
Formal Methods in Computer-Aided Design 2025

Static Coverage in Deductive Software Verification

Aaron Tomb Anjali Joshi
Amazon, Boston, MA, USA

Amazon, Portland, OR, USA anjalijs@amazon.com
aarotomb@amazon.com

https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_32 This article is licensed under a Creative
Commons Attribution 4.0 International License

Abstract—The results of software verification are only as within the Dafny verification-aware programming language [25]
trustworthy as the provided specification. Errors or incompleteness via the Boogie intermediate verification language [27]. Our ex-
in the specification can result in unwarranted confidence in the perimental results evaluating this implementation demonstrate
implementation. Previous work, particularly in the realm of model modest computational overhead relative to verification, makingchecking, has investigated a notion of coverage in verification.
Portions of the system that could be replaced arbitrarily without it practical to employ as integral part of verification. We also
causing verification failure are considered uncovered. We show show how this technique can be used to generate actionable
that the same notion of coverage used in model checking can be warnings without false positives.
applied to deductive software verification, with a reasonable
performance penalty when using an implementation based A. Examples
on unsatisfiable cores. This approach provides opportunities
for identifying specification gaps by detecting vacuous proofs, Before exploring the technique in detail, we first consider
unconstrained code, and unnecessary or redundant specifications. concrete examples of these specification problems, such as the
We describe an implementation of this approach for the Boogie Dafny program in Fig. 1.
intermediate verification language, the use of this implementation
from the verification-aware programming language Dafny, and
experimental results on a large corpus of industry-scale Dafny 1 function {:axiom}
code. 2 Find(xs:seq<int>, x:int,

3 beg:int, end:int): (i:int) I. INTRODUCTION
4 requires 0 <= beg < |xs| &&

Verification provides a high degree of assurance that software 5 0 <= end < |xs|
behaves as specified. Assurance that the software behaves as 6 ensures beg < i < end
intended depends on the correctness and completeness of the 7 ensures xs[i] == x
specification — how well it agrees with the designer’s goals. 8
Although techniques to detect specification problems do exist in 9 method CallFind() {
software verification, most focus entirely on detecting vacuous 10 var xs := [42, 43];
proofs, and most adopt a somewhat ad-hoc technique (most 11 var i := Find(xs, 47, 0, 1);
commonly, attempting to prove a contradiction at various points 12 assert xs[i] == 45;
throughout the program). Prior work in the model checking 13 }
community formalized a notion of the coverage of a verified
program [22], saying that a transition system element is covered Fig. 1. Dafny code with a subtly contradictory specification. The postcondition
if modifying it could possibly cause verification to fail. Further on line 6 becomes unsatisfiable when instantiated with the concrete arguments

work showed that coverage is dual to vacuity [21], and therefore passed in on line 11.

that coverage analysis can be used to detect vacuity.
In this code, the Find function is specified but not

In this paper, we extend this prior work and apply it in the implemented, as may be the case partway through the process
context of deductive software verification that supports separate of implementing a verified program, and the {:axiom}
specification and implementation constructs. We describe a annotation emphasizes that its contract is assumed to hold. This
technique for static coverage that in addition to detecting function is intended to search for a given element, x, between
vacuous proofs, also identifies redundant specifications and indices beg and end of the sequence xs. For this to work, it
unconstrained portions of the implementation. Each program requires both indices to be within range, and ensures that the
construct that is not covered is relevant for identifying a specific returned index is between the provided indices. This seems
type of specification gap: reasonable at first, but there is a mistake in the postcondition.

• uncovered goals are proved vacuously, If end is beg + 1, no return value i is possible. In the
• uncovered assumptions are unnecessary, and CallFind method, the passed indices are adjacent, so the
• uncovered implementation statements are either uncon- postcondition of Find is false. Because of this, Dafny can
strained by the specification or unreachable. prove the clearly false assertion at the end of the method.

We describe the technique for computing static coverage in However, by default, Dafny does nothing to indicate the fact
deductive verification and an implementation of this technique that this proof succeeds due to an inconsistency. As we will

https://fmcad.org/FMCAD25
https://orcid.org/0009-0007-6323-8779
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_32
https://doi.org/10.34727/2025/isbn.978-3-85448-084-6_32
https://creativecommons.org/licenses/by/4.0/

show, computing coverage will allow detection of the fact that
this assertion was proved vacuously, with no additional effort
from the programmer.
Similarly, consider the Dafny program in Fig. 2 that

has a redundant specification. One could imagine believing
(incorrectly, but perhaps reasonably) that the index bound safety
of the standard implementation of binary search requires the
array to be sorted, and therefore providing the precondition
shown. Dafny would accept this without complaint and continue
to prove that the implementation does not use out-of-bounds
array indices (an implicit specification that Dafny attempts
to prove of every program). Dafny would not, by default,
do anything to indicate that this precondition is unnecessary.
Computing coverage will allow detection of this redundancy.

1 method BinSearch(a:seq<int>, k:int)
2 returns (r:int)
3 requires forall i,j ::
4 0 <= i < j < |a| ==>
5 a[i] <= a[j]
6 {
7 var lo, hi := 0, |a|;
8 while lo < hi
9 invariant 0 <= lo <= hi <= |a|
10 {
11 var mid := (lo + hi) / 2;
12 if k < a[mid] {
13 hi := mid;
14 } else if a[mid] < k {
15 lo := mid + 1;
16 } else {
17 return mid;
18 }
19 }
20 return -1;
21 }

Fig. 2. Dafny code with an unnecessary precondition (lines 3, 4, 5) and code
that is not constrained by the specification (lines 17, 20).

