‘% Formal Methods in Computer-Aided Design 2025

OSTRICH2: Solver for Complex String Constraints

Matthew Hague
Department of Computer Science
Royal Holloway, University of London
matthew.hague @rhul.ac.uk

Anthony W. Lin
University of Kaiserslautern-Landau
Max-Planck Institute for Software Systems
awlin @mpi-sws.org

Zhilin Wu
Key Laboratory of System Software
Institute of Software
Chinese Academy of Sciences
wuzl@ios.ac.cn

Abstract—We present OSTRICH2, the latest evolution of
the SMT solver OSTRICH for string constraints. OSTRICH2
supports a wide range of complex functions on strings and
provides completeness guarantees for a substantial fragment
of string constraints, including the straight-line fragment and
the chain-free fragment. OSTRICH2 provides full support for
the SMT-LIB theory of Unicode strings, extending the standard
with several unique features not found in other solvers: among
others, parsing of ECMAScript regular expressions (including
look-around assertions and capture groups) and handling of
user-defined string transducers. We empirically demonstrate that
OSTRICH?2 is competitive to other string solvers on SMT-LIB
benchmarks.

I. INTRODUCTION

Strings are ubiquitous in modern software systems, es-
pecially with the advent of programming languages like
JavaScript, PHP, and Python. Despite this, string manipulation
is well-known to be error-prone and can easily lead to security
vulnerabilities including HTML injection (e.g. see [1], [2]).
Applications to analysis of security vulnerabilities caused by
string manipulation have been one of the main catalysts for
the extensive research into SMT over strings spanning across
the last twenty years [2], [3], [4], [5], [6], [7], [8]. One
of the success stories of string solvers includes their usage
at AWS for analysis of Role-Based Access Control (RBAC)
policies (e.g. see [9], [10]). Since 2020 SMT-LIB Unicode
String theory [11] has been formalized and supported by
many existing string solvers, including Z3 [12], Z3-alpha
[13], Z3-Noodler [14], [15], [16], [17], Z3str3RE [18], cvcS
[19], Z3str4 [20], Trau [21], [22], [23], and our own solver
OSTRICH [4].

In this paper, we present OSTRICH?2, the latest evolution
of the OSTRICH string solver [4]. The primary contribution

d https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_21

Denghang Hu
Key Laboratory of System Software
Institute of Software
Chinese Academy of Sciences

Oliver Markgraf
University of Kaiserslautern-Landau
markgraf @cs.uni-kl.de

Artur Jez
Institute of Computer Science
University of Wroctaw
aje@cs.uni.wroc.pl
hudh@ios.ac.cn

Philipp Riimmer
University of Regensburg
Uppsala University
philipp.ruemmer@ur.de

S

% :

0 o

O C

0 [0}
N
B o 0
Artitact v Qo
Reviewed A

of this paper is a complete and unified description of OS-
TRICH2’s architecture, algorithms, and implementation as a
modular and extensible system. Over the years, OSTRICH
has undergone extensive internal development such as inte-
grating new solving techniques, heuristics, and architectural
changes, but many of these advances have not been previ-
ously documented or published. This includes, for instance,
the use of word equation splitting strategies, character-count
and length abstractions in preprocessing, and a portfolio-
based orchestration of multiple solving engines. OSTRICH?2
also includes a newly introduced solver based on algebraic
data types (ADT-Str), described here for the first time. This
paper is the first to present the overall system design of
OSTRICH2, detailing how its components interact within
a modular proof framework. We also provide the first full
account of OSTRICH2’s preprocessing strategies and rule
infrastructure. These advances have radically enhanced the
solver and resulted in significant performance improvements;
notably, OSTRICH achieved first place in the QF_S track of
the SMT-COMP 2023 competition. Together, this constitutes
the first comprehensive system description of OSTRICH2. To
this end, rather than being exhaustive, we aim for accessibility
by taking the reader through illustrative examples (among
others). In addition to unravelling the design of OSTRICH?2,
we also report our latest experimentation with the solver on
SMT-LIB’25 benchmarks, showing its competitiveness, most
notably on unsatisfiable instances.

The following is a list of main features of OSTRICH2:

(F1) SMT-LIB Unicode String theory inputs.
(F2) Native support of features of ECMAScript regu-
lar expressions (e.g., lookaround assertions, capture

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://orcid.org/0000-0003-4913-3800
https://orcid.org/0009-0004-6928-6032
https://orcid.org/0000-0003-4321-3105
https://orcid.org/0000-0003-4715-5096
https://orcid.org/0000-0003-4817-4563
https://orcid.org/0000-0002-2733-7098
https://orcid.org/0000-0003-0899-628X
https://doi.org/10.5281/zenodo.15378521
10.5281/zenodo.15378521
10.5281/zenodo.15378521
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_21
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_21
https://creativecommons.org/licenses/by/4.0/
mailto:philipp.ruemmer@ur.de
mailto:aje@cs.uni.wroc.pl
mailto:wuzl@ios.ac.cn
mailto:awlin@mpi-sws.org

groups, and references; back-references are sup-
ported only in the replacement string of replace
and replace_all, not in the matching expres-
sion).

Native support of replace_all and, more gen-
erally, complex string transductions using a more
comprehensive regular constraint propagation strat-
egy, which combines backward and forward regular
propagations for a plethora of complex functions.
An extensive portfolio of solving strategies that in-
cludes a cost-enriched string solver (CE-Str) [24], a
list-based ADT solver (ADT-Str), and preprocessings
(Iength/character-count abstraction).

(F3)

(F4)

Related Tools.: Over the past decade, numerous string
solvers have been proposed, employing techniques such as bit-
vector encodings, automata-based propagation, and reductions
to word equations. Several early or now-unsupported tools do
not handle SMT-LIB 2.6 and are no longer actively main-
tained, including HAMPI [6], Kaluza [25], STRANGER [26],
S3 [27], Norn [3], Trau [23], and members of the Z3Str family
such as Z3str3 [28] and Z3str3RE [18]. These solvers con-
tributed important techniques such as word-equation reasoning
with advanced heuristics and direct regular expression support,
but have not appeared in recent SMT-COMP competitions and
are not included in our evaluation.

Our comparisons focus on state-of-the-art, actively main-
tained SMT solvers with SMT-LIB 2.6 support. Z3-alpha [13],
which builds on Z3str4 [20] and Z3 [12], remains actively
maintained and incorporates strategy synthesis over multiple
string-solving backends. Z3 [12] and cvcS5 [19] combine
rewriting, word-equation decomposition, and regular con-
straint reasoning. Z3-Noodler [14] introduces a stabilization
algorithm that propagated information on regular constraints
to a selected word equation until the inferred regular languages
on both sides stabilize. The solver is complete for the chain-
free fragment but does not support string transductions or
replace_all.

The original OSTRICH solver [4] implemented a backward
regular constraint propagation strategy, providing complete-
ness for the straight-line fragment and support for transduc-
tions. Subsequent extensions added the cost-enriched solver
CE-Str [24] and ECMAScript-style regex support [29]. OS-
TRICH2, described in this paper, is the first to combine
these capabilities with additional preprocessing, a newly im-
plemented ADT-based solver, and a portfolio orchestration of
multiple engines, as detailed in Section III.

Organization: Section II reviews the SMT-LIB Unicode
Strings standard and our grammar; Section III reviews the
architecture of OSTRICH2; Section IV details OSTRICH2’s
key algorithms; Section V discusses the completeness of the
algorithms; Section VI shows that OSTRICH2 is extensible
with user-defined string functions; Section VII reports evalu-
ation results; and Section VIII concludes with directions for
future work.

II. SPECIFICATION LANGUAGE
A. SMT-LIB Standard for Unicode Theory of Strings

We begin with the input language of OSTRICH2. It is based
on SMT-LIB 2.6 [11] — in particular, including support for
the SMT-LIB Unicode theory and Linear Integer Arithmetic
constraints — but additionally also supports some “complex”
string functions including transductions. We start by illustrat-
ing the supported language features by example and defer the
formal description of the grammar to the end of the section.

1) SMT-LIB Constraints: Below is a minimal SMT-LIB
script to show some core features. The script uses the
quantifier-free string theory with linear integer arithmetic
(QF_SLIA), contains three string variables x, y, and z,
and one integer variable 1. It asserts constraints on the
variables that are explained below. The final statements check
the satisfiability of the constraints and produce a satisfying
assignment.

