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Abstract—In many applications, SMT solvers are utilized to
solve similar or identical tasks over time. Significant variations in
performance due to small changes in the input are not uncommon
and lead to frustration for users. This sort of stability problem
represents an important usability challenge for SMT solvers.
We introduce an approach for mitigating the stability problem
based on normalizing solver inputs. We show that a perfect
normalizing algorithm exists but is computationally expensive.
We then describe an approximate algorithm and evaluate it on
a set of benchmarks from related work, as well as a large set
of benchmarks sampled from SMT-LIB. Our evaluation shows
that our approximate normalizer reduces runtime variability
with minimal overhead and is able to normalize a large class
of mutated benchmarks to a unique normal form.

I. INTRODUCTION

SMT solvers are used to solve a large variety of problems
in academia and industry [4], [14], [21]. As these solvers are
integrated into more and more workflows, they are increasingly
used in situations where there are many calls to a solver
with identical or similar queries. For example, a software
verification tool may run a regression suite nightly to check
that some software meets its specification, and for the most
part, this nightly run does not differ much, if at all, from the
previous night’s run. A common pain point in such situations
is that SMT solver performance can vary significantly, even
if there are only minor changes. This has been termed the
stability problem: queries that are semantically similar or
identical may require vastly different amounts of time to solve.
Or, even worse, some minor changes may result in a formerly
solved query not being solved at all.

As part of an NSF-supported project [3], we spoke with a
large number of SMT stakeholders and cataloged and ranked
over 100 different issues, based on how often they came
up in interviews. In this ranking, instability was ranked as
the second-highest area of concern (behind only requests for
better diagnostic output when the solver is unable to solve
a problem). The instability concern was also highlighted in
a keynote talk by Neha Rungta at CAV 2022 [21] on the
use of SMT solvers at Amazon Web Services and has been
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identified by another senior manager at Amazon as one of two
top priorities for improving their SMT solving workflows [13].

There are two kinds of changes that can introduce insta-
bility: changes to the input and changes to the solver. While
both are important, this paper focuses on the first: changes
to the input. In other words, we are interested in reducing
the sensitivity of solving time to minor changes in an input
formula, especially if those changes are semantics-preserving.

Two common misconceptions about stability are worth not-
ing. First, instability should not be confused with poor solver
performance. Improving solver performance is an important
and worthy goal; however, it is orthogonal to addressing
the stability problem. Our focus is on making solver per-
formance more consistent in the face of mutations to its
input. Importantly, many users in our study reported that
they would welcome any improvement to stability, even if
it came at the cost of some degradation in performance.
The other misconception derives from not recognizing the
connection between stability and computational complexity.
Because the SMT problem is NP-hard (or worse, depending
on the theory being used), solvers try to guide worst-case
exponential algorithms in such a way that solutions are found
quickly when possible. However, even a small change in the
input can cause the exploration of a different search path,
which can result in an exponentially worse (or better) runtime.
This is similar to the well-known butterfly effect in chaos
theory. Despite this problem, as we show in this paper, there
are steps that can be taken to reduce instability.

SMT solvers typically already use deterministic data struc-
tures and algorithms to eliminate easily avoidable sources of
instability. In a sequential execution setting, the remaining
source of variability is their search heuristics, primarily their
branching heuristics, which typically break ties based on the
order in which declarations and assertions appear in the input
problem. Our key idea is to reduce this variability by using
the structure of the input problem to determine the order of
declarations and assertions. Our approach uses the principle
of normalization: we attempt to map classes of semantically
equivalent inputs to the same normal form. Note that if perfect
normalization could be achieved in this setting, it would result
in perfect stability with respect to the semantically equivalent
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input classes, as the input to the core solver would be the
same in every case. We present an approach aimed at getting
closer to that ideal without introducing too much overhead.
A notable feature of our approach is that it is agnostic to the
underlying solver. It can thus be used to improve the stability
of any SMT solver with respect to changes in the input.

We consider normalization with respect to a set of basic,
semantics-preserving transformations: () reordering of asser-
tions; (i7) reordering of operands of commutative operators;
(#21) reordering and renaming of user-defined symbol decla-
rations; and (iv) replacing anti-symmetric operators by their
converse. These transformations are representative of the kinds
of changes that happen in the real-world scenarios motivating
our work. For example, in a program verification workflow,
if a function is moved or renamed, this could result in a
reordering of declarations and assertions, a different name for a
user-defined symbol, or both. These transformations are also
a superset of the solver input transformations considered in
previous work on measuring instability [26]. We will refer
to these transformations as mutations and to inputs that have
been transformed this way as mutated inputs. We address the
following research questions:

1) Is it possible to design a normalizing algorithm that
utilizes these mutations to map all mutated variants to a
single unique normal form?

2) If such an algorithm exists, what is its time complexity?

3) How closely can an efficient algorithm approximate the
ideal algorithm?

After covering some background in Section II, we formalize
the problem in Section III and answer the first two questions,
showing that such an algorithm does indeed exist but is as
hard as graph isomorphism. We provide an answer to the
third question in the remainder of the paper. Section IV
introduces an algorithm that approximates the ideal algorithm,
and Section V presents an evaluation of our implementation,
showing that it significantly improves SMT solver stability on
benchmarks from the Mariposa project [26] and from the SMT-
LIB benchmark library [20]. Finally, Section VI concludes.

Related work: The importance of the issue of stability in
SMT solving has been raised in other work [8], [10], [12],
[17]. Dodds [8], highlights the problem of proof fragility
under changes in verification tools. Ferraiuolo et al. [10]
mention proof instability as the most frustrating recurring
problem, especially when proof complexity increases as a
result of reasoning about procedures with many instructions
and complex specifications. In Hawblitzel et al. [12], verifi-
cation instability is observed in large formulas and non-linear
arithmetic due to different options for applicable heuristics.
Leino & Pit-Claudel [17] identify matching loops—caused
by certain forms of quantifiers that lead an SMT solver to
repeatedly instantiate a limited set of quantified formulas—as
a key factor contributing to instability in verification times,
and describe techniques to detect and prevent them.