Finally, consider the specification of the same binary search
implementation. Some of the code is necessary to ensure array
bounds safety, such as the calculation of mid. However, other
portions of the code, such as the return statements, could be
changed arbitrarily without affecting the results of verification.
Computing coverage allows more useful verifier feedback

for each of these examples than previously available, and more
granular information than available from previous verification
coverage analysis. This approach is not specific to Dafny,
and could be adopted by any verifier based on weakest
preconditions.

B. Overview of Paper

Our contributions beyond prior work are as follows:

• We formalize how coverage translates to deductive verifica-
tion, specifically the verification condition (VC) generation
process, using unsatisfiable cores.

• We define the type of specification gap implied by each
type of uncovered element. Our interpretation allows
automatic detection of:
– contradictory assumptions or branches, leading to
vacuous proofs;

– redundant specifications that can be removed; and
– unconstrained implementation code that could be spec-
ified or removed.

• We provide experimental results showing reasonable
computational overhead and useful warnings on a large
corpus of real-world Dafny code.

We first review prior work in more detail. Then we define
more precisely what coverage means in the abstract, and
how it applies to compositional verification of programs with
contracts (as opposed to monolithic transition systems), before
detailing how to calculate coverage. Finally, we describe how
we implemented the approach in Dafny and Boogie, and provide
measurements of running the analysis on several Dafny code
bases, including performance, warning count, and warning
classification.

II. PRIOR WORK

The term coverage has been used since at least the 1960s [10],
usually to describe the set (or percentage) of syntactic program
elements executed by a test or set of tests. (Although some
cases, such as path coverage and MCDC extend beyond
program elements into more semantic notions.) We describe a
notion of coverage intended to be compatible with that used
in testing, but that captures the elements that took place in a
proof.

Le, et al. [23], investigated the idea of combining coverage
from proofs and tests. Their definition of coverage is based
on the degree to which mutations to the program can cause
proof or test failure. Like our work, they consider coverage in
terms of the syntactic structure of the program. They focus on
how to combine proof and test coverage, rather than on how to
calculate either, though they imply the use of mutation testing.

In the verification community, significant research has gone
into the problem of determining how well a specification
describes an implementation, the most relevant being connected
to one of (a) deductive software verification using SMT or first-
order logic, (b) model checking with respect to temporal logic
specifications, or (c) analysis of high-level modeling languages.

In the realm of deductive software verification, one common
approach to identifying either specification problems or prob-
lems in unspecified programs is to do some form of reachability
analysis to identify infeasible portions of code or specification
in the context of any available assumptions [11], [19], [20],
[29].
One variation of this approach, sometimes referred to

as “smoke testing”, is available in several verification tools,
including Boogie [5], [24], [27], Why3 [4], [31], and Frama-
C [2], [13]. This approach involves adding assert false

252

statements in relevant locations. Any that are provable indicate
either an inconsistent specification or dead code.
These smoke testing features address part of the problem

we aim to solve, but somewhat less efficiently, and do not
attempt to identify how much of a program is covered by the
given specification, whether any parts of the specification are
redundant, or any other issues with specification quality.

The model checking community has extensively explored the
problem through the lens of coverage, concluding that coverage
and vacuity are dual notions [21]. According to this duality,
the question is to determine, given a system that successfully
verifies, what parts can change while still allowing verification
to succeed. If a portion of the implementation can change
arbitrarily without causing verification to fail, then either that
portion of the implementation is not covered by the specification
or some portion of the specification is vacuous, allowing any
implementation. If part of the specification can change without
causing verification to fail, then that part of the specification
is unnecessary for proving the goal. Generally, such portions
of the specification can be removed.
The original work describing this duality assumed the use

of mutation testing as a mechanism for evaluating coverage or
vacuity [22]. By changing a program element and attempting
to re-prove the program, it’s possible to determine whether
that element is necessary for the proof.
As a more efficient alternative, one can do a proof that

the implementation satisfies the specification and identify the
facts used to complete the proof, which can be done in several
ways. When using an SMT solver, the clauses that appear
in an unsatisfiable core provide an overapproximation of one
possible set of facts needed to complete a proof. The VaqTree
tool uses this approach to do two types of vacuity detection
during bounded model checking, and extracts even more precise
information by examining the resolution proof required to
show that the core is unsatisfiable [28]. The related VaqUoT
tool extracts similar information from BDD-based proofs [17].
Later work described the generalization of unsatisfiable cores
to unbounded model checking, as inductive validity cores [15],
and described how to use these to measure the portion of an
implementation covered by a specification [16].

The work on bounded and unbounded model checking was
based on transition systems rather than programming languages,
however. Unlike deductive software verification, these proofs
typically aren’t “modular” in the sense that each completely
describes the correctness of an element of code. We describe
how to take a similar approach in the context of deductive
verification of software, along with the opportunities that arise
in the new context.

Working with declarative models rather than a combination
of a specification and an implementation, Torlak et al., describe
an approach for calculating coverage of Alloy specifications
using unsatisfiable cores [30], with the goal of helping detect
mistakes.

Finally, Beckert, et al. [3] addressed the problem of analyzing
incomplete proofs to determine how much of the program
they had successfully verified. This work calculated coverage

as a subset of the state space of a program rather than a
subset of its structural elements. It diverges from our work in
two dimensions: first by considering failed proofs and second
by considering the semantic state space rather than syntactic
elements.

III. VERIFICATION COVERAGE

A. Definition

We define verification coverage as a property of programs
that meet their specifications as shown by a verifier. As in
previous model checking work, we define the covered elements
of the program (and its specification) to be those that, if
changed, could cause verification to fail. Not all changes
would necessarily lead to failure, but for each covered element
there is at least one change that could lead to the program
no longer verifying. Conversely, uncovered elements are those
that could be changed arbitrarily (within the bounds of a well-
formed program) without causing verification to fail. Uncovered
specification elements indicate over-specification. Uncovered
implementation elements indicate under-specification. Note that,
in our interpretation, a subterm that appears identically more
than once in a program may be covered in some locations and
not others.