1 (set-option :produce-models true)

2 | (set-logic QF_SLIA)

3

4 | (declare-fun x () String)

5 | (declare-fun y () String)

6 | (declare-fun z () String)

7 (declare—-fun k () Int)

8

9 | (assert (= (str.len x) (+ k 1)))

10 | (assert (= x (str.++ y z)))

11 (assert (str.in_re x (re.+ (re.union (str.to_re "a")
< (str.to_re "b")))))

12

13 | (check-sat)

14 (get-model)

Constraints are written in a Lisp-style prefix notation. The
first assert requires that the length of x is equal to k+1. The
second requires that x is equal to the concatenation of y and
z. The third requires that x belongs to the regular language
({a}uU{b})™, which represents non-empty sequences of a and
b characters.

Standard Boolean connectives are supported. The example
below requires x to either be the concatenation of vy and z or
the concatenation of z and y.

1 | (assert (or (= x (str.++ y z))) (= x (str.++ z y))))

B. Extensions Beyond the SMT-LIB Standard

OSTRICH2 provides additional features to model string
constraints in practical applications. A simple example is the
str.reverse function. Below, we introduce the transducer,
regular expression, and automata extensions.

1) Transducer-based Operations: OSTRICH2 supports
transducers and prioritised finite-state transducers [30], [31],
[29].

A transducer (a.k.a. a rational transducer) takes a single
string as input and produces a single output string. They
enable operations such as HTML encoding (e.g. replacing
& with &) to be defined. Transducers are written as
recursive functions with two arguments: the input and the
output. The example below shows a toUpper transduction.
The base case (line 4) applies when both strings are empty.

146

The recursive case (lines 5—-11) asserts three conditions. First,
both arguments are non-empty. Second, the head of the output
(v) is equal to the upper case version of the head of the input
(x). Third, the tails of the two arguments recursively satisfy
toUpper. To obtain the upper case version of a character,
arithmetic is performed on the character codes. In general,
a transducer definition can contain multiple mutually recur-
sive functions. The option :parse-transducers instructs
OSTRICH2 to translate the recursive function definition to an
internal transducer representation and apply an automata-based
decision procedure to solve the constraints in lines 16—17.

1 (set-option :parse-transducers true)

2

3 | (define-fun-rec toUpper ((x String) (y String)) Bool
4 | (or (and (= x "") (=y "M))

5 (and (not (= x "")) (not (=y ""))

6 (= (char.code (str.head y))

7 (ite (and (<= 97 (char.code (str.head x)))
8 (<= (char.code (str.head x)) 122))
9 (- (char.code (str.head x)) 32)

10 (char.code (str.head x))))

11 (toUpper (str.tail x) (str.tail y)))))

12

13 | (declare-fun x () String)

14 | (declare-fun y () String)

15

16 (assert (= x "Hello World"))

17 | (assert (toUpper x y))

Prioritised transducers additionally allow certain transitions
to take precedence over other transitions. That is, a non-
deterministic transduction may only succeed on one path if
another cannot succeed. Such transducers are used internally in
regular expression handling, described below, but can also be
formulated using the define-fun-rec notation (not shown
here). We discuss these below after we cover extended regular
expressions.

2) Extended Regular Expression Support: The SMT-LIB
standard defines a minimal set of regular expression constructs,
all of which are supported by OSTRICH2. In addition, OS-
TRICH?2 can also parse ECMAScript regular expressions, fol-
lowing the 2020 version [32], and supports regular expression
features such as look-arounds that cannot be directly expressed
in SMT-LIB. A simple usage of ECMAScript regular expres-
sions is shown below, using the re . from_ecma2020 func-
tion. The expression matches either sequences of characters or
sequences of digits.

1 (assert (str.in_re w (re.from_ecma2020
— "la-z]x[[0-9]«")))

To enable full support of ECMAScript character escaping,
OSTRICH?2 also supports single-quoted strings, in which the
normal SMT-LIB character escaping is disabled and strings
are passed unmodified to the regular expression parser:

1 (assert (str.in_re w (re.from ecma2020 ’"\x24[0-9]+"))

One notable extension is the use of capture groups and refer-
ences in replace and extract functions. The following example
shows the replacement of any substring matching src=" . '
with the text appearing between the single quotation marks.
For example would become
. We use the re.from_ecma2020

function for convenience; direct functions for regular expres-
sion operators—such as re.capture—are also available.

(assert (= x
(str.replace_cg_all
y
(re.from_ecma2020 "src=' (.
(_ re.reference 1))))

%))

L R S

There are several features to note about this example.
The first argument of str.replace_cg_all is the string
to be searched. The second is the regular expression that
captures part of the string using the parenthesis notation (...).
The final argument is the replacement pattern that can be a
concatenation of string literals and references to captured text.
In this case, only the contents of the first (and only) capture
group are used.

Importantly, when matching src=’ (.x)’, precedence
rules must be respected. The » operator is greedy in EC-
MAScript (and many other regular expression languages),
which means that it should match as many characters as
possible before the remainder of the match begins. This can be
a cause of errors when developers write regular expressions
and a challenge for symbolic execution tools using a string
constraint solver [33]. For example, if y contained the value
src="a’ src='Db’, then there should only be one match
of src=' (.*) ' rather than two. In the match, the captured
value is a’ src=’Db, that is, the longest string surrounded
by ’ symbols. This semantics is respected by OSTRICH2
through the use of prioritised transducers [30], [31], [29].
In a prioritised transducer, steps of the transduction can be
given priority over the alternatives. When matching against
src="a’ src='Db’ there is a choice whether the match
of (.x) should stop at the second ’ or continue. Because
x 1s greedy, the match of (.x) has priority and matching
can only stop if continuing would fail. When replacing the
pattern src=’ (.x)’ with src=' (.%?)’, using a lazy
quantifier = ?, instead the shortest string will be matched.

3) Automata Representations: OSTRICH2 also directly
supports finite-state automata, which are often more con-
venient than regular expressions when integrating an SMT
solver in applications. This automaton syntax is a bespoke
extension specific to OSTRICH2. To the best of our knowl-
edge, no other SMT solver supports this format. The function
re.from_automaton parses a finite-state automaton given
as a string. In the example below the automaton has

¢ an initial state sO,

e an accepting state s1,

e atransition sO —> sl

codes 0-100),

e aloop sl -> sl
16 code unit).
Then str.in_re can be used to test whether the value of

an expression belongs to the language of that automaton.

[0,100]; (accepting character

[0,65535]; (accepting any UTF-

I | (assert (str.in_re x

2 (re.from_automaton "automaton value_0 {init sO0;
— s0 -> sl [0, 100]; sl ->s1[0,65535];
— accepting sl1;};")))

A formal description is given in Appendix A.

147

4) SMT-LIB Standard for Unicode Theory of Strings:
We begin by outlining the basic syntactic elements for our
formulas and the key string and regular expression operations
as defined in the SMT-LIB Unicode theory. The fragment
below shows the core string and regular expression grammar
supported natively by OSTRICH2. Functions not explicitly
listed here are internally translated or reduced to equivalent
formulas in this grammar. Operators that are extensions be-
yond SMT-LIB 2.6 are shown underlined.

Formulas:
b = 6| dNG| VS| Atom
Atom = ts~ts | tar ~tar | s € tre |
StrPred | T (ts,ts)
StrPred = prefixof(ts,ts) | suffixof (¢, ts) |

contains(ts, ts)

ts == BaseStr| StrPos | StrRep |
reverse(ts)

BaseStr == gy | s | concat(ts,ts)
StrPos at(ts, tar) | substr(ts, tar, tar)
StrRep = rep(ts,ts,ts) | rep_all(ts,ts,ts) |

rep_re(ts, tre, ts) | rep_re_all(ts, tre, ts)
tar = Cint | Tint | tar + tar | |ts]]

indexof (¢4, ts, tar)
tre = 0]X]X* | toRE(ts) | tre - tre |

t're U tre | tre N tre ‘ tie
EXPLANATION

o Formulas (¢) and Atoms: The Boolean formulas ¢
are constructed using the standard logical connectives
(negation —, conjunction A, and disjunction V) along
with atomic formulas. The atomic formulas include com-
parisons on string terms ts (via a placeholder relation
~), arithmetic terms t,, (also using ~), the membership
test t5 € t,., and the dedicated string predicates defined
by StrPred. Finally, T (ts,ts) encodes a transducer.
The complete grammar for transducers is provided in
Appendix B.

o String Predicates (Str Pred): This subclass of atoms is
dedicated to predicates that operate specifically on strings.
It includes:

— prefixof(ts,ts): Checks if the first string is a prefix
of the second.

- suffixof(ts, t5): Checks if the first string is a suffix
of the second.

