
Formal Methods in Computer-Aided Design 2025

S2S: An Eager SMT Solver for Strings
Kevin Lotz Mitja Kulczynski Dirk Nowotka

Department of Computer Science Department of Computer Science Department of Computer Science
Kiel University Kiel University Kiel University
Kiel, Germany Kiel, Germany Kiel, Germany

kel@informatik.uni-kiel.de mku@informatik.uni-kiel.de dn@informatik.uni-kiel.de

Abstract—String constraint solving describes the problem
of determining the satisfiability of first-order formulas where
variables range over strings. Automated procedures for solving
these problems are known as string solvers. Most existing solvers
adopt a lazy SMT approach, where a SAT solver handles the
Boolean structure of the formula and alternates with a specialized
string reasoning engine, following the CDCL(T) paradigm. An
alternative strategy, called eager SMT solving, reduces the entire
problem to Boolean satisfiability, allowing it to be handled
directly by a SAT solver. While successful eager approaches have
been proposed, current implementations either lack expressive-
ness or are not publicly available. Here, we present a new eager
string solver based on existing techniques, capable of solving
Boolean combinations of word equations, regular constraints, and
linear arithmetic over string lengths. An evaluation on the SMT-
LIB string benchmarks shows that our approach is competitive
on a broad set of problems compared to state-of-the-art solvers,
and even outperforms them in many cases. In particular, our
solver demonstrates close to best-in-class performance on the
SMT-COMP pure string benchmarks.

I. INTRODUCTION

String constraint solving is the task of determining the
satisfiability of first-order formulas over string variables, typ-
ically involving constructs such as word equations, regular
expression membership, and reasoning about string lengths.
String constraints are nearly unavoidable in verification tasks
and they often arise in security-sensitive domains such as web
application analysis and access policy validation [1], [2].

While the satisfiability of word equations and their combi-
nation with regular constraints is known to be decidable [3],
[4], the known theoretical decision procedures are far from
efficient (e.g., [3]–[6]). Moreover, many combinations of string
constraints are undecidable (e.g., word equations with string-
number conversion predicates [6]) or of unknown decidability
status (e.g., word equations with length constraints). Despite
these challenges, numerous practical string solvers have been
developed. Most solvers employ the lazy SMT paradigm,
typically by adapting a CDCL(T) approach, which combines
a SAT solver for the propositional structure with a dedicated
theory solver for string reasoning [7]–[9].

A contrasting approach is the eager SMT methodology, in
which all constraints are eagerly reduced to propositional logic
and handed off to a SAT solver. Two eager solvers for the
theory of strings have been proposed: WOORPJE [10] and
NFA2SAT [11]. Building on both, we present S2S, a new eager
string solver that combines NFA2SAT’s incremental reduction

approach with WOORPJE’s encoding of integer arithmetic. As
a result, S2S supports solving Boolean combinations of word
equations, regular expression constraints, and linear arithmetic
over string lengths and integer variables.

S2S features a two-stage architecture, beginning with a
thorough preprocessing phase that applies various simplifi-
cations to cut down the search space as much as possible.
For the reduction to propositional logic, S2S relies on a
bounded approach. It imposes initially small bounds on all
variables and gradually increases them when necessary. To
make this efficient, the solver adapts the incremental encodings
and unsatisfiable core analysis introduced by NFA2SAT [11].
To handle arithmetic constraints, S2S adopts the approach
of WOORPJE, compiling them into propositional logic using
multivariate decision diagrams, which compactly represent the
sets of bounded integer solutions.

We evaluated S2S on SMT-COMP benchmarks from the
QF S and QF SLIA divisions. Results show that S2S is com-
petitive with state-of-the-art solvers OSTRICH [7], Z3 [12],
CVC5 [8], and NOODLER [9], and delivers strong performance
on both satisfiable and unsatisfiable instances.

II. SOLVER ARCHITECTURE

S2S checks the satisfiability of quantifier-free formulas over
strings and string lengths, by translating them into propo-
sitional logic and solving the encoding with a SAT solver.
Currently, S2S supports formulas over the syntax in Figure 2.
In addition to Boolean variables, formulas contain variables of
sort string and sort integer; we denote the sets of string and
integer variables by Xstr and Xint, respectively. The atoms
of formulas are word equations, regular constraints, linear
integer constraints (over string lengths), and prefix, suffix, and
containment constraints.

