

Formal Methods in Computer-Aided Design 2025

A Formal Y86 Simulator with CHERI Features

Carl Kwan , Yutong Xin, William D. Young
The University of Texas at Austin, Austin, TX, USA

{carlkwan,maxxin,byoung}@cs.utexas.edu ✓Artifact
Reviewed

10
.5

28
1/

ze
no

do
.1

69
31

00
5

Abstract—We present a formal executable model of CHERI
architectural features integrated with a formalized Y86 ISA.
CHERI is an extension of conventional hardware ISAs centralized
around capabilities, which are descriptions of permissions at the
hardware level that can be used in place of pointers. CHERI
enables fine-grained memory protection and highly scalable soft-
ware compartmentalization to mitigate security vulnerabilities
beyond what can be done by current architectures. We use our
formal model to prove the memory protection and security fea-
tures of CHERI itself, prototype extensions to CHERI, and verify
the correctness of machine code involving capabilities. Since it
is executable, our model also serves as a symbolic simulator of
a CHERI augmented x86-like processor, allowing step-by-step
validation of CHERI capability features in a controlled, formal
environment.

We are motivated by the adoption of CHERI by industry
leaders that design real-world hardware, the need for industrial-
strength tools to perform formal CHERI analyses, and the
current development of CHERI extensions to x86 platforms. We
build our model in an all-in-one first-order logic and program-
ming system. Our model enables formal verification of CHERI
designs and the rapid-prototyping of new CHERI architectural
features, and we apply existing industry push-button verification
tools and custom heuristics to prove the correctness of CHERI
artifacts.

Index Terms—Formal models, operational semantics, theorem
proving, ACL2, capabilities, Y86

I. INTRODUCTION

Capability Hardware Enhanced RISC Instructions (CHERI)
is a set of architectural features that enables software com-
partmentalization and more precise and flexible memory pro-
tection than traditional memory protection mechanisms [1]. It
is designed to mitigate various types of security vulnerabili-
ties, particularly those related to memory safety, via various
hardening techniques. Recently, Arm has shipped Morello, a
multicore, superscalar, Neoverse N1-based processor, System-
on-Chip, and prototype board to academic and industry se-
curity experts [2]. These shipped Arm hardware artifacts are
fully integrated with CHERI protection features. Microsoft has
described CHERI as a “building block for higher-level security
abstractions” [3].

At the center of CHERI are capabilities, which are un-
forgeable tokens in hardware. These tokens describe the range
and actions permitted for various kinds of memory accesses.
Capabilities provide a way to control and restrict access to
memory at a fine-grained level by including information about
the base address of the memory range for which access is
permitted, the size of the range, and the permissions associated

with that range. One can view capabilities as fat-pointers,
i.e. pointers containing metadata associated with the memory
address to which the pointer value points. In the case of a
capability, the metadata are the permissions, memory bounds,
and the capability’s object type.

In CHERI systems, all memory access is controlled by
capabilities. This fundamentally changes how machine code
programs are executed, requires additions to instruction set
architectures, and modifies architectural state parameters, such
as registers, program counters, etc. The CHERI ISA speci-
fication technical reports document each of these additional
instructions and other architectural contributions and changes.
However, the most recent CHERI ISA contains over 500
pages of technical details, motivation, design specifications,
algorithms, etc [4].

We present a formal executable model of the Y86 ISA
integrated with CHERI, which we call CHERI-Y86. Y86 is an
ISA that executes a simplified subset of the x86-64 instruction
set [5]. It was originally introduced by Randal Bryant and
David O’Hallaron, and is commonly used by hundreds of
institutions to teach computer systems.

It is important that CHERI-Y86 faithfully implements the
CHERI-ISA specification [4]: every opcode encoding, register-
state extension, permission check, and capability-compression
routine is lifted directly from the official manual. To help
prevent transcription or interpretation errors, we validated
our model using an adapted CHERI conformance test suite
designed based on the CHERI-x86-64 ISA descriptions, en-
suring correct behavior for all non-deprecated capability-
aware instructions. We apply our model primarily to the
verification of machine code programs that involve capabilities
and formally prove the correctness of CHERI architectural
design and security features. This includes proofs for all
non-deprecated capability-aware instructions, verification of
CHERI’s capability-compression scheme, guarded accesses
to any state parameter in CHERI-Y86, and explicit formal
executable specifications for CHERI methods and algorithms.
CHERI-Y86 is publicly available1.

There are two additional broader motivations behind our
development of CHERI-Y86. First, Y86 is similar to the
x86 ISA. While CHERI specifications for x86 are not yet
fully elaborated, CHERI-Y86 serves as a useful proof-of-
concept for building future models and hardware that integrate

1https://gitlab.com/cheri-acl2/y86-cheri-capabilities

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6 22
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://orcid.org/0009-0001-8195-7706
https://doi.org/10.5281/zenodo.16931005
10.5281/zenodo.16931005
10.5281/zenodo.16931005
https://gitlab.com/cheri-acl2/y86-cheri-capabilities
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_22
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_22
https://creativecommons.org/licenses/by/4.0/
mailto:carlkwan,maxxin,byoung}@cs.utexas.edu
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6
https://1https://gitlab.com/cheri-acl2/y86-cheri-capabilities
mailto:carlkwan,maxxin,byoung}@cs.utexas.edu

State object

Y86 components
CHERI

components

ACL2 System (verified∗)

CHERI-Y86 model

Semantic
functions

Step
function

Run
function

ACL2
theorem
prover

GL model
checkerfetch

dispatch execute

update

repeat

verify

verify

verify

call

External SAT /
SMT solvers,

model checkers,
etc. (unverified∗)

Fig. 1. ACL2 CHERI-Y86 model overview

CHERI with x86. We developed the CHERI-Y86 features
in a purposely modular fashion. This is to enable future
integration of our model with formal models of the x86 ISA
(pending completion of the CHERI x86 specification). This
will be invaluable to industry and academic efforts to build
highly reliable and secure x86 hardware and low-level software
systems. Second, Y86 is much simpler than x86. One of our
major goals is to elaborate key CHERI features with our
model rather than address a lot of specific architectural details.
By using a stripped-down ISA, we emphasize the already
numerous architectural features of CHERI without introducing
the added burden of an otherwise complicated instruction set.
This makes CHERI accessible to students and professionals,
and enables the introduction of CHERI features to engineers
of other architectures that wish to secure their designs without
having to learn the complexities of another platform.