More relevant to our work is the work of Zhou et al. [26],
[25]. In [26], they pioneer an effort to detect and quantify
instability and introduce a tool for this task called Mariposa.
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They show that mainstream SMT solvers such as Z3 [7]
and cvcS [1] exhibit instability on a set of F* [22] and
Dafny [16] benchmarks [5], [10], [11], [18], [19], [23]. They
consider benchmark-modifying mutations, specifically symbol
renaming and assertion reordering, as well as solver-modifying
mutations, via the use of different random seeds, and employ
a statistical approach to identify instability arising from these
mutations. We include an evaluation of our technique on their
benchmarks but focus on benchmark-modifying mutations
only as we aim to improve stability with respect to input
changes.

In [25], Zhou et al. identify irrelevant context in a query as
one source of instability and propose a novel approach to filter
out such context to improve solver stability. This approach
is complementary to our own, and combining the two is an
interesting direction for future work.

Also closely related is the work of Weber [24], which
introduces a normalizer designed to reverse the effects of
mutations applied to scramble benchmarks for the SMT-
COMP competition at the time. The normalizer introduced
in [24] was specifically designed to expose a weakness in the
scrambling algorithm where symbols were renamed but not
reordered. This weakness makes it possible to achieve perfect
normalization efficiently, as demonstrated by Weber’s algo-
rithm. However, in the presence of the more expressive and
realistic mutations we consider here, the normalizer from [24]
performs poorly, as we show in Section V.

II. BACKGROUND

We work in the context of many-sorted logic (e.g., [9]),
where we assume an infinite set of variables of each sort and
the usual notions of signatures, terms, formulas, assignments,
and interpretations. We assume a signature X consisting of
sort symbols and sorted function symbols. It is convenient to
assume that X has a distinguished sort Boo1, for the Booleans,
and to represent relation symbols as function symbols whose
return sort is Bool. We also assume the signature includes
equality. Symbols in X are partitioned into theory symbols
(e.g., =,A\,V,+,—,0,1) and user-defined symbols (e.g., f,
g, x, y). We assume some background theory that restricts
the theory symbols to have fixed interpretations, whereas the
interpretation of user-defined symbols is left unrestricted.

We represent formulas as finite sequences of symbols in
prefix notation, where each symbol is either a theory symbol
or a user-defined symbol. This causes no ambiguity when each
symbol has a fixed arity. If S is a sequence (sy,...,S,), we
write |S| to denote n, the length of the sequence, and .S; to
denote the i*" element of the sequence. We write s € S to
mean that s occurs in the sequence .S, and write S o .S’ for
the sequence obtained by appending S’ at the end of S. We
write user(S) to mean the sequence obtained by deleting all
theory symbols in S, e.g., user((z,+,y, — z)) = (z,y, ).
We denote the set of integers between m and n inclusive,
where n > m, as [m,n]. And we abbreviate [1,n] as [n].

An input problem in the SMT-LIB 2.6 format [2] is shown
in Figure 1. We use this as a running example throughout



(set-logic QF_UFLIA)

(declare-fun f (Int) Int)
(declare-const w Int)
(declare-const y Int)

(declare-const v Int)
(declare-const x Int)
(declare—-const z Int)

(assert (>= (+ (f x) y) (- v 12)))
(assert (< (+ x y) (* x z)))
(assert (>= (+ (f y) x) (= w 12)))
(assert (< (+ y x) (* x x)))
(assert (< (+ x y) (x y y)))
(assert (< (+ y x) (*x y Vv))

(check-sat)

Fig. 1: Running Example.

(assert (>= (+ (f x) y) (- v 12)))
(assert (< (+ x vy) (x x z)))

(assert (> (x ud u2) (+ u2 ul)))
(assert (>= (+ (g u2) u3d) (- ul 12)))

Fig. 2: Two different mutated versions of the same assertions.

the paper. The example includes arithmetic theory symbols, a
user-defined function f, and user-defined constants v, w, x, y,
and z. We will refer to the sequence of six assertions in the
running example as (31, ... [Sg). Figure 2 shows two different
representations of the first two assertions in the example: the
first is from the example and the second is a mutation of it.
In particular, the order of the assertions has been swapped,
the operands of the x operator have been reordered, the user-
defined symbols have been renamed (with w, %, vy, and z
renamed to ul through u4, respectively, and £ renamed to
g), and the assertion using < has been rewritten to use >.

III. FORMALIZATION

Consider again the first two assertions from the running
example. Here, the user-defined symbols are {f, x, y, v, z},
and the theory symbols are {>=, <, +, —, x, 12}. When
written as a sequence in prefix notation, assertion 31 is (>=
,+, f,x,y, —,v,12). Similarly, 52 is (<, +,z,y, *, x, 2).

Recall that mutations include four operations: (¢) reordering
assertions; (i¢) reordering operands of commutative operators;
(#47) reordering and renaming symbols; and (¢v) replacing anti-
symmetric operators. We defer (zv) to the end of this section,
as it can be easily handled separately. To formalize the others,
we introduce some definitions.

Definition III.1 (Shuffle Set). The shuffle set of a sequence
A is defined as S(A) = {A’ | A" is a permutation of A}.

For example, S((B1, 82)) = {(B1, B2), (B2, B1)}.

Definition III.2 (Commutative Reordering Set). Let o be a
formula, possibly containing (binary) commutative operators.
The commutative reordering set of « is defined as C(«)
{a’ | & is the result of swapping the operands of zero or more
of these commutative operators in «}. For a sequence A of n
formulas, C'(A) is the set of all sequences (o, ..., o) where
for each i € [n], o € C(a;). If X is a set (containing either
formulas or sequences of formulas), then C(X) = {2’ | 2’ €
C(z) for some = € X}.
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For example, C(81) = {1, (>=,+,y, f,z, —,v,12)}. Note
that there is only one entry in C'(3;) besides 3, itself, because
+ is the only commutative operator in 3;. On the other hand,
there are four elements in C'(52), since B2 has two commuta-
tive operators, + and *. Consequently, C' ({81, f2)) has eight
elements, representing all combinations of one formula each
from C(f1) and C(3s).

