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Abstract—The Rust type system provides strong compile-time
guarantees. However, some properties cannot be fully verified
by the compiler. Specifically, properties like panic freedom and
memory safety in mixed safe-unsafe code require verification
beyond what the language enforces. We explore how to verify
these properties in real-world Rust code using SEABMC, a
bounded model checker that ingests LLVM-IR generated by
the Rust compiler. We demonstrate our approach through two
case studies. In the first, we develop unit proofs for functional
properties of four data-structure libraries: SMALLVEC, TINYVEC,
SEAVEC, and RESULT-TYPE from the Rust standard library.
These unit proofs are checkable by both SEABMC and KANI,
a state-of-the-art bounded model checker for Rust, and we find
that SeaBMC verifies these units an order of magnitude faster
than Kani. The second case study focuses on verifying panic
freedom of Wasmtime’s WINCH compiler. This application is
driven by the requirement for high reliability when compiling
WASM smart-contracts in the Stellar network. This case study
highlights that executable counterexamples from SEABMC are
highly effective for localizing issues and discovering invariants.
Our main contributions are (1) a new tool for Rust verification
which, on our benchmarks, is an order of magnitude faster
than KANI, (2) two case studies with reusable benchmarking
and testing infrastructure, and (3) practical guidelines stemming
from our experience verifying real-world code-bases.

I. INTRODUCTION

The Rust type system makes progress on long standing
safety problems in systems programming—most notably, it
ensures the absence of memory-safety violations, data races,
and other undefined behavior. However, the Rust type system
guarantees those safety properties only for a subset of the
language called Safe Rust. For expressiveness and speed,
programmers must often resort to Unsafe Rust. Thus, the Rust
type checker does not guarantee the safety of many practical
Rust programs.

Verification tools that work on mixed safe-unsafe Rust code
can fill an important gap left by the Rust type system. In
practice, undefined behavior stemming from unsafe Rust code
may lead to panics (an exception denoting an unrecoverable
error), crashes, or subtle memory-corruption issues. We treat

fn main() { 1
let arr = [10, 20, 30, 40, 50]; 2
let p = arr.as_ptr(); 3
// Move pointer FAR past the array bounds 4
let bad_ptr = unsafe { p.add(10) }; 5
let bad_index = unsafe { bad_ptr.offset_from(p) } as usize; 6
println!("Value: {}", arr[bad_index]); 7

} 8

Fig. 1: Verifying panic freedom in the presence of unsafe code
requires low-level reasoning.

panics and undefined behavior interchangeably, unless specifi-
cally mentioned. For example, in Fig. 1, an unsafe Rust block
creates an invalid pointer at line 5, which leads to a run-
time panic at line 7. This style of programming adds security
defensively. However, a program may wish to ensure no panics
occur, i.e., panic freedom. Thus, panic freedom becomes an
important property to prove.

In this paper, we present a verification methodology for
mixed safe-unsafe Rust code based on the SEABMC bounded-
model checker. SEABMC is part of the SEAHORN verification
toolkit. It analyzes LLVM bitcode produced by the Rust com-
piler and massaged by SEAHORN’s pre-processing passes, and
relies on an SMT solver to discharge verification conditions.
Since SEABMC works on the low-level representation of the
program post Rust compilation to LLVM, it can verify mixed
safe-unsafe Rust, and even mixed Rust and C programs.

A SEABMC user must assemble three components for
verification. The first is the system under test (SUT). This may
be a single function or a more complex arrangement of system
components. The second is the runtime environment needed
by the SUT. This may be part of the language’s runtime
system (memory allocation, error handlers, etc.), which we
are not interested in verifying, but it may also contain system
components that the SUT uses but that we are not verifying.
During verification, the runtime environment is replaced by a
simpler verification-only environment. Third, a unit proof [1]
(similar to a unit test) that sets up concrete and symbolic
inputs and state needed for the SUT to execute. It usually
has three stages—setup pre-conditions, call SUT, check post-
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conditions. We apply this methodology in two case studies.
In the first case study, we write 83 unit proofs that verify

low-level functional correctness. We compare SEAHORN and
KANI [2] on these unit-proofs. KANI is a bounded model
checker for mixed safe-unsafe Rust code developed by AWS
and based on CBMC [3], and it has recently seen a flurry
of activity [4]. Both tools are configured to automatically
check spatial memory safety. We show that SEABMC is faster
than KANI by a factor of 10 or more under similar checks.
Additionally, we provide a new design point around panics in
unit proofs. KANI adopts the view that any panic is always
an error (PANIC-ERROR). However, this can force users to
write unit proofs with very strong pre-conditions in order to
avoid any panic. An alternative is to abort execution upon
a panic, without considering it an error (PANIC-ABORT). The
PANIC-ABORT approach allows writing weaker pre-conditions
quickly. The executions that panic simply exit early. This style
of unit proofs is inspired by smart contracts written in Rust
that use panics to safely terminate an incorrect execution early.
In summary, SEABMC can meet the challenge of verifying
low-level safe-unsafe Rust code by being precise and fast.

