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Abstract—The Realizable, Responsive, Unobtrusive Unit
(R2U2) is a real-time, temporal logic-based runtime monitoring
engine that has been successfully deployed on-board a wide
range of cyber-physical systems, from aircraft to spacecraft to
robots, checking in real time whether these systems uphold
specified system requirements. However, the efficacy of deploying
runtime monitors is highly sensitive to their correct configuration.
Moreover, there are many barriers to adopting runtime monitors,
including a high learning curve and the challenge of eliciting for-
mal specifications that accurately capture system requirements.
Therefore, we present the R2U2 Playground, an interactive web-
based playground that provides visualization of R2U2. The R2U2
Playground provides stepwise execution coupled with reactive
timeline plotting and visualization of its internal abstract syntax
tree architecture. To this extent, the R2U2 Playground provides
insight into how R2U2 evaluates specifications, allowing for easier
specification understanding and debugging.

I. INTRODUCTION

The Realizable, Responsive, Unobtrusive Unit (R2U2) run-
time monitoring engine is known for its real-time guarantees
and resource-aware architecture [1]-[5]. Hence, R2U2 has
been successfully deployed on-board various cyber-physical
systems such as NASA’s Robonaut2 [1], NASA’s Lunar Gate-
way Vehicle System Manager [6]-[9], NASA’s Swift UAS [2],
[10], [11], NASA’s DragonEye UAS [12], Iowa State’s Nova
Somnium sounding rocket [13], Towa State’s CySat-I CubeSat
[14], and more [15]-[19]. R2U2 successfully analyzed whether
these systems upheld formal system requirements during de-
ployment. However, R2U2’s efficacy is highly sensitive to its
correct configuration and integration into the target system.

Furthermore, there are many barriers to adopting runtime
monitors, such as the learning barrier, skepticism, lack of expe-
rience, etc. [20]-[22]. Additionally, once runtime monitors are
adopted, there is the challenge of eliciting specifications that
accurately capture system requirements [23]-[25]. To decrease
the learning curve of the R2U2 runtime monitoring engine,
we present the R2U2 Playground.'”> The R2U2 Playground
is an interactive web-based playground that provides a vi-
sualization of the R2U2 runtime monitoring engine. Within
the playground, an instantiation of R2U2 is executed given
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user-defined specifications and an input trace. The R2U2 Play-
ground eases the elicitation and testing of these user-defined
specifications by providing step-forward and step-backward
debugging capabilities and timeline visualization of output
verdicts produced by R2U2. It also provides a visualization
for how R2U2 reasons about a (set of) specification(s) as
an abstract syntax tree, and we enable configuring of various
optimizations of the abstract syntax tree (e.g., common subex-
pression elimination [1], [5] and rewrite rules [26]) directly in
the playground. The playground interface also includes easy
import and export of the various input/output files, visualiza-
tion images, and the compiled specification binary. Overall,
the R2U2 Playground allows users to easily interact with
R2U2, learn how R2U?2 reasons about specification(s), and, as
a result, also validate the correctness of their specification(s)
and R2U2’s configuration.

II. CURRENT VISUALIZATIONS FOR RUNTIME MONITORS

Within the runtime verification community, system require-
ments are specified/formalized utilizing two main approaches:
(1) stream-based specification languages and (2) temporal
logics. The utilization of a stream-based specification language
to specify system requirements to generate runtime monitors
is seen in frameworks such as RTLola [27], [28], Striver
[29], TeSSLa [30], and CoPilot [31], [32]. These stream-
based specification languages are arguably more expressive
than temporal logics, but they have a high learning curve as
they are each tool-specific languages. To combat the learning
curve, both RTLola [33] and TeSSLa [30] have interactive
playgrounds for exploring their respective tools and to ease the
understanding of specifications. On the other hand, other tools
look at monitoring temporal logics directly, e.g., R2U2 [5],
[34], Aerial [35], Reelay [36], MonPoly [37], [38], VeriMon
[39], VeriMon+ [40], Hydra [41], and Vydra [42], but these
monitors currently lack any explainability or visualization in-
terface/tool. Recently, the Explanator2 [43] and WhyMon [44]
monitors were developed to bridge this gap in explainability
through outputting proof trees and providing optional GUI
visualization of these proof trees for Metric Temporal Logic
(MTL) and Metric First-Order Temporal Logic (MFOTL)
specifications, respectively. Of these temporal logic monitors,
R2U2 is the only one that can run on-board and provide
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R2U2 Playground
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Fig. 1: R2U2 Playground: (1) C2PO specification; (2) CSV input trace; (3) R2U2 text output; (4) C2PO assembly output tab;
(5) R2U2 timeline visualization tab; (6) R2U2 internal tree architecture visualization tab; (7) Info pop-up buttons; (8) Examples
dropdown; (9) Compile C2PO specification button; (10) Compile dropdown menu; (11) Step-backward button; (12) Step-forward
button; (13) Trace row highlighting based on current step; (14) Run button; (15) Download/Upload C2PO specification buttons;

