
Formal Methods in Computer-Aided Design 2025

Guiding Likely Invariant Synthesis on
Distributed Systems with Large Language Models

Yuan Xia, Aabha Shailesh Pingle, Deepayan Sur, Srivatsan Ravi, Mukund Raghothaman, Jyotirmoy V. Deshmukh
University of Southern California

Los Angeles, USA
{yuanxia, apingle, deepayan, srivatsr, raghotha, jdeshmuk}@usc.edu

Abstract—Deductive verifcation is an approach where the user
expends effort in constructing a program invariant manually,
or learns this invariant from program traces, and subsequently
uses the program invariant for safety verifcation tasks. Most
existing invariant synthesis tools still rely on model checking
methods to certify invariants, use enumerative search to identify
and refne candidate invariants, and user insights to start
with a set of candidate predicates that may appear in the
fnal (learned) invariant. On the other hand, pre-trained large
language models (LLMs) have recently attracted considerable
attention in various tasks related to generating program code
(e.g., from natural language). There have been recent efforts
at applying LLMs to the program verifcation context. In this
paper, we investigate the capabilities of LLMs to synthesize
program invariants by creating a specialized set of prompts.
When LLM invariant synthesis with direct prompting fails, we
introduce two revision frameworks for incorporating LLM calls.
In the frst framework PSyn, the LLM suggests atomic predicates
based on counterexamples for reconstructing the invariants. The
second framework ISyn adopts the LLM to generate invariants
by itself within a revision process. We tested our methods on
8 distributed systems modeled in Promela and invariants are
verifed with Spin. Our results show that the state-of-the-art
model GPT-o3, when it is used to generate invariants directly,
is less effective than the symbolic invariant synthesis method
RunVS. However, our integrated approach PSyn, which employs
the LLM as a predicate prompter, signifcantly outperforms GPT-
o3 and ISyn and has comparable performance with RunVS. This
integrated technique also produces higher-quality invariants in
general. Because we focus on runtime monitoring frameworks,
we primarily consider system traces and hence likely invariants.
However, our revision frameworks can also learn true invariants
by using model checkers in the revision frameworks.

Index Terms—Invariant Synthesis, Distributed Systems, Large
Language Models

I. INTRODUCTION

Formal verifcation of distributed computing systems is a
computationally challenging problem, as the number of system
states grows exponentially both in the number of program
variables, and the number of processes participating in the dis-
tributed computation. This state-space explosion problem has
long been a roadblock for automatic verifcation techniques
like model checking, though approaches like partial order re-
ductions, symmetric reductions, symbolic methods with SMT
solvers, and context-bounding have sought to ameliorate this
problem. An alternative approach to exhaustive exploration
of the state-space is deductive verifcation, where the user
proposes an invariant expression over the (global) program

variables, which if valid, can help simplify proofs of system
safety to a simple validity check of a propositional formula.

As manually deriving invariants is diffcult, there has been
considerable effort to automatically synthesize program in-
variants. There are two primary methods for this: deductive
and automatic methods. Deductive methods involve manual
or semi-manual proofs aided by theorem provers such as Coq
[1] and Isabelle [2], and involve interaction with a proof
system with explicit axiomatization of the program syntax
and semantics. Deductive methods [3], [4] are able to capture
complex invariants, but require signifcant human labor and
deep domain knowledge. Automatic methods rely on tools
such as model checkers or dynamic invariant detectors to learn
invariants.

Model-checker-assisted invariant synthesis methods itera-
tively refne candidate invariants based on counterexamples
generated by model checkers. Methods based on ICE-learning
[5], [6] use decision trees to classify positive examples ob-
tained from program traces from negative examples obtained
from user-provided safety properties and implication coun-
terexamples obtained from program transitions to enforce in-
ductiveness of the invariant. Invariant verifcation is performed
using the Z3 SMT solver. DistAI [7] leverages Ivy [8] as
a model checker to ensure inductiveness of the invariant.
While these approaches can give deterministic guarantees on
the correctness of the invariant, they may face computational
challenges in validating the invariant for large or infnite-state
systems.

Dynamic invariant synthesis techniques infer invariants from
just execution traces. Tools such as Daikon [9] collect runtime
observations and detect likely invariants from them. DIDUCE
[10] tracks certain types of invariants of Java programs. While
dynamic methods may overlook rare edge cases and produce
overly broad or imprecise invariants, they are generally faster
and more scalable in predicting invariants from system traces.
Most automatic invariant synthesis methods require user input
in the form of annotations (e.g., in the form of assertions),
identifcation of program variables that should be included
in the invariant, and initial sets of predicates. In this paper,
we will focus on automatic methods, while trying to both
alleviate the burden imposed on users and scaling the process
of validating the synthesized invariant.

A step in this direction was taken by our prior work [11]
which developed the RunVS technique for dynamic invariant

This article is licensed under a Creativehttps://doi.org/10.34727/2025/isbn.978-3-85448-084-6_29
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_29
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_29
https://creativecommons.org/licenses/by/4.0/
mailto:jdeshmuk}@usc.edu

learning. RunVS learns decision tree-based invariants to sepa-
rate positive examples (obtained from execution traces) from
speculative negative examples. The approach uses a runtime
monitoring technique to validate the learned invariant. As
it does not provide deterministic guarantees on the learned
invariant, we call its output a likely invariant. However, there
are a number of limitations with RunVS:

1) RunVS requires the user to provide a list of global
variables that may be included in the invariant.

2) RunVS requires a grammar for the predicate augmenta-
tion.

