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Abstract—State-of-the-art Boolean satisfiability (SAT) solvers
increasingly use techniques beyond resolution. One of the strongest
such techniques is Propagation Redundant (PR) clause learning.
Solvers utilizing PR clause learning may admit short proofs for
benchmark families with exponentially large resolution proofs,
including pigeonhole and mutilated chessboard. However, existing
PR clause learning techniques require an NP-hard check; hence,
they are computationally expensive and difficult to add to existing
tools.

We propose a new technique for learning PR clauses based
on conditional autarkies and implement it in the SAT solver
CADICAL. Our method is modular, allowing for cross-solver
compatibility, and learns PR clauses in linear time. Additionally,
we introduce a number of heuristics, including a clause-shrinking
technique and filtering to avoid trivial PR clauses, ensuring that
our method learns useful clauses. We show that this is competitive
with state-of-the-art PR clause learning techniques, and improves
performance on a portion of SAT competition benchmarks.

I. INTRODUCTION

Boolean satisfiability (SAT) solving is a core tool in
computer science with applications in program verification [1–
4], planning [5, 6], cryptography [7], and mathematics [8–11].
As its usage expands, so too does the need for more powerful
and specialized solving techniques.

One such class of techniques is propagation redundant (PR)
clause learning [12]. In this technique, a solver generates and
adds clauses which are satisfiability-preserving; that is, clauses
whose conjunction with the formula is satisfiable if and only
if the original formula is satisfiable. The solver aims to learn
clauses that drastically shrink the potential solution space, such
as clauses that break symmetries.

The power of this technique is tied to the strength of the
underlying proof system: propagation redundancy (PR). A
more powerful proof system can admit shorter proofs, which
can be found and checked faster. Most SAT solvers rely on
resolution-based proof systems, which are ineffective for many
hard instances. Consider the pigeonhole principle (PHP), which
asks if it is possible to fit n + 1 pigeons into n holes with at
most one pigeon per hole. Using PR reasoning, one may learn
a PR clause equivalent to the lemma: pigeon 1 is not in hole
1. Adding this clause restricts the search space for the first
pigeon (and thus the problem), but it preserves satisfiability,
as hole 1 is symmetric with all holes.

It is difficult to perform similar reasoning compactly with
resolution, and in fact, PHP requires exponentially large
resolution proofs [13]. The PR proof system, however, has
short proofs for such problems, including a cubic proof (in the
number of pigeons) for PHP [12]. PHP frequently occurs as a

subproblem for SAT benchmarks, so it is important to be able
to solve it efficiently.

The theoretical power of PR learning comes at a cost:
efficiently learning useful PR clauses is a challenge. State-of-
the-art techniques such as Satisfiability Driven Clause Learning
(SDCL) rely on calling another SAT solver to verify that a
candidate clause is PR [14]. Thus, in the worst case, the solver
takes exponential time to learn a single PR clause. This makes
integration into high-performance solvers difficult and limits
their practical impact. To the best of our knowledge, none of the
most popular SAT solvers such as CADICAL [15], KISSAT [16],
CRYPTOMINISAT [7], or LINGELING [17] support PR clause
learning in their main branch.

In this work, we propose a new, efficient approach to learn PR
clauses based on conditional autarkies. Intuitively, a conditional
autarky provides a way to force the value of certain variables
given a set of assumptions, e.g., in PHP if pigeons 3 to n+1 are
not in hole 1 or hole 2 (see Figure 1c for a visual representation),
then pigeon 1 can be placed in hole 1 and pigeon 2 can be
placed in hole 2. Kiesl et. al. proposed an algorithm for finding
conditional autarkies in linear time [18], using them to delete
clauses. In our work, we will use conditional autarkies to
construct and add PR clauses.

While conditional autarkies present a means for bridging the
theoretical gap in identifying PR clauses, the PR clauses they
produce are often not immediately useful in real SAT solving
applications. There are two major practical limitations: (1)
larger PR clauses may not meaningfully constrain the search
space, and (2) some smaller PR clauses may be trivial and
distract the solver. We solve (1) by introducing a shrinking
procedure to extract compact, useful PR clauses, and (2) by
introducing a number of heuristics for filtering away trivial PR
clauses. Returning to PHP, instead of the conditional autarky
described above which produces a clause with at least 2n 
literals, it is possible through shrinking to learn a binary PR
clause either forbidding pigeon 1 in hole 2 or pigeon 2 in hole
1.

We make the following contributions:

1) We introduce a method for learning PR clauses in linear
time relative to the size of the formula.

2) We develop a number of shrinking and filtering heuristics
to learn concise and useful PR clauses.

3) We implement these techniques in a solver, CAUTICAL1

(a fork of the state-of-the-art SAT solver CADICAL),

1CAUTICAL’s code is available at https://github.com/amarshah10/cautical.

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6 17
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://orcid.org/0009-0008-8282-2142
https://orcid.org/0009-0000-7939-1195
https://orcid.org/0000-0002-4585-0565
https://orcid.org/0000-0002-5587-8801
https://github.com/amarshah10/cautical
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_17
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_17
https://creativecommons.org/licenses/by/4.0/
mailto:amarshah,binarynewts,jereeves,marijn}@cmu.edu


and evaluate it on both PHP benchmarks and a suite of
benchmarks from the annual SAT competitions.

