
Formal Methods in Computer-Aided Design 2025

FastPoly: An Efficient Polynomial Package for the
Verification of Integer Arithmetic Circuits

Alexander Konrad Christoph Scholl
University of Freiburg, Freiburg, Germany
{konrada, scholl}@informatik.uni-freiburg.de ✓Artifact

Reviewed

10
.5

28
1/

ze
no

do
.

16
74

48
18

Abstract—In recent years, methods based on Symbolic Com-
puter Algebra (SCA) have become increasingly successful in the
field of formal verification of arithmetic circuits. While several
different approaches have been proposed to tackle this challeng-
ing task, most of them are based on the same mathematical
operations. They perform ideal membership tests that reduce
specification polynomials by a series of polynomial divisions.
For integer arithmetic, under certain conditions, the polynomial
divisions boil down to substitutions of variables in integer
polynomials. In this context, the overall performance of an SCA
verification tool is closely related to the efficiency of the steps
manipulating integer polynomials. In this paper we present our
tool FastPoly, a package for representing integer polynomials that
provides efficient operations including variable substitution with
integrated normalization steps. We provide the sources of our
tool, making it available for other research groups to support
future progress in this field.

I. INTRODUCTION

Arithmetic circuits play an important role in circuit designs,
ranging from general-purpose processors to specialized hard-
ware used in computationally intensive applications such as
cryptography or machine learning. In order to increase the
confidence in the designs and to avoid design errors such as the
infamous Pentium bug [1], fully automatic formal verification
became more and more important.

In particular, the verification of multiplier and divider
circuits has been a challenging problem for a long time.
Methods based on BDDs [2], [3] struggle with exponential
space complexity while SAT-based methods [4], [5] experience
exponential run times. However, methods based on Symbolic
Computer Algebra (SCA) have become increasingly success-
ful in recent years, enabling the verification of large and
complex arithmetic circuits like finite field multipliers [6],
integer multipliers [7]–[23], modular multipliers [24] and
divider circuits [25]–[29]. Here the verification task has been
reduced to an ideal membership test for the specification
polynomial based on so-called backward rewriting, sometimes
also referred to as algebraic reasoning [19], [20], [22], [30].

In the context of SCA-based formal verification for inte-
ger arithmetic, a variety of different approaches have been
published recently. Some focus on reverse engineering and
detection of converging cones to precompute polynomials for
sub-circuits and simplify those polynomials early on [15], [16],
[18], [21]. Some rely on adder detection to simplify the circuit
under verification and additionally split the ideal membership

test into several sub-tasks by splitting the specification into
“slices”, one for each primary output [17], [19], [20], [22],
[30]. Others precompute specific signal relations in the circuit
like equivalences/antivalences [27] or satisfiability don’t cares
[28], [29] to simplify occurring intermediate polynomials
which especially is necessary for divider verification. One of
the most recent methods showed that a successful verification
of integer multipliers can be achieved by only using dynamic
phase and order optimization [23].

Despite differences in the way their algorithms work, at
the lowest level all of these approaches rely on the same
basic operations: Representing specification polynomials and
performing manipulation steps on them, either by polynomial
divisions or the simpler substitutions of variables by integer
polynomials. In the remainder of the paper we will refer to
those manipulations as substitution steps. Those substitution
steps influence the higher-level algorithms in several ways:
First, the overall performance of the algorithm is closely
related to the efficiency of single substitution steps. This is
easy to conclude, because each approach ultimately boils down
to a certain number of necessary substitution steps that it
must perform. Second, the efficiency of single substitution
steps already influences the design options of the algorithms.
If a single substitution step already has high computational
costs, algorithmic approaches reducing the number of sub-
stitution steps or splitting the specification polynomial into
smaller slices become more important and elaborate methods
searching for good substitution orders to reduce peak sizes of
polynomials as used in [23] become infeasible.

In this paper we present FastPoly, an integer polynomial
package that provides efficient operations on polynomials
including the substitution steps which are the basis for many
SCA-based algorithms. We elaborate how we achieve an
efficient implementation of those substitution steps by using
two simple data structures. Our experimental results show the
efficiency of our package in contrast to other publicly available
polynomial packages which provide a similar operation set.
By providing the sources of our package and making them
available for other research groups, we encourage and support
future progress in this field.