3) In many distributed systems, some global variables are
indexed by the processes that update or read from them,
and invariants can be quantifed expressions such as
∀i∃j : P (xi, yj) =⇒ Q(xi), where P and Q are
predicates involving two variables and a single variable,
respectively [7].

To address these challenges, we propose two frameworks
that integrate Large Language Models (LLMs) into the in-
variant synthesizer RunVS. When we prompt the LLM with
the source code for a distributed protocol along with other
carefully crafted queries, the LLM can suggest predicates, re-
ducing the space of predicates to be explored. When prompted
with counterexamples and some of the previous context, it
can revise invariants. In RunVS, we iteratively learn the
invariant by alternating invariant inference (from examples)
and runtime monitoring to generate counterexamples. Any
counterexamples found are used to refne the invariant. We use
the same basic framework, but use LLM-guidance at several
steps during this process.
Contributions. To summarize, this paper makes the following
contributions:

(i) We investigate prompt design for LLMs to discover and
refne predicates that may appear in a program invariant.

(ii) We mitigate the problem of exploring a large space of
predicates by combining LLMs with the RunVS invariant
revision framework.

(iii) We boost LLM’s predicate prediction capability with
chain of thought reasoning.

(iv) We extend our previous RunVS approach to synthesize
quantifed invariants by using the LLM to replacing
quantifer-free expressions with inferred quantifers.

(v) We demonstrate the usefulness and scalability of our
framework on distributed systems modeled in Promela
[12].

II. PRELIMINARIES

In this section, we formalize the terminology needed to
explain our approaches. Besides, we will present the problem
statement in this section.

A. Program structure and modeling assumptions

Program variables, program states, program execution
traces, and invariants are all fundamental concepts in program
synthesis. We give their defnitions in this section so that we
can precisely establish our problem statement.

Defnition 1 (Variables, States). A type t refers to a fnite
or an infnite set of values. A program variable v of type
t represents a symbolic name that contains values from t,
denoted by type(v) = t. Let V represent the complete setS
of program variables. A valuation ν : V → type(v)v∈V
is a function that assigns to each variable v ∈ V a concrete
value ν(v) ∈ type(v). The program state at any execution
point is denoted by the tuple ν(V), representing the collective
valuation of all variables in V .

Defnition 2 (Labelled Transition System (LTS)). A la-
belled transition system for a concurrent program is a tuple
(S, L, T, Init), where:
S is a set of system states,
L is a set of labels corresponding to program statements,
T ⊆ S × L × S is the transition relation,
Init ⊆ S is a set of initial states.

Defnition 3 (Reachable States). For a program P modeled
as an LTS, its reachable states R are all states that can be
reached from initial states s0, s0 ∈ S. Reach(P , Init) is the
minimal set R satisfying:

1) s0 ∈ Init =⇒ s ∈ R and,
′2) s ∈ R ∧ (s, s ′) ∈ T =⇒ s ∈ R.

Defnition 4 (Program Trace). A program trace σ =
(s0, s1, . . . , sk) is a fnite sequence of states where:s0 ∈ Init,
and for all j ∈ [1, k − 1], (sj−1, sj) ∈ T .

Defnition 5 (Monitor). A monitor observes a fnite prefx
σ = (s0, . . . , sk) of a program trace and evaluates whether σ
satisfes a property ϕ.

Runtime monitoring refers to monitoring the system’s states
during its execution and detecting whether the behaviors
align with predefned specifcations. Runtime monitoring is
a popular approach for dynamic verifcation [13]. The offine
monitoring [14] collects runtime information during the sys-
tem’s execution and stores it for later analysis. The analysis is
performed offine once the system has completed execution.
In contrast, online monitoring [14] refers to the simultaneous
observation and analysis of system states as it is running.
The concurrent monitor enables early detection and response,
which is essential for critical systems requiring immediate
corrective actions.

Defnition 6 (Invariants). An invariant I is a Boolean-valued
expression over program variables that holds for all reachable
program states, formally defned as follows:

∀s ∈ Reach(P , Init), s |= I.

Remark. Likely invariants are hypothesized invariants that hold
true for all states observed up to a given point.

B. Basics of LLM-based analysis

Generative Large Language Models (LLMs) are
transformer-based neural networks pre-trained on large
text/code corpora to generate human-like outputs. LLMs
leverage self-attention mechanisms to capture long-range

227

Fig. 1: Predicate LLM Synthesis Framework

dependencies in sequences. With fne-tuning, they are
adaptable to domain-specifc tasks, e.g., code synthesis [15].
In this work, LLMs act as assistants for invariant synthesis,
helping revise predicates or invariants. Few-shot prompting
(learning) is a form of prompt engineering in generative AI,
where a few examples are provided in a prompt to perform a
task.

Zero-shot prompting refers to the method of no examples
given, and one-shot prompting means a single example crafted
in a prompt to achieve a desired output. One-shot prompting is
particularly useful when collecting a large amount of training
data is impractical. We will use one-shot prompting to perform
the task of invariant synthesis, denoted as one-shot invariant
synthesis, as our baseline experiments.
Problem statement. Let P be a distributed program. Let
Reach(P , Init) be the set of reachable states of P . Let G
denote the grammar to specify (a possibly infnite) set of
Boolean-valued expressions over program variables, and let
L(G) denote this set. The objective of this paper is to design
a runtime algorithm able to learn a program likely invariant
ϕ without dependency on users by integrating LLMs. The
invariant has the following properties:

1) Soundness of a likely invariant:

((s ∈ Reach(P , Init)) ⇒ (s ∈ ϕ)) (1)

2) Tightness of a likely invariant:

ϕ = arg min | {s | s ̸∈ Reach(P , Init) ∧ s ∈ ϕ} | (2)
ϕ∈L(G)

III. OVERVIEW

In this section, we will frst introduce our code instrumen-
tation technique for tracking state changes of a distributed
system simulated by Spin [16]. We then present two runtime
monitoring frameworks integrating revision guidance for in-
variant synthesis from LLMs.

