic perturbations. Classic dL safety
properties ([«] 1) interpreted as game show that Demon, who
has no influence on execution, has a winning strategy irrespec-
tive of Angel’s control and environment choices. Robustness
hands over the controller choices to a good Demon who must
choose actions to weather a bad Angel adversarially choos-
ing perturbations and environment behavior. Our formulation
induces decidable real-arithmetic conditions applicable to any
discrete, loop-free angelic perturbation. We identify liveness
(a control envelope does not get stuck). as a special case of
robustness. For our robot, a control envelope with v > 0
is not robust under aneise, but an envelope with bidirectional
movement is (choose any v such that p — T'(v + 6) > 0).

Concerning (C2), we extend VerSAILLE to account for
angelic perturbations: NN verification reduces to checking
whether the NN implements a winning strategy for the ro-
bustness game formulated in (C1) and robustness becomes a
necessary condition for d£-based NN verification under finite
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Fig. 1. Overview of approach which assumes a safe d£ model as foundation (emojis generated by ChatGPT)

precision. For the robot with bidirectional movement, the real-
valued condition p > 0 — p + Tf(p) > 0, where f(p)
is the velocity computed by the NN f can be extended to
—0y <€y < GyAp >0 — p+T(f (p)+e,) > 0, which is also
compatible with existing linear and nonlinear NN verification
tools. Disproving NN safety amounts to finding a concrete
input p and perturbation ¢, violating the specification. Proving
the specification yields an infinite-time horizon safety guaran-
tee for the NN control system under bounded perturbations.
Our approach systematically handles a broad class of perturba-
tions with decidable construction from dL control envelopes.

Addressing (C3), we leverage NN safety guarantees under
bounded perturbations and utilize Daisy for mixed-precision
fixed-point tuning, with added pre- and post-processing steps
to support typical NN structures and operations, enabling
direct hardware synthesis using Xilinx Vivado [42].

Thus, our end-to-end approach ensures infinite-horizon
safety under bounded finite-precision errors and produces
sound, efficient, hardware-deployable NN controllers. While in
this paper, we focus on NNs due to current tool support, the
approach is broadly applicable and can be straightforwardly
extended to other types of controllers.

III. BACKGROUND

This section provides background on proving infinite-
time horizon safety for NN Control Systems using dL
(Sec. II-A) and on efficient code generation for finite-
precision (Sec. III-B). We illustrate these concepts using the
robot example from Figure 2.

A. Safety Verification

We review Differential Dynamic Logic [46] for abstractly
reasoning about the hybrid (continuous and discrete) behavior
of Cyber-Physical Systems, Differential Game Logic [47] for
handling adversarial dynamics, and describe the dL-based NN
verification technology VerSAILLE [32].

1) Differential Dynamic Logic: Differential Dynamic Logic
(dL) [46], [48]-[50] is a (first-order) dynamic logic [51], [52],
i.e., a modal logic over a state space S whose modalities are
parametrized with programs. The syntax of hybrid programs
analyzed in dL is given by the following grammar, where
x is a variable, () is a real arithmetic formula, e is either
% or a real arithmetic term, and f (z) is a real arithmetic
function over x (with o and ( representing hybrid programs):

afi=a'=f@)&Q | z=e |2Q) | ®B |aUS | @

continuous discrete and loop-free loop

The semantics of hybrid programs are described as state
transitions where a state v is a map from variables x to (real)
values v (z). For example, for e a real arithmetic term, the
semantics of variable assignment are defined as [z == ¢] =
{(1/, p) € 8 | W= ;} where v¢ is a state that evaluates x
to e and all other variables y to v (y).

The defining feature of hybrid programs is their ability to
model continuous dynamics: @' = [ (z)&Q denotes a pro-
gram where x nondeterministically evolves along the given dif-
ferential equation within an evolution constraint ), allowing x
to take any reachable value satisfying ). The primitive x = %
represents a nondeterministic assignment. The remaining con-
structs are: predicate checks (no transition if the check fails),
sequential composition, nondeterministic choice, and looping.
Safety properties can be expressed as formulas P — [a] @,
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stating that, if the precondition P holds, then @) holds after
all (nondeterministic) executions of the hybrid program a. For
example, the formulaz =2 —» [y =z Uy =z +z]y >0is
valid because for any state with « = 2, all possible executions
ensure that y > 0 (specifically y € {2,4}) after execution.

dL also provides a dual modality to express liveness: P —
()@ guarantees that, starting from any state satisfying P, it
is possible to reach some state where @ holds. Moreover, the
equivalence [a] Q = —{a)—Q applies.

We also use the subset of concrete, discrete, and loop-free
programs, corresponding to the discrete and loop-free produc-
tion rules from the hybrid program grammar above. Vectors
of variables are denoted as £ while z is an individual variable.