We give an overview of the architecture of S2S, which is
sketched in Figure 1. It consists of three major components,
the Context, a Preprocessing pipeline, and the main Solving
Loop.

A. Context

The context manages variables and their sort, constants,
and formulas. Formulas are represented as abstract syntax
trees (ASTs). All concrete nodes of the structure are stored
in a database, and the AST consists only of reference-counted
pointers to these nodes. Leaf nodes are constants (strings,

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6 19
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://orcid.org/0000-0001-6759-3304
https://orcid.org/0000-0003-4650-1110
https://orcid.org/0000-0002-5422-2229
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_19
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_19
https://creativecommons.org/licenses/by/4.0/


AST

Variables

x, y: String,
z: Int, p: Bool

Automata

Node Database 

Context 

UNSAT

SAT

UNKNOWN

Solving Loop 
ψ 

Simplify

Normalization

Σ-Reduction

Abstraction

Preprocessing 

Incremental
SAT Solving

Incremental
Encoding

Word Equations

Regular Constraints

Integer Constraints

Bound
Refinement

Compute Small
Model Bounds

Check

skel(ψ) 

Σ 

JhKbk , JDKbk 

UNSAT
bk−1 bk−1 

Bounds bk 

Block ω Model ω 

Fig. 1: Architecture of S2S.

F := F ∨ F | F ∧ F | ¬F | Astr | Aint | Abool 
. . 

Astr := Tstr = Tstr | Tstr ∈ RE |
prefix(Tstr, Tstr ) | suffix(Tstr, Tstr ) | contains(Tstr, Tstr ) 

Aint := Tint ▷◁ Tint (with ▷◁ ∈ { <, ≤, =, ≥, > }) 
Tstr := Tstr · Tstr | x | w 
Tint := Tint + Tint | c · Tint | c | |Tstr | | y 

Fig. 2: Supported Syntax. Here Xstr and Xint are string
and integer variables, RE is a regular expression, Abool are
Boolean variables, x ∈ Xstr, y ∈ Xint, w is constant string,
and c ∈ Z is a constant integer.

integers, or regular expressions) or variables, all interned in
the node database for reuse. Reference-counted pointers enable
constant-time cloning and comparison of nodes. To ensure
pointer consistency, all nodes are hash-consed upon creation,
guaranteeing that no two syntactically identical nodes exist in
the database. As a result, the ASTs are internally represented
as DAGs.

Nodes are simplified during construction, e.g., by folding
constant terms or resolving simple Boolean equivalences. Ad-
ditionally, the context provides a facade for compiling regular
expressions to finite automata. All conversions are cached
(again as reference-counted objects), allowing for constant-
time retrieval of repeated conversions of the same regular
expression.

B. Preprocessing

Before solving a problem, S2S performs several preprocess-
ing steps. First, it optionally simplifies the formula. Then,
it prepares the formula for the central solving loop. This
involves the conversion into a normal form, thereby removing
unsupported constructs, computing a suitable alphabet for the
search procedure, and building the Boolean abstraction.
1) Simplification: S2S reduces the search space by running

the formula through a pipeline of simplification rules, applied
in multiple passes until a fix-point is reached, at which point

no further simplifications are possible. Each pass first applies
a series of rewrite rules via a post-order traversal of the AST.
For each node, the solver searches for an applicable rewrite
rule that replace the node with an equivalent but simpler one.
Currently, S2S uses 40 rewrite rules, which are applied in a
fixed order. These range from Boolean equivalences, to theory-

. .specific rules, such replacing αβ = αγ with β = γ, or
.identifying that aα = bβ is unsatisfiable, where α, β, and

γ are string terms and a and b are constant characters. All of
these rewrites are standard (see, e.g. [10], [13]).