The paper is structured as follows: In Sect. II we provide
details on our polynomial package. In Sect. III we give a
demonstration of how to use our package. We evaluate our

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6 20
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://doi.org/10.5281/zenodo.16744818
10.5281/zenodo.16744818
10.5281/zenodo.16744818
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_20
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_20
https://creativecommons.org/licenses/by/4.0/
mailto:scholl}@informatik.uni-freiburg.de

package in Sect. IV and conclude the paper with final remarks
in Sect. V.

II. TOOL DESCRIPTION

A. Requirements

Before diving into the details of our polynomial package,
we first summarize the requirements for a polynomial package
that is suitable to be used in SCA-based approaches to the
verification of integer arithmetic circuits.

We start by defining the polynomials we want to represent
as well as their basic characteristics: For integer arithmetic
we consider polynomials over binary variables (from a set
X = {x1, . . . , xn}) with integer coefficients from Z, i. e.,
a polynomial is a sum of monomials, a monomial is a
product of a term with an integer, and a term is a product
of variables from X . Polynomials represent pseudo-Boolean
functions f : {0, 1}n ↦→ Z. The very basic operation that
our polynomial package has to provide (in an efficient way)
is the substitution step of the SCA-based backward rewriting
approach. In this step all occurrences of a distinct variable
xi in the polynomial are replaced by some other polynomial
Pi, i. e., the substitution with xi = Pi (or the polynomial
division with the polynomial −xi + Pi) is performed. To
achieve canonical representations, polynomials also have to
be simplified after each substitution step by reducing powers
kv of variables v with k > 1 to v (since the variables are

binary), by combining monomials with identical terms into
one monomial, and by omitting monomials with leading factor
0. For those normalization steps we need the functionalities
of finding, adding and removing monomials. For example, if
we want to add a monomial c · m (which originates from a
substitution step or has to be added for other reasons) to our
polynomial, we first have to search for a monomial d · m
that already exists in the polynomial. In this case, the old
d · m is removed and the new monomial (c + d) · m (if
c + d ̸= 0) is added to the polynomial. In this way we make
sure that there is only up to one monomial with the same term
in the polynomial. In the context of circuit verification, xi
typically represents the output of a circuit component and Pi
is the polynomial description of the function of this component
expressed in its input variables. Such components can be basic
logic gates such as AND and OR gates with the corresponding
polynomials being Pi = ai · bi and Pi = ai + bi − ai · bi,
respectively, but they can also describe larger parts of the
circuit, such as fanout-free cones, as used in [16]. Fig. 1 shows
the series of substitution steps for a full adder circuit.

In summary, our polynomial package has to represent and
normalize polynomials as described above. We need to be
able to find monomials in the polynomial quickly, we have
to add and remove monomials quickly, and we need an
efficient way of carrying out the basic substitution step. Next
we describe how we achieve those goals in our polynomial
package FastPoly.

x8 = x5 + x6 − x5x6
x7 = x3 + x4 − 2x3x4
x6 = x3x4
x5 = x1x2x3 x7
x4 = x1 + x2 − 2x1x2

x2
2x8 + x7

x8→ 2x5 + 2x6 − 2x5x6 + x7x8
x1

x4

x5

x6

x6→ 2x5 + 2x3x4 − 2x3x4x5 + x7
x7→ 2x5 − 2x3x4x5 + x3 + x4
x5→ 2x1 x2 − 2x1x2x3x4 + x3 + x4
x4→ x1 + x2 + x3

Fig. 1. Full adder circuit with series of substitutions.

B. Implementation

Our polynomial package FastPoly is implemented in C++.
In this subsection we break down the data structures used and
how they support the necessary operations.

1) Polynomials: Our class for polynomials, called Polynom,
is the data structure saving all information needed for the
representation of integer polynomials and enabling an efficient
implementation of the substitution operation. The class con-
sists of two major parts. The first part uses the std::set from
C++ for saving all monomials of a polynomial. We elaborate
on the monomial class in the next subsection. For now it
is only important to know that we have monomial objects
representing monomials and those monomials have a specific
order defined among each other which is used to determine
a monomial’s position in the set. The std::set is usually
implemented as red-black tree. Therefore, searching, inserting
and removing monomials have logarithmic time complexity in
the size of the set, i. e., the size of the polynomial.