II. BACKGROUND

We begin with some SAT preliminaries. Variables x1, x2, . . . 
take values true (⊤) or false (⊥). A literal l is a variable x 
or its negation x. A clause C is a disjunction of literals, e.g.,
C = x1 ∨ x4 ∨ x6. A clause may also be represented by the set
of its literals: e.g., the prior clause C = {x1, x4, x6}. Hence,
we denote that a literal l occurs in clause C via l ∈ C and
the negation of clause is the set of negations of its literals,
C = {x1, x4, x6}. A conjunctive normal form (CNF) formula
Γ is a conjunction of (disjunctive) clauses. In this paper, all
formulas Γ are in CNF.

We use var(Γ) to represent the set of variables occurring
in formula Γ. An assignment α : V → {⊤, ⊥} on Γ maps
variables V ⊆ var(Γ) to ⊤ or ⊥. If V = var(Γ), then α is a
total assignment. An assignment that is not total is called a
partial assignment. For this paper, assignment refers to both
total and partial assignments. We abuse notation to extend an
assignment α to literals, by denoting α(l) = α(x) if l = x and
α(l) = ¬α(x) if l = x.

A formula restricted to an assignment Γ|α is the formula
resulting from mapping variables in the domain of α to their
assignments. We can simplify such a formula by removing
literals assigned ⊥ and clauses containing a literal assigned
⊤ (which are thus satisfied). For example, with formula Γ = 
(x1 ∨ x4 ∨ x6) ∧ (x2 ∨ x3) ∧ x5 and assignment α mapping x1 
to ⊥ and x2 to ⊤, we have Γ|α = (x4 ∨ x6) ∧ x5.

A clause C = l1 ∨ · · · ∨ lm blocks an assignment mapping
each li ∈ C to false (⊥). An assignment α touches a clause
C if there is a variable x assigned by α such that x ∈ C or
x ∈ C. We say α satisfies C if there is some li ∈ C with
α(li) = ⊤.

Assignment α satisfies formula Γ if it satisfies every clause
C ∈ Γ. If such a satisfying assignment exists, then Γ is
satisfiable.

Redundant Clauses: A clause C is redundant (or
satisfiability-preserving) with respect to a formula Γ if the
formulas Γ and Γ ∧ C are equisatisfiable, i.e., Γ is satisfiable
if and only if Γ ∧ C is satisfiable.

In a clausal proof system, each step adds or removes a
redundant clause C. The step may contain extra information,
such as a boolean witness justifying C’s redundancy. A list of
redundant clauses ending with the empty clause ⊥ is a proof
of unsatisfiability for formula Γ.

Adding a redundant clause may help a solver by greatly
constraining the set of possible solutions, which gives the
solver a smaller solution space to search; however, the addition
of these clauses could also negatively interact with solver
heuristics, increasing solve time.

Clausal proof systems range in complexity, with one of the
simplest derivation rules being resolution. Given two clauses,
C ∨ x and x ∨ D, resolution produces the logically implied
clause C ∨ D .

Unit propagation is a core reasoning technique in a SAT
solver. Starting with empty assignment α, if a formula Γ 
contains a unit clause l, i.e., a clause with only a single literal,
we set α(l) = ⊤. Then, this unit is propagated: we consider
the unit clauses of the formula Γ|α and continue this process
until no unit clauses remain. If unit propagation terminates
with Γ|α = ∅, we say that it derives a conflict.

Given a formula Γ and clause C = l1 ∨ · · · ∨ lk, we can
say Γ ⊢1 C, read as “Γ implies C via unit propagation,” if
Γ ∧ C ≡ Γ ∧ l1 ∧ · · · ∧ lk derives a conflict after applying
unit propagation. Here, C is a reverse unit propagation (RUP)
clause, a simple example of a redundant clause with respect to
Γ. For some formula Γ ′ , we say Γ ⊢1 Γ ′ if Γ ⊢1 C for every
clause C ∈ Γ ′ .

Definition 1. [Propagation Redundant (PR) clauses [12]] For
formula Γ, clause C, and assignment α blocked by C, we say
that C is propagation redundant (PR) if there exists a witness
assignment ω such that ω satisfies C and

Γ|α ⊢1 Γ|ω. 

Informally, a clause C is PR if every assignment that satisfies
Γ but falsifies C can be turned into an assignment that satisfies
Γ ∧ C. While this property can be validated in polynomial time
(by unit propagation), checking if a clause is PR without hints
is NP-complete [12]. Thus, the propagation redundancy (PR)
proof system introduces witnesses, which must be provided
for proof checking.

PR clauses subsume many classes of redundant clauses, in-
cluding resolution asymmetric tautologies (RATs) [19], blocked
clauses [20], set-blocked clauses [21], and globally-blocked
clauses [18].

A. Conditional Autarkies

Definition 2 (Autarky [18]). A nonempty assignment α is an
autarky for a formula Γ if every clause C ∈ Γ touched by α 
is satisfied.