(16) Download/Upload CSV trace buttons; (17) Download output text, timeline image, or tree image button.

verdicts in real-time for both future- and past-time properties
due to its unique architecture and specification language [6];
therefore, we focus on providing a visualization for R2U2,
while also taking inspiration from the TeSSLa and RTLola
playgrounds.

III. PLAYGROUND FUNCTIONALITY

A. Mission-time Linear Temporal Logic (MLTL) and past-time
MLTL (ptMLTL) [2], [34], [45], [46]

R2U2 reasons over specifications in MLTL/ptMLTL, a vari-
ant of LTL/ptLTL over finite traces with bounded, closed, and
discrete intervals on temporal operators. MLTL and ptMLTL
contain the standard boolean connectives (e.g., NOT, AND, OR,
XOR, IMPLIES, EQUIVALENT) along with temporal operators
that reason over future-time and past-time, respectively. Tables
I and II provide a visualization of example formulas containing
these temporal operators.

B. Configuration Compiler for Property Organization (C2PO)
[5] Specification and R2U2 Configuration Output

C2PO provides a specification language to make writing
MLTL/ptMLTL specifications more natural and transparent.

Notably, C2PO supports expressions over complex data types
such as sets and structs. The language is also structured to
include separate sections for defining structs, inputs, variables,
macros, and MLTL/ptMLTL formulas. Within the R2U2 Play-
ground, users can directly compose their C2PO specification
(label 1 in Fig. 1), as well as upload/download C2PO specifi-
cation files directly (label 15 in Fig. 1).
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Fig. 2: C2PO and R2U2 Workflow: Blue shaded boxes indicate
the process required to configure R2U2, and the red shaded
boxes indicate the pieces required to execute R2U2.

C2PO encodes a C2PO specification into an R2U2 configu-
ration by decomposing the specified expression(s) into subex-
pression(s) represented as an Abstract Syntax Tree (AST) and
traverses the AST to produce assembly-style instructions for
R2U2 to execute at runtime (Fig. 2). (Refer to Fig. 3 and 4 for
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TABLE I: Pictorial Representation of Mission-time Linear
Temporal Logic (MLTL). Timeline depicts a satisfying trace
where 7 = 0.
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TABLE 1II: Pictorial Representation of past-time Mission-
time Linear Temporal Logic (ptMLTL). Timeline depicts a

________

|
“ Engine: TL (Temporal Logic)
1 Instruction #: n4
Operator: return (Return SPECO)

Operand: n3
# of Queue Slots: 1
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’ ’ oz 3 4 5 6 mation dialog box displayed upon mouse over of node.

the AST and assembly-style instructions required to encode
SPECO from the C2PO specification in Fig. 1.) The R2U2
configuration (which is composed of these assembly-style
instructions) is represented in binary format. The command
line interfaces for both R2U2’s C and Rust realizations expect
the R2U2 configuration as a binary file, while if running R2U2
on-board a system, it may be more applicable to have the
binary stored as an array; therefore, a user can easily download
the R2U2 configuration as a binary file (i.e., spec.bin) or as
a C/Rust file containing the configuration encoded as a byte
array (label 10 in Fig. 1).

C2PO Specification §§ = Assembly @
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3 BZ b2
4 BZ b3
5TL n@
6 TL nl

iload @ @
store 0 @
iload 1 @
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load a@
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8 TL n3 release False n2
9 TL n4 return n3 @
10 CG TL SCQ g0 |1]

11 €G TL SCQ q1 |1|

2 €6 TL SCQ g2 |1|

Fig. 3: Textual Representation of Assembly Output for SPECO:
G[1,2] (sO || s1)

Once the C2PO file has been compiled in the playground
by either pressing the Compile button (label 9 in Fig. 1) or
by executing R2U2 (labels 11, 12, and 14 in Fig. 1), the
textual representation of these instructions is displayed in the