— contains(ts,ts): Checks if the first string is con-
tained within the second.

o String Terms (¢;): The nonterminal ¢4 is divided into
three subclasses and one string function:

— BaseStr: Represents the basic string values. This
includes string constants cg, string variables x4, or

the concatenation of two string terms using the
operator concat.

— StrPos: Represents string functions that require an
integer parameter. These include:

% at(ts, tq): Returns the character (as a string) at a
specified position.

* substr(ts, tar, ter): Returns a substring starting at
a given position with a specified length.

— StrRep: Contains the string replacement functions,
abbreviated here for conciseness. They include:

* rep(ts, ts,ts): Literal replacement.

« rep_all(ts,ts,ts): Replace all occurrences (lit-
eral).

% rep_re(ts,lre,ts): Regex-based replacement.

* rep_re_all(ts, tre,ts): Replace all occurrences
based on a regex.

Finally, the operator reverse reverses a string.

o Arithmetic Terms (t,.): The arithmetic expressions
include integer constants c;,;, integer variables x;,;, the
sum of two arithmetic expressions ¢, + tq, the length
function |ts| (which returns the length of a string), and
the function indexof (s, ts, t4), which returns the index
of one string within another as an integer.

o Regular Expressions (¢,.): Regular expressions are de-
fined in a manner consistent with standard mathematical
notation:

— () denotes the empty language.

— XY is the alphabet, and X* represents its Kleene
closure.

— toRE(ts) converts a string term into its correspond-
ing regular expression.

— The operators - (concatenation), U (union), N (inter-
section), and * (Kleene star) are used to build more
complex regular expressions.

III. SYSTEM ARCHITECTURE

The overall architecture of OSTRICH2 is depicted schemat-
ically in Figure 1. OSTRICH2 runs the three solvers (ADT-
Str, RCP, and CE-Str) sequentially in a time-sliced config-
uration. Each solver receives the same input problem and
runs independently for a fixed share of the total timeout (e.g.
20 seconds each for a 60-second limit). To reduce repeated
work, OSTRICH2 performs common subexpression sharing
for selected functions while representing all other expressions
separately in tree form. Once started, no further information
is shared between solvers as there is currently no established
methodology in the literature for aggressive or global sharing
of string expressions.

At its core, OSTRICH2 builds on the SMT solver
Princess [34], which provides the logical reasoning frame-
work and support for theories such as linear integer arith-
metic. OSTRICH2 provides pre-processing and support for
the quantifier-free string theories QF_S (pure strings) and
QF_SLIA (strings with linear integer arithmetic). Princess

148

also provides support for algebraic data-types (ADTs), on top
of which the ADT-Str string solver is implemented.

The second and third solver are the Regular Constraint
Propagation (RCP) and Cost-Enriched String (CE-Str) engine,
respectively. These share similar architectures. They begin
with a shared string preprocessor, which processes the SMT-
LIB input and forwards it to the SMT Core of Princess. Details
of the string preprocessing are given in the next section.
The SMT Core coordinates with the LIA Solver for linear
integer arithmetic and with a solver engine for string-specific
reasoning.

Both solvers uses automata- and tranducer-based represen-
tations of sets of strings and supported string functions. A
main loop applies proof rules like Automata Intersection,
Forward (FWD) and Backward (BWD) Propagation, Nielsen
Splitting, and other string-related inference rules. Details of
the rules are given in the next section. A string database
and an automata database are used for efficiently storing and
retrieving string and automata data. The automata database is
based on the BRICS Automata Library [35], which provides
efficient automaton operations.

For the purposes of presentation, we abstract the constraints
received from the SMT core into the following normal form:

S = A|-A|SAS
A = f(xr,...,xn) |2 =g(x,. ..
I€L|$=Zdi$i.

,In)|

In this notation, x, x4, . . ., &, are variables of type string or in-
teger, and each d; is an integer constant. The symbol f denotes
a string predicate such as prefixof (x1, 2:3) or suffixof (z1, z2).
The symbol g denotes a string function that takes xi, ...,z
as inputs and produces the string x as output, for example
x = concat(xy,x2). The notation x € L expresses that the
value of x belongs to a regular language L, which is typically
given by a regular expression in SMT-LIB syntax. Finally,
the form z = Zl d;x; represents a linear integer constraint,
most commonly arising from length constraints, where the
x; are integer variables and the d; are constant coefficients.
We sometimes write |t| to denote the length of the word
represented by the term ¢. For example, the constraint

1 (assert (and (= (str.++ x y) (str.++ y x))
2 (str.in_re x (re.from_ecma2020 "axbax"))
3 (str.in_re y (re.from ecma2020 "axcax"))))

has the following normal form using an additional variable z
z = concat(z, y) Az = concat(y, z) Az € a*ba* Ay € a*ca” .

In the sections below, we give an overview of the three
main solver engines. These are: ADT-Str (algebraic data-
types), RCP (regular constraint propagation), and CE-Str (cost-
enriched strings).

A. ADT-Str: List-Based Solver

The ADT-Str solver builds on the decision procedure for
algebraic data-types (ADTs) with size catamorphism imple-
mented in Princess [36]. Algebraic data-types are used to

represent strings using the standard encoding of lists with nil
and cons constructors. The length of a string is computed
using the built-in size function provided by the ADT solver,
mapping every constructor term to the number of constructor
occurrences. Other SMT-LIB functions on strings, for instance
substring, concatenation, etc., are in ADT-Str encoded using
uninterpreted functions and axioms capturing the recursive
definition of the string functions. Regular expression matching
is implemented using Brzozowski derivatives [37].

ADT-Str is useful, in particular, for computing solutions
of string constraints that are outside of the fragments for
which the other solvers are complete. ADT-Str can easily
handle certain functions that are hard for our propagation
algorithms. Those functions include, among others, string-to-
integer conversion, and functions like substring and indexof
that calculate with integer offsets.

B. RCP: Regular Constraint Propagation

Regular Constraint Propagation (RCP) is the newest algo-
rithm that has been implemented in OSTRICH2, based on a
subset of proof rules in our paper [29]. The main goal of
RCP is to prove unsatisfiability of the input constraint. The
algorithm handles string functions like concatenation, replace,
replaceall, and regular constraints. Other string functions (e.g.
reverse, one-way and two-way transducers) are also permitted.
These functions permit either exact pre-image or exact post-
image computation of regular constraints or both. In general,
these images need not be exact, but must at least overapprox-
imate the true pre/post image.

The main idea behind RCP is to propagate regular con-
straints of the form x € L to other string variables through
forward and backward propagations using the RCP inference
rule described in the next section.

ECMAScript Regular Expressions: All three solvers in
OSTRICH2 support the SMT-LIB regular expression oper-
ators. Full support for ECMAScript regular expression fea-
tures, including look-arounds, capture groups, and greedy/lazy
quantifiers, is implemented in the RCP solver, following
the approach in earlier work [29], [38]. Back-references are
supported only in the replacement string of replace and
replace_all, not in the matching expression. This imple-
mentation uses prioritised transducers to preserve ECMAScript
semantics and an intermediate translation to alternating two-
way automata for look-arounds. We refer to [29], [38] for full
technical details.

C. CE-Str: Cost-Enriched String Engine

The main algorithm of CE-Str (based on [24]) applies
backward regular constraint propagation. It uses cost-enriched
finite automata (CEFAs) instead of standard finite automata to
represent sets of words. These automata are able to capture
numerical information about accepted strings, such as the
string length, the number of characters appearing before a
transition is fired, and so on. This allows length constraints
on strings and functions like indexof to be directly supported.

149

RCP/CEA Rules

[SMT-LIB Input }

!

String Preprocessor

Princess v

4—»[String Database }

4—»[Automata Database }
A

Y

[Nielsen Splitting]

[BRICS Automata Library }

[SMT Core }
' <~
[LIA/ADT Solver } etc.

Figure 1. Overall architecture of OSTRICH2: the SMT-LIB input is handled by our string preprocessor and Princess SMT core (with LIA and ADT-Str),
while the RCP and CE-Str solvers consist of inference rules that are repeatedly applied using string and automata databases.

In addition, CE-Str can handle counting operators more
efficiently by leveraging the numerical information encoded
in CEFAs. For instance, the regex a{1190%} which accepts
strings consisting of 1 to 1000 repetitions of the character a,
can be represented as a CEFA with just one state and one
transition—compared to the 1000 states and 1000 transitions
required by a standard finite automaton.

CE-Str supports a wide range of string functions, includ-
ing concatenation, replace, replaceall, substring, indexof and
length. It provides completeness guarantees for the straight-
line fragment of these functions. CE-Str complements RCP
and ADT-Str. It performs well on string constraints involving
integer type but struggles when the constraints are outside its
decidable fragment.