Safety guarantees in dL typically have the form:

safety(pre, ctl, env, post) = pre — [(ctl; env)*] post, (1)

where pre defines initial conditions and post the safety
guarantee; ctl and env describe the (nondeterministic) control
envelope and the environment, respectively.

2) Differential Game Logic: Differential Game Logic
(dGL) extends dL to reason about hybrid games, i.e., hybrid,
noncooperative zero-sum games between two players, Angel
and Demon. A game is expressed as a program « in a syntax
extending the hybrid program grammar as summarized below,
however, for a comprehensive introduction, see [47].

For a game «, [a](Q states that Demon has a winning
strategy to achieve @), while ()@ indicates that Angel has
a winning strategy. In the d£ primitives, we assume Angel
controls nondeterministic decisions by default, with control
explicitly transferred to Demon via additional primitive a?.

In this interpretation, a d£ safety property P — [«] @ for a
classic hybrid program (i.e., without duality) states that, when
starting from P, Demon has a winning strategy to ensure ()
regardless of Angel’s nondeterministic decisions. For example,
the game o = (v ==1Uw := —1)d ;&' = v states that Demon
can choose v € {—1,1} (observe the duality operator) and
subsequently Angel controls for how long to evolve = along
the differential equation. The formula = # 0 — [o]z # 0 is
then valid: Demon can choose v such that, even as Angel con-
trols the evolution of x, z never reaches 0. Specifically, Demon
selects v := 1 iff x > 0, ensuring x # 0. Hence, Demon has a
winning strategy for x # 0. Although dGL has a substantially
different semantical foundation [47], it alligns with d£ seman-
tics for programs and formulas without duality [53, p. 520ff].

3) Verifying NN with VerSAILLE: As indicated in
Sec. III-A1, dL is used to prove the safety of abstract control
envelopes, typically formulated as in Formula (1). For real-
world systems, however, we must relate these abstract safety
proofs to concrete controller implementations outside d.£. This
requires showing that the idealized implementation refines
the safe control envelope [54], [55], i.e., that all behaviors
of the idealized implementation are also possible in the dC
model [54], [55]. To this end, ModelPlex [44] can derive
correct-by-construction controller monitor formulas. Given a
control envelope ctl, its monitor formula X, is a first-order
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formula over pre- and post-states, satisfied only if a state
transition is modeled by ctl. Formally:

Definition 1 (Correct Controller Monitor [44]). A controller
monitor formula .ty is correct for a hybrid program con-
troller ctl with bound variables x1,...,x, iff the following
dL formula is valid: xetr1 — (ctl) Al @ = zf.

At least, xctr1  typically includes the variables
xl,xf, ...y ZTn,x, describing the bound variables of ctl
before and after the execution of ctl.

Originally used for constructing monitors and shields [1],
[45], ModelPlex was recently shown to support a priori safety
verification through VerSAILLE [32]. Given a safe d£ model
(Formula (1)) and a loop invariant Y;,y, ModelPlex derives
the controller monitor formula x.¢,;. We model the NN’s
behavior as a before-after predicate impl(Z,z"). Verifying
infinite-horizon safety of the NNCS then reduces to proving
the following real arithmetic formula [32, Thm. 1]:

2

The obtained guarantee has a rigorous foundation in d£: Based
on impl(z, ™), we derive a hybrid program (called nondeter-
ministic mirror, denoted auen (impl)) mirroring the behavior
of the before-after predicate within dL. Proving Formula (2)
then implies safety when replacing ctl with oy (impl).

Xinv A iInpl ("E7 EJF) — Xinv

B. Efficient Code Generation

We review the background on fixed-point arithmetic and
mixed-precision tuning here.

1) Fixed-Point Arithmetic: Fixed-point numbers represent
values as integers with an (implicit) format (s, Q,7), where
s € 0,1 indicates the presence of a sign bit, @ € N is the total
word length, and m € N specifies the binary point position
(counted from the least significant bit). Bit allocation defines
an integer part, I, determining the range [—2, 27, and a frac-
tional part, 7, controlling the precision: more fractional bits
yield higher precision. Assuming truncation as the rounding
mode (default for synthesis tools like Xilinx Vivado [42]), the
maximum roundoff error is 277. Fixed-point operations use
efficient integer arithmetic and bit-shifting [56], making them
ideal for resource-constrained systems.

2) Mixed-Precision Tuning: Mixed-precision tuning assigns
different bitwidths to variables and constants to optimize
resource usage while satisfying error bounds. Several tech-
niques [41], [57]-[59] have been proposed to automate this
process. In this work, we focus on the tool Daisy [41] and
briefly summarize its approach below.