Our model is built in ACL2 [6], a first-order logic and
proof system that is fully programmable, extensible, and fast,
with support for industry-strength push-button verification
tools. Employing ACL2 in building our model of CHERI-
Y86 combines the convenience of fully automatic tools and
a general purpose theorem prover, enabling users to offload
tedious brute-force verification processes and focus more on
purpose-driven model and proof design aspects.

II. RELATED WORK

A capability is an unforgeable token of authority to access a
system object, along with a set of operations that the holder of
the capability is permitted to perform on the object. Possession
of a capability is sufficient to guarantee that the holder has the
indicated access permissions to the object. In theory, the use
of capabilities obviates the need for access control lists or
similar security structures; entities are provided exactly those
capabilities needed to perform their function. This potentially
facilitates fine grained access control and enforcement of
least privilege, but also necessitates that the system prevent

user programs from forging or modifying capabilities. Such
protections may be implemented in hardware or software.

Although several earlier systems included capability-like
addressing mechanisms, the term “capability” was first in-
troduced by Dennis and Van Horn [7] in the mid-1960s as
part of an hypothetical operating system supervisor for a
multiprogramming system. Capabilities addressed a variety
of issues in OS security, including sharing and cooperation
among processes, protection of processes, and naming of
objects [8, p. 41]. They subsequently were adopted by a
number of hardware and software systems. Levy’s Capability-
Based Computer Systems [8] provides a detailed overview
of capability-oriented computer system design through the
1980’s. More recently, capabilities have seen adoption in a
variety of systems. The CHERI documentation provides an
excellent overview [9]. Some notable recent systems imple-
menting capability-based security include: EROS [10] (now
CapROS and Coyotos [11]), a capability system that permits
creating confined subsystems; and seL4 [12], a formally veri-
fied, capability-oriented microkernel.

Formal verification, specifically machine checked proofs
of security properties, is especially desirable in the case of
capability-based systems in light of claims by Boebert [13]
and others that unmodified capability systems cannot enforce
fundamental access control properties. Both EROS and seL4
included significant verification efforts. A proof [14] of the
EROS confinement properties was carried out by the develop-
ers, though it appears that the proof is not machine checked.
The seL4 microkernel has been subjected to formal analyses
beyond any other comparable system. Extensive proofs [15] of
seL4’s access control system and of the functional correctness
of the kernel have been carried out using Isabelle/HOL.

Lightweight formal methods have also been deployed to
CHERI in particular. CHERI-MIPS and CHERI-RISC-V ben-
efit from a suite of tools that enable their formal specification

160

in a domain-specific language called Sail [16]. The advantage
to this approach is that generating Isabelle specifications from
Sail is automatic, and an impressive set of security properties
for CHERI-MIPS has been verified in Isabelle [17]. Extensive
formal verification efforts behind the Morello architecture
also deploy an extensive suite of translation layers, validation
suites / test generators, specification languages, and various
theorem proving tools (mostly revolving around Isabelle) to
ensure vital properties involving capability monotonicity [18].
Similarly, encoding / decoding aspects of CHERI Concentrate
have also been verified using Sail’s SMT backend in the
CHERIoT work [19]. However, proving properties about these
specifications require a translation layer from Sail or other
specification languages to the Isabelle theorem prover. Inter-
actions between different systems introduces logical concerns
involving soundness. Moreover, while Isabelle can express
a wide breadth of mathematics, support for execution and
simulation is limited. The work we present in this paper
enables the efficient modelling, simulation, and verification
of CHERI features for an x86-like ISA all in a single logic.

A subset of the CHERI ISA has also been formalized
in the operational semantics approach using Coq [20], [21].
The focus of this work is to verify untrusted machine code
programs do not violate certain security properties on a CPU
which supports capabilities. We are also interested in verifying
machine code programs using our simulator, but our focus with
this work is to develop a formal model with formalized CHERI
features that gets us closer to existing real-world ISAs.

Formal proofs have become an essential component of
industrial hardware development, from the proof of the AMD
floating point multiplication unit [22]. All major hardware
manufacturers utilize automated reasoning tools to deal with
the immense complexity of modern digital circuitry [23].

ACL2 [6], specifically, has been used to prove properties
of digital systems, both hardware and software, for decades
and is in widespread use in industry [23]. Numerous machine
models have been built in ACL2 over the years including the
Sun Java Virtual Machine, the Motorola CAP digital processor,
and many more. The ACL2 homepage contains an extensive
publications list.2 Most relevant to the current project are those
modelling the x86 ISA [24]–[27]. The ACL2 x86 model is
similar to CHERI-Y86 in that they both simulate the behaviour
of a machine by way of operational semantic functions which
update a state object formalized as an ACL2 single-threaded
object. The effect of machine code on both models can be
symbolically simulated using Boyer-Moore clock functions
and formally verified. An advantage to the ACL2 x86 model is
that it is the largest and most comprehensive specification of an
x86 machine, to the point where it can be used to boot Alpine
Linux. In fact, the Sail specification of the x86 architecture is
mechanically translated from the ACL2 specification.

III. FORMALIZED CHERI FEATURES

The underlying CHERI protection feature at the level in
which we are interested is the restriction of access to archi-

2https://www.cs.utexas.edu/users/moore/publications/acl2-papers.html.

tectural components (e.g. memory, registers, or code objects)
by way of minimizing the permissions available to other
components (e.g. executable instructions), thus compartmen-
talizing and limiting the effects of bugs or other vulnerabilities.
Permissions and the scope of permissions are controlled by
capabilities.