Definition IIL.3 (Pattern). Let o be a formula. The pattern
of «, written P(«), is a sequence of the same length as «,
defined for each i € [|a]] by

Q; if «; is a theory symbol,
@1 if o is the first user-defined symbol in «
P(a); = P(a)j if «; is a user-defined symbol and
there exists j € [i — 1] with a; = o,
Qk otherwise, where k =1 +
[{o; | j € [i — 1], a; user-defined}|.

For convenience, we assume that each symbol Qfk is a fresh
constant! of the same sort as the symbol it is replacing, so that
if a is well sorted, then so is P(«). We call pattern symbols
the introduced symbols starting with “@”, and patterns the
sequences in the co-domain of P. We define a total order < on
patterns to be the lexicographic order induced by some total
order on formula symbols.> For our example assertions, we
have P(8;) = (>=,+,@Q1,@2,Q3, —,@4,12) and P(5s)
(<, +,@1,Q2, x, @1, @3).

We lift this notation to sequences and sets of sequences. To
explain how, we need two more definitions.

Definition IIl.4. Given a sequence of formulas A =
(aq,...,ap), the conjoining of A, Conj(A) is the formula
(N)oajoago- - -oay,. Similarly, given a formula (A)oa; oago
-+ -oqy,, where «; is a formula for i € [n], the unconjoining of

a, written Uncong () is the formula sequence (a1, ..., an).

For a sequence A of formulas, we define P(A)
Uncong(P(Conj(A))). If X is a set containing either formu-
las or sequences of formulas, then P(X) = {P(z) |z € X}.
We similarly lift < to sequences of formulas: if A and A’
are sequences of patterns, then A < A’ iff a; 0o---0 aja) <
ajo---0 O‘I Al Next, we define renaming and normalization.

Definition IILS (Renaming). Let V be a set of variables. A
renaming R is an injective function from pattern symbols to
V. For a formula «, R(«) is defined to be a sequence of the
same size as «, defined as follows:

o if a; is a theory symbol,

FO=1 Riay)

if o; is a pattern symbol.

'The SMT-LIB 2.6 standard reserves symbols starting with @ for internal
use by solvers, so this assumption is a reasonable one.

2 An obvious choice for this order (and the one we use) is the lexicographic
order on the string representations of theory and pattern symbols.



For a sequence of formulas A (aq,...,ap), R(A)
(R(aq),...,R(ay)). If X is a set of formulas or sequences
of formulas, then R(X) = {R(z) | » € X}.2

Definition II1.6 (Normalizing Function). A function N from
sequences of formulas to sequences of formulas is said to be
normalizing if, for every sequence A of formulas:
1) N(A) = R(A’) for some A" € P(C(S(A))) and some
renaming R; and
2) if My = Ri(M]) and My = Ry(M)), with Ry, Ry
renamings and with M|, M, € P(C(S(A))), then
N(My) = N(Ma).

We can now introduce our first research question: do nor-
malizing functions exist? We show that the question can be
answered affirmatively.

Definition IIL.7 (Normalizing Function). Let A’ be defined
as follows. For every sequence of formulas A, A((A) is the
~<-minimal element of P(C(S(4))).

Lemma IIL8. Let A be a sequence of formulas. If Agr
R(Ap), where Ap € P(C(S(A))) and R is a renaming, then
P(C(5(4r))) = P(C(S(A))).

Proof. First, note that for any formula sequence A, we have
R(P(C(S(A)))) = C(S(R(P(A)))). This is because the first
transformation generates a set of equivalent formula sequences
and then renames the symbols, while the second renames
the symbols and then generates a set of equivalent formula
sequences. However, these two operations are independent, so
their combined result is the same, regardless of their order.
Now, let Ap = R(P(A’)) for some A’ € C(S(A)).
We have that P(C(S(ARr))) P(C(S(R(P(A))))
P(R(P(C(S(A")))) = P(C(S(4"))), since computing the
pattern of a renaming of a pattern is just the same as com-
puting the pattern. It remains to show that P(C(S(4’))) =
P(C(S(A))). Since A’ € C(S(A)), A can be obtained from
A’ by swapping zero or more commutative operators and per-
muting the order of the formulas in A’. But then, any element
of C(S(A)) can be obtained from A’ by swapping commuta-
tive operators and permuting the order, so C(S(A’)) is just the
same as C(S(A)). Thus, P(C(S(A"))) = P(C(S(A))). O

Lemma IIL9. For any formula A, P(C(S(A)))) has a unique
minimal element with respect to <.

Proof. When comparing two elements of P(C(S(A))), each
of which is a sequence of patterns, we concatenate the patterns
together and compare them with <. Since < is a total order,
one of them is always smaller. Thus P(C(S(A))) has a
minimum element. O

Theorem II1.10. Function N is normalizing.

Proof. Notice that A((A) = R(A’), where R is the identity
function and A’ is the <-minimal element of P(C(S(A))).

3When representing an assertion sequence as an SMT-LIB 2.6 script, we
declare user-defined symbols in lexicographic order, so a renaming can affect
the order of declarations.
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It is not hard to see that R is also a renaming, so the first
requirement is met. Now, let M; = Ry(Mj) and My
Ro(M3), with M1, M} € P(C(S(A))), where Ry, Ry are re-
namings. By Lemma II1.8, P(C(S(M;))) = P(C(S(A)))
P(C(S(Mz))). But P(C(S(A))) has a unique minimal ele-
ment, A’ by Lemma IL.9. Thus, A((M;) = A’ = A[(M3). O

A. Complexity

We have shown the existence of a normalizing function. The
next question is whether normalization can be done efficiently.
An informal argument that computing the normalization of
an arbitrary set of formulas is at least as hard as graph
isomorphism can be found in Lavrov [15], and a formal proof
can be found in Weber [24]. The question of whether graph
isomorphism can be solved in polynomial time is a long-
standing open problem.