After the rewrite pass, the simplifier tries to infer variable
substitutions that preserve satisfiability when applied to the
formula. For example, suppose the formula asserts a word

.equation of the form xbα = aβ with variable x, constants
a, b and arbitrary string terms α, β. The solver detects that
necessarily x must start with a and applies the substitution

′ ′ x 7→ a · x where x is a fresh variable. Currently, there are
seven rules for inferring substitutions. These rules apply the
same reasoning exemplified above to other types of literals,
force the value of asserted Boolean variables, or directly set
the value of a variable x if it is forced by an asserted equality

.(e.g., if x = w with w ∈ Σ∗ , we infer x 7→ w).
The simplifier records all applied substitutions, which are

later used for back-substitution when constructing a model for
the original formula from a model of the simplified formula.
2) Normalization: The SAT encoding is constructed literal-

wise, with a corresponding encoding scheme for every type of
literal. To minimize the number of encodings, we transform
the formula into a normal form, which limits of types of
literals occurring in the formula. In this form, the formula is in
negation-normal form, and each literal is one of the following

. • a word equation α = β with string terms α, β, or a dis-
.equation x ≠ y between two string variable x, y ∈ Xstr,. . 

• a regular constraint x ∈ R or x ∉ R on a single string
variable x ∈ Xstr,

• one of prefix(w, x), suffix(w, x), or contains(x, w) 
where x ∈ Xstr and w a constant string, orP 

• an integer constraint of the form ti · ci ▷◁ c, wherei=1 
each ti is either an integer variable or the length of a

134



string variable, c, ci ∈ Z are constant integers, and ▷◁ is
one of { <, ≤, =, ≥, > }.

S2S provides an encoding for each type of literal in normal
form. Most formulas in Figure 2 can be rewritten into normal
form, possibly by introducing fresh variables. For example,

. 
a literal of the from α ∈ R is rewritten into a formula in

. .normal form x ∈ R ∧ x = α using a fresh variable x.
The only exception are negations of prefix(α, β), suffix(α, β),
and contains(α, β) when α is not constant, as they introduce
quantification. For example, ¬ prefix(α, β) is equivalent to
∀x.β ̸= α · x. If α is a constant string w, then we can model

. 
this with a regular constraint β ∉ w · Σ∗ , where Σ∗ accepts
any string. Otherwise, these types of literals are not supported
and removed from the formula. The formula in normal form
is equivalent (modulo new variables) to the original formula
if no literals are dropped.
3) Σ-Reduction: The SMT-LIB theory of strings [14] pre-

defines an alphabet of 3 · 216 letters, which is too large for
an efficient SAT encoding. Instead, S2S uses the approach of
NFA2SAT to construct a subset of this alphabet that preserves
satisfiability. The subset consists of all letters occurring in the
input problem plus a linear number of extra characters. The
exact number of extra characters depends on the formula. If
it contains string concatenation, one additional character per
inequality [15], otherwise one [11] character per variable.
4) Abstraction: In order to handle Boolean combinations,

the solver decomposes the input formula ψ into its proposi-
tional structure and theory-specific parts, by replacing every
(distinct) first-order atom a ∈ atoms(ψ) with a fresh Boolean
variable pa and keeps track of the mapping between a and pa.
As a result, we obtain the Boolean skeleton skel(ψ) of ψ and a
set D of definitions of the form a → pa (¬a → ¬pa) if a only
occurs in positive (negative) polarity in ψ. We call the formulaV 
skel(ψ) ∧ d the Boolean abstraction and denote it withd∈D 
ψA. Based on the results of Plaisted-Greenbaum [16], we have
that ψ and ψA are equivalent modulo the newly introduced
variables in ψA.

C. Solving Process

The solving process reduces ψ to a propositional formulaJψK, which is passed to a SAT solver. To construct JψK, the
solver uses a bounded approach: it fixes bounds b : Xstr ∪ 
Xint → Z2 , where b(x) = [l, u] denotes the inclusive range
of integers l, . . . , u (with l ≥ 0 for all x ∈ Xstr). The encoding
ensures that JψK is satisfiable precisely if there is a model h 
of ψ such that h(x) ∈ b(x) for all x ∈ Xint and |h(x)| ∈ b(x) 
for all x ∈ Xstr.

Instead of computing precise bounds upfront, S2S starts
with small bounds b1 and gradually increases them. If the
encoding JψKbk is unsatisfiable for some bounds bi, the solver
fixes larger bounds bk+1 and checks the satisfiability ofJψKbl+1 . This results in a series of calls to the SAT solver to
determine the satisfiability of the formulas JψKb1 , JψKb2 , . . . ,
each encoding ψ w.r.t. to increasing bounds b1, b2, . . . .

