
Formal Methods in Computer-Aided Design 2025

Automated Translation Validation of a Compiler for
Statically Scheduled Accelerators

Jackson Melchert Caleb Terrill Aron Ricardo Perez-Lopez Clark Barrett Priyanka Raina
Stanford University Stanford University Stanford University Stanford University Stanford University

Stanford, United States Stanford, United States Stanford, United States Stanford, United States Stanford, United States
melchert@stanford.edu cterrill@stanford.edu arpl@cs.stanford.edu barrettc@stanford.edu praina@stanford.edu

Abstract—Compilers for programmable hardware accelerators
are complex and involve progressively lowering an application
down to the hardware. Bugs can be introduced at many different
stages, but simulation does not provide full bug coverage and has
poor bug localization. We propose a methodology for automated
formal translation validation of compilers for statically scheduled
accelerators. This includes generating symbolic representations
of every stage in the application compiler and the hardware,
leveraging scheduling information for automatically generating
translation validation queries, and implementing performance en-
hancements for effective formal verification. This work provides
a blueprint for rigorous verification of compilers and generators
for hardware accelerators.

I. INTRODUCTION

With the slowdown in technology scaling, domain-specific
hardware accelerators have become key to improving the
performance and efficiency of compute-intensive applications.
Recent research explores programmable accelerator gener-
ators, with accompanying compilers providing the means
for designing these systems productively. These accelerators,
while diverse (e.g., [21], [31], [37], [36], [27], [14], [16]), all
use complex multistage processes to compile code from high-
level languages down to accelerator instructions. Verification
of these systems typically relies on comparing “golden” out-
puts from CPU implementations against accelerator outputs
in register-transfer level (RTL) simulation, which is a slow
and incomplete process for nontrivial systems. Bug root cause
analysis is also challenging due to the numerous compiler
stages involved.

Formal translation validation [32], [29], [38] offers a more
rigorous approach. While prior work exists for software com-
pilers (e.g., GCC [29], Halide [11]) and high-level synthesis
(HLS) [23], [22], [20], ours is the first work to apply transla-
tion validation to the complex software-hardware compilation
flow found in accelerator application compilers. Importantly,
our work requires tackling new challenges, including dealing
with many heterogeneous intermediate representations and
handling notions of equivalence modulo scheduling differ-
ences.

In this paper, we present a full case study demonstrating
an automated formal translation validation methodology for a
statically scheduled accelerator compiler targeting a coarse-
grained reconfigurable array [21]. Our approach provides
guarantees against potential bugs introduced by the compiler

and also enables quick localization of any detected bugs to a
specific stage in the compiler. Additionally, as our system uses
a formal representation of the accelerator hardware together
with various intermediate representations (IRs) in the same
semantic framework, both the hardware and software compiler
results are verified simultaneously.

To treat the heterogeneous multistage pipeline uniformly, we
encode everything, including the application, the compiler’s
IR, and the hardware RTL design, as transition systems rep-
resented using satisfiability modulo theories (SMT) formulas.
This translation is automated and can adapt to both hardware
and compiler changes. We define what it means for two repre-
sentations to be equivalent by taking into account scheduling
information present in the application compiler and then use
this definition to check the equivalence of successive stages
using an SMT-based model checker. Finally, we extend our
technique with symbolic starting states, which vastly improves
the performance of the system.

The contributions of our case study include:

• A uniform SMT-based formal representation for every
intermediate stage in the compiler, encompassing both
hardware and software, including the front-end applica-
tion code, the dataflow IR, and the RTL hardware design.

• A methodology for formal verification via translation
validation across every major stage of the application
compiler. Our technique leverages scheduling information
present in the compiler to automatically manage timing
differences across stages.

• A technique for improving translation validation perfor-
mance through the use of symbolic starting states with
automatically generated state constraints.

We evaluate our translation validation system on 20 ap-
plications with a wide range of complexity. We verify every
stage of the application compiler for these applications. The
runtime overhead of these verification checks ranges from 1
minute for simple applications to 375 minutes for complex
applications. The use of symbolic starting states significantly
reduces memory consumption and runtime and is necessary
for the verification of large applications. We introduced bugs
in each stage of the compiler and confirmed that our approach
can find all of them. Additionally, we found several previously
unknown real bugs in our application compiler.

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6 26
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_26
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_26
https://creativecommons.org/licenses/by/4.0/
mailto:praina@stanford.edu
mailto:barrettc@stanford.edu
mailto:arpl@cs.stanford.edu
mailto:cterrill@stanford.edu
mailto:melchert@stanford.edu

II. RELATED WORK

This work focuses on translation validation [32], [29], [3],
a formal technique for proving the equivalence of two pieces
of code, before and after translation by a compiler. Translation
validation aims to prove that a particular run of a compiler pass
introduces no bugs, rather than trying to prove in advance that
the compiler pass will never introduce bugs. In order to apply
translation validation, the code that is being validated before
and after the translation needs to be represented in the same
semantic framework. We leverage the language of SMT [5]
for this purpose.

Translation validation has been used to verify software
like Halide as it gets compiled from a high-level description
into C code [32], [29], [3], hardware as it goes through
optimization passes [15], and HLS systems that compile C
to Verilog [23], [22], [20], [17]. However, no prior work
addresses the problem of performing translation validation
throughout a complex end-to-end application compiler flow
targeting hardware accelerators.

HLS systems generate Verilog hardware from a C program,
while the application compilers targeted in this work compile
applications to existing hardware. This important distinction
means that much of the infrastructure created for verifying
HLS is not applicable to the problem addressed in this work.
Translation validation systems designed for HLS cannot be
directly applied to our problem for at least two reasons.
First, translation validation requires a method to translate each
compiler IR into symbolic expressions, so systems based on
other IRs cannot be applied directly. Second, the definition of
equality in this work differs significantly from the definition of
equality in prior work. In particular, we use dataflow graphs
as intermediate representations in our application compiler,
while prior works primarily use control flow graphs or custom
representations. Each of these has different definitions of
equality and therefore different validation infrastructure.

There have also been prior attempts at verifying the hard-
ware and software of an application compiler, but these
attempts either do not provide the same benefits as translation
validation or do not provide formal guarantees. For example,
[10] uses hardware/software co-verification to functionally
verify an application as it gets mapped to hardware. How-
ever, it uses only simulation-based verification, not formal
methods. ILA [18], [19], a formal software/hardware interface
for accelerators, can be used to verify an instruction-level
specification of an accelerator with respect to the hardware
implementation. While ILA also can be used to do complex,
system-level verification of a hardware/software system, its
aims are different from those of this project. ILA can be
used to formally verify that the specification of an instruction
matches the hardware implementation, while this work aims
to verify that each stage of an application compiler produces
formally correct results. One noteworthy difference is that
translation validation across every major compilation stage has
the benefit of enabling much easier bug localization.