In the second case study, we deploy our methodology to
verify parts of WINCH, an industrial WASM-to-executable
compiler for various architectures. With the aim of identifying
invariants that ensure panic freedom, we contribute 14 unit
proofs that check properties of a system under test (SUT)
consisting of roughly 3, 300 lines of Rust code (LOC). We
use SEABMC to verify panic freedom of core compiler
components since the usage context is especially sensitive to
nondeterministic panics. During this exercise, we discover a
panic that encodes a requirement: WINCH must run on an
architecture with 64-bit pointers. Without assuming this pre-
condition, SEABMC reaches a panic, and SEAHORN provides
an executable counter example that makes it easy to discover
the 64-bit pointer-size requirement.

We show that SEABMC meets the challenge of verifying
Rust programs which mix both safe and unsafe code. The
SEABMC tool and case studies are open source. The rest of
the paper is organised as follows. In Section II, we describe
how SEABMC works on LLVM bitcode. Section III describes
how unit proofs for Rust are setup. In Section IV we describe
how SEABMC compares to the state-of-art KANI tool. We
provide our experience verifying parts of the WINCH compiler
using SEABMC in Section V. Future and related work is
discussed in Sections VI and VII, respectively. We conclude
in Section VIII. Artifacts for both the VERIFY-RUST and
WINCH case studies are available online1.

II. ENGINEERING SEABMC FOR RUST

SEAHORN is a verification toolkit for LLVM programs.
SEABMC is a bit-precise bounded model checking engine for
SEAHORN that has been used in various studies ([1], [5], [6]).
LLVM IR produced by a language frontend is transformed by
the SEAHORN pre-processing pipeline into a representation

1https://doi.org/10.5281/zenodo.16415667

where memory dependencies between LLVM operations are
made explicit. This intermediate representation is called SEA-
IR [7] and is the input for SEABMC. SEABMC was originally
developed for verifying LLVM IR produced by the CLANG
compiler for C. It works by symbolically unrolling a program’s
control flow-loops, function calls, and conditional branches,
up to a user-specified bound. It then generates verification
conditions that capture all reachable states within that bound.
These conditions are translated into SMT formulas and passed
to a solver (Z3 [8] by default) which checks whether they
are satisfiable, which would indicate that the program can
reach an error state, e.g., a panic or an invalid memory access.
When SEAHORN determines that an error state is reachable,
it generates a harness that drives the SUT to the error state;
after compiling and linking this harness with the SUT, the
user can diagnose the issue with a standard debugger. For
example, if a 32-bit symbolic value must be zero to trigger
the panic, SEAHORN generates a harness that provides a 32-
bit zero value. We will discuss this with an illustrative example
in Section V-B.

For memory safety, SEABMC uses fat-pointers to carry
allocation start and end addresses (bound) apart from pointed-
to address. We also use shadow-memory to encode invariants
such as allocation bounds, memory read/write, and no use-
after-free. Moreover, the SEABMC memory allocator guaran-
tees that fresh memory allocations are disjoint in the address-
space from existing allocations. With this, pointer provenance
reduces to checking if a fat pointer is within its allocation
bound. More details can be found in [7].

Using SeaBMC with Rust typically involves compiling the
code to a supported LLVM version (e.g., Rust v1.64 for LLVM
14). No modification of SeaBMC itself is required, since the
tool treats LLVM IR uniformly regardless of whether it orig-
inated from C or Rust. Note, our experience is different from
[9] where some previously unhandled LLVM instructions had
to be handled for Rust. In our case, all relevant LLVM
instructions generated by the Rust compiler are handled by
SEABMC out-of-box. This compatibility illustrates a broader
point: verification tools built for C can often be applied to
Rust with little effort, provided they operate at the LLVM-IR
level. However, some engineering work is needed to massage
Rust compiler LLVM output to the right form for verification.

First, we have to simplify the Rust startup code. This code
is responsible for setting up the runtime environment, and
it executes before the Rust unit proof is called. The startup
logic can be complex to execute symbolically. Moreover, the
complex startup code is not needed for verifying the unit proof
since SEABMC provides simpler stub implementations for this
functionality. To remove this startup code, one option is to
remove the target functions from the LLVM bitcode generated
by the Rust compiler. This method used in [10] has limited
success since a list of candidate functions to remove has to
be maintained across Rust versions. Instead, we use a novel
mechanism that treats the rust code as a library and links it
to a C function that serves as the entry point for verification.
During linking, Rust does not embed the unneeded functions
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#[cfg_attr(kani, kani::proof)] 1
#[cfg_attr(kani, kani::unwind(5))] 2
#[cfg_attr(kani, kani::should_panic)] 3
#[no_mangle] 4
fn test_push() { 5
const CAP : usize = 4; 6
let mut v: ArrayVec<[u32; CAP]> = ArrayVec::new(); 7
let len: usize = verifier::any!(); 8
verifier::assume!(len <= CAP); 9

10
for i in 0..len { 11
v.push(verifier::any!()); 12
verifier::vassert!(v.len() == i + 1); 13

} 14
15

verifier::vassert!(v.capacity() == CAP); 16
17

if len == CAP { 18
// Vector is at capacity, so push should panic. 19
v.push(verifier::any!()); 20

21
// This assertion should not be reachable 22
// since the previous push panics. 23
verifier::error!();} 24

} 25

Fig. 2: Unit proof for the TINYVEC push operation.

since the C runtime is designated active. This works well
because SEAHORN already provides a runtime environment
for a C executable 2.