IV. STRING THEORY ALGORITHMS

In this section we describe the core inference rules and
algorithmic components that OSTRICH2 applies to solve
string constraints. We first present the preprocessing steps
shared by the RCP and CE-Str solvers. We then present the
inference rules applied in the main loops of RCP and CE-Str.

A. Preprocessing

Before applying the core inference rules, OSTRICH2 per-
forms a series of preprocessing steps to enrich the constraint
set with auxiliary information and simplify trivial cases. The
simplification rules are given below. First we describe the
simplification rules used by both RCP and CE-Str, then we
describe the additional rules used by RCP only.

1) Common Preprocessing:

Prefix/Contains/Suffix Simplification: We apply the fol-
lowing rewrites when one argument is concrete:

o prefixof(s,t) / suffixof(s, t) with concrete s: replace by

t € L(s.x) / t € L(.«s).

« contains(t, s) with concrete s: replace by
t € L(.*s.%).
In positive contexts we instead encode:

prefixof(s,t) ~»
suffixof (s, t) ~

for fresh u. Finally, prefixof (¢, t), contains(t, t), suffixof (¢, t)
are trivially true and replaced by the Boolean constant true.

Common Sub-Expression Elimination: While
OSTRICH2 does not apply aggressive sharing of terms
and expressions, it is useful to merge repeated occurrences
of certain operators that are relatively expensive to handle,
including expressions indexof(x,y,4). For expressions e of
this kind that occur multiple times in a formula, OSTRICH2
introduces a fresh variable k£ and adds the equation k = e. All
occurrences of e in the formula are then rewritten as k. This
rewriting ensures that the solver only sees one copy of each
complex sub-expression and speeds up subsequent reasoning.

2) RCP Preprocessing: The next simplifications are cur-

rently used by RCP only.

a) Length and Character-Count Approximation: Infers
approximate bounds on string lengths and character counts
for complex string functions.

e Derived length constraints: derive length constraints and
character count approximations from word equations and
other string functions. E.g. |z| = |y| + |z] is added for
x = concat(y, z).

o Automaton-transition analysis: inspect each transition in
an automaton A and, for any character a not appearing
on any transition, add the char count constraint |z,| = 0
for every x constrained by A.

o Index-of range constraints: for each occurrence of
indexof(x,y,7) (which returns the first index of y in x
after position ¢), add implied constraints on the result.
E.g., —1 < indexof(x,y,i) < |z| captures that the result
must be either be —1 or in the interval [0, |z|].

t = concat(s, u)
t = concat(u, s)

150

b) Index-of/Substr/At Rewriting: Translate substr, at,
and indexof into equivalent combinations of string concatena-
tion, length constraints, and regex-membership tests by intro-
ducing fresh variables and constraints to encode the positional
semantics.

We illustrate one such rewrite for r = substr(s, ¢, n), which
asserts that r contains the longest contiguous substring of s
of length at most n starting at position ¢. It can be split into
three cases.

First we introduce fresh string variables p, r, ¢ with

s = concat(p, r,q) A |p| =1,

and then distinguish:

e If i <0,n <0, o0ri>]|s|, then r =e.

e If 0 < i < sl and i +n < [s], then |r| = n, so r is
exactly the length-n slice of s starting at position .

o If 0 <i<|s|buti+n>|s|, then |r| =|s| — i, so ris
the substring from position ¢ to the end of s.

B. Inprocessing Rules

There is also a set of lightweight simplification rules that are
applied to expressions during proving. Such rules are applied
in the local context of a proof goal and are often able to signifi-
cantly simplify expressions, for instance by evaluating function
applications with known arguments or discovering obvious
contractions. During inprocessing, equations and assignments
of values to variables are propagated to other constraints.
There are also certain preprocessing rules that are applied
again during inprocessing; for instance, — suffixof(s,t) can
be turned into a regular expression constraint as soon as one
of the arguments s,¢ is a known string, but has to be kept
unchanged before that.

C. Inference Rules

The main loops of the RCP and CE-Str repeatedly apply
proof rules until a branch is closed or a model is found. We
discuss the principal rules in this section. The additional rules
omitted here that which cover both string-specific reasoning
and SMT-core inferences are described in previous work [29],
and together with the rules below constitute a complete proof
system.

The RCP algorithm assigns priorities to each possible rule
application based on an estimation of the workload (e.g. the
size of the involved automata) and selects the rule application
with the highest priority first. Fairness is ensured by penal-
izing newer rule applications, and therefore preferring rule
applications that have resided in the waiting queue the longest.
Priorities are computed as the weighted sum of several criteria:

e Concrete-argument: any rule whose input or output lan-
guage is a ground string is given high priority.

o Information-gain penalty (backward only): rules whose
input automata are universal (i.e. accept all words, e.g.
x € X*) yield little new information in backward propa-
gation and given low priority.

o Exactness adjustment (forward only): forward rules for
functions without an exact post-image (e.g. replaceall
with symbolic patterns) are given low priority.

e Cost-based penalty: a weight proportional to the com-
bined size of the input and result automata is subtracted.

Differences between the two solvers in their application of

the rules is included in the descriptions. The proof rules may
cause branching in the proof search. If a satisfying assignment
is found on a branch, it witnesses that the constraint is
satisfiable. The Close rule detects unsatisfiable constraints. If
all branches are closed, the constraint is unsatisfiable.

a) Regex-to-Automata: OSTRICH2 constructs an au-
tomaton A for each regular membership constraint in x € L.
The automaton is stored in the automaton database, which
detects equivalent automata to avoid duplication. In the re-
maining rules, we make the automaton explicit by writing
x € L(A). The CE-Str solver creates cost-enriched automata.
Initially these automata do not track any costs. Cost tracking
is introduced during the RCP rule below.

b) BreakCyclicEquations: OSTRICH2 detects strongly
connected components in the variable-dependency graph in-
duced by concatenation equations of the form

2 = concat(y, z) and y = concat(a,x).

For each cycle it removes one equation and, for every remain-
ing equation v = concat(u,w) in that cycle, adds a trivial
emptiness constraint on one argument (e.g. W = € Or U = €)
to break the dependency.

For example, from

x = concat(y,z) A y = concat(a,x)

we might remove the first equation and introduce

y = concat(a,x), z=¢€, a=¢,

yielding an acyclic set of equations. This transformation is
sound, because in any finite model of the original cyclic
equations at least one concatenation argument must be empty,
and complete, since any solution of the resulting acyclic
system (with the added emptiness constraints) automatically
satisfies the dropped equations.

c) Equation Decomposition: OSTRICH2 uses two sim-
ple heuristics to simplify word equations. In what follows,
Z,T1,%2,Y1,Y2 are arbitrary string terms (each may be a
variable or a constant). First, when one side is a constant string
w and the other is a concatenation

w = concat(xy, T2),

in which the length of z; is known, OSTRICH2 matches
the first |z1| characters of w with 7 and the remaining
characters with x,. Second, if the same variable appears in
two concatenations,

z = concat(zy,x2) and 2z = concat(yi,ys2),

then whenever |z1| = |y;| we infer 21 = y; and o = yo.
These heuristics often resolve equations without full case
splitting.

151

d) Close: If for some variable = we have constraints
x € L(A1)N---ANx € L(Ay)

and ﬂle L(A;) =0, OSTRICH?2 derives a contradiction and
close the branch.

e) Intersection: When the +eager flag is on, OS-
TRICH2 maintains at most one automaton per variable by
replacing x € L(A) Az € L(B) with x € L(AN B).

f) LengthAbstraction: From length inequalities (e.g.
|z] < |y| + 5), derive lower/upper bounds on |z|, then assert
x € L(A) where A accepts any word within the derived length
bounds.

g) RCP (Regular Constraint Propagation): Propagate
1 € Ly, ..., x, € L, forwards through string functions
z = f(z1,...,2y), or x € L backwards through f.

For example, on z = concat(z,y) A z = concat(y,x) A
r € a*ba* ANy € a*ca® we can propagate x € a*ba*
and y € a*ca” forwards (from input to output) through the
string concatenation function concat in z = concat(z,y) to
obtain z € a*ba*a*ca™. Similarly, we can propagate forwards
through z = concat(y, z) and derive z € a*ca*a*ba*. Since
there are no words matching both a*ba*a*ca™ and a*ca*a*ba*
we can conclude—using the Close rule—that the constraint is
unsatisfiable.