If for some bounds bk the SAT solver returns a model ω forJψKbk , then S2S decodes ω into a model h for ψ and checks

if h also solves the original formula (since the preprocessing
steps might have removed literals from the original formula).
If yes, S2S reports satisfiability, and optionally the model h. If
not, then ω is blocked, and S2S searches for another solution
within the same bounds bk. This is repeated until no further
model is found within these bounds, in which case the solver
gives up and returns unknown.

The formula JψKbk itself is the conjunction

skel(ψ) ∧ JhKbk ∧ JDKbk 

of the Boolean skeleton skel(ψ) of ψ, an encoding of the set
of possible substitutions JhKbk over the previously computed
alphabet Σ, and encoding of the definitions in D, all bounded
by bk. More precisely, JDKbk is the formula^ ^ 

pa → JaKbk ∧ ¬pa → J¬aKbk 

(pa →a)∈D (¬pa→¬a)∈D 

where JaKbk (resp. J¬aKbk ) denote the encoding of a literal in
normal form a (resp. ¬a).

The encoding depends on the type of the literal. Regular
. . 

constraints x ∈ R and x ∉ R are encoded as the reachability
problem of nondeterministic finite automata [11], [17]. For

.word equations α = β and their negations, S2S use the
encodings introduced in [15]. The encodings prefix, suffix
and containment constraints have been are presented in [11].P 
For linear integer constraint ti · ci ▷◁ c, S2S encodesi=1 
multivariate decision-diagrams similarly to the approach used
by WOORPJE [10].
1) Incremental Encoding: To make the iterative search

process efficient, we rely on incremental SAT solving un-
der assumptions [18] to construct the encodings. All our
propositional encodings for literals are built incrementally:
the encoding of a literal a at bounds bk is obtained by
only adding clauses to JaKbk−1 . More precisely, the encoding
ensures JaKbk ⇔ JaKbk−1 ∧ JaKbb 

k

k 
−1 

for some set of clausesJaKbk . In the kth call, it is sufficient to generate only the newbk−1 

clauses JaKbk and add them to the SAT solver, which alreadybk−1 

retains JaKbk−1 from the k − 1th call. Hence, the encodingJψKbk is obtained simply by adding clauses to JψKbk−1 from
the previous iteration.
2) Bound Refinement: If JψKbk is unsatisfiable for some

bounds bk, S2S first checks whether ψ itself is unsatisfiable
before updating the bounds. This check relies on the small-
model property of the theory, which states that every satisfiable
formula admits a model of minimal size. If the bounds are
large enough to cover such a minimal model, unsatisfiability
can be concluded.

To efficiently compute if this is the case, S2S employs
the unsatisfiable core analysis introduced by NFA2SAT. If an
unsatisfiable core C is returned by the SAT solver, S2S con-
structs a smaller sub-formula ψC which is still unsatisfiable
but only contains the literals whose encodings are in C. The
solver then tries to bound the length of a presumed minimal
solution for ψC and compares them to bk. If bk covers the
bounds of the (presumed) minimal solution for all variables,

135



TABLE I: Results restricted to the fragment S2S supports.
The rows Total, Sat, and Unsat correspond the the number
on problems solved in that category. The Timeout row shows
the number of problems the solver timed out on. Time is given
in seconds. The total time does not include timeouts.

S2S CVC5 NOODLER Z3 OSTRICH

QF S

Total
Sat
Unsat
Timeout

18,782
11,973
6,809

135

18,737
12,003
6,734

180

18,889
12,062
6,827
28

18,663
11,982
6,681

254

18,739
11,930
6,809

177
Time Total
Time SAT
Time UNSAT

694.91
559.12
135.80

1,034.60
550.21
484.39

1,506.89
1,078.76

428.13

3,762.81
2,006.85
1,755.96

34,579.25
23,389.17
11,190.08

QF SLIA

total
sat
unsat
timeout
Time Total
Time SAT
Time UNSAT

47,895
24,398
23,497

896
4,196.96
3,773.27
423.68

47,303
24,072
23,231
1,490

7,067.90
5,045.51
2,022.39

48,693
24,740
23,953

80
2,570.70
1,511.71
1,058.99

46,615
23,151
23,464
2,179

9,285.81
8,534.13

751.68

45,903
24,098
21,805
2,828

118,100.77
51,837.43
66,263.34

QF S + QF SLIA

total 66,677 66,040 67,582 65,278 64,642
sat 36,371 36,075 36,802 35,133 36,028
unsat 30,306 29,965 30,780 30,145 28,614
timeout 1,031 1,670 108 2,433 3,005
Time Total 4,891.87 8,102.49 4,077.59 13,048.62 152,680.02
Time SAT 4,332.39 5,595.71 2,590.47 10,540.98 75,226.60
Time UNSAT 559.48 2,506.78 1,487.12 2,507.63 77,453.42