Assembly tab (label 4 in Fig. 1). Fig. 3 displays the Assembly
tab if only SPECO was defined in the C2PO specification given
in Fig. 1. This textual representation may be difficult to parse;
therefore, a visual representation of the AST is available in
the Tree tab (label 6 in Fig. 1). Fig. 4 displays the Tree
tab with SPECO selected, where SPECO was defined in the
C2PO specification given in Fig. 1. Within the Tree tab, a
dropdown menu (label 1 in Fig. 4) allows a user to select
any specification that has been defined, or they can select to
view all specifications at once (as shown in Fig. 6). The tree is
also color-coded such that red nodes represent MLTL/ptMLTL
operator nodes, while grey nodes represent Booleanizer [5]
nodes. (The Booleanizer is an optional module that computes
atomic propositions from non-Boolean expressions utilizing
arithmetic, bitwise, set aggregation, and relational operators.)
A user can also zoom in and out of the AST view, move the
entire tree around, move individual nodes around, and mouse
over nodes to find out more information (label 2 in Fig. 4).
Optionally, a user may also download the image to save locally
(label 17 in Fig. 1).

C2PO also allows users to enable or disable certain features
(i.e., the Booleanizer, auxiliary data, various rewriting rules
[26], Common Subexpression Elimination (CSE) [1], [5], and
SAT checking) to customize the AST for a given target system.
A user can directly enable/disable these features by clicking on
the C2PO Options button from the Compile dropdown (label
10 in Fig. 1) to bring up the C2PO options pop-up as shown in
Fig. 5. Fig. 6 illustrates how the AST may change based on the
features enabled. Fig. 6a displays the AST for all specifications
defined in the C2PO specification from Fig. 1 based on the
default C2PO options displayed in Fig. 5, and Fig. 6b displays
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C2PO Options

@D Enable Booleanizer

@D Enable Auxiliary Data (e.g., specification/contract names)

@D Enable Rewrite Rules

@D Enable Common Subexpression Elimination (CSE)
Enable SAT Checking

SAT Timeout 3600 in seconds

Fig. 5: C2PO Options Pop-Up Window: (a) Enable
Booleanizer [5] module; (b) Enable Auxiliary Data such as
specification names (e.g., “SPECO0”) to be stored and provided
with output verdicts; (c) Enable Rewrite Rules given in [26];
(d) Enable CSE allows to share common nodes between
subexpressions [1], [5]; (e) Enable SAT Checking of the
MLTL/ptMLTL specifications powered by Z3 [47].

the resulting AST when the Booleanizer and CSE are disabled.
The specifications given in the C2PO specification in Fig. 1
only reason over Boolean inputs; therefore, the Booleanizer is
not required for this C2PO specification and can be disabled to
save resources as shown by the elimination of the grey nodes in
Fig. 6b. On the other hand, if we disable CSE, we no longer
share common nodes between subexpressions; therefore, we
also observe a larger amount of red nodes in Fig. 6b.

C. R2U2 Execution

There are three options for executing the R2U2 runtime
monitoring engine: step-forward (label 11 in Fig. 1), step-
backward (label 12 in Fig. 1), and run (label 14 in Fig. 1).
To define the inputs into R2U2, a CSV formatted input signal
trace can be composed directly within the playground (label
2 in Fig. 1), as well as uploaded/downloaded (label 16 in Fig.
1). Within the CSV trace, each line typically represents the
input signals at a discrete timestamp, but to support longer
traces as requested by users at NASA (without having to
manually specify the input of each time-step), we added the
ability to encode multiple time-steps in a single line where
the symbol @7 at the beginning of a line encodes the input
signal as occurring at time 7' and since the last time-step
included in the input trace. This format directly works with
R2U2’s aggregated storing of results (refer to [1] and [34] for
more details on R2U2’s aggregated storage). The Q7" symbol
is optional, and if not included, the line simply represents
the next timestamp of execution. Fig. 7 provides an example
of employing the @7 symbol. Utilizing the step-forward and
step-backward buttons, the CSV trace is iterated through step-
by-step, and the current step in the CSV trace is highlighted

Ouput @ Timeline  Tree @

Al Specifications *

(a) Booleanizer and Common Subexpression Elimination (CSE) are enabled

S B e o i

All Specifications ~

(b) Booleanizer and CSE are disabled

Fig. 6: Tree Visualization of All Specifications (i.e., SPECO,
SPECI, SPEC2, SPEC3, SPEC4, and SPEC5 from Fig. 1)

# p,q,1i,j,k
9,1,5,2,3
9,1,5,2,3
0,1,5,2,3

# p,q,1,j,k
@ 0,1,5,2,3

0,0,4,2,3
0,0,4,2,3
1,1,2,6,10

@4 0,0,4,2,3
@ 1,1,2,6,10

(a) Typical trace where each line
represents a sequential discrete
timestamp starting at timestamp 0

(b) Trace encoding multiple time-
steps utilizing the @7 symbol

Fig. 7: Different Equivalent CSV Input Trace Representations:
Note that “# p, q, ¢, 7, k” defines the variable-to-column map-
ping scheme for the trace.