However, for the desired substitution operation, where we
substitute all occurrences of a variable xi in the polynomial by
some other polynomial Pi, this set is not sufficient to enable
an efficient implementation of the operation. As mentioned,
searching for a monomial has logarithmic time complexity,
which is good enough for our needs as long as we are
searching for a single specific monomial. In contrast, for the
substitution operation we do not search for a single monomial
only, but we have to find all monomials which include the
variable xi we want to substitute. To avoid the necessity of
searching through the complete polynomial for this purpose,
we use a second index data structure for our polynomial class
which we call refList. Basically, we maintain for every variable
in the polynomial a doubly linked list. The elements stored in
the doubly linked list for some variable xi are pointers to
all monomials containing xi. The heads of the doubly linked
lists are stored in a C-style array. Now, for the substitution
operation we find all monomials containing a specific variable
xi by obtaining (in constant time) the head of the list for xi
from the array under index i and by following the doubly
linked list afterwards. If a variable is not present in the
polynomial, the corresponding list will be empty, which can
be checked in constant time as well.

140

2) Monomials: Now, we define the implementation of
monomials in detail. Our class for monomials is called Monom
and consists of the following: The coefficient is realized
by an arbitrary-precision integer implemented by the GNU
Multiple Precision Arithmetic Library (GMP) [31]. A usual
64-bit integer is not sufficient here since in circuit verification
we typically deal with very large coefficients. The term of
the monomial is a C-style array of integers which is always
sorted in ascending order. An integer i represents the variable
xi. We use an additional integer to save the size of the array
and an additional integer to save the sum over all indices of
variables in the monomial. This sum can be seen as a very
light-weight form of a hash value for each monomial which
is used to differentiate between monomials more quickly. For
saving the monomials into the std::set of the polynomial class,
we have to define a specific order on monomials. To compare
two monomials, we first compare the sum components of
the monomials. In case the sums are identical, we compare
the sizes of the monomials next. If the sizes are identical
as well, we fall back to a lexicographic order of the terms
of the compared monomials. For this lexicographic order, we
may need, in the worst case, to compare all variables in both
terms of the compared monomials. For this reason we compare
the sum and size attributes of monomials first, since most
monomials differ already either in their sum or their size. Note
that the coefficients of monomials are not used for ordering.
There is only up to one monomial with the same term in a
polynomial and during the addition of a monomial c · m to a
polynomial p we just look for some existing monomial d·m in
p with arbitrary coefficient d. Additionally, the representation
of a monomial m contains for each variable xi a “back”
pointer to the element in the doubly linked list for xi that
points to m. In that way, m can be removed from the index
data structure formed by the doubly linked lists in time that is
linear in the size of m. Fig. 2 provides a visualization of the
explained data structures for the simple example polynomial
P = 5x1 + 7x2 + 9x1x3.

C. Additional Features

In addition to the basic structure of our polynomial package
explained in the previous subsection, we provide the following
features:

• Internal modulo reduction: Our package provides the
possibility to set a modulo reduction parameter, enabling
an internal modulo operation on monomial coefficients al-
ready during internal polynomial operations. This ensures
that all monomial coefficients are calculated modulo the
reduction parameter, which is used in many SCA-based
approaches [23].

• Phase Optimization: We offer the functionality to change
the “phase” of a variable in the polynomial by replacing
each occurrence of the variable by its negation. This can
be used to perform phase optimization with the goal to
reduce the polynomial size [23].

• Certification: We offer the ability to produce certificates
in the practical algebraic calculus (PAC) format [32].

III. TOOL USAGE

We provide the source code of our tool at [33]. Our tool
relies on the GMP library [31] which has to be preinstalled
by the user. We currently provide three different APIs for the
usage of our polynomial package (which also can be used in
a mixed fashion):

1) Reading in the starting polynomial and the polynomials
for the substitution steps from an external file.

2) Building polynomials from scratch using the construc-
tors of the polynomial and monomial classes and per-
forming substitution steps of variables by polynomials
by the basic substitution function.

3) Using pre-defined “shortcut” functions for substitution
steps of basic logic gates.