Second, getting access to a LLVM bitcode representation of
the complete Rust program is not straightforward. By default,
the Rust compiler does not provide information on all the
intermediate LLVM bitcode files from different compile units
before linking. For example, the emit-llvmir option does not
provide definitions of the allocation functions from the stan-
dard library. Without these definitions, the obtained LLVM
code is incomplete and would require SEAHORN to patch the
LLVM bitcode with missing definitions. This patching is not
a clean or easily maintainable solution. Thus, we must obtain
a complete LLVM program. For this, we rely on LLVM’s
FatLTO [11] feature. FatLTO produces a native binary that
additionally embeds a complete LLVM program, which we
then extract and input to SEAHORN.

III. VERIFYING RUST

We want SEABMC to be a testbed for exploring new ideas
in verification of Rust programs. Towards this goal, we have
created a benchmarking suite of Rust unit proofs with three
goals in mind – portability, comparison to state-of-the-art, and,
extensible experiments.
Unit proofs and CAS. Recall that a unit proof sets up concrete
and symbolic inputs, pre-conditions, calls the system under
verification (SUT), and checks the post-conditions. To make
writing pre-and-post conditions natural to developers, it is
useful to use code as specification (abbrev. CAS) [12]. We
want unit proofs in VERIFY-RUST to be tool agnostic. For this,
we have developed VERIFIER-LIB, a Rust crate that provides
a single API to write SEABMC and KANI specifications as
assumptions and assertions in the unit proof directly.

An example unit proof for the TINYVEC push operation,
shown in Fig. 2, illustrates these concepts. Lines 1–4, are

2The WINCH case study uses a superficially different setup, but this is a
historical accident.

configuration options for KANI. The first line marks the
function as a KANI proof. The second line sets the loop
unwinding bound to 5. The third line marks that the code
is expected to panic. KANI treats all panics as verification
failures otherwise. The #[no_mangle] attribute tells the Rust
compiler to not mangle [13] the function name. It is required
because SEAHORN verification infrastructure uses the LLVM
function as a key to run and display test results. Going to the
unit proof itself, lines 6–9 setup the unit proof preconditions.
The vector capacity is set to four elements. The length is
designated as a non deterministic value using verifier::any!().
It is then constrained to between zero and capacity inclusive.
Note that the verifier::assume! and verifier::vassert! macros
are from VERIFIER-LIB. The specification is delegated to
corresponding SEABMC or KANI API when the unit proof
is compiled. Lines 11–14 call the SUT in a loop. After each
call, the unit proof checks that the vector length has indeed
increased by one. Finally line 16 checks that the capacity is
unchanged. Now, an additionally property of TINYVEC push is
that is should panic if the vector is already at capacity. This is
checked in lines 18–24. Here, the unit proof goes to an error
state if the push did not panic.
Panic behaviour. SEABMC provides control on how the unit
proof is to behave when a panic is encountered. One mode
treats a panic as an error (PANIC-ERROR). Another mode
aborts execution on panic without error (PANIC-ABORT). For
SEABMC, these modes are configured separately from a unit
proof by configuring the Rust compiler with different panic
handlers. Thus, the same unit proof can be run in different
modes without modifying the proof code itself.

For example, in Fig. 2, we can remove line 9. Now when the
proof is executed in PANIC-ABORT mode (with sufficiently
large bound), some program executions will encounter a
panic in push. This is because TINYVEC cannot grow beyond
capacity. These executions will silently abort. The resulting
verification conditions of the program may be easier to solve
since panics are considered unreachable. Tool performance in
PANIC-ABORT mode is discussed more in Section IV. Note
that PANIC-ABORT mode also allows a proof design pattern
to expect that a specific computation always panics. This is
done in the form of an unreachable verifier::error!() as in
line 24. Capturing that a specifc panic should occur in KANI
is not possible as it reports any panic in the unit proof as an
error. There is no PANIC-ABORT mode in KANI.