Daisy [41] performs mixed-precision tuning by heuristically
navigating the search space using delta debugging [60]. To
soundly compute roundoff errors during the search, Daisy
applies either interval or affine arithmetic, depending on the
configuration. The process starts from a minimal bit length,
uniformly increasing the precision to meet the error target,
and then recursively partitioning variables to selectively lower
bitwidths. Among multiple feasible assignments, Daisy selects
the one minimizing an area-based cost function. The resulting



mixed-precision fixed-point code can be compiled by synthesis
tools like the Xilinx HLS compiler. Daisy is most effective for
straight-line numerical code without complex control struc-
tures such as loops, conditionals, or arrays.

IV. SAFETY UNDER PERTURBATION

As discussed in Sec. III-A, VerSAILLE’s safety guarantees
rely on idealized NN implementations in real arithmetic.
This has the advantage of enabling powerful real-arithmetic
solvers [61]-[64] and real-valued NN verification tools (as
reported in recent surveys and competitions [65]-[67]). How-
ever, it raises the question of whether these safety results hold
when the NN is implemented in fixed-point arithmetic. In
practice, real-world systems deviate from their idealized real-
valued models along three dimensions:

(I1) Sensor Readouts: Limited bandwidth or finite measure-
ment accuracy affects input precision.

(I2) Roundoff Errors: Errors can arise during computations.

(I3) Actuator Limitations: Physical constraints may impact the
precision of chosen control actions.

In principle, such factors can be mitigated by designing con-
trol envelopes for environments that explicitly model sensor
and actuator noises, and computation errors. For instance, the
hybrid program aueise = (84 = *; 7 (|eo] < 0p) ;0 = v + &)
models bounded perturbations in computing v in the robot
example from Sec. IV-A. However, many case studies, e.g.,
[32], [68]-[70], only assume ideal sensing, actuation, and
computation for simplicity. This is unsurprising as hybrid
system analysis is already complex (even undecidable [71])
even without accounting for finite-precision effects.

This work proposes a technique to check control envelope
robustness to sensing, actuation, and roundoff errors, given
a safe control envelope oblivious to such perturbations. We
further show how these control envelopes can be used to verify
fixed-point implementations.

We begin by recalling how VerSAILLE guarantees safety
for an idealized implementation for the robot example
(Sec. IV-A). Building on this, our contribution starts with
the formalization of perturbations (Sec. IV-B), a robustness
property for control envelopes and decidable conditions for
proving it (Sec. IV-C). We then extend VerSAILLE to support
verification under perturbation (Sec. IV-D). While our method
is illustrated using the running example — with some formal
notions deferred to the extended version — Sec. V shows its
applicability across realistic case studies.

A. Setup: Idealized Implementation Safety with VerSAILLE

We recall how dL and VerSAILLE can derive safety guar-
antees for an idealized implementation of our robot example
from Figure 2. The system state is given by position p and
velocity v along with a clock variable ¢ tracking elapsed time.
We formalize the robot’s physical behavior (p’ = v), or plant
model, as a hybrid program env ensuring control actions occur
at least every 7' seconds (see details in extended version).

Different  control scenarios and  corresponding
pre/postconditions and control envelopes are shown in
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ctl% = (vi=#;70< v < Vix ANTv < p))

ctl2 = (vi=%?7 (—Viax <0 < Viax A0 < p—T))

ctlh = (V=% (~Vix V< Vi A0 < p— T < W))
pre; = P, Vaax 20 AT >0 posty; = 0<p

preg, = preg A p<W >0 posty = 0<p<W

Fig. 3. Possible control envelopes, pre- and postconditions for robot (Sec. II)

Figure 3. In the single-wall case, the safety property post;
is guaranteed by the envelopes ctl% and ctl%, which differ
in whether bidirectional motion is allowed. For the two-wall
case, the robot must stay within bounds defined by posts,
requiring a different control envelope ctlg.

With suitable loop invariants, we can prove safety for ctl%
and ctl% w.rt. pre; and post;, as well as safety for ctlg
w.r.t. pre, and post, in the theorem prover KeYmaera X [72]
(proof in extended version). The envelope ctli slightly deviates
from the controller in [45], which checks for TV < p
(instead of Tv < p). This change makes the envelope more
permissive by allowing intermediate velocities 0 < v < Viax
when choosing v = Vj,x would no longer be safe; however,
ctl}’s behavior directly depends on the relation between the
(changing) variables p, v and the computated T'v.

