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Abstract

In a future decarbonized energy system, demand side flexibility will be crucial for main-
taining electricity grid stability. Heat pumps will play a key role in decarbonizing the
heating sector, and they can also offer an opportunity to shift electrical demand for short
periods of time, even without any storage installations. This thesis investigates what the
future potential of the residential building stock in the EU Member States is, to contribute
to the future short-term demand side flexibility needs. To achieve this, heat pump flexi-
bility is integrated into building stock modeling. Particularly, an optimization model was
developed to be applied on the results of an existing building stock model. The model
optimizes the demand-side flexibility of prosumagers—households that both produce and
consume electricity, by minimizing their electricity costs considering hourly price signals.
The model was validated by comparing it with a building simulation tool and via differ-
ent optimization techniques. Following the validation, the model was applied to analyze
demand response potential at the EU level for each Member State, providing insights into
how national characteristics influence the overall flexibility contribution from residential
buildings.

This dissertation is structured around five peer-reviewed publications addressing the
following topics: 1) the potential for shifting electricity demand using thermal mass, 2)
the influence of different hourly electricity price signals on demand side flexibility, and 3)
the impact of prosumagers on electricity distribution grids in future scenarios.

Findings suggest that the thermal mass can significantly increase demand shifting abil-
ities with at least one third of all demand shifted by prosumagers attributed to the thermal
mass. The electricity price signal is highlighted as a driver for demand-side response, show-
ing that rising electricity price volatility can double the amount of energy prosumagers
would shift under a cost-minimization rationale. Results underscore the importance of
appropriate price signals and reducing peak demand to limit additional stress on the elec-
tricity distribution grid. Together, the five papers provide a comprehensive overview of
future demand flexibility potential within the residential building stock, highlighting key
drivers, possible contributions to short-term flexibility, and challenges for electricity grids.

A need for future work is pointed out in regards to data availability for buildings at
a spatially disaggregated level within the EU. Further, taking the flexibility at the distri-
bution electricity grid level into account will be crucial for planning the future electricity
system.
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1 Introduction

1.1 Motivation
The building stock accounts for 36% of greenhouse gas emissions and 40% of energy con-
sumption in the European Union (EU) (European Parliament 2024). One promising solu-
tion to reduce the carbon footprint of the building stock is by replacing fossil fueled boilers
to electrified heating systems, especially heat pumps (HPs) (Bloess et al. 2018). Studies
suggest that HPs will play an important role in a decarbonized building stock (Gaur et al.
2021) alongside district heating (Fallahnejad 2024) and, in some cases, biomass boilers.
HPs are a cost-efficient technology for low-temperature heat generation, although they
still face barriers when it comes to their implementation such as high investment costs (Y.
Wang et al. 2022) compared to conventional boilers, aesthetics, noise, and the belief that
they are inefficient (Cozza et al. 2022). The uptake of electrified heating systems is not
only viewed as a challenge in its implementation from a social and policy perspective but
also from a technical viewpoint regarding additional required electricity grid capacities.
Together with the uptake of renewable generation, HPs bring both a new challenge for the
electricity grid and also an opportunity to increase demand-side flexibility. To reduce pos-
sible grid stress and congestion, additional flexibility will be needed in the future (Gaur et
al. 2021). The residential building stock could offer short-term flexibility through demand
response (DR). Especially DR using the thermal mass of buildings seems promising as no
additional investments are needed to use this potential. DR of HPs in single buildings
has been studied extensively, and the general consensus is that HPs can provide flexibility
without violating indoor comfort constraints.

Studies consistently evaluate the flexibility options for a future decarbonized electricity
system (Khalili et al. 2025; Suna et al. 2022). These flexibility options can be distinguished
based on the timescales over which they are provided. Time periods range from sub- and
hourly fluctuations per day to daily, weekly and monthly fluctuations. Based on the ACER
(2023) report, the daily flexibility need will more than double from 2021 to 2030, to a total
of 362 TWh within the EU Member States (Figure 1.1). HPs in the residential building
stock could contribute to achieving this flexibility need by shifting heating, cooling and
hot water demand.

5



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Daily, weekly and seasonal flexibility needs in Europe (ACER 2023).

One way to incentivize buildings with HP to shift loads is through a price signal
(Romero Rodríguez et al. 2018). Changing price signals can be implemented through
time-of-use tariffs or real-time prices, which then can further differ in their implementa-
tion (Paterakis et al. 2017). The operation of the HP can be optimized based on a variable
retail electricity price either by an in-house home energy management system (HEMS) or
a remote aggregator. The advantages of a remote aggregator are that the aggregator
has information on the total system status and can control the DR of single consumers
to achieve system-optimal operation. On the other hand, aggregation of multiple HPs
requires advanced control strategies and can face barriers such as user acceptance. The
implementation of HEMS is less complicated and allows individuals to decide how they
want to participate in DR. This thesis focuses on in-house operations using a HEMS, im-
plying that homeowners provide flexibility for their own benefit. Households with HEMS
that consume, produce, and manage their own electricity will be referred to as prosumagers
in this thesis. Prosumagers try to minimize their energy operation costs by adapting their
consumption based on a price signal. The possibility of prosumagers to achieve energy
cost reduction has been widely studied in the literature (e.g. Stute et al. (2024a)). This
thesis relies on the following assumption: in prosumager households heating and cooling
of the indoor environment together with storage operation, if available, is controlled au-
tomatically. DR with other controllable loads where human interaction would be needed,
such as washing machines, are not considered in this thesis.

1.2 Research questions
While extensive research has quantified the potential of individual buildings equipped with
HPs to shift electricity demand, there remains a research gap concerning aggregated poten-
tials at larger scales, such as at the national or at EU level. This higher-level perspective is
critical for informing strategic planning and grid management policies, especially consid-
ering the ongoing electrification of heating systems and the expansion of renewables. The
following hypothesis will be evaluated further in this thesis: HPs will provide a relevant
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contribution to short-term flexibility in the future and relieve the electricity grid as long as
the electricity price sends the right signals. Specifically, this thesis presents a methodology
to determine the flexibility potential of prosumagers in different countries. It is shown to
what extent residential buildings, particularly those equipped with HPs, can effectively
shift electricity load at large scales (national and EU level), and how factors such as the
utilization of thermal mass and electricity price signals shape this potential. Additionally,
it is discussed under which conditions prosumagers on a large scale are beneficial for the
electricity system. In doing so, three main research questions are answered. The questions
are answered by peer-reviewed articles published by the author as the first author. These
three questions, alongside a short explanation, are presented in the following.

Research question 1: How much electricity load can the residential building stock
shift and what role can the thermal mass play in this potential?

The core of this thesis is to model the upscale of the possible impact of prosumagers to
building stock level to estimate how large the actual potential of the residential building
stock could be to shift electric loads. The thermal mass is specifically focused on as it
is available in each and every building as potential short-term storage. In Mascherbauer
et al. (2024) the potential of the thermal mass is highlighted by a comparison of sin-
gle buildings shifting loads with and without any additional storage. In both publica-
tions (Mascherbauer et al. 2022; Mascherbauer et al. 2024) the potential of the Aus-
trian SFH building stock is assessed under different scenarios and with a different focus.
Mascherbauer et al. (2022) focuses on the change in prosumagers electricity consumption
with different appliances and ultimately estimates the impact of prosumagers on the elec-
tricity grid demand and photovoltaic (PV) self-consumption. In Mascherbauer et al. (2024)
different price signals are analyzed, which serve as the main incentive for prosumagers to
shift their electricity demand. Finally, Mascherbauer et al. (2025b) and Mascherbauer
et al. (forthcoming) show the shifting potential on a EU level.

Research question 2: How does the electricity price impact the potential to shift
demand by prosumagers?

Since prosumagers shift their demand based on an hourly price profile, the potential
of every prosumager to shift demand is determined by the retail electricity price to some
extent. Mascherbauer et al. (2024) investigates how different price profiles change the
total shifted electricity demand of prosumagers at the Austrian building stock level, while
Mascherbauer et al. (2025b) discusses how fixed grid tariffs can affect load shifting poten-
tials on the EU level. The electricity price signal also determines how large potential cost
savings are for prosumagers, which is one of the core questions answered in Mascherbauer
et al. (2024).

The third research question shifts the focus away from the national building stock level
to the local level and is answered in Mascherbauer et al. (2025a).

Research question 3: How will the uptake of prosumagers impact future electricity
distribution grid investments?

While the previous research questions focused solely on the prosumagers themselves
and their electricity demand, Mascherbauer et al. (2025a) connects the prosumagers with
a detailed electricity distribution grid analysis. This analysis shows how much grid stress
can be reduced by prosumagers at the local level and also connects electric vehicles (EVs)
to future prosumaging buildings. Similar to HPs, EVs will play an increasingly important
role in providing short-term flexibility. As EV penetration increases, their batteries rep-
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resent a significant and growing source of flexible demand and potential storage capacity.
By shifting charging times in response to price signals, or even discharging energy back
to the grid (vehicle-to-grid), EVs can help balance supply and demand. This thesis shows
how incentivizing EV charging through price signals could affect the distribution networks
reinforcement needs.

In summary answering these three research questions will support or refute the hypoth-
esis that HPs can provide a relevant contribution to short-term flexibility in the future
and relieve the electricity grid as long as the retail electricity price sends the right signals.
Figure 1.2 summarizes these three research questions and shows on which level of aggre-
gation they are answered. As the approach taken in this thesis is a bottom up approach,
economic benefits of prosumaging and DR actions on single building level are up-scaled
to building stock level. The first and second research question are strongly interlinked
through the electricity price signal. The third research question is linked to the other two
through the change in electric load when DR is invoked.

Figure 1.2: Graphic illustration of the research questions

The three research questions posed in this thesis are answered on different levels of
spatial aggregation and are subject to four publications (one is still under review) and
one peer reviewed conference paper. Table 1.1 provides an overview on which spatial level
of aggregation the research questions answered in the different publications. The used
technologies on building level are also provided, highlighting that EVs are only considered
in the study on local level while the second research question was investigated focusing
specifically on the potential of the thermal mass compared to also using thermal storage
such as domestic hot water (DHW) and buffer tanks.
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Table 1.1: Overview of the relation of each publication to the research questions, spatial
level of aggregation and the technologies considered.

Spatial level Technologies Paper

RQ1 EU27 Member
State level and
AUT

thermal mass,
HP, heating and
DHW tanks,
battery, PV, air
conditioner

Mascherbauer et al. (2022), ”Investigating the
impact of smart energy management system
on the residential electricity consumption in
Austria”, https://doi.org/10.1016/j.energy.
2022.123665
Mascherbauer et al. (2025b), ”The Flexibil-
ity of Electrical Loads in the EU-27 Residen-
tial Building Stock”, https://doi.org/10.1109/
eem64765.2025.11050330
Mascherbauer et al. (forthcoming), ”Future flexibil-
ity of the EU27 heat pump heated residential build-
ing stock”, submitted to Energy - under review

RQ2 AUT thermal mass, HP,
heating and DHW
tanks

Mascherbauer et al. (2024), ”Impact of variable
electricity price on heat pump operated buildings”,
https://doi.org/10.12688/openreseurope.
15268.2

RQ3 Local (10 km2) thermal mass,
HP, thermal and
DHW tanks, bat-
tery, PV, EVs, air
conditioner

Mascherbauer et al. (2025a), ”Analyzing the impact
of heating electrification and prosumaging on the
future distribution grid costs”, https://doi.org/
10.1016/j.apenergy.2025.125563

1.3 Structure of the thesis
The remainder of this thesis is structured as follows: First, the state of the art and
the research gaps addressed by the author’s publications are presented in Chapter 2.
Chapter 3 describes the method used in this analysis. In Chapter 4, the results of the
five publications are presented, followed by a discussion in Chapter 5 where the research
questions are addressed directly. Finally, the conclusion is presented in Chapter 6, and
the need for further research is identified.

https://doi.org/10.1016/j.energy.2022.123665
https://doi.org/10.1016/j.energy.2022.123665
https://doi.org/10.1109/eem64765.2025.11050330
https://doi.org/10.1109/eem64765.2025.11050330
https://doi.org/10.12688/openreseurope.15268.2
https://doi.org/10.12688/openreseurope.15268.2
https://doi.org/10.1016/j.apenergy.2025.125563
https://doi.org/10.1016/j.apenergy.2025.125563
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2 State of the art and progress beyond

In this chapter, relevant literature regarding DR in buildings with HP is presented. The
review is structured according to different aspects of DR in residential buildings. Sec-
tion 2.1 gives a short overview of work that focuses on the optimization of single buildings.
Section 2.1.2 focuses on papers that investigate the significance of the thermal mass to
shift electricity demand in buildings, while Section 2.1.3 shows how the peak demand of
buildings performing DR changes. In Section 2.1.4, the literature on the importance and
effectiveness of the electricity price as an incentive to change DR behavior is reviewed.
Next, Section 2.2 discusses how the term flexibility is used in the literature, Section 2.3
explains the connection between DR and electricity grid costs, and Section 2.4 reviews
simulation methods for buildings. Finally, Section 2.5 explains how this thesis contributes
to the current state of the art.

2.1 Demand response in residential buildings
2.1.1 Optimization of single residential buildings
Optimization models for household energy consumption have been developed for differ-
ent research focuses, for example, the self-consumption rate of PV plus battery system
(Klingler 2018), optimal size for PV and battery adoption (Kandler 2017), the impact
of demand-side management measures on load shifting of households (Masy et al. 2015),
among others. Correspondingly, the studies cover different energy demands and technolo-
gies and may even have different objective functions. To evaluate the diffusion of a PV
plus battery system, Klingler (2018) developed an optimization model to maximize the
self-consumption rate of PV generation based on the flexibility of an electric vehicle and an
HP. The behavior of the households is represented by profiles of electricity consumption,
EV charging hours, and heating demand. In this way, the study evaluated the market
potential of PV plus battery systems in Germany. Usually, these studies aim to minimize
overall costs. Angenendt et al. (2019) optimized a single-family house (SFH) to minimize
the household’s energy cost and to find the optimal system configuration with a two-stage
optimization approach. They included thermal and battery storage, PV, and the respec-
tive investment costs. On the other hand, Kandler (2017) analyzed the optimal PV panel
and battery size based on an optimization model that minimizes households’ energy costs.
The studies mentioned above include an optimization of the operation to analyze the costs
focusing on sizing and selecting the optimal equipment for minimal cost. The following
studies will focus more on the heating and cooling operation of single buildings and the
potential to shift energy using the thermal mass.

2.1.2 Thermal mass for load shifting
DR in residential buildings has a high potential to shift electricity loads when heating
systems are electrified. Multiple publications consider the thermal mass to have great
potential in DR programs (Reynders et al. 2013; Lind et al. 2023; Le Dréau et al. 2016a;
Golmohamadi 2021a; Sperber et al. 2020b), mainly because the investment costs are very
low compared to any other storage technology (Zhang et al. 2021). Shakeri et al. (2020)

11
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provide an overview of the current literature on DR management systems for single build-
ings. They emphasize that storage devices significantly affect the possibility of load shift-
ing. Several of those studies also suggest that the potential of using thermal mass for load
shifting is significant, and the interaction between the heating system and the thermal
mass is an important factor (Wolisz et al. 2013; Reynders et al. 2013). In this regard,
Wolisz et al. (2013) simulates a building made out of brick and shows that even without
insulation, the heating demand after a pre-heating event of two hours can be reduced by
20% in the following hours. Floor heating systems and direct thermal activation are more
effective in shifting loads using the thermal inertia than radiator systems. However, with
the proper control strategy, HP peak loads can still be significantly reduced with a radiator
heating system (Reynders et al. 2013). Masy et al. (2015) found that 3% to 14% of the load
can be shifted by using the building’s thermal mass with a well-insulated building. Their
findings rely on a detailed simulation for a single building. Other studies indicate that
electricity load can be effectively shifted by heating concrete slabs electrically (Olsthoorn
et al. 2019). Their findings show that this approach is viable for shifting both morning
and evening peaks in homes ranging from 80 m2 to 200 m2, with a slab thickness of 15 cm,
in the Canadian building stock. J. Luo et al. (2020) extended this work by optimizing the
parameters for electric heating in concrete slabs with respect to shifting potential, thermal
comfort, and costs. They discovered that the thickness of insulation had the the greatest
impact on achievable load shifting without compromising comfort. In fact, key constraints
for using thermal mass are not the thermal mass itself, but rather the insulation and heat
distribution system. Le Dréau et al. (2016b) modeled two different residential buildings
and examined their potential for heat storage and heat conservation. The findings showed
that the potential of thermal mass as heat storage depends on multiple factors. Again,
the insulation is one of those factors, but the heat distribution system and seasonality also
play important roles. On the other hand, the thermal mass also has a significant impact on
the cooling needs. Kuczyński et al. (2020) conducted a case study comparing two nearly
identical buildings, differing only in their external and internal walls. The results showed
that the cooling demand for the building with concrete walls was reduced by 75% at a
set temperature of 26°C, compared to the lightweight structure house. Using the building
mass as thermal storage for load shifting can serve purposes such as reducing peak load,
shifting demand to low-price hours, and improving system stability. One key incentive is
to shift heating or cooling demand to off-peak hours, thereby reducing peak loads from a
system perspective.

2.1.3 Peak load reduction through prosumagers
Using the thermal mass of buildings with electrified heating systems as short-term energy
storage could lower peak demand at the system level (Heinen et al. 2017; Dong et al.
2023). Weiß et al. (2019a) focus on the peak shaving potential in the Austrian building
stock through thermal inertia. They conclude that 50% of the heating peak loads could
be shifted to off-peak hours for buildings built after 1980 by turning off the heating sys-
tem until the indoor temperature is reduced from 22°C to 19°C in a typical winter week.
Heinen et al. (2017) investigate how the utilization of thermal mass as storage can reduce
the total system costs of residential heat electrification in Ireland. The researchers found
that households with electrified heating systems could reduce their heating costs to be
competitive with gas boilers by utilizing the thermal inertia of their building as a flexi-
bility option. The profitability and the amount of stored energy depend primarily on the
thermal insulation of the building. While a greater thermal capacity indicates a higher
storage potential, a maximum exists where more thermal mass does not result in further
storage potential as the heat transfer rate is too low (Chen et al. 2020). In Hedegaard et al.
(2013), the operation of the HP installed in an individual household is optimized, along
with the investment in heat storage. The model includes time-varying electricity prices and
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illustrates the flexible operation of the HP combined with the use of thermal storage for
load shifting. Several single-family households are considered to analyze the impact at the
energy system level regarding the modification of the electricity load curve through peak
load shaving. They conclude that, regardless of the heat storage options, the maximum
HP capacity limits the flexibility potential on the peak day of the year, as HPs have to run
on full power to cover the needed heat demand on cold days. In Dong et al. (2023), on the
other hand, a control strategy is proposed to coordinate space heating across numerous
residential buildings to reduce overall peak loads. Peak demand is reduced by 28% and
costs by 14%. In C. Wang et al. (2024), the electricity costs can also be reduced by 14%
and peak demand by 31% through DR. They did so by developing a predictive control
model, optimizing the operation of the heating system without any thermal or electrical
storage within the building except the building mass itself. Campillo et al. (2012) inves-
tigate the electricity consumption of households with ground-source HPs, and state that
demand-side management and variable electricity tariffs will become a necessity to manage
peak loads in the future. At the same time, Baeten et al. (2017) find that peak demand of
500 000 HP-heated dwellings in Belgium can be reduced by 11% using a multi-objective
model predictive control strategy. They assess the impact of the size of space heating
tanks on consumer costs and generation capacity. The reduction in peak demand comes
with an increase in cost for the consumers. Lastly, Pena-Bello et al. (2021) analyze the
impact of SFHs having PV, HPs, and storage installed on the grid. Their results show that
retrofitting buildings with HPs can reduce the peak load of single buildings by up to 50%.
Additionally, they found that capacity-based tariffs can reduce grid stress without hav-
ing a negative influence on the cost savings for the prosumagers by reducing the peak load.

2.1.4 Effectiveness of electricity prices as incentive
The economic benefits of HP-heated buildings under variable price schemes are frequently
discussed in the literature. Stute et al. (2024a) suggest that dynamic electricity price tariffs
can significantly lower energy costs for end consumers, particularly when combined with
an HP and an EV. They examine three different price signals, each with varying hourly
price spreads. In the case of a high price spread (10.7 €/MWh standard deviation), 62%
of the buildings studied benefit from investing in a HEMS. Conversely, Wilczynski et al.
(2023) investigate the effectiveness of price-varying tariffs to shift heat consumption, but
their results show that cost savings for efficient buildings are limited. They compare a
time-of-use tariff with two dynamic tariffs. The first dynamic tariff is based on the spot
price plus additional fixed charges, while the second one is a so-called HP dynamic price,
defined in Rinaldi et al. (2021). In this case, the dynamic time-of-use tariff resulted in the
lowest cost savings among the investigated tariff designs. Similarly, Sridhar et al. (2024)
investigate five different buildings and three different electricity tariffs using HEMS in
Finland. They report that a real-time price is more effective than a time-of-use tariff as
an incentive to shift load. Additionally, well-insulated buildings achieved the highest cost
savings. A similar result is found by Fitzpatrick et al. (2020) who compare three different
electricity tariffs for DR in a single building. They observe that the building provides the
highest flexibility when using a real-time price. Other pricing schemes evaluated include a
two-level day/night tariff and critical peak pricing with three distinct price levels depend-
ing on the time of day. Østergaard et al. (2021) explore how electricity taxes influence
the incentive to increase HP power and thermal energy storage. They also analyze the
motivation for aligning HP operation with the dynamic needs of the electricity system in
a district heating setup. Hourly variable taxes lead to a 20% increase in thermal energy
storage in buildings, though they do not impact the HP capacity. Different electricity pric-
ing schemes are not examined in their study. Bechtel et al. (2020) also consider the role of
energy storage. They assess the impact of varying buffer heat storage sizes and HP power
on the cost savings in HP-operated buildings under a variable price signal. Their findings
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show that increasing the storage capacity significantly reduces the number of HP start-
ups. With a 1500 L buffer storage in an SFH, operational costs can be reduced by up to
20%. However, taking into account the extra investment costs for a larger storage, a 200 L
buffer tank is preferred. This study uses historical electricity prices from the German-
Luxembourg market (EPEX Spot) and does not analyze different pricing schemes. Other
studies compare real-time pricing with direct load control. Patteeuw et al. (2016) found
that real-time pricing is less effective than direct load control in terms of CO2 reductions
and cost savings, particularly when residential HP penetration is high. They evaluate the
potential of load shifting in highly energy-efficient HP buildings, considering two types of
load shifting controls: 1) direct load control, where the HP load is managed by a third
party, and 2) real-time pricing. Their analysis explores how load shifting with residen-
tial HPs can lower CO2 emissions and identifies the most effective incentive to encourage
homeowners to engage in load shifting.

In this thesis, real-time pricing is chosen from various variable electricity price mech-
anisms (such as critical peak pricing, day/night tariffs, or real-time pricing) for two main
reasons: First, real-time pricing schemes for residential consumers are already in place and
second, it provides a simple and effective way to encourage residents to shift their demand.
Real-time pricing has been shown to outperform other pricing schemes in terms of effective-
ness (Fitzpatrick et al. 2020; Katz et al. 2016). At the same time, direct control has been
identified as a possible barrier to user acceptance (Klein et al. 2017). Additionally, Celik
et al. (2017) highlight several issues that need to be addressed to effectively coordinate
multiple smart homes (e.g., sociological aspects, network issues, delay in communication,
accuracy of forecasts). Lastly, Y. Wang et al. (2022) states that the easiest way for end
consumers to offer DR is through variable pricing schemes due to the high barriers (e.g.,
ramping rates, power capacity, response duration) for participating in electricity markets.

Other studies suggest that load shifting through variable electricity tariffs can lead to
an overall increase in electricity demand (Miara et al. 2014; Nicolas Kelly et al. 2014). Mi-
ara et al. (2014) note that HP systems, when combined with buffer storage, offer promising
DR potential. However, due to heat losses and the higher operating temperatures required
for charging the buffer tank, electricity consumption rises by 20% when DR is fully utilized.
Nicolas Kelly et al. (2014) attempt to shift all heating loads from peak to off-peak periods
in a typical detached house in the UK. While a 1000 L hot water storage is sufficient to
do so, the total electricity demand increases by 60%, and the charging peak demand for
the tank is 50% higher than the average house demand during peak periods.