MEM PE PE

IO IO IO Switch
Box
Connection
Box
Routing
Tracks

Fig. 1. Architecture of a CGRA with three types of tiles that communicate
through a reconfigurable interconnect: IO tiles that pass data to and from the
array, MEM tiles that buffer data, and PE tiles that do arithmetic operations.

III. BACKGROUND

A. CGRA Architecture and Application Compiler

Our translation validation case study is carried out in the
context of an open-source application compiler for coarse-
grained reconfigurable array (CGRA)-based programmable
accelerators [21], [1]. The implementation of our verification
tool is also open-source [2]. We use an SMT-based model
checker for verification. We briefly describe these components
to provide context.

CGRAs are a class of programmable accelerators composed
of a grid of tiles, as shown in Fig. 1. CGRAs have different
types of tiles: processing element (PE) tiles, memory (MEM)
tiles, and input/output (IO) tiles. PE tiles perform compu-
tations, MEM tiles buffer data, and IO tiles send data to
and from the grid of tiles. These tiles communicate through
a reconfigurable interconnect composed of horizontal and
vertical routing tracks, switch boxes (SB), and connection
boxes (CB). While many types of CGRA interconnects exist
[28], the one we consider in this work is similar to FPGA
interconnects in that it is statically configured. This means
that, during the execution of the application, the configured
routing connections act as wires. Any tile can send data to any
other tile in a single cycle. Additionally, there are configurable
pipelining registers in every switch box, allowing multi-cycle
connections between tiles.

We use the custom CGRA application compiler illustrated
in Fig. 2 and presented in detail in [28]. This compiler
encompasses application specification, scheduling, compute
mapping, memory mapping, place and route, pipelining, and
bitstream generation [21].

B. SMT-based Model Checking

SMT is the problem of determining the satisfiability of
a first-order logic formula with respect to a given theory.
Introductions to SMT can be found in [6], [7]. In this paper,
we assume a fixed background theory T and assume that
all formulas are interpreted according to T . In practice, we
primarily rely on the theory of bit-vectors, which includes
operators corresponding to primitives in our various IRs.

A symbolic transition system (STS) is a tuple S :=
⟨X, I, T ⟩, where X is a finite set of state variables, I(X) is
an SMT formula denoting the initial states of the system, and
T (X, X ′) is an SMT formula expressing a transition relation.

′Here, X is the set obtained by replacing each variable x ∈ X
′ ′with a variable x of the same sort (x is the variable for the

199

Halide Application

Halide-to-Hardware
Compiler

Loop Nests

Compute Data
Flow Graph

Scheduler/
Memory Mapper

Compute Mapper

Data Flow Graph of
PE/MEM

Data Flow Graph
of PEs

Place and Route

Pipelined
Placement

Pipelining

CGRA Bitstream

Application Compiler

××
+𝑜𝑢𝑡

𝑎 𝑏𝑐 𝑑
𝑜𝑢𝑡

𝑎 𝑏 𝑐 𝑑
PE PE

PE

def app(in_pixels, out_pixels):
 for out_y in range(64):
 for out_x in range(64):

 out_pixels[out_y][out_x] =
 create_term(ops.BVAdd,
 create_term(ops.BVMul, in_pixels[out_y][out_x], 5),
 create_term(ops.BVMul, in_pixels[out_y][out_x + 1], 3))

PE PE

PE

MEM REG

PE PEPE

MEM REGSB CB

SB

CB

SB

CB

SB

CB

SB

CB

PE PEPE

MEM REGSB CB

SB

CB

SB

CB

SB

CB

SB

CBRE
G

RE
G

P M R P
R R

P?

Placement on
CGRA

Bitstream
Generator

?
? ?

?

Compute Mapping
Verification

Memory
Mapping

Verification
Place and Route

Verification

Bitstream
Generation
Verification

Pipelining
Verification

Fig. 2. CGRA application compiler encompassing Halide compilation, compute mapping, scheduling and memory mapping, place and route, pipelining, and
bitstream generation. The orange boxes represent the translation validation checks we introduced.

next state of x). It is often convenient to have multiple copies
of the state variables X . We use X@n to denote the set of
variables obtained by replacing each variable x ∈ X with a
new variable called x@n of the same sort.
Bounded model checking (BMC) is a bug-finding technique

which attempts to find a counterexample of length k for a
proposed invariant property, P (X), of some STS [8]. A single
BMC query at bound k for an invariant property uses an SMT
solver to check the satisfiability of the following formula:Vk−1
I(X@0) ∧ (T (X@i, X@(i + 1))) ∧ ¬P (X@k). If thei=0
query is satisfiable, there is a bug.

IV. SYMBOLIC REPRESENTATIONS IN SMT

To perform SMT-based translation validation for a specific
compiler stage, both the input to and output from the compiler
stage need to be representable as SMT terms or SMT-based
symbolic transition systems. In this section, we describe our
first contribution, which is to show how this can be done for
each stage, from the high-level Halide specification down to
the configured CGRA. We provide examples for each stage of
the compiler in the appendix.

A. Application Specification

First, we need a representation of the application specifi-
cation. This is written in Halide and compiled through the
Halide-to-Hardware compiler [24] to generate the compute
kernels in the application and the loop nests that specify how
data is streamed through these kernels. These are consumed
by different parts of the compiler, so we need symbolic
representations for both.
Compute Kernels: CoreIR [12] is an LLVM-style hardware

compiler and IR. The Halide-to-Hardware compiler uses it as
the target for compute kernels, which contain dataflow graphs
consisting only of arithmetic operations, e.g., add, sub, mul,
shift, etc. When designing CoreIR, the semantics of these op-
erations were based on the SMT-LIB standard [4]. One benefit
of this decision is realized here, as it makes the translation of
each node in the CoreIR graph to its symbolic representation

straightforward. A compute kernel can be translated into a
symbolic representation by traversing the dataflow graph and
constructing the SMT term corresponding to each node. Edges
in the dataflow graph are transformed into equality statements.
An AST-like visualization of the symbolic representation of
a simple sum-of-products compute kernel for a convolution
application is shown in the bottom left corner of Fig. 2.
Loop Nests: We create a new code generation target for

Halide to formally represent the loop nests. We generate
Python code to create the formal representation. This has the
benefit of enabling better metaprogramming and integration
with other compiler infrastructure, but requires an SMT solver
API in a high-level language. We use Pono [25], an SMT-
based model checker which provides an API for creating and
reasoning about symbolic transition systems. Pono is built on
top of smt-switch [26], a tool that makes it easy to use a
variety of different SMT solvers as back ends. An example of
the generated code for the convolution application conv 1 2
is shown in the top left corner of Fig. 2.

