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Abstract—The correct management of translation lookaside
buffers (TLBs) by memory-management software is critical to the
security of modern computer systems. We develop a methodology
for reasoning about software that modifies address translations
executing on machines with a TLB, enabling the verification
of the security-critical, memory-management code in operating
system kernels at the binary level. We automate proving that
the TLB does not contain entries that are inconsistent with the
page tables which allows us to reduce the problem of reasoning
about address translation in the presence of a TLB to the
problem of reasoning about address translation by walking page
tables. Our technique is independent of any particular ISA or
TLB microarchitecture. To demonstrate the effectiveness of our
approach, we add a TLB to the ACL2 model of the x86 ISA,
implement this reasoning technique in the ACL2 theorem prover,
and verify a page-table-altering program called Zero-Copy that
copies a page of data in the virtual-address space by modifying
the page tables. We were able to reuse and update substantial
portions of a previous version of the proof of correctness that was
performed with a version of the x86 ISA model lacking a TLB,
confirming the effectiveness of our reduction-based method.

Index Terms—Software Verification, Caching, Address Trans-
lation, x86, ACL2.

I. INTRODUCTION

Contemporary microprocessors provide address-translation
mechanisms to enable operating system kernels to implement
process isolation and other desirable security properties. With-
out address translation, any running process could modify the
memory of any other process or even the kernel. This would
make it impossible for operating systems to implement process
isolation or differentiate in any way between the permissions
of different processes running on the system. The most com-
monly employed address-translation mechanism is paging, and
paging-enabled microprocessors generally implement one or
more address-translation caching mechanisms since paging
would be prohibitively slow without them.

Since memory-management software is crucial to com-
puter security, its verification has drawn the interest of the
formal-methods community, and paging semantics have been
specified formally for several ISAs. However, the behav-
ior of memory-management software running on machines
with address translation in the presence of address-translation
caches is less well studied using formal methods. These
caches have architecturally visible behavior, and memory-
management software must correctly manage the contents of
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such caches to implement the security properties expected
of modern operating systems. Thus, it is not sufficient to
verify memory-management software using an ISA model
lacking models of address-translation caches to ensure that
the software will execute correctly on a machine with address-
translation caches.

It is challenging to verify memory management software
in the presence of a translation lookaside buffer (TLB), a
common type of address-translation cache, because ISAs allow
much flexibility in their implementation. On most ISAs, a
TLB may cache any address translation that has ever been
valid unless its corresponding TLB entry has been explicitly
invalidated by software since it was last valid in the page
tables. This is difficult to reason about because determining
whether there may exist a TLB entry for a given translation
may require considering the state of the page tables far before
the current point in program execution. Furthermore, the page
tables themselves form a tree structure in memory which can
be very large, making the consideration of many previous
states of the page tables even more difficult.

Our primary contribution is an ISA and microarchitecture-
independent methodology for reducing the problem of reason-
ing about software in the presence of a TLB to the better
studied problem of reasoning about software on a machine
with paging but no TLB. This is not possible in general,
due to TLBs having architecturally-visible behavior, but it is
possible when the software correctly invalidates stale entries
that may be present in the TLB after updating page-table
entries. Fortunately, considering only this case is sufficient for
verifying memory-management software because invalidating
potentially stale TLB entries before they can be used to
perform a translation is a property expected to be maintained
by correct memory-management software. Our technique is
largely automated and allows the user to easily reuse large
parts of proofs about memory-management software that were
performed assuming there is no TLB.

We implement our technique using the ACL2 theorem
prover [1] on the ACL2, x86-ISA model [2] that we modified
by adding a TLB. To our knowledge, this model is the most
complete formal model of the x86 ISA; it is sufficiently
complete to boot Linux and to run multi-programmed Linux
programs. To demonstrate the efficacy of our reasoning strat-
egy, we have used our implementation of the technique on
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the x86-ISA model to verify a memory-management program,
called Zero-Copy. The Zero-Copy program copies a 1 GB page
in the virtual-address space by modifying the page tables to
have both the source and destination memory regions translate
to the same physical address; this avoids the need to actually
copy the data in memory. We were able to reuse much of
a correctness proof [2] written for a previous version of the
ACL2, x86-ISA model that lacked a TLB.