Simply, an autarky is an assignment that satisfies every
clause it touches. Unfortunately, formulas often do not contain
autarkies, and they are difficult to find even when they exist.
Instead, we use the following weakening of an autarky:

Definition 3 (Conditional Autarky [18]). A nonempty assign-
ment α = αc ⊔ αa (disjoint union) is a conditional autarky for
a formula Γ if αa is an autarky for Γ|αc .

Consider, as an example, the formula with aptly named
variables Γ = (c ∨ a) ∧ (a ∨ x) ∧ (c ∨ y). We have a conditional
autarky α = αc ⊔ αa, with αc = c and αa = a. Since Γ|αc = 
(a ∨ x) ∧ (y) and a occurs here only positively, a is an autarky
for Γ|αc . Thus, α is a conditional autarky.

Conditional autarkies can be very useful for learning
satisfiability-preserving clauses as in the following theorem
from Kiesl et al. [18]:
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Theorem 1. Let Γ be a formula and α = αc ⊔ αa be a
conditional autarky on Γ, with αc = c1, . . . , cn and αa =⋀ 
a1, . . . , am. Formula Γ and Γ ∧ (c1 ∨ · · · ∨ cn ∨ ai)1≤i≤m 
are equisatisfiable.

A solver may thus add any of the m clauses c1 ∨· · ·∨cn ∨ai 
and preserve satisfiability.

Intuitively, Theorem 1 states that adding this implication
preserves satisfiability:

[c1 ∧ · · · ∧ cn] → [a1 ∧ · · · ∧ am] 

When converted to clausal form, this results in the m 
different clauses from the theorem. Indeed, each of these is a
PR clause with witness αa.

B. Related Work

Solvers that implement the PR proof system typically use
the satisfaction-driven clause learning (SDCL) framework [22],
which extends conflict-driven clause learning (CDCL) [23].
After propagating an assignment, they check if the clause C 
blocking this assignment is PR by creating a new SAT formula
called the positive reduct. If the positive reduct is satisfiable,
then C is a PR clause and is added. This was implemented in
an extension of the solver LINGELING and was shown to scale
well on pigeonhole benchmarks.

Later, two new variants of the positive reduct were proposed
for more aggressive pruning of the search space [14]. This
allowed SDCL to solve other difficult problems such as
mutilated chessboard [24] and Tseitin formulas over expander
graphs [25]. This is implemented in a new SDCL solver
SADICAL.

PRELEARN is a preprocessing technique for PR clauses [26].
It initially considers many possible clauses and queries
SADICAL to see which are PR.

Our work differs as we do not use a positive reduct to test
if a clause is PR. Instead, our clauses are PR by construction,
as they come from a conditional autarky. This has the potential
downside that our clause may be large, and thus weak. To
remedy this, we apply a shrinking technique, reducing the size
of a clause. Additionally, prior techniques are sensitive to the
encoding of the problem. Minor changes such as literal and
clause reordering can have a large effect on performance. We
compare our implementation CAUTICAL to SADICAL and
PRELEARN in Section V.

Kiesl et al. [18] first introduced conditional autarkies to
identify a class of PR clauses known as globally blocked
clauses. They aimed to eliminate globally blocked clauses
from a formula to simulate circuit-simplification techniques.
Our work adds clauses instead of removing them.

III. METHODOLOGY

A. Motivating Example

We use the pigeonhole principle as a motivating example.
The problem PHP(n) asks whether we can put n + 1 pigeons
in n holes such that (1) every pigeon is in a hole, and (2) no
hole contains more than one pigeon. This can be encoded
as a SAT problem where variable xi,j represents putting the
i-th pigeon into the j-th hole. Constraint (1) is encoded as⋁ 

xi,j for each 1 ≤ i ≤ n + 1 and (2) as xi,j ∨ xk,j for1≤j≤n 
each 1 ≤ i < k ≤ n + 1 and 1 ≤ j ≤ n.

Figure 1 provides a visualization where the rows represent
the pigeons and the columns represent the holes. The cell in
row i and column j represents the literal xi,j . A + in the
(i, j)-th cell indicates that xi,j is set to ⊤, and a − symbol
indicates ⊥. Thus, constraint (1) asks that each row has at least
one + and constraint (2) asks that each column has at most
one +.

We achieve an O(n3) PR proof for PHP(n), matching
the best known result [12]. In Figure 1 we learn the clause
x1,2 ∨ x2,1. After learning n such clauses, we learn the clause
x1,2, i.e. “pigeon 1 is not in hole 2.” Since there are n+1
pigeons and n holes, we must rule out O(n2) pigeon-hole
pairs, so the proof has size O(n3). We learn these proofs with
a very low constant factor and robustness against encoding
perturbations (see Subsection V-A).