then ψC has no minimal solution and, therefore, no solution
at all. In that case, S2S reports the unsatisfiability of ψ (since
ψC |= ψ). Otherwise, the solver increases the bounds for
all variables in vars(ψC ), relaxing all intervals bk(x) by a
constant offset, without exceeding the computed bounds on
the minimal solution.

If ψ contains no word equations and no integer constraints,
then S2S always finds bounds on a minimal solution for
all variables (see [11]), making it complete for formulas
in this fragment. If the formula contains a word equation
or integer constraints, S2S relies on the best-effort heuristic
described in [15]. This heuristic may fail to establish bounds
on the smallest model, in which case unsatisfiability cannot
be detected and S2S will increase variable bounds indefinitely
without terminating.

III. EVALUATION

The S2S solver is implemented1 in Rust and uses CAD-
ICAL (version 2.1.3) as the backend SAT solver. It accepts
problems in the SMT-LIB format. We have evaluated S2S on
the 103,335 problems from the SMT-COMP benchmark suite
for the theory of strings2. These problems are in two cat-
egories: QF S (pure string problems, 18,940 in total), and
QF SLIA (string problems with linear integer arithmetic,
84,395 in total).

We compare S2S with four state-of-the-art solvers:
CVC5 (version 1.2.1), Z3 (version 4.14.0), OSTRICH (ver-

1Available at https://github.com/s2ssolver/s2s
2Benchmarks are available at https://zenodo.org/records/11061097

Fig. 3: Cactus plots showing the results on the QF S,
QF SLIA, and total benchmarks. Time in seconds (log-scale).

sion 2024-03-22), and NOODLER (version 4.13.0). To ensure
soundness, answers from S2S were verified through majority
voting, using the other solvers answers as oracles. Addition-
ally, if S2S returned a model for a satisfiable problem, we
double-checked the model’s correctness by evaluating it on
the original formula.

All experiments were executed on an Ubuntu server
equipped with 128 cores and 1.7TiB of memory. We used
a timeout of 20 seconds per solver and problem, as used
in a variety of prior works on string solvers (see e.g., [10],
[19]–[21]). We ran 40 solver instances in parallel. No explicit
memory limits were imposed, so all instances shared the
available system memory.

S2S solves 18,782 from the QF S (99%) and 47,895 from
the QF SLIA (57%) problems, respectively, which corresponds
to roughly 65% of all problems. On the remaining problems,
the solver returned unknown, because they fall out of the sup-
ported fragment and no solution can be found when removing
the literals that cannot be encoded. The evaluation is limited
to problems that S2S can solve. Table I summarizes the results
and Figure 3 visualizes them as cactus plots.

S2S solves almost all problems in the QF S category and is
the fastest solver overall in that fragment. Only CVC5 solved
more satisfiable problems in less time, but it solved fewer
problems in total. While NOODLER solved more problems
than S2S, S2S was considerably faster, particularly on unsatis-
fiable instances. Both Z3 and OSTRICH solved fewer problems
than S2S and took substantially more time. Notably, S2S was
much faster on unsatisfiable problems than any other solver.

136

https://github.com/s2ssolver/s2s
https://zenodo.org/records/11061097


Fig. 4: Scatter plots comparing the runtime of S2S with other solvers on all (QF S + QF SLIA) problems. The axes show
the runtime in log-scale. Blue dots are satisfiable and orange dots are unsatisfiable instances. The dashed red lines indicate
timeouts.

Restricting to the problems that S2S can solve, we see
similar results on the QF SLIA set. In that fragment, S2S is
almost twice as fast as CVC5 and solves 492 more problems
within the time limit. Among all solvers, NOODLER solved
the most problems and was the fastest overall. On satisfiable
problems, NOODLER was almost twice as fast as S2S, which
ranked second. On unsatisfiable problems, the pattern reversed:
S2S was twice as fast as NOODLER, though NOODLER solved
considerably more of them. As with the QF S problems,
Z3 and OSTRICH solved fewer problems and took more time
than the other solvers.