We can now use the dL safety results to verify an ide-
alized NN implementations. For demonstration, we assume
the idealized implementation is described by the predicate
implg (p,v") = (v = W}«HO) + M). Infinite-time horizon
safety for one-wall, unidirectional case then be verified by
instantiating Formula (2) and proving the following:

p > 0 Ample(p,v) = (0 < o™ < Vi A0 < p—To™)

1.1
Xinv

1,1
Xetrl

where Xilr’l\l, is the loop invariant and Xit’il is the controller
monitor derived from ctl} via ModelPlex. In practice, this
validity is not proven directly by Formula (2), but via highly
tuned NN verification tools that implicitly reason about impl.

For M = Vyxx = 10, we prove validity of the for-
mula using an SMT solver. Let cueq (implg) be the non-
deterministic mirror of implg, i.e., the hybrid program
capturing its behavior. This implies the safety predicate
safety(pre;, agen (implgr) , env, post,). Using the same ap-
proach for ctlg, we also prove safety for implg(p,v™) for
M = Viyax = 10, W = 100. However, VerSAILLE’s analysis
assumes real arithmetic. Hence, it ignores roundoff errors
introduced by realistic, fixed-point implementations of implg.

B. Formalizing Perturbations

We formalize perturbations as concrete, discrete, loop-
free hybrid programs. As seen earlier, ameise captures post-
controller perturbations to v, which may represent roundoff
errors, actuation errors, or both (with ¢, as maximal roundoff,
maximal deviation in actuation, or the combined bound). How-
ever, sensor perturbations require modifying the state before
controller execution. To cover all perturbation profiles (I1-
I3), we formalize general perturbation as a tuple (Qtpre; post),



where «p applies before the controller and oo after. We
call such pairs angelic perturbations:

Definition 2 (Angelic Perturbation). An angelic perturbation
consists of two discrete, concrete, loop-free hybrid programs
Qpre, Qposi- We denote an angelic perturbation as a tuple (i.e.

(apre7 aposf))-

In the robot example, we consider two such perturbation
profiles:

1 1

angel,,, =7 (T) angelyoq = Qnoise
2 . ) )
angely. = p~ i=piep i=#;7 (lep| < 0p)spi=p+ep
angelgOst =p=p e, =x7(ey]| <8p);vi=v+e,
Here, (angelll,re,angelllmst) perturbs only v by at max d,;

2 2

whereas, (angelpre,angelpmt) perturbs both the sensor input
p without affecting the system’s dynamics (the original value
is restored after control execution) and the control output v.

C. Envelope Robustness

Before verifying implementations, we must check if the
envelope itself is robust to angelic perturbations —a necessary
condition for subsequent verification as we use the envelope
to check if our implementations represent a winning strategy.

We formulate the robustness of control envelopes as a game:
rather than requiring that all control actions remain safe under
perturbation, we require that for any state, there exists a
control action that 1) is permitted according to the envelope,
and 2) guarantees safety even when perturbed by the given
angelic perturbation. The good Demon, choosing an action
from within the envelope, hence must take into account the
perturbations of the bad Angel.

To check this property, we formulate a dGL game where
Demon chooses from ctl and Angel controls perturbations
and the environment. Robustness (in dGL) is then defined
as Demon having a winning strategy to guarantee post:

Definition 3 (Robustness). A control envelope ctl with a
safety guarantee safety (pre, ctl, env, post) is robust fo angelic
perturbations (angel angelpm.,) iff the following is valid:

pre’

pre — [(angelpre; (ct)?; angel,,,; env) } post  (3)

Definition 3 assumes that ctl already has a real-valued safety
guarantee (e.g. from [32], [68]-[70]). We reuse this knowledge
(and the safety proof) to check the robustness of ctl utilizing
insights on the decidability of differential refinements [55]. We
propose a practical, sufficient criterion for controller robustness
that can be checked in decidable real arithmetic (see extended
version for proofs and additional simplifications).

Theorem 1 (Robustness of Control Envelopes). Letr ctl
be as in Definition 3 and Xiny be the inductive invari-
ant used to prove safety (...). For angelic perturbation

angel,,,, angel ., and monitor formulas Xctr1, Xpres Xpost for
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ctl, angel,,,, angel,,, the validity of the following real arith-

metic formula implies the validity of Equation (3).

Vo Va1 3%2 V23 (Xinv (Zo) A Xpre (o, T1) —
(Xctrl (i’h i‘2) A (Xpost (jQ; jS) — Xctrl (-'EO; jS)))) (4)

Liveness: When both angel, . and angel, are set to
the skip program ? (T), the robustness property reduces to a
standard liveness property, i.e., whether the control envelope
(without perturbation) contains a safe action in all reachable
states. In this sense, robustness can be seen as liveness under
input/output perturbations.