Our implementation of the technique—including the ISA
model, the proofs described here, and documentation—are
publicly available as part of the ACL2 Community Books
[3] under the 3-clause BSD license. The documentation [4] is
available online in XDOC [5], ACL2’s documentation system,
and the source, including theorems and proofs, is distributed
with ACL2 [1], in the books/projects/x86isa sub-
directory of the ACL2 source tree available on Github at
https://github.com/acl2/acl2.

We begin in Section II by reviewing related work. In
Section III, we summarize relevant background information
about address translation, address-translation caches, and their
architecturally visible behavior. In Section IV, we describe our
technique to reduce reasoning about software on a machine
with a TLB to address translation on a machine without a TLB.
In Section V, we describe how we added a TLB to our ACL2
x86-ISA model, and we implemented our reasoning technique
in the ACL2 theorem prover. Then, in Section VI, we apply
this work to verify the Zero-Copy binary program. Finally, in
Section VII, we conclude and describe how this work may be
employed in the future to verify operating-system, memory-
management code.

II. RELATED WORK

Modern formal ISA models include many details and subtle
features, like segmentation, paging, TLB definitions, privilege
levels, device configuration, and I/O. With such features, the
formal-methods community is able to analyze supervisor-level,
binary code that performs management of machine resources.
This has resulted in ambitious projects to build formally
verified operating systems, like seL4 [6], [7]. However, rea-
soning about the effects of caching on address translation
has continued to prove difficult, so the correct management
of the TLB is generally assumed when verifying software.
For example, this is the approach employed by the sel4
verification effort.

In 2015, Goel et al. developed the ACL2-based, x86-
ISA model [2] which we extend and employ to demonstrate
our reasoning technique. This ACL2-based, x86-ISA model
included a full specification of segmentation and paging in
64-bit mode, but it lacked interrupts and I/O peripherals.
Goel used this model to verify the Zero-Copy program that
copies data in the virtual address space by modifying address
translations in the page tables, demonstrating that it could be
used to reason about memory management software. However,
this model did not capture the semantics of TLBs or any other
address translation caches.

Syeda and Klein describe [8], [9] reasoning about a TLB
model that they added to the Fox and Myreen Isabelle/HOL
model [10] of the user-level, 32-bit Arm v7 ISA [11]. This
extension concerned only the memory system, and their model
did not sufficiently specify all of the ISA and memory seman-
tics necessary to boot an operating system. They describe how
they translate their model into more abstract memory models,
such as a model where the TLB contains all of the address
translation information for a particular address-space identifier
(ASID). This approach was shown to be logically consistent
with their lowest-level memory model.

Syeda and Klein proposed various abstractions of the
TLB, and their work argues formally about cache models
(and specifically, about the TLB). Their memory-management
model captures the essential concepts required to support the
ARM v7 [11] virtual-memory system. Their suite of memory
models are elegant, and those models expose the essential
issue of reasoning about programs that interact with the
memory-management system. However, the ISA model lacks
the detail required to support the booting of Linux or other
operating systems on their ARM v7 model, making it difficult
to gain confidence in the model’s accuracy. Furthermore, their
work was concerned with only the ARM v7 ISA, and they
did not generalize their approach to reasoning about address
translation to other ISAs.

In contrast, the work presented in this paper is an ISA
and TLB microarchitecture independent method for reasoning
about address translation with TLB caches and demonstrated
on an x86-ISA model complete enough to boot Linux and
run Linux programs. We have validated this model by booting
Linux, running user programs under Linux, running program-
matically generated tests, and cosimulation. By demonstrating
our reasoning strategy on thsi model, we show that our
technique can scale to the challenges of reasoning with large
ISA models that capture the semantics and complexities of
modern ISAs. Our reduction-based approach also simplifies
updating proofs that were done with ISA models that lacked
a TLB to accomodate TLB behavior, which we demonstrate
by reusing substantial parts of Goel’s Zero-Copy correctness
proof, providing a path for updating existing software correct-
ness proofs to account for TLB behavior.

III. BACKGROUND

In a microprocessor that performs address translation, pro-
grams execute load and store instructions on memory locations
specified by virtual addresses that are mapped, using a function
specified by supervisor-level software, into physical addresses
by a memory-management system. When address translation
is successful, virtual addresses are translated into physical ad-
dresses which are used to access memory; otherwise, memory
access is denied, and an exception is signaled. Most modern
processors that support address translation use paging as the
mechanism to specify the translation function. Paging allows
supervisor software to specify the translation function for each
page, a naturally aligned block of memory with a size that is
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Fig. 1. The virtual address (top) is broken into two parts, the virtual-page
number and the offset. The virtual-page number is used to index into the
TLB (left). If there is a TLB hit, the VPN is found in the TLB and the
corresponding physical page number is returned. Otherwise, a TLB miss
occurs and the processor performs a page-table walk (right). The returned
PPN and permissions from the page-table walk are used to update the TLB.
The offset is concatenated onto the PPN to construct the physical address
(bottom).

a power of 2, using memory-resident tables, known as page
tables, that form a tree structure.