Theorem III.11. Let N be a normalizing function. Then,
computing N(A) for an arbitrary A is as hard as solving
graph isomorphism.

Proof. Let G1 (Vl,El) and Gy = (VQ,EQ) be two
undirected graphs. Assume without loss of generality that
V1N Vy = (. For each v € {V; U Va}, let u(v) map v to
some unique user-defined symbol (i.e., u is injective). Now,
define A; = {(f,z) | z € Vi} U {(==z,9) | F(v,0) €
E;. {z,y} = {u(v),u(v')}}, where f is some Boolean
predicate. Note that G; can be recovered from A;, simply by
creating a vertex for every user-defined symbol appearing as an
argument of f in A; and then adding an edge between u ! ()
and u~!(y) whenever the formula (=, z,y) appears in A;.
Furthermore, shuffling the formulas in A;, permuting the order
of the operands in equalities (the only commutative operator
appearing in A;), or renaming the user-defined symbols does
not change the structure of the graph being represented. Thus,
all elements of P(C(S(A;))) represent isomorphic graphs.

Now, suppose N(A4;) = N(As), For ¢ € [1,2], we know
that N(A;) = R(A}) for some A; € P(C(S(A;))). Further-
more, because renamings are injective, A] = P(R(4;)) =
P(N(Ay)) P(N(A)) P(R(Az)) = Aj. But for
; € [1,2], the graph represented by A, is isomorphic to the
graph represented by A}. Thus the graph represented by A,
namely G, is isomorphic to the graph represented by A,
which is Gs.

On the other hand, suppose (G; and G, are isomorphic.
Let i : Vi3 — V, be the isomorphism function for the graph
vertices. Let R be a renaming such that Vv. R(P(v)) = h(v).
Applying this renaming to A; must be equivalent (modulo or-
der) to As. In other words, A; € R(P(S(A3))). Then, because
N is normalizing, we must have N(A;) = N(As). Thus,
computing N is at least as difficult as graph isomorphism. [J

Note that the use of transformation C' is not essential in the
proof above. This means that normalizing just the result of
shuffling and renaming is already as hard as graph isomor-
phism.



(assert (>= (+ (f x) y) (- v 12)))
(assert (< (+ x y) (* x z)))
(assert (>= (+ (f x) y) (- v 12)))
(assert (> (x x z) (+ x y)))

Fig. 3: Original (top) and normalized (bottom) assertions.

B. Anti-symmetric Operators

As mentioned above, mutations can randomly replace anti-
symmetric operators with their dual operator. For example, (<
(+ x y) (x x z)) could be changed to (> (* x z)
(+ x y)). In general, we allow mutations that transform
expressions of the form A op B into B op’ A, where (op, op’)
pairs include: (>, <), (>=, <=), (bvugt, bvult), (bvuge,
bvule), and so on.

A normalization algorithm can easily handle anti-symmetric
operators, simply by choosing one representative operator for
each pair and forcing all assertions to use only the chosen
operators. For example, if we choose the first operator in each
pair listed above, then Figure 3 shows the result of normalizing
the first two assertions in our running example. Notice that
the first assertion is unchanged because it is already using the
chosen operator.

C. Relation to Permutation Groups, Graph Isomorphism, and
Symmetry Breaking

Our formalization draws on well-established concepts such
as permutation groups and graph isomorphism. The relevant
permutation groups arise as automorphism groups of the struc-
tures we consider, that is, the set of all renamings preserving
structure. Graph isomorphism provides the framework for
determining when two structures are equivalent under such
permutations and captures the underlying symmetry inherent
in the problem. However, unlike standard symmetry breaking,
which prunes a search space by imposing syntactic orderings,
our goal is to rewrite all isomorphic structures, possibly
using different names or expressions, into a common normal
form. This requires normalization guided by the underlying
structure.

IV. APPROXIMATING A NORMALIZATION ALGORITHM

As a first step towards a general practical algorithm for
normalization, we describe a heuristic procedure designed to
handle two of the four mutations: shuffling and renaming. We
leave the handling of the other operations to future work.
We expect support for normalizing antisymmetric operator
replacement to be straightforward (as described above), while
normalizing commutative operand swapping will be more
challenging. Note that shuffling and renaming are also the two
operations used to mutate benchmarks in the Mariposa work
(the closest related work) [26]. We describe our algorithm
at a conceptual level here, and discuss several optimizations
necessary to make it work well in practice in Section IV-A.
Our algorithm consists of three steps: (7) Sorting the assertions;
(¢¢) Renaming all symbols; and (z¢%) Sorting the assertions
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(assert
(assert

(<
(<

X
Y

X
Yy

v)
X)

X
y

(assert
(assert

(<
(<

X)
v)

y
x

(assert
(assert

(>=
(>=

(+ (£ x) vy)
(+ (£ y) %)

(= v 12)))
(= w 12)))

Fig. 4: Assertions sorted by pattern.

again. In the rest of this section, we discuss these steps in
detail.

Sorting the assertions. Step one is to sort the assertions. The
challenge is to do this in a way that does not depend on
the names of user-defined symbols. The key idea is to use
patterns. In particular, to order assertions « and o', we can
compare P(a) and P(«’) using the < order. For instance,
considering again assertions from our running example, [
is (<, +,2,y,%,y,y), and B is (<,+,y,z,*,y,v), SO we
have P(B5) = (<,+,@1,@2, %, @2,@2) and P(fs) (<
,+,Q1,@2 *, @1, @3). The first difference in the patterns is
in the sixth position. Assuming @1 comes before @2 in the
ordering, we have that P(3s) < P(f5), so we can conclude
that B¢ should be placed before Ss.