IV. BENCHMARKING

To examine how SEABMC works for practical Rust pro-
grams, we wrote unit proofs for four Rust libraries – TINYVEC,
SMALLVEC, SEAVEC, and, RESULT-TYPE. The unit proofs
cover common operations on data structures. The TINYVEC
library provides a vector like data structure backed by an
array. It panics if elements are added to it beyond capacity.
The SMALLVEC library uses the stack for small vector sizes.
Beyond this small size, SMALLVEC uses the system heap to
store vectors. Many SMALLVEC internal operations are marked
unsafe. The SEAVEC library is a minimal vector library to
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Fig. 3: Verification time (in sec.) using KANI vs SEABMC (using
PANIC-ERROR).
serve as environment for verification of programs that require a
vector implementation. In SEAVEC, memory is allocated on the
heap and uses unsafe code. However, unlike SMALLVEC, there
is no way to grow the vector beyond capacity. The RESULT-
TYPE is a type used for returning and propagating errors in the
Rust standard library. We have written 38 proofs for TINYVEC,
29 proofs for SMALLVEC, 9 for SEAVEC, and, 7 for RESULT-
TYPE, for a total of 83 proofs. These proofs verify properties
of common operations on the data structures. For example,
for list data structures, the unit proof may check that a push 
increases the vector length by one and that push pushing to a
list at capacity causes a panic. For RESULT-TYPE, the proof
may check that a reference inside an std::result enum refers to
the expected value. All proofs are checked for spatial memory
safety by both SEABMC and KANI.
Setup. One of the goals of the benchmark data set is to be
reproducible, debuggable, and extensible. For this we use the
ReFrame [14] testing framework. ReFrame is mature, widely
supported, and offers convenient test configuration syntax
based on Python3. Some of its features we found useful were
(1) the in-built design to separate test policy (what to test)
from mechanism (how to test), (2) convenient syntax to search
for strings in test output and operate on them – e.g., sum of
all timings in stdout, and (3) staging for each test such that
failures are reproducible for debugging
SEABMC and KANI. Figure 3 graphs verification time of
KANI vs SEABMC as a scatter-plot on TINYVEC, SMALLVEC,
SEAVEC, and, RESULT-TYPE. Both the axes are in log scale.
The timeout for both KANI and SEABMC is set to 30 minutes.
KANI times out for five unit proofs. SEABMC times out for
one unit proof. We find that SEABMC is usually an order of
magnitude faster than KANI.

We note that an apples-to-apples comparison of verification
time between SEABMC and KANI is hard. We do not consider
wall time because the compilation pipeline of the two tools
differ. KANI plugs into the Rust compiler as a backend code
generator. SEAHORN is invoked only after code generation to
LLVM is complete. To compare time spent in bounded model

#[cfg_attr(kani, kani::proof)] 1
#[cfg_attr(kani, kani::unwind(3))] 2
fn test_simplify_cfg() { 3

let v: u8 = verifier::any!(); 4
verifier::assume!(v < 3); 5

6
for i in 0..v as usize { 7
return; 8

} 9
10

let mut sentinel: u32 = verifier::any!(); 11
// INV: v == 0 => sentinel >= 0 12
verifier::vassert!(sentinel >= (v as u32)*(v as u32)); 13

} 14

Fig. 4: LLVM optimization discharges all asserts in above program
before SEABMC is invoked.
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Fig. 5: Time (in sec.) to verify using SEABMC in PANIC-ABORT
mode vs PANIC-ERROR mode.

checking, we consider verification time of KANI as logged by
it after a series of post processing steps. The verification time
of SEABMC is the tool running time after preprocessing.

While SEABMC shows consistently better performance
than KANI on our benchmarks, there may be no single
explaination for this. Both tools are multi-staged with unique
strategies for generating verification conditions. Thus, it is
difficult to diff where the added performance comes from. For
SEABMC, we have found that the LLVM optimization passes
that run as part of Rust compilation and during SEAHORN
preprocessing can statically simplify the code considerably.
We illustrate using the unit proof in Fig. 4. An execution may
enter the loop in line 7 and exit early. Or, it may not enter the
loop (v = 0). Thus, the only way to reach line 11 is when v = 
0. Futher, the variable sentinel is an unsigned 32-bit number.
With these two facts, the vassert in line 13 becomes trivially
true since the type of sentinel ensures that it is always greater
than equal to zero. This reasoning is done statically in the Rust
+ SEAHORN pipeline and the vassert is discharged before
invoking VC generation. In our experiments, KANI invokes
the solver indicating that it relies on the solver to reason as
above. Invoking the solver is usually expensive, therefore, any
pre-solver reasoning should improve verification time.
PANIC-ABORT vs PANIC-ERROR. In order to scale
SEABMC to verify more complex code, we benchmark 24 
unit proofs in TINYVEC to run in PANIC-ABORT vs PANIC-
ERROR mode. The results are shown in Fig. 5 . On average,
we see that PANIC-ABORT is 2.4x faster than PANIC-ERROR.
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This is somewhat skewed by test_retain that times out with
SEAHORN (30 minutes) in PANIC-ERROR mode and takes 54 
seconds in PANIC-ABORT mode. As discussed in Section III,
this speedup occurs because PANIC-ABORT leads to simpler
unit proofs since weaker assumptions can be made.

V. APPLYING SEABMC TO WINCH

In this section, we present a case study in which we
use SEAHORN (and SEABMC) to verify a real-world code-
base: the WINCH compiler. WINCH compiles WebAssembly
(WASM) code to native binaries. It is part of Wasmtime [15],
an open-source project maintained by the Bytecode Alliance.
We undertake its verification to support high-reliability compi-
lation of WASM smart contracts 3 in the Stellar network [16],
a popular blockchain.

Compared to the benchmarks of Section IV, we face several
new challenges. First, the codebase is too large and complex to
create unit proofs that exercise the end-to-end compilation of
even small WASM programs. We, therefore, need to carve out
a manageable SUT. This involves writing stubs for internal
WINCH components and creating mixed concrete/symbolic
contexts to exercise the SUT. Performing this surgery requires
a good understanding of the internal structure of WINCH.
Second, components that form the environment of the SUT
likely maintain state invariants that the SUT depends on; if
the context we create for the SUT does not satisfy those
invariants, we get false-positive verification failures. Third, the
WINCH codebase uses data-structures such as vectors with
dynamic resizing, hash-maps, and hash-sets that are difficult
for SEAHORN to execute symbolically. To make analysis
feasible, we must replace these data-structures by stubs that
are more tractable while exhibiting sufficiently rich behavior.
Finally, to deliver long-term value, we need to be able to
maintain the SUT and keep it up to date with changes to the
upstream codebase.