The CHERI ISA specifies two representations of capabilities
and we formalize both. CHERI Concentrate is the explicit
format for the representation of capabilities in memory. Capa-
bilities represented abstractly with software-accessible fields
(some of which may not be explicitly stored in memory) are
called architectural capabilities. As part of our formalization,
we develop and verify ACL2 functions that allow a user
to easily convert between architectural and memory-resident
capabilities. The proofs of these conversion functions amount
to verifying that converting from architectural capabilities
to memory-resident capabilities and back again recovers the
information that was originally in the architectural capabilities,
and vice-versa. In this section, we describe our formalizations
of CHERI architectural capabilities, CHERI Concentrate, and
protection features.

A. CHERI Concentrate

System bandwidth, throughput, and memory limitations
have led to many iterative modifications to the compressed
format of capabilities, requiring the need for encode and
decode functions. CHERI uses a compressed format called
CHERI Concentrate, which specifies a 64-bit representation
for capabilities on 32-bit systems and a 128-bit representation
for capabilities on 64-bit systems. We are only interested in
128-bit capabilities, the format is summarized by Figure 2.
The format contains:

• a: a 64-bit address;
• p: 16 permission bits including various read, write, and

execute permissions;
• o: 18 object type (otype) bits indicating whether and how

a capability is sealed;
• I: 1 internal exponent bit determining whether the bounds

are in exponent format;
• t[11:3] & tE : 12 bits for computing the capability’s “top”

14-bit memory address;
• b[13:3] & bE : 14 bits for computing the capability’s “base”

14-bit memory address.
CHERI Concentrate uses a compressed floating point repre-
sentation to encode the “top” t and “base” b bounds relative
to a capability’s address. It supports two formats: if I is set,
then the lowest three bits bE and tE of b and t, respectively,
are used to represent an exponent at the expense of three
bits of precision; otherwise, the exponent is considered to be
zero giving back b and t their lower three bits. An interested
reader should consult the CHERI ISA [9] and original CHERI
Concentrate [28] paper for details.

In addition to formalizing CHERI Concentrate, we also
present the formal verification of the encode / decode function
properties. The role of the encode / decode functions is to
compress / decompress the bounds for the region of memory

161

https://www.cs.utexas.edu/users/moore/publications/acl2-papers.html.
https://2https://www.cs.utexas.edu/users/moore/publications/acl2-papers.html

63 0

p otype I t[11:3] tE b[13:3] bE

a

Name Field Description
Registers rgf 16 general-purpose 128-bit registers

RIP rip Program counter
ZF zf Zero flag
SF sf Sign flag
OF of Overflow flag

Memory mem 264 bytes modelled with 224 addresses
MS ms Model state, indicates model errorsFig. 2. CHERI Concentrate 128-bit format.

a capability is permitted to access, which are specified by a
base address and a length. When added together, the base
address and the length form a top address, i.e. the upper
bound in memory a capability is permitted to access. Due
to compression, some accuracy is lost after encoding the top
and base, except in certain circumstances. Let b0, ℓ0, and t0
be the base, length, and top before encoding, respectively. Let
b1, ℓ1, and t1 be the result of encoding and then decoding b0,
ℓ0, and t0, respectively. These are the properties we verify:

1) b0 ≥ b1 for any b0, t0, and address;
b0 − b1 ≤ 2E+32) for any b0, t0, and address;

3) t0 ≤ t1 for any b0, t0, and address;
t1 − t0 ≤ 2E+34) for any b0, t0, and address;

5) b0 = b1 and t0 = t1 when the lower E + 3 bits of b0
and t0 are zero;

6) b0 = b1 and t0 = t1 when ℓ0 < 212 .
Here E is a 6-bit value representing an exponent when ℓ0 ≥
212 . Properties (1) and (3) ensure that compression does not
relax the memory bounds originally intended by the capability,
thus ensuring secure memory compartmentalization. Properties
(2) and (4) guarantee that any rounding error resulting from
compression is not too large. Properties (5) and (6) specify
the exact conditions for which the bounds can be recovered
exactly. We discuss the verification of these properties and the
formalization of CHERI Concentrate in Section VI.
B. Architectural Capabilities

CHERI Concentrate is a format for storing capabilities
in memory. We make a distinction between architectural
capabilities and capabilities in memory. Architectural capa-
bilities contain software-accessible fields that are not reflected
explicitly by, but can still be inferred from, a given capability’s
in-memory representation. In our model, architectural capa-
bilities contain the following fields: 1-bit validity tag; 16-bit
permissions (perms); 18-bit object type (otype); 64-bit offset;
64-bit base; and 64-bit length. The base is the lower bound of
the memory region that can be dereferenced by a capability.
Adding length to base gives the upper bound (a.k.a. top) of
the memory region that can be dereferenced by a capability.
Adding offset to base gives the address when the capability is
used as a pointer.

System constraints necessitate compressing the informa-
tion provided by an architectural capability into the format
described by CHERI Concentrate, which is then stored in
memory. We formalize a kind of program interface in which
numerous functions translate between the human readable
architectural capabilities format and the compressed raw bits
of CHERI Concentrate. For fields such as perms or otype, sim-
ple direct bit-to-integer and integer-to-bit translations suffice.
Translating offset, base, and length fields from an architectural

TABLE I
CHERI-Y86 MACHINE STATE OBJECT

capability to the base, top, and address fields in CHERI Con-
centrate requires much more sophisticated interface functions
and must satisfy the properties discussed in Section III-A

IV. THE ACL2 CHERI-Y86 MODEL

CHERI-Y86 is formalized using an interpreter approach to
operational semantics and direct proofs verified using sym-
bolic simulation based on Boyer-Moore clock functions [29]–
[31]. A machine state object is defined in the ACL2 logic with
field access and update functions. Semantic functions for each
instruction in the ISA are implemented using the state object’s
access and update functions. A step function is defined to
handle the fetch-decode-execute cycle, calling the appropriate
instruction semantic functions during the execute stage. A run
function is defined to take a number n of instructions to be
executed and an initial CHERI-Y86 state object, and attempts
to execute n calls to the step function.

A. The CHERI-Y86 State Object

We use a single-threaded object (stobj) to represent the
CHERI-Y86 state in ACL2 [32]. The technical details of stobjs
are beyond the scope of this paper, but the upshot is that stobjs
enable extremely efficient field updates, and therefore fast
execution speeds, by way of destructive memory assignments.