B. PR Clause Learning Framework

Algorithm 1: Learning PR clauses

1 Function LearnClause(Γ, α):
2 for i ∈ vars(Γ) :
3 for j ∈ vars(Γ) :
4 Propagate (i);
5 Propagate (j);
6 αc, αa := LeastConditional(Γ, α);
7 C := Shrink(Γ, αc, αa);
8 if not Filter(C, Γ) :
9 Γ := Γ ∧ C;

10 Backtrack();

We present the general framework for using conditional
autarkies to learn PR clauses in Algorithm 1. A conditional
autarky is computed based on a assignment, so the algorithm
first selects a set of literals to propagate (lines 4, 5), creating
the assignment α. We propagate two literals at a time using
nested for loops, and undo the propagations after each iteration
(backtracking in line 10). In line 6 Algorithm 2 makes a single
pass over the formula to generate a conditional autarky, with
conditional part αc and autarky part αa. The PR clause C is
generated from the conditional autarky and shrunk in line 7,
and if C does not pass the usefulness heuristics it is filtered
away in line 8. Details regarding design choices and heuristics
are found in Section IV, including a discussion of Filter.
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by their respective con-
straint (1). The rest are in
αa.
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(d) Finally, we shrink and
learn the clause x1,2 ∨ 
x2,1. E.g., we can omit
x3,2 from the condition be-
cause of clause x1,2 ∨x3,2.
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Fig. 1: Learning the clause x1,2 ∨ x2,1 for PHP(4) 

In the following sections, we will describe PR clause learning
and shrinking in the context of our running example PHP(4).
We will consider the decisions i = x1,1 and j = x2,2 shown
in Figure 1a, with unit propagation shown in Figure 1b.

C. Learning PR Clauses

As described in Subsection II-A, any assignment can be
split into a conditional and a (potentially empty) autarky part,⋁ 
α = αc ⊔ αa, and the following clauses are PR: c∈αc 

c ∨ a 
for any a ∈ αa. In order to produce smaller PR clauses, we use
Algorithm 2 from Kiesl et al. [18] to find the unique smallest
possible αc.

Algorithm 2: Unique minimal αc in α = αc ⊔ αa 

1 Function LeastConditional(Γ, α):
2 αc := ∅;
3 for C ∈ Γ :
4 if α touches C without satisfying C :
5 αc := αc ∪ (α ∩ C);
6 return αc, α\αc;

Algorithm 2 returns αc ⊔ αa, which is a conditional autarky,
as every clause that αa touches is satisfied by a literal in α.

Additionally, αc is minimal: for any other conditional autarky
α = α ′ ⊔ α ′ , it must be the case that αc ⊆ α ′ since for eachc a c 
clause that is touched but not satisfied, we add to αc all literals
from the assignment that touch and do not satisfy this clause.
These literals must be in α ′ , since otherwise α ′ will touchc a 
a clause that is not satisfied by α, violating the conditional
autarky property.

Running Algorithm 2 on the assignment from Figure 1b
gives the conditional part (red) and autarky part (orange) in
Figure 1c. The assigned literals from pigeons 3, 4, and 5 appear
in αc because they touch but do not satisfy the constraint (1)
clauses for the respective pigeons stating that every pigeon is

in a hole. However, the constraint (1) clauses are satisfied for
pigeons 1 and 2, along with the touched constraint (2) clauses,
placing the pigeons 1 and 2 literals in αa. Intuitively, if pigeons
3, 4, and 5 are not in holes 1 or 2, then pigeon 1 can be placed
in hole 1 : x3,1 ∨ x3,2 ∨ x4,1 ∨ x4,2 ∨ x5,1 ∨ x5,2 ∨ x1,1 and
pigeon 1 can be kept out of hole 2 : x3,1 ∨ x3,2 ∨ x4,1 ∨ x4,2 ∨ 
x5,1 ∨ x5,2 ∨ x1,2 (likewise for pigeon 2 but with the holes
swapped). The shrinking technique in the following section
will help reduce the size of these large PR clauses.

D. Shrinking PR Clauses

The PR clause derived from a conditional autarky can be
too weak to effectively reduce the search space. Shrinking the
PR clause, i.e., removing literals from the clause via resolution,
will strengthen its pruning power.

At a high-level, we will generate two sets: C0 ⊆ αc 
and A0 ⊆ αa, and show that we can learn the PR clause⋁ ⋁ 

c ∨ a.c∈C\C0 a∈A0 

First we start with C0, the set of literals in the conditional
part that are inconsistent with any literal in the autarky part. Two
literals li and lj are inconsistent in a formula Γ if Γ ∧ li ⊢1 lj ,
meaning the clause li ∨ lj is RUP. Formally, C0 = {cj ∈ αc |
∃ai ∈ αa s.t. Γ ∧ ai ⊢1 cj }, with ai appearing negated in
the inconsistency check so that we can perform a resolution
between the derived binary clause ai ∨ cj and the original PR
clause C.

Next we generate A0 which is a subset of the autarky literals
that are together inconsistent with the literals in C0. So, for
each c ∈ C0 there exists an a ∈ A0 such that Γ ∧ a ⊢1 c. There
always exists at least one A0, namely αa which is used to
define C0, but if a smaller A0 exists it can be used to shrink
the size of the PR clause.