In Listing 1 we provide a demonstration on how to use
these APIs for the simple example of backward rewriting a
full adder circuit which is shown in Fig. 1.

IV. EXPERIMENTAL RESULTS

We have tested the performance of our package on a number
of sample cases. The tests were executed on a single core of
an Intel Xeon CPU E5-2643 with 3.30 GHz. Resources were
limited to 32 GB of main memory and 6 hours of CPU time.
For comparison we ran the same experiments for the general-
purpose computer algebra system SINGULAR [34] as well as
for the polynomial library used in AMULET2.2 [30], since it is,
to the best of our knowledge, the only other publicly available
polynomial package for the specific purpose of SCA-based
verification.

We provide an artifact at [35] for better reproducibility of
our experimental results.

For the benchmark set we decided to use some examples
from SCA-based multiplier verification [23]. Since we want
to evaluate the performance of our presented package and
compare it to the polynomial library from AMULET2.2 and to
the computer algebra system SINGULAR, we abstract from
differences in the application of the polynomial packages
in our verification tool DYNPHASEORDEROPT [23] and in
AMULET2.2. We achieve this by using benchmarks which
consist only of a starting polynomial (which is equal to the
specification polynomial from [23]) and a (pre-computed)
series of substitution steps. To create these benchmarks, we
use DYNPHASEORDEROPT which intensively searches for a
“good” traversal order (in terms of small intermediate polyno-
mial sizes) of the gates of a given multiplier circuit. It achieves
this by determining candidates for the next substitutions, trying
out these substitution steps and, if the polynomial size grows
too large, reverting the steps again until a suitable series of
substitutions is found. We write out the resulting substitution
order from DYNPHASEORDEROPT to be able to “replay”
it later on. In summary, the experiments we consider here
consist only of construction and substitution of polynomials,
with the substitution steps predetermined in the benchmark
files. Note that DYNPHASEORDEROPT actually performs an
additional “phase optimization” after every step. The phase

141

1

2

3

Head

Head

Head

refList

.
NULL

. NULL

. NULL

NULL

. NULL

NULL

Set of monomials

coeff. index
array

index
sum

array
size

pointer

coeff. index
array

index
sum

array
size

pointer

7 2 2 1

5 1 1 1 9
3
1 4 2

coeff. index
array

index
sum

array
size

pointer

Fig. 2. Visualization of our polynomial data structures.

TABLE I
EXPERIMENTAL RESULTS. TIMES IN CPU SECONDS.

Benchmark # steps
Starting

poly.size FastPoly
Run times

AMULET2.2 Singular
Maximum

poly.size
16-bit sp-ar-rc
32-bit sp-ar-rc
64-bit sp-ar-rc

128-bit sp-ar-rc
256-bit sp-ar-rc

2,816
11,776
48,128

194,560
782,336

288
1,088
4,224

16,640
66,048

0.85
2.53
9.69

38.77
150.35

0.82
9.08

103.58
7444.54

TO

TO
TO
EE
EE
EE

302
1,102
4,298

16,654
66,062

16-bit sp-wt-lf
32-bit sp-wt-lf
64-bit sp-wt-lf

128-bit sp-wt-lf
256-bit sp-wt-lf

3,057
12,616
50,564

200,100
796,191

288
1,088
4,224

16,640
66,048

0.58
2.41
9.84

38.65
158.00

1.24
20.97

455.97
TO
TO

TO
TO
EE
EE
EE

670
2,055
8,315

26,522
82,154

8-bit sp-ar-ks 652 80 1.77 TO TO 54,473

optimization is omitted, since the polynomial library from
AMULET2.2 does not support this operation. We considered
three different multiplier architectures: sp-ar-rc, sp-wt-lf, and
sp-ar-ks [36]. Usually, integer multipliers are composed of
three stages: The first stage is the Partial Product Generator
(PPG) which generates partial products from the bits of the two
input operands. In our considered architectures this is realized
by a simple PPG (sp), which just computes the logical AND
of all bits of the first input and all bits of the second input.
The second stage is the Partial Product Accumulator (PPA)
which sums up all the partial products until they are reduced
to two numbers only. In our experiments we consider array
accumulation (ar) and Wallace trees (wt) [37]. The third stage
consists of the Final Stage Adder (FSA) which converts the
resulting two numbers from the PPA stage into the final binary
representation of the output product, realized by a two operand
adder network. We consider the well-known ripple-carry adder
(rc), the Ladner-Fischer adder (lf) [38] and the Kogge-Stone
adder (ks) [39]. The former two architectures sp-ar-rc and sp-
wt-lf can be considered as easy to verify and lead to rather
low peak sizes of the polynomials when choosing a reasonable
substitution order. The latter, sp-ar-ks, is more challenging for
SCA-based verification tools. Therefore, we consider bitwidths
ranging from 16 to 256 bits for the two easy architectures,
while we only consider the 8-bit benchmark for sp-ar-ks. We