The fields of the CHERI-Y86 state y86-64 are summa-
rized in Table I. Those familiar with the Y86 architecture will
find the CHERI-Y86 state machine similar, but some fields
deserve extra comments. The first field is a static array of
16 general purpose registers. These registers are 128-bit in
order to accommodate 128-bit capabilities. CHERI systems in
general make a distinction between general-purpose registers
and capability registers. However, the CHERI-x86-64 intends
to extend existing general-purpose 64-bit x86 registers to 128-
bit in order to store capabilities in the CHERI Concentrate
format. We likewise accommodate 128-bit capabilities by
extending general-purpose 64-bit Y86 registers to 128-bit.
The Y86 model is intended to represent a 264 byte physical
memory and we maintain the byte-level semantics specified
by the x86 specifications. The model state (MS) is a flag
representing the state of the model as a simulator in ACL2
and not part of the original Y86 processor. It is used to
signal problems with the model, such as when the CHERI-
Y86 processor is halted. While the flag is nil, there is no
problem with the CHERI-Y86 processor model; otherwise, the
MS flag indicates the problem.

Each field of a model can be accessed by passing the
CHERI-Y86 object corresponding to the model and invoking

162

0 23

the appropriate field. For example (rip y86-64) returns
the program counter of y86-64. Fields with multiple pa-
rameters can be similarly accessed by passing the desired
key or address. For example, to access the 0th register rax,
use (rgfi 0 y86-64) or (rgfi :rax y86-64). Up-
dating the fields performed by prefixing ! to the respective
read commands. For example, to reset the program counter
of y86-64 to 0, invoke (!rip 0 y86-64). Similarly,
(!rgfi :rcx #xB0BA7EA y86-64) updates the 128-
bit register rcx with 185313258.

B. Symbolic Simulation

Designed for symbolic or functional simulation, our sim-
ulator allows users to express machine state and instruction
streams in symbolic ACL2 representations, enabling detailed,
step-by-step observation of the model’s behavior—including
permission checks, capability manipulations, and error signal-
ing. By working with interpretable, symbolic input and output,
we lower the barrier for users to explore, reason about, and
validate CHERI mechanisms within our x86-like model. While
the current implementation does not natively load compiled
binaries, extending the simulator to do so would primarily
involve building pre- and post-processing layers that translate
between binary formats and these symbolic representations.
This design choice keeps our core model transparent and
amenable to formal verification, while leaving open the pos-
sibility of direct binary support in future work.

C. Step & Run Functions

Simulation of machine program execution is performed by
a sequence of calls to the CHERI-Y86 step functions. Each
step function fetches an instruction from the memory of the
CHERI-Y86 state object, decodes it, and then initiates the
execute stage. Execution of the instruction is performed by se-
mantic functions, which interpret the intended behaviour of the
state under the instruction’s effects and transforms the CHERI-
Y86 processor from one state to the next. Modifications to the
model state are permitted only if the appropriate capabilities
are in place. The step function y86-step can be called on
a state object y86-64 with (y86-step y86-64), which
returns a new model state object after performing a fetch-
decode-execute cycle. Note that this new state object may
contain an error flag. Passing the number of steps desired to
the y86 function, e.g. (y86 y86-64 n) will attempt to run
y86-step n times. If the run function encounters a state
object with the MS flag raised, then y86 immediately returns
the state object. Typically, the MS flag indicates a model error
or that a HALT instruction has been encountered. Otherwise,
(y86 y86-64 n) will return the y86-64 object in the
state after n instructions have been executed.

D. CHERI-Y86 Instruction Semantic Functions

CHERI-Y86 instruction semantic functions specify the ef-
fect of machine code instructions on the CHERI-Y86 state.
Our modelling of the Y86 instructions is comprehensive

0xc 0x0 fn cs1 rd

Fig. 3. CHERI-Y86 capability-inspection instruction format.

0 31

0xc 0x1 fn cs1 rs1 0x0 cd

Fig. 4. CHERI-Y86 capability-modification instruction format.

and we implement the CHERI-Y86 equivalent of all non-
deprecated instructions that are in the CHERI-x86-64 ISA v8
specifications. Because the latest CHERI-x86-64 specifications
are merely a sketch, we take implementation inspiration from
the CHERI-RISC-V where necessary.

We develop our own format for CHERI-Y86 capability-
aware instructions while adhering to CHERI design goals.
Figure 3 contains a visual representation of the CHERI-
Y86 capability-inspection instruction format. A capability-
inspection instruction reads the field of a capability stored in
capability register cs1 and writes the field to register rd. All
CHERI-Y86 registers have been extended to support storing
128-bit capabilities, so cs1 simply refers to a general-purpose
register as well. We prefix instructions unique to CHERI with
0xc to indicate they are capability-aware. The fn field in
Figure 3 contains one of nine possible values since there
are nine capability-inspection instructions described in the
CHERI-x86-64 specification. Similarly, we’ve implemented
all the capability-modification, pointer-arithmetic, and pointer-
comparison instructions possible for a Y86-based architecture.

As an illustration, we briefly describe the implementation
of GCPERM, a capability-inspection instructions which reads
the permissions of a capability and stores them in a reg-
ister. Algorithm 1 describes the GCPERM instruction with
explanations inline. Part of the decode process is handled
by the instruction semantic functions, namely the parts that
handle reading data contained within the instruction such
as source / destination registers, immediate values, memory
addresses, etc. The assignments to pc, rArB, rB, and rA in
Algorithm 1 are a partial consequence of the decode process.
Identifying the particular instruction itself is handled by the
step function, since it needs to dispatch execute responsibilities
to the appropriate semantic function. The capability to be
inspected cs1 is stored in register rA in CHERI Concentrate
format. The call to GETCAPABILITY is our pseudocode way
of calling an interface function which decodes cs1 in CHERI
Concentrate format into an architectural capability. Assigning
the decoded capability to cs1 permits us to access the ar-
chitectural capability fields with functions such as GCPERM,
which reads the permissions field. Finally, updates are made
to the CHERI-Y86 state object and the state object is returned.