Theorem 2. Let Γ be a formula and α = αc ⊔ αa be a
conditional autarky on Γ, with αc = c1, . . . , cn and αa = 
a1, . . . , am. Let A0 ⊆ αa be non-empty. Let C0 = {cj ∈ αc | 
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∃ai ∈ A0 s.t. Γ ∧ ai ⊢1 cj }. Then formula Γ is satisfiable if⋁ ⋁ 
and only if Γ ∧ ( c ∨ a) is satisfiable.c∈C\C0 a∈A0 

Proof. ⇐: This is immediate ⋁ ⇒: From Theorem 1, Γ is satisfiable implies Γ∧( c∈C c∨a) 
is satisfiable for any a ∈ αa. We will pick an a ∈ A0. Hence,⋁ ⋁ 
Γ ∧ ( c∈C c ∨ a∈A0 

a) is satisfiable since we are weakening
a clause.

By the definition of inconsistency, for each c ∈ C0 there
exists an a ∈ A0 such that Γ ∧ a ⊢1 c, allowing us to derive
the RUP clause a ∨ c. Each binary clause can be resolved with⋁ ⋁ ⋁ ⋁ 
( c∈C c ∨ a∈A0 

a), producing ( c∈C\C0 
c ∨ a∈A0 

a).

⋁ ⋁ 
In fact, c ∨ a is a PR clause with witnessc∈C\C0 a∈A0 

αa.
Greedy Set Cover. We can interpret the problem of finding the
smallest possible A0 as a set cover problem where each literal
a ∈ αa defines the set SETS (a) = {c ∈ αc | Γ ∧ a ⊢1 c}.
Finding the minimum set cover is NP-hard, so we instead
approximate using a greedy algorithm, returning a set cover
at most roughly (ln |αc| + 1)× the size of the smallest set
cover [27].

The greedy algorithm initializes C0 as empty, and in each
iteration finds the a ∈ αa that generates the largest set
SETS (a) ∩ (αc\C0), adding a to A0 and adding SETS (a) to
C0. The algorithm terminates once all sets in {SETS (a) ∩ 
(αc\C0)|a ∈ αa} are empty. Notice that oftentimes, C0 ⊊ αc,
i.e. we do not achieve a complete cover of αc.

Algorithm 3: Algorithm finding A0 

1 Function Shrink(Γ, αa, αc):
2 SETS := init Array[len(αa)];
3 for i ∈ range(αa) :
4 Propagate(αa[i]);
5 implied := {};
6 for c ∈ αc :
7 Propagate(c);
8 if unsat :
9 implied := implied ∪ {c};

10 Backtrack(1);
11 SETS [i] := implied;
12 return GreedySetCover(SETS );

In Algorithm 3, we describe our process for calculating A0.
We initialize SETS as an array (line 2), iterate the counter i 
through αa (line 3), populating SETS [i] with the set of literals
c ∈ αc such that Γ ∧ ai ⊢1 c (lines 4-11). Finally, we apply
GreedySetCover to get a small set A0 that covers as much
of C as possible.

Returning to the pigeonhole example, C0 contains all of the
literals in αc because of the binary clauses in constraint (2).
The smallest possible A0 includes x2,1 and x1,2, whose sets
cover x3,1, x4,1, . . . , x5,1and x3,2, x4,2, . . . , x5,2 respectively.
Whereas, the sets from x1,1 and x2,2 are empty (they are not

inconsistent with the other literals). Therefore, we can learn
the clause x2,1 ∨ x1,2, shown in Figure 1d.

IV. IMPLEMENTATION

We implement our technique in CAUTICAL (a fork of
CADICAL). We choose CADICAL as it has shown strong
performance in the SAT Competition. For instance, a fork
of CaDiCaL won in 2023 [28]. Our techniques can be
implemented in any CDCL SAT solver, but we leave this
as future work.

By default, CAUTICAL spends 30 seconds searching for PR
clauses in a preprocessing step. After this time limit, the solver
exits and commences normal solving, regardless of whether or
not it has found any PR clauses. This adds ∼800 lines of C++
code to CADICAL and is implementable within any CDCL
SAT solver.

We discuss three important design decisions in CAUTICAL:
1) shrink: As discussed in Subsection III-D, we may shrink

a clause using the techniques inspired by greedy set cover.
2) filter-triv: We filter out clauses that are trivial, i.e. if

Γ ⊢1 C for some clause C.
3) filter-long: We filter out clauses that are longer than some

set length l. We pick l = 2 as a default and thus only
learn binary and unit clauses.

The filter function in Algorithm 1 combines filter-triv and
filter-long, disallowing trivial clauses or clauses with length
greater than 2.

Additionally, we describe three natural design decisions that
we did not make:
1) longer-preprocess: We choose 30 seconds as the default

preprocessing time. However, we could choose a longer
time limit, for instance 100 seconds.

2) order-i: On Algorithm 1 line 2, by default we pick i 
randomly. However, we could choose i based on some
ordering. For instance, we could order literals i by how
frequently they occur in the original formula.

3) select-j: On Algorithm 1 line 3, we iterate through all
possible literals j. However, we could choose some subset
of possible literals j. One such example is to pick j from
the neighbors of i. This is implemented in PRELEARN.
The neighbors of i include any literal j that belongs to
the same clause as a literal fixed by unit propagation on
i (including i itself).

We evaluate these heuristics in Subsection V-D and find
that shrink, filter-triv, and filter-long are all beneficial. On the
other hand longer-preprocess, order-i, and select-j are not
beneficial and can sometimes be harmful.