B. Interpretation

We begin by describing, at a high level, what program
elements we consider atomic. This is of particular importance
because the presence or absence of each type of element in
the set of covered elements can mean something qualitatively
different. Other choices are possible, including different choices
in granularity, as we discuss further in Section III-E. But the
following choices reflect the implementation in Boogie and
Dafny that we have experimented with, and reflect an approach
that would naturally apply to most verifiers for imperative
languages, especially those that build verification conditions
using the weakest precondition calculus.

In our formalization and implementation, we consider Boo-
gie, a simple imperative language containing procedures and
contracts on procedures. We include implementation statements
and specification constructs as our atomic program elements.
Implementation statements include assignments and calls to
procedures. Specification constructs include assert statements,
assume statements, loop invariants, and pre- and post-conditions
on procedures.
One key type of information from coverage analysis is the

identification of uncovered elements, and useful interpretation
of coverage depends on the type of program element in the
original language. For the constructs that show up in Boogie:

• An uncovered assignment or call statement indicates code
that is either lacking specification (influencing no proof
goals) or unreachable.

• An uncovered assume statement or precondition of the pro-
cedure being verified is a purely unnecessary assumption
that can be removed.

• An uncovered precondition of a callee indicates that the
precondition was established vacuously.

253

• An uncovered postcondition of a callee is an unnecessary
assumption from the point of view of its caller. It may be
necessary for other callers, but could be removed if it is
not necessary for any caller.

• An uncovered postcondition, while verifying the procedure
it is attached to, indicates that the postcondition is proved
vacuously.

• An assert statement can be viewed as having two parts:
an assertion that the expression is true at the point of
the statement, and an assumption that it is true after the
statement. If the former is uncovered, the assertion holds
vacuously. If the latter is uncovered, the assertion is useful
only for its top-level conclusion, not as an intermediate
step toward proving later goals, and can be removed if it
was intended for that purpose.

• A loop invariant that is uncovered while being proved
indicates a vacuous proof.

• A loop invariant that is uncovered while assuming it in
the body of the loop is an unncessary invariant.

Note that provenance is critical for the approach to be
useful, especially given that most verification tools work by
successively lowering code into simpler and simpler languages.
We’ll show below that we can consider a passive [1], [12]
language with only assert and assume statements, but we can
provide much more useful feedback if we know what construct
in the original language gave rise to each of these statements.
To make this precise, we now formally specify a language

and how to compute verification conditions for it that enable
coverage tracking.

C. VC Generation with Coverage Tracking

We first define verification condition generation with cover-
age tracking on the standard language of unstructured passive
programs [1], [12], [18] shown on the top of Fig. 3. In a passive
program, each assignment to a variable is represented by an
assumption about a separate incarnation of that variable.
Note that the full Boogie language includes a larger set

of constructs than this, and Section III-D describes how to
track the necessary information for coverage analysis when
translating those constructs into passive programs.
A command can be an assertion or an assumption of a

predicate P annotated with a label L, and a block consists of a
sequence of commands followed by a transfer to one or more
successor blocks.1 We extend this language slightly, however,
by adding a label to each assertion and assumption. Coverage
analysis is then the problem of identifying which statements,
identified by label, are required to complete the proof.2 This is
fundamentally the information that unsatisfiable cores provide,
when doing proofs with an SMT solver.

To construct verification conditions from labeled commands,
we introduce a fresh Boolean variable, vL for each label L, as

1Note that this syntax doesn’t include labels on blocks and syntactically
ensures that the program is acyclic, a standard guarantee of passive programs.

2Previous work in ESC/Java labeled assertions for the opposite reason, to
help identify what portions of a program participated in a counterexample [26].
The Simplify theorem prover [9] had built-in support for these labels.

c

b

::=
|

::=

assertL P
assumeL P

∗
(c;) goto b∗

wpC (assertL P, Q)
wpC (assumeL P, Q)

wpC (goto b∗, Q)
wpC (c1; c2, Q)

=
=
=
=

(vL ∧ P) ∧ Q
(vL =⇒ P) =⇒ Q⋀

b wpC (b, Q)
wpc1,wp(c2,Q)

Fig. 3. Top: syntax of passive programs. Bottom: weakest preconditions of
passive programs with coverage-tracking labels added. All instances of vL
are fresh.

shown on the bottom of Fig. 3. These variables interact with
the postcondition in the same way that the predicate embedded
within the command does.3

Once we have generated a verification condition C, we assert
the entire negated VC, without a label, and assert each Boolean
label along with a textual name. This leads to an SMT query
like the following.

(assert v_L_1 :named "L_1")
...
(assert (not C))
(check-sat)
(get-unsat-core)

The SMT solver will respond to this query with a list of
the labels that occur in the unsatisfiable core of the problem,
corresponding to the covered program elements. Note that,
in general, SMT solvers do not typically provide a minimal
unsatisfiable core, and that multiple minimal cores may exist.
This means that the possibility exists that a program element
is included in the unsatisfiable core when, in fact, removing it
may not lead to verification failure. Anecdotally, we have not
seen lack of minimality cause issues in practice. However, an
interesting avenue for future would would be to systematically
measure how close cores are to minimal in practice, in this
use case.

D. Desugaring with Labels

The Boogie language includes a wider range of commands
than listed in the previous section, and already includes a
transformation to desugar these into an acyclic graph of
assertions and assumptions. This process is standard, and
described elsewhere [1], [12], [18]. However, we provide an
overview here of how it interacts with labels.