Notice that state objects with the model state flag raised
are returned when the instruction attempts to perform an
unintended task. In Algorithm 1, this happens when the
program counter is at an address in memory that would not

163

fit the size of the instruction, or when an attempt to read
from register 15 is made, which is prohibited in Y86. For
more complicated instructions, such as capability-modification
instructions, setting the model state flag plays a much larger
role. For example, CHERI protection features specify that
capabilities should follow a kind of “monotonicity” property,
which we will describe in Section V. The upshot is that should
an instruction attempt to violate a CHERI architectural security
property, then the semantic function will return a state object
with a model state flag raised and an error message describing
the property violated. Because these security properties are
built into the definition of the semantic functions, proving that
our model satisfies the CHERI protection features amounts
to unwinding definitions. We also describe our proofs in
Section V.

V. VERIFYING BASIC CHERI-Y86 PROPERTIES

In this section, we describe some basic ACL2 features used
to ensure the veracity of our CHERI-Y86 model and verify
the CHERI protection features within. Rewrite rules are the
method by which most ACL2 proofs are discharged. Rewrite
rules enable the ACL2 system to replace subterms of a formula
with other terms. Usually, rewrite rules are introduced into
the ACL2 logic when a theorem is proven. Some theorems
are automatically introduced into the logic whenever a new
function is defined. For example, the definition of the function
is a theorem itself. The rewrite rule associated with this
theorem enables ACL2 to replace a call to the function with
its definition, essentially “expanding” a function. A less trivial
example is the theorem that states a newly defined function
eventually terminates on all inputs. All functions in ACL2
must be proven to terminate before they are accepted into
the logical universe. This is especially important for functions
such as y86 where avoiding the halting problem is desirable.
In the case of y86, the function is measured by the number
of steps it is given; that is, either (y86 y86-64 n) will
terminate after n recursive calls or a model state error will be
raised.

Some basic but important theorems of our model are read-
over-write lemmas. These lemmas state that reading from a
written field recovers the value written. For example, Listing 1
contains a theorem which states that writing a value v to
register i in the y86-64 state object, and then reading
from register i again results in the same value v. Proving
read-over-write lemmas are a good example of using rewrite
rules. Expanding the definitions of rgfi and !rgfi exposes
that underneath the stobj implementation are array-like data
structures with their own read-over-write lemmas. The proof
of rgfi-!rgfi in Listing 1 can be roughly thought of as
the following sequence of rewrites

(rgfi i (!rgfi i v y86-64))
−→ (nth i (!rgfi i v y86-64))
−→ (nth i (update-nth i v <rgfi-array>))
−→ v
Similarly, there are theorems that describe fields to which

no writes are performed. Suppose a write is made to memory

(defthm rgfi-!rgfi (equal (rgfi i (!rgfi i v
y86-64)) v))

Listing 1. ACL2 read-over-write lemma for registers.

(defthm memi-read-through-different-address-!memi
(implies (and (n64p i) (n64p j) (not (equal i j)))

(equal (memi i (!memi j v y86-64))
(memi i y86-64))))

Listing 2. ACL2 theorem for memory invariance.

address i. It should follow that the memory at any address
other than i is unchanged. Listing 2 contains the ACL2 theo-
rem that states this property, which is discharged via rewriting
as well. This property is perhaps even more important as it is
a guarantee that contributes significantly to memory safety.

In addition to the read-over-write lemmas just described,
there are also three more classes of theorems that together
usually form a sufficient theory for proving more desirable
theorems about a model:

1) write-over-write lemmas: two writes to different memory
addresses can be performed in any order while result-
ing in the same final state object, and if the memory
addresses were the same, then reading from the same
memory address will result in the value of the most
recent write;

2) write-over-read lemmas: writing a value that was just
read from a memory address back into the same memory
address will result in the same initial machine state;

3) state well formedness lemmas: writing a valid value to
a field in a well formed machine state object results in
another well formed state.

Basic protection features of CHERI capabilities are also
proven using core ACL2 theorem proving features. For exam-
ple, CHERI restricts capabilities that arise from other capabili-
ties to an monotonicity property; that is, there is a partial order
≤ on capabilities, and if a capability-modification instruction
is given a capability c1 that results in a new capability c2, then
we must have c2 ≤ c1. For example, consider CSETBOUNDS,
a CHERI-Y86 instruction that takes a capability c1 and register
r2, and creates a new capability c2 with bounds based on the
address of c1 and the value in r2 (see Figure 4 for context).
All other fields of c2 are the same as c1. In this case, we have
c2 ≤ c1 iff the bounds of c2 are contained within the bounds
of c1, i.e. GETBOUNDS(c2) ⊆ GETBOUNDS(c1). This is a
reasonable CHERI protection feature; a capability should not
be able to create a capability with greater memory access than
its own. The way we prove this is simple:

1) initialize a well formed valid (no MS flag set) CHERI-
Y86 state;

2) symbolically simulate one fetch-decode-execute cycle
using CSETBOUNDS;

3) prove GETBOUNDS(c2) ⊆ GETBOUNDS(c1).
Performing step (3) amounts to applying rewrite rules

the definition of CSETBOUNDS. Recall the definition of
GCPERM in Algorithm 1. When the instruction semantic

164

Algorithm 1 High-level description of CHERI-Y86 GCPERM instruction implementation.
procedure GCPERM(y86-64)

pc ← RIP(y86-64) ▷ Get PC from state
if pc < 264 − 4 then ▷ Check if PC is too large

return !MS(y86-64, “PC too large”) ▷ Return state w/ MS flag set & error description
rArB ← READMEM(pc + 2, y86-64) ▷ Get the byte specifying src & dest registers
rB ← rArB & 24 ▷ Get the dest register by masking upper 4 bits
rA ← SHIFTRIGHT(rArB, 4) & 24 − 1 ▷ Get the src register by shifting & masking
if rA = 15 ∨ rB = 15 then ▷ Check if prohibited register specified

return !MS(y86-64, “Prohibited register”) ▷ Return state with MS flag set
cs1 ← GETCAPABILITY(y86-64, rA) ▷ Get & decode capability from src register
cPerms ← GETPERM(cs1) ▷ Get permissions from capability
y86-64 ← !RGFI(rB, cPerms, y86-64) ▷ Store permissions in dest register & update state
y86-64 ← !RIP(pc + 3, y86-64) ▷ Update PC in state
return y86-64 ▷ Return updated state

function attempts to perform a prohibited action, the function
returns a state object with the MS flag raised. Similarly,
the semantic function for CSETBOUNDS returns a state ob-
ject with the MS flag raised should c2 be assigned bounds
outside of c1’s bounds. Therefore, if a valid CHERI-Y86
state object is returned after the fetch-decode-execute cycle is
performed in step (2), then we must have GETBOUNDS(c2) ⊆
GETBOUNDS(c1) and thus c2 ≤ c1.