V. EVALUATION

In this section, we empirically evaluate our technique against
other PR clause learning techniques. In doing so, we aim to
answer the following research questions:
RQ1 Can our approach provide a speedup on certain benchmark

families?
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Fig. 2: Comparison of CAUTICAL, CADICAL, SADICAL, and PRELEARN on pigeonhole principle benchmarks up to size 40.
The y-axis is on a cube root scale. The performance of a solver on the original benchmark is shown with a solid line. The
median of 5 scranfilized queries is shown with a dashed line. If a solver times out on a query in 5000s, it is not shown.

RQ2 Is our approach less sensitive to encoding choices com-
pared to other PR learning techniques?

We compare the two main tools learning PR clauses:
SADICAL (based on SDCL) and PRELEARN (a preprocessing
technique that calls SADICAL). To be consistent with our
approach, we run PRELEARN with its default settings for 30
seconds, then solve the preprocessed formula with CADICAL.
We also compare to CADICAL as a baseline with no PR
clause learning. We check all proofs of unsatisfiability from
CAUTICAL using dpr-trim [29].

All experiments were performed in the Anvil Supercom-
puting Center on nodes with 128 cores and 2 GB RAM
per core [30]. We ran 64 experiments in parallel per node
with a 5,000 second timeout, the default timeout for the SAT
competition.

In Subsection V-A, we compare all approaches on the
pigeonhole principle, evaluating runtime, proof length, and
sensitivity to the encoding of the formula. In Subsection V-B,
we evaluate the solvers on benchmarks from the ’22, ’23,
and ’24 SAT competition’s main tracks [28, 31, 32]. In
Subsection V-C, we highlight certain benchmark families that
benefit from PR clause learning. In Subsection V-D, we evaluate
the benefit of different heuristic choices in CAUTICAL. Finally,
we conclude in Subsection V-E with a discussion of how
performed on RQ1 and RQ2.

A. Pigeonhole results

Approaches based on SDCL, such as SADICAL, are suc-
cessful for learning O(n3) proofs for the pigeonhole principle,
but are very sensitive to the encoding of the formula. We
compare the solvers on pigeonhole principle from PHP(2) to
PHP(40) and plot these results in Figure 2. As the expected
best-behavior is cubic, we use a cube root scale for the y-axis.

As expected, CADICAL grows exponentially, while
SADICAL and CAUTICAL scale cubicly in both runtime and
proof size. Significantly, CAUTICAL is able to learn 3.59-
3.64× shorter proofs compared to SADICAL. PRELEARN

scales cubicly on small formulas, but for PHP(22) and larger,
will not learn enough useful PR clauses in the preprocessing
step and will timeout after spending the rest of its time running
CADICAL.

Additionally, we evaluate all solvers on scranfilized variations
of the pigeonhole principle. Scranfilization is a technique for
generating an satisfiability-equivalent formula [33]. We use the
tool scranfilize [33] with the options permuting variables,
permuting clauses, and flipping literals (with probability 0.5)
all turned on. We run each solver on 5 scranfilized variations
for each benchmark and take the median runtime and proof
size. This is shown in Figure 2 with dashed lines.

SADICAL and PRELEARN exhibit an exponential trend
for runtime and proof size on the scranfilized benchmarks.
SADICAL will spend all its time in the main SDCL loop
not learning enough useful clauses. PRELEARN will learn
some useful PR clauses in preprocessing, but not enough to
sufficiently shrink the search space for formulas larger than
PHP(16).

On the other hand, CAUTICAL almost matches its non-
scranfilized performance, demonstrating that it learns useful
PR clauses regardless of the encoding.

B. SAT competition results

We compare the performance of CAUTICAL with CADICAL
and PRELEARN on the benchmarks from the ’22, ’23, and
’24 SAT competition’s main tracks [28, 31, 32]. We remove
duplicates and exclude all benchmarks with more than twenty
million clauses as these are out of scope for our technique. This
gives us a total of 1,089 benchmarks. We exclude SADICAL
from our evaluation as it only solves 22 of these benchmarks.

Table I shows the number of instances solved by each solver.
Out of the total number solved, it shows the number of formulas
for which PRELEARN and CAUTICAL learn additional PR
clauses, improve upon CADICAL by at least 5%, and solve a
formula that CADICAL does not solve.
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(a) Comparing CAUTICAL to CADICAL. (b) Comparing CAUTICAL to PRELEARN.

Fig. 3: Performance comparison of CAUTICAL with PRELEARN and CADICAL on SAT competition benchmarks. On each
graph, we filter out all benchmarks where neither solver learns any PR clauses. The color indicates the number of PR clauses
learnt by CAUTICAL.

Fig. 4: The number of formulas solved by CAUTICAL,
PRELEARN, and CADICAL.

Fig. 5: The size of PR clauses learnt by CAUTICAL and
PRELEARN

We divide the benchmarks based on number of clauses (0-
10k or 10k-20M) and status (SAT or UNSAT). The number
of clauses is a good indicator of the type of benchmark, with
many hard combinatorial problems containing fewer than ten
thousand clauses.