Backwards propagation may result in branching. For exam-
ple, if = concat(y, z) and = ab, then either y = abAz = ¢
ory=aANz=bory=cAz=ab

When the variable constraints are given by standard finite
automata, a rich selection of string functions support exact
forwards and backwards propagation. These include concat,
reverse, and replace and replaceall, where the replacement
pattern can include string variables or references to capture
groups in the search pattern. In general, any function can
be supported using over-approximations of the pre- and post-
images, but without completeness guarantees.

The CE-Str solver only applies backwards propagation and
represents pre-images using cost-enriched automata. This al-
lows functions such as indexof and length to be supported (by
introducing costs to the automata), but restricts, for example,
which versions of replace and replaceall can be analysed
precisely.

h) NielsenSplitter: OSTRICH2 invokes Nielsen’s trans-
formation [39], [40] on any pair of equations in our normal
form

z = concat(xy,22) and 2z = concat(yi,ys2),

where each of z,x;,y; may be a variable or a constant. We
introduce a fresh string variable w and split the proof into two
prefix-alignment cases, guided by current length information
in a similar way as was done in Norn [3]. That is

|z1| > |y1l, 21 = concat(yy, w), concat(w, z2) = Yo

or
concat(w, yo) = .

ly1| > |z1|, w1 = concat(z, w),

In each branch we align the longer prefix against the shorter
one, adding both the corresponding concatenation equalities
and the derived length equality (e.g. |x1| = |y1| + |w]| in the
first case).

i) String-Integer-Conversions: For handling expressions
str_to_int(s) = n or int_to_str(n) = s, OSTRICH2 sys-
tematically explores the possible values of n. As soon as n
has a concrete value, inprocessing rules (Section IV-B) apply
that replace the function application with an equation or a
regular expression constraint describing the possible values of
s. To make this exploration perform well in practical cases, the
LIA solver utilized in OSTRICH?2 applies interval constraint
propagation to narrow down the range of possible values of
n as much as possible [41]. The interval for n is then sub-
divided, until eventually only one possible value for n remains.
This search will not terminate in general, since the domain of n
can be infinite, but it tends to derive solutions or contradictions
quickly in many practical cases.

Jj) Index Computation: When handling indexof(s, p, k)
on two concrete strings s,p, OSTRICH2 systematically ex-
plores possible values of k, taking into account the fact that
any value k not satisfying 0 < k < |s| — |p| will necessarily
lead to the result —1. In the “in-range” branch OSTRICH?2 ap-
plies interval constraint propagation to determine the possible
values of k, sub-dividing the interval of values until a concrete
value k has been chosen. As soon as all arguments of indexof
have concrete values, inprocessing rules (Section IV-B) can
evaluate the function.

k) Cut Rule: When all other rules have been exhausted,
OSTRICH2 applies cuts to introduce a candidate solution for a
string variable . For this, OSTRICH2 collects every regular-
language membership constraint x € L; together with any
length bounds ¢ < |z| < u. From the intersection of the L;
(and respecting ¢, u), OSTRICH2 extracts a single accepted
word w via a standard automaton search. We then split on the
two exhaustive cases

This rule is always sound because any satisfying assignment
for z either equals the chosen w or lies outside {w} and guar-
antees that each string variable will eventually be grounded to
a concrete value (or shown impossible).

r=w VS.

V. COMPLETENESS RESULTS

The RCP solver is (in principle) complete for the straight-
line fragment [4] and chain-free fragment [42] of string
constraints, in the sense that the underlying proof system
can show unsatisfiability of unsatisfiable instances from these
fragments, when applying the rules in an appropriate (easy)
order. However, the usage of priorities means the rules may
be applied in a different order, causing the proof to fail. In
practice, failures for these fragments are rare.

In the straight-line fragment we require that the constraints
are in normal form as in Section IV-C, and variables can
be ordered x1,...,x, such that for z; there is exactly one
equational constraint z; = f;(x1,...,2;—1), where f; is a

152

string function such that the pre-image of a regular set is
regular. The definition of the chain-free fragment is a bit
involved, in essence it relaxes the assumption on the form
of the equation and the number of equations, but still requires
that there are no “cycles” of dependencies. For the straight-
line fragment, we can propagate backwards and the instance
is unsatisfiable if and only if all branches are closed using
Close rule. For the chain-free fragment [42] we can adapt the
original proof (which works for a different solver) to the rules
used in OSTRICH?2.

The CE-Str solver also provides a completeness guarantee
for a version of the straight-line fragment that includes string
constraints and linear integer arithmetic [24]. The supported
string functions are those where the pre-image of cost-enriched
automata constraints can be expressed using cost-enriched
automata. This includes indexof and length as well as some
versions of replace and replaceall.

VI. EXTENSIBILITY

An important feature of OSTRICH2 is the possibility to
extend the solver with minimal effort. OSTRICH2’s PreOp
trait lets users add new string functions by overriding three
core methods. This can be done in either Scala (the main
language used to implement OSTRICH?2) or in Java. Below we
show each method in turn, together with the ReversePreOp
implementation’.

First, the method apply computes the pre-image of a
regular language under f, which is the core operation needed
for backward propagation in RCP. The method is passed any
existing automata constraints on the r arguments (which may
be ignored) and the automaton A representing the result lan-
guage. The method returns an iterator over tuples of automata
whose images under f lie inside A, plus (optionally) the subset
of the input constraints actually used.

override def apply (

argCs: Seqg[Seg[Automaton]],

resultC: Automaton
) : (Iterator[Seqg[Automaton]], Seg[Seg[Automaton]]) = {
(Iterator (Seq(ReverseAutomaton (resultC))), List())

NN AW —

}

Second, the method eval performs concrete evaluation
on ground strings: when all arguments are known, it simply
returns the result of applying f.

1 | override def eval (
2 args: Seq[Seq[Int]]
3): Option[Seq[Int]] = Some (args.head.reverse)

Third, forwardApprox computes a (sound) post-image
of input languages under f, used for forward propagation.
While returning the universal automaton is always correct,
a tighter approximation greatly improves performance. For
str.reverse, one can exactly compute this by intersecting
any input automata and then reversing the resulting automaton.

This snippet is abbreviated for clarity. The full implementation in
ReversePreOp.scala includes additional automaton-type matching and
error handling.

1 | override def forwardApprox (
2 argCs: Seqg[Seqg[Automaton]]
3 |): Automaton = {
4 val prod = ProductAutomaton (argCs
5 ReverseAutomaton (prod)
6 |1}
Finally, the new string function has to be regis-

tered in the core string theory class of OSTRICH2. In
the file OstrichStringTheory.scala, we register

str.reverse by first declaring its SMT-side function sym-
bol:

1 |val str_reverse = MonoSortedIFunction (
2 "str.reverse",

3 List (StringSort),
4 1)

StringSort, true, false

We then add it to the extraStringFunctions list,
pairing the name, the IFunction, our ReversePreOp
implementation, and the simple lambdas that pick out the input
and output terms:

I |val extraStringFunctions = List (
2 ("str.reverse", str_reverse, ReversePreOp,a =>
3 List(a(0)),a => a(l)))

With these two lines in place, any occurrence of
str.reverse in the SMT-LIB script is recognized
by OSTRICH2 and automatically dispatched to our
ReversePreOp for pre-image computation, concrete

evaluation, and forward-approximation.

VII. EXPERIMENTS

A. Benchmark suites and experimental setup

We evaluate our solver on a representative selection of
SMT-LIB benchmarks, including all instances from the SMT-
LIB 2025 benchmark release>. From the combined pool of
roughly 100000 QF_S and QF_ SLIA problems, we randomly
sample 2000 instances proportional to each track’s share of
the total, so that our test set reflects the underlying distribution
of problem types. The experiments were conducted on a
MacBook Pro with 16 GB of RAM, running macOS Sonoma
14.5. The system was powered by an Apple M3 chip. The
timeout for each experiment was set to 60 seconds.

ECMAScript Regex Benchmarks.: Our experimental eval-
vation in this paper does not include benchmarks making
extensive use of ECMAScript-specific regular expression fea-
tures such as look-arounds or capture groups. A large-scale
evaluation of this functionality was presented in [38], using
a benchmark set of approximately 8,800 ECMAScript-style
regex patterns extracted from real-world web forms. The cor-
rectness of the semantics was validated in [29] by comparing
OSTRICH’s results against JavaScript’s reference implemen-
tation. The ECMAScript regex component in OSTRICH?2 is
identical to that used in those earlier evaluations. Therefore,
we omit repeating those experiments here and focus on broader
SMT-LIB benchmarks.