First, we define the syntax of labels used in Fig. 3 to include
the alternatives shown in Fig. 4. In the surface Boogie syntax,
an atomic label l can appear on an assignment statement, assert
statement, assume statement, call statement, precondition,
postcondition, or loop invariant. During desugaring, these labels
are propagated as follows:

3The rule for assume statements already existed in Boogie, as a mechanism
for tracking necessary assumptions as part of an effort to help better understand
verification results. The portion of this focusing on errors has been published [6],
but that publication doesn’t discuss using the encoding to better understand
successful proofs.

254

L ::= l
| PreCheck(l1, l2) | PreAssume(l1, l2)
| Post(l1, l2) | InvEstablish(l)
| InvMaintain(l) | InvAssume(l)

Fig. 4. Syntax of labels.

• Labels on assertions and assumptions are preserved.
• The label on an assignment is transferred directly to the
corresponding assumption in the passive program.

• Each precondition (with label lP) of a call (labeled lC) is
desugared into an assertion labeled with Pre(lC , lP) and
an assumption labeled with PreAssume(lC , lP).

• Each postcondition (with label lQ) of a call is translated
to an assertion labeled with Post(lC , lQ).

• Each invariant (with label l) is broken into three pieces:
an assertion labeled with InvEstablish(l), an assertion
labeled with InvMaintain(l), and an assumption labeled
with InvAssume(l).

The Dafny language includes even more constructs, and
Dafny programs are verified by generating Boogie programs
and verifying those using the standard Boogie verifier. The rules
for tracking labels originating in Dafny language constructs
are more numerous, but follow the same intuitive structure as
the rules in the list above.

E. Finer Granularity

When calculating coverage using unsatisfiable cores, we can
also consider Boolean sub-expressions of any larger expression.
For example, if a precondition of the form P =⇒ Q
exists in the program, a coverage result that includes only P
indicates that P is unsatisfiable and therefore the content of Q is
irrelevant. The Boogie implementation includes decomposition
of the Boolean operators for conjunction, disjunction, and
implication.
Other implementations could go farther. As one extreme

case, for bit vector programs, each bit could be considered
separately. We have not yet experimented with this, but it
would follow from the same approach. The finite nature of the
programs would allow measurement of state space coverage,
as well.

F. Impact of Trigger-Based Quantifier Instantiation

SMT solvers can use triggers [8], [9], [14] to aid quantifier
instantiation. Each quantified formula may be annotated with a
term schema that indicates the shape of a particular expression.
If an expression of this shape exists in the current clause
database, the solver may consider instantiating the quantified
formula. In some cases, it is necessary to introduce a term
into a Dafny program, potentially as an additional assertion,
to allow the appropriate quantified axioms to be instantiated,
even if that assertion is otherwise unnecessary for completing
the proof. Such an element will be considered uncovered, even
though removing it would cause verification to fail. This is

logically sound — the property to be proved is still derivable
without that program element, even if doing it with SMT would
require a perfect quantifier instantiation oracle in this case —
but it can lead to a frustrating user experience in some cases.

IV. IMPLEMENTATION

To evaluate the precision, overhead, and usability of our
approach on real-world verified programs, we implemented the
analysis in two open-source tools: the foundation in Boogie,
and extensions to Dafny to use this foundation.

The Boogie implementation integrates with the verification
pipeline, building on the existing code for desugaring procedure
calls and constructing an acyclic, passive program. The key
changes needed were to allow statements to be annotated with
labels and to extend labels during desugaring (as described
in Section III-D). The implementation built on prior work
intended to allow identification of necessary assume state-
ments, making it also possible to identify covered assertions.
This implementation consists of roughly 700 lines of C# code,
almost all of which involves tracking the provenance of labels.
The change to the VC generator exactly mirrors the description
in Fig. 3.
Dafny verifies programs by first translating them into

Boogie and then invoking the Boogie verifier. The Dafny
implementation, consisting of around 2.5k lines of C# code,
automatically adds a label to each Boogie statement that has a
direct correspondence to a Dafny statement, and does additional
provenance tracking to aid in producing useful messages. Based
on its computation of coverage, Dafny implements warnings
about contradictory or redundant specifications and source
highlighting to indicate overall coverage and help identify
unconstrained code.

A. Implementation Caveats

Building this analysis in Boogie and leveraging the existing
Dafny to Boogie translation was mostly straightforward, but
several subtle complications arose.

• Dafny programs sometimes include intentional proofs
by contradiction. The goals of these proofs are typically
uncovered, and therefore lead to warnings. To support
these, we allow labeling an assert statement as taking part
in an intentional proof by contradiction, silencing these
warnings.

• Some of the Boogie code generated by Dafny includes
assertions in locations that are unreachable by construction,
presumably because it simplifies the translation and didn’t
previously lead to issues. We identify several classes of
these and automatically exclude them from warnings.

• Each Dafny function definition is represented in Boogie
as one or more quantified axioms, each of which includes
most or all of the function body. This limits the degree to
which we can track which subexpressions of a function
body were covered by a particular proof. We can, however,
track whether the function body was used at all. Inlining
functions, rather than defining them with axioms, would

255

be one way to address this limitation, though it would
not be possible for recursive functions.

V. EXPERIMENTS

Previous work on verification coverage has reported substan-
tial overhead [16]. In addition, most tools for automatically
detecting problems in software or specifications are prone to
false positives, or a low level of “interesting” true positives.
And, finally, SMT-based verification can be prone to the
problem of brittleness. We say that a pair of an SMT solver
and a query is brittle if the solver can solve the inital query
but fails to solve a minor, semantics-preserving variant of the
query.4 An analysis the increases brittleness too substantially
may be infeasible to adopt in practice. Therefore, we aim to
answer several research questions here.
RQ1 What is the typical overhead of calculating coverage,

relative to doing verification without coverage analysis?
We measure this in terms of both execution time and Z3
resource count (a deterministic measure of SMT solver
work) per SMT query.