2.1.5 Prosumagers on building stock level
While there was a lot of research done on the load-shifting potential on a single building
level, only a few focused on aggregating this potential to a district or even a country level.
Sperber et al. (2020a) find that the maximum shiftable load in the German residential
building stock is 57 GWel by increasing the indoor temperature by 2°C. And Sperber et al.
(2025) show that large-scale DR triggered by a single electricity price signal can lead to an
”avalanche effect” at the country level. A so-called avalanche effect refers to an event that
occurs if the simultaneous DR actions of many buildings create new peaks in electricity
demand or prices. Large-scale DR could significantly impact the electricity market, an
impact that is not captured by most existing studies. To address this issue, an iterative
process is applied in which the flexibility provided by the HPs is fed back to the electricity
market model, which in turn updates the day-ahead electricity price. The aim is to avoid
any avalanche effects in the original demand and price data. Their results show that the
DR of buildings by a unified price incentive (day-ahead price from 2019) does not reduce
the peaks in the residual load. The two studies above look at the effect of prosumagers on
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the system when incentivized by a single price profile. Conversely, the following studies
look at prosumagers from a system perspective and identify how they could reduce overall
system cost. Rieck et al. (2025) investigate how much the electricity consumption of the
residential German building stock could be reduced by using HPs and the full PV roof
potential, HEMS, and storage. Electricity demand for space heating could be reduced by
35% overall with SFHs reaching a self-sufficiency rate of up to 90%. The self-sufficiency
rate decreases strongly with higher floor areas, as the rooftop area is smaller compared
to the total floor area. While this study shows how much electricity grid demand could
be reduced, Hoseinpoori et al. (2022) investigate how much more capacity the grid would
need under different electrification strategies for hot water and space heating in buildings.
They found that with a full electrification of all heating systems, the grid would need a
160% increase in capacity to cover the demand. However, through prosumagers with air
source HPs and a thermal storage of 200 l per person, the peak demand could be reduced
by around 20%. This result was achieved by implementing the DR of HPs into a system
optimization, minimizing total system cost rather than single household cost. They also
find that air-source HPs, together with thermal tanks, have a higher system value than
ground-sourced HPs. Nick Kelly et al. (2021) assess the ability of the UK building stock
to drop and pick up a load on short notice. They found that, on average, around 2 GW of
load could be dropped while 4.7 GW additional load could be picked up. The numbers vary
strongly based on the weather conditions. In their study, they used a randomly generated
control signal to increase or decrease demand for up to 4 hours. Rinaldi et al. (2021) look
at the optimal investment of residential rooftop PV and batteries and different renovation
and HP adoption scenarios from a power sector perspective in Switzerland. They show
that with a higher HP adoption, the adoption of PV will also go up due to the higher
self-consumption rate. At the same time, retrofitting buildings that use HPs is important.
Otherwise, the need for an increase in battery storage arises from a system perspective.

2.2 Definition and usage of the term ”flexibility”
The term ”flexibility” is defined and expressed in many different ways in the literature,
some of which are compared in Hall et al. (2021). Yue et al. (2024) provide a compre-
hensive overview of building-related flexibility indicators and distinguish them into key
performance indicators describing the interaction with the grid and the independence of a
building. Reynders et al. (2017) define flexibility as the available capacity for active DR
over a fixed time period. A similar definition of flexibility is used by Kathirgamanathan
et al. (2020), but instead of using thermal power, they use electrical power. While this
method is useful in lab settings but difficult to implement in transient simulations/op-
timizations, because DR event timing (charge/discharge windows) is ambiguous, since a
discharging cycle could be interrupted by a new charging cycle at any given time. Klein
et al. (2016) introduced a so-called grid support coefficient (GSC). They analyzed Ger-
many using day-ahead prices, residual load, non‑renewable cumulative energy use, and
the share of variable renewables, illustrating their approach on a single building. They
analyze the impact of all HPs in 2023 and 2030 on the residual load if they are operated
’grid-friendly’. Their results show that the residual peak loads are affected in a limited
way. Le Dréau et al. (2016a) introduced a Flexibility Factor for the heating demand based
on the hourly electricity price. They compare the amount of electricity consumed in the
first and fourth price quartiles. Both the Flexibility Factor of Le Dréau et al. (2016a) and
the GSC of Klein et al. (2016) have the advantage that they can be calculated based on
a single load profile and a price profile. This way, any load and its corresponding price
profile can be analyzed in terms of flexibility. In this thesis, both factors will be used, and
their definition is provided in Section 3.2.
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2.3 Demand response and electricity grid cost develop-
ment

The studies already mentioned in this chapter indicate that load shifting and flexible op-
eration of buildings with HPs can yield economic benefits for the individual end user.
However, only a small share of studies investigating thermal mass as storage focus at the
neighborhood or district level Lind et al. (2023). This raises the issue of how the distribu-
tion grid would be affected if numerous households in close proximity began shifting their
load.

The following studies partly address the issue. Based on a load flow analysis in low
voltage grids Stute et al. (2024b) investigate how dynamic grid tariffs impact grid rein-
forcement requirements in Germany. They map synthetic household load profiles to grid
connection points to reflect load-shifting behavior. They find that a tariff with a capacity
subscription component is most effective at minimizing grid reinforcement requirements
as it effectively reduces peak demand. In McGarry et al. (2023), estimate impacts on
secondary transformers in Scotland’s distribution networks, using spatially linked socio-
economic data to reflect electrification. This approach allows for obtaining cost estimates
at a national level and also reduces the risk of misallocation of planning resources for grid
reinforcements.

Probabilistic power flow assessments are widely used to evaluate the effects of increas-
ing adoption of distributed energy resources (DERs) on distribution systems, including EVs
and HPs (Hartvigsson et al. 2022; Navarro-Espinosa et al. 2014). Furthermore, various
studies have examined the joint deployment of EVs with solar photovoltaics (PV) (Silva
et al. 2022), as well as the integration of HPs with PV systems (Protopapadaki et al. 2017),
and even full residential electrification retrofits that combine EVs, HPs, PV, and HEMS
(Earle et al. 2023). Commonly used metrics in these probabilistic power flow analyses
include the likelihood of exceeding grid operational limits, along with the frequency and
intensity of violations related to both voltage and thermal constraints (Navarro-Espinosa
et al. 2016). However, a notable limitation of these studies is that they do not account for
the necessary grid reinforcements in scenarios with higher levels of electrification.

In fact, relatively few authors have estimated the cost of the network reinforcements
required in future residential electrification scenarios. In Gupta et al. (2021), the required
grid investments resulting from the uptake of EVs, HPs, and PV in 2035 and 2050 are
analyzed for a representative case study encompassing 170 000 Swiss households. Their
results show that PV has the highest impact on grid investments, and rural areas have
higher investment needs than urban ones. The costs of distribution circuit and trans-
former upgrades for residential electric heating and EV charging in 2030, 2040, and 2050
for California have been estimated by Elmallah et al. (2022). Although the methodology
employed in Elmallah et al. (2022) forecasts hourly profiles for EVs and HPs, it does not
consider the response of prosumagers to price signals that incentivize them to shift their
demand to off-peak hours (e.g., time-of-use tariffs).

2.4 Modeling methods for energy demand in buildings
There are three common kinds of models used to calculate the energy demand of buildings:

• First, there is software (e.g., TRNSYS, EnergyPlus) that calculates the heating and
cooling demand of a building in detail and dynamically, e.g. at hourly resolution with
the ability to distinguish between different thermal zones within a building. They
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capture the transient thermodynamic behavior of building elements and model the
effect of different heating distribution systems. Although software like EnergyPlus is
based on physical principles and is open source, it functions as a compiled simulation
engine without direct access to symbolic model equations. It solves highly nonlinear
and coupled thermodynamic equations, involving time-dependent boundary condi-
tions, radiative heat transfer, and system control logic. This complexity, along with
the absence of gradient information and the long simulation runtimes, makes it very
challenging to integrate such models into optimization frameworks. Therefore, while
these tools offer high physical accuracy, their structure and computational cost limit
their usage for optimization purposes.

• Second are simplified models where buildings are represented by resistances and
capacities, referred to as ”RC models”. RC models are widely used in literature.
Their simplicity and lower amount of needed building information make them more
versatile in their application. RC models can be fitted to measured or simulated
data from sophisticated software to achieve a similar but much less computationally
expensive model of a building (Sperber et al. 2020b). They are also used in norms
like the VDI 6007-1, DIN ISO 13790, and EN ISO 52016. Due to their simplicity,
they can be easily implemented in optimization frameworks; this is the approach
used in this thesis.

• Another strand of literature deals with neural networks, specifically physics-informed
neural networks, to calculate the energy demand of buildings. The aim of these
models is mainly to predict energy consumption to enable optimal control actions
(Gokhale et al. 2022). Buildings can also be modeled using conventional neural
networks (Lu et al. 2022). However, the amount of training data needed for physics-
informed neural networks is lower, which makes them easier to apply in real-world
controllers (Gokhale et al. 2022). Control mechanisms are not the focus of this thesis,
and therefore, neural networks are not further considered in this thesis.

Specifically, the 5R1C approach described in DIN ISO 13790 is used to calculate the
energy demand of a building in this work. A building is represented by five resistances
and one capacity. The norm offers two basic procedures: (1) quasi-steady-state approach,
which calculates the thermal loads of a building over a month; (2) simplified hourly ap-
proach, which calculates the heating and cooling demand at hourly resolution. Corrado
et al. (2007) found that the quasi-steady approach is unreliable because it takes the mean
outdoor temperature and a steady indoor temperature as input, then continuously calcu-
lates the operation of heating and cooling technologies. Bruno et al. (2016a) compared the
simplified hourly approach to the results from TRNSYS. The heating demand calculated
by the 5R1C model is similar to TRNSYS for single-family compact buildings, but not for
large buildings and buildings with low thermal inertia. The cooling load shows significant
variation for smaller buildings, but its accuracy improves for larger buildings. Kotzur
(2018) indicates that the 5R1C approach delivers satisfactory results for heating on an
hourly basis, but tends to overestimate cooling demand. This overestimation is partly
due to the neglect of household behavior, as shading systems are typically closed during
summer when solar irradiance is at its peak. Müller (2014) also tested the DIN ISO 13790
against the results from EnergyPlus and INVERT/EE-lab. Again, the results show that
the hourly model overestimates cooling energy needs, especially in Mediterranean climates,
but the energy needs for heating are in accordance. The comparison is made on a monthly
basis, where the energy needs of the hourly calculations are added up. At last, Sperber
et al. (2020a) compared a group of RC models, namely 1R1C, 2R2C, 3R2C, 4R3C, and
5R3C with the results from TRNSYS. Their findings show that adding a second capacity
improved modeling significantly, especially for buildings that use low-temperature floor
heating instead of radiators. However, they did not test the 5R1C approach described in
DIN ISO 13790. The DIN ISO 13790 was replaced by the ISO 52016 in 2017, where the



18 CHAPTER 2. STATE OF THE ART AND PROGRESS BEYOND

number of resistances and capacities depends on the building geometry and features.

This thesis employs the previous standard (DIN ISO 13790) to model heating and
cooling demand. Implementing the EN ISO 52016 standard would involve greater compu-
tational effort, particularly if the optimization needs to be integrated with other technolo-
gies. Additionally, the information needed for all building elements is not available as an
output of the building stock model on which this work builds.

2.5 Novelties and advances beyond the state of the art
Based on the research questions posed earlier and on the literature presented, this thesis
contributes to existing literature in the following areas.

Concerning the first research question, the novelty addressed by the author is the anal-
ysis of flexibility at an aggregated level. While some literature has investigated the DR
potential of HPs on a large scale, these studies mostly assume the simultaneous control
of all HPs by an aggregator or that they react simultaneously to a signal that specifies
whether load should increase or decrease. In this thesis, prosumagers act in their own
interest, incentivized by the hourly electricity price signal under a HEMS minimizing
electricity cost. Furthermore, the model can be used for different future building stock
scenarios at the national level. This way, the potential of the residential building stock to
shift electricity usage using variable prices as an incentive can be analyzed under various
scenarios, including the uptake of different storage technologies, PV, and different pricing
schemes.

Regarding the second research question, the contribution to the literature lies in the
analysis of different properties of the electricity price signal and how these affect the load
shifting capabilities of HP-heated buildings. While studies have conducted research on dif-
ferent electricity price schemes to remunerate DR actions of HPs, they mostly compared
different pricing schemes. In this thesis, a closer look is taken at the increase in peak
pricing by increasing the CO2 price, an increase in grid fees, and a change in the frequency
of price changes. This enables recommendations on hourly price-signal design and their
system-level impacts with widespread prosumager participation.

Concerning the third research question, the third publication (Mascherbauer et al.
2025a) addresses how prosumagers can affect the long-term planning of electricity distri-
bution grids. Authorities nowadays are struggling with grid congestion, and the problem
will increase when electric HPs and EVs are deployed more widely. Only a few studies
examine the consequences for local electricity grids, although it might be an important
barrier to a further transition to a decarbonized building stock. In this way, new insights
are provided for potential grid-related costs that occur when heating systems are elec-
trified, EVs and PVs are adopted, and households start actively shifting their electricity
demand.



3 Method

Within this thesis, a simulation and optimization model was developed, named the FLEX
model. This model calculates the differences in hourly energy consumption of buildings
that are trying to minimize their energy costs by an automated control of the electrified
heating system (optimization) and buildings that don’t do that and satisfy their energy de-
mand independent of the hourly price (simulation). The model was used in Mascherbauer
et al. (2022), Mascherbauer et al. (2024), Mascherbauer et al. (2025a), and Mascherbauer
et al. (2025b) and therefore this section is partly taken from these publications. The in-
door temperature in the simulation is kept above a specific set temperature. In contrast,
in the optimization, the indoor environment can be pre-heated and pre-cooled within com-
fort bounds, enabling the building to shift electricity demand through its thermal mass.
Inputs to FLEX are summarized in Figure 3.1, and detailed in Section 3.3.

Figure 3.1: FLEX model

Within this chapter, the FLEX model together with other modeling approaches and
data used in this thesis are explained. In particular, the modeling framework is presented
in Section 3.1, and Section 3.2 provides an overview of the indicators used to describe
the impact of prosumagers. The data used for modeling is explained in Section 3.3,
while Section 3.4 introduces the application of the model at the local level. Finally,
the limitations of the methodology, particularly of the modeling approach, are stated in
Section 3.5.

3.1 Overview of the modeling framework
The FLEX model runs an hourly calculation for a building in two ways:

• The building’s energy demand is simulated, representing buildings that are con-
ventional consumers and prosumers nowadays, consuming and producing electricity
without adapting the consumption behavior to an hourly electricity price. This mode
will be called the ”reference” mode in the following.
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• The building’s energy demand is optimized through an HEMS representing the con-
sumption behavior of prosumagers who adapt their demand to an hourly electricity
price.

In the reference mode, the input parameters are the same, but without optimization.
Heating and cooling demand profiles are driven by outside temperature, radiation, indoor
set temperature and internal gains. PV generation is assumed to satisfy the building’s
electricity consumption directly. The excess generation will first be stored in the battery
and then used to charge the DHW tank before being sold to the grid. On the other
hand, the battery and DHW tank are discharged immediately to cover internal demand
if needed. In the reference mode, the thermal mass of the building is considered in the
thermal dynamics (captured by the 5R1C model) but without being optimized, i.e., pre-
heated or pre-cooled. Additionally, the heating buffer tank is not used in the reference
mode for simplification. With the logic for the battery, the tank would always be charged
in summer with excess PV electricity. However, it cannot be discharged because space
heating is not needed. Ultimately, this results in high losses and a self-consumption rate
of PV generation, which is unrealistic and disrupts the purpose of the ‘reference mode,’
i.e., serving as the lower benchmark for comparison. So, for simplification, using a hot
water buffer tank in the reference mode is not considered.

In the optimization mode, the heating and cooling (if available) are controlled auto-
matically, together with the valves of thermal tanks and the battery, if installed. The
thermal mass of the building acts as a storage itself and can be pre-heated and pre-cooled
by raising or lowering the indoor temperature within comfort bounds. Appliances like
washing machines and dishwashers were not included in the optimization as their opera-
tion cannot be fully automated in real life, and their potential to shift electric energy is
minimal compared to the amount of energy that could be shifted through the heating and
cooling demand.
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Figure 3.2: Sketch of the FLEX calculation

The energy and electricity flows for calculating the operation of the FLEX model are
sketched in Figure 3.2, and in the following, the relationship between the different com-
ponents is described mathematically. All symbols used in the mathematical formulation
are provided in Table 3.1 at the end of this section. The table also provides information
on whether a symbol is defined as a parameter or a variable within the optimization. The
objective function (Equation 3.1) of the optimization is to minimize the yearly energy
cost given a price signal (p) and a feed-in tariff (pfeed in). PGrid represents the electric
load drawn from the grid, and Pfeed in represents the electric load fed into the grid if the
buildings have a PV system installed. The total load of a building (PLoad) is covered by
the grid (PGrid2Load), by the battery (PBattery2Load) and the PV (PPV 2Load) (see Equa-
tion 3.2). The building load consists of the combined loads of all household appliances
(Pappliances), the electricity demand of the HP (PHP ), and the AC (PAC), described with
Equation 3.4. Equation 3.5 describes how PV generation (PPV ) can be used to cover parts
of the building load, charge the battery (PPV 2Battery), or be sold to the grid (PPV 2Grid).

min
�

PGrid,t · pt − PPV2Grid,t · pfeed in,t t ∈ {1, 2, . . . , 8760} (3.1)
PGrid, t = PGrid2Load, t + PGrid2Battery, t (3.2)
PLoad,t = PGrid2Load, t + PPV2Load, t + PBattery2Load, t (3.3)
PLoad,t = Pappliances,t + PHP,t + PAC,t (3.4)
PPV,t = PPV2Load, t + PPV2Battery, t + PPV2Grid, t (3.5)

The power of the HP (PHP ) is the sum of the power needed for space heating (PHP heating)
and DHW (PHP DHW). Both PHP heating and PHP DHW are calculated through the respective
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thermal energy demand for heating and DHW, as well as the storage. The COPs in Equa-
tions 3.8 and 3.9 for energy going into the tanks are different because of different supply
temperatures. The total power of the HP is restricted by Equation 3.7. The coefficient
of performance (COP ) of the HP depends on the supply temperature (Tsupply) and the
source temperature (Tsrc), with an efficiency factor (η). The COPs for heat, hot water,
and the respective tanks are differentiated due to their different supply temperatures. The
tank supply temperature is 10°C higher than the maximum tank temperature, factoring
in losses in the heat exchangers. The power needed by the AC (PAC) is calculated with a
fixed COP of 4 in Equation 3.11. The maximum power of the AC (PAC max) was chosen
to be sufficiently large to keep the indoor temperature of the building at a temperature of
27°C on the hottest day of the year.

PHP,t = PHP heating,t + PHP DHW,t (3.6)
PHP,t ≤ PHP, max (3.7)

PHP heating,t =
QBufferTank bypass,t

COPRoom,t
+

QBufferTank in,t
COPBufferTank,t

(3.8)

PHP DHW,t =
QDHWTank bypass,t

COPDHW,t
+

QDHWTank in,t
COPDHWTank,t

(3.9)

COPt = η · Tsupply,t
Tsupply,t − Tsrc,t

(3.10)

PAC,t =
QSpaceCooling,t

4
(3.11)

PAC,t ≤ PAC max (3.12)

In the optimization, the room temperature (ΘRoom) and the temperature of the thermal
mass (Θthermal mass) are decision variables bounded by the following constraints. Thermal
energy used for heating the indoor environment is the sum of energy drawn from the buffer
tank (QBufferTank out) and the energy bypassing the tank (QBufferTank bypass) (Equation 3.13).
The same principle is used for satisfying the DHW demand in the Equation 3.14. Equa-
tions 3.15 to 3.20 describe how the room temperature (Θroom) is calculated after DIN ISO
13790. All parameters named with Hxx describe building-specific parameters. How they
are determined is described in Appendix A.2. Decision variables in this set of equations are
QSpaceHeating and QSpaceCooling, which are dependent variables of the room temperature
(Θroom) and the thermal mass temperature (Θthermal mass). The maximum power (PHP max)
of every HP is sized by calculating the needed thermal power in the coldest hour of the
year. The value is rounded up to the higher hundredth digit. This way, the feasibility of
the optimization is ensured while also ensuring that HPs are not massively oversized.

QSpaceHeating,t = QBufferTank out,t +QBufferTank bypass,t (3.13)
QHotWaterDemand,t = QDHWTank out,t +QDHWTank bypass,t (3.14)
Θm start,0 = Θthermal mass start (3.15)
Θm start,t = Θthermal mass,t−1 (3.16)

φst,t = (1− Am

Atot
− Htrw

9.1 ·Atot
) · (0.5 ·Qi +Qsolar,t) (3.17)

Θm,t =
Θthermal mass,t +Θm start,t

2
(3.18)

Θs,t = Htrms ·Θm,t + φst,t +Htrw ·Θoutside,t +Htr1·
Θoutside,t + (Φia +QSpaceHeating,t −QSpaceCooling,t)/Hve

Htr,ms +Htrw +Htr1
(3.19)
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Θroom,t =
Htris ·Θs,t +Hve ·Θoutside,t +Φia +QSpaceHeating,t −QSpaceCooling,t

Htr,is +Hve
(3.20)

The following equations describe the dependence of heating and cooling on the ther-
mal mass temperature. The thermal mass temperature is time-dependent. To initiate
the thermal mass temperature at the start of each optimization (Θthermal mass start), the
building is simulated with a fixed indoor and outdoor temperature from the first hour of
the optimization until the thermal mass temperature reaches a steady state. This value
is then used as the start value for the thermal mass. Htr1, Htr2 and Htr3 are auxiliary
variables to shorten the equations and are described in the Appendix A.2 where the full
formulation of the 5R1C model is provided.

Φm =
Am

Atot
· (0.5 ·Qi +Qsolar,t) (3.21)

Φmtot,t = Φm +Htrem ·Θoutside,t+

Htr3 · (Φia +QSpaceHeating,t −QSpaceCooling,t

Hve
+Θoutside,t)/Htr2 (3.22)

Θthermal mass,t =
Θm start,t · Cm

3600 − 0.5 · (Htr3 +Htrem) + Φmtot,t

Cm
3600 + 0.5 · (Htr3 +Htr,em)

(3.23)

(3.24)

The battery is modeled with the Equations 3.25 to 3.31. It can not be used to dis-
charge electricity to the grid (3.26) and the maximum charging and discharging power
is contained by Equations 3.27 and 3.28. The state of charge (SOCbattery) is described
through Equation 3.29 with ηcharge and ηdischarge describing the efficiency of the battery’s
charging and discharging process. At the start of the simulation, the battery is empty
(Equation 3.31).

PBatteryCharge,t = PPV 2Battery,t + PGrid2Battery,t (3.25)
PBatteryDischarge,t = PBattery2Load,t (3.26)
0 ≤ PBatteryCharge,t ≤ Pbattery,max (3.27)
0 ≤ PBatteryDischarge,t ≤ min(PBattery,max, SOCbattery,t) (3.28)

SOCBattery,t = SOCBattery,(t-1) + PBatteryCharge · ηBatteryCharge −
PBatteryDischarge
ηBatteryDischarge

(3.29)

0 ≤ SOCBattery,t ≤ SOCBattery,max (3.30)
SOCBattery,0 = 0 (3.31)

Equations 3.32 to 3.35 represent the physical limitations of the hot water tanks. Qtank
denotes the energy stored in a tank (Joule) at a particular hour, with mwater (kg) being
the mass of the water and Ttank the current temperature inside the tank. Ttank min is the
minimum temperature inside the tank. Ttank,0 is the temperature inside the tank at the
start of the simulation. For simplification, assumptions on the heat exchange inside the
hot water tank are made so nonlinearities are not introduced into the optimization: (1)
The temperature inside the hot water tank is homogeneous; (2) The temperature sur-
rounding the tank is constant at 20°C; (3) The thermodynamic properties of the water
- heat capacity (cwater), volume, and pressure - are constant. Both tanks have the same
insulation with a heat transfer coefficient (Λ). The area (Atank) of the tank is calculated
by taking the minimum area of a cylinder with the respective volume1. Qtank loss describes

1Atank is derived from the volume (V ) of the tank by calculating the minimal surface area, i.e., Atank =

2πr2 + 2V
r
, with r being the radius, which is calculated by r =

3
�

2 ∗ V
4π

.
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the thermal losses of the storage through Equation 3.35 with the temperature surrounding
the thermal tank Ttank surrounding.