VI. VERIFYING CHERI CONCENTRATE

Our approach to proving the properties in Section III-A
makes heavy use of the symbolic simulation framework GL
with case-splitting [33], [34]. GL supports model checking
with both binary decision diagrams (BDDs) as ACL2 symbolic
objects and external SAT solvers. We use BDDs as the back-
end engine for GL. While case splits were necessary for
some of the larger proofs, we found that GL BDDs were
sufficient for our verification needs. Moreover, GL’s BDD
proof procedure is verified in ACL2, alleviating any extra
soundness concerns that may arise from calling external tools.

The ACL2 proofs of the encode / decode properties 5-
6 are straightforward applications of GL’s default symbolic
simulation event def-gl-thm. To illustrate the use of GL,
recall property 6 states

6) b0 = b1 and t0 = t1 when ℓ0 < 212 .
Listing 3 contains the ACL2 theorem for property 6, i.e.
the top and base bounds are exactly recoverable when

212ℓ0 < . The expression associated with the :hyp key

(def-gl-thm decode-encode-equal-small-seg
:hyp (and (valid-addr-p addr base len)

(valid-b-l-p base len)
(< len (expt 2 *TW*)))

:concl (equal (decode-compression
(encode-compression len base)
addr)

(bounds (+ len base) base))
:g-bindings ‘((base ,(gl::g-int 0 3 65))

(len ,(gl::g-int 1 3 66))
(addr ,(gl::g-int 2 3 65))))

Listing 3. ACL2 theorem for property 6 using GL.

is the GL method of indicating the hypotheses of the the-
orem. In this case, (valid-addr-p addr base len)
and (valid-b-l-p base len) simply check that addr,
base, and len are appropriately “typed.” The hypothesis

212(< len (expt 2 *TW*)) just checks that ℓ0 < .
The key :concl denotes the conclusion of the theorem.
For property 6. this simply states that decoding the encoded
base and len with respect to an addr returns the well-
formed bounds given by exactly the original base and len.
The :g-bindings are shape specifications which assign the
individual bits of base, len, and addr to BDD variables.
The assignment of base to gl::g-int 0 3 65 indicates
the bits of base are assigned to BDD variables indexed
0, 3, 6, . . . , 192 = 3 × (65 − 1). Similarly, the bits of len
are assigned to BDD variables indexed 1, 4, 7, . . . , 193
and the bits of addr assigned to BDD variables indexed
2, 5, 8, . . . , 194. One sign bit is required to satisfy the
integer type but is redundant. The “mixed” order of the
variables are for performance purposes. Under the hypotheses
and shape specifications, the “domain” of the theorem is
finite (i.e. base, addr, and len are 64-bit) and thus the
theorem is amenable to verification via exhaustive symbolic
execution of the functions (i.e. the encode-compression,
decode-compression, +, and bounds functions) in the
theorem under the BDD expressions. Moreover, the hypothesis
restricts ℓ to ℓ < 212 , giving it relatively few possible values
relative to its full 64-bit width (see Figure 6 for a visual
representation), making the problem tractable for automated
procedures. GL performs this symbolic simulation and readily
proves the desired theorem.

In contrast to properties 5-6, properties 1-4 all required
parameterized case splitting. Listing 4 is the ACL2 theorem
of the encode / decode property 1, which states

1) b0 ≥ b1 for any b0, t0, and address.

Note that the case where ℓ < 212 is already handled by prop-
erty 6, so we may restrict ourselves to when ℓ ≥ 212 . Instead
of attempting the proof while assuming the full 64-bit width
of the three integers of interest, we split the domains of base,

165

	 	

(def-gl-param-thm decode-encode-b-bound-len>2ˆ12
:hyp (and (valid-addr-p addr base len)

(valid-b-l-p base len)
(<= (expt 2 *tw*) len))

:concl (<= (bounds->base (decode-compression (encode-compression len base) addr))
base)

:param-bindings
‘((((low 12) (high 16)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 16) (high 20)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))
...
(((low 64) (high 65)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65)))))

:param-hyp (and (<= (expt 2 low) len) (< len (expt 2 high)))
:cov-bindings (gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

Listing 4. ACL2 theorem for property 1 using GL with parameterized case splitting.

0 63

· · ·

212 ≤ ℓ < 216 216 ≤ ℓ < 220 260 ≤ ℓ < 264

Fig. 5. GL case splits for theorem decode-encode-b-bound-len>21̂2 in Listing 4; cases must “cover” the domain 212 ≤ ℓ < 264 .

0 63

ℓ < 212

Fig. 6. Case for theorem decode-encode-equal-small-seg in Listing 3: hypothesis restricts ℓ < 212 under which GL proves the theorem.

len, and addr into 4-bit “intervals,” effectively performing
individual symbolic simulations for when the length ℓ satisfies

2L ≤ ℓ < 2H

for L ∈ LOW := {4n : n ∈ N ∧ 3 ≤ n ≤ 16} and H ∈
HIGH := {4n : n ∈ N ∧ 4 ≤ n ≤ 16} ∪ {65}, i.e. 212 ≤ ℓ <
216 and 216 ≤ ℓ < 220 and 220 ≤ ℓ < 224 and so on. In order
to perform case splitting soundly, we must also show that our
choice of splits for ℓ “covers” the intended domain of ℓ, i.e.�
ℓ ∈ N : 212 ≤ ℓ < 265 � ⊆ ℓ ∈ N : L ∈ LOW ∧ H ∈ HIGH ∧ 2H ≤ ℓ < 2H .