RQ2 Do the changes made to SMT queries to allow coverage
analysis impact the brittleness of verification?

RQ3 How does the overhead compare to the “smoke testing”
approach, where a tool attempts to prove false at various
points throughout the program? In particular, how does it
compare to the smoke testing implementation that already
exists in Boogie?

RQ4 How useful are the warnings that Dafny generates?
The possibility exists for entirely spurious warnings (due
to encoding artifacts that lead to unreachable code or
bugs in the implementation), but also for warnings about
intentional proofs by contradiction or dead code, which
may be considered uninteresting. The possibility also
exists for false negatives, where program elements are
determined to be covered due to the overapproximation
of unsatisfiable cores.

To answer these questions, we ran Dafny on the code from
several public repositories of Dafny code, and one non-public
repository. These are:

• ESDK: AWS Encryption SDK for Dafny
• MPL: AWS Cryptographic Material Providers Library
• INT: A non-public project
• STD: Built-in Dafny Std library
We ran all measurements with a pre-release commit of Dafny

(67daee75a302077b4b49048b4b90e560bfbdf32b),
with Boogie v3.0.12 and Z3 v4.12.1, on an AWS c5.4xlarge
host (16 3GHz Intel Xeon CPUs, 32GB RAM).

A. Results on Examples

Before presenting statistics about the performance of cov-
erage analysis on large code bases, we show the results it
provides on the examples shown in Section I. Recall that, in
the first example (see Fig. 1), the CallFind method invokes

4Other authors have used the terms instability or the butterfly effect [32]
for this phenomenon.

Find with arguments that make its postcondition unsatisfiable.
Dafny reports this problem as follows:

Find.dfy(12,2): Warning: proved using
contradictory assumptions: assertion
always holds. (Use the ‘{:contradiction}‘
attribute on the ‘assert‘ statement to
silence.)

|
12 | assert xs[i] == 45;

| ^^^^^^

Find.dfy(12,9): Warning: proved using
contradictory assumptions: index in range

|
12 | assert xs[i] == 45;

| ^^

Dafny program verifier finished with 2
verified, 0 errors

Next, recall that, in the second example (see Fig. 2), the
BinSearch method has an unnecessary precondition. Dafny
reports this problem as follows:

BinarySearch.dfy(3,11): Warning: unnecessary
requires clause
|

3 | requires forall i,j ::
| ^^^^^^^^^^^^^

Dafny program verifier finished with 2
verified, 0 errors

B. Overhead of Coverage Analysis

To determine how much overhead coverage analysis has rel-
ative to normal verification (RQ1), we measured the following
(shown for each project in Fig. 5).

• the total number of goals for each project;
• time (in seconds) and resource count (RC, a deterministic
proxy for difficulty provided by Z3) for each SMT query,
for both normal verification (N) and verification with
coverage tracking (C), along with statistics about the
distribution of these values; and

• failure count, with and without coverage tracking.
In this data, we include the median, mean, and trimmed

mean (a.k.a., truncated mean). This last value is calculated
as the mean of the middle n% of values [7]. So the 98%
trimmed mean (M98) discards the 1% smallest and 1% largest
values. We calculate this because we observe that most Dafny
verification tasks include a few very difficult queries and a
huge number of relatively easy queries, and that the most
difficult queries are frequently the most brittle. The trimmed
mean discards the extreme outliers, giving a more characteristic
picture of typical performance.

Based on these measurements, we compute an overhead, in
terms of both time and resource count, for each project and for
each statistic. These computations show that the overall time
overhead ranges from around 20% to over 73%, depending

256

ESDK MPL INT STD majority use less than twice the resources.

Goals

Time

2122

N 7.8×102

C 1.1×103

4981

7.2×102

1.2×103

11042

4.9×103

8.4×103

4647

2.8×102

3.3×102
1

·106

N 3.7×10−1 1.4×10−1 4.4×10−1 6.0×10−2

Mean C 5.1×10−1 2.4×10−1 7.6×10−1 7.1×10−2

O 40.24% 65.66% 73.34% 19.97%

N 1.5×10−1 5.2×10−2 1.2×10−1 2.4×10−2

Med. C 1.5×10−1 5.3×10−2 1.1×10−1 2.5×10−2

O 1.13% 2.51% -4.27% 5.85%

N 2.1×10−1 1.2×10−1 2.8×10−1 5.3×10−2

M98 C 2.1×10−1 1.3×10−1 3.0×10−1 5.5×10−2 C
ov
er
ag
e
re
so
ur
ce

co
un
t 0.8

0.6

0.4

0.2

RC

Mean

Med.

M98

O 3.49% 9.17% 7.48% 4.37%

N 9.4×108 2.2×109 4.7×109 8.0×108

C 1.6×109 4.9×109 6.0×109 7.2×108

N 4.4×105 4.5×105 4.3×105 1.7×105

C 7.7×105 9.9×105 5.5×105 1.5×105

O 74.22% 121.37% 27.44% -10.10%

N 2.7×105 8.7×104 1.0×105 5.4×104

C 2.8×105 9.3×104 1.2×105 5.9×104

O 3.33% 6.70% 14.18% 9.21%

N 3.8×105 2.9×105 2.3×105 1.1×105

C 4.2×105 3.4×105 2.8×105 1.2×105

O 10.56% 17.59% 21.11% 6.77%

N 2 1 3 0Fail. C 4 2 15 7

Fig. 5. Overhead of coverage-enabled verification with respect to normal
verification. Each row is labeled with one of: “N” for normal verification, “C”
for coverage-enabled verification, or “O” for calculation of the overhead of
coverage analysis. C

ov
er
ag
e
du
ra
tio

n
(s
ec
)