QTank,t = mwater · cwater · (TTank,t − TTank,min) (3.32)
TTank,0 = TTank min (3.33)
TTank min ≤ Ttank,t ≤ Ttank max (3.34)
QTank loss = Λ ·ATank · (TTank,t − TTank,surrounding) (3.35)

The optimization was developed in Python with Pyomo (Hart et al. 2017) and solved
by Gurobi2. The source code can be found on GitHub3.

Table 3.1: List of symbols with description for the FLEX model

Character Unit Type Description
ATank m2 parameter surface area of a thermal tank storage
Af m2 parameter heated floor area
Am m2 parameter effective mass related area
Atot m2 parameter total surface area of building
Cm J/K parameter thermal capacity of a building
cwater J/kgK parameter specific heat capacity of water
Htr,em W/K parameter transmission heat transfer coefficient be-

tween outside and the thermal mass node
Htris W/K parameter transmission heat transfer coefficient be-

tween the surface area node and indoor air
temperature

Htrms W/K parameter transmission heat transfer coefficient be-
tween the thermal mass node and the sur-
face area node

Htr,op W/K parameter transmission heat transfer coefficient
through opaque building elements

Hve W/K parameter transmission heat transfer coefficient of the
ventilation

Htrw W/K parameter transmission heat transfer coefficient
through windows

mwater kg parameter mass of water
pt EUR/kWh parameter retail electricity price
pfeed in,t EUR/kWh parameter electricity feed in price
PLoad,t W variable electrical power consumption of the house-

hold
Pappliances,t W parameter electrical power consumption of the appli-

ances in the house
PGrid,t W variable electrical power drawn from the electrical

grid
PGrid2Load,t W variable electrical power from the grid into the

household
PGrid2Battery,t W variable electrical power from the grid into the bat-

tery
PPV,t W parameter electrical generation of the PV system
PPV 2Load,t W variable electrical power from the PV to the house-

hold
PPV 2Battery,t W variable electrical power from the PV into the bat-

tery
PPV 2Grid,t W variable electrical power from the PV fed to the grid
PAC,t W variable electrical power consumption of the AC
PHP,t W variable electrical power consumption of the HP
PHP heating,t W variable electrical power consumption used for heat-

ing

2Mathematical programming solver, https://www.gurobi.com/.
3FLEX model: https://github.com/H2020-newTRENDs/FLEX

https://github.com/H2020-newTRENDs/FLEX
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Table 3.1: List of symbols with description for the FLEX model

Character Unit Type Description
PHP DHW,t W variable electrical power consumption used for DHW

generation
PBattery2Load,t W variable electrical power supplied from the battery

to the household
PBatteryCharge,t W variable electrical power used to charge the battery
PBatteryDischarge,t W variable electrical power with which the battery is

discharged
SOCBattery,t W variable State of charge of the battery
ηBatteryCharge - parameter battery charging efficiency
ηBatteryDischarge - parameter battery discharging efficiency
COPDHW,t − parameter coefficient of performance when generating

DHW
COPDHWTank,t − parameter coefficient of performance when charging

the DHW tank
COPBufferTank,t − parameter coefficient of performance when charging

the buffer tank
COPRoom,t − parameter coefficient of performance when heating the

indoor environment
TTank,t K variable temperature inside a tank
TTank,surrounding K parameter temperature surrounding the thermal tank
Tsupply,t K parameter supply temperature
Tsrc,t K parameter source temperature
QTank,t Wh variable thermal energy saved in a tank
QTank loss,t Wh variable thermal energy loss of a tank
QBufferTank bypass,t Wh variable thermal energy bypassing the buffer tank
QBufferTank in,t Wh variable thermal energy going into the buffer tank
QBufferTank out,t Wh variable thermal energy discharged from the buffer

tank
QBufferTank,t Wh variable thermal energy saved in the buffer tank
QHotWaterDemand,t Wh parameter thermal energy demand for hot water by the

household
QDHWTank in,t Wh variable thermal energy going into the DHW tank
QDHWTank out,t Wh variable thermal energy discharged from the DHW

tank
QDHWTank bypass,t Wh variable thermal energy bypassing the DHW tank
QSpaceHeating,t Wh variable thermal energy used for heating
QSpaceCooling,t Wh variable thermal energy used for cooling
Qi,t Wh parameter internal gains
Qsolar,t Wh parameter solar gains
θoutside,t

◦C parameter outside temperature
θs,t

◦C variable temperature of the node s
θm,t

◦C variable temperature of the node m
θthermal mass,t

◦C variable temperature of the thermal mass
θroom,t

◦C variable indoor temperature
θm start,t

◦C variable temperature of the thermal mass in the pre-
vious timestep

φmtot,t W variable total heat flow to/from the thermal mass
φm,t W parameter heat flow to the thermal mass resulting from

internal and solar gains
φia,t W parameter heat flow to the indoor environment result-

ing from solar gains
φst,t W parameter heat flow to the node s resulting from solar

and internal gains
Λ W/m2K parameter heat transfer coefficient of tank walls
r m parameter radius
V m3 parameter volume
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3.2 Indicators used to assess results in terms of flexibility
The FLEX model was developed to assess the flexibility potential of the building stock
in the publications (Mascherbauer et al. 2025a; Mascherbauer et al. 2024; Mascherbauer
et al. 2022; Mascherbauer et al. 2025b). Because prosumagers shift their grid imports, the
term electricity demand is often used. Electricity demand always denotes grid demand
(imports). The electricity demand is analyzed both at an individual level and at an
aggregated building stock level. At the building stock level the total electricity demand,
refers to national electricity demand across all sectors. Finally, the electricity demand of all
prosumaging buildings represents the sum of the grid demand of all prosumager buildings
within a country or area. That said, the following indicators are often calculated for the
electricity demand on different levels of aggregation.

Shifted electricity
The FLEX model aims to quantify the amount of shiftable electricity on a single building
and building stock level. Similar to Fitzpatrick et al. (2020), shifted energy (Eshifted) in
this thesis is defined as the difference between the electric power consumption profiles with
and without DR:

Eshifted =

�
Psimulation, t − PHEMS, t dt if Psimulation, t > PHEMS, t (3.36)

Psimulation, t denotes the electricity load from the grid in the simulation case, and
PHEMS, t the load with a HEMS installed. If PHEMS, t is higher than Psimulation, t, the
building is being pre-heated or storage is charged. Likewise the energy is shifted whenever
Psimulation, t is higher than PHEMS, t. Naturally, the shifted electric energy (Eshifted) is lower
than the energy used to charge storage and building mass due to thermal losses.

The average shifted electric energy share Ẽshifted is the shifted electric energy (Eshifted)
divided by the total electricity consumption over the year (reference case - Psimulation) to
show how much electricity can be shifted as a percentage of the total electricity demand:

Ẽshifted =
Eshifted��
Psimulation, tdt

∗ 100 (3.37)

PV self-consumption
By minimizing energy costs, prosumager tend to maximize PV self-consumption. There-
fore, PV self-consumption is an indicator of the profitability or effectiveness of load shift-
ing. In this thesis, the PV self-consumption is only calculated for buildings having PV.
Electricity generated by the PV (EPV ) can either be used to cover the household load
(EPV 2Load) or to charge the battery if available (EPV 2Battery). Excess PV electricity is
sold to the grid.

Self-consumption =

�
t(EPV2Load, t + EPV2Battery, t)�

tEPV, t
(3.38)

Peak demand
The peak demand describes the highest electricity demand value within a year of a single
building i or a sum of buildings if calculated on the building stock level.

P̂ = max
t∈[1,8760]

�
i

PGrid, i, t (3.39)

Sperber et al. (2025) focus on residual load peaks in their work. To show how the peak
demand can increase through prosumaging, like in Sperber et al. (2025), in this thesis,
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the total grid demand on the national level was considered, including the demand of other
sectors.

Additionally, in Mascherbauer et al. (2024), the daily peak-to-peak (p2p) values of
both the electricity price and the electricity demand were analyzed. The daily p2p serves
as an indicator for the volatility of a profile.

p2p = max
t∈[1,24]

(PGrid, d, t)− min
t∈[1,24]

(PGrid, d, t), ∀d ∈ [1, 365] (3.40)

Total electricity demand
By analyzing the total difference in electricity demand (Etotal) of households with and
without HEMS, the demand increase or decrease through prosumagers in the building
sector can be calculated. It shows if efficiency improvements, like the rise in PV self-
consumption of prosumagers, offset losses that occur when demand is shifted.

Etotal =
�
i

�
(PHEMS, t,i − Psimulation, t,i)dt (3.41)

Flexibility Factor
Le Dréau et al. (2016a) introduced a Flexibility Factor for the heating demand based on the
hourly price using the first and fourth price quartiles (low and high price time). A higher
Flexibility Factor means that more energy is consumed at low prices. The Flexibility
Factor provides information on how strongly a load profile adapts to changes in price.
By comparing the Flexibility Factor of the consumer to prosumager demand profiles, the
increased shift of electricity demand from higher to lower prices can be described in a
single number.

Flexibility Factor =
�
low price Pt dt− �

high price Pt dt�
low price Pt dt+

�
high price Pt dt

(3.42)

Grid support coefficient
Klein et al. (2016) introduced an absolute Grid Support Coefficient (GSCabs) and a rela-
tive GSC (GSCrel). The GSCabs describes the grid friendliness of a certain consumption
profile, while the GSCrel is a rescaled version (between -100 and 100) of the GSCabs to
make it comparable between different profiles. GSCabs is calculated by weighting the elec-
tricity consumption with the price and dividing it by the consumption times the average
price (p). The GSCabs(worstcase) and the GSCabs(bestcase) are calculated by assuming
that the total electricity consumption within one day could be shifted to the full load
hours with the lowest and highest price, respectively. The full load hours are defined by
dividing the daily sum of electricity consumption by the maximum HP power (PHP, max).
Then the GSCabs is calculated for these hours, with the total daily consumption shifted to
the worst and best hours. The higher the GSCrel, the more grid-supportive an electricity
consumption profile is. The wholesale electricity price and the residual load are strongly
correlated (Klein et al. 2016; Klein et al. 2017). In this thesis, the GSCrel was calculated
for the electricity demand of the HP-heated residential building stock with and without
prosumagers on the EU member state level.

GSCabs =

�24
t=1 Pgrid, t · pt�24
t=1 Pgrid,t · p

(3.43)
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GSCrel = 200 · GSCabs(worst case)−GSCabs

GSCabs(worst case)−GSCabs(best case) (3.44)

Table 3.2: List of symbols for the indicators used to assess flexibility

Character Unit Description
Eshifted Wh electric energy shifted over a time period
Ẽ % electrical energy shifted as a
Etotal Wh difference in electricity demand with and without HEMS
EPV Wh total electrical energy produced by the PV
EPV 2Load Wh electrical energy provided by the PV to the household
EPV 2Battery Wh electrical energy provided by the PV to the battery
PHEMS W electrical power demand of a prosumaging households
Psimulation W electrical power demand of a household without HEMS
P̂ W electrical peak power
Pr EUR/kWh Price prominence
p2p W peak-to-peak power
GSCabs - absolute grid support coefficient
GSCrel - relative grid support coefficient (normalized between -100 and

100)

3.3 Data
The FLEX model needs input data on buildings, energy prices and weather. The respective
sources and assumptions for this data are described within this section.

3.3.1 Building stock data
The building stock of each country is described through a set of representative buildings,
each of which is described by its building parameters. The building parameters describe
the thermal properties of the building through 5 resistances and 1 capacity (5R1C). The
resistances describe the insulation of different building elements, while the capacity de-
scribes the thermal mass of the building. Additionally, information on the ventilation
system and the dimensions of the building are needed. Linking the FLEX model to
the Invert/EE-LAB (Andreas Müller 2021) building stock model analysis of prosumagers
on the building stock level for future scenarios is possible. Invert/EE-Lab is a techno-
socio-economic bottom-up building stock model that simulates energy-related investment
decisions in buildings, specifically focusing on space heating, hot water generation, and
space cooling end-uses. The investment decisions for single buildings to improve energy
efficiency measures or to switch heating systems are simulated through a combination of
a discrete choice approach and technology diffusion theory, with additional constraints for
each heating system and building type. The model calculates the useful energy demand
(or energy needs) of the buildings and, thus, the building stock on a monthly basis. Invest-
ment decisions are made once a year. The model horizon of Invert/EE-Lab is usually 2050
(depending on the scenario). Since the minimal time resolution is on a monthly (energy
demand) or yearly (investment decision) basis, the FLEX model was developed to enable
the investigation of research questions that need a higher level of temporal resolution in
future scenarios. Like the FLEX model, the Invert model uses the DIN ISO 13790 to
calculate the energy demand of buildings. The building stock of each country is repre-
sented through archetypes. These archetypes represent buildings of a certain class (SFH,
MFH, terraced houses, apartment blocks) built in a certain period (e.g., from 1991 to
2000). Within this classification, they are further distinguished by their renovation status.
Every archetype has a number of different heating systems attributed to it, the number of
installed PV systems, and the average size of these systems. In this thesis, the focus relies
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on buildings using HPs to shift energy demand; thus, only buildings using air and ground
source HPs are selected from the database. The number of archetypes in Invert increases
from 2020 to 2050 as new buildings are built and old ones are renovated. The supply tem-
perature depends on a building archetype’s thermal insulation and heating system and is
thus also an output of the Invert model. The Invert model was compared to other building
stock models in the EU context under the same scenario assumption in (Awais et al. 2025).

Building stock data for Austria
In the first publication (Mascherbauer et al. 2022), the Austrian SFH building stock was
analyzed in its current state. 11 different representative building types were selected. Ev-
ery building type represents buildings built in a specific time period, starting from 1890
up to 2011. Based on available data from Statistik Austria4 and Emhofer et al. (2014),
the number of buildings in Austria equipped with HPs, PV, and thermal storage was
estimated. Figure 3.3 shows the total number of buildings with an HP and a specific
technological configuration: PV size with 0, 5, or 10 kWp; Battery (B) size with zero or
7 kWh; Hot water tank (T) size with 0 or 1500 L. Most buildings do not have a PV, and
only 23 buildings have a 10 kWp PV and a hot water tank. Information on floor area and
heating demand is provided in the Appendix A.1 in Table A.1.

Figure 3.3: Number of SFH buildings in Austria with different technical configurations.
(Mascherbauer et al. 2022)

In the second publication (Mascherbauer et al. 2024), the SFH building stock in Austria
is represented by 36 building categories. Each category represents a typical SFH built in
a certain time period and its overall thermal insulation properties. The different represen-
tative buildings and the installed number of HP in each category are presented in Figure
A.2 in the Appendix A.1. Overall, Austria has around 1.55 million SFHs, of which 180 000
have a HP installed5. In 2023, the Austrian federal government implemented strong in-
centives for exchanging oil and gas boilers with HPs by subsidising installation costs up
to 75%. Thus, it is expected that the share of SFHs with an HP will increase significantly
within the next years6. The focus in Mascherbauer et al. (2024) was to investigate the

4https://www.statistik.at/
5Statistik Austria: https://www.statistik.at/
6https://www.oesterreich.gv.at/themen/umwelt_und_klima/energie_und_ressourcen_sparen/1/

raus_aus_oel.html

https://www.statistik.at/
https://www.statistik.at/
https://www.oesterreich.gv.at/themen/umwelt_und_klima/energie_und_ressourcen_sparen/1/raus_aus_oel.html
https://www.oesterreich.gv.at/themen/umwelt_und_klima/energie_und_ressourcen_sparen/1/raus_aus_oel.html
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impact of the electricity price signal on the load shifting potential. Therefore, the total
amount of HP-operated buildings or the characteristics of the building stock itself were
not changed from the status quo, except for the price signals. Otherwise, the resulting
shifted electricity would be heavily dependent on the chosen building stock scenario and
not on the electricity price itself. Information on the RC parameters of the building types
is given in the Appendix A.1 in Table A.2.

Building stock data for EU27
To investigate the future load shifting potential of prosumagers in the EU building stock
until 2050, the building stock was first modeled using the Invert model (Mascherbauer
et al. 2025b). The Invert scenario chosen for the underlying building stock scenario is
ambitious and aims to reach climate neutrality in the EU-27 in 2050. This goal is reached
under the assumption of strong future electrification and high efficiency, which translates
into high renovation rates (average 3.1% from 2019 to 2050). The average final energy
demand for heating in the building sector will decrease by 39% by 2050 (Awais et al. 2025).
The resulting average heating demand per square meter in the buildings heated with HPs
is shown in Figure 3.4. A comparison of this scenario with other building stock scenarios
and other building stock models was done within the ECEMF project (Awais et al. 2025).

Figure 3.4: Average specific useful energy demand for heating in kWh/(m2*yr) for the EU
member states in 2030 and 2050.

3.3.2 Building technologies
In this section, the scenarios concerning the different building technologies used in the
FLEX model are described. In each publication, different assumptions regarding the up-
take of HPs, PV, battery, DHW, and heating tanks were made. For each of the technolo-
gies, the assumptions used are described in the following.

Heat pump
The efficiency of HPs is always modeled with Equation 3.10; however, the efficiency factor
η is varied in different studies created within this thesis. In Mascherbauer et al. (2022),
the efficiency factor was compared with data sheets from various HP producers and sub-
sequently set to 0.35 for the air-source HP and 0.4 for the ground-source HP for the base
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year. A comparison of the different COP values from manufacturers and the calculated
COP is given in Figure 3.5. The manufacturer data are shown as box plots (Bosch n.d.
Daikin n.d. Helios n.d. Ochsner 2021; Viessmann n.d.). In the scenarios until 2050, this
factor was increased by 0.02 every 10 years to take an increase in efficiency into account.
The source temperature for ground-sourced HPs was always assumed to be 10°C. The
number of installed HPs per country varies strongly. Figure 3.6 shows the installed ca-
pacity in each country. With a high share of installed capacity compared to the overall
electricity demand, DR through HPs can have a more pronounced impact on the electricity
system. In 2050, Hungary and Croatia have the highest installed capacity in comparison
to the average national grid load in this scenario.

Figure 3.5: Fitted COP curve com-
pared to manufacturer data (Bosch
n.d. Daikin n.d. Helios n.d.
Ochsner 2021; Viessmann n.d.).
(Mascherbauer et al. 2022)

Figure 3.6: Installed HP capacity by
EU-Member State in 2030 and 2050
in the selected scenario.

Domestic hot water- and heating tank
The maximum temperature inside the heating buffer tank was set to 45°C, and the DHW
tank was set to 65°C. Although maximum temperatures in buffer or DHW tanks can
be higher in reality, these values were chosen to limit the energy that can be stored
within these tanks. Having higher temperatures would mean a much higher temperature
difference that the HP has to overcome. This difference would have to be included in the
corresponding COP, making the optimization non-linear. As a result, the feed temperature
of the tanks was always 10°C higher than the building supply temperature in the case of the
buffer tank or 75°C for the DHW tank. The tank walls’ heat loss coefficient Λ is assumed
to be 0.2 W/m2K. The temperature surrounding the tanks is considered to be constant at
20°C to keep the problem linear. In the different studies, the tank size was differentiated.
Sales data for small-scale thermal storage are not publicly reported in Austria. Most HPs
have been installed in combination with a small domestic hot water storage. In the first
publication Mascherbauer et al. (2022), 60% of all buildings with an HP are considered
to have thermal storage in Austria. At EU Member State level, in Mascherbauer et al.
(2025b) and Mascherbauer et al. (forthcoming) it was assumed that HPs are installed with
a 30 L per kWth buffer tank and a 100 L DHW tank per person in the building.

Battery
The following assumptions were made regarding the batteries: (1) The input and output
power is limited to 4.5 kW; (2) The efficiencies for charging and discharging are equal to
95%. According to Kebede et al. (2021), round-trip efficiency of stationary battery storage
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is reported to be in the range between 78% and 98%. The estimated round-trip efficiency
of 90.025% of this work is well within this range; (3) The battery is empty at the beginning
of the simulation, and the capacity of the battery is 7 kWh in SFH and 15 kWh in MFHs.
In Hernández et al. (2019), the optimal battery size for SFHs was calculated to be between
3.6 and 6.9 kWh. Leonhartsberger et al. (2021) also conducted a market analysis on bat-
tery storage in Austria and found that the average storage capacity is around 6.7 kWh.
For large MFHs, a 15 kWh battery seems undersized. Still, the analysis in an urban area
showed that the available rooftop area for large MFHs is usually too small to generate a
large surplus of PV electricity, and only then would larger batteries be more profitable.

According to Leonhartsberger et al. (2021), a total number of 21 838 batteries were
installed in Austria’s residential homes in combination with a PV system since 2014. I
estimate that around 67% of those are installed in newly built buildings (after 2014). No
numbers are available before 2014, as batteries were too expensive and not established in
the market. Thus, 2% of the buildings considered in the publication (Mascherbauer et al.
2022) have a battery installed in combination with a PV.

In the analysis at the EU member state level, batteries are not considered.

PV systems
For simplicity, the distribution of orientation of PV systems in each country was assumed
to be 50% for maximal yield, 25% in the east, and 25% in the west direction with an
optimal inclination angle. The PV type in all studies is a crystalline silicon type with a
system loss of 14%7.

PV systems in Austria
In Mascherbauer et al. (2022), around 375 000 SFHs were considered, of which 17.6% have
5 kWp installations and 1.4% 10 kWp installations. Hernández et al. (2019) analyzed the
optimal PV and battery storage size, taking battery degradation into account, and found
that the optimal PV size should be between 1.8 and 2.7 kWp. However, their buildings
did not use an HP, which resulted in significantly lower electricity consumption, and they
optimized for self-consumption and self-sufficiency. In this specific publication, the PV
systems were all oriented for maximum yearly generation (Mascherbauer et al. 2022).

PV systems in the EU27
On the EU member state level (Mascherbauer et al. 2025b), the PV sizes per building
archetype are derived from the Invert model. The size distribution over all of the EU
member states, and the uptake of PV installations on HP-heated buildings in the used
scenario in all countries are visualized in Figure 3.7 and 3.8 respectively. The total number
of rooftop PV installations until 2050 on buildings with HPs is relatively low. The Invert
model has strong restrictions on available rooftop areas, and thus, the proposed number
and size of PV installations are not as high as expected in a complete decarbonization
scenario. Also, uncertainties like vanishing feed-in tariffs or reduced subsidies on PV
installations in the future might impact the overall roll-out.

7The estimated system losses are all the losses in the PV system, which cause the power actually delivered
to be lower than the power produced by the PV modules. There are several causes for this loss, such as losses
in cables, power inverters, dirt (sometimes snow) on the modules, and so on. Over the years, the modules
also tend to lose a bit of their power. (European Commission Joint Research Centre 2024)
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Figure 3.7: Distribution of PV sizes
(nominal peak power - kWp) on HP
heated residential buildings in the
selected EU countries from 2020 to
2050

Figure 3.8: Number of rooftop PV
installations on HP heated residen-
tial buildings.

3.3.3 Electricity prices
The electricity price signal is the main driver of the optimization problem. In the studies,
hourly price profiles were either downloaded from the ENTSO-E platform for past price
data or modeled using the Balmorel (Balmorel Code 2022) model for future price scenarios.
From ENTSO-E, the wholesale day-ahead price is assumed to be the day-ahead price
either with an additional fixed grid tariff (15 cent/kWh in Mascherbauer et al. (2022),
and 20 cent/kWh in Mascherbauer et al. (2024) and Mascherbauer et al. (2025a)) or
different grid fees to investigate the impact of negative prices on prosumager behavior
(Mascherbauer et al. 2025b).