Robot Example: As noted in Sec. II, the robot restricted
to moving toward the wall may crash if velocity computation
is even slightly perturbed. Using the formalization from
Sec. IV-A and our robustness notion, we can state
that the ctli is not robust w.r.t. the angelic perturbation
(angelg,re, angeléosl), as confirmed by a counterexample to the
corresponding dGL formula in Definition 3 in KeYmaera X
(see also extended version’s appendix). In contrast, for
0y < Viax/2, we prove via Theorem 1 that ctl? is robust
w.r.t. angelic perturbation (angelére, angelgost). Similarly, ctl3
is robust under the additional assumption that 6, x T < W/2,
ensuring sufficient distance between the rwo walls for safe
operation under worst-case velocity perturbations.

D. Implementation Safety under Perturbation

We have shown how to check the robustness of control
envelopes by proving that each state admits one safe action.
However, this is insufficient for concrete implementations,
whether idealized or fixed-point, where every chosen action
must ensure safety.

In dL terms, given a before-after predicate for an imple-
mentation impl and its dL representation oy (impl), safety
under perturbation requires proving:

senv

pre — [(angelpre; Qe (impl) s angel oq;

)*} post  (5)

By translating angelic perturbations into real arithmetic [44],
[55], we derive a decidable, real arithmetic condition for
safety under perturbation (see proof in extended version).

Theorem 2 (Safety under Perturbation). Let ctl be like in
Definition 3 and xiny be the inductive invariant used to prove
safety (...). For angelic perturbation angel,,, angel,,, and

pre7
monitor formulas Xctr1, Xpres Xpost for ctl, angel,., angel,,

pre?

the validity of the formula below implies Formula (5).

VZo Va1 V22 Y23 (Xinv (To) A Xpre (To, T1) A
impl(Z1, Z2) A Xpost (T2,T3) ) = Xetrl (To, T3) (6)

Phrased differently, proving Formula (6) shows that impl
encodes a winning strategy for demon in the game of
Equation (3) (with ctl substituted by cueq (impl)). For NN,
verification is typically done using NN verification tools, not
general real arithmetic solvers. In this setting, Formula (6)
(with impl omitted) serves directly as the NN’s specification
and can be simplified further (see extended version).



Robot Example: We previously showed that ctl] and ctl?
are robust under angelic perturbation (angelére, angeléosl).
We now examine whether the idealized implementation
implg (p, v") (Sec. IV-A) is safe under perturbation.

To this end, we instantiate Formula (6) for all combinations
of {ctl%, ctlg} X {(angelére, angeléost), (angelgre, angelﬁost)}
w.rt. implg, yielding four real arithmetic formulas. Each
formula’s validity implies the safety of implementation implg
w.r.t. its environment (one/two walls) and chosen perturbation.

ForT = 1.0, Vipax = 10,W =100, M = 9.5and 6, = 6, =
0.25 all 4 formulas are proven using KeYmaera X. Hence, any
fixed-point implementation differing from implg by at most
0.25 and with sensor perturbations of < 0.25 remains safe
within the fixed domain p € [0,100]. We now use the safety
result in Sec. IV-E to generate safe, efficient fixed-point code.

Importantly, we previously disproved the robustness of ctl%
W.I.L. (angelém, angeléost). Hence, as robustness is a necessary
condition, no matter the parameter choice, we cannot prove
safety of implg w.r.t. ctl} under the given angelic pertruba-
tions. Without checking robustness, a failed safety proof under
perturbation leaves unclear if this is due to a limitation of the

fixed-point implementation or of the chosen d£ model.

E. Implementation Synthesis

With implg(p,v™) proven safe under bounded perturba-
tions, we use state-of-the-art mixed-precision tuning to syn-
thesize a fixed-point implementation that stays within the
chosen bound §,. For this, we use Daisy [41] (also supports
uniform precision) that performs tuning using interval or affine
arithmetic. It generates C++ code with mixed-precision fixed-
point arithmetic (up to 64-bit width), which can be directly
compiled by Xilinx [42] to measure runtime in machine cycles.

However, Daisy does not natively support vectors, matrices,
or loops, common in NNs. It requires unrolled structures
and loops and also generates fully unrolled code, which
may overwhelm Xilinx [39]. To address this, we add a pre-
processing step to automatically unroll standard NN structures
for Daisy and a post-processing step to reintroduce the struc-
tures and loops after tuning. This enables Daisy to handle
our neural networks effectively. Note that we also considered
the tool Aster [39], which supports NN-specific code. But it
is limited to 32-bit precision due to solver constraints and
becomes infeasible for deeper networks due to imprecise range
overapproximations, making it unsuitable for our purpose.