B. Compute-Mapped Dataflow Graph of PEs

The compute mapper replaces the CoreIR operations in
the compute kernels with PE tiles configured to perform
the same operations. To represent the compute-mapped graph
symbolically, we need a symbolic representation of the pro-
cessing elements. As described in [21], the PEs in our target
CGRA are specified in PEak [13], a domain-specific language
for processing elements. PEak provides direct support for
interpreting a program as an SMT-based STS. We leverage
the formal interpretation of PEak to symbolically represent
the compute-mapped dataflow graphs. We handle any state that
may be present in the PEs by creating new state variables in the
STS. An AST-like visualization of a symbolic representation
of the compute-mapped dataflow graph is shown in the bottom
middle of Fig. 2. Not shown is that each “PE” block is
configured to perform an arithmetic operation. These blocks
are translated to SMT terms using PEak’s ability to provide
formal models.

200

C. Fully-Mapped Dataflow Graph of PEs and MEMs

After applying the memory-mapping stage to the loop
nests, we can construct a fully-mapped dataflow graph which
contains both configured PE tiles and memory tiles. The
memory tiles are specified in Lake [21], a Python-embedded
language for specifying streaming memories. Unlike CoreIR
and PEak, Lake has no direct support for generating SMT.
Thus, to represent these memories in SMT, we first generate
Verilog and then translate the Verilog to SMT-based symbolic
transition systems using Yosys [34], an open-source synthesis
tool that can consume Verilog and produce SMT.

To obtain the symbolic representation for the fully-mapped
dataflow graph, we traverse each node of the graph in topo-
logical order, substituting in the corresponding SMT represen-
tation, either the one generated by PEak or the one from the
Yosys SMT flow. A visualization of a fully-mapped dataflow
graph is shown in the top middle of Fig. 2.

D. Place and Route and Pipelining

The next stage of the application compiler is place and
route (PnR). The PnR tool adds new nodes to the dataflow
graph for routing data between the tiles. The types of nodes
introduced in PnR are SB nodes for switch boxes, CB nodes
for connection boxes, RMUX nodes for register multiplexers,
and REG nodes for pipelining registers.

Each of the PnR nodes has a straightforward symbolic repre-
sentation as an SMT expression. The configurable interconnect
is made up of multiplexers, and configured multiplexers are
essentially just wires. Therefore, SB, CB, and RMUX nodes
can be represented as equalities (relating the nodes at either
end) in SMT. REG nodes just need to delay the input to the
node by one clock cycle and can be implemented with a simple
modification of the STS. The PnR graph is translated into SMT
in the same manner as the fully-mapped dataflow graph.

The symbolic representation of the pipelined placement
result is generated using the same method as the PnR graph.

E. CGRA Verilog

The final stage of application compilation is bitstream
generation. To symbolically represent the bitstream-configured
CGRA hardware, we must represent the CGRA Verilog as
SMT terms. CGRAs, like FPGAs, have a reconfigurable
interconnect which, in its unconfigured state, contains combi-
national loops. Yosys cannot translate hardware circuits with
combinational loops. However, the compiler guarantees that in
a correctly configured application, there will be no combina-
tional loops. Therefore, we first apply the configuration to the
CGRA RTL design before using Yosys.

The flow for generating an SMT-based STS representation
of the configured CGRA is as follows: load the CGRA Verilog
into Yosys, use Yosys to flatten and simplify the design, output
the flattened design to a new Verilog file, replace all con-
figuration registers within the flattened design with constant
values based on the bitstream, load the modified Verilog back
into Yosys, use Yosys to propagate the configuration register
values and simplify as much as possible, and finally, use

Yosys to generate an SMT-based STS. Note that configuration
bitstreams are composed of address-data pairs, where the
address uniquely identifies a configuration register in the
design. We can thus automatically identify which registers
(in the flattened Verilog) to replace with constant values by
leveraging the compiler’s bitstream generation infrastructure
to analyze the address and map it to a specific Verilog register.

V. TRANSLATION VALIDATION

After symbolically representing the application at each
stage, we can construct the corresponding translation valida-
tion queries at each stage. Each query relies on two symbolic
representations that may be different in structure. In this
section, we describe how the queries are created for each stage.

For simplicity, we assign the following names to the
translation validation checks, as shown in Fig. 2. Compute
mapping verification is between the compute dataflow graph
and the dataflow graph of PEs. Memory mapping verification is
between loop nests and the dataflow graph of PEs and MEMs.
Place and route verification is between the dataflow graph of
PEs and MEMs and the PnR result. Pipelining verification is
between the PnR result and the pipelined PnR result. Bitstream
generation verification is between the pipelined PnR result and
the CGRA bitstream.

A. Compute Mapping Verification

We verify that the compute dataflow graph and the compute-
mapped dataflow graph of PEs are equivalent. Here, equiva-
lence means that the graphs have the same outputs given the
same inputs, with a timing delay that is discussed later in the
section.

First, we identify Ic, the set of inputs to the compute
dataflow graph, and Oc, the set of outputs from it. Every input
i in Ic has a corresponding input im, representing the input
to the mapped graph, and likewise every output o in Oc has
a corresponding output om, representing the output from the
mapped graph.

We check equivalence using bounded model checking with
an input constraint. The input constraint gets added to the
BMC formula at each unroll. The input constraint is simply:
∀ i ∈ Ic. i = im. The property P to check is: ∃ o ∈ Oc. o ̸=
om. If this check is satisfiable, then our two dataflow graphs
are not equivalent and there is a bug. Although the compute
dataflow graph has no state, the compute-mapped dataflow
graph does, as PEs may have pipelining registers. The STS
for the mapped dataflow graph uses state variables to model
the sequential behavior of the PE hardware. We do an analysis
of the mapped dataflow graph to determine how many cycles
are needed to propagate from the inputs to the outputs and use
that bound in our BMC check.

B. Memory Mapping Verification

We verify that the loop nests compiled from Halide are
equivalent to the mapped dataflow graph of PEs and memory
tiles. Equivalence means that, given an input array of pixels
that are fed to the loop nests, if you stream the pixels into the

201

dataflow graph of PEs and memory tiles, the stream of pixels
produced some time later is equivalent to the output array of
pixels from the loop nests.

Compared to the compute mapping verification described
in Section V-A, memory mapping verification is more chal-
lenging because the two sides of the validation check are
structurally very different. For the loop nests, the input is a
multidimensional array of pixels and the computation to get
the output pixels is untimed. For the mapped dataflow graph of
PEs and MEMs, the input is a stream of pixels in time, where
the dataflow graph expects a different pixel every cycle, and
the computation to produce the output stream has memories
and pipelining registers.