Balmorel model
Hourly electricity prices are needed to estimate the potential of load shifting in the fu-
ture. These prices were modeled using the Balmorel model (Balmorel Code 2022; Wiese
et al. 2018) in Mascherbauer et al. (2024) and the analysis on EU level (Mascherbauer
et al. 2025b). Balmorel is a partial equilibrium model for the simultaneous optimization
of generation, transmission, and consumption of electricity and heat. Within the system
boundaries, electricity demand and supply are matched within a market model, consider-
ing supply costs following the merit order principle under the assumption of a perfectly
competitive market. In a future decarbonized electricity system, a higher price variance
on electricity spot markets is expected for systems with very high shares of renewable
generation (Schöniger et al. 2022). This is because of more hours with spot prices close to
zero due to very high shares of renewable generation with low variable generation costs.
In times of low renewable generation and high load on the other side, flexibility options
at higher costs like dispatchable generation units, storage discharge, or import set the
marginal price, which results in relatively high spot prices. Within the system boundaries,
electricity demand and supply are matched within a market model, considering supply
costs following the merit order principle under the assumption of a perfectly competi-
tive market. It is not determined specifically in which type of market the transactions
take place economically. The marginal cost of supplying power demand are derived which
can be interpreted as the geographically specific market price of power in the model output.
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Electricity prices used to investigate the Austrian SFH building stock
In Mascherbauer et al. (2022), the variable electricity price was taken from EXAA8 in
2016 for Austria. A fixed grid fee plus taxes of 15 cent/kWh was added to the variable
price to make it a realistic price profile9. The flat price was set to the mean value of the
variable price to get comparable results when using a flat price in the simulation. The
feed-in tariff for electricity sold to the grid is constant at 7.67 cent/kWh (E-control 2017).
These prices are shown in Figure 3.9.

Figure 3.9: Variable and flat hourly electricity price from 2016 together with the feed-in
tariff (EXAA 2016; E-control 2017) used for the analysis of the Austrian SFH building
stock in Mascherbauer et al. (2022).

Electricity prices used to investigate the impact of the price on the load shifting
potential
For the investigation of the potential in Austria to shift electricity via SFH HPs based on
different electricity prices in Mascherbauer et al. (2024), the Austrian electricity system
was modeled to reflect a decarbonized power system with higher price variance. In to-
tal, four prices were investigated; the first one was the actual electricity price from 2021,
capturing extreme volatility in prices at the end of the year. The other three prices were
modeled using the Balmorel model to see how, in a future electricity system, CO2 prices
and higher volatility in price changes affect the ability of residential buildings to shift
electricity. Using Balmorel, the Austrian electricity and district heat system, as well as
the neighboring countries, the Czech Republic, Germany, Hungary, Italy, and Slovenia,
to capture export and import dynamics was modeled. Installed generation capacities,
national electricity demand, and net transfer capacities were based on the Ten-Year Net-
work Development Plan (TYNDP) 2020 National Trends scenario10. For Austria, the
assumptions were based on the national energy and climate plan WAM scenario11 and
were refined to reflect the 100% renewable target (nationwide in annual balance terms)
until 2030. That means that Austria meets its goals defined in the Renewable Expansion
Act Nationalrat (2021) and becomes a net exporter of electricity. All electricity generated
by natural gas is exported (on an annual balance). The model with input parameters has

8https://www.exaa.at/
9The statistical information on this price signal is as follows: mean, 17.9 cent/kWh; maximum, 25.1

cent/kWh; minimum, 9.9 cent/kWh; first quantile, 17.2 cent/kWh; third quantile, 18.5 cent/kWh; standard
deviation, 1.2 cent/kWh; variance, 1.3cent/kWh.

10available under https://tyndp.entsoe.eu/, last visited: 29.06.2022
11Umweltbundesamt, last visited: 17.11.2022

https://www.exaa.at/
https://tyndp.entsoe.eu/
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been tested and validated in Hanke Marcel (2020) and Resch et al. (2022). The aim is to
reflect various electricity market settings with different price patterns. In Mascherbauer
et al. (2024), three price scenarios were analyzed to analyze sensitivities differing in the
assumed CO2 price. The CO2 price influences the high-price hours when gas-fired units in
this system define marginal costs. However, this could be any other flexibility option (e.g.,
hydro pump storage) at a high price level in a different market setting. It should be noted
that the flexibility provided by the HPs in the building stock was not considered in the
Balmorel calculation. The impact of HP flexibility on the wholesale electricity price was
investigated in Schöniger et al. (2022). To every price profile, a hypothetical fixed grid fee
plus taxes of 20 cents/kWh were also added in order to derive the retail electricity price.
The resulting mean plus standard deviation for all price profiles is provided in Table 3.3.
With an increasing CO2 price, the price profile’s mean value and volatility increase. All
prices are depicted in Figure 3.10. The sharp increase in Price Scenario 1 is due to the
gas shortage at the end of 2021.

Figure 3.10: Electricity prices used
to assess how the volatility influ-
ences load shifting behavior.

Figure 3.11: Box plots of the daily
peak-to-peak amplitude of electric-
ity prices used to examine the im-
pact of prices on load-shifting be-
havior.

a

aBox plots show the median (horizontal line) and
the interquartile range (IQR) (box outline). The
whiskers extend from the hinge to the highest and low-
est values within 1.5 × IQR of the hinge, and the points
represent the outliers.

Figure 3.11 visualizes the daily peak-to-peak amplitude difference of all four prices. The
peak-to-peak difference12 in the day-ahead price from 2021 increases drastically through-
out the year. In the modeled prices for 2030, incisive events, like energy shortages, were
not considered; thus, the prices do not fluctuate that much throughout the year.

Another significant difference between the 2021 real-time and the simulated prices
is the frequency of change. It is visible in Figure 3.10 that Price 1 is changing more
frequently than the others. Table 3.3 shows the number of local maxima in the respective
price profiles. The price from 2021 has about twice as many peaks as the prices from
2030 (prices 2, 3, and 4). In Mascherbauer et al. (2024), the focus was on volatility in
terms of price spread. Structural price volatility in the form of higher frequency can
also significantly impact the potential of load shifting. Studies showed that HPs could

12The maximum peak-to-peak difference is defined as the difference between the lowest and the highest
value within a day.
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participate in the intra-day and even the frequency regulation market (Meesenburg et al.
2020; Manner et al. 2020). But to participate in the regulation market, they must be
pooled to reach the necessary capacity (Hülsmann et al. 2019). In this work, participation
of residential HPs other than in the day-ahead market is not considered. Thus, price
frequencies are limited to hourly changes. Although the thermal inertia of a building is
slow, the high frequency of price change generally results in higher cost savings for HPs if
they can react to the price signal.

Table 3.3: Mean and standard deviation of the price scenarios and CO2 price as
well as the number of local maxima in the profile. (Mascherbauer et al. 2024)

Price scenarios mean (cent/kWh) CO2-price
(EUR/tCO2)

Number of local
maxima

Price 1 30.69 ± 7.76 - 1225
Price 2 26.05 ± 2.27 53 621
Price 3 28.87 ± 3.52 106 646
Price 4 34.11 ± 6.35 212 618

Electricity prices used to analyze the flexibility potential for EU27
In line with the overall scenario narrative for a decarbonized EU in 2050, results of Balmorel
are collected from a (Schöniger et al. 2023) with underlying CO2 prices of 65 EUR/toCO2
for 2030 and 500 EUR/toCO2 for 2050 to model the electricity prices in all EU member
states. In contrast to the analysis done only for Austria, the electricity grid was modeled
using single nodes to represent a country. The weather data used to model renewable
generation in Europe until 2050 is described in Section 3.3.4.

As shown in Mascherbauer et al. (2024), the load-shifting behavior heavily depends on
both the frequency and absolute price change value. To capture these two statistics, first,
we use the number of local electricity price peaks as an indicator to capture the frequency
of price changes in all EU27 countries, as shown in Figure 3.12.
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Figure 3.12: Number of local price peaks in each country for 2030 and 2050.

Second, the prominence of these electricity price peaks is calculated, as defined by
Equation 3.45. The prominence for peak price at time t is represented by Pr(tp). It
describes how much the local peak price (ptp) stands out compared to the higher local
minimum to the right (ptr) and left (ptl) of the local peak with tl and tr being the nearest
positions to the left and right of tp where pt rises again to at least ptp or ends.

Pr(tp) = ptp −max(ptl , ptr) (3.45)
With a high prominence, the effort to shift loads away from a peak increases. Due to

the increase of renewable generation in the electricity mix from 2030 to 2050, expensive
flexibilities in the power sector (like gas power plants) are not as often needed (Schöniger
et al. 2022). Therefore, local price peaks are decreasing in most countries. Overall, the
amount of local peaks decreases by 15%. On the other hand, the flexible power plants or
storage systems have much higher marginal costs, leading to much higher average promi-
nence of each local peak. At the same time, the average electricity price also increases
in 2050 compared to 2030. Since the relative change in price compared to the absolute
electricity price is crucial as an incentive for DR, the average prominence of all price peaks
is divided by the mean electricity price for each country in Figure 3.13. This way, the
indicator shows the load shifting incentive to some extent for each retail electricity price
scenario. With a higher average prominence of price peaks over the mean electricity price,
DR is more favorable for single prosumagers. In this work, the electricity price signals
are distinguished into five scenarios: without grid fees (0 cent/kWh grid fees) and sub-
sequently rising grid fees (5, 10, 20, and 40 cent/kWh grid fees). In the price scenario
without grid fees, prices can go down to zero for the end consumers with the effect of an
excessive increase in consumption in these hours. This scenario can be seen as an upper
limit for the load shifting potential, as load shifting is limited only by physical limitations
in these hours. By adding higher grid fees, the prominence of the price peaks is reduced,
which has an impact on the incentive to shift electric loads.
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Figure 3.13: Peak price prominence divided by the mean electricity price for the price
scenarios from 0 to 40 cent/kWh grid fees.

Figure 3.14 shows that the future electricity systems within the EU are modeled with a
high share of PV as wholesale electricity prices tend to decrease between 9 am and 17 pm
in almost every country. Additionally, average prices go up in 2050 compared to 2030.

Figure 3.14: Daily mean electricity price for all analyzed EU member states in 2030 and
2050.

On top of the five price scenarios, we study the effect of a capacity-based price on
the peak demand. In the EU, 14 countries currently include a capacity-based charge in
their distribution grid fees according to the European Union Agency for the Cooperation
of European Union Agency for the Cooperation of Energy Regulators et al. 2025. The
assumption in the literature is that a capacity tariff can reduce peak loads. They are
charged on the yearly or multi-year peak demand or under demand under peak conditions.
The assumption in literature is that a capacity tariff can reduce peak loads (as in e.g.
Pena-Bello et al. (2021)). To verify the assumption that a capacity component in the
variable price can reduce peak demand, a capacity price of 50 EUR per kW peak per year
is introduced into the objective function of the prosumagers. The objective function of
the prosumager optimization is changed accordingly, as shown in Equation 3.46:

min
�
t

(PGrid,t ·pt−PPV2Grid,t ·pfeed in,t)+max
t

(PGrid,t)·pcapacity t ∈ {1, 2, . . . , 8760} (3.46)
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The capacity price (pcapacity) of 50 EUR is a representative value, which is certainly
not a valid capacity tariff for all countries. Within Austria alone, capacity tariffs differ
between 26 EUR and 67 EUR based on the location within the country (E-Control 2016).
Still, introducing this tariff gives insights into how peak demand tariffs might influence
the peak demand and shifted electricity.

3.3.4 Weather data
The FLEX model uses hourly outdoor temperature and radiation data. As there is no spa-
tial allocation of buildings in each country, weather profiles are downloaded on the NUTS3
level from PV GIS (Huld et al. 2012) and averaged by weighting them with the regional
heat demand. The information on regional heat demand is taken from the HOTMAPS
Database (Ali Aydemir et al. 2020). The direct and indirect solar radiation is obtained in
every celestial direction on a vertical plane, which will then be multiplied by the effective
window area of the respective direction to calculate the solar gains.

Weather data for EU27
Weather data for future scenarios is available under (Formayer et al. 2023a) and described
in (Formayer et al. 2023b; Schöniger et al. 2024). This work uses data from the Rep-
resentative Concentration Pathways (RCP) scenario RCP4.5. The RCP4.5 scenario is a
stabilization scenario, which means the radiative forcing level stabilizes at 4.5 W/m2 before
2100 by deploying various technologies and strategies for reducing greenhouse gas emis-
sions. According to this scenario, the cooling demand will rise by 129%, and the heating
demand will decrease by 25% until 2100. Contrary to the weather data for Austria, the
radiation and temperature data are aggregated by a population-weighted mean (Schöniger
et al. 2023). According to this scenario, the average temperature in each country for 2030
and 2050 is visualized in Figure 3.15.

Figure 3.15: Average temperature in each country

3.3.5 Behavior
Finally, the model needs information on the behavior settings. For analysis on a country-
level scale, the indoor set temperature is not varied by people being at home or not.
For the electricity demand of appliances, an average demand profile (APCS 2019) is used,
which is rescaled to the average electricity demand of a resident in each country using data
from Eurostat (Eurostat 2024a; Eurostat 2024b). Taking an average profile ensures that
no simultaneous behavior is up-scaled to the building stock level, and the optimization
does not have information on high-demand events (e.g., cooking, showering), which, in
reality, is almost impossible to predict. The same is done for the DHW usage. An average
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synthetic profile from HotMaps (Ali Aydemir et al. 2020) is used for the DHW demand
and rescaled to the average usage for hot water in each country. The natural temperature
of the water is assumed to be 10°C and the supply temperature 55°C.

For the studies conducted on the Austrian building stock (Mascherbauer et al. 2022;
Mascherbauer et al. 2024), the average indoor set temperature was assumed to be 20°C.
In EU countries, however, the average indoor set temperature varies (Mascherbauer et
al. 2025b; Mascherbauer et al. forthcoming). In southern countries, an average indoor set
temperature of 20°C is often a strong overestimation. By comparing the heating demand on
the country level from the 5R1C model to Eurostat in the year 2020 and also for the years
2030 and 2050 with the average set temperatures in Invert, the indoor set temperature was
adjusted to the values in Figure 3.16. The set temperatures for Greece and Portugal are
very low, which could be explained by a combination of the discrepancy between the actual
building stock properties and the modeled ones, and that people often only heat specific
rooms, which reduces the average temperature in the whole building significantly. At the
same time, indoor set temperatures in Germany and Hungary are relatively high, which
could also be because of heat losses, and with that, the reported energy consumption is
higher than the modeled one. The model compensates for this by increasing the average set
temperature. Set temperatures in 2050 are higher as the increased insulation and thermal
comfort often also lead to an increase in indoor set temperature through the rebound effect
(Hens et al. 2010).

Figure 3.16: Average indoor set temperature in EU member states for 2030 and 2050.

3.4 Usage of the FLEX model on local level
In Mascherbauer et al. (2025a), the FLEX model was applied to two urban regions to
assess how prosumaging could impact the electricity distribution grid reinforcement needs.
Therefore, this section is based on Mascherbauer et al. (2025a). The rise in the adoption
of electrified heating systems, mainly HPs, has been increasing the electricity demand of
residential end users, which requires the reinforcement and expansion of the low-voltage
distribution grids. This trend also interacts with the diffusion of several other technologies:
decentralized PV systems, EVs, and HEMS. Compared with the high-voltage transmission
lines, the monitoring and study of low-voltage distribution grids is less understood. It is
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hard to predict the impact of multiple technology trends in buildings on the distribution
grid. The question arises of how heavily the distribution grid will have to be reinforced
in the future to handle the additional burden imposed by electrified heating systems, EV
charging stations, and prosumagers. In Mascherbauer et al. (2025a), the grid reinforcement
costs in two urban case studies under different scenarios concerning the uptake of electrified
heating systems, storage systems, PV, building renovations, and prosumagers until 2050.
To do so, the FLEXmodel is coupled with the Reference Network Model (RNM), a granular
spatial model, to calculate the needed investment and operation costs of distribution grids.
With this approach, a very high level of granularity and detail, which enables estimating
possible future grid reinforcement needs in the distribution grid, was achieved. The two
urban areas are located in the north and south of Europe. By linking the two models for
the two case studies, the following research questions are answered: First, how are future
investments in distribution grids impacted by the decarbonization efforts of the residential
building stock? Second, can prosumagers lower these investment costs?

The following inputs for the FLEX model were altered compared to the usage on a
building stock level:

• Indoor set temperature: average indoor set temperature is set to not fall below 20°C
in heated buildings. Direct electric-heated buildings are an exception; here, the
average indoor set temperature is set to 18°C when heating is activated (plugged
in), otherwise, the indoor temperature has no lower bound. Direct electric heating
systems in this thesis are considered to be plug-in heat ventilators with an efficiency
of 1. People use them only at specific times and mostly over a certain period instead
of keeping a certain minimum room temperature. I tried to mimic this behavior
by not setting a minimum indoor set temperature when the heating is turned off.
If heating is turned on, the average set temperature would be set to 18°C. The
probability distribution of people using the direct electric heating systems was chosen
so that the resulting summed load profiles resemble the shape of actual measured
profiles (esios (https://www.esios.ree.es/es) 2024).

• Weather data: Air temperature and solar radiation were downloaded from JRC (Eu-
ropean Commission Joint Research Centre 2024) for the respective cities on hourly
granularity. 2019 was chosen for the weather data, as more recent data was unavail-
able.

• Electricity price: Day-ahead price for Leeuwarden was taken from the ENTSO-E
(Transparency Platform 2024) platform as end consumer electricity prices for 2019
with additional hypothetical grid fees so that the minimum price was at 5 cent/kWh.
For Murcia, the actual tariffs for residential consumers from 2019 (esios (https:
//www.esios.ree.es/es) 2024) for the ”efficiency 2 periods tariff” of the active
energy invoicing price to match the price data with the weather data were used.

Heating systems included in this work are: air source HP, ground source HP, direct
electric heating, conventional boiler (including gas, fuel, coal, biomass, etc.), and no heat-
ing system at all. The resulting load profiles on a single building level were used as input
for the RNM.

3.4.1 Combination with reference network model
The FLEX model was combined with the RNM to model the future grid investment needs
in two specific urban case studies. The workflow of the modeling framework included
three parts, as shown in Figure 3.17. First, by combining Open Street Maps (OSM)
(OpenStreetMap contributors 2017) with other building databases, as well as the scenarios
of building renovation and technology diffusion, the building stock map of the two case
study regions for the four modeling years (2020, 2030, 2040, 2050) is created. Second,
the energy demand of each individual building, as well as the electricity demand of EVs,

https://www.esios.ree.es/es
https://www.esios.ree.es/es
https://www.esios.ree.es/es
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are calculated in hourly resolution. Third, taking the building stock map and the energy
demand profiles as input, the RNM calculates the distribution grid needs. For 2020, the
RNM follows a greenfield approach and generates a reference distribution grid for each
case study. Then, for the years 2030-2050, the RNM calculates the enhancement needs of
the distribution grid, taking the 2020 grid as a baseline.

Figure 3.17: Modeling framework used in the publication Mascherbauer et al. (2025a) on
local level.

Building stock mapping
Two regions which span over a 10 km2 area in Murcia (Spain) and Leeuwarden (Nether-
lands) are selected to represent south and north European climate13. These two regions
were selected based on the available data resources, their climatic conditions, and the
shares of the installed heating systems. This way, results are transferable to similar re-
gions in southern Europe, where buildings are not necessarily heated by gas boilers, and
central and north-eastern Europe, where gas boilers dominate the residential heating sec-
tor. The building data of each individual building in the two areas are collected and
processed as follows:

1. The construction period and other relevant building-related data, like the building
age and height, are gathered from local databases (URBAN3R (URBAN3R 2025)
for Murcia and 3DBAG (Peters et al. 2022) for Leeuwarden).

2. Building footprints were taken from OSM as Urban3R and 3DBag contain only rough
estimations of the building shapes.

3. The polygon shapes from OSM are merged with the data from Urban3R and 3DBAG,
and the ground area of the OSM shapes is considered as floor area. Non-residential
buildings were filtered out if they were labeled as non-residential in one of the
databases.

13Using EPSG 4326 the coordinates for selecting the areas are:
Leeuwarden: north: 53.2178674080337, south: 53.1932515262881, east: 5.82625369878255, west:
5.76735091362368
Murcia: north: 37.9988137604873, south: 37.9656536677982, east: -1.10710096876283, west: -
1.13912542769010
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4. Adjacent walls are calculated using a 21 cm overlapping factor. Further, ”encapsu-
lated” buildings are ignored. This way it is ensured that small yards, staircases, or
rooftop terraces are not considered as small buildings within a building.

5. The number of persons per building was taken from URBAN3R and 3DBAG, re-
spectively. If not available for specific buildings, it was chosen based on HotMaps
data (The Hotmaps Team 2020). If the square meter per person in a house were
below 20, the number of people for the building was recalculated using a factor of
42.5 m2/person. This way, it was ensured that faulty data (a very high number of
persons per building) would not distort the results.

6. Window areas are evenly distributed, which leads to an over- and underestimation
of solar gains, depending on the actual orientation of the windows.

7. Buildings with faulty data (e.g. negative building height) were excluded.

8. At last, a manual inspection was done to exclude large buildings identified as non-
residential via Google Maps. Additionally, buildings with a polygon area lower than
45 m2 were also excluded. This way, small sheds, kiosks, etc. are not considered in
the analysis.

As a result, 15 654 buildings in Leeuwarden and 4 447 buildings in Murcia were pa-
rameterized. The data was collected for 2019 and 2020 for the two regions since, for these
years, all the needed data was available. The building type structure marks a significant
difference in the two case studies, wherein in the selected area of Murcia, we have mainly
MFHs. In Leeuwarden, most buildings are SFHs and row houses or tiny multi-family
buildings (not more than two or three families). The attached wall area of each building
to its neighbors was calculated using the polygon shapes. In further calculations, the heat
transfer to neighboring buildings was neglected.

To develop the building stocks in future modeling years, data from Invert/EE-Lab
(Müller 2015) was combined with open sources, as well as assumptions when data is un-
available. On the building level, only information on the average heat demand per square
meter was available for the two regions. This heat demand together with the floor area,
building type and construction period (if available) was used to find a the most similar
representative building in the INVERT/EE-Lab database. With the U-values from the
INVERT/EE-Lab and the dimensions from OSM, 3DBAG, and URBAN3R, the 5R1C
parameters were calculated on the building level. Window areas were calculated based on
the facade area and the window-to-wall ratio from the selected, most similar representative
building.
For the years 2030, 2040 and 2050 random buildings are being renovated until the reno-
vation targets for each building type (SFH, MFH) determined by building stock scenarios
are met. The building stock scenarios are described in more detail in the following section
3.4.1. Demolishing and reconstruction of buildings is not considered. The penetration
paths of different technologies for the two regions were developed based on open data and
scenario assumptions.

Scenarios
For each case study, 12 scenarios were developed, which can be split into three scenario
branches (Figure 3.18):

1. I distinguished between a Strong policy and a Weak policy scenario, which describes
the building stock. In the strong policy scenario, climate neutrality within the build-
ing stock will be achieved in the year 2050, whereas in the weak policy scenario, pol-
icy implementations are left as they are right now, not leading to a climate-neutral
building stock in 2050. The strong and weak policy scenarios influence the future
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state of the buildings, meaning they determine the rate of renovation and needed
heat demand, as well as the rate of installed HPs, PV, and battery adoption.

2. For each policy scenario, there is a scenario with low, medium, and high share of
prosumagers. In this way, the impact of prosumagers on future reinforcements needs
in the distribution grid is evaluated.

3. EV adoption was added to each scenario, meaning there were two scenarios, one
without EVs and one with EVs (see section 3.4.1). This way, the strong impact of
EVs on the electricity grid can be isolated.