Visually, this is represented by Figure 5. Note that the hypoth-
esis stipulates that len is 64-bit, but we use an extra bit in
the GL proof to make the bounds and coverage proof easier
to state. The :hyp and :concl keys in Listing 4 indicate
the hypothesis and the conclusion, respectively, similar to
Listing 3. The key :param-hyp indicates how the case
splitting should be performed; here, len is given various
upper and lower bounds determined by different values of low
and high. The values of low and high are given by the
:param-bindings. GL “auto-bindings” are a convenient
macro for defining the same shape specifications as in Listing 3
with the same “mixed” BDD variable ordering. In order for
a proof by cases to be sound, we must also prove that the
cases cover the domain of the theorem, which is why shape
specifications are also provided to the :cov-bindings key.

Case splits for the CHERI Concentrate properties 2-4 are
the same. Case splitting into smaller bit “intervals” would dis-
charge the proofs faster at the expense of increasingly verbose
user-provided hints. Case splitting being an effective approach
suggests that the complexity of encoding and decoding does
not scale with the length of the memory regions. Indeed, this
accords with the design principles of CHERI Concentrate:
“encoding efficiency, minimize delay of pointer arithmetic,
and eliminate additional load-to-use delay” [28]. On the other
hand, properties 5-6 required no case splitting largely because
the encode / decode logic is greatly simplified when ℓ0 < 212 ,
and alignment requirements reduce the number of variable bits.

VII. CONCLUSIONS AND FUTURE WORK

We presented a formal model for the concurrent simulation
and verification of CHERI architectural features. We extend
Y86-64 with CHERI features because we intend to perform
the same analysis on the x86-64 ISA augmented with CHERI
features; however, the full specifications for CHERI-x86-64
have not yet been developed. Our model is built using the
ACL2 programming language and verified with the ACL2
theorem prover. Function definitions double as functional
specifications; many fundamental properties are verified via
function expansion. For bit-twiddling proofs where hand-
guiding the theorem prover was too cumbersome, we offload
the work to GL, a fully ACL2 verified model checker with
support for ACL2 BDDs. Our model comprises 9,856 lines
of ACL2, including 2,446 lines of proof scripts. Key-property
proofs typically completed in about two minutes each.

166

There are two major directions for future work. First, we
intend to model CHERI-x86-64. CHERI-x86-64 is still in
development; there is an opportunity to leverage existing
ACL2 frameworks toward the new frontier of CHERI systems.
Second, our model can be used to verify machine code pro-
grams involving CHERI instructions. In this paper, we verified
straightline programs involving capability-aware instructions
to analyse the protection features of CHERI capabilities. We
leave the verification of longer capability-aware machine code
programs for the future.

REFERENCES

[1] R. N. Watson, S. W. Moore, P. Sewell, and P. G. Neumann,
“An introduction to CHERI,” University of Cambridge Computer
Laboratory, Technical Report 941, September 2019. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

[2] R. Grisenthwaite. (2022) Morello research program hits major
milestone with hardware now available for testing. [Online]. Available:
https://www.arm.com/company/news/2022/01/morello- research-
program-hits-major-milestone-with-hardware-now-available-for-testing

[3] S. Amar. (2022) An armful of CHERIs. [Online]. Available:
https://msrc.microsoft.com/blog/2022/01/an armful of cheris/

[4] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis,
L. Eisen, N. W. Filardo, F. A. Fuchs, R. Grisenthwaite, A. Joannou,
B. Laurie, A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis,
R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia,
“Capability hardware enhanced RISC instructions: CHERI instruction-
set architecture (version 9),” University of Cambridge Computer
Laboratory, Technical Report 987, September 2023. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf

[5] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, 3rd ed. USA: Pearson, 2015.

[6] M. Kaufmann and J. Moore, “An industrial strength theorem prover
for a logic based on Common Lisp,” IEEE Transactions on Software
Engineering, vol. 23, no. 4, pp. 203–213, April 1997.

[7] J. B. Dennis and E. C. V. Horn, “Programming semantics for multipro-
grammed computations,” Communications of the ACM, vol. 9, no. 3, pp.
143–155, March 1966.

[8] H. M. Levy, Capability-Based Computer Systems. Bedford, MA: Digital
Press, 1984.

[9] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis,
L. Eisen, N. W. Filardo, R. Grisenthwaite, A. Joannou, B. Laurie,
A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis,
R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia,
“Capability hardware enhanced RISC instructions: CHERI instruction-
set architecture (version 8),” University of Cambridge Computer
Laboratory, Technical Report 951, October 2020. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

[10] J. Shapiro, J. Smith, and D. Farber, “EROS: A fast capability system,”
in Proceedings of the Seventeenth Symposium on Operating System
Principles. ACM, 1999, pp. 170–185.

[11] J. Shapiro and J. Adams, “Coyotos microkernel specification, Version
0.6+,” https://hydra-www.ietfng.org/capbib/cache/shapiro:coyotosspec.
html, 2007.

[12] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: From general purpose to a
proof of information flow enforcement,” in Symposium on Security and
Privacy. IEEE, 2013, pp. 415–429.

[13] W. Boebert, “On the inability of an unmodified capability machine to
enforce the *-property,” in Proceedings of the 7th DoD/NBS Computer
Security Conference, September 1984, pp. 291–293.

[14] J. Shapiro and S. Weber, “Verifying the EROS confinement mechanism,”
in Proceedings of the 2000 Symposium on Security and Privacy. IEEE,
2000, pp. 166–176.

[15] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “SeL4: Formal verification of an OS kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating

Systems Principles. New York: Association for Computing Machinery,
2009, p. 207–220.

[16] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-a,
RISC-v, and CHERI-MIPS,” Proc. ACM Program. Lang., vol. 3, no.
POPL, jan 2019. [Online]. Available: https://doi.org/10.1145/3290384

[17] K. Nienhuis, A. Joannou, T. Bauereiss, A. Fox, M. Roe, B. Campbell,
M. Naylor, R. M. Norton, S. W. Moore, P. G. Neumann, I. Stark,
R. N. M. Watson, and P. Sewell, “Rigorous engineering for hardware
security: Formal modelling and proof in the CHERI design and imple-
mentation process,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 1003–1020.