Note, however, that it is possible for two formulas to have
the same pattern. Thus, after sorting according to patterns, we
obtain an ordered list of equivalence classes ECy,--- , EC,
with the following features:

1) a and o' belong to the same equivalence class iff
P(a) = P(d).
2) a€ EC;and o € EC; where i < j iff P(a) < P(¢).
The next question is whether we can easily order the
assertions belonging to the same equivalence class. We give an
efficient approximation method. For this, we need the notions
of role and super-pattern.

Definition IV.1 (Role). The role of a symbol s in a formula
«, denoted role(s,a), is 0 if s € « and is the index of the
earliest occurrence of s in user(«), otherwise. The role of s
in a set of formulas is the multiset consisting of all the roles
played by s in the formulas in the set.

For example, consider the role of y in (5. First of all, we
compute user(fs), which is (z,y,y,y). We can then see that
y occurs first at the second position, so role(y,B5) = 2.

Similarly, role(z, {4, 85, B6}) = {1, 1,2}.

Definition IV.2 (Super-pattern). The super-pattern of a sym-
bol s over a sequence X of sets Xi,...,X,, denoted
SP(s,X), is the sequence of roles of the symbol in each set:
SP(s,X) = (role(s, X1), role(s, Xa), ..., role(s, X,)).

Let EC be a sequence of formula equivalence classes. The
super-pattern of FEC' captures the role of a symbol across
all equivalence classes, while treating the formulas in each
equivalence class as unordered.

To illustrate, recall the example from Figure 1. Figure 4
shows the result of sorting the assertions by pattern, re-
sulting in three equivalence classes, each separated by an



empty line. The patterns of the equivalence classes in EC' =
{EC4,...,EC3}, from top to bottom, are as follows:

ECy: (<,+,@1,Q2,x,@1,Q@3)
ECy: (<,+,@1,Q2, x,@2, @2)
ECs: (>=,+,@1,@2, @3, —, @4,12)

Now, suppose we want to order the formulas in EC3. We
compare the super-patterns of the first different pair of user-
defined symbols, in this case, x and y. The roles of x
throughout the equivalence classes are:

role(x, EC1) = {role(x, f2), role(zx, Bs)} = {1,2}

role(x, EC3) = {role(x, f4), role(zx, B5)} = {1,2}

role(x, EC3) = {role(z, f1), role(zx, B3)} = {2,3}
Therefore, applying the definition of super-pattern for x yields
SP(xz,EC) = ({1,2},{1,2},{2,3}). It is not hard to see
that the super-pattern for y is the same, so the two assertions
cannot be distinguished by looking at x and y. The next
pair of different user-defined variables also consists of x and
y. However, the last pair is v and w. Following the same
process, we find that SP (v, EC') = ({0,4},{0,0},{0,4}) and
SP(w, EC) = ({0,0},{0,0},{0,4}). Now, all we need is a
way to order different super-patterns.

Definition IV.3 (Integer multiset order). Given multi-sets
of integers m; and ms, m; < mg iff the sequence of
nondecreasing elements of m; is lexicographically smaller
than the sequence of nondecreasing elements of ms.

Definition IV.4 (Super-pattern order). For super-patterns s;
and so, s1 < sg iff s; comes before sy when compared using
the lexicographic order induced by the integer multiset order.

Thus, when comparing super-patterns, we compare the entries
in the sequences one by one using the integer multiset order.
The first two entries in SP (v, EC) and SP(w, EC) are {0, 4}
for v and {0,0} for w. Because (0,0) < (0,4), we can
conclude that SP(w, EC) < SP(v,EC). Thus, we should
reverse the order of assertions in the last equivalence class.
Similarly, by computing super-patterns for z and v, we can
see that we should keep the order of the assertions in the first
equivalence class.

It is possible for all of the super-patterns of corresponding

symbols in two assertions in the same equivalence class to
be the same. In this case, our heuristic fails to distinguish
the assertions, and the assertion order is left unchanged. For
example, for EC5, the only user-defined symbols available
for comparison are x and y, and they have the same super-
pattern. Thus, we leave these assertions in their original order
for now. Algorithm 1 shows the full algorithm for ordering
two assertions.
Renaming all symbols. After sorting the assertions according
to Algorithm 1, we rename all the symbols in the assertions.
We use a renaming R that maps a variable whose pattern
symbol is @k to Xj. More precisely, if A is the sequence of
assertions after sorting, we replace A with R(P(A)). Figure 5
shows the assertions from our running example after sorting
and renaming.
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Algorithm 1 Algorithm for ordering assertions A and B given
EC, a sequence of equivalence classes (with respect to pattern
equality) of assertions.
if P(A) # P(B) then
return P(A) < P(B)
end if
for i < 1 to |user(A)| do
u + user(A);
v« user(B);
if v = v then
continue
end if
if SP(u, EC) # SP(v, EC') then
return SP(u, EC) < SP(v, EC)
end if
end for
return inconclusive

(assert (< (+ X7 X2 ) (» X1 X3 )))
(assert (< (+ Xo X1 ) (» Xo Xgq)))
(assert (< (+ X2 X1 ) (» X1 X1)))
(assert (< (+ X1 X2 ) (» Xo X2 )))
(assert (>= (+ (X5 X1 ) X2 ) (- X4 12)))
(assert (>= (+ (X5 X2 ) X1 ) (- X6 12)))

Fig. 5: Assertions after sorting and renaming.

Sorting the assertions again. After renaming, there is one
more step that can improve the normalizer. It is based on the
observation that within an equivalence class, different assertion
orders are possible, depending on the initial order, when all
symbols in a pair of assertions have the same super-patterns.
This can be partially addressed by lexicographically sorting
each equivalence class after renaming. This ensures that if we
have two benchmarks for which the first two steps produce
the same set of assertions, but in different orders, then these
two benchmarks will be normalized the same way.