Strong Policy

Weak Policy

High prosumager

Low prosumager

Medium prosumager

Without EV

With EV

Figure 3.18: Integration of various policy, prosumager, and EV scenarios to form the final
12 scenarios analyzed. (Mascherbauer et al. 2025a)

Policy scenarios
As introduced in Section 3.4.1, two scenario results from Invert/EE-Lab were selected to
parameterize the building stocks in the two regions from 2030 to 2050. In the strong
policy scenario, it is assumed that more efficiency measures are implemented, and the
heating and cooling demand of buildings is lower. Figure 3.19 shows the percentage of
installed heating systems for the strong and weak policy scenarios. In both scenarios,
the share of conventional heating systems is strongly reduced, and the share of electrified
heating systems is increased. In Murcia, already 20% of buildings use air-sourced HPs
in 2020. This is because summers are very hot in Murcia, and winters are mild. Many
buildings have air-source HPs installed for cooling purposes in the summer. Additionally,
a lot of direct electric heating systems (39%) in the base year are installed, which almost
do not exist in the Leeuwarden region. In Leeuwarden, conventional heating systems
dominated strongly in 2020 and were mainly replaced by HPs in the following years. In
the strong policy scenario, the renovation rates (expressed as a percentage of renovated
ground floor area per year) are much higher than in the weak policy scenario. 2.3% of all
SFHs and 4.7% of all MFHs in Murcia are yearly renovated between 2019 and 2050. In
Leeuwarden, the rates are 3.8% for SFH and 3% for MFH. On the contrary, in the weak
policy scenario, these rates are 1.4% for SFH and MFH in Murcia and 1% and 0.8% in
Leeuwarden. The renovation rates in Murcia are higher because fewer deep renovations
and more light-investment renovations are undertaken (e.g., changing windows) because of
the mild climate here. In both policy scenarios, the average final energy demand for heating
(kWh/m2) is reduced significantly from 2019 to 2050. In the strong policy scenario, the
final energy demand is reduced by 71% in Murcia and by 59% in Leeuwarden. In the weak
policy scenario, the heating demand is reduced by 68% in Murcia and 56% in Leeuwarden.
Because of the high electrification of the building stock, even with existing policy measures,
poorly insulated buildings will be refurbished in the future because it is more economical.
This explains the slight difference in savings in heating demand between the strong and
weak policy scenarios.
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Figure 3.19: Comparison of heating systems for different policy scenarios in Leeuwarden
and Murcia. (Mascherbauer et al. 2025a)

The possible options for additional installations in the buildings are shown in Table
3.4. Battery systems are only installed in buildings with PV and heating buffer tanks in
buildings that utilize an HP. There is no correlation between the installations of HPs and
PVs. The maximum power of the AC was not restricted, assuming that it is sufficiently
strong to keep the indoor temperature below a specific set temperature (27°C).

Table 3.4: Possible additional installations for each building. (Mascherbauer et al. 2025a)

Building type PV Battery DHW-Tank Heating buffer tank AC
SFH 0, 5 (kWp) + orientation:

maximum yield, east, west
0, 7 (kWh) 0, 300 (l) 0, 700 (l) Yes, No

MFH 0, 15 (kWp) + orientation:
maximum yield, east, west

0, 15 (kWh) 0, 700 (l) 0, 1500 (l) Yes, No

Table 3.5 shows the assumed distribution of all additional installations. Percentages
in the table indicate how many buildings are equipped with the respective technology.
Batteries are only installed in buildings with PV, thus the percentage of buildings with a
battery refers to all buildings with a PV. The same applies to the buffer tank, which is only
installed in buildings with HP. The number of installed PVs rises more in the strong policy
scenario. In the weak policy scenarios, I estimated a higher percentage of AC than in the
strong policy scenarios due to lower investments in building refurbishments and passive
shading systems, increasing the need for active cooling. The percentage of installed PV
systems is the same in both regions, whereas the AC adoption differs due to the different
climate zones. Thermal and battery storage shares of all buildings are the same in both
case studies. The percentage of installed battery systems varies slightly in the strong and
weak policy scenarios.

Table 3.5: Building technology adoption in the scenarios. (Mascherbauer et al. 2025a)

Leuuwarden / Murcia
Building Technologies 2020 2030 2040 2050
AC (strong policy) 20% / 50% 30% / 60% 50% / 80% 70% / 90%
AC (weak policy) 20% / 50% 35% / 65% 60% / 80% 80% / 95%
PV (strong policy) 2% / 1.5% 15% 40% 60%
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Table 3.5: Building technology adoption in the scenarios. (Mascherbauer et al. 2025a)

Leuuwarden / Murcia
PV (weak policy) 2% / 1.5% 10% 30% 50%
DHW tank 50% 55% 60% 65%
Buffer tank 0% 5% 15% 25%
Battery (weak policy) 10% 12% 16% 25%
Battery (strong policy) 10% 12% 20% 30%

Prosumager scenarios
Regarding the shares of prosumagers, the assumptions for the two regions are the same,
as shown in Table 3.6.

Table 3.6: Share of prosumagers in the prosumager scenarios. (Mascherbauer et al. 2025a)

Leuuwarden / Murcia
Scenarios 2020 2030 2040 2050
Low 0% 5% 10% 20%
Medium 0% 10% 30% 50%
High 0% 15% 40% 80%

EV scenarios
Two types of input data are used to generate the EV load profiles in future scenarios with
the methodology presented in Section 3.4.1:

• Building data: building coordinates, building type, and number of households per
building from Section 3.4.1. In addition, the prosumager shares in Table 3.6 are
considered.

• Mobility data: survey data on the number of cars per household, EV adoption targets,
probability distribution of arrival times, and cumulative density function of daily
distance driven.

The number of cars per household in Table 3.7 is determined based on car owner-
ship survey data for Leeuwarden (Centraal Bureau voor de Statistiek 2024) and Murcia
(Instituto Nacional de Estadística 2024). The penetration of EVs in 2030 has been set
in accordance with national objectives for EVs outlined in National Climate and Energy
Plans (European Commission 2024). In 2050, it is assumed that all light-duty vehicles will
have zero emissions, and battery-electric vehicles will remain the dominant technology in
this segment.

Table 3.7: Probability distribution of number of cars per household for Leeuwarden and
Murcia. (Centraal Bureau voor de Statistiek 2024; Instituto Nacional de Estadística 2024)

Number of EVs per household 0 1 2 3+
Leeuwarden, NL 46% 33% 16% 5%
Murcia, ES 18% 46% 28% 8%

Each vehicle’s arrival time and daily distance traveled are assigned based on prob-
ability distributions. Figure 3.20 illustrates the probability distribution of the times at
which EV owners arrive home, based on public mobility data from cell phone terminals
in Spain (Ministerio de Transportes y Movilidad Sostenible 2024) and a sample of private
EV charging sessions in the Netherlands (Elaad Platform 2024). Figure 3.21 shows the
cumulative density function of the distance Murcians traveled daily. This distribution is
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derived from the number of daily trips and individual trip distances in Murcia (Ministerio
de Transportes y Movilidad Sostenible 2024). In the absence of granular data for Leeuwar-
den, the same distribution is used as the average distance driven in a day is comparable
for both regions.
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Figure 3.20: Probability distribu-
tion of arrival times. (Mascherbauer
et al. 2025a)
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(Mascherbauer et al. 2025a)

EV profiles generator
Currently, EVs represent the most viable option for decarbonizing light-duty vehicles. The
main challenge for characterizing hourly EV residential charging profiles in future scenarios
is that the availability of data on residential EV charging is scarce (Calearo et al. 2021).
Although there are few datasets and studies for early-adopter regions, such as Norway
(Å. L. Sørensen et al. 2021; Å. Sørensen et al. 2023), a stochastic profile generator for
residential EV charging based on the available building and mobility data in the regions
of interest was developed. This methodology also estimates future EV penetration levels
and the locations of EVs within residential areas. Figure 3.22 presents the flowchart of the
proposed methodology, which follows similar steps to (Unterluggauer et al. 2023; Sørensen
et al. 2022; Fischer et al. 2019).
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Building input data:
- Coordinates
- Building type 
- Number of households
- Percentage of prosumagers 
(per scenario)

Mobility input data:
- Survey data on number of cars 
per household 
- Penetration level (per scenario)
- Arrival times distribution
- Daily distance driven 
distribution [km/day]

Estimate number of vehicles per household

Randomly select vehicles switching to EVs 
based on EV pentration level in this scenario

Assign randomly arrival time 
& daily distance dirven  

Assign EV & charger type  

Estimate weekly charging frequency  

Estimate energy demand per charging session

Is EV owner 
prosumager?

Outputs:
- Location of new EVs
- Hourly EV demand profiles for:
    i) Maximum demand day
    ii) Minimum demand day

Start charge at arrival time    Start charge at off-peak hours

NO

YES

Compute individual EV profiles

Aggregate EV profiles per building

1. EV adop�on scenarios

2. EV charging requirements

3. Hourly charging profiles

Figure 3.22: Flowchart of residential EV load profile generator model. (Mascherbauer
et al. 2025a)

The model is structured into three stages:

1. Modeling of EV adoption scenarios:
The first stage of the model determines the number of EVs and their location. The
number of cars per household is estimated based on national surveys of car ownership
per household. These surveys are used to characterize a probability distribution of
the number of cars per household. Then, a random selection of car owners opting
to transition from internal combustion engine vehicles to EVs is performed based on
the projected EV penetration level for a specific year and scenario. EV adoption
rates are estimated in accordance with objectives set by national authorities within
the designated regions.

2. Characterization of EV charging requirements:
The second step is to characterize the charging needs of each EV. In each scenario,
each vehicle’s arrival time and daily distance traveled are assigned based on proba-
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bility distributions. Then, the type of charger and the weekly charging frequency are
assigned following the methodology in Gonzalez Venegas et al. (2021), which employs
the daily energy demand of each EV as the primary input. Three AC charging power
levels are considered: 3.6 kW, 7.2 kW & 11 kW. The weekly charging frequency al-
lows for the calculation of the energy that is charged per session. While the majority
of their charging needs are met at home chargers, EVs may occasionally charge at
public charging points. A factor representing the charging demand met at public
charging stations is incorporated into the model. This factor is set to 20% in 2030
but is increased to 30% in 2050, reflecting that early adopters have more consistent
access to residential chargers.

3. Modeling of hourly charging profiles:
A question that has not been sufficiently addressed in other models (Unterluggauer
et al. 2023; Sørensen et al. 2022; Fischer et al. 2019) is how to establish the scenarios
with the highest and lowest electricity demand from residential EVs for planning
the distribution grid. For instance, synchronization of EV charging could happen
due to low end consumer electricity prices or the night before a national holiday
(Unterluggauer et al. 2022). It is, therefore, assumed that, in the worst-case scenario,
all EV owners will decide to charge on the same day. This does not imply that all
EVs will charge simultaneously, as the diversity in the arrival times is still considered.
On the other hand, for the scenario with the lowest EV demand, it is assumed that
only EVs charging six or seven days per week will be charging that day, as they may
be unable to postpone their charge to the next day.
The last step is to compute the hourly demand profiles for the EVs. If the EV owner
is a prosumager, it is assumed that its charger is capable of smart charging and can
delay the charging session to off-peak hours with lower electricity tariffs. Otherwise,
the EV will commence charging as soon as it is connected to the charger. Finally,
the hourly demand profiles for EVs in the same building are aggregated.

3.4.2 Distribution grid modeling
The resulting load and feed-in profiles for every building computed with FLEX and EV
profiles generator models are provided as input to the RNM to estimate the necessary
electricity distribution grid investments in future decarbonization scenarios. Two repre-
sentative days are considered to plan the distribution networks:

• Day with the highest electricity peak load (a winter day)

• Day with the highest peak feed to the grid (a spring day)

The RNM, introduced by Mateo et al. (2011), plans the layout of low voltage (LV),
medium voltage (MV), and high voltage (HV) lines together with the positions and ca-
pacity of distribution transformers and substations. The objective is to minimize the
distribution system costs while satisfying topological and quality of supply constraints.
First, the RNM in greenfield mode obtains a synthetic model of the initial distribution
grid for the base case (2020). Then, the RNM in brownfield mode reinforces this initial
grid to accommodate the new loads (e.g., HPs, EVs, etc.) and PV installations in each
future scenario.

Greenfield planning of “existing” distribution networks
In the base 2020 scenario, the RNM is employed to generate a synthetic model of the
existing electricity distribution networks in the areas of interest. The greenfield planning
functionality of the RNM allows for the design of a cost-effective distribution network
to supply all consumers and distributed generators in a particular area while complying
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with voltage and thermal limits and geographical and reliability constraints. This model
has been utilized to develop European large-scale synthetic grids from scratch in Mateo
et al. (2018a) and to plan the distribution network of new urban districts (De Rosa et al.
2024). Even though the complete distribution grid at the country level is not modeled,
the analysis remains reliable and replicable, as the conditions of individual feeders are not
solely considered, which is a common approach in this field.

The inputs to the RNM are the buildings’ location and their load and generation
profiles, the location and charging profile of EVs, the layout of street maps, a catalog
of standard electrical equipment (e.g., power lines, distribution transformers, etc.), and
general configuration parameters. The catalog of standard equipment considers reference
unitary investment and operation and maintenance (O&M) costs for electricity distribu-
tion equipment in Spain (Boletín Oficial del Estado 2024b).

The objective of the greenfield RNM is to minimize investment, energy losses, and
O&M costs throughout the network’s lifespan. It employs a bottom-up methodology
whereby LV, MV, and HV grids are planned sequentially. The initial step is to identify
and size the supply points (e.g., MV/LV distribution transformers, HV/MV substations,
etc.) for each voltage level. Subsequently, the routing and capacity of power lines are
planned. The initial configuration of the power lines, a minimum spanning tree connect-
ing all buildings to the supply points, is not always feasible. In such cases, the configuration
is modified to comply with geographical and technical constraints. These constraints are
primarily street layouts, voltage and thermal limits, and reliability indices. For the grid
in Murcia, the load-based reliability indices used are the equivalent interruption time of
installed power (known by its Spanish acronym: TIEPI) and the equivalent number of in-
terruptions of installed power (known by its Spanish acronym: NIEPI) (Boletín Oficial del
Estado 2024a), which are the Spanish equivalent to Average System Interruption Duration
Index (ASIDI) and the Average System Interruption Frequency Index (ASIFI) defined in
IEEE (2022).

The output of the greenfield RNM is the techno-economic parameters for each desig-
nated distribution network component and a detailed report of their cost by component
type and voltage level. In addition, it provides geographic information system data for
all network components, which can be used to represent these grids on a map (see Figure
3.23).

Leeuwarden Murcia
HV substations

HV/MV substations

MV/LV transformers

HV lines

MV lines

LV lines

HV substations

HV/MV substations

MV/LV transformers

HV lines

MV lines

LV lines

Figure 3.23: Greenfield grid in 2020 for Leeuwarden (left) and Murcia (right).
(Mascherbauer et al. 2025a)
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Brownfield planning of distribution networks under future policy scenarios
The initial grids for each area of interest obtained with the greenfield RNM serve as a ref-
erence for the brownfield RNM to plan cost-efficient distribution network reinforcements
needed to accommodate the new demand and distributed generation expected in future
scenarios. This methodology has been employed to assess the impacts of high penetra-
tions of DERs on the distribution grids, including batteries (Mateo et al. 2016), solar PV
self-consumption (Mateo et al. 2018b), and EVs (Martínez et al. 2021). However, this
methodology has not previously been applied to assess the long-term impact of electrifi-
cation policies (e.g., energy-efficient buildings, HPs, EVs, PV installations, etc.), nor to
quantify the effect of an increasing share of prosumagers on the electricity grid infrastruc-
ture.

The brownfield functionality of the RNM proceeds similarly to the greenfield approach.
The main difference is that an initial network is already provided to the brownfield RNM.
Then, it connects new consumers and distributed generators to the initial network. The
initial network configuration is improved using branch exchange to make it technically
feasible at the minimum cost.

A limitation of the brownfield RNM is that while it optimally plans new locations
of supply points (e.g., MV/LV distribution transformers) for new consumers, it can only
increase the capacity of current elements to meet the additional demand of existing cus-
tomers. This may lead to unrealistic numbers of parallel elements in long-term scenarios
with very high demand and generation growth. This effect is seen in the 2040 and 2050
scenarios in Leeuwarden. Additional MV/LV distribution transformers were provided as
input to the brownfield RNM to improve the results in these scenarios.

3.5 Limitations of the modeling approach
The FLEX model has been extensively tested to ensure that the 5R1C approach yields
realistic results concerning the thermodynamic behavior of the model. Additionally, the
impact of having perfect foresight of the model is analyzed and compared to a more real-
istic rolling horizon approach. All details are provided in the Appendix A.3.

Within Appendix A.3.1, it was shown that the 5R1C model does not adequately model
buildings with floor heating systems, and thus, their potential to shift electricity demand
is underestimated. In the European building stock, however, the majority of buildings
are heated using radiators as heat distribution systems (ehi 2023) and most HPs in the
EU so far have been installed in new and retrofitted buildings (JRC 2023). This is un-
likely to change, as deep renovations, where the heating distribution system is changed,
are very capital-intensive. The supply temperature for radiator heating systems can be
lowered through adequate renovations to a degree where air-sourced HPs can sufficiently
supply the building. In a high percentage of the current building stock, the supply tem-
perature could already be lowered to 55°C or lower, according to Pothof et al. (2023),
who measured flow temperatures in over 200 Dutch dwellings. Also in Cozza et al. (2022)
it was shown that already 40% of buildings would be ready for a HP implementation in
Switzerland. Thus, the author expects that in the future, existing buildings switching to
HPs will, in most cases, keep their radiator heating system. It was also shown that the
error of estimating the shifted energy is the highest in buildings that are the least likely
to have HPs installed, namely buildings with low mass and bad insulation. By extending
the 5R1C model to a 6R2C model in Appendix A.3.2 by adding a second capacity and
a sixth resistance, the model’s ability to simulate the thermal behavior of buildings with
floor heating was improved. The results indicate that buildings with floor heating systems
can shift 1.4 to 5.2 times more electricity than the 5R1C model predicted. At the same
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time, shifted energy demand is slightly overestimated by the model, because it assumes a
perfect forecast.

Using perfect foresight causes the FLEX model to overestimate cost savings and load
shifting potentials. To address this, a rolling horizon approach was tested and compared
to the perfect foresight in Appendix A.3.3. The results showed that incorporating the
terminal cost for the thermal mass’s state at the end of the horizon window was crucial for
achieving better results with the rolling horizon approach. At the same time, it was not
beneficial to include a terminal cost for thermal storage and batteries at the end of each
horizon window. A 3-day rolling horizon approach showed that a longer forecast horizon
could better manage the uncertainty in energy prices. It was shown that the optimization
using a rolling horizon approach can achieve similar results as an optimization with a per-
fect forecast if implemented with sufficient large horizon windows. Additionally, terminal
cost for storage need to be implemented if the storage is large enough to affect operation
beyond the horizon window.

Other limitations apart from the model itself are the absence of grid capacities and the
spatial distribution of loads at the country level. Both the Flexibility Factor and GSC are
supposed to show ”grid-friendliness”; however, without knowing the spatial distribution of
the loads, possible grid congestion is not considered. Therefore, the author would describe
the meaning of these factors as system friendliness because, regarding the grid, no well-
founded statement can be made. Also, with this approach, the active DR is not factored
into the electricity price. In Sperber et al. (2025), it was shown that the DR of residential
HPs could impact the price. Similarly, since the FLEX model is not coupled directly to an
electricity grid model, it remains unclear if a potential demand increase from a collective
response of prosumagers can actually be supplied. The author trusts that the wholesale
electricity price and the residual load are strongly correlated (correlation factor of 0.8) as
shown in Klein et al. (2016) and Klein et al. (2017).



4 Results

In this chapter, the results of the FLEX model are separated into four sections. In the
first Section 4.1, the results focus on the Austrian SFH building stock and are based on
the publication Mascherbauer et al. (2024). It discusses the impact of higher volatility in
hourly prices induced by higher CO2 prices, and analyzes how this higher volatility reflects
in yearly savings for single prosumagers and how much energy can be shifted by single
prosumagers. The section mainly focuses on answering RQ2.

In Section 4.2, results from Mascherbauer et al. (2022) on the PV self-consumption and
change of energy consumption of prosumagers are presented. This section mainly relates
to RQ1.

While the first two sections focus on single prosumagers and an analysis of the Aus-
trian case, in Section 4.3 the future potential of prosumagers at the EU Member State
level is presented based on the publications Mascherbauer et al. (2025b) and Mascherbauer
et al. (forthcoming). In this section, both RQ1 and RQ2 are addressed. It is shown how
strongly the flexibility potential depends on grid tariffs, and the change in grid-related fac-
tors is presented. These factors include the Flexibility Factor, peak demand, and the GSC.

Finally, in Section 4.4, RQ3 is addressed by presenting the results of two local urban
case studies and the impact of prosumagers on the electricity distribution grid based on
Mascherbauer et al. (2025a). The future cost increase for reinforcing and operating the
distribution grid is assessed under different scenarios with a focus on the question of
whether prosumagers can lower these costs.

4.1 Impact of electricity prices on load shifting in Austria
The investigation on the hourly price to shift electricity is answered in the second publi-
cation Mascherbauer et al. (2024) of which the results are presented in this section. The
analysis was done on a single building level (Section 4.1.1) and the Austrian SFH building
stock (Section 4.1.2). At last, the economic viability of prosumagers under different price
scenarios is analyzed in Section 4.1.3.

4.1.1 Analysis on single building level
First we look at a single SFH which is a typical modern SFH in the Austrian building stock
built after 2010. The building has a floor area of 170 m2 and a useful energy demand for
space heating of 45 W/m2. The thermal capacity of this building is low and the insulation
level high compared to older buildings in the building stock. Then, the same building is
simulated with a 400l DHW storage, and a 750l space heating buffer storage to show the
difference in load shifting potential by implementing thermal storage. In Figure 4.1 the
grid electricity demand for a building in the 12th week is visualized for 4 different electricity
prices. The prices are visualized and described in chapter 3.3.3. The three load profiles
represent the load if: 1) no load shifting is happening (reference), 2) load shifting without
any thermal storage (HEMS no storage) and 3) load shifting with a DHW and heating
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buffer storage (HEMS with storage). On the right-hand y-axis, we see the electricity price
profile. The 12th week is shown because during this period price 1 is similar to prices in
the years prior to 2021.

Looking at the price scenarios 2, 3, and 4 we see that the higher price difference
only increases the incentive to shift loads marginally when thermal storages are available.
Without thermal storage, the peak loads during low energy price times are limited by the
maximum indoor set temperature. With higher price volatility, the building is pre-heated
to a greater extent if possible.

reference H H

Figure 4.1: Electricity bought from the grid with and without HEMS in the 12th week of
the year. The electricity price is visualized on the right-hand axis. Mascherbauer et al.
(2024)

Figure 4.2 shows the amount of electricity bought at a specific price. In the reference
case, electricity is bought independently of the price. But when the building is optimized,
electricity is bought at lower prices and demand is reduced at higher prices. In price sce-
narios 2,3, and 4 the amount of electricity purchased from the grid when the price is at
its lowest almost doubles when the building has the thermal storages implemented. Even
without thermal storage, the increase in electricity consumption at lower prices and the
decrease at higher prices are visible.
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Figure 4.2: Electricity demand at certain prices in the reference case and with the imple-
mentation of HEMS. ”With thermal storage” indicates that the house has a 750 l buffer
storage, and a 400 l DHW storage. Mascherbauer et al. (2024)

The maximum average indoor set temperature was varied between 23, 25, and 27°C
during winter to investigate the sensitivity of the allowed indoor set temperature band-
width for pre-heating. Figure 4.3 shows that higher electricity price volatility increases
the incentive to shift energy by pre-heating the building. Comparing the price scenarios
1 to 2,3 and 4, we see that price 1 creates a greater incentive to shift load than price 2
and 3. This is due to the nature of the price profiles. Price 1 is changing much more
frequently than the other three prices. But with the implementation of thermal storage,
shifted demand is much higher in the price scenarios 3 and 4. The thermal storages com-
pensate for the lower frequency of price changes by storing much more energy over a longer
period of time with lower losses. The correlation between the allowed indoor temperature
bandwidth and the energy shifted by the optimization is not linear because of the increase
in thermal losses with higher indoor temperatures.