Zhttps://zenodo.org/communities/smt-1ib/

153

https://zenodo.org/communities/smt-lib/

B. Performance evaluation

The experiments are conducted on the following solvers:
cve5 1.2.0 [19], Z3 4.15 [12], Z3-alpha [13], Z3-Noodler
1.3.0 [14], OSTRICHI (the original OSTRICH) [4], and
different engines of OSTRICH2? and OSTRICH2 running
the engines in a time-sliced portfolio using the flag. For the
RCP engine we evaluate two complementary configurations:
one mode that combines forward and backward propagation
without Nielsen splitting (using the flags +F+B-N), and
another mode (using the flags —F+B+N) that disables for-
ward propagation in order to emphasize Nielsen’s equation
decomposition. In practice, combining forward propagation
and splitting yields limited synergy: the extra word equations
generated by Nielsen splitting create significant propagation
overhead, so omitting forward propagation often improves
overall solving performance.

cves 73 Z3-alpha Z3-Noodler OSTRICHI
SAT 1155 1097 1123 1201 825
UNSAT 729 728 728 744 664
unknown/timeout 116 175 149 55 511
Solved 1884 1825 1851 1945 1489
Total time [s] 7770 12158 10523 3660 35711

Figure 2. The experiment result of cvcS, Z3, Z3-alpha, Z3-Noodler and
OSTRICHI1 on the SMT-LIB’25 benchmarks. Total time (in seconds) includes
all instances, with each unknown/timeout counted as 60s.

OSTRICH2 ADT CE RCP-F+B+N RCP+F+B-N
SAT 1147 610 970 1067 1042
UNSAT 758 619 679 747 750
unknown/timeout 95 771 351 186 208
Solved 1905 1229 1649 1814 1792
Total time [s] 14824 53689 24600 17680 19900

Figure 3. The experiment result of different engines of OSTRICH2 on
the SMT-LIB’25 benchmarks.The flags +F+B-N enable forwards/backwards
propagation and disable the NielsenSplitter. The flags ~F+B+N disable for-
wards propagation and enable backwards propagation and the NielsenSplitter.
Total time (in seconds) includes all instances, with each unknown/timeout
counted as 60s.

Figure 2 shows that among the off-the-shelf solvers, Z3-
Noodler leads with 1945 solved problems, followed by cvc5
(1884), Z3-alpha (1851), Z3 (1 825), and OSTRICHI1 (1489).
Figure 3 shows that both RCP configurations (1 814 and 1792
solves) and CE-Str (1 649) represent clear upgrades over OS-
TRICH1, whereas the ADT-Str engine (1229) trails—largely
due to its simple algorithm. These per-engine gains can be
attributed to improved preprocessing, an extended set of proof
rules, and, for CE-Str, a different underlying solving technique.

In the full OSTRICH2 configuration, these upgraded en-
gines are run in a time-sliced portfolio, which not only
inherits the improvements of the individual modes but also
exploits their complementary strengths, as each engine solves
benchmarks that the others miss. This complementarity lifts

3https://doi.org/10.5281/zenodo. 15378521

OSTRICH2’s overall performance close to the top solvers in
the field.

When we combine all four engines in a time-sliced portfolio
(15 seconds for each mode for a 60-second limit), OSTRICH2
solves 1905 problems, putting it just behind Z3-Noodler and
ahead of the rest of the field. The portfolio not only inherits
the individual gains of each engine but also benefits from
their complementary strengths, as each solves benchmarks the
others miss. We further observe that Z3-Noodler excels on the
SAT instances, while OSTRICH2 performs particularly well
on the UNSAT cases.

Finally, although Z3-Noodler does not support
replace_all, only 2.4% of SMT-LIB instances use
this operator, so its absence has only a modest effect on
overall rankings. Figure 4 shows the results on the benchmark
set restricted to instances without replace_all. Among
the 35 replace_all benchmarks in our SMT-LIB sample,
OSTRICH2 solves 25, while cvc5, Z3, and Z3-alpha each
solve only two instances, and Z3-Noodler solves none. This
shows that most solvers provide limited support for this
operator. When we exclude the replace_all benchmarks,
the rankings remain broadly unchanged; OSTRICH2 drops
slightly below cvc5 in relative performance.

We remark that, since our evaluation uses a stratified
random sample of 2000 instances drawn from the full pool
of roughly 100000 QF_S and QF_SLIA benchmarks, there
is inevitably some statistical variance in the exact per-solver
ranking; nonetheless, the fact that OSTRICH2 solves almost
as many problems as the leader demonstrates its overall
competitiveness.

cved Z3 Z3-alpha Z3-Noodler OSTRICH2
SAT 1155 1097 1123 1201 1141
UNSAT 727 726 726 744 739
unknown/timeout 83 142 116 20 85
Solved 1882 1823 1849 1945 1880
Total time [s] 5790 10174 8536 1617 14070

Figure 4. The experiment result of cvcS, Z3, Z3-alpha, Z3-Noodler and
OSTRICH2 on the SMT-LIB’25 benchmarks excluding replace_all.
Total time (in seconds) includes all instances, with each unknown/timeout
counted as 60s.

VIII. CONCLUSION

This paper has strived to provide a concise introduction
of the string solver OSTRICH2, which inputs constraints
in an extension of the SMT-LIB theory of Unicode Strings
with transducers (through mutual recursion) and ECMAScript
regular expressions, among others. We have also empirically
demonstrated its competitiveness with other string solvers
on SMT-COMP benchmarks, particularly on unsatisfiable in-
stances. Interested readers, who are interested in participating
in the development and/or applications of OSTRICH2, are
wholeheartedly encouraged to get in touch with us.

154

https://doi.org/10.5281/zenodo.15378521

ACKNOWLEDGEMENTS

We thank EPSRC [EP/T00021X/1], European Research
Council (LASD, 101089343), and the Swedish Research
Council (grant 2021-06327) for their support.

[1]
[2]

[4

=

[5

=

[6]

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

C. Kern, “Securing the tangled web,” Commun. ACM, vol. 57, no. 9,
pp. 3847, Sep. 2014.

A. W. Lin and P. Barceld, “String solving with word equations and
transducers: towards a logic for analysing mutation XSS,” in POPL.
ACM, 2016, pp. 123-136.

P. A. Abdulla, M. F. Atig, Y. Chen, L. Holik, A. Rezine, P. Riimmer,
and J. Stenman, “Norn: An SMT solver for string constraints,” in
Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I, ser. Lecture Notes in Computer Science, D. Kroening and C. S.
Pasareanu, Eds., vol. 9206. Springer, 2015, pp. 462-469. [Online].
Available: https://doi.org/10.1007/978-3-319-21690-4_29

T. Chen, M. Hague, A. W. Lin, P. Riimmer, and Z. Wu, “Decision
procedures for path feasibility of string-manipulating programs with
complex operations,” Proceedings of the ACM on Programming Lan-
guages, vol. 3, no. POPL, pp. 1-30, 2019.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for javascript,” in S&P, 2010, pp.
513-528.

A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst,
“HAMPI: a solver for string constraints,” in Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis,
ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, G. Rothermel and
L. K. Dillon, Eds. ACM, 2009, pp. 105-116. [Online]. Available:
https://doi.org/10.1145/1572272.1572286

N. Bjgrner, N. Tillmann, and A. Voronkov, “Path feasibility analysis for
string-manipulating programs,” in TACAS, 2009, pp. 307-321.

R. Amadini, “A survey on string constraint solving,” ACM Comput.
Surv., vol. 55, no. 2, pp. 16:1-16:38, 2023. [Online]. Available:
https://doi.org/10.1145/3484198

N. Rungta, “A billion SMT queries a day (invited paper),” in
Computer Aided Verification - 34th International Conference, CAV
2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I, ser.
Lecture Notes in Computer Science, S. Shoham and Y. Vizel,
Eds., vol. 13371. Springer, 2022, pp. 3-18. [Online]. Available:
https://doi.org/10.1007/978-3-031-13185-1_1

J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. S.
Luckow, N. Rungta, O. Tkachuk, and C. Varming, “Semantic-based
automated reasoning for AWS access policies using SMT,” in
2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018, N. S. Bjgrner
and A. Gurfinkel, Eds. IEEE, 2018, pp. 1-9. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8602994

C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www . SMT-LIB.org, 2016.

L. de Moura and N. Bjgrner, “Z3: an efficient smt solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, vol. 4963, 04
2008, pp. 337-340.

Z. Lu, S. Siemer, P. Jha, J. Day, F. Manea, and V. Ganesh, “Layered and
staged monte carlo tree search for smt strategy synthesis,” in Proceedings
of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI-24, K. Larson, Ed. International Joint Conferences
on Artificial Intelligence Organization, 8 2024, pp. 1907-1915, main
Track. [Online]. Available: https://doi.org/10.24963/ijcai.2024/211

F. Blahoudek, Y.-F. Chen, D. Chocholaty, V. Havlena, L. Holik,
O. Lengdl, and J. Si¢, “Word equations in synergy with regular con-
straints,” in Formal Methods, M. Chechik, J.-P. Katoen, and M. Leucker,
Eds. Cham: Springer International Publishing, 2023, pp. 403-423.