Looking again at Figure 5, we see that assertions in the
first and last equivalence classes are already in sorted order.
However, the assertions in equivalence class 2 should be
reordered. Recall that in the previous step, we did not have a
way to order these assertions, but now there is an unambiguous
order for them. It is important to note that our algorithm
does not guarantee the normalization property. The reason
for this incompleteness is that when assertions cannot be
distinguished by super-patterns, there can be different normal
forms for benchmarks, even if one is a mutation of the other
by shuffling and renaming. Nevertheless, our algorithm works
well in practice, as we show in the next section.

A. Code Optimizations

Some of the benchmarks in our benchmark sets are ex-
tremely large, with sizes up to hundreds of megabytes and
with up to hundreds of thousands of user-defined symbols
and assertions. In this section, we discuss three optimizations



that are crucial for the scalability of our algorithm on such
benchmarks.

a) Pattern Compression: As presented in Section III,
formulas are sequences whose size corresponds to the size
of their abstract syntax tree. However, internally, SMT solvers
represent formulas as directed acyclic graphs (DAGs), because
they often share subterms. In other words, the internal rep-
resentation effectively achieves common subexpression elim-
ination. The result can be exponentially more concise. It is
thus essential to also incorporate this kind of sharing in our
representation of patterns. In our implementation, we represent
a pattern actually as an index into a dictionary of the subterms
in the tree representation of the pattern. For example, the
formula (+, %, 2, 2, *, x, x) would be represented as the index
2 into the dictionary (1 : (x,z,z),2: (+,1,1)).

b) Super-pattern Computation: A naive way to compute
the super-pattern for a symbol s is to traverse all of the asser-
tions and look up the role of s in every assertion. However, this
approach is not scalable for large benchmarks. To address this
issue, we perform a one-time indexing pass over the assertions,
to create arrays for each symbol s containing pointers to
only the assertions in which s appears. This way, we only
need to traverse those assertions when calculating the super-
pattern for s. This optimization reduces the number of lookups
from hundreds of millions to hundreds of thousands on some
problematic benchmarks, improving the normalization time by
more than an order of magnitude.

c) Super-pattern Compression: This optimization lever-
ages the sparsity of super-patterns: in large benchmarks,
each symbol typically appears in only a small subset of the
assertions. Thus, the role of a symbol is likely to be 0 in
most assertions. To exploit this, we represent super-patterns
as sequences consisting of the non-zero role values interleaved
with counts of the number of zeros.

V. EXPERIMENTS

We implemented our normalization algorithm in C+. We
evaluate its effectiveness on three dimensions: normalization
effectiveness, stability, and runtime.

We use two sets of benchmarks. The first set, smtlib, is
obtained by randomly selecting 50 benchmarks from each
family (or all of them, if there are fewer than 50) in the SMT-
LIB benchmark library [20]. A family, in this context, consists
of all benchmarks in a single leaf directory of the filesystem
heirarchy. Note that even though our normalization algorithm
as described in Section IV is, in theory, applicable to all of
SMT-LIB without limitation, our current implementation does
not support the normalization of algebraic datatypes due to
implementation-level complexities. We thus excluded bench-
marks with algebraic datatypes from our evaluation. Even with
that exclusion, the smtlib set contains 41,166 benchmarks,
from 1,581 benchmark families. We group benchmarks from
this set into the (so-called) divisions used by the annual SMT-
COMP solver competition [6] to keep the number of categories
manageable.
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The second set, mariposa, consists of the benchmarks
used in [26] (as provided in [27]), originating from program
verification projects written in Dafny [16], Serval [19], and
F* [22]. The mariposa set contains 16,622 benchmarks and is
divided into six families: Dice}. [23] (1536), Komodop and
Komodog [10] (2,054 and 773), VeriBetrKVp [11] (5,170),
VeriBetrKV , [18] (5,334) and vWasmpg [5] (1,755).

For each benchmark in one of the two sets, we produce
10 mutations by randomly applying assertion shuffling and
renaming. Our renaming uses a fixed enumeration of names
(i.e., a benchmark with n user-defined symbols always uses
the first n of these names), but shuffles the order in which
they appear in assertions (and thus the order in which they
are declared, since we declare symbols in the order in which
they appear). We ran all experiments on a cluster of 48
machines with AMD Ryzen 9 7950X CPUs using a time
limit of 60 seconds and a memory limit of 8GB. We used
this same time and memory limit to separately limit the
mutation step, the normalization step, and the solving step.*
We do not report results for benchmarks that timed out during
mutation or normalization. For the smtlib set, we exclude 6
benchmarks that timed out during the mutation step and 85 that
timed out during the normalization phase (of these, 58 timed
out during parsing, before ever getting to the normalization
algorithm), for any of the 10 mutated versions. In mariposa,
we only exclude 2 benchmarks, both of which timed out
during normalization. Overall, this resulted in 41,075 eligible
benchmarks in smtlib and 16,620 in mariposa.

A. Normalization Effectiveness

In our first experiment, we evaluate how closely our im-
plementation of an efficient normalization algorithm approx-
imates the ideal algorithm on both benchmark sets. For this,
we measure, for each benchmark: (i) the number of distinct
outputs produced by our normalizer for the 10 mutations (the
best possible is 1; the worst possible is 10); and (i) the
similarity of the 10 normalized outputs, computed as the av-
erage percentage of identical lines among all pairs of outputs.
Table I shows our results. Each row starts with a category
name (the name of the division or family) and a pair of
numbers (z/y) denoting the number of excluded benchmarks
z vs. the total number of benchmarks y in that category. We
then list the number of considered benchmarks (#Bench, equal
to y — x) and the average number of distinct benchmarks
produced by the 10 mutations, before normalization (pre) and
after normalization, without (wo-SP) and with (w-SP) the use
of super-patterns. We next show the average and maximum
runtime for the normalization algorithm. Finally, we show
the average similarity among the mutated benchmarks, again
comparing pre, wo-SP, and w-SP. Figure 6 shows histograms
of the number of distinct benchmarks among the 10 mutations
before and after (with super-patterns) normalization.