would like to point out that we have deliberately chosen a
few architectures as examples for which we know that the
computed series of substitution steps does not produce ex-
cessively large intermediate polynomials, even without phase
optimization. A comprehensive experimental analysis showing
the robustness of our verification tool DYNPHASEORDEROPT
on different multiplier architectures can be found in [23]. For
example, the successful verification of challenging circuits
like the sp-ar-ks multipliers for much larger bitwidths than
eight (as considered here) definitely needs the dynamic phase
optimization from [23] as well.

The experimental results are shown in Tab. I. Col. 1 states
the benchmark. Col. 2 gives the number of substitution steps
for this benchmark and Col. 3 the size of the starting polyno-
mial. Col. 4 indicates the run time for our package to execute
all substitution steps while Col. 5 gives the run time for
the polynomial library from AMULET2.2 [30]. Col. 6 shows
the results for the computer algebra system Singular. Col. 7
shows the maximum polynomial size reached by intermediate
results for our package as well as for AMULET2.2. Since we
perform the same series of substitutions for both packages,
they produce the same intermediate results leading to identical
maximum polynomial sizes. However, we cannot confirm
this for SINGULAR, because it does not provide intermediate
results.

142

Listing 1. Full adder demo.

inc lude ” p o l y p a r s e r . h ”

i n t main (i n t argc , char a rgv) {**

/ / Example 1) Reading i n from e x t e r n a l f i l e .
Polynom spec1 ;
i n i t s p e c (spec1 , ” . / demo / f u l l a d d e r e x a m p l e . t x t ”) ;
r e du c e po l y (spec1 , ” . / demo / f u l l a d d e r e x a m p l e . t x t ”) ;
s t d : : c ou t << ” R e s u l t 1 : ” << spec1 << s t d : : e nd l ;

/ / Example 2) B u i l d i n g po l y nom i a l s from s c r a t c h .
Polynom x8po ly (6) ; / / I n s t a n t i a t e po l y f o r x8 ga t e .
/ / The i n i t i a l i z a t i o n parame te r d e f i n e s t h e maximum
/ / v a r i a b l e i n d e x f o r t h e po l ynom ia l .
x8po ly . createMonom (5) ; / / Crea t e and add monom 1* x5 .
x8po ly . createMonom (6) ; / / Crea t e and add monom 1* x6 .
x8po ly . createMonom (5 , 6 , mpz c l a s s (− 1)) ;
/ / Crea t e and add monom −1*x5*x6 .
Polynom x7po ly (4) ; / / I n s t a n t i a t e po l y f o r x7 ga t e .
x7po ly . createMonom (3) ;
x7po ly . createMonom (4) ;
x7po ly . createMonom (3 , 4 , mpz c l a s s (− 2)) ;
Polynom x6po ly (4) ; / / I n s t a n t i a t e po l y f o r x6 ga t e .
x6po ly . createMonom (3 , 4) ;
Polynom x5po ly (2) ; / / I n s t a n t i a t e po l y f o r x5 ga t e .
x5po ly . createMonom (1 , 2) ;
Polynom x4po ly (2) ; / / I n s t a n t i a t e po l y f o r x4 ga t e .
x4po ly . createMonom (1) ;
x4po ly . createMonom (2) ;
x4po ly . createMonom (1 , 2 , mpz c l a s s (− 2)) ;
Polynom spec2 (8) ; / / I n s t a n t i a t e spec2 po l ynom ia l .
spec2 . createMonom (8 , mpz c l a s s (2)) ;
spec2 . createMonom (7) ;
/ / Now s u b s t i t u t e x i by i t s ga t e po l y nom ia l x i p o l y .
spec2 . r ep l a ceVa rByPo ly (8 , x8po ly) ;
spec2 . r ep l a ceVa rByPo ly (6 , x6po ly) ;
spec2 . r ep l a ceVa rByPo ly (7 , x7po ly) ;
spec2 . r ep l a ceVa rByPo ly (5 , x5po ly) ;
spec2 . r ep l a ceVa rByPo ly (4 , x4po ly) ;
s t d : : c ou t << ” R e s u l t 2 : ” << spec2 << s t d : : e nd l ;