LLM-aided Code Instrumentation. Spin can monitor the
state changes of a system modeled in Promela by capturing
the system states after each system transition. However, its
default approach treats an atomic block consisting of multiple
statements, not as a single, simultaneous event, but as individ-
ual statements. Thus, Spin does not record global states after

atomic blocks. In other words, atomicity is not held in Spin.
The traces do not accurately show the states captured “before”
and “after” snapshots of atomic blocks. We propose a refned
instrumentation strategy that encodes a Promela system into
an instrumented Promela system that is trackable by Spin, as
shown in Figures 1 and 2. The implementation leverages an
LLM to address this limitation. Our technique automatically
inserts instrumentation code after every assignment outside
atomic blocks while only considering one state update at
the end of every atomic block when assignment statements
are inside. The LLM produces updated Promela code given
a sequence of required instrumentation tasks and constraints
in the natural language specifcation. This method offers an
automatic solution for capturing intermediate state transitions
without sacrifcing the atomic semantics of systems modeled
by Spin. We will adopt Peterson [16] Promela program as a
demonstration example throughout all prompting techniques.
Peterson is a tiny concurrent algorithm that implements mutual
exclusion for two concurrent processes.

In this paper, we introduce two frameworks for runtime in-
variant synthesis that integrate revision guidance from LLMs.
Both frameworks rely on iterative refnement within runtime
monitoring. The frameworks are supposed to detect incorrect
invariants by observing system traces and refning them based
on feedback, which is system states in observed traces that
do not satisfy candidate invariants, which are denoted as
counterexamples. However, two frameworks are distinguished
regarding how an LLM is employed and what task the LLM
is assigned.

Predicate LLM Synthesizer Framework. As shown in Fig-
ure 1, the frst framework treats the LLM as a predicate hinter,
which is considered a component responsible for supplying
promising atomic predicates that are precise and potentially
exist in the system invariants. Example prompts are presented
in the section IV. We iteratively prompt the LLM with stored
predicates from the previous iteration, the falsifed invariant,
and counterexamples observed from the system’s runtime
monitoring. Counterexamples are the system states that make
the candidate invariant fail. We maintain a certain length
of chat history as part of the context in LLM’s input. This
approach ensures that the LLM’s context remains focused on

228

Fig. 2: Invariant LLM Synthesis Framework

relevant information, preventing it from exceeding the LLM’s
context window limit and maintaining a reasonable prompt
length.

The new atomic predicates proposed by the LLM might
augment the stored predicates. The stored predicates are
increasingly augmented and refned over iterations. RunVS
will construct an invariant that is sound and precise based on
the input of predicates. Candidate invariants are expected to
hold for every system trace. If the invariant fails to hold, the
system extracts the state as a new counterexample, updates
the counterexample set, and prompts the LLM again. This
Predicate Prompter framework effectively offoads the chal-
lenging task of demanding potentially useful predicates from
the user end to an LLM while keeping the invariant generation
and monitoring rigorous through formal synthesis. We further
flter out invalid predicates and enrich valid predicates, which
is explained in the next section. Unlimited positive states will
eventually exceed the context window of the LLM. Therefore,
we focus on the validated predicates and a certain number of
counterexamples during prompting.

Invariant LLM Synthesizer Framework. The self-revised
LLM framework, as shown in Figure 2, adopts an LLM to
generate entire invariants and iteratively refning them. In this
framework, the LLM produces complete candidate invariants
rather than atomic predicates. Example prompts are shown
in section V. During the monitoring, once counterexamples
are observed and a revision is triggered, these counterexam-
ples are fed back to the LLM and prompted to revise the
proposed invariant regarding the detected error states. Instead
of incrementally adding predicates, this method explores the
feasibility of the LLM’s capability to generate and revise
invariants by itself iteratively. In this framework, an LLM
is guided by prior counterexamples and the information of
partial successes of the candidate invariant in the previous
iteration. While potentially more fexible, the self-revised LLM
framework also leads to more concerns, e.g., the soundness
and tightness guarantee of the guessed invariants.

Comparisons. The predicate LLM synthesizer framework
builds invariants formally based on predicates, which reduces
LLM’s burden of struggling with invariant expression format
correctness and logic correctness. We allow an LLM integra-

tion but still rely on RunVS to construct likely invariants,
which are sound and precise in terms of the observed states.
The invariant LLM synthesizer framework aims for a more
holistic view, which may converge quickly if the LLM can
combine multiple relevant constraints effectively. However, it
can also require more sophisticated prompt engineering to
avoid losing key information and giving too general invari-
ants. Both frameworks consider incorporating LLM-assisted
invariant generation with counterexample-guided refnement.

IV. PREDICATE LLM SYNTHESIZER

As shown in Algorithm 1, PSyn collects counterexamples
and samples a certain number of negative states in each
iteration at Line 7, and ensures the recall is 1 and the precision
is higher than a predefned threshold at Line 8. Otherwise, a
revision will be triggered to learn a sound and more precise
invariant. As Line 10, our predicate LLM synthesizer is fed
with predicates, counterexamples, and the previous candidate
invariant. It is responsible for drafting a new set of candidate
predicates P in each required revision.