Figure 3 shows CAUTICAL and CADICAL’s performance
relative to CADICAL. Figure 3a shows that CAUTICAL learns
a large number of PR clauses for formulas which it solves
quickly and CADICAL times out on. Figure 3b shows that
PRELEARN also solves a number of formulas that CAUTICAL
cannot, but CAUTICAL typically performs better on formulas
where it learns many PR clauses.

We find that CAUTICAL can show a performance improve-
ment or degradation on formulas where it does not learn any PR
clauses. This is because as CAUTICAL runs, it updates internal
data structures such as watched literals, clause occurrence lists,
and variable phases.

For instance, during the initial phase of searching for PR

clauses, the solver will decide on a literal. Unit propagation
of this literal may lead to a conflict, and the solver can learn
the unit clause without any autarky/PR reasoning. Unit clauses
are not stored or treated as learned clauses inside CADICAL,
but instead the literal becomes “fixed,” i.e., the solver treats
the literal as always true. For instance, this happens on the
three satcoin benchmarks where CAUTICAL shows the most
improvement (see Figure 6).

PAR-2 score is a standard metric used to evaluate the
performance of solvers. It is evaluated as the sum of the
runtimes of solved instances and twice the timeout of unsolved
instances. On this dataset, CADICAL has a PAR-2 score of
3522 seconds, PRELEARN has a PAR-2 score of 3331 seconds,
and CAUTICAL has a PAR-2 score of 3442 seconds.

Figure 4 shows the distribution of benchmarks solved by each
solver. Both PRELEARN and CAUTICAL lag behind CADICAL
during the 30 second preprocessing stage, but eventually solve
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Fig. 6: Comparing CAUTICAL with CADICAL and PRELEARN on various benchmark families.

TABLE I: Number of formulas that CADICAL, PRELEARN
and CAUTICAL solve, divided between 0-10k clause and
10k-20M clause formulas, and SAT and UNSAT formulas.
For PRELEARN and CAUTICAL we include the number of
benchmarks with PR clauses learnt, more than 50 PR clauses
learnt, improved on CADICAL by 5% or more; and solved
that CADICAL did not solve.

0–10k clause 10k–20M clause

SAT UNSAT SAT UNSAT Total

CADICAL Solved 54 73 319 303 749

PRELEARN
Total
Learn PR clause
Learn > 50 PR clauses
Improve on CADICAL
Unique from CADICAL

52
40
22
11
1

90
73
51
42
17

322
179
104
57
6

307
145
79
36
6

771
431
256
146
30

CAUTICAL
Total
Learn PR clause
Learn >50 PR clauses
Improve on CADICAL
Unique from CADICAL

52
16
1

23
0

87
58
39
48
18

317
30
6

89
9

298
35
11
59
9

754
139
57

219
36

more benchmarks. In the end, PRELEARN solves the most
formulas at 771, followed by CAUTICAL at 754, and CADICAL
at 749.

CAUTICAL exercises more selective PR clause learning
techniques, only learning PR clauses for 139 formulas, while
PRELEARN learns PR clauses for 431 formulas (see Figure 5).
On those formulas, CAUTICAL improves CADICAL’s runtime
by 5% or more on 29.9% of benchmarks, while PRELEARN
improves it on 24.7% of benchmarks.

C. Discussion of Benchmark Families

We identify six benchmark families for which PR clauses
perform well. We choose them based on prior work [26] and
our experiments on SAT competition benchmarks:
1) mutilated-chessboard: famous problem asking if

one can use 2-by-1 tiles to cover an 2n-by-2n chessboard
with opposite corners removed. This is difficult for
resolution [34], but there exists O(n3) PR proofs [24].

2) perfect_matching: generalization of the pigeonhole
principle and mutilated chessboard problems with various
at-most-one constraints [35].

3) register_allocation: the graph coloring problem
generated by simulating register allocation on individual
Python functions [36].

4) relativized_pigeonhole: generalization of the
pigeonhole principle where we place n + 1 pigeons in n 
holes with k nesting places.

5) satcoin: variant of a bitcoin mining problem [37].
6) test_configuration: is there a list of configurations

of size k that covers every pairwise combination of
configurations of a SAT solver [38].

TABLE II: Overview of benchmark families used in evaluation

Benchmark Family Number of Clauses CAUTICAL # PR
mutilated-chessboard 900-3K 115-351
perfect matching 300-1K 183-447
register allocation 1K-23K 671-3322
relativized pigeonhole 3K-2M 469-9091
satcoin 600K-600K 0-0
test configuration 31K-64K 0-0

Figure 6 compares the performance of CAUTICAL with
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(a) CAUTICAL compared to CAUTICAL (b) CAUTICAL compared to CAUTICAL (c) CAUTICAL compared to CAUTICAL
with shrink turned off with filter-triv turned off with filter-long set to 10 

(d) CAUTICAL compared to CAUTICAL
with longer-preprocess set to 100 sec-
onds

(e) CAUTICAL compared to CAUTICAL
with order-i turned on

(f) CAUTICAL compared to CAUTICAL
with select-j turned on

Fig. 7: Performance comparison of CAUTICAL with various heuristics turned on and off

CADICAL and PRELEARN on these benchmark families. We
do not evaluate SADICAL as it does very poorly on SAT
competition benchmarks. Table II provides a brief overview of
the families: the number of clauses in the original formulas
(up to 1 significant digit) and the number of PR clauses learnt
by CAUTICAL.