2

1.5

1

on the codebase. However, the median time overhead ranges
between the much more tolerable −4% and 6%, and the
trimmed mean between 3.5% and 9%. Similar patterns occur
for resource counts. This suggests that, by constructing Dafny
programs to avoid extreme outliers in verification time, we
can keep the overhead of coverage analysis low enough to be
almost imperceptable in practice. Our experience is that Dafny
programs can be refactored to achieve this, and that doing so
reduces verification brittleness in general.
We also show scatter plots comparing the resource count

(Fig. 6) and time (Fig. 7) of each query between normal and
coverage-enabled verification. Both plots include a random sub-
sample of 1000 points from the total data set, and exclude a
small number of outliers above 107 resource units or 3 seconds,
to make the pattern of the remaining data clearer. These plots
show that, although coverage-enabled SMT queries are usually
more difficult, they can also sometimes be easier, and the vast

0.2 0.4 0.6 0.8 1
Normal resource count ·106

Fig. 6. Comparison of solver resource counts between normal (x-axis) and
coverage-enabled (y-axis) verification, with lines for y = 0.5x, y = x, and
y = 2x.

3

2.5

0.5

0.5 1 1.5 2 2.5 3
Normal duration (sec)

Fig. 7. Comparison of solver execution time between normal (x-axis) and
coverage-enabled (y-axis) verification, with lines for y = 0.5x, y = x, and
y = 2x.

C. Impact on Brittleness

To determine how much coverage analysis impacts the
brittleness of verification (RQ2), we use a Dafny feature that
allows each verification condition to be randomized along
several dimensions: ordering of SMT declarations, names of
SMT variables, and the random seed used by the SMT solver
to make arbitrary decisions. The results of running 5 iterations
of verification with this feature enabled, both with and without

257

https://0.511.522.53
https://0.20.40.60.81

coverage calculation, appear in Fig. 8. 5 The increase in failure
count and the standard deviation of resource count shows that
enabling coverage analysis can increase brittleness — that is, it
can increase the likelihood that verification will fail after small,
semantics-preserving changes, and can increase the degree to
which proof difficulty varies after such changes. However, the
M98 trimmed mean shows only a slight increase in time and
resource count, suggesting that the technique may be difficult to
apply to already-brittle codebases, but is unlikely to introduce
brittleness that is not already present.

Mode INT STD

Time N
C

1.4×104

3.6×104
1.4×103

1.9×103

Mean N
C

2.6×10−1

6.5×10−1
6.1×10−2

8.3×10−2

Mean (98%) N
C

1.3×10−1

1.5×10−1
5.4×10−2

5.7×10−2

Std. dev. N
C

5.2
1.2×101

2.6×10−1

1.3

RC N
C

1.9×1010

3.5×1010
3.7×109

5.0×109

Mean N
C

3.5×105

6.4×105
1.6×105

2.1×105

Mean (98%) N
C

2.3×105

2.8×105
1.1×105

1.2×105

Std. dev. N
C

6.2×106

1.0×107
3.0×106

6.9×106

N 18 13Failures C 85 42

Fig. 8. Impact of coverage-enabled verification on brittleness.

D. Comparison with Smoke Testing

To compare coverage-enabled verification with smoke testing
(RQ3), we focus on overall time and resource use, because
smoke testing works entirely using additional queries, rather
than modifying existing queries, and these therefore don’t
align with queries produced by normal or coverage-enabled
verification. This also prevents a comparison in the form of a
scatter plot. In addition, the implementation of smoke testing
is less robust than that of coverage analysis, and fails on
many of our benchmarks, so we could perform a meaningful
comparison on only one element of our benchmark suite. The
lack of robustness meant that it also needed to be run with
slightly different Dafny flags, so the statistics in this table

5A bug in Dafny unrelated to coverage analysis prevented us from collecting
brittleness data on the ESDK and MPL benchmarks. This bug has since been
fixed, but not in time to be included in these results.

differ from those in Fig. 5. A summary of the comparison with
smoke testing appears in Fig. 9.

INT

Total coverage time 8.4×103

Combined smoke time 1.1×104

Total coverage resource count 6.0×109

Combined smoke resource count 2.1×1010

Fig. 9. Overhead of smoke testing relative to normal verification, showing
the total time and resource count taken by verification with coverage analysis
enabled compared to the total time and resource count taken by verification
with smoke testing enabled.

These results show that, in this instance, smoke testing is
more expensive than coverage analysis. Other implementations
of smoke testing could have different performance profiles.
However, it is not clear that their performance could be directly
compared to the implementation described in this paper, since
they work on different languages.
Coverage analysis also provides additional capabilities,

including detection of unnecessary assumptions, indication
of what portions of an implementation have been verified, and
indication of what facts were used in a proof.

E. Quality of Warnings

Finally, we analyze all of the warnings produced by coverage
analysis and compare them with the warnings produced by
smoke testing (RQ4). Coverage analysis warnings consist of
redundant assumptions and contradictory assumptions. Redun-
dant assumptions can be further categorized into:

• Redundant preconditions and assumption statements.
• Redundant assertions that were presumably added to aid
in the proof of a later postcondition but turn out to be
unnecessary.

The contradictory assumptions we encountered can be further
categorized into:

• direct instances of assume false,
• dead code due to infeasible branches,
• inconsistencies in Dafny’s background axioms,
• intentional proofs by contradiction,
• redundant tests of facts guaranteed by proof, and
• dead proof or specification code due to infeasible cases.
The number of each of these warnings appear in Fig. 10.