If the building has installed thermal storages, the shifted energy rises to around
450 kWh/year in the first price scenario. This result is in line with Fitzpatrick et al.
(2020) where a building with 310m2 floor area, 2000l buffer storage, and 400l DHW stor-
age shifts a maximum of 1370 kWh of electric energy. The allowed indoor temperature
is still impacting the total amount of shifted load even though the load shifting is done
predominantly by the storages. The amount of energy that is shifted with the implemen-
tation of thermal storages is by a multitude higher in this case. The absolute amount
of shifted energy through thermal storages is almost independent of the building type.
Buildings with higher thermal mass and higher energy demand can shift more electricity
through the thermal mass. Thermal storages are prioritized for load shifting because the
losses are smaller in most cases. Thus, any price change that would incentivize a house to
pre-heat will give an even higher incentive to shift load via the thermal storage. Although
thermal storages efficiently shift energy with minimal losses, using a building’s existing
thermal mass provides a low-cost way in terms of investment costs if storages are not
already installed.
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Figure 4.3: Energy shifted over one year in the building with no thermal storage and the
building with DHW storage and buffer storage. The temperatures represent the maximum
allowed indoor temperatures during winter. Mascherbauer et al. (2024)

4.1.2 Analysis on Austrian SFH building stock
In dependence of the four electricity price signals, the potential load shift for the whole
SFH building stock in Austria is presented in the following. The total amount of elec-
tricity shifted over one year in each price scenario is visualized in Figure 4.4 on the left
side. In this case only the thermal mass of the buildings is used for load shifting. The
potential of the building stock to shift load via HPs is around 20 GWh when considering
the price from 2021. This corresponds to approximately 1.5% of the electricity consumed
by these buildings within the same time period. The increasing volatility in price scenarios
2, 3 and 4 leads to a significant increase in electricity being shifted showing that variable
price profiles can give an increasing incentive to shift loads. On the right hand side of
Figure 4.4 the maximum daily peak-to-peak difference of the aggregated load profiles of
SFH with HP in the Austrian building stock is visualized. The reference case represents
the peak-to-peak demand for the case of no DR. In literature, it is often mentioned that
load shifting will result in an even higher peak demand (Nicolas Kelly et al. 2014). In the
resulting aggregated load profiles, this effect is only marginally visible except in autumn.
The electricity price in 2021 is becoming so volatile and high that daily peak-to-peak loads
are significantly higher than the reference and all the other scenarios. The peak-to-peak
difference of all HP heated SFH buildings in Austria reaches a maximum of 350 MW.
The peak demand in the Austrian grid is in the magnitude of 80 GW. Therefore poten-
tial of the shifting electricity through the thermal mass of SFH is small but not neglectable.

As shown before, buildings with implemented storage capacities can shift a lot more
electricity. To see how strongly storage capacities can influence the peak-to-peak differ-
ence on a daily basis and the overall shifted demand a scenario where every single building
with an HP has a 750l heating buffer storage and a 400l DHW storage was generated.
The real market penetration of hot water storage in HP-operated buildings in Austria is
unknown. The following results serve as a benchmark. In Figure 4.5 we can see that
the peak-to-peak difference is more than two-folding compared to the reference, reaching
700 MW. Also peak demand is reached throughout the year independent of the price sce-
nario. However the occurrence of high peak-to-peak demands increases with increasing
price volatility. The total amount of electricity shifted rises to 74 GWh in price scenario
1 which is almost four times higher than without thermal storage capacity.
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Reference
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Figure 4.4: Left: Amount of electricity shifted throughout the year based on the different
price scenarios in Austria. Right: Box plots of seasonal effect in grid demand, based on
daily peak-to-peak amplitude difference. Mascherbauer et al. (2024)
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Figure 4.5: Left: Amount of electricity shifted throughout the year based on the dif-
ferent price scenarios with buildings having thermal storages in Austria. Right: Box
plots of seasonal effect in grid demand, based on daily peak-to-peak amplitude differ-
ence. Mascherbauer et al. (2024)

The results show that HPs can effectively shift electricity through the thermal mass.
Peak loads increase only marginally for buildings without any storage capacity. Thermal
losses that occur and indoor set temperature constraints limit the maximum peak power
when optimizing such buildings’ heating demand. However, with available storage, the
peak-to-peak demand can more than double. This is especially relevant when HP pen-
etration in a certain region is very high, and HPs are operated with the same strategy.
This problem can be avoided by providing different price incentives for users. It is there-
fore crucial that the price signal reflects electricity scarcity in such a system. Overall the
results show that there is significant potential for DR in the residential building stock.
This potential can increase even further in the future depending on decarbonisation am-
bitions and energy scarcity. Furthermore, the potential for the thermal mass is bigger if
temporarily cooling down buildings to a certain temperature (e.g. 18°C) is considered as
well.
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4.1.3 Economic viability of prosumagers using the thermal mass
DR without any additional incentive is unlikely to be done by homeowners from an eco-
nomic point of few as shown in Mascherbauer et al. (2024). The annual operation cost
savings for SFHs using only the thermal mass to shift their demand is below 25€ per year.
The four prices are the same as in the previous section and are described in Section 3.3.3.
In Figure 4.6, the annual operation cost savings for each SFH building type in Austria
are visualized without any thermal storage. With a higher volatility in price change, the
economic optimization of HP becomes more lucrative. The optimization is less lucrative
for modern buildings. These buildings are characterized by lower thermal mass and a
higher degree of insulation. Thus, they have a much lower heat- and electricity demand.
The same reason accounts for the difference between air source and ground source HP
since the ground source HP is more efficient. Because of the high volatility in the 2021
price profile at the end of the year, the implementation of a HEMS is more lucrative in
the buildings compared to the second price profile. A sensitivity analysis showed, that
with prices prior to 2021, economic gains through prosumaging were always lower than
in the second price scenario. The annual operation cost reductions are generally between
2 and 23€ depending on the price profile and the energy demand of the house. If these
buildings had a 750 L heating buffer and a 400 L DHW storage, the cost reductions would
rise between 5 and 95€ without taking any investment costs into account. Therefore,
implementing a HEMS into buildings that would use only the thermal mass for demand
shifting must be very cheap (between 10 and 100€, depending on the building type) to
yield return of investments after, for example five years. Without additional monetary
incentives, homeowners are unlikely to tap into the potential of load shifting through the
thermal mass alone. This finding is in accordance with other studies that suggest that the
additional investments by individual buildings will not be compensated by participating
in DR (Härkönen et al. 2022).

Figure 4.6: Operation cost savings per building type and HP type in all four electricity
price scenarios. Mascherbauer et al. (2024)

Analysis for MFHs resulted in similar cost savings percentage wise, meaning for the
single homeowners the annual savings are also small. In literature it is often suggested that
DR using HPs could alleviate grid stress. However, to tap into this potential, prosumagers
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will likely need an additional reimbursement. The potential impact of prosumagers on the
distribution grid will be analyzed in section 4.4.

4.2 Change in grid- and PV self-consumption of prosumagers
in Austria

In this section it is investigated how potential prosumagers change their PV self-consumption
and grid demand. The results are taken from Mascherbauer et al. (2022). Two different
price scenarios are investigated (see Section 3.3.3), a flat and a variable electricity price.
Eleven representative SFH for Austria were modeled with different installations regarding
PV, battery and buffer heating tank (Mascherbauer et al. 2022). Every building was mod-
eled with each possible combination of hot water tank, PV and battery resulting in 528
simulations and optimizations for a specific price scenario. Figure 4.7 illustrates the PV
self-consumption rate for these 528 simulations under reference and optimization modes
with a flat price profile.
Buildings with PV increase their PV self-consumption as the optimization minimizes elec-
tricity bought from the grid. The increase in self-consumption is especially prevalent in
buildings that do not have a battery installed which already increases self-consumption
significantly without any optimization (see Figure 4.7 in the bottom right). The self-
consumption rates for the SFHs with a 5 kWp and 10 kWp PV system without battery
are around 32% and 22%, respectively. They will be increased to 47% and 31% when
battery is available without optimizing the energy consumption. These results are in the
range consistent with existing studies (Yildiz et al. 2021; Luthander et al. 2015). Obvi-
ously, the self-consumption rate is zero for all building configurations that do not have
a PV system. With a 10 kWp PV, the overall consumption rate drops compared to the
5 kWp PV because electricity surplus can not be utilized. The impact of thermal storage
on self-consumption rate is limited, similar to the battery. Results show that the self
consumption rate is not heavily dependent on the building type and its energy demand
although buildings with a higher heating and subsequently electricity demand naturally
will have a higher self-consumption rate.
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Figure 4.7: Impact of HEMS on PV self-consumption rate of individual SFH (flat price)
in Austria (Mascherbauer et al. 2022)

Buildings having a PV and maximizing their self-consumption under a flat electricity
price scenario naturally decrease their grid electricity consumption. Figure 4.8 shows the
electricity demand of SFHs in Austria under a flat electricity price with different configu-
rations. First, as shown in the top-left plot, buildings with better insulation demand less
electricity from the grid, and optimization can further reduce this amount. The maximum
annual decrease of grid-electricity consumption through the optimization is 40.69%, which
is found for a well-insulated building (ID = 11) equipped with a 10 kWp PV (no battery),
an AC, a ground source HP, and thermal storage. Second, the adoption of PV signifi-
cantly reduces the grid-electricity consumption, and the larger size of PV leads to lower
grid-electricity demand (up-right). Third, as shown in the left bottom plot, the thermal
storage has limited impact on the optimization results. The key reason is that, when the
PV generation is higher in summer, space heating is not needed, so the optimization will
not save the excess PV-generation in the tank. The thermal tank is only used by the
buildings with 10 kWp PV systems because they generate enough electricity to be stored
in the tank in winter. The use of the battery (bottom right) results in much lower electric-
ity demand in the reference mode for buildings with PV as most of the surplus electricity
can be stored and used. In the optimization mode, the difference is not significantly vis-
ible because the optimization can also utilize other storage potentials (eg. pre-heat/cool
the building) when no battery is available. If the optimization is performed on buildings
without PV under a static electricity price, a minimum decrease in grid electricity con-
sumption can be observed as air source HPs shift their consumption very slightly based
on the hourly COP which varies based on the outside temperature.
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Figure 4.8: Impact of HEMS on grid-electricity consumption of individual buildings (flat
price) in Austria.The height of the violin represents the distribution. The width represents
the density of plotted results for different buildings. Mascherbauer et al. (2022)

The violin plots showed that the optimization impacts the total yearly energy con-
sumption and increase the PV self-consumption rate depending on the installed appli-
ances. In the following the Austrian SFH building stock was grouped into 10 groups
defined in Chapter 3.3.1. Each group represents the Austrian SFH buildings stock with
certain installations (PV, Battery (B), hot water tank (T)). The number of buildings with
the specifications shown in Figure 3.3 are broken down by percentage into the individual
building classes. Subsequently, the results are calculated for all building classes with the
respective specifications in the optimization and reference mode. Tank sizes were either
zero or 1500l, PV size zero, 5 and 10 kWp and the battery had a capacity of zero or
7 kWh. Table 4.1 shows these ten building configurations with the corresponding change
in yearly energy demand if all buildings with this configurations were optimized with a
flat or variable electricity tariff. Buildings with no PV don’t change their consumption
with a flat price signal optimization. But they increase their consumption by 1% with
a variable price. The variable price used in this scenario is from 2016 and described in
Section 3.3.3. The absolute values of changes in yearly grid electricity demand are very
different within the different the number of buildings in each group varies strongly (see
Figure 3.3). The resulting electricity demand is shown in Figure 4.9. The bars represent
the total electricity demand from the grid on a logarithmic scale. The percentage change
in grid-electricity consumption through the optimization of each configuration is shown
on the right-hand axis for both price scenarios. The absolute values of these percentages
are the ones presented in Table 4.1. The grid-electricity consumption is reduced by 7.4%
and 17.9% for a 5 kWp PV and a 10 kWp PV (flat price) and by 7.2% and 17.8% (vari-
able price), respectively, without any storage implemented. This highlights the potential
of utilizing thermal mass as storage. The variable price leads to a higher utilization of
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the thermal storage to bridge high prices and thus the percentage decrease of electricity
consumption is less for those houses. In total, the optimization can lower the annual grid-
electricity demand by 10.4 GWh or 6.8 GWh for the whole investigated building stock
under the flat and variable price scenarios, respectively.

Table 4.1: Grid-electricity consumption increase and decrease for buildings with cer-
tain configurations (unit: MWh) in Austria

Building
configuration

Flat
[MWh]

Variable
[MWh]

Building
configuration

Flat
[MWh]

Variable
[MWh]

PV0B0T0 0 1451 PV0B0T1500 0 1796
PV5B0T0 -1587 -1551 PV5B7T0 -5 1

PV5B0T1500 -4275 -3946 PV5B7T1500 -32 -22
PV10B0T0 -270 -268 PV10B7T0 -1 -1

PV10B0T1500 -574 -555 PV10B7T1500 -4 -3

Figure 4.9: Impact of HEMS on grid-electricity consumption of the building stock in
Austria. Mascherbauer et al. (2022)

The decrease in grid-electricity demand is solely due to the higher self-consumption of
PV. Especially buildings without any kind of storage system increase their self-consumption
when becoming prosumagers. Figure 4.10 shows the aggregated self-consumption rate of
buildings with different configurations. The grey bars represent the results from the refer-
ence mode. In the reference mode thermal storage is not utilized, thus the buildings with
a thermal storage show almost the same increase in self-consumption rate as buildings
without a thermal storage. With larger PV sizes the self-consumption rate for buildings
with buffer tanks would surpass the ones of buildings which shift their demand using the
thermal mass. For buildings with a battery storage, the HEMS does not result in such a
high increase in self-consumption because the battery already increases self-consumption
significantly in the reference mode. The difference in self-consumption increase between
the flat and the variable price signal is minimal and can be neglected as the feed in tariff
is too low for the optimization to not maximize self-consumption.
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Figure 4.10: Impact of HEMS on PV self-consumption rate of the building stock in Austria.
Mascherbauer et al. (2022)

The analysis of the single buildings showed that electricity demand reduction is only
significant for buildings with PV installed and no battery. This also accounts for buildings
that are optimized under an hourly electricity tariff. The total electricity consumption will
rise through losses during load shifting, however the increase in PV self-consumption re-
duces the total annual demand for those buildings. Any building without PV will increase
its electricity demand from the grid through DR. On SFH building stock level the total
electricity demand reduction using optimization would be around 6.7 GWh and 3 GWh for
flat and variable prices respectively. This is in the range of 0.8-1.5% of the total electricity
demand of these buildings. DHW tanks were not considered in this analysis which would
have a similar effect as the batteries. The self-consumption would not be increased as
much through the optimization. That being said, the total possible reduction in energy
demand through optimization of all HP operated SFH buildings in Austria is probably
slightly overestimated because many buildings owning a HP will very likely also have a
DHW storage installed.

4.3 Analysis on EU level
For the analysis of the EU member states, the building stock data was modeled with the
model Invert/EE-Lab as described in Section 3.3.1, and prices were modeled using the Bal-
morel model (see Section 3.3.3). The following shows how prosumaging in the EU could
affect specific grid friendliness indicators, the overall electricity demand, peak consump-
tion, and how the flexibility potential changes throughout the year. In this evaluation,
the electricity prices are distinguished into five scenarios: without grid fees (0 cent/kWh
grid fees) and subsequently rising grid fees (5, 10, 20 and 40 cent/kWh grid fees). In the
price scenario without grid fees, prices can go down to zero for the end consumers with the
effect of excessive increase in consumption in these hours. This scenario can be seen as an
upper limit for the load-shifting potential. Additionally the effect of a capacity price on
the peak demand is investigated within this section. The results presented in this section
are based on Mascherbauer et al. (2025b) and Mascherbauer et al. (forthcoming).
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4.3.1 Shifted electricity demand
The shifted electric energy share (see Equation 3.37) through residential buildings visual-
ized in Figure 4.11, is high in central Europe in countries with relatively high heat demand
(Austria, Germany, Czech Republic) and high volatility in electricity prices. The northern
countries exhibit a low amount of shifted energy share because their price spreads are low,
and it is not lucrative for them to shift demand. Additionally, the shifted energy share is
low due to the high heating demand. Portugal, on the other hand, shows a high shifted
electric energy share despite low price volatility. This is because heating demand in Portu-
gal is very low, hot-water production has high share of the total consumption and can be
easily shifted throughout the year using DHW storage. Increasing grid fees decreases the
share of shifted electric energy in the residential sector. With higher grid fees, the relative
cost of thermal losses increases, and thus, the price spread has to be higher to offset these
losses. The difference between the relative shifted electricity demand in 2030 and 2050 is
counterintuitive since the heating demand declines overall due to the underlying climate
change in the weather scenario and the better insulation of buildings. Also, the standard
deviation of the prices increases from 2030 to 2050. However, the frequency of changes
in price decreases in 2050 compared to 2030 by about 15%, which leaves less opportunity
for the buildings to shift their demand. Additionally, the mean wholesale electricity price
increases from 2030 to 2050, leading to the same effect observed when grid fees increase.
However, what can not be observed in Figure 4.11 is that the absolute amount of shifted
electricity in 2050 is higher than in 2030 (see Figure 4.16), depending on the scenario
simply because a lot more buildings have HPs installed.

Figure 4.11: Shifted electric energy share of all buildings with HPs in each country in 2030
and 2050.

Looking at the average daily grid demand of prosumagers in Figure 4.12, it is evident
that even though some buildings have a PV, the main consumption increase occurs at
midday when PV production is at its peak. Electricity prices at this time are often low
due to the surplus of PV production (see Figure 3.14). Therefore, prosumagers effectively
increase the share of renewable energy, mainly PV, into the grid. This, of course, underlies
the assumption that the grid constraints allow it to do so and that enough excess renew-
able production is available. Looking at the mean price over a day, it becomes clear that
the electricity price will generally be higher in 2050, reducing the shifted demand. With
higher grid fees, demand shifting is reduced, and the average normalized grid demand
moves closer to the reference case.
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Figure 4.12: Daily average of the normalized grid demand comparison between residential
consumers (reference) and prosumagers over all EU Member States.

For the 20 cent/kWh grid fee scenario, Figure 4.13 and 4.14 show how much demand is
shifted daily, summed up over all the countries. The countries are color-coded after their
average temperature, shown in the legend as a map. Positive values represent an increase
in demand for prosumagers compared to their consumer counterpart at certain hours of
the day. In contrast, negative values represent a decrease in demand in other hours. Note
that the daily decrease and increase in demand are not equal because of losses and in-
creased self-consumption of PV. In Figure 4.13, it is assumed that 10% of all prosumaging
buildings have an AC installed. The shifted electricity is much lower in summer than in
winter, as mainly DHW consumption can be shifted. If the share of cooled buildings is
increased to 80% which is visualized in the shifted electricity is increased in Summer, with
buildings shifting the cooling demand by pre-cooling the indoor environment. The cooling
consumption overlaps well with PV generation, leading to a higher PV self-consumption
rate in southern countries. However, the majority of electric energy is still shifted in winter
due to the heating demand. Most cooling-induced demand is already covered by locally
produced PV in the reference case, so increasing the share of cooled buildings has a limited
effect.
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Figure 4.13: Daily shifted demand in the EU member states with 10% of prosumagers
using AC and 20 cent/kWh grid fees. Negative values represent the sum of daily demand
that has been reduced in certain hours. In contrast, positive values represent the increase
in demand in other hours during each day through prosumaging. The legend for the color
codes is presented as a map, representing the average outdoor temperature in each country.

Figure 4.14: Daily shifted grid demand in the EU member states with 80% of prosumagers
using AC and 20 cent/kWh grid fees. Negative values represent the sum of daily demand
that has been reduced in certain hours, while positive values represent the increase in
demand in other hours during each day. The legend for the color codes is presented as a
map, representing the average outdoor temperature in each country.

In previous results, it was often mentioned that the shiftable demand for buildings
increases substantially when thermal storage is added. Figure 4.15 shows how much ther-
mal demand is shifted throughout the year in 2030 and 2050 through the thermal mass
distinguished by heating and cooling, DHW tanks, and heating tanks. The high winter
spikes in 2050 are due to large electricity-price spikes. In summer, shifting is primarily due
to hot-water demand. The slight increase in daily shifted demand for the heating tank in
Summer is attributed to buildings partially filling their tanks with excess PV generation
when feed-in tariffs are set to zero. In winter, a large part of the shifted demand can be
attributed to the thermal mass of the buildings. In total, 30% to 40% of all the thermal
demand shifted, was shifted through the thermal mass and 28% through DHW storage,
and the remaining through the heating tanks with 20 cent/kWh grid fees. The shares
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between these three options for thermal shifting change slightly in all other price scenarios
or throughout the years. Without grid fees, more than double the amount of thermal
energy is shifted in all countries collectively and the thermal mass shifts 42% of all the
thermal energy in 2050. These numbers vary slightly when converting the thermal energy
into electric energy. Because of the lower COP when charging a storage, the amount of
electric energy shifted through the thermal mass is slightly lower while the DHW and
heating tank contribute slightly more.

This result shows that the thermal mass, even when buffer heating tanks are available,
is an economical option to shift electricity for short periods. It is often the preferred option
to shift demand over short times, especially in efficient buildings because the efficiency of
the HP is higher due to the lower supply temperature compared to the buffer tank. The
thermal tanks were sized with 30 L/kW maximal thermal power of each HP, though in
reality, actual tanks can be larger. At the same time, these buffer heating storage can be
regarded as part of the heat distribution system in many cases, as they are used to ensure
a smooth operation of the HP. Thus, they often do not require additional investment to
tap the residential building stock’s flexibility potential. In 2050, cumulative daily peaks
for shifting thermal energy sum up to 1 TWh due to high price spreads.

Figure 4.15: Daily thermal shifted demand distinguished between thermal mass, cooling,
DHW and heating tank in the EU member states with 20 cents/kWh grid fees.

The analysis of Mascherbauer et al. (forthcoming) has shown that fixed grid fees have
a pronounced impact on the potential of the residential building stock to shift electricity
loads using HPs. Higher grid tariffs make load shifting less economically attractive. Fig-
ure 4.16 shows the total shifted electricity demand in the EU through HPs in the different
scenarios with and without peak pricing. Higher grid fees reduce the shifted amount of
energy because the relative costs of thermal losses increase, and thus, the price spread
has to be higher to offset these losses. By adding a capacity component to the price, the
total shifted demand is reduced, especially in scenarios with low grid fees. For high grid
fees, the peak price does not have any effect. In 2050, adding the capacity price to the
scenario with 40 cent/kWh grid fees increases the shifted electricity demand, as houses
shift more electricity to reduce certain peaks. The difference between the relative shifted
electricity demand in 2030 and 2050 is not intuitive since the heating demand declines
overall due to the underlying climate change in the weather scenario and the better insu-
lation of buildings. Also, the price volatility (standard deviation) increases from 2030 to
2050. However, the frequency of changes in price decreases in 2050 compared to 2030 by
an average of 15%, which leaves less opportunity for the buildings to shift their demand.
Additionally, the mean wholesale electricity price increases from 2030 to 2050, leading to
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the same effect observed when grid fees increase. Still, the absolute shifted electricity in
2050 is higher than in 2030, because according to the modeled building stock scenario, a
lot more buildings have HPs installed in 2050 than in 2030.

Figure 4.16: Shifted electricity demand in the EU through with different grid fees and a
50 EUR/kW peak price (shaded bars).

When comparing the results of shifted electricity in Figure 4.16 to the needed hourly
flexibility of 362 TWh stated in the ACER (2023) report, it becomes evident that the
building stock could offer around 2.5% to 8% of this needed short-term flexibility in 2030.
The next section discusses how the peak electricity demand on a national level can change
due to simultaneous load shifting.