[18] T. Bauereiss, B. Campbell, T. Sewell, A. Armstrong, L. Esswood,
I. Stark, G. Barnes, R. N. M. Watson, and P. Sewell, “Verified security
for the morello capability-enhanced prototype arm architecture,” in
Programming Languages and Systems, I. Sergey, Ed. Cham: Springer
International Publishing, 2022, pp. 174–203.

[19] S. Amar, D. Chisnall, T. Chen, N. W. Filardo, B. Laurie, K. Liu,
R. Norton, S. W. Moore, Y. Tao, R. N. M. Watson, and H. Xia,
“Cheriot: Complete memory safety for embedded devices,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 641–653. [Online].
Available: https://doi.org/10.1145/3613424.3614266

[20] A. L. Georges*, A. Guéneau*, T. Van Strydonck, A. Timany, A. Trieu*,
D. Devriese, and L. Birkedal, “Cerise: Program verification on a
capability machine in the presence of untrusted code,” J. ACM, vol. 71,
no. 1, Feb. 2024. [Online]. Available: https://doi.org/10.1145/3623510

[21] T. Van Strydonck, A. L. Georges, A. Guéneau, A. Trieu, A. Timany,
F. Piessens, L. Birkedal, and D. Devriese, “Proving full-system
security properties under multiple attacker models on capability
machines,” in 2022 IEEE 35th Computer Security Foundations
Symposium (CSF), ser. 2022 IEEE 35th Computer Security Foundations
Symposium (CSF), Haifa, Israel, Aug. 2022. [Online]. Available:
https://inria.hal.science/hal-03826851

[22] J. Moore, T. Lynch, and M. Kaufmann, “A mechanically checked proof
of the correctness of the kernel of the AMD5K86 floating-point division
algorithm,” IEEE Transactions on Computers, vol. 47, no. 9, pp. 913–
926, September 1998.

[23] W. A. Hunt, Jr., M. Kaufmann, J. S. Moore, and A. Slobadova,
“Industrial hardware and software verification with ACL2,” in Verified
Trustworthy Software Systems: Philosophical Transactions A, vol 374,
P. Gardner, P. O’Hearn, M. Gordon, G. Morrisett, and F. Schneider, Eds.
Royal Society Publishing, 2017.

[24] S. Goel, “Formal verification of application and system programs based
on a validated x86 ISA model,” Ph.D. dissertation, University of Texas
at Austin, 2016.

[25] A. Coglio and S. Goel, “Adding 32-bit mode to the ACL2 model of the
x86 ISA,” in 15th International Workshop on the ACL2 Theorem Prover
and its Applications, 2018.

[26] S. Goel, W. A. Hunt, Jr., and M. Kaufmann, “Engineering a formal,
executable x86 ISA simulator for software verification,” in Provably
Correct Systems (ProCos), 2017.

[27] S. Goel and W. A. Hunt, Jr., “Automated code proofs on a formal model
of the x86,” in Automated Code Proofs on a Formal Model of the x86
(VSTTE), 2013.

[28] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. Norton, D. Chisnall,
B. Davis, K. Gudka, N. Filard, A. Makettos, M. Roe, P. Neumann,
R. Watson, and S. W. Moore, “CHERI concentrate: Practical compressed
capabilities,” IEEE Transactions on Computers, vol. 68, no. 10, pp.
1455–1469, October 2019.

[29] S. Ray and J. S. Moore, “Proof styles in operational semantics,” in
Formal Methods in Computer-Aided Design, A. J. Hu and A. K. Martin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 67–81.

[30] S. Ray, W. A. Hunt, J. Matthews, and J. S. Moore, “A mechanical
analysis of program verification strategies,” Journal of Automated
Reasoning, vol. 40, pp. 245–269, 2008. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:532016

[31] “Mechanized operational semantics,” https://www.cs.utexas.edu/user
s/moore/publications/talks/marktoberdorf-08/index.html, accessed
2024-04-15.

[32] “Stobj,” https://www.cs.utexas.edu/users/moore/acl2/manuals/current/m
anual/index-seo.php/ACL2 STOBJ, accessed 2024-04-15.

167

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.arm.com/company/news/2022/01/morello-research-program-hits-major-milestone-with-hardware-now-available-for-testing
https://www.arm.com/company/news/2022/01/morello-research-program-hits-major-milestone-with-hardware-now-available-for-testing
https://msrc.microsoft.com/blog/2022/01/an_armful_of_cheris/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://hydra-www.ietfng.org/capbib/cache/shapiro:coyotosspec.html
https://hydra-www.ietfng.org/capbib/cache/shapiro:coyotosspec.html
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3623510
https://inria.hal.science/hal-03826851
https://api.semanticscholar.org/CorpusID:532016
https://api.semanticscholar.org/CorpusID:532016
https://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/index.html
https://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/index.html
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/ACL2____STOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/ACL2____STOBJ

[33] S. Swords and J. Davis, “Bit-blasting ACL2 theorems,” in Proceedings
10th International Workshop on the ACL2 Theorem Prover and its
Applications, Austin, Texas, USA, November 3-4, 2011, ser. Elec-
tronic Proceedings in Theoretical Computer Science, D. Hardin and
J. Schmaltz, Eds., vol. 70. Open Publishing Association, 2011, pp.
84–102.

[34] S. Swords, “Term-level reasoning in support of bit-blasting,” in Pro-
ceedings 14th International Workshop on the ACL2 Theorem Prover
and its Applications, Austin, Texas, USA, May 22-23, 2017, ser.
Electronic Proceedings in Theoretical Computer Science, A. Slobodova
and W. Hunt, Jr., Eds., vol. 249. Open Publishing Association, 2017,
pp. 95–111.

168

	Introduction
	Related Work
	Formalized CHERI Features
	CHERI Concentrate
	Architectural Capabilities

	The ACL2 CHERI-Y86 Model
	The CHERI-Y86 State Object
	Symbolic Simulation
	Step & Run Functions
	CHERI-Y86 Instruction Semantic Functions

	Verifying Basic CHERI-Y86 Properties
	Verifying CHERI Concentrate
	Conclusions and Future Work
	References