To address this challenge, we add constraints to the STS
to ensure that the inputs of the two sides of the verification
check are equivalent. We flatten the multidimensional array of
input pixels to the loop nests into a one-dimensional array.
The flattening is based on the order in which the pixels are
sent to the mapped data flow graph, which, importantly, is
explicitly specified in the Halide application schedule. Next,
we create a look-up table (LUT) within the STS that uses the
array index as the LUT index and the symbol representing the
pixel as the value. After creating this LUT, we constrain the
input of the dataflow graph to be equal to the output of the
LUT, using the current cycle as the input index. This models
the simple behavior of sending one input pixel into an input
of the dataflow graph each cycle.

If the pattern of input pixels is different, a more complex
constraint is needed. For example, within our compiler, we
have the ability to unroll each input stream into the dataflow
graph. If we unroll a mapped dataflow graph input by 2, on
cycle 0, pixel 0 will be sent to dataflow graph input 0, and
pixel 1 will be sent to dataflow graph input 1; then, on cycle
1, pixel 2 will be sent to dataflow graph input 0, and pixel 3
will be sent to dataflow graph input 1, and so on.

Let Ih, Oh be the sets of multidimensional arrays corre-
sponding to the inputs and outputs of the loop nests. Each array
in Ih has u corresponding symbols in the mapped dataflow
graph, where u is the input unrolling factor. If each array in Ih
is i, then the u corresponding symbols in the mapped dataflow
graph are im,0, im,1, . . . , im,u−1.

Similarly, each array in Oh has v corresponding symbols
in the mapped dataflow graph, where v is the output unrolling
factor. If each array in Oh is o, then the v corresponding sym-
bols in the mapped dataflow graph are om,0, om,1, . . . , om,v−1.
The symbols im,j and om,j are bit-vectors representing the
input and output signals of the mapped application.

The input constraint over the loop nest inputs from Ih is
∀ j ∈ [0, u). ∀ i ∈ Ih. i[c · u + j] = ic

m,j , where u is the input
unrolling factor, and c is the current cycle.

After constraining the inputs for this verification check, we
can create the output verification term. We similarly flatten
the loop nest’s output multidimensional array into a one-
dimensional array and create a LUT that uses the current cycle
as the index and the pixel at that index as the output. The
property that we check is: ∀ j ∈ [0, v). ∃ o ∈ Oh. o[c · v + j] ≠

c+l om,j , where l is the cycle offset determined during application
scheduling.

Because applications may have pipelining registers, PEs
with registers, and memories, output pixels do not immediately
get produced, but get produced with a certain delay. Our key
insight is that for programmable accelerators that are fully
statically scheduled like the CGRAs we target, this delay is
determined at compile time based on the scheduling decisions
made by the compiler, and we can leverage this information
from the compiler to aid translation validation.

C. Place and Route Verification

In the previous subsection, the inputs and outputs of the ap-
plication on either side of the compiler stage were structurally
different, while in this stage they are similar. Im and Om are
again sets of bit-vector symbols that are inputs and outputs of
the dataflow graph of PEs and MEMs. Each i and o in Im and
Om have corresponding inputs and outputs in the PnR result,
which we denote ip and op, respectively.

Our input constraint is ∀ i ∈ Im. ic = ic , and the outputp
c c+lproperty is ∃ o ∈ Om. o ̸= o , where again c is the currentp

cycle, and l is the offset in cycles between the valid output
pixels from the mapped dataflow graph of PEs and MEMs
and the valid output pixels from the PnR dataflow graph.
Again, this offset is determined during the compilation of the
application. The delay comes from hardware elements like IO
tiles that have pipelining registers. These tiles get added into
the application during PnR, and the delay is accounted for in
the application compiler.

D. Pipelining Verification

The PnR and pipelined PnR results are also structurally
similar. The input constraint and output property are therefore
the same as in Section V-C, with new variables for the inputs
and outputs of the pipelined version of the application. During
pipelining, the compiler adds pipelining registers to the PnR
result. This changes the cycle count for when outputs are
produced. These additional pipelining registers are accounted
for during the rescheduling stage of pipelining, and we use
that scheduling information to calculate any additional timing
information needed.

E. Bitstream Generation Verification

In the final stage, we have symbolic representations that
are structurally very different: the pipelined PnR result is
a dataflow graph translated into a symbolic representation,
and the bitstream-configured CGRA is the hardware of the
accelerator translated into a symbolic representation. However,
the inputs and outputs of the two representations are very
similar. Thus, we can again use the input constraint and output
property from Section V-C, with new variables for the inputs
and outputs of the configured RTL design.

Our verification framework relies on several assumptions.
Most importantly, it assumes that the Halide compiler, Yosys,
and the SMT solver produce correct results. It also assumes
that the translations from compiler IR to SMT described in

202

Section IV are correct. Given these assumptions, our approach
will find any bug in the application compiler that manifests in
incorrect outputs and can identify the stage of the compiler
that introduced that bug. Our approach verifies that the entire
application executes correctly, provided we use a BMC bound
sufficiently large to ensure that all outputs are produced.

VI. SYMBOLIC STARTING STATES WITH AUTOMATIC
CONSTRAINT GENERATION

To verify a full application with the queries described in
the previous section, we need to run BMC for thousands of
cycles. For example, an application that consumes 1 pixel per
cycle and produces 1 output pixel per cycle needs to be run
for at least 4096 cycles for an input/output image tile size of
64 × 64.

This requirement only holds for applications that start from
a reset state. Resetting all state ensures that we start the veri-
fication process in a valid state. To improve performance, we
enable BMC to start from a symbolic starting state, allowing
verification from any point in the application’s execution. This
allows for parallelization by running multiple BMC instances
from different starting points.

With symbolic starting states, any state in the design can
start the verification check with any value. This allows the
hardware to start in invalid states, and will cause memory
elements that need synchronization, like the address gener-
ators in the memory tiles, to be out of sync. The address
generators present within the statically scheduled memories
need several constraints to work properly. First, they have a
cycle counter that is reset to 0 and counts up every cycle
for synchronization purposes. In a symbolic starting state, we
want these registers to start at a symbolic value, and we want
that value to be identical across tiles. We add a constraint that
says that all of the cycle counters start at the same symbolic
value. Additionally, there are address and schedule generator
counters that consume the configuration of the memory tile
and count in specific patterns according to the unified buffer
abstraction described in [24]. For a given cycle within the
application execution, the address counter, schedule counter,
and dimension counter within the memory tile have one valid
value. This value can be determined before the BMC property
is created, and we can constrain the counters appropriately.