/ / Example 3) Using ” s h o r t c u t ” l o g i c ga t e f u n c t i o n s .
Polynom spec3 (8) ; / / I n s t a n t i a t e spec3 po l ynom ia l .
spec3 . createMonom (8 , mpz c l a s s (2)) ;
spec3 . createMonom (7) ;
spec3 . rep laceOR (8 , 5 , 6) ;
/ / Func t i on f o r r e p l a c i n g x8 by t h e OR ga t e
/ / po l y nom ia l w i t h i n p u t s x5 and x6 .
spec3 . replaceAND (6 , 3 , 4) ;
spec3 . replaceXOR (7 , 3 , 4) ;
spec3 . replaceAND (5 , 1 , 2) ;
spec3 . replaceXOR (4 , 1 , 2) ;
s t d : : c ou t << ” R e s u l t 3 : ” << spec3 << s t d : : e nd l ;

re turn 0 ;
}

It can be seen that our package clearly outperforms the
polynomial library from AMULET2.2 and SINGULAR. This
can be explained by the fact that in the polynomial library from
AMULET2.2 the performance of a single substitution step
clearly depends on the size of the current polynomial, even
if only a fraction of the polynomial is actually changed. This
resulted in long run times and even time outs (indicated by TO)
for benchmarks which produce large intermediate polynomials
like the 128-bit and 256-bit examples as well as the challeng-
ing 8-bit sp-ar-ks benchmark. SINGULAR was not able to solve
any of the benchmarks. The smaller benchmarks ran into time
outs (TO), while benchmarks with bitwidths of 64 and larger
produced an error state (indicated by EE) because SINGULAR
cannot handle more than 32767 ring variables. This result

was to be expected. Although SINGULAR, as general-purpose
computer algebra system, provides the necessary operations to
perform the polynomial substitution steps, it is not specifically
tailored for our considered use case, unlike our polynomial
package as well as the one from AMULET2.2. Our package,
on the other hand, was able to solve every benchmark within a
few minutes. We can observe that the run times of our package
increase roughly linearly with the number of substitution steps
(which in turn grow quadratically with the bitwidth of the
benchmark). We would like to emphasize that the efficiency
of the substitution steps shown for our polynomial package
is key to enabling the intensive order calculations which are
performed in our verification tool from [23].

V. CONCLUSIONS AND FUTURE WORK

We have presented our tool FastPoly, a polynomial package
designed for supporting efficient polynomial operations which
are used in SCA-based approaches for circuit verification. Our
experimental results confirm the efficiency of our tool. We
believe by making our tool available for other research groups
we will support future advances in the field of SCA-based
circuit verification.

REFERENCES

[1] T. Coe, “Inside the Pentium FDIV bug,” Dr. Dobbs J., vol. 20, no. 4,
pp. 129—-135, 1995.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” TC, vol. 35, no. 8, pp. 677–691, 1986.

[3] J. R. Burch, “Using BDDs to verify multipliers,” in DAC, 1991, pp.
408–412.

[4] J. P. M. Silva and T. Glass, “Combinational equivalence checking using
satisfiability and recursive learning,” in DATE. IEEE Computer Society
/ ACM, 1999, pp. 145–149.

[5] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for
combinational equivalence checking,” in DATE. IEEE Computer
Society, 2001, pp. 114–121.

[6] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” TCAD, vol. 32,
no. 9, pp. 1409–1420, 2013.

[7] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in CAV, 2008, pp. 473–486.

[8] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[9] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level
arithmetic circuits by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[10] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal
verification of arithmetic circuits by function extraction,” TCAD, vol. 35,
no. 12, pp. 2131–2142, 2016.