For an ablation study, we have included three types of
prompting techniques, i.e., zero-shot, one-shot, and chain-
of-thought (CoT) prompting, for testing and improving the
inference capability of the LLM. For zero-shot prompting,
in the frst iteration, we supply the LLM with the full list
of global variables, a Promela program, and the acceptable
operators, e.g., +, -, ==, <=, and, or, true. For one-shot learning
, we adopt the Peterson promela program along with an answer
of predicates as one demonstration example, which is inserted
into the prompt body. This biases the model towards catching
the correct syntax and semantics of predicates from a given
code. For CoT prompting, we prepare a reasoning template
instructing the model to “think aloud” of predicates from the
following fve aspects:

1) Assertions embedded in the Promela model,
2) Branch conditions, e.g., guards in if, do, and goto state-

ments,
3) Template predicates obtained from the above information,
4) Analysis of observed system states combined with vari-

able types to infer variable ranges and replace template
predicates with concrete values, e.g., 0 ≤ ncrit ≤ 1,

229

Algorithm 1: PSyn
input : Distributed/Concurrent program P

The number of points randomly sampled l
The precision threshold δ
Maximum depth of decision tree k
|speculated| threshold α|reached|
Total runs to monitor MaxTraces
LLMs generate or user input atoms
Max runs to confrm fnal invariant

MonitorBudget
output: likelyInv ϕ

1 reached ← {}, speculated ← {}, ϕ ← false , m ← 1,
n ← 0

2 repeat
3 T ← SampleTrace(P) // sample a random trace

4

5

ce ← {s | s ∈ T ∩ J¬ϕK} // reached state in ¬ϕ

ce ← ce ∪ {s | s ∈ T ∩ speculated} // reached

state assumed unreachable

6 reached ← reached ∪ ce // update reached states

7 speculated ← (speculated\ce)∪randomSample(S \
((speculated\ce) ∪ reached), ℓ)

8

9 if ce ̸= ∅
s.t. |speculated|

|reached|
then

< α

10 predicates ←
LargeLanguageModel(atoms, ce, ϕ)

11 atoms ←
PredicateDiscovery(BreakDown(predicates))

12 ϕ ←
Learner(atoms, reached, speculated, d, k, δ)
n ← 0

13 else n ← n + 1
14 m ← m + 1
15 until m ≥ MaxTraces ∨ n ≥ MonitorBudget
16 return ϕ

5) Counterexamples used to fnd new satisfying predicates
to update the current predicate set.

We include only the validated predicates and the latest
counterexamples so that the prompt length stays below the
model’s context limit. The model returns a list of candidate
predicates P = {p1, . . . , pk}. pi is a Boolean expression. We
apply predicate breakdown at Line 8 to enrich more predicates,
where we parse the predicates into sub-clauses that can serve
as atomic predicates. To ensure the format correctness of the
generated predicates, we use a predicate flter function to flter
out predicates in a wrong syntax. Besides, PredicateDiscovery
at Line 8 enriches more concrete predicates by extracting the
predicate patterns and replacing them with concrete values
detected from system traces. The predicates coming from
PredicateDiscovery will be the fnal predicates fed into the
decision tree invariant learner Learner.

2

3

4

5

6

7

8

9

10

11

12

Algorithm 2: ISyn
input : Distributed/Concurrent program P

The number of points randomly sampled l
The precision threshold δ
Max runs to confrm fnal invariant

MonitorBudget
output: Revised invariant ϕ

1 repeat
T ← SampleTrace(P) // sample a random trace

ce ← {s | s ∈ T ∩ J¬ϕK} // reached state in ¬ϕ

ce ← ce ∪ {s | s ∈ T ∩ speculated} // reached

state assumed unreachable

reached ← reached ∪ ce // update reached states

speculated ← (speculated\ce)∪randomSample(S \
((speculated\ce) ∪ reached), ℓ)

|speculated|s.t. < α|reached|
if ce ̸= ∅ then

ϕ ← LargeLanguageModel(ce, ϕ)
n ← 0

else n ← n + 1
m ← m + 1

13 until m ≥ MaxTraces ∨ n ≥ MonitorBudget
14 return ϕ

A. Expansion to LLM-Guided Quantifer Synthesis

We also integrated an LLM for the expansion to quantifed
invariants. LLM is used to automate two critical tasks, i.e., de-
tecting quantifable variables and generalization to quantifed
invariants. Firstly, the LLM analyzes the Promela source code
with a structured prompt to recognize quantifable variables.
LLM is able to identify the quantifable variables and their
names, types, and the corresponding domains of the variables.
For instance of the distributed lock system [16], the LLM
identifed one quantifable global variable current_holder ∈
{−1, 0, . . . , N − 1}. Secondly, given a candidate invariant
proposed by the symbolic synthesizer RunVS, the LLM
synthesizes a quantifed formula by replacing enumerative
clauses, e.g., current_holder = 0 ∨ current_holder =
1 ∨ · · · , with semantically equivalent quantifed expressions,
e.g., the existential quantifer ∃ pid (0 ≤ pid < N ∧
current_holder = pid). For the distributed lock system, the
LLM produces (lock_available ∧ current_holder = −1) ∨
(¬lock_available ∧ ∃pid(0 ≤ pid < N ∧ current_holder =
pid)). This generalization preserves the logic of invariants and
tends to generate more precise invariants. This step enables
reasoning across arbitrary system scales by eliminating explicit
dependence on N and enables the length optimization for
human understanding.