Given the set of state variables that are minimally required
to constrain a valid starting state, constraint generation is
automated and can adapt to any hardware design. In this
domain, we can generate complete sets of constraints at
each timestep using compiler-derived schedules. Our use of
these schedules is not black-box: we rely on the precise,
static knowledge of dataflow and execution timing these tools
provide to extract exact invariants. The resulting symbolic
constraints successfully rule out unreachable states and prevent
false counterexamples in all of our evaluated applications.

This idea is similar to automatically generated inductive
invariants [9], [35]. This technique allows for paralleliza-
tion of the BMC check; its effects are demonstrated in the
experimental evaluation section. Additionally, starting in a

TABLE I
BENCHMARKS WITH NUMBER OF PES, MEMS, AND OUTPUT LATENCY.

Small Test #PE #MEM Latency Application #PE #MEM Latency
multiply 1 1 1 conv 1 2 3 1 3
arithmetic 4 1 4 conv 2 1 2 2 65
absolute 4 1 4 conv 3 3 9 2 138
boolean 5 1 3 fast corner 20 2 208
equal 4 1 3 pyramid 15 4 464
ternary 3 1 3 gaussian 12 2 141
compare 8 1 5 harris 63 6 415
ucomp 8 1 5 unsharp 57 12 429
minmax 4 1 2
uminmax 4 1 2
shift 4 1 4
ushift 3 1 3

symbolic starting state enables more thorough verification. If
any unconstrained register in the design has a value that could
introduce a bug into the application, symbolic starting states
ensure that we find that value. If any value in any register or
memory could cause a data dependency bug, symbolic starting
states would find that bug as well.

VII. EXPERIMENTAL EVALUATION

We evaluate the impact of the performance improvement
from Section VI, the runtime of each verification check,
and coverage of bugs in the application compiler. For these
experiments we use the applications listed in Table I. The 12
applications on the left are small tests, while the applications
on the right are larger workloads from [33]. For each applica-
tion, the number of PEs and MEMs represent the number of
resources utilized by each benchmark. We use input image tiles
of size 64 × 64 with 16 bit values and map every application
to a fixed CGRA architecture with 16 rows and 32 columns of
tiles. We use the model checker Pono [25] with the Boolector
backend [30]. We run every BMC check using 32 cores of a
2.5 GHz Intel CPU with 252 GB of memory.

A. Symbolic Starting States

The symbolic starting state optimization described in Sec-
tion VI impacts all of the stages of verification except for
compute mapping verification, as that does not have any
memory tiles and very little state. This optimization enables
parallel processing of the verification check, as we can start
many different threads at different starting points.

Without symbolic starting states, memory mapping, place
and route, pipelining, and bitstream verification cannot finish
even with the simplest application. The memory cost of the
verification check exceeds the total system memory of 252
GB. By using symbolic starting states to parallelize the BMC
check, we can verify full applications. This optimization helps
mitigate the state explosion associated with unrolling the BMC
check for thousands of cycles.

B. Runtime of Translation Validation

We evaluate the runtime of each of the translation val-
idation checks on applications that do not have any bugs.
For each check, we report the runtime of the application
compiler without verification, the construction of the symbolic
representation, and the SMT solving.

203

Fig. 5. Runtime of place and route verification.
Fig. 3. Runtime of compute mapping verification, broken down into appli-
cation compiler runtime without any verification, time for constructing the
symbolic representation, and SMT solving time.

Fig. 6. Runtime of pipelining verification.

Fig. 4. Runtime of memory mapping verification.

1) Compute Mapping Verification: The runtime of compute
mapping verification is shown in Fig 3. Overall, as both the
compute dataflow graph and mapped dataflow graph of PEs
do not buffer data in memory elements, the verification check
is very fast, as we do not need to run the BMC algorithm
for many steps. The representation of both the input to and
the output from the compute mapper can be translated into
SMT very quickly, as we can leverage the PEak interpretation
of each node. The runtime of compute mapping verification
ranges from 1 to 20 seconds.
2) Memory Mapping Verification: The runtime of mem-

ory mapping verification is shown in Fig. 4. As discussed
in Section V-B, the two sides of this validation check are
structurally very different. Therefore, the validation check is
much slower than compute mapping verification, particularly
for the larger application-level tests. This verification check
requires running BMC for the number of cycles required to
produce every output pixel.

In contrast to compute mapping verification, this verification
stage is very complex, both due to the highly temporal nature
of this stage and the representation of the hardware. Memory
tiles are more complex than PE tiles, requiring finite state
machines and counters for implementing memory addressing
and access patterns. Representing memory elements in SMT
using the flow described in Section IV-C results in complex
representations that take more time to verify.

Overall, for smaller applications, the overhead of the verifi-
cation ranges from 1 to 3 minutes, and for larger applications
it ranges from 2 to 375 minutes.
3) Place and Route Verification: Place and route verifica-

tion runtime is shown in Fig. 5. The source and target for
this translation validation query are more similar than those

associated with memory mapping. Therefore, the verification
runtime is shorter. For the small tests, running the application
compiler and generating the symbolic representations take
more time than the verification check itself. The overhead of
this stage of verification ranges from about 1 minute for small
applications to anywhere from 1 minute to 108 minutes for
larger applications.
4) Pipelining Verification: Pipelining verification runtime

is shown in Fig. 6. Like place and route verification, the rep-
resentations of the application before and after pipelining are
similar in structure. Pipelining will add pipelining registers to
the application and reschedule the memory tiles, changing their
configurations. Pipelining is a longer stage in the application
compiler as it requires running PnR multiple times to find
solutions with short critical paths. The overhead of pipelining
verification is 1 minute for small applications, and ranges from
1 minute to 61 minutes for large applications.
5) Bitstream Generation Verification: Finally, the runtime

of bitstream verification is shown in Fig. 7. The runtime of
this verification stage is dominated by generating the symbolic
application rather than the application compiler or the SMT
solver. This is due to the procedure described in Section IV-E.
Generating and simplifying the flattened Verilog for the ac-
celerator using Yosys takes a long time, especially for larger
applications. Larger applications also require a larger CGRA,
which dramatically increases the runtime of Yosys. Overall,
bitstream generation verification introduces an overhead of 8
to 9 minutes for small applications and 9 to 159 minutes for
large applications.

C. Bug Coverage

1) Introducing Bugs into the Compiler: We report the
runtime of finding various bugs in “fast corner,” a moderately
complex application in our benchmark suite. First, we intro-

204

Fig. 7. Runtime of bitstream generation verification.

duce a bug in the compute mapping stage. We modify the
mapping result to map a less-than operation to a PE that uses a
less-than-or-equal-to operation. This bug is found 49 seconds.
Next, we introduce a bug in the PE hardware where, in a
three-input addition operation, the carry-in bit to the second
adder is stuck at 0. This bug is found 35 seconds. Finally, we
introduce a bug into the compiler where it assumes that each
PE has a delay of 0 cycles when the PE takes 1 to produce
an output. This bug is found 81 seconds. This stage of the
compiler without verification takes 3 minutes.