4This is long enough to be able to catch cases when the normalizer is slow
and short enough to help keep a large evaluation computationally tractable.
Using the same timeout for all stages also keeps things simple.
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Fig. 6: Number of distinct benchmarks before and after normalization.
Division (smtlib) (Excluded/Total) | #Bench #Unique Time (s) Similarity (%)
pre  wo-SP w-SP Avg Max pre  wo-SP w-SP
Arith (0/883) 883 | 9.33 1.05 1.02 | 0.0010 0.1720 | 7.07 99.39 99.62
BitVec (5/793) 788 | 9.36 1.07 1.03 | 0.0139 3.5230 | 5.81 99.01 99.48
Equality (0/1,570) 1,570 | 10.00 8.48 2.79 | 0.0075 0.1020 | 0.05 47.59 98.48
Equality+LinearArith (0/2,595) 2,595 | 9.99 7.34 5.35 | 0.0030 0.0860 | 1.29 65.56 86.78
Equality+MachineArith (2/905) 903 | 10.00 1.25 1.22 | 0.0295 3.6140 | 0.76 97.97 98.18
Equality+NonLinearArith (0/1,452) 1,452 | 9.70 2.98 1.64 | 0.0080 0.4980 | 3.14 88.89 98.48
FPArith (0/319) 319 | 9.48 1.03 1.03 | 0.0000 0.0010 | 5.25 99.61 99.61
QF_Bitvec (42/3,320) 3,278 | 9.55 4.94 4.78 | 0.7248  38.7570 | 4.63 74.17 79.88
QF_Equality (0/667) 667 | 10.00 2.63 2.16 | 0.0306 1.0710 | 0.73 85.67 93.24
QF_Equality+Bitvec (20/1,208) 1,188 | 9.87 4.49 4441 0.1222  13.3070 | 2.94 71.07 74.06
QF_Equality+LinearArith (12/812) 800 | 9.95 3.66 3.38 | 0.0590 6.6460 | 1.58 83.17 89.38
QF_Equality+NonLinearArith (0/589) 589 | 10.00 6.73 6.22 | 0.2908  29.6690 | 1.76 71.40 85.08
QF_FPArith (0/4,813) 4,813 | 9.08 2.80 2.52 | 0.0002 0.0290 | 13.17 90.93 92.30
QF_LinearIntArith (6/10,801) | 10,795 | 9.98 6.35 4211 0.2728  37.2840 | 8.62 78.79 88.67
QF_LinearRealArith (3/1,466) 1,463 | 9.95 3.72 3.26 | 0.2230  30.3610 | 6.77 91.19 93.86
QF_NonLinearIntArith (0/653) 653 | 9.88 3.04 2.64 | 0.0752 4.5400 | 4.77 94.00 95.69
QF_NonLinearRealArith (1/3,343) 3,342 | 9.83 1.83 1.67 | 0.0620 10.5110 | 8.42 96.05 97.76
QF_Strings (0/4,977) 4,977 | 6.21 2.69 2.45 | 0.0004 0.0190 | 44.50 91.75 94.93
Family (mariposa)
Dice}, (0/1536) 1536 | 10.00 10.00  10.00 | 5.4847 12.4670 | 0.93 99.45 98.75
Komodop (0/2054) 2054 | 10.00 10.00  10.00 | 1.2750 3.7500 | 0.18 34.87 88.28
Komodog (2/773) 771 | 10.00 1.00 1.00 | 0.0004 0.0790 | 1.09 100.00  100.00
VeriBetrKV p (0/5170) 5170 | 10.00 10.00  10.00 | 0.0790 9.1740 | 0.19 18.15 87.30
VeriBetrKV, (0/5334) 5334 | 10.00 10.00  10.00 | 1.2533 9.6420 | 0.17 12.73 81.85
vWasm g (0/1755) 1755 | 10.00 3.16 3.15 | 0.0657 4.2050 | 0.01 99.53 99.52

TABLE I: Number of unique outputs, normalization time, and similarity of normalized outputs.

First, we observe that before normalization, we nearly
always have 10 distinct versions of a benchmark. Exceptions
(e.g., in the QF_Strings category) occur when there are not
a sufficient number of user-defined symbols and assertions
to create 10 distinct versions. For the smtlib benchmark
set, normalization always significantly reduces the number of
distinct versions of a benchmark. Moreover, results with super-
patterns always improve over those without them—sometimes
significantly (e.g., in the Equality division).

For other benchmarks, however, especially those in the
QF_Equality+NonLinearArith division and in several families
of the mariposa benchmark set, our normalizer struggles to
produce a small number of distinct outputs. Investigating these
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benchmarks reveals large numbers of assertions with lots of
symmetry. In these cases, the super-pattern comparison fails to
distinguish between assertions with identical patterns, resulting
in different normal forms because of assertions appearing in
a non-deterministic order. It is worth highlighting that for
these benchmarks, our normalization algorithm still achieves a
high level of similarity. As we discuss below, there is also an
improvement in stability for these benchmarks. This suggests
that full normalization is not necessary to improve stability.
Improved similarity is already helpful.

As mentioned above, over all of the benchmarks, only 87
are excluded due to timeouts during normalization, and these
are typically very large benchmarks where parsing alone takes



most or all of the time. For the vast majority of the remaining
benchmarks, the normalization overhead is extremely low (a
fraction of a second on average as shown in Table I). The
aggregate overhead, computed as the sum of the normalizing
time for all benchmarks divided by sum of the normalization
plus solving time for all benchmarks, is less than 0.8%.