4.3.2 Peak demand
In the previous analysis, we always considered the extreme comparison of all buildings
heated with HPs becoming prosumagers or staying consumers. Having every building
respond to hourly tariffs could affect the peak load on a national level. Therefore, Fig-
ure 4.17 shows how the electricity peak demand changes on a national level over the share
of prosumagers. The lines represent the peak increase in overall grid demand for an in-
dividual country. This includes the demand of the residential sector and the complete
non-residential sector. Without grid tariffs (0 cent/kWh), it is visible that some countries
will increase their overall grid peak by almost 8% in 2030 and more than 10% in 2050
for a 100% share of prosumagers. Increasing the grid tariffs reduces this potential peak.
Peak demand in 2050 is lower in most countries as the wholesale prices are higher on
average. If the share of prosumagers stays below 25%, the peak demand increase is not
expected to rise by more than 2% in any country. With higher grid fees, the peak demand
in most countries even declines slightly (≈0.01%). Although not well visible in the graph,
in some countries, an optimum share of prosumagers exists when it comes to reducing grid
demand peaks. This optimal share depends on multiple factors, including prices, weather,
renewable generation, the existing peak demand, available flexibilities from other sectors,
and the ratio of available HP power compared to the overall grid demand. Countries that
experience the highest peaks are those countries where electricity prices have high spikes
and the ratio of installed heat pump capacity to overall grid demand is high.
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2030
2050

Figure 4.17: National peak demand increase for EU Member States over the share of
prosumagers and different levels of grid fees in 2030 and 2050. Each country’s peak
demand is represented by a line over the prosumager share.

When introducing a capacity-based component of the grid fees, results show that, like
reported in literature, the peak electricity load of all prosumagers on the country level is
reduced significantly, which can be seen in Figure 4.18. The optimization even reduces
the peak demand of prosumagers compared to their consumer counterparts, resulting in
a negative peak demand increase. With the capacity pricing in place, the fixed grid fees
do not play a relevant role for the peak demand on the prosumager household level. As a
result, the peak electricity demand on a national level, shown in Figure 4.19, is also reduced
in most cases by introducing the peak pricing. Especially for the scenarios without grid fees
and 5 cent/kWh, maximum peaks are reduced significantly (from 12 to 6% in the worst
case). However, this is not the case for all countries. In some countries, the reduction
of prosumager peaks through peak pricing leads to an increase in national peak demand
because the prosumagers no longer shift demand away from the original peak hour. For
the scenario with 40 cent/kWh grid fees, the peak pricing has minimal influence, national
peaks are hardly reduced or increased.

Figure 4.18: Peak electricity de-
mand increase of all prosumagers
compared to all consumers on the
national level with and without
peak pricing.

Figure 4.19: National increase in
peak electricity demand because of
prosumagers with and without peak
pricing.
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4.3.3 Change in total grid demand
Prosumagers have the potential to change the overall electricity demand. Through exces-
sive load shifting and the accompanying losses, grid demand can rise. This is not necessar-
ily a negative effect from a system perspective, as the additional grid demand stems from
hours with low prices, which are often correlated to renewable generation. Figure 4.20
shows the change in electricity demand of residential buildings using HPs. As grid fees
are increasing, and no PV feed-in tariff is considered in this thesis, PV self-consumption is
maximized in every scenario, visible in Figure 4.21. Maximizing PV self-consumption can
lead to a lower overall electricity grid demand at the country level. The average PV self-
consumption is around 85%, which is due to the fact that rooftop area is strongly restricted
in the building stock scenarios. Thus, many buildings have relatively small PV systems
installed (1.25 to 3.5 kWp , see Figure 3.7 in Section 3.3.2), reaching self-consumption
rates of nearly 100%. The ”simulation” bar represents the PV self-consumption over all
HP-heated buildings without optimization. In 2030, the optimization has a lower PV self-
consumption with 0 cent/kWh grid fees because at times of PV generation, prices go down
to zero, and the optimization uses electricity from the grid and sells PV, as it makes no
difference. Figure 4.20 only shows the change in demand for these residential buildings
with HPs. Due to lower overall electricity prices in 2030, the change in grid demand from
HP-heated buildings operated by prosumagers is positive under both 5 and 10 cent/kWh
grid fees, as more load is shifted and losses increase. By 2050, however, higher electricity
prices together with the high PV self-consumption result in a reduction of grid demand
even with a 5 cent/kWh grid fee. The total overall electricity demand change at the coun-
try level remains below 0.1% except for the scenario with zero grid fees, where it increases
up to 0.4%.

Figure 4.20: Change in residential grid demand in the
EU through prosumaging over prices with different grid
fees.

Figure 4.21: Mean PV self-
consumption over all build-
ings with HP in the EU
member states.

4.3.4 Flexibility factor
For the EU Member States (except Malta and Cyprus), the Flexibility Factor was calcu-
lated based on the grid demand of all potential consumers and prosumagers. The Flexibil-
ity Factor expresses how much electricity is used in the upper and lower price quartiles and
is expressed within a range between -1 and 1. A high Flexibility Factor represents highly
flexible demand, meaning that less electricity is used at high price times (4th quartile) and
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more at low price times (1st quartile). Figure 4.22 shows the Flexibility Factors for all EU
countries as boxplots. The reference case refers to where prosumagers do not exist, and no
load is shifted. Through prosumaging, the Flexibility Factor increases in every country.
The lower increase in the Flexibility Factor in 2050 compared to 2030 is due to the lower
amount of overall shifted electricity compared to the total consumed demand of the same
buildings. In Figure 4.23, we see the total EU electricity demand change at high and low
prices. With lower grid fees, the relative cost for load shifting is lower. Therefore, we
see a higher demand increase at low prices (1st quartile) than the reduction at high time
prices due to higher losses. With very low electricity grid fees, the change in demand on
an average national level is already below 1%. However, it is increased around 10-75% in
the first quartile and reduced up to 17% in the 4th price quartile for the buildings that
perform the DR. Reducing the overall electricity demand at high prices could indicate a
potential to reduce CO2 emissions. At the same time, the increase in low prices would
likely contribute to a higher share of renewable generation in the electricity mix or re-
duced curtailment of renewable generation. However, the question remains if renewables
can completely cover this additional demand. A spatial analysis of the demand coupled
with a grid model would be required to answer this question.

Figure 4.22: Flexibility factor over
EU27.

Figure 4.23: Average change in the
total grid demand in the EU in the
1st and 4th price quartile.

4.3.5 Grid support coefficient
The GSCrel shown in Figure 4.24 is lowered in every country by prosumagers, meaning
that DR can be beneficial for the electricity grid. Interestingly, theGSCrel drops even more
when grid fees are increased in 2050. This means that even though more demand is shifted
with lower grid fees, the resulting DR of prosumagers is less system-friendly. With zero
prices, very inefficient DR actions are taken, which becomes evident when analyzing the
change in total grid demand. The GSCrel profits from the overall decrease in demand and
increased PV self-consumption, which is why the scenario with the highest grid fees shows
the best improvement in grid support through prosumagers in 2050. This observation
cannot be made in 2030 for lower grid fees, although the scenario with the highest grid
fees again results in the highest GSCrel. Since the GSC is an indicator weighted by the
price, in 2050, with overall higher prices and higher price prominence, minimizing the
demand from the grid increases the GSCrel. In 2030, the average prices are much lower
(see Figure 3.14), thus the GSCrel can also increase through excessive load shifting if the
loads in high price hours can be reduced significantly at the same time. Between 10 and
20 cent/kWh grid fees, there seems to exist a minimum for the GSCrel where the load is
shifted to low-price hours. However, the additional losses outweigh the benefits because
not enough load is shifted away from high price hours to increase the GSCrel.
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Figure 4.24: GSCrel for all countries in the EU.

4.3.6 Resume
The analysis of this section has shown that fixed grid fees have a pronounced impact on
the potential of the residential building stock to shift electric loads using HPs. Higher grid
tariffs make load shifting less economically attractive. The difference in shifted electricity
demand between the countries is determined mostly by the retail electricity price, the
number of installed HPs, and the weather. Building stock characteristics have a minor
effect. Load shifting is primarily done in winter, even in a scenario where 80% of the
analyzed buildings have an AC installed. The countries shifting the most thermal demand
and electricity using HPs are the central-eastern countries due to relatively high heat-
ing demand and volatile electricity prices. In the northern countries, prosumagers don’t
show a high willingness to shift demand due to their steady electricity prices. In contrast,
in southern countries, the low heat demand limits the amount of demand that could be
shifted. Even though buildings have hot water storage installed, the thermal mass is still
used to a great extent for load shifting, underlying its potential as a short-term storage
for HP-heated buildings. It should be noted that the building stock scenario used for the
future prediction of the building stock status is quite ambitious, with a strong renovation
rate and high uptake of electrified heating systems. Therefore, results on the total shiftable
electricity demand might be an overestimation, being strongly dependent on the absolute
number of HPs installed in the future and the uptake of Prosumagers so that HPs can
actually respond to price signals. At the same time, batteries and EVs were neglected
in this specific analysis, which can provide large additional flexibility depending on the
uptake of EVs and battery storage.

This section also tried to analyze what impact prosumagers could have on the total grid
demand and if prosumaging would benefit the electricity grid itself. Through higher PV
self-consumption rates and if DR is done moderately, the overall grid demand can even be
reduced annually. In this analysis, stationary batteries or electric vehicles were excluded,
which could increase the PV self-consumption of many buildings without any optimiza-
tion. When it comes to ’grid friendliness’, the author used the Flexibility Factor and the
GSCrel to show how grid-friendly prosumagers are on a country-level basis. Both these
factors provide information on the ’grid friendliness’ based on the hourly electricity price.
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The GSC in this analysis showed that the DR of prosumagers could be beneficial for the
grid, even more so if grid fees are high and losses during load shifting are minimized. Since
the actual grid is not taken into account in this approach, the author wants to point out
that the ’Grid support coefficient’ can be interpreted as a system support coefficient. The
definition of the GSC (Klein et al. 2016) does not allow any interpretation of the status of
the underlying electric grid. Since this modeling approach is not directly coupled to a grid
model, such an analysis can not be made. To circumvent this problem, in literature, the
correlation between the day-ahead price and the residual load is often used (Klein et al.
2016; Klein et al. 2017; Sperber et al. 2025). The Flexibility Factor shows that through
DR of prosumagers, the overall electricity consumption in the EU could increase by more
than 1% (depending on grid fees) at low price times and subsequently be decreased at high
price times.

At the same time, excessive DR from HPs can lead to higher electricity demand peaks
on a national level, which has also been reported in literature (Sperber et al. 2025). How-
ever, if grid fees are high enough (>10 cent/kWh), new load peaks created through pro-
sumagers should not pose a problem. As shown in this analysis, the peak load only
increases in countries with very high fluctuations in the electricity price signal and if pro-
sumager shares go up to 100%. Realistically, prosumager shares in 2030 will be below
50%. For countries where the DR could significantly increase peak demand, a different
approach should be taken to incentivize buildings to shift load, or a capacity price should
be added to the grid fees. It was shown that a capacity-based price can reduce peak
loads significantly while the amount of shifted electricity is only slightly reduced. Another
option would be to introduce different hourly grid tariffs in the regions, better reflecting
electricity scarcity and preventing the simultaneous reaction of too many prosumagers to
the same price signal. This hypothesis, however, is subject to further research and can not
be verified with the current approach. A more effective way to use the building stock’s
flexibility could also be through direct load control of the grid operator (Elma et al. 2022;
Valovcin et al. 2022). At the same time, direct control has been identified as a possible
barrier to user acceptance (Klein et al. 2017). The results presented above vary relatively
highly within the different countries. A detailed analysis of each country with a spatial
distribution of the loads to investigate the possibility of prosumagers reducing grid conges-
tion should be subject to further research. To shed more light on the effect prosumagers
can have on the electricity grid, the following section will analyze how prosumagers could
affect future distribution grid investment needs on a local level.

4.4 Prosumagers and the distribution grid
One limitation of the FLEX model is that it is not connected to an electricity grid model,
which makes it difficult to make assumptions about the feasibility of prosumagers. In this
section, the possible impact of prosumagers on a detailed spatial granularity is analyzed,
combining the FLEX model with the Reference Network Model (RNM) to model future
investment needs for the distribution grid. This way, the impact of the simultaneous
reaction of multiple prosumagers in close vicinity on the distribution grid is analyzed. The
results presented in this section are taken from Mascherbauer et al. (2025a).

4.4.1 Peak demand
In Section 4.3.2, the peak demand did not change significantly as long as reasonable grid
tariffs were applied. The share of prosumagers of HP-heated buildings did affect load
peaks. We see a different effect in the detailed analysis of Leeuwarden and Murcia. Peak
demand is not a result of many prosumagers shifting load with their HPs. Instead, it
is defined by the coldest day of the year, electrification rates in an area, and the overall
thermal insulation level of the buildings and EVs. Figure 4.25 shows the aggregated peak
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demand of all buildings together in each region for 2030, 2040, and 2050. We can clearly
see that on an aggregated level, the building-related peak demand (without EVs) decreases
in Murcia due to the phasing out of direct electric heating systems. On the other hand,
the building-related peak load strongly increases throughout the years in Leeuwarden due
to the replacement of gas boilers with HPs. The strong policy scenario leads to a higher
power consumption in 2040 due to higher adoption of HPs, but in 2050, the effect of better
insulation counteracts, and we see lower peaks in the strong policy scenario in both case
studies. Without electric vehicles, the share of prosumagers only marginally impacts the
total peak demand (from 0-0.5% change in peak value). Prosumagers decrease the original
peak demand significantly. However, by shifting demand, they create new peaks, leading
to a similar overall peak demand occurring at a different hour.

Looking at the scenarios with electric vehicles, the difference between the prosumager
scenarios is most visible. The simultaneous EV charging of prosumagers leads to massive
power peaks. In Leeuwarden, the number of EVs is much higher than in Murcia, leading
to a substantially higher peak load. This peak demand shows that simultaneous charging
of EVs will most likely not be possible in the future and should not be incentivized by
hourly prices for EVs in regions with high EV adoption. However, in Murcia, we can also
see that the uptake of EVs overshadows the impact of electrified heating systems. There-
fore, applying smart EV charging (like in Lotfi et al. (2022)) is crucial, which will need a
different approach for coordinated charging.

Leeuwarden Murcia

Figure 4.25: Peak grid load on the aggregated level on the peak demand day for different
scenarios in Leeuwarden and Murcia. Mascherbauer et al. (2025a)

4.4.2 Peak feed in
In Section 4.2, it has been shown that prosumagers increase PV self-consumption through
their energy optimization. Thus, locally, the maximum peak of PV generation fed to the
grid is reduced with a higher share of prosumagers. Figure 4.26 shows the peak load
fed to the grid on the day with the highest feed-in (a sunny day in Spring where neither
heating nor cooling is needed). There is a clear difference in the two policy scenarios as
more PV is adopted in the strong policy scenario. Since both areas are urban and the PV
areas are not larger than 15 kWp per building, significant parts of the generation can be
self-consumed or stored in thermal and electrical storage. Because the area in Murcia has
more large MFHs, the maximum amount of electricity fed to the grid is smaller than in
Leeuwarden, with a rising PV share. In the scenarios with EV, the total peak feed-in is
reduced because some of the vehicles can be charged by the surplus of PV. However, the
effect on EVs charging using excess PV generation at the hour of maximum feed-in is not
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very pronounced because many cars aren’t charging at this specific hour.

Leeuwarden Murcia

Figure 4.26: Peak feed into the grid on the peak feed-in day for different scenarios in
Leeuwarden and Murcia. Mascherbauer et al. (2025a)

4.4.3 Distribution grid investment needs
This section analyzes and compares the techno-economic results of the distribution net-
works planned with the RNM model under the different policy and prosumaging scenarios.
The results include the additional investment and O&M grid costs for each scenario and
the increase in power losses for the peak demand day in each future scenario relative to the
base case. The results for the base case grids in Murcia and Leeuwarden are presented in
the Tables 4.2 to 4.5. Investments in network reinforcements are classified into three types
of elements: low voltage (LV) power lines, medium to low voltage (MV/LV) distribution
transformers, and medium voltage (MV) power lines. The results include the total length
of overhead lines and underground cables for each voltage level. Note that in Leeuwarden,
all LV and MV lines are underground, while in Murcia, there is a mix of underground and
overhead lines (see Tables 4.2 and 4.4).

Similarly, Tables 4.3 and 4.5 show the costs for distribution transformers and substa-
tions in the initial grids. Murcia has a much higher initial installed capacity for distribution
transformers. This can be attributed to Murcia’s higher housing density and the preva-
lence of electric heating and cooling systems. The higher capacity and denser configuration
of the MV grid in Murcia relative to Leeuwarden suggests that future reinforcement re-
quirements will be lower. Moreover, these tables show the total CAPEX and O&M costs
of power lines, distribution transformers, and substations for the initial 2020 grids. These
values are the reference used to calculate the incremental costs for these distribution grids
in future scenarios.

Table 4.2: Power lines data for the initial 2020 grid in Murcia, Spain. (Mascherbauer et al.
2025a)

Overhead [km] Underground [km] CAPEX [mio. €] O&M [€/yr.]
LV power lines 128.22 53.74 4.45 44 854
MV power lines 33.94 64.20 9.76 101 348
HV power lines 0.00 16.77 11.85 122 973
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Table 4.3: Distribution transformers and substations data for the initial 2020 grid in
Murcia, Spain. (Mascherbauer et al. 2025a)

Quantity Installed power [MVA] CAPEX [mio. €] O&M [€/yr.]
MV/LV Distribution Transformers 185 129.28 10.41 238 285

HV/MV Substations 2 160.00 4.15 223 223

Table 4.4: Power lines data for the initial 2020 grid in Leeuwarden, Netherlands.
(Mascherbauer et al. 2025a)

Overhead [km] Underground [km] CAPEX [mio. €] O&M [€/yr.]
LV power lines 0.00 358.34 18.63 192 786
MV power lines 0.00 64.20 14.57 109 675
HV power lines 57.43 0.00 8.68 90 102

Table 4.5: Distribution transformers and substations data for the initial 2020 grid in
Leeuwarden, Netherlands. (Mascherbauer et al. 2025a)

Quantity Installed power [MVA] CAPEX [mio. €] O&M [€/yr.]
MV/LV Distribution Transformers 90 30.6 4.83 110 537

HV/MV Substations 13 390 7.55 203 190

Figure 4.27 shows the total cost increase, including O&M and investment costs for the
distribution grid under different scenarios. The results for Leeuwarden indicate a signifi-
cantly higher requirement for grid reinforcements than in Murcia. This difference can be
attributed to the high initial dependence on conventional heating systems in Leeuwarden
(see Figure 3.19), whereas in Murcia, many households have already adopted electric heat-
ing in 2020. Additionally, Leeuwarden exhibits a lower urban density, comprising a greater
proportion of single-family residences. This leads to a higher PV excess generation fed to
the grid (see Figure 4.26), as there is a higher installed PV capacity per building and a
lower demand in periods with high PV generation.

Generally, strong policy scenarios necessitate more grid reinforcements than weak ones,
as the electrification level of buildings is higher and also the adoption rate of rooftop PV.
The most notable distinction in Figure 4.27 is that in Murcia, grid reinforcement in strong
policy scenarios is more pronounced in 2040, reflecting a faster adoption rate of EVs and
HPs. Nevertheless, the incremental costs for 2050 remain similar across both strong and
weak policy scenarios. Moreover, the decreasing investments in 2050 in Leeuwarden sce-
narios with no EVs when moving from low to high prosumager scenarios is attributed
mainly to the higher PV self-consumption of prosumagers.

Including EV loads generally increases the peak demand, leading to a substantial in-
crease in grid reinforcements. However, a comparison of the 2050 low prosumager scenarios
for Leeuwarden with and without EVs in Figure 4.25 does not show this effect. This can
be explained by the high PV penetration in Leeuwarden in 2050, which leads to reversed
power flows and overvoltages at midday, resulting in high investment needs for LV lines
(see Figure 4.28). The presence of new EVs charging during these hours reduces the peak
PV feed-in (Figure 4.26), lowering reinforcement needs in low voltage lines, as illustrated
in Figure 4.28.

Higher shares of prosumagers positively affect grid investment needs unless their con-
trollable loads, particularly EVs, are synchronized at off-peak tariff periods. In 2050, the
incremental cost increase is significantly lowered by prosumagers in Leeuwarden without
EVs despite a very high share of prosumagers. However, the simultaneous charging of EVs
leads to much higher peak demand at off-peak tariff periods (Figure 4.25) and higher grid
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investments, especially in scenarios where prosumagers account for more than 40% of to-
tal customers. Thus, new economic incentives or demand response participation schemes
should be implemented in the future to avoid synchronization of controllable loads at the
hours with low tariffs, especially when it comes to EV charging.

The primary drivers for Leeuwarden’s cost increase are investments for new MV/LV
distribution transformers and the rollout of on-load tap-changing transformers (see Fig-
ure 4.30). These investments are necessary due to the significant voltage differences be-
tween high PV feed-in and peak demand hours throughout the year. Also, the LV power
lines will need substantial investments (Figure 4.28).

On the other hand, the investment needed in distribution transformers is significantly
smaller in Murcia (Figure 4.30). In Murcia, there is already a significant percentage of
buildings with electric heating and more multi-family houses, so the initial MV grid in 2020
is stronger and denser. The main driver for additional costs in Murcia is the reinforce-
ment need in LV lines (see Figure 4.28). Switching the remaining buildings to electrified
heating systems requires a higher capacity in LV power lines connecting these houses.
Prosumagers could significantly reduce the reinforcement in LV lines if EVs are charged
in a grid-friendly way. Moreover, we can see that with an increase in building renovation
(strong policy scenario without EVs), the grid will not need additional investments in 2050
compared to 2040.

PV adoption does not strongly impact Murcia because the available rooftop area is
lower, and most of the PV generation is self-consumed. On the other hand, in Leeuwarden,
the uptake of PV leads to increased costs. This could be reduced through prosumagers
who try to maximize self-consumption and through additional local storage technologies
(batteries, tanks), which can also be observed in the power losses (Figure 4.31). With a
higher share of prosumagers, the power losses decrease. However, power losses can also be
reduced due to higher grid reinforcements, which results in a higher power line capacity
and lower resistance.

Leeuwarden Murcia

Figure 4.27: Distribution grid percentage cost increase in Leeuwarden and Murcia in
different scenarios. (Mascherbauer et al. 2025a)
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Leeuwarden Murcia

Figure 4.28: Low Voltage lines percentage cost increase in Leeuwarden and Murcia in
different scenarios. (Mascherbauer et al. 2025a)

Leeuwarden Murcia

Figure 4.29: Medium Voltage lines percentage cost increase in Leeuwarden and Murcia in
different scenarios. (Mascherbauer et al. 2025a)

Leeuwarden Murcia

Figure 4.30: Transformer percentage cost increase in Leeuwarden and Murcia in different
scenarios. (Mascherbauer et al. 2025a)
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Leeuwarden Murcia

Figure 4.31: Percentage increase in power losses in Leeuwarden and Murcia for different
scenarios. (Mascherbauer et al. 2025a)

4.4.4 Resume
The two case studies presented above from Mascherbauer et al. (2025a) provide insight
into potential reinforcement needs for an urban location with a very high penetration of
gas boilers in a colder climate as well as an urban location with a warm climate and an
already high share of electric heating systems. It is anticipated that grid reinforcements
will be required in both locations, although the extent of these investments and the under-
lying drivers are different. The aggregated peak load in both regions is expected to grow,
with EV adoption being the largest factor. However, if new EV loads are not considered,
the peak load on an aggregated level will rise in Leeuwarden but decline in Murcia. In-
vestments in grid reinforcements are expected in all scenarios, even in those with lower
aggregate peak loads. Note that the aggregated peak demand masks local peaks that can
occur at individual feeders where the additional consumption of HPs is higher than the
demand reduction achieved with increased energy efficiency and self-consumption. The
long-term investment requirements for LV and MV grids in Leeuwarden are anticipated
to be higher than in Murcia. This is due to a combination of factors, including the higher
peak demand growth in Leeuwarden and the stronger initial distribution grid in Murcia,
which already supplies a significant share of buildings with electric heating. Overall, it
can be said that replacing heating systems will also be a driving factor for cost increases
in European distribution grids.

Moreover, feed-in from solar PV generation is expected to increase, causing reversed
power flows and overvoltage issues. This is especially significant in Leeuwarden, where
the combination of a higher roof area available for PV and a higher share of conventional
heating systems replaced by HPs can lead to needed medium to low voltage transformer
investments 2-4 times the cost of the initial transformer capacity (Figure 4.30). This may
be an overestimation since the model employs on-load tap-changing transformers to ad-
dress the voltage difference between peak load and peak generation periods. While there
may be other options for voltage control that could be considered, this result highlights
the value of long-term planning for electricity grids in enabling decarbonization policies.