Next, we discuss the bugs that are found during memory
mapping verification. First, we introduce a bug in scheduling,
adjusting the static schedule of a memory tile to start counting
1 cycle early. This bug is found in 3 minutes and 12 seconds.
Next, we introduce a hardware bug into the memory tiles.
This bug shrinks the bit width of one of the address gener-
ation counters from 5 bits to 4 bits, leading to the counter
overflowing. This bug is found in 3 minutes. This stage of the
application compiler without verification takes 2 minutes.

Next, we examine bugs that are found during place and route
verification. First, we introduce a bug where a PE is connected
to another PE through a connection that is supposed to be
combinational communication but instead has a pipelining
register, so it takes one cycle. This bug is found 5 minutes
and 50 seconds. Next, we introduce a hardware bug into the
interconnect where the configuration of a connection box is
faulty and routes data to the wrong track. This bug is found 5
minutes and 55 seconds. This stage of the application compiler
without verification takes 2 minutes.

Next, we examine the types of bugs that are found during
pipelining verification. First, we introduce a bug where a
pipelining register is added to the place and route result, but
not accounted for in the scheduling of the application. This
bug is found 7 minutes and 11 seconds. Next, we introduce
a bug into the hardware where a single pipelining register is
misconfigured and is bypassed when it should not be. This bug
is found 7 minutes and 6 seconds. This stage of the application
compiler without verification takes 6.5 minutes.

Finally, we examine the bugs that are found during bitstream
generation verification. First, we add a bug to the compiler
where a single bit of the bitstream is flipped. This bug is found
in 171 minutes. Next, we introduce a bug in the accelerator
hardware that shrinks the bit width of a single configuration
register in the interconnect from 16 to 15 bits. This bug is
found in 19 minutes. This stage of the application compiler

without verification takes 1 minute.
Without our verification system, these bugs would only be

found during the Verilog simulation of the entire application.
Our approach leads to much more thorough verification of
the application compiler than traditional simulation. Bugs that
are exercised by specific input values can easily be missed in
simulation but will not be missed in our approach. Compiler
passes that introduce bugs that are later masked can be missed
with end-to-end simulation tests, while our approach finds
bugs introduced by any stage. Simulation requires starting in a
reset state, while our symbolic starting states with automated
state constraints can start verification at any point in the
application execution, so bugs that show up only late in the
application execution may be found much faster with our
approach.
2) Bugs Found in the Application Compiler: We discovered

several real bugs in our application compiler that were previ-
ously unknown. Our application compiler has been developed
for over six years [21] and until now relied on traditional
simulation-based verification methods.

The first bug that we uncovered was in the PEs. There is
an operation in the PE that is a multiply that takes in two
16-bit operands and returns the middle 16 bits of the 32-bit
result. The bug that was found was a mismatch between the
specification of the operation and the implementation within
the PE. The operation was specified as two 16-bit operands
that were zero padded to 32 bits, multiplied, and shifted right
by 8 bits. The bottom 16 bits of the result were to be returned.
This specification did not match the hardware; instead, the first
step should have been to sign extend the two 16-bit operands
to 32 bits. During compute mapping, this bug was found in
1.5 minutes.

The second bug was a hardware bug related to configuration
register placement. The memory tiles in the CGRA can be
configured to act as ROMs. In ROM mode, there is a write
enable signal in the memory tile that should be unused during
application execution. However, this signal was left enabled,
and a configuration register present in a connection box was
used to make sure no signal was routed to this input. This
was a temporary fix that was forgotten about and never
permanently addressed. In the memory mapping verification
stage, this bug was found in 4 minutes and 12 seconds.

Finally, we discovered several scheduling bugs related to
pipelining. When rescheduling an application after pipelining,
any latency that is not accounted for may cause incorrect
outputs. Identifying when the pipelining stage of the compiler
causes the Verilog simulation to fail is difficult and often
requires a significant amount of debugging. Our validation
check found 5 rescheduling bugs in the rescheduling stage
of pipelining in seconds for smaller applications.

VIII. CONCLUSION

In this work, we presented a methodology for automated
translation validation of an application compiler for statically
scheduled accelerators. We introduced an SMT-based formal
representation for every stage in the compiler, a way to

205

perform translation validation of each of the stages leveraging
scheduling information in the compiler, and a technique for
dramatically improving performance through symbolic starting
states. This is the first work that we are aware of to apply
translation validation for a complex accelerator application
compiler that combines both hardware and software represen-
tations. Our work enables rigorous verification and much better
bug localization than traditional simulation-based approaches.

IX. ACKNOWLEDGMENTS

This work was supported by funding from the SRC
JUMP 2.0 PRISM Center, an NSF CAREER Award (number:
2238006), a research gift from Cisco, an Apple Stanford EE
PhD Fellowship in Integrated Systems, and the Stanford Agile
Hardware Center.

REFERENCES

[1] AHA Application Compiler. https://github.com/StanfordAHA/aha. Ac-
cessed: 2025-03-01.

[2] Verification Implementation. https://github.com/jack-melchert/verified
agile hardware. Accessed: 2025-03-01.

[3] Clark Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli, and
Lenore Zuck. TVOC: A Translation Validator for Optimizing Compilers.
In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification, pages 291–295. Springer Berlin Heidelberg, 2005.

[4] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[5] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories.
Handbook of Model Checking, pages 305–343, 2018.

[6] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 305–343. Springer
International Publishing, 2018.

[7] Clark Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz, Mathias
Preiner, Andrew Reynolds, and Yoni Zohar. Satisfiability Modulo
Theories: A Beginner’s Tutorial. In André Platzer, Kristin Yvonne
Rozier, Matteo Pradella, and Matteo Rossi, editors, Proceedings of the
26th International Symposium on Formal Methods (FM ’24), Part II,
volume 14934 of Lecture Notes in Computer Science, pages 571–596.
Springer Nature Switzerland, September 2024. Milan, Italy.

[8] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic Model Checking without BDDs. In W. Rance Cleaveland,
editor, Tools and Algorithms for the Construction and Analysis of
Systems, pages 193–207, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[9] Satrajit Chatterjee and Michael Kishinevsky. Automatic Generation
of Inductive Invariants from High-Level Microarchitectural Models of
Communication Fabrics. In Tayssir Touili, Byron Cook, and Paul
Jackson, editors, Computer Aided Verification, pages 321–338, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[10] Shuo-Hung Chen, Hsiao-Mei Lin, Hsin-Wen Wei, Yi-Cheng Chen, Chih-
Tsun Huang, and Yeh-Ching Chung. Hardware/Software Co-designed
Accelerator for Vector Graphics Applications. In 2011 IEEE 9th
Symposium on Application Specific Processors (SASP), pages 108–114,
2011.