When a microprocessor needs to refer to the page tables to
translate an address, it traverses the tree in a process known
as a page-table walk. This is done by using the high-order
bits of the virtual address, called the virtual-page number,
to pick a subtree at each level of the page tables until the
processor arrives at a leaf-page table entry. As it traverses
the page tables, the processor collects information about the
permissions of the page that are used to determine whether the
processor should raise an exception, and the leaf-page table
entry contains the physical page number corresponding to the
virtual page number. If the access is allowed and the processor
does not raise an exception, the processor translates the virtual
address by concatenating the physical-page number to the page
offset, the low-order bits of the virtual address that are not part
of the virtual page number.

Without caching, paging is prohibitively slow because each
translation requires multiple memory accesses. Consequently,
microprocessors employ a number of caches to minimize the
number of memory accesses necessary for translating ad-
dresses. Of these caches, the most common is the translation-
lookaside buffer (TLB) that maintains an associative mapping
from virtual-page numbers to their corresponding permissions
information and physical page number as shown in Figure 1.
Processors do not automatically invalidate TLB entries when
corresponding page-table entries are updated since doing so
would be prohibitively expensive. Thus, it is possible that
a TLB contains stale entries, entries that do not agree with
the page tables. To address this issue, ISAs specify how
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Fig. 2. On the left is an x86 assembly program that first clears and then sets
the carry flag. On the right is the result of symbolically executing the program
on the ACL2 x86 model using the ACL2 rewriter under certain preconditions.
It has been lifted into an expression in the ACL2 logic that is a composition of
two operations: the first, ! £1gi, that updates the flag register—in this case,
setting the carry flag to 1, and the second, ! rip, that updates the instruction
pointer—in this case by adding two to the current instruction pointer.

software may invalidate TLB entries; for example, in the x86
architecture, executing the instruction INVLPG invalidates any
TLB entries associated with a specified virtual address and
changing the value of the PG bit in the cr0 register from 1
to 0 invalidates all TLB entries [12]. It is the responsibility of
supervisor-system software to employ invalidation operations
to invalidate stale TLB entries after updating the in-memory
page tables.

While ISAs require that certain entries are invalidated by
certain operations, they generally allow implementations to
invalidate additional entries whenever they choose. They also
allow implementations to perform speculative page table walks
and choose whether or not to update address-translation caches
after a page-table walk, speculative or otherwise, as they see
fit. Thus, any translation which has been valid in the page
tables and has not had a corresponding TLB entry explicitly
invalidated since it was last valid in the page tables may or may
not have a corresponding TLB entry. This makes it difficult
to reason about what entries may be present in the TLB at a
given point in time.

IV. OUR TECHNIQUE

The primary difficulty when reasoning about address trans-
lation with caching concerns the incomplete nature of ISA-
level specifications. ISAs often describe weak guarantees
about TLB contents, so the behavior of address translation in
regions with stale TLB entries is not specified fully. Therefore,
software should not rely on the results of address translation
in such regions. Consequently, we reason about an address
translation first by proving that there are no stale TLB entries
corresponding to a desired translation or equivalently that
the address translation is TLB consistent with respect to the
machine state. In this case, the result of the translation is the
same regardless of whether a TLB entry or the page tables
are used to perform the translation. Thereafter, we can reason
about the result of the translation by consulting the page tables.

To help prove that a franslation—that is a tuple of the
virtual address, access type (i.e., read, write, or execute), and
the values of various processor control bits that affect address
translation—is TLB consistent, we have developed a theory of
how address translation is affected by different operations on
the machine state. Our model of a machine is a function that
takes an initial machine state and a number of instructions to
execute as input and returns the machine state after executing
the given number of instructions. We can execute this function
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symbolically via rewriting under the assumption that the initial
machine state contains a given program’s machine code in
the machine’s memory at the address given by the instruction
pointer. The result of symbolic execution is an expression in
the logic that captures the effect of the program on the machine
state as shown in Figure 2.