V. INVARIANT LLM SYNTHESIZER

Our second framework, ISyn, assigns the invariant genera-
tion and revision task to an LLM to replace the decision tree
learner in RunVS. Unlike PSyn, this LLM treats an invariant
as a single boolean expression that is regenerated after every

230

revision. The framework is shown in Algorithm 2. We still
adopt structured prompts and the ablation study for better
instruction. We included the previous three chat histories and
subsampled a fxed number of counterexamples to prompt the
LLM. We only prompt the LLM with the latest counterex-
amples to avoid exceeding the context window limit, shown
at Line 9. Before accepting the LLM-generated invariant, we
run a syntactic check to ensure the format correctness of the
invariant. We employed zero-shot learning, one-shot learning,
and CoT prompting for the ablation study of the prompting in
the second framework. For the zero-shot prompt, we directly
prompt LLM to produce an invariant that always holds given
the Promela program. With a one-shot prompt we provide the
Peterson Promela code and its corresponding correct invariant
as a demonstration example. For CoT prompting, besides the
aspects described in the previous section, we design thinking
steps that involve invariant inference and invariant revision.

Model-checker validation. Our frameworks can accept feed-
back from a model checker to prompt the LLM. Spin is
able to verify an invariant if it is sound. If Spin confrms
the soundness, the loop terminates. Otherwise, a reproducible
trace with the violated state is returned. The next revision
prompt includes the verifcation result, the error state, and the
last monitored invariant. Our LLM synthesizers are able to
revise invariants or predicates based on the model checker’s
verifcation results.

VI. EXPERIMENTAL EVALUATION

A. Benchmarks and Measurements

To investigate our research goal, experiments were designed
to address the following three research questions:

• RQ1: Do different prompting techniques affect the overall
performance of runtime invariant generation?

• RQ2: Do PSyn and ISyn generate the likely invariants
of higher quality than those generated by GPT-o3 and
RunVS by runtime monitoring of these real-world dis-
tributed systems?

• RQ3: How PSyn and ISyn effciently and effectively learn
likely invariants on large-scale distributed systems?

We employ gpt-3.5-turbo-0125 [17] as the component
within our PSyn and ISyn frameworks. We confgured the
LLM API with temperature T = 1 to balance determin-
istic output with randomness and diversity. Counterexam-
ple sampling was constrained to 5 examples per iteration,
optimizing the trade-off between context window utilization
and informativeness. We adopt RunVS [11] as our symbolic
invariant synthesizer, which is the only tool able to learn
diverse invariants on Spin systems within a runtime monitoring
framework. As baseline experiments, we evaluate invariants
that are purely generated by RunVS within 500 traces. Besides,
we adopt GPT-o3 [17] among the state-of-the-art models.
We perform one-shot invariant synthesis by GPT-o3 with the
context of program code but without a revision framework.

We adopt three metrics for evaluating the quality of learned
invariants. The frst two are soundness and tightness, whose

defnitions are defned in the problem statement. Soundness is
checked by Spin with the corresponding system. Tightness is
evaluated by counting the assignments of a boolean expression
Z3 SMT solver. Tighter invariants indicate that the invariants
are more concise. The third one is safety, which can be
considered as proof of invariant usefulness. Safety is evaluated
by implication checking between the invariant i and the safety
property ϕ such that i → ϕ.

Our benchmarks include 8 distributed systems modeled in
Promela, drawn from resources related to Spin and other
distributed systems literature. Our frameworks PSyn and ISyn
are general to other languages. Promela is chosen since it
represents interesting fnite-state, infnite-state, asynchronous
message-passing-based distributed systems and is the input to
the Spin model checker, which gives us fne-grained control
over trace generation.

B. Prompt Engineering Ablation Study

In Tables I and II, we compared the performance of three
prompting techniques, i.e., direct prompting, one-shot prompt-
ing, and chain-of-thought prompting [18]. In each case study,
if a synthesized likely invariant is verifed by Spin or implies
the safety property, it is indicated by ✓in tables. The tightness
is evaluated by calculating the model counts by Z3 solver [19].
Since we adopted Peterson as our demonstration example in
our 1-shot and CoT prompting, Peterson was not experimented
with using those two prompting techniques. We can see CoT
tends to learn a sound and more precise invariant since LLM
adopts reasoning to give more diverse predicates. Besides, one-
shot and CoT can give a more useful invariant since their
generated invariants mostly imply the safety property of the
corresponding system. CoT especially helps ISyn to break
down the whole reasoning steps of invariant synthesis com-
pared to the direct prompting’s useless invariants. However,
we can see LLM prompting techniques may fail to predict
all potential predicates that can generate a sound invariant to
predict all reachable states for some system, i.e., producer-
consumer, which involves complex mathematical equations to
represent its reachable states.

C. Invariant Quality Evaluation

Based on the ablation study of different prompting tech-
niques, PSyn and ISyn with CoT prompting perform rela-
tively better than other two techniques. We adopt CoT PSyn
and ISyn to compare with RunVS and GPT-o3. We can
see PSyn under chain-of-thought prompting has comparable
performance with RunVS symbolic tool with user-provided
predicates. However, its usefulness declines when predicates
demand intricate combinations of mathematical expressions.
Even users must already have a comprehensive knowledge
of the system to formulate such predicates. ISyn-generated
invariants are more general than PSyn’s, but compared to GPT-
o3’s, more invariants imply safety properties, which indicate
the usefulness of generated likely invariants. Besides, for
deeper analysis of ISyn results, we conduct root cause analysis
over ISyn-generated invariants in Table IV.