[11] Basile Clément and Albert Cohen. End-to-End Translation Validation
for the Halide Language. Proc. ACM Program. Lang., 6(OOPSLA1),
April 2022.

[12] Ross Daly, Leonard Truong, and Pat Hanrahan. Invoking and Linking
Generators from Multiple Hardware Languages using CoreIR. In
Workshop on Open-Source EDA Technology (WOSET), 2018.

[13] Caleb Donovick, Jackson Melchert, Ross Daly, Lenny Truong, Priyanka
Raina, Pat Hanrahan, and Clark Barrett. PEak: A Single Source of Truth
for Hardware Design and Verification. ACM Transactions on Embedded
Computing Systems, November 2024.

[14] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony
Nowatzki, Nathan Beckmann, and Brandon Lucia. RipTide: A Pro-
grammable, Energy-Minimal Dataflow Compiler and Architecture. In
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 546–564, 2022.

[15] Evguenii I Goldberg, Mukul R Prasad, and Robert K Brayton. Using
SAT for Combinational Equivalence Checking. In Proceedings Design,
Automation and Test in Europe. Conference and Exhibition 2001, pages
114–121. IEEE, 2001.

[16] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. EPIMap:
Using Epimorphism to Map Applications on CGRAs. In Proceedings
of the 49th Annual Design Automation Conference, DAC ’12, page
1284–1291, New York, NY, USA, 2012. Association for Computing
Machinery.

[17] Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John
Wickerson. Formal Verification of High-Level Synthesis. Proc. ACM
Program. Lang., 5(OOPSLA), October 2021.

[18] Bo-Yuan Huang, Hongce Zhang, Aarti Gupta, and Sharad Malik.
INVITED: Generalizing the ISA to the ILA: A Software/Hardware
Interface for Accelerator-rich Platforms. In 2023 60th ACM/IEEE
Design Automation Conference (DAC), pages 1–4, 2023.

[19] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel,
Aarti Gupta, and Sharad Malik. Instruction-Level Abstraction (ILA):
A Uniform Specification for System-on-Chip (SoC) Verification. ACM
Trans. Des. Autom. Electron. Syst., 24(1), December 2018.

[20] Chandan Karfa, Dipankar Sarkar, Chittaranjan Mandal, and Pramod
Kumar. An Equivalence-Checking Method for Scheduling Verification
in High-Level Synthesis. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27(3):556–569, 2008.

[21] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong,
Gedeon Nyengele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen,
Yuchen Mei, Maxwell Strange, Ross Daly, Caleb Donovick, Alex
Carsello, Taeyoung Kong, Kathleen Feng, Dillon Huff, Ankita Nayak,
Rajsekhar Setaluri, James Thomas, Nikhil Bhagdikar, David Durst,
Zachary Myers, Nestan Tsiskaridze, Stephen Richardson, Rick Bahr,
Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz,
Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. AHA: An
Agile Approach to the Design of Coarse-Grained Reconfigurable Ac-
celerators and Compilers. ACM Trans. Embed. Comput. Syst., 22(2),
January 2023.

[22] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Validating High-Level
Synthesis. In Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, pages 459–472. Springer Berlin Heidelberg, 2008.

[23] Alan Leung, Dimitar Bounov, and Sorin Lerner. C-to-Verilog Translation
Validation. In 2015 ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), pages 42–47, 2015.

[24] Qiaoyi Liu, Jeff Setter, Dillon Huff, Maxwell Strange, Kathleen Feng,
Mark Horowitz, Priyanka Raina, and Fredrik Kjolstad. Unified Buffer:
Compiling Image Processing and Machine Learning Applications to
Push-Memory Accelerators. ACM Trans. Archit. Code Optim., 20(2),
March 2023.

[25] Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang, Hongce
Zhang, Kristopher Brown, Aarti Gupta, and Clark W. Barrett. Pono:
A Flexible and Extensible SMT-Based Model Checker. In International
Conference on Computer Aided Verification, 2021.

[26] Makai Mann, Amalee Wilson, Yoni Zohar, Lindsey Stuntz, Cesare
Tinelli, and Clark Barrett. Smt-Switch: A Generic C++ API for SMT
Solving. https://github.com/stanford-centaur/smt-switch, 2024.

[27] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and
Rudy Lauwereins. DRESC: A Retargetable Compiler for Coarse-
Grained Reconfigurable Architectures. In 2002 IEEE International Con-
ference on Field-Programmable Technology, 2002. (FPT). Proceedings.,
pages 166–173, 2002.

[28] Jackson Melchert, Yuchen Mei, Kalhan Koul, Qiaoyi Liu, Mark
Horowitz, and Priyanka Raina. Cascade: An Application Pipelining
Toolkit for Coarse-Grained Reconfigurable Arrays. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pages
1–1, 2024.

[29] George C. Necula. Translation Validation for an Optimizing Compiler.
In Proceedings of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation, PLDI ’00, page 83–94.
Association for Computing Machinery, 2000.

[30] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2 ,
BtorMC and Boolector 3.0. In Hana Chockler and Georg Weissenbacher,

206

https://github.com/StanfordAHA/aha
https://github.com/jack-melchert/verified_agile_hardware
https://github.com/jack-melchert/verified_agile_hardware
https://github.com/stanford-centaur/smt-switch
www.SMT-LIB.org

editors, Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of
Lecture Notes in Computer Science, pages 587–595. Springer, 2018.

[31] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan
Sankaralingam, Cristian Estan, and Behnam Robatmili. A General
Constraint-Centric Scheduling Framework for Spatial Architectures.
SIGPLAN Not., 48(6):495–506, June 2013.

[32] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation Validation.
In Bernhard Steffen, editor, Tools and Algorithms for the Construction
and Analysis of Systems, pages 151–166. Springer Berlin Heidelberg,
1998.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, page 519–530. Association for Computing Machinery, 2013.

[34] Claire Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.
[35] Jiahui Xu and Lana Josipovic.´ Automatic Inductive Invariant Gener-

ation for Scalable Dataflow Circuit Verification. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages
1–9, 2023.

[36] Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shah-
baz, and Kunle Olukotun. SARA: Scaling a Reconfigurable Dataflow
Accelerator. In Proceedings of the 48th Annual International Symposium
on Computer Architecture, ISCA ’21, page 1041–1054. IEEE Press,
2021.