For the following discussion, we define an operation to be
a function that may appear in the expression that results from
symbolically executing a program using a machine model.
In Figure 2, the functions !rip and !flgi are operations.
While !rip and ! £1gi each only update a single field of the
machine state, an operation can perform an arbitrarily complex
update to the state of the machine. Any function that returns
a new machine state given some parameters and the previous
machine state may be an operation. There are two sets of
translations associated with every operation that are relevant
to address-translation caching behavior:

o Maintained Translations — These are translations that are
TLB consistent after the operation if they were consistent
before the operation. These correspond to translations
whose corresponding page-table entries and TLB entries
were not updated by the operation.

o Consistent Translations — These are translations that are
guaranteed to be TLB consistent after the operation is
performed, regardless of whether they were TLB consis-
tent before the operation. These translations correspond to
translations that have had any corresponding TLB entries
invalidated by the operation.

For example, a “load O into a general-purpose register”
operation’s set of maintained translations is all translations
and its set of consistent translations is the null set because
loading a general-purpose register does not affect the TLB or
page tables. On the other hand, an “invalidate all TLB entries”
operation has all translations as its set of consistent translations
since invalidating all TLB entries will necessarily invalidate all
stale TLB entries.

For each operation, we prove theorems that show which
translations, possibly in terms of the parameters to the opera-
tion and the previous state, are maintained and consistent. We
can then use these theorems to show that a given translation
is consistent after a program is executed. Showing that a
given translation is in the set of consistent translations of
the outer-most operation in an expression for the state of
the machine proves the translation is TLB consistent in the
state given by that expression. Showing that a translation is in
the set of maintained translations of the outer-most operation
in an expression allows us to “peel away” the outer-most
operation and reduce the proof to showing that the translation
is consistent in the state prior to the application of the outer-
most operation. We can then recursively attempt to prove the
translation is consistent in the prior state.

Without loss of generality, in the following discussion, we
assume operations have a single parameter because if an op-
eration has multiple parameters, one can define an equivalent
operation with a single parameter that is a tuple of the original

Algorithm 1 PROVE-CONSISTENT(t, k, h)
if £ = 0 then
if PROVE(? is consistent in gy under hypotheses /) then
return true
else
return fail
end if
end if
if PROVE(t € C;, (pk, qk—1) under hypotheses /) then
return true
else if PROVE(t € M;, (pk, gx—1) under hypotheses h) then
return PROVE-CONSISTENT(¢, k — 1, h)
else
return fail
end if

operation’s parameters. Then, all programs on all machines lift
into a sequence of operations that looks like

q1 < 04, (p1,90)
q2 < O’iz (p2,(h)

qn +— Oy, (p7L7 Qn—l)

where O; are the operations of the machine, p; are parameters
to the operations (which may be dependent on the initial
machine state), qo is the initial state, and ¢, is the final state.
Let M;(p,q) and C;(p,q) be the sets of translations that are
maintained and consistent respectively by operation O;(p, q).
Then we can show translation ¢ is TLB consistent with
respect to g under hypotheses h using Algorithm 1, PROVE-
CONSISTENT(t, k, h), which returns either true indicating that
t is consistent with respect to g, or fails (in which case it is
inconclusive). The PROVE-CONSISTENT algorithm assumes
we have some procedure PROVE, for example the ACL2
prover, that can be used to attempt to prove a conjecture under
given hypotheses. This procedure either succeeds in proving
the conjecture and returns true, indicating the conjecture is
a theorem, or it fails, returning false, in which case the
conjecture may or may not hold true. In practice, we expect the
base case that attempts to prove ¢ is consistent in gg succeeds
due to a hypothesis in h that states ¢ is TLB consistent in qq.

We  demonstrate  the  correctness of  PROVE-
CONSISTENT(¢, k, k), that is PROVE-CONSISTENT(t, k, h)
returning true implies ¢ is consistent in ¢, by a simple
inductive argument that inducts over k. The base case is
when k£ = 0. If we can prove ¢ is consistent in gg, it must
be consistent in g = ¢y, and we return true; otherwise,
we fail, which is inconclusive. For k£ > 0, if we can prove
t € Ci, (P, qr—1), we return true, and ¢ must be consistent
in ¢, because it is in the set of consistent translations
of O, (Pk,qr—1). If we can prove t € M;, (Pk,qr-1),
we return PROVE-CONSISTENT(pg, qk—1,h), and this is
correct because if the recursive call returns true, £ must
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be consistent since it is in the set of maintained translations
of O, (pr,qr) and, applying the inductive hypothesis,
PROVE-CONSISTENT(pg, qx—1, k) returning true implies ¢ is
consistent in gi—1. Finally, if we cannot prove either case,
we fail, which is inconclusive.