231

System Tightness Soundness Safety

0-shot 1-shot CoT 0-shot 1-shot CoT 0-shot 1-shot CoT

Peterson [16] 10 — — ✓ — — ✓ — —
Bakery [16] 2 2 2 ✓ ✓ ✓ ✓ ✓ ✓
Alternating Bit Protocol [16] 300 300 300 ✓ ✓ ✓ ✓ ✓ ✓
Leader Election [16] 2 2 2 ✓ ✓ ✓ ✓ ✓ ✓
UPPAAL Train/Gate [16] 202 16 14 ✓ ✓ ✓ ✗ ✓ ✓
Distributed Lock Server [20] 6 6 6 ✓ ✓ ✓ ✓ ✓ ✓
Producer Consumer [21] 505000 10200 5050 ✗ ✗ ✗ ✗ ✓ ✓
Smart Contract(Ethereum Transactions) [22] 7200 9700 9500 ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Likely Invariant Quality Evaluation of PSyn with different prompting techniques

System Tightness Soundness Safety

0-shot 1-shot CoT 0-shot 1-shot CoT 0-shot 1-shot CoT

Peterson [16] 16 — — ✓ — — ✓ — —
Bakery [16] 200 2 199 ✓ ✓ ✓ ✗ ✓ ✗
Alternating Bit Protocol [16] 400 300 301 ✓ ✓ ✓ ✗ ✓ ✓
Leader Election [16] 3 3 3 ✓ ✓ ✓ ✓ ✓ ✓
UPPAAL Train/Gate [16] 300 400 399 ✓ ✓ ✓ ✓ ✗ ✓
Distributed Lock Server [20] 11 12 7 ✓ ✓ ✓ ✗ ✗ ✓
Producer Consumer [21] 250000 505000 1000000 ✗ ✗ ✓ ✗ ✗ ✗
Smart Contract(Ethereum Transactions) [22] 10000 10000 10000 ✓ ✓ ✓ ✓ ✓ ✓

TABLE II: Likely Invariant Quality Evaluation of ISyn with different prompting techniques

Tightness Soundness SafetySystem
PSyn ISyn RunVS GPT o3 PSyn ISyn RunVS GPT o3 PSyn ISyn RunVS GPT o3

Peterson [16]
Bakery [16]
Producer Consumer [21]
Alternating Bit Protocol [16]
Leader Election [16]
UPPAAL Train/Gate [16]
Distributed Lock Server [20]
Smart Contract (Ethereum) [22]

10 16 30 16 ✓ ✓ ✓ ✓
2 2 2 2 ✓ ✓ ✓ ✓

5050 1000000 10100 1000000 ✗ ✓ ✓ ✓
300 301 300 400 ✓ ✓ ✓ ✓

2 3 2 100 ✓ ✓ ✓ ✓
14 399 300 210 ✓ ✓ ✓ ✓
6 7 6 5 ✓ ✓ ✓ ✗

9500 10000 10000 10000 ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✗ ✓ ✗
✓ ✓ ✓ ✗
✓ ✓ ✓ ✗
✓ ✓ ✓ ✗
✓ ✓ ✓ ✗
✓ ✓ ✓ ✓

TABLE III: Likely Invariant Quality Evaluation on GPT-o3, RunVS, PSyn and ISyn

Root Cause Explanation
Over-conservativeness After many counter-examples the model col-

lapses to an overly general invariant (e.g.
true), which trivially holds but conveys no
useful information.

Partial Description An invariant is too precise or incomplete.
CE Violation Generated invariants are not satisfed by coun-

terexamples.
Specifcation Violation Generated invariant omits or contradicts con-

straints explicitly stated in the synthesis in-
structions (e.g., operator misuse or redundant
information).

Hallucination The LLM introduces symbolic names (vari-
ables, channels) that are absent from the origi-
nal Promela model, yielding syntactically valid
but semantically meaningless predicates.

TABLE IV: Typical root causes of incorrect LLM-generated invari-
ants.

D. Invariant Generation Effciency Evaluation

To benchmark the effciency of PSyn and ISyn, we measured
the execution time, the ratio of observed states to the total
reachable states of the program (determined either manually

or through the Spin model checker), the average number of
revision events, and the average longevity of fnal likely invari-
ants. The outcomes for each distributed system are presented
in Table V. We can see the likely invariants can be converged
within a few revision events and can survive for a large number
of traces. Furthermore, we show the average execution time
of each LLM API call and each revision event. We can see
the invariant can be revised effciently without incurring much
overhead per LLM call.

VII. VALIDITY THREATS

The performance of LLMs may be infuenced by their
training data. If the models were exposed to the Promela
invariant corpus during pre-training, their outputs could refect
memorization rather than reasoning. To mitigate this, we
included Promela programs crafted by humans to avoid a
potential overlap with the LLM training dataset. Besides, we
have shown the baseline LLM model’s performance at the time
of the experiments. The baseline LLM is not good at invariant
synthesis with a direct prompt. Besides, our evaluation focuses
on classical distributed systems modeled on Spin and has

232

Distributed Program LoC Shared
Vars.