In the next two sections, we describe these challenges in
more detail, offer guidelines born from experience, and show
that SEAHORN can realistically be applied to real-world code
bases. Before we jump in, let us say a few more words about
our motivations.

The Stellar network implements a fault-tolerant distributed
ledger using state-machine replication[16]. Hundreds of repli-
cas across the world each maintain a copy of the full ledger
state, and users can access the ledger by invoking pieces
of WASM code called smart contracts. Smart contracts are
themselves user-provided, and users can register new smart
contracts at any time. To keep their state synchronized, the
replicas use a consensus protocol to repeatedly agree on the
next operation to execute, e.g. adding a new smart contract to
the system, or invoking an existing smart contract.

Currently, the replicas execute WASM code using the
Wasmi interpreter [17]. However, in a proposed upgrade,
replicas instead use WINCH to compile WASM code to native

3A program that executes predefined actions automatically when specific
conditions are met.

binaries that are then cached for later execution. Since users
rely on the Stellar network for potentially high-value financial
transactions, it is crucial that WINCH not crash, panic, or
miscompile WASM code. Moreover, the state-machine repli-
cation protocol used in the Stellar network relies on identical,
deterministic replica behavior. It is thus also important to
verify that the behavior of WINCH does not depend on
environment parameters (i.e. instruction set, operation system)
that may vary across replicas.

For this case-study, we focus on verifying panic-freedom
of WINCH’s x86_64 target. We therefore employ the PANIC-
ERROR approach to panics, as described in Section III.

A. Carving out the System under Test

WINCH is a single-pass compiler that compiles WASM to
native machine code. Fig. 6 illustrates at a high level the
architecture of WINCH. The parser parses the input WASM
code and the validator checks that it is valid, as defined by
the WASM specification [18]. The result is an abstract syntax
tree (AST) that has been validated. WINCH then traverses this
AST in a single pass using the visitor design pattern [19]. For
each AST node, a visit function corresponding to the node
type starts a processing sequence involving the CODEGEN
CONTEXT (responsible for high-level orchestration), MACRO
ASSEMBLER (responsible for architecture-specific concerns)
and ASSEMBLER (responsible for binary encodings), culminat-
ing with instructions being emitted to the MACHINE BUFFER.

WINCH borrows the parser and validator components from
wasmparser 4 [20], and the MACHINE BUFFER component
from the Cranelift compiler backend (also developed by the
Wasmtime project). We focus our verification efforts on the
WINCH-specific components exclusively. These components
have not been battle-tested in other projects and may therefore
harbor more issues. The SUT thus consists of the VISITOR’s
visit functions and the CODEGEN CONTEXT, MACRO ASSEM-
BLER, and ASSEMBLER components.

To prepare the SUT, we first modify WINCH to compile
with Rust 1.64 in order to obtain LLVM 14 bitcode, the
latest version currently supported by SEAHORN. To satisfy this
requirement, we prune or downgrade several dependencies.
Second, save for a few necessary type definitions, we remove
the parser and the validator, and stub the MACHINE BUFFER
using a minimal implementation simulating expected behavior.
This allows us to isolate WINCH-specific components and
obtain a tractable yet non-trivial SUT (about 3,300 lines).

Finally, we create a proof environment that sets up the
necessary context for calling the SUT. Our entry points are
the VISITOR’s visit functions, which we provide with a mix
of symbolic and concrete inputs. We also initialize the state
of necessary WINCH components (e.g. the register allocator,
stack frame, etc.) and set up various data structures. In all
cases, we may use both concrete and symbolic data. To avoid
spurious panics, we must constrain initial state and inputs to

4An open-source project maintained by the Bytecode Alliance.
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Fig. 6: WINCH Architecture showing, in order, trusted, verified and stubbed components.
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CODEGEN
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MACRO
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ASSEMBLER

#[no_mangle] 1
fn visit_cmp_ops() { 2
let vmoffsets = VMOffsets::new(); 3
let codegen_context = proof_core::setup_context(&vmoffsets); 4
let mut emission_context = codegen_context.for_emission(); 5
let mut masm = proof_core::setup_masm(); 6
// SUT 7
// invariant: second value on stack should be dst reg 8
let dst = Reg(PReg::new(2, regalloc2::RegClass::Int)); 9
emission_context.stack.push(Val::Reg(TypedReg::i32(dst))); 10
let kind = IntCmpKind::from(nondet_u8()); 11
// call functions by operation width 12
let v2 = nondet_u8(); 13
let res = match v2 { 14
0 => { 15
// invariant: need immediate/register at stack top 16
let val = nondet_i32(); 17
emission_context.stack.push(Val::I32(val)); 18
emission_context.i32_binop(&mut masm, |masm, dst, src, size| { 19
masm.cmp_with_set(writable!(dst), src, kind, size)?; 20
Ok(TypedReg::i32(dst)) 21