Notice our correctness proof above only requires that
PROVE-CONSISTENT(t, k) does not erroneously return true.
An algorithm that always fails satisfies this correctness criteria,
but is obviously not useful. We show that our algorithm is
useful by implementing it, as described in Section V, and
using it to verify a memory-management program described
in Section VI.

V. IMPLEMENTATION FOR X86 IN ACL2

We added a TLB and implemented our reasoning strategy
for the ACL2 model of the x86 ISA [2]. We chose ACL2
[1] and the aforementioned x86 model for several reasons:
The x86-ISA model supported and had a mature theory for
reasoning about address translation by walking page tables.
ACL2’s capacity for handling large proof terms and the high
degree of automation facilitated by ACL2’s primary proof
procedure, its rewriter, makes it well suited for working with
the large terms that arise from the symbolic execution of
programs. The efficient executability of the ACL2 logic makes
it possible to validate and debug the ISA model through
testing.

Our ACL2-based model of the x86 ISA is written as an
interpreter of x86 machine code. At its core, is a function
that, given a machine state, decodes the instruction pointed
to by the current instruction pointer, and then executes it
by returning an updated machine state as specified by the
x86-ISA documentation [12]. This function can be invoked
repeatedly, producing an interpreter that executes a sequence
of instructions. Since the interpreter is a function in the
ACL2 logic, we can use the ACL2 theorem prover to prove
theorems about its behavior. It is also a program written in
the ACL2 programming language, so in addition to being a
formal specification, the interpreter can be executed. It has
support for about 500 x86 instructions, supports exceptions,
interrupts, and address translation and is complete enough
to boot Linux and execute the GNU C compiler as a Linux
process. The executability of the model makes it possible to
run tests to validate the accuracy of our ACL2 x86-ISA model
and use cosimulation, executing our interpreter instruction by
instruction in lock step with a trusted x86 implementation, to
find bugs in our model.

The ACL2 theorem prover’s primary proof procedure is
its rewriter that applies conditional rewrite rules to simplify
terms. This rewriter can be programmed by an ACL2 user by
proving theorems which are stored in the rewriter’s database
as rewrite rules. When the rewriter finds a term that matches
the left-hand side of a rewrite rule, it recursively attempts to
rewrite the hypotheses of the rule to true; if it succeeds, the
matched term is rewritten as specified by the rewrite rule. This
allows a skilled ACL2 user to develop rewrite rules that can
automatically be applied to simplify large proof terms without

user intervention, greatly automating the proof process. This,
along with the rewriter’s ability to manipulate large proof
terms efficiently, has made ACL2 a good choice for proofs
involving large terms, like those that arise when executing
programs symbolically. This is one reason why ACL2 has
found use in industry for the verification of hardware designs
at corporations like Centaur Technology [13] and Intel.

Goel developed a library of theorems to aid with the
verification of x86 software using the x86-ISA model. These
included many lemmas about address translation behavior that
Goel used to verify a memory-management program called
Zero-Copy [14]. This work was done on a model lacking a
TLB, but because our approach reduces address translation in
the presence of a TLB to address translation by walking the
page tables, we were able to reuse much of Goel’s work and
re-verify an updated version of the Zero-Copy program on the
ACL2, x86-ISA model with a TLB. We discuss this further in
Section VI.

A. TLB Implementation

Our TLB is modeled as a mapping from virtual-page
numbers, various control bits that control address translation,
and the access type (i.e., read, write, or execute) to physical-
page numbers. Our TLB treats all memory addresses as being
contained within 4KB pages and may use multiple entries
corresponding to naturally aligned 4KB regions to cache
translations for larger page sizes. The x86 ISA requires imple-
mentations to invalidate one or more TLB entries on certain
events. For example, when executing the INVLPG instruction
all TLB entries corresponding to the page containing the given
virtual address must be invalidated. Whenever an event occurs
that requires one or more TLB entries to be invalidated, our
model clears the TLB in its entirety. While our choice to cache
large pages with multiple 4KB region entries and invalidate the
entire TLB whenever we are required to invalidate any TLB
entry may seem odd, our implementation is allowed by the
Intel x86 Software Developer’s Manual [12].