V. Havlena, L. Holik, O. Lengdl, and J. Si¢, “Cooking String-Integer
Conversions with Noodles,” in 27th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2024), ser. Leibniz
International Proceedings in Informatics (LIPIcs), S. Chakraborty
and J.-H. R. Jiang, Eds., vol. 305. Dagstuhl, Germany: Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024, pp. 14:1-14:19.
[Online]. Available: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.SAT.2024.14

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

[30]

[31]

[32]

155

Y.-F. Chen, D. Chocholaty, V. Havlena, L. Holik, O. Lengal, and J. Sic,
“Solving string constraints with lengths by stabilization,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLA2, oct 2023. [Online]. Available:
https://doi.org/10.1145/3622872

Y.-F. Chen, D. Chocholaty, V. Havlena, L. Holik, O. Lengdl, and
J. Si¢, “Z3-noodler: An automata-based string solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, B. Finkbeiner
and L. Kovdcs, Eds. Cham: Springer Nature Switzerland, 2024, pp.
24-33.

M. Berzish, M. Kulczynski, F. Mora, F. Manea, J. D. Day, D. Nowotka,
and V. Ganesh, “An smt solver for regular expressions and linear
arithmetic over string length,” in Computer Aided Verification, A. Silva
and K. R. M. Leino, Eds. Cham: Springer International Publishing,
2021, pp. 289-312.

H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Notzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, cvc5: A
Versatile and Industrial-Strength SMT Solver, 01 2022, pp. 415-442.
F. Mora, M. Berzish, M. Kulczynski, D. Nowotka, and V. Ganesh,
“Z3str4: A multi-armed string solver,” in Formal Methods: 24th
International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2021, p.
389-406. [Online]. Available: https://doi.org/10.1007/978-3-030-90870-
6_21

P. A. Abdulla, M. F. Atig, Y.-F. Chen, B. P. Diep, L. Holik, A. Rezine,
and P. Riimmer, “Flatten and conquer: a framework for efficient analysis
of string constraints,” SIGPLAN Not., vol. 52, no. 6, p. 602—-617, Jun.
2017. [Online]. Available: https://doi.org/10.1145/3140587.3062384

P. A. Abdulla, M. F. Atig, Y.-F. Chen, B. P. Diep, L. Holik, A. Rezine,
and P. Ruemmer, “Trau: Smt solver for string constraints,” 2018
Formal Methods in Computer Aided Design (FMCAD), pp. 1-5, 2018.
[Online]. Available: https://api.semanticscholar.org/CorpusID:53962814
P. A. Abdulla, M. F. Atig, Y.-E. Chen, B. Diep, L. Holik, D. Hu,
W.-L. Tsai, Z. Wu, and D.-D. Yen, “Solving not-substring constraint
withflat abstraction,” in Programming Languages and Systems, H. Oh,
Ed. Cham: Springer International Publishing, 2021, pp. 305-320.

T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Riimmer, and
Z. Wu, “A decision procedure for path feasibility of string manipulating
programs with integer data type,” in Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA 2020,
Hanoi, Vietnam, October 19-23, 2020, Proceedings, ser. Lecture
Notes in Computer Science, D. V. Hung and O. Sokolsky, Eds.,
vol. 12302. Springer, 2020, pp. 325-342. [Online]. Available:
https://doi.org/10.1007/978-3-030-59152-6_18

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
symbolic execution framework for javascript,” in 2010 IEEE Symposium
on Security and Privacy, 2010, pp. 513-528.

F. Yu, M. Alkhalaf, and T. Bultan, “Stranger: An automata-based string
analysis tool for php,” 05 2010, pp. 154-157.

M.-T. Trinh, D.-H. Chu, and J. Jaffar, “S3: A symbolic string solver
for vulnerability detection in web applications,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 1232-1243. [Online]. Available:
https://doi.org/10.1145/2660267.2660372

M. Berzish, V. Ganesh, and Y. Zheng, “Z3str3: A string solver with
theory-aware heuristics,” in 2017 Formal Methods in Computer Aided
Design (FMCAD), 2017, pp. 55-59.

T. Chen, A. Flores-Lamas, M. Hague, Z. Han, D. Hu, S. Kan,
A. W. Lin, P. Rimmer, and Z. Wu, “Solving string constraints
with regex-dependent functions through transducers with priorities and
variables,” Proc. ACM Program. Lang., vol. 6, no. POPL, pp. 1-31,
2022. [Online]. Available: https://doi.org/10.1145/3498707

M. Berglund, F. Drewes, and B. van der Merwe, “Analyzing catastrophic
backtracking behavior in practical regular expression matching,” in
Proceedings 14th International Conference on Automata and Formal
Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014, ser. EPTCS,
Z. Esik and Z. Fiilop, Eds., vol. 151, 2014, pp. 109-123. [Online].
Available: https://doi.org/10.4204/EPTCS.151.7

M. Berglund and B. van der Merwe, “On the semantics of regular
expression parsing in the wild,” Theoretical Computer Science, vol. 679,
pp. 69 — 82, 2017.

J. Harband and K. Smith, “ECMASscript 2020 language specification,
11th edition,” 2020, https://262.ecma-international.org/11.0/.

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1145/1572272.1572286
https://doi.org/10.1145/3484198
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.24963/ijcai.2024/211
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14
https://doi.org/10.1145/3622872
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1145/3140587.3062384
https://api.semanticscholar.org/CorpusID:53962814
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/2660267.2660372
https://doi.org/10.1145/3498707
https://doi.org/10.4204/EPTCS.151.7
https://262.ecma-international.org/11.0/
www.SMT-LIB.org

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

B. Loring, D. Mitchell, and J. Kinder, “Sound regular expression
semantics for dynamic symbolic execution of javascript,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019., 2019, pp. 425-438. [Online]. Available: https://doi.org/
10.1145/3314221.3314645

P. Riimmer, “A constraint sequent calculus for first-order logic with
linear integer arithmetic,” in International Conference on Logic for
Programming Artificial Intelligence and Reasoning. Springer, 2008,
pp. 274-289.

A. Mgller, “dk.brics.automaton — finite-state automata and regular
expressions for java,” https://www.brics.dk/automaton, 2021, accessed:
2022-06-23.

H. Hojjat and P. Rimmer, “Deciding and interpolating algebraic
data types by reduction,” in [9th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
2017, Timisoara, Romania, September 21-24, 2017, T. Jebelean,
V. Negru, D. Petcu, D. Zaharie, T. Ida, and S. M. Watt, Eds.
IEEE Computer Society, 2017, pp. 145-152. [Online]. Available:
https://doi.org/10.1109/SYNASC.2017.00033

J. A. Brzozowski, “Derivatives of regular expressions,” J. ACM,
vol. 11, no. 4, p. 481-494, oct 1964. [Online]. Available: https:
//doi.org/10.1145/321239.321249

B. Eriksson, A. Stjerna, R. De Masellis, P. Riiemmer, and A. Sabelfeld,
“Black ostrich: Web application scanning with string solvers,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 549-563. [Online].
Available: https://doi.org/10.1145/3576915.3616582

A. Lentin, Equations dans les Monoides Libres. Gauthier-Villars, Paris,
1972.

V. Diekert, “Makanin’s Algorithm,” in Algebraic Combinatorics
on Words, ser. Encyclopedia of Mathematics and its Applications,
M. Lothaire, Ed. Cambridge University Press, 2002, vol. 90, ch. 12,
pp. 387-442.

P. Backeman, P. Riimmer, and A. Zeljic, “Interpolating bit-vector
formulas using uninterpreted predicates and presburger arithmetic,”
Formal Methods Syst. Des., vol. 57, no. 2, pp. 121-156, 2021. [Online].
Available: https://doi.org/10.1007/s10703-021-00372-6

P. A. Abdulla, M. F. Atig, B. P. Diep, L. Holik, and P. Janku, “Chain-
free string constraints,” in Automated Technology for Verification and
Analysis, Y.-F. Chen, C.-H. Cheng, and J. Esparza, Eds. Cham: Springer
International Publishing, 2019, pp. 277-293.