}) 22
}, 23
_ => { 24
// invariant: need immediate/register at stack top 25
let val = nondet_i64(); 26
emission_context.stack.push(Val::I64(val)); 27
emission_context.i64_binop(&mut masm, |masm, dst, src, size| { 28
masm.cmp_with_set(writable!(dst), src, kind, size)?; 29
Ok(TypedReg::i32(dst)) // Return value for cmp is an ‘i32‘. 30

}) 31
}, 32
}; 33
// check results 34
assert(res.is_ok()); 35
emission_context.stack.peek().expect("value at stack top"); 36
emission_context.stack.pop().unwrap().is_i32_const(); 37
assert(emission_context.stack.inner().is_empty()); 38

} 39

Fig. 7: Unit proof for all comparison operations in the MACRO
ASSEMBLER.

satisfy invariants that the SUT expects from upstream and ex-
ternal components. When such invariants are not documented,
we must discover them during the verification process.

We now present a concrete example of unit proof for the
VISITOR functions that handle comparison operations. At a
high level, a comparison operation will pop two values from
a stack, perform the comparison and push a result to the
stack. We would like to prove that all visitor functions for
comparison operations are panic free. Therefore, we need to
setup the proof environment, choose a comparison kind, pick
an operation width and check the returned results. This is the
proof we show in Fig. 7.

Setting up the proof environment involves creating a CODE-
GEN CONTEXT and a MACRO ASSEMBLER (lines 3–6). CODE-
GEN CONTEXT is parametrized by two phases: PROLOGUE
and EMISSION. These are responsible for setting up the
function environment (frame) and emitting machine code
respectively. We get a CODEGEN CONTEXT in the PROLOGUE
phase by invoking setup_context using the default configuration
for Virtual Machine (VM) offsets 5. Since we are interested in

5VM offsets are pointers to the host environment that a WASM program
needs

end-to-end compilation of comparison operations, we change
the context to be in the EMISSION phase. Finally, we create a
MACRO ASSEMBLER using setup_masm. Once this environment
has been setup, we can start proving the panic freedom of the
system under test—a process that teaches us what invariants
are preserved by WINCH. For example, the top value on the
stack needs to represent a constant or a register. Moreover,
the second value on the stack needs to be the destination
register. We satisfy these invariants with lines 17–18, 26–27
and lines 9–10 respectively.

We have encapsulated the setup_context and setup_masm 
functions in a separate module for reusability across unit
proofs. Their definitions are expanded in Fig. 8. The
setup_context function takes the VM offsets and produces
a CODEGEN CONTEXT in the PROLOGUE phase. It has the
responsibility of creating a stack, a frame and a register
allocator. We use a function signature with no parameters
or returns, but any function signature can be used for the
setup routine. The setup_masm function creates a MACRO
ASSEMBLER for a specific ISA and shared flags specified
in Wasmtime. This function has an important result that we
discuss in Section V-B.

With the creation of a proof environment that satisfies the
WINCH invariants, we continue with the unit proof in Fig. 7.
The next step is to choose a comparison kind as shown in
line 11. We use the nondet_u8 function to generate a symbolic
8-bit unsigned integer 6. By using the generated value, we are
effectively choosing a comparison kind non-deterministically.
Notice that the same approach is used when selecting the
operation width to use (See line 13).

After the comparison functions have been called, we add
assertions as shown in lines 35–38. For example, we assert that
the result does not report any errors. We also assert that the
stack has only one item which is a 32-bit constant. SEABMC
returns unsat for this proof, giving us confidence that the
16 VISITOR functions that our proof covers are panic free
and handle the stack correctly. In this example, we explore
all reachable states because there are no unbounded loops to
unroll.

B. Discovering Invariants with Executable Counter Examples

To better explain what we mean by executable counterex-
amples, we use our proof for the panic freedom of the MACRO
ASSEMBLER’s constructor. It is shown in the setup_masm func-
tion of Fig. 8. More specifically, we will explain why the
proof needs a concrete value for the pointer size ptr_size that
is passed into the constructor (See line 35).

6For details, see Section V-B
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#[no_mangle] 1
pub fn setup_context<’a>(vmoffsets: &’a VMOffsets) -> 2

CodeGenContext<’a, Prologue> { 
// stack setup 3
let stack = Stack::new(); 4
// standard frame setup with 0 parameters/returns 5
let sig = WasmFuncType::new( 6
NoResizableVec::<WasmValType>::new(0), 7
NoResizableVec::<WasmValType>::new(0) 8

); 9
let abi_sig = wasm_sig::<X64ABI>(&sig, 0, 0); 10
let locals = DefinedLocals::new::<X64ABI>(); 11
let frame = Frame::new::<X64ABI>(&abi_sig, &locals.unwrap()).unwrap(); 12
// setup register allocator 13
let gpr = RegBitSet::int( 14
ALL_GPR.into(), 15
NON_ALLOCATABLE_GPR.into(), 16
usize::try_from(MAX_GPR).unwrap(), 17