We also conducted exploratory experiments on a random
subset of smtlib (4,461 benchmarks) to evaluate the perfor-
mance of the normalizer in Weber [24] in terms of uniqueness
of the normalized output. We observed that it was able to
produce unique outputs for only 12% of the benchmarks,
vastly underperforming in comparison to our approach which
suceeded 87% of the time. This result, however, is not un-
expected since the algorithm in [24] was designed for the
purpose of exploiting a specific weakness in the SMT-COMP’s
scrambling algorithm in use at the time rather than with
general-purpose normalization in mind.

B. Stability

In our second experiment, we evaluate how our normal-
ization algorithm affects solver stability. We use two SMT
solvers: cvcS [1] and Z3 [7]. These are natural choices, as both
are used extensively and support a wide range of theories. We
limit our evaluation to them since they are the only solvers that
support all of our benchmarks. For the mariposa benchmark
set, we limit our evaluation to Z3. This is because these
benchmarks come from a specific use case targeting Z3 (as
observed already by Zhou et al. [26]), and most of them are
unsolved by cvcS.

We use penalized runtime (PR-2) and Median Absolute
Deviation (MAD) as metrics. PR-2 is the sum of the time
taken for solved benchmarks plus a penalty equal to two times
the timeout for each unsolved benchmark (timeouts, memory
outs, or other errors). PR-2 thus combines elements of both
total time and number of solved benchmarks into a single
metric. MAD measures how much variation there is in a set
of results, with lower numbers indicating less variation and
higher numbers indicating more variation. Applying MAD to
PR-2 scores is thus a good proxy for stability.

Results are shown in Table II for each division (in smtlib)
and family (in mariposa). We report results on the benchmarks
before normalization (no norm.) and after normalization with
super-patterns (norm.). The column labeled avg contains the
average PR-2 score, computed as follows. Recall that we create
ten mutations for each benchmark where each mutation is
based on a specific random seed. We compute the total PR-2
score for all the benchmarks for each seed separately. We then
take the average of these ten PR-2 scores. The MAD score is
also computed over these ten cumulative PR-2 scores, one for
each seed.

We see that, for both solvers, the performance (avg. column)
on normalized benchmarks is generally comparable with that
of non-normalized benchmarks, showing that, on average,
normalization does not appear to greatly affect runtime.

More importantly, the MAD score improves significantly
in all cases, sometimes by more than an order of magnitude
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Division (smtlib) cveS PR-2 73 PR-2

no norm. norm. no norm. norm

avg. MAD avg. MAD avg. MAD avg. MAD
Arith 17,161 93.5 17,264 29| 21,532 1206 11,346 0.3
BitVec 29,141 41.0 29247 14.6| 34,245 121.4 28,248 14.6
Equality 101,912 286.0 101,778 4.0 107,718 108.8 107,885 10.7
Equality+LinearArith 77,933 208.4 77,620 32.8| 72,603 254.5 73,041 22.2
Equality+MachineArith 91,935 234 91,518 6.8| 74,037 452.8 73,539 37.2
Equality+NonLinearArith 97,462 351.0 95,961 10.8| 89,615 3755 90,551 17.1
FPArith 18,089 49.6 17,920 49.5| 14,371 1432 14,214 28.5
QF_Bitvec 149,591 282.8 153,082 208.9 | 104,282 751.8 94,428 174.6
QF_Equality 2,408 49.0 2435 3.7 1,285 644 1,195 1.0
QF_Equality+Bitvec 40,712 157.1 40,246 153.7| 36,282 265.5 35,870 84.7
QF_Equality+LinearArith 14,927 464 16,070 44.9| 8,278 296.4 4,862 179.5
QF_Equality+NonLinearArith | 34,344 422.9 34,234 276.0| 25811 374.6 25,731 175.3
QF_FPArith 28,971 289.6 28,063 108.1| 56,349 324.4 55,262 106.3
QF_LinearIntArith 242,429 402.8 244,127 148.7 | 151,935 606.8 132,783 345.7
QF_LinearRealArith 30,567 313.6 29,539 101.0| 23,547 310.8 21,260 160.4
QF_NonLinearIntArith 34,201 615.7 34267 26.3| 23,914 1947 22,265 6.8
QF_NonLinearRealArith 39,951 86.8 39,377 27.9| 26,186 188.3 28,016 131.7
QF_Strings 34,092 341.4 33,255 121.6| 56,970 321.4 56,420 158.4
Family (mariposa)
Dice} - -] 7.,531559.3 8,951 545.3
Komodo p - - - —| 12,561 264.2 13,327 59.9
Komodog - - - - 3,284 799 3,181 17.2
VeriBetrKV p - - - —| 12,623 4144 12,612 169.0
VeriBetrKV , - —| 24,889 203.6 23,971 172.7
vWasm g - - - - 2919 95 3,018 0.2

TABLE II: PR-2 and MAD scores on mutated benchmarks
before and after normalization.

(e.g., in the Equality division). This strongly suggests that our
normalization algorithm improves stability. Even for bench-
marks for which the normalizer completely fails to produce
normal forms (e.g., the mariposa benchmarks that always still
have 10 distinct benchmarks after normalization), the stability
improves, sometimes significantly. This provides promising
evidence that full normalization is not required for improving
stability. An improvement in similarity may be sufficient.

VI. CONCLUSION

Our normalization algorithm is a promising step towards
a more stable and predictable SMT solving experience. It
generally scales well and is applicable to a wide range of
benchmarks and logics. We have shown that it can often
produce a single unique normal form for a set of mutated
benchmarks, and even when it cannot, it greatly increases the
similarity of the benchmarks. We also saw that, on average, it
improves stability without significantly affecting performance.

In future work, we intend to expand our normalizer to
handle other mutations such as antisymmetric operator re-
placement and operand swapping for commutative operators.
We also plan to explore whether additional normalization
techniques can be used to further improve our results. Finally,
we plan to investigate the use of our normalization algorithm
as a preprocessing step to improve the hit rate of applications
that cache formulas in order to reuse solving results.
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