APPENDIX A
AUTOMATA DEFINITION

Automaton ::= automaton Ildent { init State ;
Tr* accepting State (, State)* ; }
Tr .= State —> State [Int , Int] ;
State = Ident
Ident n= [A-Za-z0-9_|+
Int n= [0-9]4+
Ranges are inclusive and denote Unicode code points as

accepted by the current re.from_automaton parser (0—
65535)*. States referenced in transitions are implicitly de-
clared. Whitespace is insignificant.

APPENDIX B
TRANSDUCER DEFINITIONS

OSTRICH encodes transducers as a collection of mutually
recursive Boolean functions in SMT-LIB, where each function
corresponds to a distinct state in the transducer. A transducer
consists of a set of such states that, at each step, inspect
the first character(s) of the input and output strings, select
a transition based on guarded conditions, and then recurse on
the remaining substrings until termination.

Formally, the behaviour of each state function is structured
as follows:

1) Inspect the leading characters of the input and output
strings using str.head.

2) Evaluate guard conditions to determine the appropriate
transition.

3) Invoke another state function (possibly the same one) on
the residual substrings obtained via str.tail.

Acceptance is defined via base cases, typically when both
input and output have been fully consumed, expressed as
(= x "") and (= y ""). Character comparisons are per-
formed using Unicode code points, with numeric ranges used
to express character classes (e.g., lowercase letters correspond
to codes 97-122).

A. Example 1: General Template

In the template below, the transducer is defined by two
mutually recursive state functions, S and S2, each taking
as arguments the remaining portions of the input (x) and
output (y) strings. The first clause of each state specifies the
base case, here accepting when both x and y are empty.
Subsequent clauses correspond to guarded transitions: in S,
the first transition matches and deletes an ’a’ from the
input (consuming only x and leaving y unchanged), while
the second transition copies the current character from input
to output (consuming one symbol from each). Each transition
invokes the appropriate successor state on the residual strings
obtained via str.tail. The second state, S2, is structurally
similar, here illustrated with only a copying transition. This

4While OSTRICH2 supports reasoning over the full Unicode range, the
automaton parser is presently limited to BMP code points.

156

https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://www.brics.dk/automaton
https://doi.org/10.1109/SYNASC.2017.00033
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/3576915.3616582
https://doi.org/10.1007/s10703-021-00372-6

structure generalises to arbitrary transducers by adding states, triggers a transition to extractlst_3. The final state,
refining guard conditions, and controlling which side(s) of the extractlst_3, consumes the remaining input without pro-

input—output pair are consumed in each branch. ducing further output, thereby terminating the extraction. For
1 1 1 p— " — n
| [(set—option :parse—transducers true) example, given the input string x = "foo=bar", the trans-
2 ducer outputs y = "bar".
3 (define-funs-rec
4 ((S ((x String) (y String)) Bool)
5 (S2 ((x String) (y String)) Bool))
6 (
7
8 (or (and (= x "") (=y "M)) 1 (set-option :parse-transducers true)
9 2
10 (and (not (= x "")) 3 (define-funs-rec ((extractlst ((x String) (y String))
11 (= (str.head x) (char.from-int 97)) < Bool)
12 (S (str.tail x) y)) 4 (extractlst_2 ((x String) (y String)) Bool)
13 5 (extractlst_3 ((x String) (y String)) Bool)) (
14 (and (not (= x "")) (not (=y "M)) 6
15 (= (str.head x) (str.head y)) 7
16 (S (str.tail x) (str.tail y)))) 8 (or (and (= x "") (=y ""))
17 9 (and (not (= x ""))
18 (or (and (= x "") (=y "")) 10 (not (= (str.head x) (char.from-int 61))
19 (and (not (= x "")) (not (=y ""))
20 (= (str.head x) (str.head y)) 11 (extractlst (str.tail x) y))
21 (S2 (str.tail x) (str.tail y)))) 12 (and (not (= x ""))
22) 13 (= (str.head x) (char.from-int 61)
14 (extractlst_2 (str.tail x) y)))
15
. 16
B. Example 2: toUpper 17 (or (and (= x "™) (= y "))
: _ . 18 (and (not (= x "")) (not (=y "")
The toUpper traI.lsducer 111ustr.ates a 1ength preserving g (= (otr.head x) (str.head y))
character transformation. It consists of a single state, 20 (not (= (str.head x) (char.from-int 61)))
toUpper, which .accepts when both input x and ogtput Y o (e) (e el) (el 1))
are empty. Otherwise, the guard requires that both strings be 22 (and (not (= x ""))
_ : : 23 (= (str.head x) (char.from-int 61)
non err.lpty, and the head char.acter of the output is con.strame.d ! (extractist 3 (ste tail =) 3
to be either the uppercase equivalent of the head of the input (if 25
the input character is a lowercase letter, identified by Unicode %g T
! . (or (and (= x) (= y)
codes 97-122) or an exact copy of the input character in all 28 (and (not (= x ""))
other cases. This transformation is expressed using the ite 2 5 (G SeEEteE s st))

construct, subtracting 32 from the character code to obtain the
uppercase form when applicable. The function then recurses
on the tails of both strings, ensuring that the transformation is
applied position-wise until the entire input has been processed.

(set-option :parse-transducers true)

(define-fun-rec toUpper ((x String) (y String)) Bool
(or (and (= x "") (=y ""))
(and (not (= x "")) (not (=y ""))
(= (char.code (str.head y))
(ite (and (<= 97 (char.code (str.head x)))
(<= (char.code (str.head x)) 122))
(- (char.code (str.head x)) 32)
(char.code (str.head x))))
(toUpper (str.tail x) (str.tail y)))))

— OO0 XI N R WN =

——

C. Example 3: extractlst

The extractlst transducer demonstrates a non-length-
preserving transformation involving multiple states. Its pur-
pose is to scan the input x for the first occurrence of the
character ” =’ (Unicode code 61), copy the subsequent char- D- Grammar for OSTRICH transducers
acters into the output y until the next ' =’ is encountered,
and then skip the remainder of the input. The initial state,
extractlst, advances through the input without producing
output until it finds the first * =’ at which point it transitions
to extractlst_2. In this second state, the transducer
consumes characters from both input and output in lockstep, The following grammar summarises the fragment of SMT-
copying them directly unless another ' =’ is reached, which LIB used by OSTRICH for defining such transducers.

157

Transducer := (define—-fun-rec StateSig Body)
| (define-funs-rec (StateSigT) (Bodyt))

StateSig = (Id ((x String) (y String)) Bool)
Body := (or Clauset)
Clause := BaseCase | Transition
BaseCase ::= (and Guard*)
Transition == (and Guardt Call)
Call == (Id XArgY Arg)
XArg == x| (str.tail x)
YArg == y | (str.tail y)
Guard 1= (=Term Term)
| (not Guard)
| (and Guardt)
| (or Guardt)
| (<= Int Int)
Term == Char | (str.head x) | (str.head y)
| (char.code Term)
| (ite Guard Term Term)
Char := (char.from-int Int)
| (str.head x)
| (str.head y)
Int == Numeral | (char.code Term)
| (+ Int Int)
| (- Int Int)

In this grammar, each StateSig corresponds to one state in
the transducer. The Body of a state consists of one or more
Clauses combined with or, where each clause represents
either:
e a base case, such as (and (= x "") (=y "")),
or
¢ a transition guarded by conditions on the heads of x and
y and leading to a recursive Call on their tails.

The Guard syntax captures conditions such as char-
acter equality, inequality, or membership in a Uni-
code range (as in toUpper, which checks lowercase
via (<= 97 (char.code (str.head x))) and (<=
(char.code (str.head x)) 122)). XArg and YArg
indicate whether a transition consumes from the input, output,
or both. This is the key distinction between length-preserving
transformations (both consumed) and non-length-preserving
ones (only one consumed at a time).

158

	Introduction
	Specification Language
	SMT-LIB Standard for Unicode Theory of Strings
	SMT-LIB Constraints

	Extensions Beyond the SMT-LIB Standard
	Transducer-based Operations
	Extended Regular Expression Support
	Automata Representations
	SMT-LIB Standard for Unicode Theory of Strings

	System Architecture
	ADT-Str: List-Based Solver
	RCP: Regular Constraint Propagation
	CE-Str: Cost-Enriched String Engine

	String Theory Algorithms
	Preprocessing
	Common Preprocessing
	RCP Preprocessing

	Inprocessing Rules
	Inference Rules

	Completeness Results
	Extensibility
	Experiments
	Benchmark suites and experimental setup
	Performance evaluation

	Conclusion
	References
	Appendix A: Automata Definition
	Appendix B: Transducer Definitions
	Example 1: General Template
	Example 2: toUpper
	Example 3: extract1st
	Grammar for OSTRICH transducers