); 18
let fpr = RegBitSet::float( 19
ALL_FPR.into(), 20
NON_ALLOCATABLE_FPR.into(), 21
usize::try_from(MAX_FPR).unwrap(), 22

); 23
let regalloc = regalloc::RegAlloc::from(gpr, fpr); 24
// CodeGen in Prologue phase 25
let mut ctx = CodeGenContext::new(regalloc, stack, frame, &vmoffsets); 26
return ctx; 27

} 28
29

#[no_mangle] 30
pub fn setup_masm() -> MacroAssembler { 31
let isa_flags = cranelift_codegen::x64_settings::Flags::new(); 32
let shared_flags = cranelift_codegen::settings::Flags::new(); 33
// invariant: ptr_size has to be equal to 8 34
let ptr_size = 8; 35
let masm_64 = MacroAssembler::new(ptr_size, shared_flags, isa_flags); 36
return masm_64.unwrap(); 37

} 38

Fig. 8: Proof Environment Setup: setup_context and setup_masm.

We had initially defined ptr_size with the result of a function
nondet_u8 that takes no arguments and returns a symbolic
value. This function is simply a wrapper around a function
that SEAHORN understands for symbolic value generation, i.e.
__VERIFIER_nondet_u8. Under this setup, SEABMC returns SAT,
indicating that it finds a path in setup_masm that leads to a panic.

The counterexample (cex) pipeline in SEAHORN automat-
ically extracts the values needed to reach the panic and
generates the LLVM-IR file in Fig. 9. Lines 2–4 show
that SEAHORN expects to provide two symbolic values. It
maintains a global value that functions as an index into the
array that contains the symbolic values. Using this setup,
__VERIFIER_nondet_u8 will read the index value into %0, incre-
ment and store it for future use, and return the symbolic value
at index %0. This way, it returns the first symbolic value the first
time it is called. And the second symbolic value the second
time it is called.

Our scripts link this generated harness with the original
input file to SEABMC and the SEAHORN runtime library to
produce a standalone executable. This is the artifact that we
call an executable counterexample. It provides a concrete, re-
producible witness to the failure and can be run under standard
debuggers, bridging the gap between symbolic verification and
actionable diagnostics.

With this executable counterexample, the precise sequence
of calls required to reach the panic are readily available.
Stepping through the counterexample in rust-lldb leads us
to a panic that encodes an important requirement: the compiler

// lines inlined or removed for simplicity 1
@0 = private constant [2 x i8] c"\00\F7" 2
@1 = private global i32 0 3
@__seahorn_cex_count = constant i32 2 4
define i8 @__VERIFIER_nondet_u8() { 5
entry: 6
%0 = load i32, i32* @1, align 4 7
%1 = add i32 %0, 1 8
store i32 %1, i32* @1, align 4 9
%2 = getelementptr inbounds [2 x i8], [2 x i8]* @0, i32 0, i32 %0 10
%3 = load i8, i8* %2, align 1 11
ret i8 %3 12

} 13

Fig. 9: Generated counter-example harness for nondet_u8.

expects to run on a 64-bit architecture. We document the
invariant and use a concrete value to continue the proof.

C. Results and Takeaways

We have written 14 unit proofs, over three person months,
meaningfully verifying 3307 LOC. Our proofs are split into
four categories: visit_setup, visit_cmp_ops, visit_arith 
and visit_funcs. The categories are ordered in terms
of difficulty. visit_setup covers parts of the ASSEM-
BLER and MACRO ASSEMBLER modules. visit_cmp_ops 
and visit_arith cover more parts of the ASSEMBLER and
MACRO ASSEMBLER, in addition to parts of the CODEGEN
CONTEXT module. Finally, visit_funcs covers parts of the
CODEGEN CONTEXT that deal with complex data structures
and their downstream components.

We show the results of our verification effort in Table I. For
each proof category, we show the number of proofs in the col-
lection, effort in man weeks, wall time and verification time in
seconds. The visit_setup collection has two proofs that take
less than one second to run. It took a person week to get the
ASSEMBLER and MACRO ASSEMBLER to compile to LLVM
14 and get interesting verification results from SEABMC.
The visit_arith and visit_cmp_ops proof collections have
10 proofs that cover 25 arithmetic and comparison VISITOR
functions. These proof collections take less than 15s and 69s
respectively. It took two person weeks to prototype verification
strategies and leverage our learning to cover the VISITOR
functions. The main challenge at this stage was maintaining a
stack and a calling context for each proof. The visit_funcs 
collection has two proofs that cover the function signature and
call sequence generation for locally defined functions. It took
three person weeks to build the right proof environment and
ensure proper handling of complex data structures. Despite the
high human effort, the proofs take less than 6s to run.