This design was chosen in part to maximize the speedup
it gave in the execution performance of our x86-ISA model
because when executing x86 programs using the model as
an interpreter, a significant portion of the runtime is spent
translating addresses. With this design, we can represent TLB
mappings using the ACL2 fast-alists mechanism [15]. In the
ACL2 logic, a fast-alist is an association list (or alist), a list
of key-value pairs, but in execution, ACL2 associates with
the alist a hash-table. To speed up execution, ACL2 maintains
the invariant that looking up a key in the hash-table yields
the same value as the value associated with the key in the
alist. This allows us to have hash-table performance while
retaining the reasoning simplicity of a list of key-value pairs,
but prevents us from removing key-value pairs from the alist.
Thus, we choose to clear the TLB by replacing the TLB alist
with an empty one whenever we need to invalidate entries.

When our x86-ISA model translates a virtual memory ad-
dress to a physical address, it takes the virtual-page number of
the address being translated, the current state of the processor
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control bits that affect address translation, and the memory-
access type, and it searches for a corresponding virtual-
page number in our TLB. If it finds an entry, it uses the
corresponding physical-page number to create a translated
address by concatenating the lower 12 bits from the virtual
address to the physical-page number found in the TLB. If no
entry corresponding to the translation is found in the TLB,
our x86-ISA model performs a page-table walk to translate
the virtual address. If this translation fails, it triggers a page
fault and does not update the TLB. Otherwise, it updates our
TLB by adding an entry corresponding to the translation that
maps to the physical-page number returned by the page table
walk. Unlike a hardware TLB, our TLB model can grow to
contain an arbitrary number of entries.

B. Reasoning Implementation

We implement PROVE-CONSISTENT implicitly by proving
theorems that characterize the maintained and consistent set
of translations for each operation of our x86 model. Then,
when we attempt to prove a theorem that states a translation
is TLB consistent after a sequence of operations, the ACL2
rewriter will attempt to apply our rewrite rules in a manner
that implements the PROVE-CONSISTENT algorithm. If the
sequence of operations is empty, it will attempt to prove the
translation is consistent with respect to the initial state. If
the translation under consideration can be proven to be in
the set of maintained translations of the outer-most operation
the ACL2 system, due to the rewrite rule associated with the
theorem that describes the set of maintained translations of
the outer-most operation, will rewrite the conjecture to prove
that the address translation is TLB consistent with respect to
the previous state. If the translation can be proven to be in
the set of consistent translations of the outer-most operation,
it will confirm the validity of the conjecture. This is exactly
the PROVE-CONSISTENT algorithm.

We defined TLB consistency for the x86-ISA model in
ACL2, shown in Figure 3. Recall, we informally defined TLB
consistency to mean the TLB does not contain any stale entries
corresponding to a given translation. Our formal definition
checks that performing the given translation by first consulting
the TLB, and falling back on the page tables if there is
no relevant TLB entry, yields the same result as performing
the translation by walking the page tables directly, without
consulting the TLB. Since a stale TLB entry is by definition a
TLB entry that is inconsistent with the page tables, our formal
definition of TLB consistency captures our informal definition.

We define rewrite rules that describe the set of maintained
translations and the set of consistent translations of the opera-
tions of the machine. For example, Figure 4 shows a theorem
that states that all translations are maintained by the address
translation operation. Since this theorem has no hypotheses
it is stored as an unconditional rewrite rule by the ACL2
theorem prover. This rule programs the rewriter to rewrite
terms that are calls to t 1lb—consistent composed with the
address translation operation. Such terms are rewritten to calls
of tlb-consistent on the state the address translation

operation was applied to, i.e., the state before the address
translation operation was applied. It is also possible for us
to define the set of maintained operations in terms of the
parameters to the operation or the machine state, as shown in
Figure 5; this theorem states that a translation remains TLB
consistent after a write to physical memory if that write does
not change any page table entry used when performing the
translation. This lemma is stored as a conditional rewrite rule
in the ACL2 prover; when the ACL2 rewriter matches a term
to the left-hand side of the equality, it attempts to recursively
rewrite the hypotheses to true. If it succeeds, it will rewrite
the term to the right-hand side.