The scatter plots in Figure 4 give a more detailed compari-
son between the solvers. They compare the runtimes of S2S (x-
axis) to the runtimes of CVC5, Z3, NOODLER, and OSTRICH,
respectively (y-axis). Every dot represents a single problem,
with the axes indicating the runtime of each solver for that
problem. Blue dots correspond to satisfiable problems, while
yellow dots indicate unsatisfiable ones. A dot is above the
diagonal precisely if S2S solved the problem faster. We can see
that, independently of the solver we compare to, most orange
dots are above the diagonal. This aligns with the findings that
S2S is generally fast on unsatisfiable instances.

We can see that almost all solvers need a constant amount of
time before solving any problem, visible as a gap between the
axis and the lowest data point. We refer to this as the startup
time. The solvers Z3, NOODLER (which is based on Z3), and
OSTRICHhave relatively high startup time, compared to S2S,
which show little to no startup time. CVC5 has only a slightly
higher startup than S2Sand for a small subset that CVC5 solves
fast, it has little to no startup time at all. We reckon that these
might be instances that can be solved merely by simplification,
without starting the search procedure.

IV. CONCLUSION

We presented S2S, an eager string solver that reduces
string constraints to propositional logic and solves them via
incremental SAT solving. The solver combines the ideas of
NFA2SAT and WOORPJE. Despite supporting only a fragment
of the full SMT-LIB theory, S2S achieves strong performance
on a large fraction of the SMT-COMP benchmarks. Unlike

lazy solvers, S2S avoids dedicated theory engines and offers
an alternative for the supported fragment.

We plan to extend expressiveness by support to additional
types of literals, such as transduction. This requires finding ef-
ficient SAT encodings that integrate with the incremental solv-
ing approach. Another possible research direction is to explore
more sophisticated CEGAR approaches. Using appropriate
over-approximations of the input formula could lead to more
efficient SAT encodings and significantly improve the solver’s
performance. Finally, we believe that bound refinement pro-
cedure can be improved through careful in-processing, likely
resulting in further performance improvements.

REFERENCES

[1] T. Bultan, F. Yu, M. Alkhalaf, and A. Aydin, String Analysis for
Software Verification and Security. Springer International Publishing,
2017. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-68670-7

[2] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming, “Semantic-based automated
reasoning for AWS access policies using SMT,” in 2018 Formal Methods
in Computer Aided Design (FMCAD), 2018, pp. 1–9.

[3] G. S. Makanin, “The problem of solvability of equations in a free
semigroup,” Mathematics of the USSR-Sbornik, vol. 32, no. 2, pp.
129–198, Feb. 1977. [Online]. Available: http://dx.doi.org/10.1070/
SM1977v032n02ABEH002376

[4] K. U. Schulz, “Makanin’s algorithm for word equations-two improve-
ments and a generalization,” in Word Equations and Related Topics,
K. U. Schulz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1992, pp. 85–150.

[5] M. Berzish, J. D. Day, V. Ganesh, M. Kulczynski, F. Manea, F. Mora,
and D. Nowotka, “String theories involving regular membership predi-
cates: From practice to theory and back,” in Combinatorics on Words,
T. Lecroq and S. Puzynina, Eds. Cham: Springer International
Publishing, 2021, pp. 50–64.

[6] J. D. Day, V. Ganesh, P. He, F. Manea, and D. Nowotka, “The
satisfiability of word equations: Decidable and undecidable theories,”
in Reachability Problems, I. Potapov and P.-A. Reynier, Eds. Cham:
Springer International Publishing, 2018, pp. 15–29.

[7] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu, “Decision
procedures for path feasibility of string-manipulating programs with
complex operations,” Proc. ACM Program. Lang., vol. 3, no. POPL,
Jan. 2019. [Online]. Available: https://doi.org/10.1145/3290362

[8] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5: A
versatile and industrial-strength SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, D. Fisman and G. Rosu,
Eds. Cham: Springer International Publishing, 2022, pp. 415–442.