(label 13 in Fig. 1). Additionally, the entire CSV trace can be
evaluated at once using the run button.

The textual representation of R2U2’s output verdicts is
given in the Output tab (label 3 in Fig. 1), but a timeline
visualization is provided in the Timeline tab (label 5 in Fig.
1). Fig. 8 displays the Timeline tab with SPECO selected, but
a dropdown menu (label 1 in Fig. 8) allows a user to visualize
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Fig. 8: Timeline Visualization of SPEC0: G[1,2] (sO || s1): (1) Specification selection dropdown menu; (2) Interval zooming.

any specification that has been defined. When performing
stepwise execution, both the textual representation and the
timeline visualization will react accordingly, allowing the user
to visualize how R2U2 produces output verdicts over time.
Optionally, the user can also zoom in to a certain interval of
interest (label 2 in Fig. 8) and download the timeline image
to save locally (label 17 in Fig. 1).

IV. IMPLEMENTATION

The R2U2 Playground is comprised of two main compo-
nents: the frontend and the backend. The frontend consists
of the visual user interface as shown in Fig. 1. The frontend
is strictly written in HTML, JavaScript, and CSS with the
aid of Bootstrap [48], CodeMirror [49], and D3 [50]. The
frontend purely provides the visualization elements of the
R2U2 Playground, while the execution of the R2U2 runtime
monitoring engine occurs on the backend. The backend is a
Rust-based server built with the warp framework [51] that
directly executes the Rust realization of R2U2 [34]. (Note that
we could have easily utilized the R2U2’s C realization in the
backend but chose the Rust realization due to its memory-
safe qualities and ease-of-use.) The frontend sends applicable
requests with the C2PO specification and CSV input trace
to the backend, and the backend will then respond with the
applicable response (e.g., R2U2 configuration and verdicts).
The frontend then performs static analysis on the response to
provide its various visualizations.

To promote extensibility, the R2U2 Playground is also avail-
able open-source under the Creative Commons Attribution 4.0
International license.?

V. DISCUSSION

The R2U2 Playground allows users to easily run C2PO
specifications against various CSV input traces without re-
quiring local installation or interacting with command line
interfaces. The playground is also easy to use with several
optional examples available through the Example dropdown
(label 8 in Fig. 1) and optional more-information pop-up
windows (label 7 in Fig. 1). Consequently, the R2U2 Play-
ground lowers the barrier to entry for utilizing the R2U2

3https://zenodo.org/records/16787011

runtime monitoring engine, allowing for easier adoption of
R2U2. To this extent, we have witnessed the easier adoption
of R2U2 through sharing the R2U2 Playground with various
interested industrial entities (e.g., Collins Aerospace, Kansas
State University, and NASA).

Through the playground, users can more easily debug their
specifications through stepwise debugging capabilities and
reactive timeline visualization. Additionally, users can enable
or disable C2PO features and view how this changes the
internal representation (i.e., the AST) of their specifications
in R2U2. Previously, the Resource Estimation GUI from [5]
provided limited capabilities to perform similar analysis, but
the information was not intuitively displayed. Additionally,
this previous work only calculated resource usage for running
R2U2 and did not provide an interface to execute R2U2 or
debug specifications. In the future, we plan to incorporate the
resource estimation analysis of this previous work into the
R2U2 Playground to visualize the resource requirements of the
AST. Furthermore, if a user’s end goal is to run R2U2 on-board
a system outside the R2U2 Playground, they can easily export
their compiled specifications to a range of popular formats
R2U2 might expect (e.g., a binary file or a byte array in
C or Rust). Overall, the R2U2 Playground can be utilized
to both learn how R2U2 reasons about specifications and
debug/test these specifications to make sure they are accurately
capturing the system requirements, while also ensuring the
correct configuration of R2U2.

Given the prevalence of MLTL/ptMLTL as a specification
logic and the popularity of runtime monitoring as a light-
weight formal verification technology, the impact of the R2U2
Playground also extends beyond R2U2, providing a tool for
learning MLTL/ptMLTL and runtime monitoring. We utilized
the R2U2 Playground as an educational tool for teaching these
aspects of formal methods in the 2025 Summer School on
Formal Techniques [52], and in the Applied Formal Methods
course at lowa State University [53]. Future expansions of the
R2U2 Playground will include additional educational tooling
in response to questions and feedback from students.
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