In our x86-ISA model, we have only a single operation that
has a non-empty set of consistent translations because clearing
the TLB is the only way we invalidate TLB entries. Figure 6
shows a theorem which states that a machine state with empty
TLB is consistent for all translations. While we could have
instead proven all translations are consistent after the clear
TLB operation, this theorem is more general, and the rewriter
will easily be able to apply it in the same way when proving
a translation is TLB consistent after the clear TLB operation.
When the rewriter sees any t 1b—consistent term, it will
attempt to prove that the TLB in the given machine state is
empty. If it succeeds, it will rewrite the t lb-consistent
term to true.

VI. CASE STUDY: ZERO-COPY

We demonstrate the effectiveness of our TLB reasoning
technique by proving the correctness of a supervisor memory-
management program. Zero-Copy is a program that copies a
page of data in the virtual-address space to another page in the
virtual-address space. It does this not by copying the data but
instead by modifying the page tables so that the destination
virtual addresses translate to the same physical addresses as the
source virtual addresses. Goel proved the correctness of this
program on the x86-ISA model without a TLB [14]. Since
Goel’s program was written for a version of the x86-ISA
model that lacked a TLB, it did not attempt to invalidate TLB
entries. Under certain assumptions, Goel proved the following
theorems to verify Zero-Copy:

Theorem 1 (Source Unmodified): After the program runs,
the data in the source region is identical to the data in the
source region prior to the run.

Theorem 2 (Destination Updated): After the program runs,
the data in the destination region is the same as the data in
the source region before the program runs.

Theorem 3 (Program Unmodified): After the program runs,
the program in memory is the same as the program in memory
before the program runs.

We added code to Zero-Copy that invokes the x86 INVLPG
instruction to invalidate TLB entries in the destination region
after updating the page tables to avoid the TLB containing
stale entries, which is necessary for the correctness of the
program. The only TLB-related change we made to the
statements of Goel’s correctness theorems was the addition of
hypotheses that required translations used by the program to be
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(define tlb-consistent ((lin-addr canonical-address-p)

(r-w-x :type (member :r :w :Xx))
x86)
(bx ((lin-addr (mbe :logic (logext 48 (loghead 48 lin-addr))
rexec lin-addr))
((mv flg phys—-addr &) (ia32e-la-to-pa lin-addr r-w-x x86))
((mv flg2 phys-addr2 &) (ia32e-la-to-pa-without-tlb lin-addr r-w-x x86)))
(and (equal flg flg2)

(equal phys-addr
phys-addr2)))

Fig. 3. Function t1b-consistent is the ACL2 definition of TLB consistency for our x86-ISA model. 1a32e-la-to-pa performs an address translation
by consulting the TLB first. If it finds a relevant TLB entry, it uses the entry to perform the translation. If no relevant TLB entry was found, it uses the
page tables to perform the translation. ia32e-la-to-pa-without-t1lb performs an address translation using only the page tables. t Llb-consistent
returns true if and only if the given translation has the same result when translated with both of the aforementioned functions. Some details not relevant to
the logical definition have been elided.

(defthm translating-addresses-maintains-consistency
(equal (tlb-consistent lin-addr r-w-x
(mv-nth 2 (ia32e-la-to-pa lin-addr2 r-w-x2 x86)))
(tlb-consistent lin-addr r-w-x x86))

Fig. 4. ACL2 definition of translating-addresses-maintains-consistency, a theorem that states a translation is TLB consistent after the
address translation operation if and only if it was TLB consistent before the address translation operation. This is a stronger statement than the address
translation operation’s set of maintained translations is all translations because it is biconditional instead of only an implication. This theorem is stored as a
rewrite rule that can be used by the ACL2 rewriter to rewrite appropriate terms. Hints to the prover to help it prove this theorem have been elided.

(defthm writing-non-page-table-memory-maintains-tlb-consistency
(implies (disjoint-p (list index)
(xlation—-governing-entries—-paddrs (logext 48 lin-addr)
(tlb-consistent lin-addr r-w-x (xw :mem index val x86)
(tlb-consistent lin-addr r-w-x x86)))

x86))
(equal

Fig. 5. ACL2 definition of writing-non-page-table-memory-maintains-tlb-consistency, a theorem that states that writing to physical
memory does not change the consistency of a translation if the write is to an address that is not part of a page table entry that may be consulted when
performing the translation. Like the theorem in Figure 4, it is stronger than showing that the translation is in the set of maintained translations of the physical
memory write operation since it states that translation’s consistency is unchanged by the memory write, rather than stating that the translation is consistent
after the write if it was consistent before the write. Hints to the prover to help prove this theorem have been elided.