No. of
Reachable
States (R)

|Visited|
|R|

⌈f ⌉

PSyn ISyn

⌈r⌉

PSyn ISyn

Tr (s)

PSyn

TLLM (s)

PSyn ISyn

Peterson [16] 20 3 16 1 400 498 1 2 0.051 26.77 1.22
Bakery [16] 24 2 8 1 497 498 2 2 0.729 3.54 1.32
Producer Consumer [21] 37 4 1.03M 0.00044 400 498 14 2 0.097 1.06 2.23
Alternating Bit Protocol [16] 42 3 ∞ ≈ 0 400 498 1 2 0.073 1.72 2.49
Leader Election [16] 127 3 26K 0.0024 499 498 3 2 0.053 0.59 2.93
UPPAAL train/gate [16] 78 7 16.8M 0.000024 494 498 2 2 0.069 1.39 3.91
Distributed Lock Server [20] 100 4 12.2K 0.015 497 498 3 2 0.054 30.47 1.14
Smart Contract (Ethereum Transactions) [22] 962 21 ∞ ≈ 0 499 499 1 1 0.182 23.14 3.46

TABLE V: Evaluation results of PSyn and ISyn on large-scale distributed systems. f : number of sample runs (out of 500) that the fnal
likely invariant survives; r: average number of runs that trigger a revision; Tr : average revision time for PSyn; TLLM: average LLM-interaction
time per revision.

not experimented in the whole domain, e.g., systems in other
languages, sequential programs. Future work should validate
our frameworks on real-world systems.

Hyperparameters could affect the overall performance of
the LLM. Hyperparameter tuning is not done in this work.
Besides, experiments involving LLMs, e.g., GPT-3.5, are in-
herently non-deterministic due to API-level randomness and
opaque model updates. While we report the parameters and
prompts used for the experiments, exact replication may
require access to fxed model versions. These threats are
inherent to LLM-based approaches but do not invalidate our
core fndings. LLMs can aid in invariant synthesis when used
properly, and structured revision frameworks have comparable
performance with the symbolic solver and outperform direct
prompting for invariant synthesis.

VIII. RELATED WORK

Traditional Invariant Synthesis. Prior work on invariant
synthesis has focused on dynamic analysis and symbolic
reasoning. Daikon [9] pioneered dynamic invariant detec-
tion by inferring likely invariants from execution traces,
while DIDUCE [10] tracks certain types of invariants for
Java programs. Houdini [23] starts with candidate invariants
and removes invariants with the ESC/Java checker. RunVS
learns decision tree-based invariants with user-given predi-
cates. These works are more scalable but require more of
the given input. Tools like ICE/ICE-DT [5], [6], which use
implication counterexamples and decision trees for inductive
invariant synthesis. Horn-ICE [24] extended this to handle
Horn clauses for sequential and concurrent programs. These
methods rely heavily on formal solvers or model checkers,
limiting scalability for complex systems. DIG [25] is limited
to numerical invariants. DistAI [7] and DuoAI [26] are only
limited to the Ivy language and platform. These works have a
certain constraints on the invariants or systems.
LLM-Based Invariant Generation. Recent studies explore
LLMs for invariant synthesis. Pei et al. [27] demonstrated that
LLMs can predict invariants statically, outperforming Daikon
when limited to at most fve execution traces. Janßen et al. [28]
showed that ChatGPT generates valid loop invariants for 75
out of 106 C programs, enabling Frama-C to verify previously
unprovable tasks. Chakraborty et al. [29] proposed reranking

LLM-generated invariants to reduce verifcation effort, achiev-
ing a median rank of 4 for correct invariants. SymbolicGPT
[30] treats invariant learning as a symbolic regression task
using a novel transformer-based language model. However,
these approaches treat LLMs as passive generators without
iterative refnement.

Besides, there are hybrid neuro-symbolic frameworks in-
tegrating LLMs with formal methods. Lemur [31] combines
LLMs with automated reasoners, using LLMs to propose sub-
goals validated by SMT solvers. LaM4Inv [32] adopts LLMs
with bounded model checking (BMC), where LLMs generate
candidates and BMC provides counterexamples for revision.
While Lemur leverages LLMs for invariant revision-specifc
subtasks, it does not fully exploit LLMs’ iterative revision
capabilities during synthesis. Unlike LaM4Inv, which relies on
BMC for corrections and does not fully exploit the information
output from LLM, our method enables LLMs to self-correct
and extracts atomic predicate templates from LLMs. Besides,
LaM4Inv flters out all predicates disproved by BMC without
reconstruction, which reduces the diversity and the tightness
of invariants. Our work introduces two novel invariant revision
frameworks. The synthesizer improves its atomic predicate
suggestions based on counterexamples, enabling the LLM to
reconstruct its predicates iteratively.

IX. CONCLUSION

This work establishes that structured revision frameworks
signifcantly enhance the scalability of invariant synthesis with
LLMs and also the capability of LLMs in invariant synthe-
sis. Our experimental evaluation demonstrates that iterative
refnement on atomic predicates with counterexample guidance
improves invariant quality across three critical metrics: sound-
ness, tightness, and safety. We have shown the effectiveness
of chain-of-thought prompting over few-shot learning. LLM
in PSyn independently revises predicates using structured
feedback, akin to human debugging. By integrating LLMs
into the invariant synthesis loop, rather than treating them as
standalone generators, our frameworks represent a collabora-
tive neuro-symbolic invariant synthesis. Our contribution is to
integrate LLM-proposed predicates into a runtime verifcation
loop in a structured way. To our knowledge, this is the frst
work to combine LLM reasoning and invariant synthesis in

233

distributed systems. Specifcally, two frameworks are new
examples of combining LLM reasoning and lightweight formal
techniques, such as dynamic invariant generation and run-
time monitoring on distributed systems, which increases the
scalability. Future work will investigate four directions, i.e.,
application to other platforms (e.g., P language), exploring
code- or math-specialized LLMs and fne-tuning, extension to
online monitoring framework, and extension to self-debugging
or self-healing systems.