[37] Zhongyuan Zhao, Weiguang Sheng, Qin Wang, Wenzhi Yin, Pengfei
Ye, Jinchao Li, and Zhigang Mao. Towards Higher Performance and
Robust Compilation for CGRA Modulo Scheduling. IEEE Transactions
on Parallel and Distributed Systems, 31(9):2201–2219, 2020.

[38] Lenore Zuck, Amir Pnueli, Benjamin Goldberg, Clark Barrett, Yi Fang,
and Ying Hu. Translation and Run-Time Validation of Loop Transfor-
mations. Formal Methods in System Design, 27(3):335–360, November
2005.

APPENDIX

Our 20 applications generate symbolic representations
whose sizes range from a few lines to roughly 200,000
lines. Here, we show excerpts from the simplest application,
conv 1 2. The representations for this simple application
range from a few lines for the compute kernel to over 4000
lines for the final CGRA Verilog.

A. Compute Kernels
(bvadd
(bvadd $e3
(bvmul #h0005 $e2))

(bvmul #h0003 $e1))

The single compute kernel in conv 1 2 has three inputs and
computes the following: (e3 + (5 ∗ e2)) + (3 ∗ e1), where 5
and 3 are the kernel weights in this application.

B. Loop Nests
This is an excerpt from a 61-line representation:

(let
(($e0

(bvadd
(bvmul in_0_0 #h0005)
(bvmul in_1_0 #h0003))))

(let
(($e1

(bvadd
(bvmul in_1_0 #h0005)
(bvmul in_2_0 #h0003))))

(let
(($e2

(bvadd
(bvmul in_2_0 #h0005)
(bvmul in_3_0 #h0003))))

(let
(($e3

(bvadd
(bvmul in_0_1 #h0005)
(bvmul in_1_1 #h0003))))

...

Here, we assign each output variable a value based on the
addition of the multiplication of two input pixels with kernel
values.

C. Compute-Mapped Dataflow Graph of PEs
((_ extract 15 0)

(bvadd
(concat #b0
((_ extract 15 0)

(bvadd
(concat #b0

((_ extract 15 0)
(bvmul #h00000005

(concat #h0000 $e2))))
(concat #b0 $e3))))

(concat #b0
((_ extract 15 0)

(bvmul #h00000003
(concat

(ite
(= #b1

((_ extract 47 47) IVAR_V_415@0))
#hfff #h000) $e1))))))

In this stage, the representation is generated by taking the
dataflow graph of configured PEs and simplifying it to remove
all unused hardware. In this application, we have two PEs
performing multiply-add operations on 16-bit operands with a
32-bit multiplier.

D. Fully-Mapped Dataflow Graph of PEs and MEMs
This is an excerpt from a 1284-line representation:

...
(bvand

(bvand
(bvand clk_en$const0.next

(bvand clk_en$const0
(ite

(and
(= V_0$const0 V_0$const0_inter.next)
(= bmc_counter.next

(bvadd bmc_counter #h0001))
(= V_0$const0.next V_0$const0_inter)
(= V_1$const0 V_1$const0_inter.next)
(= V_1$const0.next V_1$const0_inter)
(= V_2$const0 V_2$const0_inter.next)
(= V_2$const0.next V_2$const0_inter)
(= V_3$const0 V_3$const0_inter.next)
(= V_3$const0.next V_3$const0_inter)
(= V_4$const0 V_4$const0_inter.next)
(= V_4$const0.next V_4$const0_inter)
(= V_5$const0 V_5$const0_inter.next)
(= V_5$const0.next V_5$const0_inter))

#b1 #b0)))
(ite

(= state5.next $e2) #b1 #b0))
(ite

(= state7.next
(ite

(= #b1 flush_mem) #h0000
(bvadd $e2

207

https://yosyshq.net/yosys/

(concat #b000000000000000 $e6)))) #b1 #b0))
...

This stage of the compiler has a much more complex repre-
sentation. This is an excerpt showing some pipelining logic
within the PEs and some flushing logic in the memory tile.

E. Place and Route and Pipelining
This is an excerpt from a 1265-line representation:

...
(bvand
(bvand
(bvand
(bvand
(ite
(=
((_ extract 15 0)
(bvadd
(concat #b0 V_18_p2)
(concat #b0
((_ extract 15 0)
(bvmul #h00000003
(concat
(ite
(= #b1
((_ extract 15 15) V_16_p2))
#hffff #h0000) V_16_p2))))))
r1.reg_in.next) #b1 #b0))

(ite
(= r1.reg_in r1.reg_val.next) #b1 #b0))

(ite
(= r1.reg_val out.I0) #b1 #b0))

(ite
(= r1.reg_val.next out.I0.next) #b1 #b0))

...

This excerpt shows some PE calculations and the next state
logic for some interconnect registers. These registers get added
during the PnR and pipelining stages of the compiler.

F. CGRA Verilog
This is an excerpt from a 4598-line representation:

...
(let

(($e9
(ite

(= #b1 $e1) state111 state110)))
(let

(($e10
(ite

(= #b1 $e2) $e9 #h0000)))
(let

(($e11
(ite

(= #b1 $e1) state119 state118)))
(let

(($e12
(select |\$flatten\Tile_X01_Y03.

\CB_PE_input_width_16_num_1.
\CB_PE_input_width_16_num_1.
\u_precoder.$auto$proc_rom.cc
:155:do_switch$1345| #b01100)))

...

This final stage of the application is the most complex, even
for this simple application. During this stage, we generate the
representation from the Verilog of the accelerator itself, so this
excerpt shows some of the complexity that gets added to the
symbolic representation as a result.

208

https://u_precoder.$auto$proc_rom.cc

	Introduction
	Related Work
	Background
	CGRA Architecture and Application Compiler
	SMT-based Model Checking

	Symbolic Representations in SMT
	Application Specification
	Compute-Mapped Dataflow Graph of PEs
	Fully-Mapped Dataflow Graph of PEs and MEMs
	Place and Route and Pipelining
	CGRA Verilog

	Translation Validation
	Compute Mapping Verification
	Memory Mapping Verification
	Place and Route Verification
	Pipelining Verification
	Bitstream Generation Verification

	Symbolic Starting States with Automatic Constraint Generation
	Experimental Evaluation
	Symbolic Starting States
	Runtime of Translation Validation
	Compute Mapping Verification
	Memory Mapping Verification
	Place and Route Verification
	Pipelining Verification
	Bitstream Generation Verification

	Bug Coverage
	Introducing Bugs into the Compiler
	Bugs Found in the Application Compiler

	Conclusion
	Acknowledgments
	References
	Appendix
	Compute Kernels
	Loop Nests
	Compute-Mapped Dataflow Graph of PEs
	Fully-Mapped Dataflow Graph of PEs and MEMs
	Place and Route and Pipelining
	CGRA Verilog