For our robot example, we first used extended Daisy
to generate a 32-bit uniform fixed-point implementation of
implg (p, v™"), yielding a worst-case roundoff error of 5.37 x
1079 and a latency of 68 cycles. Since we proved safety under
perturbations up to §,, = 0.25, Daisy can synthesize a more
efficient mixed-precision implementation using at most 17 bits,
reducing latency to 30 cycles while still ensuring safety.

F. Limitations

As stated in Theorem 1, Formula (4) implies controller
robustness. However, if Formula (4) is not valid, this does not
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necessarily mean the controller is non-robust. A counterexam-
ple Zo satisfying pre is a concrete violation, but one outside
of pre may be spurious; robustness might still hold under a
stronger loop invariant that excludes Z.

Thus, our control envelope approach is, in general, incom-
plete. However, many dL proofs provide guarantees for the
weakest assumptions and thus set the invariant region as the
initial condition proving safety results for very permissive
control envelopes: If pre <+ yiny (and not only pre — Xiny),
then any counterexample is a concrete violation w.r.t. actions
deemed safe by ctl.

Finally, our method relies on proven, safe dL control
envelopes. Fortunately, a wide range of envelopes exists across
applications [68]-[70], [73]-[76], and recent work [77] shows
that their synthesis can be automated.

V. EVALUATION

We evaluate our methodology on three realistic case studies
to demonstrate its practical applicability. We begin with Adap-
tive Cruise Control (ACC), verifying safety for both discrete
and continuous action spaces. We then apply our approach
to the more complex and safety-critical Vertical Airborne
Collision Avoidance System (VCAS), specifically focusing
on two neural networks-Do-Not-Climb (DNC) and Do-Not-
Descend (DND)—which issue collision avoidance advisories
in case the current advisory is DNC/DND.

While the NNs for continuous ACC and VCAS are taken
from prior work [4], [5], [32], the discrete ACC networks
were trained specifically for this paper. The continuous ACC
network has 256 ReLLU nodes and over 12k parameters; the
discrete variant has the same architecture but has 3 output
nodes instead of 1. Each of the two networks used in the
VCAS case study contains 6x45 ReLU nodes. Table I sum-
marizes our experimental results.

A. Experimental Setup

All experiments were conducted on an Ubuntu 22.04
system with an AMD Ryzen 7 CPU and 32 GB RAM.
Safety proofs in differential dynamic logic and real arithmetic
were performed interactively using KeYmaeraX [72],
which internally relies on Mathematica [64] for quantifier
elimination. NN verification was done using N 3V [32],
[78], which supports polynomial specifications with arbitrary
propositional structure. Internally, N3V is based on Z3 [61],
[62], PicoSAT [79] and the linear specification NN verifier
nnenum [16]. For mixed-precision code generation and FPGA
synthesis, we used Daisy’s March 2, 2021 version (with
no major updates since then) and Xilinx’s Vitis HLS [42]
(version 2023.1), downloaded on September 24, 2024.

B. Case Study 1: Continuous Adaptive Cruise Control

For continuous ACC, prior work [32] provides a dL safety
guarantee for NN verification. In this setting, an ego car
(following a front car) chooses a relative acceleration ay
based on current relative position p. and velocity ve. The
safety goal is to prevent collisions while ensuring the ego car



TABLE I
SUMMARY OF RESULTS. §: WORST-CASE PERTURBATION/ERROR BOUND;
TIME (R): VERIFICATION TIME WITH REALS; TIME (0): VERIFICATION
TIME UNDER PERTURBATION; NN SYNTHESIS TIME: TIME TO GENERATE
AN NN WITH ERROR BOUND §; CYCLES: LATENCY REPORTED BY XILINX.

NN Verification NN Synthesis
Case Study O |[“Time (®) | Time 3) || Time | # Cycles
ACC (cont.) 1.0 2.02m 93m || 1.53h 567
ACC (disc.) 0.01 59s Im || 2.01lh 579
VCAS DNC | 2573 18.92m 27.45m || 1.73h 655
DND | 253 15.75m 19.Im || 1.82h 656

does not fall behind. Previous work had also established a
real-valued safety guarantee for a validated NN [32, Sec. 5],
raising the question whether the same safety guarantee holds in
a finite precision setting. To this end, we formalize an angelic
perturbation as (7 (T) ,angelye: ) with:

acce —

angel,,g = (Cara = *3 7 (|€am| < Oa) 5 rel = Qrel + €ayy)

Envelope Robustness: Initial analysis showed that
the control envelope derived before is not robust under
(7(T),angelss). It assumes actions in the range ary €
[—B7 A], where — B is the maximum braking acceleration, and
guarantees safety as long as braking with —B avoids a crash.
However, this relies on the precise execution of —B, which
is unrealistic under finite precision. We therefore revised the
control envelope to reflect this limitation and formally proved
its safety and robustness in KeYmaera X.