Direct instances of assume false are a mechanism for
avoiding proof of difficult properties, and occur in two of the
projects analyzed. Dead code is rare, occurring in only two
instances, in one project. The process of performing these
experiments uncovered an inconsistency in the background
axioms Dafny generates related to the freshness of heap objects
that affects one project (and has since been fixed). Three of the
four projects include intentional proofs by contradiction. Two of
the projects included redundant runtime tests of properties that
were guaranteed by proof. And three of the projects included
either specification expressions in which some subexpression
was constant or branches in proofs that covered impossible

258

ESDK MPL INT STD

Coverage warn. 38 301 78 290

Redund. assum. 24 164 23 59
Redund. assert. 11 30 25 201
False assum. 0 0 8 9
Dead code 0 2 0 0
Prelude contrad. 0 69 0 0
Proof by contrad. 2 15 0 14
Redundant test 1 8 0 0
Dead proof/spec. 0 13 20 7

Smoke warn. - - 2897 -

Fig. 10. Warnings produced from coverage-enabled verification and smoke
testing.

cases. These could be removed, simplifying the specification
and proofs.

The inconsistencies due to Dafny’s prelude axioms were the
most significant specification mistake detected in this analysis.
However, all of the others, except the intentional proofs by
contradiction, indicate implementation or specification code
that could be improved.

Smoke testing generates warnings in terms of Boogie code
rather than Dafny code. That, plus the large number of warnings,
made it infeasible to categorize each one. We instead simply
note that the sheer number, even if they were in Dafny terms,
would make them infeasible for the developers to triage, as
well.

VI. CONCLUSION

The concept of verification coverage originated in the model
checking world, where the monolithic nature of many model
checking systems meant that coverage analysis was often
expensive. This analysis has a direct analog in compositional
deductive verification of software, however, where individual
proof goals tend to be smaller and simpler. We have shown
that coverage analysis can be smoothly integrated into a
verification-aware programming language like Dafny with
reasonable performance overhead and problem reports free
of false positives (with caveats for partially unused elements
and intentional proofs by contradiction), though false negatives
(failures to detect true specification gaps) are possible.

This work only begins the investigation into coverage in
deductive software verification. Several avenues for future work
are immediately apparent:

• Coverage can be calculated with finer granularity (see Sec-
tion III-E). Labeling additional program elements may
make it possible to provide more precise feedback to
the programmer about the quality and scope of their
specifications.

• Unsatisfiable cores can be minimized (with additional
computational expense). This has the potential to reduce or
eliminate the possibility of false negatives, although multi-
ple minimal cores may exist in some cases. Alternatively,

analyzing the structure of the proof of unsatisfiability,
rather than the clauses in the unsatisfiable core, also has
the potential to produce more precise results [28].

• Information about the facts used in a proof can be used
to optimize future searches for the same or similar proofs.
A Dafny lemma, for example, could be updated to restrict
the facts sent to the SMT solver to include only those
that were necessary to complete the proof, reducing the
solver’s search space.

REFERENCES

[1] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of
unstructured programs. SIGSOFT Softw. Eng. Notes, 31(1):82–87,
September 2005.

[2] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent
Kirchner, Nikolai Kosmatov, André Maroneze, Valentin Perrelle, Virgile
Prevosto, Julien Signoles, and Nicky Williams. The dogged pursuit of
bug-free C programs: the Frama-C software analysis platform. Commun.
ACM, 64(8):56–68, July 2021.

[3] Bernhard Beckert, Mihai Herda, Stefan Kobischke, and Mattias Ulbrich.
Towards a notion of coverage for incomplete program-correctness
proofs. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation. Verification,
pages 53–63, Cham, 2018. Springer International Publishing.

[4] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011: First
International Workshop on Intermediate Verification Languages, pages
53–64, Wrocław, Poland, August 2011. https://hal.inria.fr/hal-00790310.

[5] Boogie. https://github.com/boogie-org/boogie.
[6] Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin

Wüstholz. Integrated environment for diagnosing verification errors. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 424–441, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[7] Anirban DasGupta. Asymptotic Theory of Statistics and Probability,
chapter 18. Springer Texts in Statistics. Springer-Verlag New York,
2008.

[8] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[9] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, May 2005.

[10] William R. Elmendorf. Controlling the functional testing of an operating
system. IEEE Transactions on Systems Science and Cybernetics, 5(4):284–
290, 1969.

[11] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. Bugs as deviant behavior: a general approach to inferring errors
in systems code. SIGOPS Oper. Syst. Rev., 35(5):57–72, October 2001.

[12] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’01, page 193–205, New York, NY, USA, 2001.
Association for Computing Machinery.

[13] Frama-C. https://www.frama-c.com/.
[14] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified

verification conditions using satisfiability modulo theories. In Frank
Pfenning, editor, Automated Deduction – CADE-21, pages 167–182,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[15] Elaheh Ghassabani, Andrew Gacek, and Michael W. Whalen. Efficient
generation of inductive validity cores for safety properties. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, page 314–325, New York, NY, USA,
2016. Association for Computing Machinery.

[16] Elaheh Ghassabani, Andrew Gacek, Michael W. Whalen, Mats P. E.
Heimdahl, and Lucas Wagner. Proof-based coverage metrics for formal
verification. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 194–199, 2017.

[17] Mihaela Gheorghiu and Arie Gurfinkel. VaqUoT: A tool for vacuity
detection. Technical report, University of Toronto, Department of
Computer Science, 2006.

259

https://hal.inria.fr/hal-00790310
https://github.com/boogie-org/boogie
https://www.frama-c.com/

[18] Radu Grigore, Julien Charles, Fintan Fairmichael, and Joseph Kiniry.
Strongest postcondition of unstructured programs. In Proceedings of
the 11th International Workshop on Formal Techniques for Java-like
Programs, FTfJP ’09, New York, NY, USA, 2009. Association for
Computing Machinery.