137

http://dx.doi.org/10.1007/978-3-319-68670-7
http://dx.doi.org/10.1070/SM1977v032n02ABEH002376
http://dx.doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1145/3290362


[9] Y.-F. Chen, D. Chocholatý, V. Havlena, L. Holı́k, O. Lengál, and
J. Sı́c,ˇ “Z3-noodler: An automata-based string solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, B. Finkbeiner
and L. Kovács, Eds. Cham: Springer Nature Switzerland, 2024, pp.
24–33.

[10] J. D. Day, T. Ehlers, M. Kulczynski, F. Manea, D. Nowotka,
and D. B. Poulsen, “On solving word equations using SAT,” in
Reachability Problems - 13th International Conference, RP 2019,
Brussels, Belgium, September 11-13, 2019, Proceedings, ser. Lecture
Notes in Computer Science, E. Filiot, R. M. Jungers, and I. Potapov,
Eds., vol. 11674. Springer, 2019, pp. 93–106. [Online]. Available:
https://doi.org/10.1007/978-3-030-30806-3 8

[11] K. Lotz, A. Goel, B. Dutertre, B. Kiesl-Reiter, S. Kong, R. Majumdar,
and D. Nowotka, “Solving string constraints using SAT,” in Computer
Aided Verification, C. Enea and A. Lal, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 187–208.

[12] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[13] A. Reynolds, M. Woo, C. Barrett, D. Brumley, T. Liang, and C. Tinelli,
“Scaling up DPLL (T) string solvers using context-dependent simpli-
fication,” in International Conference on Computer Aided Verification.
Springer, 2017, pp. 453–474.

[14] C. Tinelli, C. Barrett, and P. Fontaine, “SMT-LIB theory of
unicode strings,” 2020. [Online]. Available: https://smt-lib.org/theories-
UnicodeStrings.shtml

[15] K. Lotz, A. Goel, B. Dutertre, B. Kiesl-Reiter, S. Kong, and D. Nowotka,
“Solving string constraints with concatenation using SAT,” in Formal
Methods in Computer-Aided Design, N. Narodytska and P. Rümmer,
Eds. TU Wien Academic Press, 2024.

[16] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause
form translation,” Journal of Symbolic Computation, vol. 2, no. 3,
pp. 293–304, 1986. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0747717186800281

[17] M. Kulczynski, K. Lotz, D. Nowotka, and D. B. Poulsen, “Solving string
theories involving regular membership predicates using SAT,” in Model
Checking Software, O. Legunsen and G. Rosu, Eds. Cham: Springer
International Publishing, 2022, pp. 134–151.

[18] N. Eén and N. Sörensson, “Temporal induction by incremental
SAT solving,” Electronic Notes in Theoretical Computer Science,
vol. 89, no. 4, pp. 543–560, 2003, bMC’2003, First International
Workshop on Bounded Model Checking. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1571066105825423

[19] M. Berzish, V. Ganesh, and Y. Zheng, “Z3str3: A string solver with
theory-aware heuristics,” in 2017 Formal Methods in Computer Aided
Design (FMCAD), 2017, pp. 55–59.

[20] F. Mora, M. Berzish, M. Kulczynski, D. Nowotka, and V. Ganesh,
“Z3str4: A multi-armed string solver,” in Formal Methods: 24th
International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2021, pp. 389–
406. [Online]. Available: https://doi.org/10.1007/978-3-030-90870-6 21

[21] M. Kulczynski, F. Manea, D. Nowotka, and D. B. Poulsen, “The
power of string solving: Simplicity of comparison,” in Proceedings
of the IEEE/ACM 1st International Conference on Automation of
Software Test, ser. AST ’20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 85–88. [Online]. Available:
https://doi.org/10.1145/3387903.3389317

138

https://doi.org/10.1007/978-3-030-30806-3_8
https://smt-lib.org/theories-UnicodeStrings.shtml
https://smt-lib.org/theories-UnicodeStrings.shtml
https://www.sciencedirect.com/science/article/pii/S0747717186800281
https://www.sciencedirect.com/science/article/pii/S0747717186800281
https://www.sciencedirect.com/science/article/pii/S1571066105825423
https://www.sciencedirect.com/science/article/pii/S1571066105825423
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1145/3387903.3389317

	Introduction
	Solver Architecture
	Context
	Preprocessing
	Simplification
	Normalization
	-Reduction
	Abstraction

	Solving Process
	Incremental Encoding
	Bound Refinement


	Evaluation
	Conclusion
	References