NN Verification: Using the revised control envelope, we
derived the specification for the NN as described in Sec. IV-E
and verified the NN using N3V, Table I reports the verification
times for both the original (Time R) and perturbation-aware
(Time 6) specifications. While verification under perturbation
takes longer, it remains feasible. The longer time is likely due
to the increased propositional complexity of the specification,
leading to more queries to the underlying verifier nnenum.

Code Generation: Finally, we used Daisy [41] to generate
an efficient mixed-precision fixed-point C++ implementation
of the NN that meets the error bound § = 1.0. To compute
latency, we compiled the generated code with Xilinx Vivado
HLS [42] for a standard FPGA architecture. Note that this
latency is exact, i.e., we do not consider noisy runtime
measurements from actual hardware.

With our pre- and post-processing pipeline, Daisy success-
fully generated code with an error of 1.0. While uniform
precision required 32 bits, mixed-precision tuning produced
an implementation using a mix of 31- and 32-bit variables,
reducing total bit usage by 3.66% compared to the uniform
version. The latency remained at 567 cycles, as the limited
reduction in bit widths was not sufficient to impact the overall
execution time. We note that retaining the fully unrolled
version could potentially reduce latency, but the size may
overwhelm Xilinx.

Discussion: The continuous ACC case study illustrates
that the proposed approach presented in this paper applies
effectively to realistic regression-based NN control systems,
handling roundoff errors.
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While NN verification typically scales with the number of
ReLU nodes, mixed precision tuning and code generation
scale with the number of parameters of the NN, including
all weights and biases. Since both steps are performed only
once, our method remains practical even for networks with
256 ReLU nodes and over 12K parameters.

Most importantly, the proposed approach enhances war-
ranted trust in NN controllers by ensuring infinite-time horizon
safety and bridging the gap between theoretical guarantees in
real arithmetic and their efficient, deployable code on FPGAs.

C. Case Study 2: Discrete Adaptive Cruise Control

In this case study, the NNs are classifiers selecting one
of three actions (a,; € —B,0,A) via an argmax over three
outputs. Finite-precision analysis is more challenging here, as
any error can flip decisions for some inputs near classification
boundaries. For instance, if a, = —B is selected for inputs
a such that (w,y) < b, then for input values with (w,y) = b,
even infinitesimal perturbations can flip the action.

Hence, in this case study, the key question is not if the NN’s
behavior changes under perturbations but where it changes. For
the chosen control envelope and idealized implementation we
verified safety under perturbation for a trained NN for § =
0.01 which simultaneously shows the envelope’s robustness.

With a perturbation bound of 0.01, Daisy estimated that 32-
bit uniform precision was sufficient to meet the error require-
ments. We then used Daisy to synthesize a mixed-precision
implementation, assigning 29 to 32 bits across variables. The
mixed-precision tuning took 2.01 hours and produced code
with a latency of 579 cycles, achieving a 0. 69% reduction in
latency and a 2.14% improvement in total bit usage compared
to the 32-bit uniform precision implementation.

D. Case Study 3: Vertical Airborne Collision Avoidance

Our third case study focuses on the Vertical Airborne Colli-
sion Avoidance System (VCAS), developed through multiple
Federal Aviation Administration (FAA)-supervised research
efforts [80], [81]. It aims to prevent Near Mid-Air Colli-
sions (NMACs), defined as aircraft coming within 500 feet
horizontally or 100 feet vertically, by identifying dangerous
trajectories and issuing timely advisories to adjust flight paths.

Given that hazardous situations often develop rapidly, the
advisory system must provide correct decisions. Previous
work has formalized this CPS in d£ [68] and proposed NN
controllers for use [4], [S]. Although the full combination of
these NN is unsafe, two specific NNs (DNC and DND) were
proven safe under idealized real-valued semantics [32]. Like
in the discrete ACC, these controllers work in a discrete action
space with similar challenges under finite precision.

VCAS represents a critical application where providing
formal safety guarantees for fixed-point implementations—not
just idealized models—is crucial. To this end, we applied our
methodology to the two verified NNs, constructing an angelic
perturbation model analogous to angely, to reflect realistic
numerical and actuation uncertainties. We then derived the
corresponding NN safety specifications.



Using N3V, we verified both NNs under this new specifica-
tion in comparable time to the original setting. Daisy’s analysis
showed that 42-bit uniform precision is required to meet
the perturbation bound of 2573, We then synthesized mixed-
precision implementations in 1.73 hours (DNC) and 1.82 hours
(DND). While the latencies remained the same at 655 and 656
cycles w.r.t. the uniform baselines, mixed-precision versions
have bit savings of 6.18% and 5.2%, respectively.