[11] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in DATE, 2016, pp. 1048–1053.

[12] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD, 2017, pp. 23–30.

[13] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on And-Inverter graphs,” TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[14] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in DATE, 2018,
pp. 1556–1561.

[15] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your poly-
nomials before backward rewriting to verify million-gate multipliers,” in
ICCAD, 2018, pp. 129:1–129:8.

[16] ——, “RevSCA: Using reverse engineering to bring light into backward
rewriting for big and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[17] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

143

[18] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE, 2020, pp.
544–549.

[19] D. Kaufmann and A. Biere, “AMulet 2.0 for verifying multiplier
circuits,” in TACAS. Springer, 2021, pp. 357–364.

[20] D. Kaufmann, P. Beame, A. Biere, and J. Nordström, “Adding dual
variables to algebraic reasoning for gate-level multiplier verification,” in
DATE. IEEE, 2022.

[21] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: Sca-based
formal verification of nontrivial multipliers using reverse engineering
and local vanishing removal,” TCAD, vol. 41, no. 5, pp. 1573–1586,
2022.

[22] D. Kaufmann and A. Biere, “Improving AMulet2 for verifying multiplier
circuits using SAT solving and computer algebra,” STTT, vol. 25, no. 2,
pp. 133–144, 2023.

[23] A. Konrad and C. Scholl, “Symbolic computer algebra for multipliers
revisited - it’s all about orders and phases,” in FMCAD. IEEE, 2024,
pp. 261–271.

[24] A. Mahzoon, D. Große, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra and
boolean satisfiability,” in DAC, 2022.

[25] A. Yasin, T. Su, S. Pillement, and M. J. Ciesielski, “Formal verification
of integer dividers: Division by a constant,” in ISVLSI, 2019, pp. 76–81.

[26] ——, “Functional verification of hardware dividers using algebraic
model,” in VLSI-SoC, 2019, pp. 257–262.

[27] C. Scholl and A. Konrad, “Symbolic computer algebra and SAT based
information forwarding for fully automatic divider verification,” in DAC,
2020.

[28] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in DATE. IEEE, 2021, pp. 1110–1115.

[29] A. Konrad, C. Scholl, A. Mahzoon, D. Große, and R. Drechsler, “Divider
verification using symbolic computer algebra and delayed don’t care
optimization,” in FMCAD. IEEE, 2022, pp. 1–10.

[30] D. Kaufmann and A. Biere, “Fuzzing and delta debugging and-inverter
graph verification tools,” in TAP@STAF. Springer, 2022, pp. 69–88.

[31] T. Granlund and the GMP development team, “GNU MP: The GNU
Multiple Precision Arithmetic Library,” 2023, https://gmplib.org/.

[32] D. Kaufmann, M. Fleury, and A. Biere, “The proof checkers pacheck
and pastèque for the practical algebraic calculus,” in FMCAD. IEEE,
2020, pp. 264–269.

[33] A. Konrad and C. Scholl, “FastPoly source code,” 2025. [Online].
Available: https://github.com/a-konrad/fastpoly

[34] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR
4-2-1 — A computer algebra system for polynomial computations,”
https://www.singular.uni-kl.de, 2021.

[35] A. Konrad and C. Scholl, “Artifact for FastPoly: An efficient
polynomial package for the verification of integer arithmetic circuits,”
2025. [Online]. Available: https://doi.org/10.5281/zenodo.16744818

[36] A. Mahzoon, D. Große, and R. Drechsler, “GenMul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in
Recent Findings in Boolean Techniques, R. Drechsler and D. Große,
Eds. Springer International Publishing, 2021, pp. 177–191.

[37] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. on
Electronic Comp., vol. EC-13, pp. 14–17, 1964.

[38] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal
of the ACM, vol. 27, no. 4, pp. 831–838, 1980.

[39] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Computer,
vol. 22, no. 8, pp. 786–793, 1973.

144

https://gmplib.org/
https://github.com/a-konrad/fastpoly
https://www.singular.uni-kl.de
https://doi.org/10.5281/zenodo.16744818

	Introduction
	Tool Description
	Requirements
	Implementation
	Polynomials
	Monomials

	Additional Features

	Tool Usage
	Experimental Results
	Conclusions and Future Work
	References