[19] Jochen Hoenicke, K. Rustan M. Leino, Andreas Podelski, Martin Schäf,
and Thomas Wies. It’s doomed; we can prove it. In Ana Cavalcanti and
Dennis R. Dams, editors, FM 2009: Formal Methods, pages 338–353,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[20] Mikoláš Janota, Radu Grigore, and Michal Moskal. Reachability
analysis for annotated code. In Proceedings of the 2007 Conference on
Specification and Verification of Component-Based Systems: 6th Joint
Meeting of the European Conference on Software Engineering and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
SAVCBS ’07, page 23–30, New York, NY, USA, 2007. Association for
Computing Machinery.

[21] Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. On the duality
between vacuity and coverage. Technical Report UCB/EECS-2008-26,
EECS Department, University of California, Berkeley, March 2008.

[22] Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. A theory of
mutations with applications to vacuity, coverage, and fault tolerance. In
Proceedings of the 2008 International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’08. IEEE Press, 2008.

[23] Viet Hoang Le, Loïc Correnson, Julien Signoles, and Virginie Wiels.
Verification coverage for combining test and proof. In Catherine Dubois
and Burkhart Wolff, editors, Tests and Proofs, pages 120–138, Cham,
2018. Springer International Publishing.

[24] K. Rustan M. Leino. This is Boogie 2. June 2008.
[25] K. Rustan M. Leino. Dafny: An automatic program verifier for functional

correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, pages 348–370,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[26] K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating
error traces from verification-condition counterexamples. Sci. Comput.
Program., 55(1–3):209–226, March 2005.

[27] K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate
verification language: Design and logical encoding. In Javier Esparza and
Rupak Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 312–327, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[28] Jocelyn Simmonds, Jessica Davies, Arie Gurfinkel, and Marsha Chechik.
Exploiting resolution proofs to speed up ltl vacuity detection for bmc. In
Formal Methods in Computer Aided Design (FMCAD’07), pages 3–12,
2007.

[29] Aaron Tomb and Cormac Flanagan. Detecting inconsistencies via
universal reachability analysis. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, page 287–297,
New York, NY, USA, 2012. Association for Computing Machinery.

[30] Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. Finding
minimal unsatisfiable cores of declarative specifications. In Jorge Cuellar,
Tom Maibaum, and Kaisa Sere, editors, FM 2008: Formal Methods,
pages 326–341, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[31] Why3 – where programs meet provers. https://www.why3.org/.
[32] Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule,

and Bryan Parno. Mariposa: Measuring SMT instability in automated
program verification. In 2023 Formal Methods in Computer-Aided Design
(FMCAD), pages 178–188, 2023.

APPENDIX

A. Experimental Reproduction

This appendix describes how we gathered experimental data
for each benchmark listed in the paper. Each of the following
subsections describes one benchmark, giving the URL of the
repository on GitHub, the SHA of the commit we ran on, the
subdirectory of the repository we ran the verification in (if not
the root), and the verification script we ran. We used different
verification scripts to mirror each project’s standard build setup
as closely as possible.
1) Common Options: Each of these scripts passes its

arguments to Dafny. This is so that we can use the same
verification scripts for each mode of analysis we performed.

For each experiment type, we passed in old-style Dafny CLI
flags, because that is what each project used in its build system
at the time of writing. These arguments are as follows:
For all experiments:
• /verificationLogger:csv
For coverage:
• /warnRedundantAssumptions
• /warnContradictoryAssumptions
For brittleness analysis:
• /randomizeVcIterations:5
For smoke testing:
• /smoke
• /trace
• /vcsCores:1
• /prune:0
• /restartProver
2) STD:
• Repository URL:
– https://github.com/dafny-lang/dafny

• Commit hash:
– 67daee75a302077b4b49048b4b90e560bfbdf32b

• Subdirectory:
– Source/DafnyStandardLibraries/src/Std

• Verification script:

dafny \
/compile:0 \
/trackPrintEffects:1 \
/definiteAssignment:3 \
/readsClausesOnMethods:1 \
/rlimit:1000000 \
‘find . -name "*.dfy" | \

grep -v "TargetSpecific"‘ $*

3) MPL:
• Repository URL:
– https://github.com/aws/aws-cryptographic-material-

providers-library
• Commit hash:
– 29c6a2c20d4cdeaadeacd242dc4764ce0012193d

• Verification script:

find . -name "*.dfy" | \
grep -v "libraries/" | \
xargs -P 4 -n 1 \

dafny \
/compile:0 \
/definiteAssignment:3 \
/quantifierSyntax:3 \
/functionSyntax:3 \
/unicodeChar:0 \
/timeLimit:150 $*

260

https://www.why3.org/
https://github.com/dafny-lang/dafny
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

4) ESDK:
• Repository URL:
– https://github.com/aws/aws-encryption-sdk-dafny

• Commit hash:
– 24ddf9a7b2840bea4a37c633c45d60cdfc177184

• Verification script:

find . -name "*.dfy" | \
grep -v "libraries/" | \
grep -v "mpl/" | \

grep -v "test/" | \
xargs -P 4 -n 1 \

dafny \
/compile:0 \
/definiteAssignment:3 \
/quantifierSyntax:3 \
/functionSyntax:3 \
/unicodeChar:0 \
/timeLimit:150 $*

261

https://github.com/aws/aws-encryption-sdk-dafny

	Introduction
	Examples
	Overview of Paper

	Prior Work
	Verification Coverage
	Definition
	Interpretation
	VC Generation with Coverage Tracking
	Desugaring with Labels
	Finer Granularity
	Impact of Trigger-Based Quantifier Instantiation

	Implementation
	Implementation Caveats

	Experiments
	Results on Examples
	Overhead of Coverage Analysis
	Impact on Brittleness
	Comparison with Smoke Testing
	Quality of Warnings

	Conclusion
	References
	Appendix
	Experimental Reproduction
	Common Options
	STD
	MPL
	ESDK