E. Discussion

Our three case studies demonstrate that our approach scales
to safety-critical, real-world systems like VCAS and applies
to both regression and classification-based NN Control Sys-
tems. Importantly, our methodology provides global safety
guarantees for the NN, which are generally more challenging
to obtain and scale less than local robustness guarantees.
However, many control applications of interest rely on NNs of
comparable size [3], making our approach practically relevant.

VI. RELATED WORK

Safety Analysis: While many techniques guarantee safety
for Cyber-Physical Systems (CPS) control, most of them omit
finite-precision or sensor/actuation errors. In principle, dl
[46], [48], [50] supports reasoning about such errors; however,
case studies often avoid it due to complexity [68]-[70]. Our
approach addresses this gap by enabling robustness analysis
of control envelopes from such studies.

VerSAILLE [32] is the only method using dL guarantees
for NNCSs. This enables infinite-time horizon guarantees. In
contrast, closed-loop reachability [20]-[25], [27]-[31], [82]
ensures safety only over a finite horizon, limiting inductive rea-
soning [32, Appendix E.2]. Similarly, barrier certificates [83]—
[87] lack the exact reasoning supported by VerSAILLE, and
typically cover smaller regions. Unlike our work, all men-
tioned NNCS verification works ignore the effects of fixed-
point arithmetic which are essential for realistic safety guar-
antees. Unlike [40], which integrates closed-loop reachability
with bounding fixed-point errors, we extend VerSAILLE and
can thus provide stronger, infinite-time horizon guarantees.

Recent work [88] analyzes divergence between closed-loop
NN controllers using e-equivalence [89], [90] and Lipschitz
analysis, but focuses on finite-horizon settings and does not
address sound quantization. For a broader comparison between
closed-loop verification, barrier certificates, and VerSAILLE,
we refer to [32, Sec. 5, 6, Appendix E.2].

Efforts to verify quantized NNs [38], [91], [92] use bit-
vector constraints. These tools are incompatible with the
real-valued polynomial constraints required by VerSAILLE,
limiting their use for infinite-horizon NNCS verification.

Mixed Precision Tuning: For sound mixed-precision tun-
ing, Daisy [41] (used in this work) and POPiX [59] support
fixed-point arithmetic, while FPTuner [57], Salsa [58], and
POP [93] focus on floating-point programs. Unlike Daisy,
POPiX frames tuning as an ILP problem but relies on dynamic
range analysis, which compromises soundness. Daisy also
integrates expression rewriting to improve mixed-precision
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tuning, though this added step increases computational cost,
making it harder to scale for larger benchmarks.

Neural Network Quantization: State-of-the-art NN quan-
tization [94]-[97] typically target NN classifiers, optimizing
accuracy without formal guarantees. Recent efforts, such as
Aster [39], automate mixed-precision tuning for NN con-
trollers under error bounds but suffer from imprecise integer
range estimation, limiting their usability for deeper networks.
Popinns [98] also synthesizes bounded fixed-point implemen-
tations but relies on dynamic analysis and assumes access to
a floating-point model, unlike our approach, where the goal is
sound efficient code generation.

Combined Approaches: VeriPhy [45] synthesizes sand-
boxes based on dL contracts and interval-based fallback
controllers. However, it provides guarantees around, not of,
the controller itself. Extending VeriPhy to realistic NNs would
require substantial changes, as NNs are not amenable to inter-
active proofs. We view VeriPhy as orthogonal to our approach,
applicable when direct NN verification is impossible.

Finally, for code generation, we use Xilinx Vivado [42] for
traditional and NN controllers. For neural controllers, tools
like FloPoCo [99] can generate optimized FPGA-based dot
products, which we leave as future work.

VII. CONCLUSION

This paper addresses the critical gap between theoretical
infinite-horizon safety guarantees for NN-controlled systems
and their practical finite-precision implementations. Since real-
valued guarantees may fail under finite precision, we for-
mulated control envelope robustness as a game between a
good Demon and a bad Angel. Verifying infinite-horizon
safety thus reduces to showing that the NN implements a
winning strategy while keeping fixed-point implementation
errors within allowable perturbations. Our approach relies on
decidable real-arithmetic conditions, avoiding the need for
undecidable dGL or dL validity proofs.

Our experiments on realistic NN control systems, from
automotive to aeronautics, covering both regression- and
classification-based NN architectures, demonstrate that ac-
counting for perturbations introduces no significant overhead
compared to perturbation-free verification, though costs may
increase for more complex systems. While this paper focuses
on NN controllers, the proposed technique naturally extends
to other controller types. Overall, our work represents a
significant step toward fostering warranted trust in real-world
NN control systems.
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