It is important to note the difference in wall time and
verification time in Table I. The wall time column represents
the time it takes SEAHORN to process LLVM-IR, generate
SEA-IR and run SEABMC. The verification time column is a
subset of wall time that does not include input preprocessing.
Note that most of the time reported for our proofs is not
in the verification time column. Instead, a majority of the
analysis time is spent simplify the verification problem by
running preprocessing, optimization, and static analysis passes
on LLVM bitcode. For example, in the case of visit_arith,
there are 9 proofs that are checked by SEABMC. Out of
the total time on these proofs, a fifth is spent on the first
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Proofs Effort
(person-weeks)

Wall
Time (s)

Verification
Time (s)

visit_setup 2 1 0.87 0.01
visit_cmp_ops 1 2 14.61 1.69
visit_arith 9 2 68.41 11.80
visit_funcs 2 3 5.97 0.27

TABLE I: Verification time for Winch proofs.

preprocessing step with LLVM passes. This illustrates how
useful leveraging LLVM passes is for the simplification of
the verification conditions generated by SEABMC. We believe
this is a worthwhile tradeoff since it is likely to be an impor-
tant contributor to SEAHORN’s 10x advantage over Kani, as
identified in Section IV.

It is noteworthy that the effort required for each proof
collection increases linearly. This is a deliberate approach to
make progress incrementally and manage the risk of investing
time in untractable proof goals. Concretely, we start at the leafs
of a visitor function’s call tree and write proofs to establish the
callee properties. Doing so iteratively for each caller/callee in
the call tree maintains verification momentum without sacrific-
ing the final outcome. This allows us to have more confidence
about the panic freedom of WINCH, meaningfully verify more
LOC and write more complex proofs after each time unit
invested. We recommend this approach since it helped us build
our understanding of the codebase incrementally while getting
meaningful verification results.

The visit_funcs collection of proofs was the most time
consuming for two main reasons. First, we had to find intricate
invariants that need to be established by upstream components.
The executable counterexamples generated by SEAHORN were
instrumental to this effort. We found that WINCH requires
parameters in a function signature to be stored in specific
registers and stack offsets. For example, in our proof for
functions with 8 parameters, 6 are put into specific registers
and 2 are spilled to the stack, as required by the default WINCH
calling conventions. We also learnt that the WINCH ABI uses
special locals 7 that are spilled and treated as parameters. This
means that we must reserve enough space for the parameters
before invoking the SUT. Second, it is hard for SEAHORN
to symbolically reason about HashMaps and HashSets. There-
fore, we needed to place stubs for functionality that depended
on HashMaps and HashSets.

VI. FUTURE DIRECTION

Our previous study [21] has shown that ownership in
LLVM like representation can be used to generate efficient
VC for BMC. SEABMC currently does not utilize ownership
for VCGEN because all ownership information is lost when
compiling Rust to LLVM. This is expected since LLVM does
not have ownership concepts. We are developing a pipeline,
called SEAURCHIN that extends LLVM with ownership se-
mantics, and compiles Rust to this extended LLVM. With this
effort we will retain the advantages of verifying a low-level,
close to executable program representation. Simulataneously

7VM Context pointers to the callee and caller

verification efficiency will improve by utilizing ownership
semantics present in Rust programs.

For benchmarking, the number of unit proofs in VERIFY-
RUST can be extended beyond the present number. In addi-
tion, VERIFIER-LIB can be extended to support other quality
assurance methods (e.g., symbolic execution and fuzzing) to
work with the same unit proof. This will be similar in spirit
to [1] where multiple tools were benchmarked on the same
unit proof.

To verify WINCH, we focused our efforts on a snapshot of
the compiler. This results in a separate code-base that needs
to be manually kept in sync with the main WINCH repository.
Developing a user interface that makes it easy to integrate and
maintain unit proofs in the main code-base is an interesting
future challenge. This would be a tremendous contribution
towards making the use of formal verification tools part of
standard engineering practice.

VII. RELATED WORK

Verus [22], Prusti [23], Creusot [24], and Aenas [25] are
deductive verifiers for Rust. These deductive tools can model
complicated features of the language, like polymorphism,
directly. This paper focuses on automatic verification of low-
level memory manipulating programs.

The tool closest to SEABMC is KANI. KANI operates on
Rust MIR programs, a higher level representation than LLVM
IR. For KANI, there is an ever-present opportunity to leverage
Rust high level information (e.g., ownership) in generating
VC. For SEABMC to benefit similarly, LLVM IR has to be
extended with semantics that capture high level information.

The SV-COMP [26] benchmark only considers tools that
verify C programs. The benchmarks used in [9] are micro-
benchmarks. There are no standardized benchmarks for Rust
that we know of. The case studies in our work are a step
towards filling this gap.

VIII. CONCLUSION

We show that SEABMC is fast, scalable and practical
for bounded model checking of Rust code through two case
studies. The first case study contributes 83 unit proofs for
SMALLVEC, TINYVEC, SEAVEC, and RESULT-TYPE from the
Rust standard library. On these benchmarks, SEABMC is
faster than KANI by a factor of 10 or more. It is also more
expressive in handling panic behaviour. The second case study
contributes a methodology for verifying panic freedom in core
parts of WINCH, an industrial WASM-to-executable compiler
for various architectures. SEABMC is used to automatically
check a collection of 14 proofs that meaningfully verify
roughly 3, 300 LOC. Together, these case studies demonstrate
our claims about SEABMC. SEAHORN is publicly available
at https://github.com/seahorn/seahorn. The VERIFY-RUST case
study is at https://github.com/seahorn/verify-rust. The WINCH
case study is at https://github.com/jetafese/winch.
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