CAUTICAL compares favorably to CADICAL on all
benchmark families, showing especially large speedups
on register_allocation, mutilated_chessboard 
and perfect_matching.

PRELEARN exhibits large speedups over
CAUTICAL on test_configuration and
perfect_matching. CAUTICAL performs better on
smaller instances of register_allocation and
mutilated_chessboard, while PRELEARN performs
better on larger instances. CAUTICAL can also solve instances
of satcoin that PRELEARN cannot.

D. Heuristics

Figure 7 shows the performance of CAUTICAL with different
heuristics (discussed in Section IV) turned on and off. We
evaluate on the different benchmark families discussed in
Subsection V-C.

First we consider turning three optimizations off. Figure 7a
compares CAUTICAL to CAUTICAL with shrink turned off, i.e.
we do not shrink PR clauses. Figure 7b compares CAUTICAL
to CAUTICAL with filter-triv off, i.e. we do not filter trivial
clauses. Figure 7c compares CAUTICAL to CAUTICAL with
filter-long set to 10, i.e. we filter out clauses of size > 10 (as
opposed to 2 by default).

When we disable any of three optimizations, the
performance is significantly worse, especially on
perfect-matching, mutilated-chessboard,
and register-allocation benchmarks.

Next, we consider turning three potential “optimizations”
on. Figure 7d sets longer-preprocess to 100 seconds (as
opposed to 30 seconds by default). Figure 7e turns on order-i,
propagating the first literal i ordered by which literals occurs
most frequently in the original formula. Finally, Figure 7 turns
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on select-j, picking j the second literal by whether it “touches”
the first literal i.

Enabling any of these three “optimizations” does not improve
performance and in the case of order-i, it slightly hurts
performance.

E. Research Questions

To conclude, we discuss the two research questions.
For RQ1, CAUTICAL decisively outperforms all solvers

except SADICAL on the pigeonhole benchmarks. On SAT
competition benchmarks, CAUTICAL improves CADICAL’s
PAR-2 score by 2.2%. PRELEARN performs even better,
improving CADICAL’s PAR-2 score by 5.4%. However, on
formulas where CAUTICAL learns a PR clause, it improves
CADICAL’s runtime by 5% or more on 29.9% of benchmarks.
On formulas where PRELEARN learns a PR clause, it improves
CADICAL’s runtime by 5% or more on 24.7% of benchmarks.

For RQ2, CAUTICAL is the only solver to solve all
pigeonhole formulas after scranfilization. Indeed, scranfilization
has a negligible effect on CAUTICAL’s performance.

We experienced some success with robustness on the
SAT competition benchmarks, but not as significant as for
pigeonhole. For instance, in the initial stage when propagating
first on literal i (see Algorithm 1), we randomly pick the order
for literal i.

Prior PR learning approaches such as PRELEARN used
specific orderings of literals to their advantage. We evaluated
such an ordering in Figure 7e and found that it did not make
a difference for CAUTICAL.

VI. FUTURE WORK

We believe conditional autarkies provide a route to incor-
porate PR learning as a regular part of state-of-the-art SAT
solvers such as CADICAL. However, there are a few important
limitations that need to be addressed first.
1) Improving the algorithms: The heuristics in CAUTICAL

are designed to be modular and easy to modify. However,
they can be directly incorporated into the main algorithm.
For instance, we could embed the binary clause filter by
modifying the greedy set cover to discard clauses with
more than 2 literals.

2) Shortest proofs for specific families: Prior work has
shown O(n3) PR proofs of mutilated chessboard [24].
While CAUTICAL learns useful clauses to speed up
solving for mutilated chessboard, it is unknown whether
conditional autarkies can match the O(n3) complexity.
Similar questions exist for other well-known families such
as Tseitin formulas over expander graphs [25, 39].

3) Learning PR clauses with an inprocessing step: We
experimented with learning PR clauses via inprocessing
(instead of preprocessing). However, the current PR proof
system defines a PR clause as in Definition 1 where Γ is
the set of all clauses in the formula, including the learnt,
redundant clauses. However, not all redundant clauses

must be considered. This could produce shorter clauses
via conditional autarky. However, to realize this, we must
modify the PR proof checker.

VII. CONCLUSION

PR clause learning is effective for learning short proofs
for difficult problems. However, current PR clause learning
techniques require an NP-hard check. We solve this by
providing a technique that learns PR clauses in a linear time
preprocessing step. We provide clause shrinking and filtering
techniques to ensure that we learn useful PR clauses.

Our implementation, CAUTICAL, provides short PR proofs
for the pigeonhole principle matching the best possible results.
While prior work is only effective on specific pigeonhole
encodings, CAUTICAL finds these proofs even when the
formula is scranfilized.

Additionally, CAUTICAL is effective on a number of
benchmarks from the SAT competition, including most of
the families identified in Subsection V-C.

In the future, we hope that PR clause learning can find its
way into the main branch of a popular SAT solver. We believe
this work is an effective step in this direction.
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