Acknowledgments.This work was partially supported by the
National Science Foundation through the following grants:
CAREER award 2048094, FMitF-2124431, and an Amazon
Faculty Research Award.

REFERENCES

[1] A. Chlipala, Certifed programming with dependent types: a pragmatic
introduction to the Coq proof assistant. MIT Press, 2013.

[2] M. Wenzel, “Isabelle as document-oriented proof assistant,” in Inter-
national Conference on Intelligent Computer Mathematics. Springer,
2011, pp. 244–259.

[3] I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant gen-
eration via abductive inference,” Acm Sigplan Notices, vol. 48, no. 10,
pp. 443–456, 2013.

[4] L. Kuczynski and K. Daly, “Qualitative methods for inductive (theory-
generating),” Handbook of dynamics in parent–child relations, pp. 373–
392, 2003.

[5] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust
framework for learning invariants,” in In Proc. of 26th Int. Conf. on
Computer Aided Verifcation, 2014, pp. 69–87.

[6] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants
using decision trees and implication counterexamples,” in ACM Sigplan
Notices, vol. 51, no. 1. ACM New York, NY, USA, 2016, pp. 499–512.

[7] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “DistAI: Data-
Driven automated invariant learning for distributed protocols,” in 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, 2021, pp. 405–421.

[8] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verifcation by interactive generalization,” in Proc. of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 614–630.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” in Science of computer programming, vol. 69, no. 1-3.
Elsevier, 2007, pp. 35–45.

[10] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in Proceedings of the 24th international
conference on Software engineering, 2002, pp. 291–301.

[11] Y. Xia, D. Sur, A. S. Pingle, J. Deshmukh, M. Raghothaman, and
S. Ravi, “Llm-guided predicate discovery and data augmentation for
learning likely program invariants,” in To appear in The 40th ACM/SI-
GAPP Symposium On Applied Computing, 2025.

[12] G. J. Holzmann and W. S. Lieberman, Design and validation of computer
protocols. Prentice hall Englewood Cliffs, 1991, vol. 512.

[13] M. Leucker and C. Schallhart, “A brief account of runtime verifcation,”
The journal of logic and algebraic programming, vol. 78, no. 5, pp.
293–303, 2009.

[14] L. Gao, M. Lu, L. Li, and C. Pan, “A survey of software runtime
monitoring,” in 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), 2017, pp. 308–313.

[15] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[16] G. J. Holzmann, “The model checker spin,” in IEEE Transactions on
software engineering, vol. 23, no. 5. IEEE, 1997, pp. 279–295.

[17] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[18] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[19] L. De Moura and N. Bjørner, “Z3: An effcient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[20] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and K. A.
Sakallah, “I4: incremental inference of inductive invariants for ver-
ifcation of distributed protocols,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 370–384.

[21] G. Byrd and M. Flynn, “Producer-consumer communication in dis-
tributed shared memory multiprocessors,” Proceedings of the IEEE,
vol. 87, no. 3, pp. 456–466, 1999.

[22] Z. Yang, M. Dai, and J. Guo, “Formal modeling and verifcation of smart
contracts with spin,” Electronics, p. 3091, 2022.

[23] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for
esc/java,” in International Symposium of Formal Methods Europe, 2001,
pp. 500–517.

[24] P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan,
“Horn-ice learning for synthesizing invariants and contracts,” in Proc.
of the ACM on Programming Languages, vol. 2, 2018, pp. 1–25.

[25] T. Nguyen, K. Nguyen, and M. B. Dwyer, “Using symbolic states to
infer numerical invariants,” IEEE Transactions on Software Engineering,
vol. 48, no. 10, pp. 3877–3899, 2021.

[26] J. Yao, R. Tao, R. Gu, and J. Nieh, “Duoai: Fast, automated inference of
inductive invariants for verifying distributed protocols,” in 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), 2022, pp. 485–501.

[27] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language
models reason about program invariants?” in International Conference
on Machine Learning. PMLR, 2023, pp. 27 496–27 520.

[28] C. Janßen, C. Richter, and H. Wehrheim, “Can chatgpt support software
verifcation?” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2024, pp. 266–279.

[29] S. Chakraborty, S. K. Lahiri, S. Fakhoury, M. Musuvathi, A. Lal,
A. Rastogi, A. Senthilnathan, R. Sharma, and N. Swamy, “Ranking
llm-generated loop invariants for program verifcation,” arXiv preprint
arXiv:2310.09342, 2023.

[30] M. Valipour, B. You, M. Panju, and A. Ghodsi, “Symbolicgpt: A
generative transformer model for symbolic regression,” arXiv preprint
arXiv:2106.14131, 2021.

[31] H. Wu, C. Barrett, and N. Narodytska, “Lemur: Integrating large
language models in automated program verifcation,” arXiv preprint
arXiv:2310.04870, 2023.

[32] G. Wu, W. Cao, Y. Yao, H. Wei, T. Chen, and X. Ma, “Llm meets
bounded model checking: Neuro-symbolic loop invariant inference,”
in Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, 2024, pp. 406–417.

234

	Introduction
	Preliminaries
	Program structure and modeling assumptions
	Basics of LLM-based analysis

	Overview
	Predicate LLM Synthesizer
	Expansion to LLM-Guided Quantifier Synthesis

	Invariant LLM Synthesizer
	Experimental Evaluation
	Benchmarks and Measurements
	Prompt Engineering Ablation Study
	Invariant Quality Evaluation
	Invariant Generation Efficiency Evaluation

	Validity Threats
	Related Work
	Conclusion
	References