(defthm empty-tlb-is-consistent
(implies (atom (xr :tlb nil x86))
(tlb-consistent lin-addr r-w-x x86)))

Fig. 6. ACL2 definition of empty-tlb-is-consistent, a theorem that states when the TLB is empty all translations are consistent.

TLB consistent in the machine’s initial state. The correctness
theorems do not hold without these hypotheses. We also added
minor hypotheses unrelated to the TLB to accomodate other
changes made to the x86-ISA model between when Goel
initially verified the Zero-Copy program and when we verified
the updated Zero-Copy program with our TLB enhanced
version of the x86-ISA model.

Using our methodology, we were able to reverify Zero-
Copy without significant changes to the structure of the
proof. Our approach involves showing that the translations the

program uses are TLB consistent and then using that fact to
reason about the results of address translation as though the
translation was performed using the page tables. This allowed
us to avoid having to make major modifications to Goel’s
proofs since, when a translation is TLB consistent, the results
of the translation are the same as they would have been in the
model Goel used that lacked a TLB.

Since we implemented our reasoning strategy using rewrite
rules, we were able to exploit ACL2’s rewriter and reprove
many theorems automatically. While most of the lemmas about
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address translations and virtual memory that Goel used in her
proof were not theorems in the updated x86-ISA model with a
TLB, they were theorems after adding hypothesis that require
the translations relevant to the lemma to be TLB consistent.
After adding such hypotheses to the various lemmas in Goel’s
proof, they could often be re-proven automatically. Other
theorems required additional theorem-prover hints. Many of
these updates were done to the library Goel developed for x86-
ISA, machine-code verification, and these updated lemmas can
be used directly to verify other programs.

The most involved changes were in the proof of a lemma
that stated if a leaf 1 GB page table entry is updated and then
values are read from the virtual-memory region corresponding
to the page table entry, the values read will be equal to
the values in the page at the physical address specified in
the updated page table entry. After adding the condition that
TLB consistency must hold for all the read translations in the
virtual-memory region after the page table entry is written,
the proof of this particular lemma was redone with significant
changes to how it was structured. In principle, with the old
line of reasoning it should have been possible to update using
our method, but ACL2 could not automatically re-prove the
lemmas, and we decided to redo much of the proof to make
it easier to understand and maintain.

Using our approach minimized the complexity of reasoning
with the x86-ISA model that was introduced by the TLB’s
semantics. Proofs that concern code that does not update the
page tables was largely done in the same fashion as proofs
done on the model without a TLB because our technique
allowed the ACL2 rewriter to often automatically discharge
TLB-consistency hypotheses, which were the primary compli-
cation introduced by the TLB when reasoning about such code.
Proofs regarding code that updates the page tables required
more involved changes in reasoning, but these changes were
localized to only the small pieces of reasoning concerning
page table updates. Future work could abstract some of these
pieces of reasoning into a library that can be shared between
proofs to minimize the amount of work needed for reasoning
about page table updating code.

VII. CONCLUSION & FUTURE WORK

We described a procedure to reduce theorems about address
translation in the presence of a TLB cache to address transla-
tion without caching. We added a TLB to the ACL2 x86-ISA
model and implemented our algorithm implicitly using ACL2
rewrite rules. Our reduction is performed by proving that the
translations we are considering are TLB consistent, meaning
if there is a relevant entry in the TLB it agrees with the page
tables. We then successfully applied our methodology to re-
verify the Zero-Copy program that had been verified by Goel
with a previous version of the x86-ISA model that did not have
a TLB. We found that our methodology allowed us to reuse
much of her proof. We have released our implementation and
proofs under the 3-clause BSD license, and they are available,
along with documentation [4], in the ACL2 Community Books
[3].

There is much more to be done with respect to reasoning
about memory-management software for contemporary micro-
processors. To comprehensively verify security and correctness
of operating systems, it will be necessary for the formal-
methods community to continue the formalization of the
instruction set architectures that are employed by contempo-
rary computer systems. In particular, we would like to see
address translation cache models extended to other address
translation caches beyond TLBs, like page table entry caches.
Additionally, we would like to see our reasoning technique
implemented for a TLB model which does not make any
assumptions about the TLB microarchitecture beyond that it
is consistent with the ISA.
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