A limitation of Mascherbauer et al. (2025a) is that detailed data on the hosting capacity
in Leeuwarden and Murcia to accommodate new demand and generation without reinforce-
ment was not considered. Therefore, the need for grid extension in the first years might
be lower than the study predicts. However, distribution grids in Leeuwarden currently
have limited capacity for additional generation and queues for connecting new demand
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(Netbeheer Nederland 2025). Besides, the long-term results would not be substantially
different if the actual hosting capacity were considered to model the initial networks, as
the hosting capacity is likely to be recuperated as distribution grids are reinforced. The
increase in demand is many times higher than the initial hosting capacity.

Prosumagers can only lower these additional grid costs by shifting demand to off-peak
hours and increasing self-consumption. Nevertheless, as illustrated in Figure 4.27, EV
scenarios with a share of prosumagers beyond 40% result in higher incremental grid costs
due to the synchronization of controllable loads. The necessary investments in grid rein-
forcement would require significant expenditures, particularly in Leeuwarden, due to the
inadequate management of controllable loads. In the coming years, alternative solutions
that consider the status of the distribution grid (e.g., smart charging strategies, local flex-
ibility markets, alternative tariff incentives, etc.) are likely to be introduced. While the
EV scenarios involving medium and high shares of prosumagers may possibly not mate-
rialize in 2050, the findings underscore the value of these alternatives. Future research
should explore these alternatives to unlock the full potential of prosumagers to improve
distribution network planning.

Not considering a correlation between HP and PV installations might result in slightly
higher investments than needed. Mascherbauer et al. (2025a) did not consider the direct
effects of climate change on weather profiles. An increase in active cooling systems is
considered in this publication, but compared to heating, cooling does not drive the peak
electricity demand. On the one hand, the temperature difference between the source and
sink is lower for cooling purposes, making a typical compressor-driven HP more efficient
for cooling than for heating. At the same time, cooling demand overlaps well with locally
produced PV generation. Thus, the peak demand is expected to still occur on a winter
day, especially considering that extreme weather events will increase.



5 Discussion and synthesis of results

In this chapter, the results of this thesis are discussed, and the formulated research ques-
tions are answered. The chapter is divided into three sections, one for each research
question.

5.1 Research question 1
How much electricity load can the residential building stock shift and what role can the
thermal mass play in this potential?

It was shown that approximately 10 to 20 GWh of electricity could be shifted by the
current SFH stock in Austria per year using the thermal mass and not accounting ad-
ditional systems such as DHW or heating buffers. 10 GWh would be shifted using day
ahead prices from 2016, while almost 20 GWh is the potential with electricity prices from
2021. On the EU level, the electricity that could be flexibly used depends strongly on
the uptake of HPs. With the simulated prices used in this thesis, prosumagers could shift
from 2-8% of their yearly electricity usage in the worst case (Finland, Sweden) and up
to 5-25% (Czech, Germany, Austria) in 2030. On the EU-level, this accounts for a total
shifted electric energy of 9-28 TWh in 2030 and 20-45 TWh in 2050, depending also on
the electricity price signal that is used. Increasing fixed grid fees reduces the peak demand
created through prosumagers as the incentive to shift high amounts of electrical loads is
reduced.

Although a simplified building model was used in this thesis, it was validated and
shown to reasonably represent buildings with radiators as heating systems. Since deep
renovations are costly and already a large share of buildings could be equipped with HPs
without additional insulation or change of heating system, it is estimated that the major-
ity of buildings that will switch to a HP in the future will still use radiators as a heating
system. The additional thermal capacity of the heating system, which is especially impor-
tant in floor-heated houses, is added with a buffer heating storage, which returns similar
results in terms of shifted energy over the year.

Around 30% to 40% of the total electricity the building stock could shift is attributed
solely to the thermal mass of buildings, not including the thermal capacity of the heating
system itself. Therefore, shifting loads through the thermal mass of buildings not only
has potential but is also economical even if the buildings have other possibilities to shift
their demand (in this case, DHW tank and heating buffer tank). It should be noted that
in summer, only DHW demand is shifted, which accounts for around 20-30% of total de-
mand shifted by buildings that have both a DHW and a hot water storage. With lower
average retail prices thermal storages are more utilized, while in 2050, because of overall
higher retail electricity prices, the thermal mass is utilized more. It was investigated how
an increase of AC to 80% of all HP-heated buildings would change the results. But the
amount of cooling demand shifted is not as impactful as heating demand for two reasons.
First, the temperature difference that cooling generators have to overcome is lower, making
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cooling quite efficient compared to heating at low outside temperatures. Second, cooling
demand in central and northern Europe occurs mainly during the day and can be covered
well with PV-generated electricity. It was further shown that the central European coun-
tries have the highest load-shifting potential for two reasons. Their projected electricity
prices in the future show high volatility, and their heating demand in winter is moderate
to high. The building stock characteristics did not have a pronounced effect on the load
shifting on the national level, although it was shown that well-insulated buildings can shift
a higher percentage of their demand. At the same time, the author expects that HPs will
mainly be installed in buildings where the supply temperature can be lowered to 55°C or
lower. This can only be done in old buildings if they are renovated to some extent. The
building stock scenario used for the future prediction of the building stock status is quite
ambitious, with a strong renovation rate and high uptake of electrified heating systems.
Therefore, results on the total shiftable electricity demand might be an overestimation,
being strongly dependent on the absolute number of HPs installed in the future and the
uptake of HEMS so that HPs can actually respond to price signals. At the same time, if
renovation rates stay lower than anticipated in the used scenario and HPs are installed
in buildings nevertheless, the shifting potential of the building stock will be even greater,
as the average heating demand would increase in comparison to this scenario. Buildings
with a higher energy demand have a higher absolute shifting potential, even though the
shifted electric energy share will be lower compared to an efficient building.

Pre-heating a building leads to higher losses from the thermal mass, which means
higher electricity consumption. The question arises of how electricity demand changes
because of prosumagers. Within this thesis, optimizing HP operation to minimize cost
has different effects on the electricity demand depending on what appliances (PV, battery,
thermal tanks) are installed together with the HP. PV self-consumption is maximized
by prosumagers, leading to a lower grid electricity demand from buildings that have PV
installed. For buildings with a 5 kWp PV system and without any storage, HEMS can
decrease the overall electricity demand from the grid by 1.5 to 1.6 GWh in Austria. The
increase in self-consumption by installing a HEMS is small if a battery and DHW tank are
already installed. The daily peak-to-peak demand of prosumagers increases substantially
if thermal tanks are installed under a cost-minimization objective, given that no counterac-
tive measures are taken. DHW tanks and batteries result in higher cost savings as they can
utilize price differences or PV generation also in summer. In the study for Austria, battery
systems were considered, while in the analysis on the EU level, only thermal storages were
taken into account. Therefore, the total electricity demand reduction anticipated on the
EU level through the increase in PV self-consumption could be considered to be slightly
lower as batteries will increase self-consumption significantly even without a HEMS. For
buildings without PV, though, the grid demand of prosumagers increases compared to
that of their consumer counterparts. This increase, however, is strongly dependent on the
electricity price signal as the driving factor of the optimization, which is why the impact
of it was examined in this thesis through RQ2.

5.2 Research question 2
How does the price of electricity affect prosumagers’ potential to shift demand?

Two properties of the retail electricity price influence the load-shifting potential of the
residential building stock under the hypothesis that HP operation is being optimized to
reduce electricity cost. The first property is the frequency of the price signal changing
its value, and the second is the significance of these price changes. The frequency of
price changes appears to have the most influence in this thesis, given the fact that the
significance of each price change is often high enough to invoke a load-shifting behav-
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ior. The significance of a price change can be described as the relative change in price
from one hour to another. In this thesis, the significance of price change was altered by
changing the marginal cost of flexible power generators in the electricity grid model (e.g.,
through higher CO2 prices) or by adding fixed grid fees. Increasing grid fees reduces the
significance of price changes, while higher CO2 prices contribute to more prominent price
peaks, thereby enhancing load-shifting behavior. An exact correlation between certain
statistical values of the price profile and the load-shifting behavior at the building stock
level was not established. For each building, a change in price has a different significance
based on the installed appliances, insulation, weather, the current state of the building,
storage levels, plus future states concerning price and weather. By using different prices
from past years and modeling possible prices for the future, including certain sensitivities
(e.g., CO2 price), this thesis tries to give an estimation of how large the potential for
load shifting through residential HPs is on a building stock level. With rising CO2 prices,
electricity price peaks are likely to rise in the future. With a CO2 price of 212€/tCO2

shifted electricity demand doubles in volume compared to a CO2 price of 53€/tCO2 in
the scenarios calculated for 2030 in Austria. Apart from the CO2 price increasing peak
prices in the power sector, real-time pricing could be coupled with dynamic grid tariffs,
thereby enhancing the possible yearly cost savings and making load shifting economically
more attractive for prosumagers. Nevertheless, such measures would need to account for
the risk of disproportionately affecting low-income households that lack access to smart
HP technologies. Additionally, higher price volatility and the associated stronger response
from prosumagers in terms of peak demand must be compatible with the supply networks.

Some studies suggest that HPs could also participate in the intra-day market or even
in the frequency reserve market (Meesenburg et al. 2020; Manner et al. 2020), making
load shifting much more lucrative. But to do so, HPs would have to be pooled to reach
a certain minimum power capacity limit (Hülsmann et al. 2019). Additionally, accurate
modeling of HP thermal dynamics is necessary to estimate the effectiveness of HPs in
participating in the frequency regulation market (Song et al. 2025). Despite the technical
challenges that have to be addressed for participating in intra-day or frequency regulation
markets, for single prosumagers it could be more beneficial from an economic point of view.

Yearly cost savings of prosumagers shifting electricity demand through the thermal
mass alone are very limited when using the day-ahead price. Even if the day-ahead price
becomes more volatile. Buildings with high energy demand achieve higher absolute sav-
ings when becoming prosumagers. For large MFHs with central HP, the investment in a
HEMS could be profitable if we assume the price for such a system is around 100€ and an
expected payback period of less than five years. For buildings that already have a heating
buffer tank and or a DHW tank installed, the economic incentive is much higher to become
a prosumager. If storage is not installed, however, the upfront investment into a storage
system will result in high payback times, depending on the energy consumption of the
building. For low-energy consumption buildings with a high level of insulation, the eco-
nomic incentive alone might not be enough to convince residents to become prosumagers.
If increasing the number of prosumagers should be a goal in the future, additional in-
centives might be needed. Increasing the share of prosumagers could be achieved either
through a regulatory framework or by subsidizing HPs that change consumption based
on a price signal. Different grid tariffs for prosumagers and consumers could also be an
effective tool for the increase in price peaks by adding time variable grid tariffs on top
of already variable prices. However, in all these considerations, it should be ensured that
energy justice is considered and high grid fees are not passed on to low-income households,
which do not have the ability to shift loads.

While the thermal power output of HPs during pre-heating time is constrained by the
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maximum indoor set temperature, with higher price peaks or zero pricing, pre-heating
time is extended. Thus, the scenario where electricity price signals in all EU countries are
without grid tariffs closely represents the physical limitation of the building stock to shift
electricity throughout the year in most countries. In Germany and Austria, buildings with
HPs would be able to shift 25% of their total electricity consumption from price peak to
price off-peak hours. While prosumagers can shift a substantial amount of electric energy
on a daily basis, the overall electricity demand of prosumagers increases due to additional
losses. On the country level, however, this increase in demand on an annual level is min-
imal and depends on how actively demand is shifted. If retail electricity prices are high
and the prominence of price change is lower, annual electricity demand consumed from the
grid is reduced through prosumagers because of the increase in PV self-consumption. If
electric loads are shifted excessively, for example, because of zero end consumer electricity
prices in certain hours, the annual demand can increase by up to 10% in 2030 and 3.5%
in 2050 over the whole EU. However, a sole increase in annual electricity demand is not
necessarily a bad sign, as the increase in demand stems from hours with very low wholesale
electricity prices, which are usually correlated to a negative residual load or overproduc-
tion of renewable generation units. Results have shown that the electricity demand at the
EU-level can be increased by up to 2.1% in 2030 in low price times and at the same time
reduced by 0.3 to 1% in times where the electricity price signal is within the 4th price
quantile.

5.3 Research question 3
How will the uptake of prosumagers impact future electricity distribution grid investments?

Future distribution networks will need to be reinforced to cope with additional loads of
electrified heating systems and EVs. Nevertheless, a comprehensive simulation of the im-
pacts across the entire distribution grid at a continental level would be impractical in terms
of the computational resources required. Although this is a limitation of Mascherbauer
et al. (2025a), insights into potential reinforcement needs for a location with a very high
penetration of gas boilers in a colder climate, as well as a location with a warm climate
and an already high share of electric heating systems, are provided. With this in mind, the
methodology and the insights of the results are transferable to other regions with similar
building and heating system characteristics. It is anticipated that grid reinforcements will
be required in both locations, although the extent of these investments and the underlying
drivers are different.

The peak load for HP-heated buildings is often determined through the coldest day of
the year. At the national level, the yearly peak demand could be reduced by less than
0.1% through prosumagers. At the local level, results also showed no significant decrease
in peak demand. Prosumagers proved beneficial for the distribution grid by increasing
PV self-consumption, which reduces the peak PV generation fed into the grid and thus
lowers reinforcement needs. This manifested especially in the needed investments in LV
lines. MV lines and transformers are hardly impacted by prosumagers. On a local level,
the impact of prosumagers does not only depend on the prosumagers themselves but also
on other power consumers connected to the same grid. In Mascherbauer et al. (2025a),
only the electricity demand of the residential buildings is considered. If the shift in power
by prosumagers overlaps with medium-sized consumers (e.g., small enterprises), the effect
on the grid could be different. A really important factor when it comes to the distribution
grid reinforcements will be the uptake of EVs. If EVs are considered in the context of
prosumagers, it is important that smart charging is not done over areas using the same
price profile as an incentive to shift charging cycles. This would lead to a massive increase
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in local peak load. These peaks can be high enough to trigger additional investment needs
into transformers and MV lines in 2050.

On the other hand, a capacity-based tariff has been shown to be effective in reducing
peak demand of prosumagers while reducing the total shifted electric energy only to a
limited amount. At the national level, it was shown that an increase in peak demand due
to simultaneous DR of many prosumagers can be reduced significantly by introducing a
peak price on top of the variable retail electricity price. This reduction of peak demand
at the prosumager level could be beneficial in the future for distribution grids.

The findings of the two case studies demonstrate the importance of long-term plan-
ning for grid investments and the need for future work to explore how local grid services
(e.g., proposed Network Code on Demand Response) can enhance the positive impacts of
prosumagers on distribution network planning. The lower reinforcement needs in Murcia
compared to Leeuwarden are primarily due to the higher proportion of electric heating
already in place in Murcia, which lessens the future load increase from HP adoption. Mur-
cia exhibits a higher prevalence of multi-family residential buildings with comparatively
reduced rooftop area per household, which can be allocated to solar PV installations. The
results for Leeuwarden indicate that the grid will require extensive reinforcements by 2040,
due to both the high demand growth from HPs and EVs and the wide voltage fluctuations
observed between the lowest and highest voltages achieved on the peak demand and feed-in
day, respectively. It may be necessary to incorporate unconventional planning practices,
such as on-load tap-changing transformers or voltage regulators, in order to address the
technological challenges of future long-term scenarios. Furthermore, it may be beneficial
to engage in long-term planning for electricity distribution networks, given the potential
challenges associated with identifying suitable locations for additional distribution trans-
formers, particularly in urban areas.

In the case of Murcia and Leeuwarden, two policy scenarios were analyzed that reflect
the renovation rate of the buildings and uptake of PV, AC, HP, and storage technologies.
Distribution grid investments were almost always slightly higher for the strong policy sce-
nario, even though buildings have a higher renovation rate in this scenario. The reason for
this is simply the higher share of electrified heating and PV systems. Only in Leeuwarden
in 2050, considering EVs, the strong policy scenario shows slightly lower costs, which is
due to the fact that the higher PV penetration can soften the peak demand of the EVs. In
general, the needed future investments of the distribution grid are very case-specific and
will be driven by the uptake of EVs and HPs. Depending on the case, prosumagers can
lower the needed investments.
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6 Conclusion and Outlook

6.1 Conclusion
Decarbonizing the building sector represents a significant challenge. The shift towards
electric heating systems, such as HPs, which are used to replace fossil fuel-powered heat-
ing systems, introduces new demands on the electricity grid, but also opens up valuable
possibilities. On one hand, the growing use of electricity for heating coincides with a rising
share of variable renewable electricity generation. The higher share of fluctuating elec-
tricity generation, together with the overall higher electricity demand, creates additional
challenges for the power system on the transmission and distribution side. Furthermore,
the potential mismatch between generation and demand requires additional flexibility.
Buildings equipped with HPs could become a vital source of flexibility to match genera-
tion and demand. This thesis explores the future potential of such buildings across the
EU to support the energy system by providing the needed flexibility.

The findings from this thesis support the hypothesis that HPs can contribute to short-
term flexibility and relieve the electricity grid, particularly when the electricity price sends
appropriate price signals. Real-time pricing can be an effective tool to change the elec-
tricity consumption patterns of heating and cooling devices. The operational cost savings
largely depend on a building’s energy demand and the electricity prices. Residential build-
ings, especially in Central Europe, have a significant potential for load shifting through the
use of thermal mass, particularly during winter and transition seasons. At the EU-level
9-28 TWh of electric energy could be shifted through HP-operated residential buildings in
2030, of which around 40% is shifted by pre-heating the thermal mass of buildings.

The impact of electricity price volatility is crucial; with a higher marginal cost of flex-
ible power plants, the flexibility potential of HPs increases, and prosumagers can shift
more demand. However, this flexibility is not without its limitations, as high DR also cor-
relates to higher total electricity consumption due to increased losses. The grid demand
of prosumaging buildings in the EU could rise by up to 9% in 2030 and 3.5% in 2050.
Even though this would decrease the EU’s electricity consumption at high prices by up
to 1%, the increase in consumption at low price times can be more than 2% of the total
EU electricity consumption. Therefore, it will be important that retail electricity prices
reflect actual electricity scarcity on a local level.

The electrification of residential energy uses, such as heating and transport, will chal-
lenge future electricity grid development plans, especially in colder regions where fossil-
fueled heating systems currently dominate. Analyzing this requires looking at the problem
at the lowest spatial level because the location of new loads and PV installations plays an
important role. The stress on the local distribution grid can be lowered by incentivizing
consumers to shift load to off-peak hours. In future scenarios, which are characterized by
a high percentage of prosumagers and involve EVs, however, the stress on the local dis-
tribution grid could increase. The findings of this thesis indicate that very high shares of
prosumagers with electricity prices, which do not reflect the distribution grid’s status, will
create new load peaks due to the simultaneous activation of controllable loads. Therefore,
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very high shares of prosumagers will significantly increase the distribution grid’s stress and
require substantially higher investments unless demand response mechanisms considering
the local distribution grid’s status are implemented. From the standpoint of managing the
burden on grid infrastructure, the introduction of real-time pricing should avoid negative
or zero electricity prices for prosumagers, as these could otherwise result in substantial in-
creases in peak demand. Encouraging self-consumption of PV energy should remain a key
objective for prosumagers, given its potential to lower distribution grid expansion costs.
One very effective method to reduce the peak demand of prosumagers is adding a capacity
price to the electricity cost. Results of this thesis showed that this measure could reduce
the yearly peak demand of HP-heated buildings compared to their consumer counterparts
and could be an effective tool in the future to reduce congestion in distribution grids.

In conclusion, while HPs can provide valuable short-term flexibility, appropriate price
signals and grid strategies will be essential for realizing their full potential without excessive
reinforcement needs for the grid or negative side effects. The contribution of HPs is
expected to grow, but they will need to be integrated with complementary technologies like
HEMS to be able to automatically react to price changes. To avoid excessive distribution
grid investments, PV self-consumption should be encouraged, and local electricity price
design is crucial to avoid increased peak demand.

6.2 Future work
This final chapter points out the need for further research on top of what has been pre-
sented within this thesis. Given the conclusions derived in this thesis, several key areas
for further research emerge. Addressing these areas will enhance the understanding of
electricity demand flexibility in the residential building stock, optimize grid integration,
and support Europe’s ambitious decarbonization goals.

Firstly, additional research at the distribution grid level is necessary to comprehensively
explore how different pricing incentives could impact prosumagers’ behavior. Specifically,
detailed investigations are required to develop tariff structures that accurately reflect lo-
cal electricity scarcity or grid overload conditions. Such dynamic, localized tariffs could
help prevent load synchronization, thereby reducing the risk of creating new demand peaks
that exacerbate distribution grid stress. Furthermore, research is necessary to explore how
variable electricity prices could be effectively coupled with dynamic grid tariffs reflecting
real-time local electricity availability and network constraints. This approach could lead
to different local electricity prices for end consumers in different regions, more accurately
reflecting the specific needs and availability of electricity generation and grid infrastruc-
ture in each area.

Secondly, despite existing efforts at the EU level through the funding of various projects
(MODERATE1, BuiltHUB2, ReLIFE3, DigiBUILD4 Building stock observatory5), research
gaps remain concerning the detailed characteristics of the actual building stock in indi-
vidual EU Member States. Country-specific investigations and comprehensive building
databases are crucial to accurately quantify demand flexibility potentials and implement
appropriate policies. These efforts would benefit from close cooperation with ongoing EU

1MODERATE project: https://moderate-project.eu/, Horizon Europe under grant agreement No
101069834

2BuiltHub project: https://builthub.eu/, European Union’s Horizon 2020 programme under grant
agreement N 957026

3ReLIFE project: https://relife-project.eu/, Life project co-funded by the European Union
4DigiBUILD project: https://digibuild-project.eu/
5BSO-EU Building Stock Observatory https://building-stock-observatory.energy.ec.europa.eu/

database/

https://moderate-project.eu/
https://builthub.eu/
https://relife-project.eu/
https://digibuild-project.eu/
https://building-stock-observatory.energy.ec.europa.eu/database/
https://building-stock-observatory.energy.ec.europa.eu/database/
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projects to ensure consistency, complementarity, and comprehensive coverage, also in re-
gard to the spatial coverage of data. So far, data at the regional and country level is usually
only available in an aggregated database without information on the location. Although
some countries work on mapping the building stock with geographical information system
(e.g. URBAN3R (2025) in Spain) comprehensive data is usually not available on larger
scales. Having information on individual buildings’ energy consumption and location is
crucial when trying to understand how much flexibility is available, also considering elec-
tricity grid constraints.

Thirdly, the validation of existing theoretical and simulation-based models demands
real-world data from individual buildings as well as comprehensive building stock data.
Empirical studies and extensive measurement campaigns would significantly enhance the
accuracy and reliability of demand flexibility models, enabling stakeholders to develop
more precise forecasts and effective strategies.

Finally, research is needed to assess and quantify the precise impacts prosumagers have
at various levels of the electricity grid—ranging from local distribution grids to regional
and national transmission systems. In-depth analysis should explore how electricity gen-
eration, grid infrastructure at multiple levels, and diverse building stocks interplay. This
holistic understanding is crucial to ensure the effective integration of prosumagers and to
realize their potential in supporting a robust, sustainable, and economically viable energy
system.
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A Appendix

A.1 Building information for the case of Austria
In Mascherbauer et al. (2022), only the SFHs from the Austrian building stock were anal-
ysed on their potential to shift electricity demand. The SFH building stock of Austria is
represented by 11 representative buildings. Figure A.1 illustrates the number of buildings
of all 11 categories and the share of buildings using a HP for heating.

Figure A.1: Number of selected SFH in this study from the Austrian building stock
(Andreas Müller 2021)

All building parameters are selected from the INVERT/EE-Lab Database (Andreas
Müller 2021). Every building type represents buildings built in a specific time period,
starting from 1890 up to 2011. For buildings built up to 1980, only those buildings that
have been refurbished since then are considered. It is unlikely to install HPs in old build-
ings with insufficient insulation and an old heat distribution system. Information on each
building category is provided in Table A.1.
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Table A.1: Building IDs with average floor area (Af ) and useful energy demand for space
heating (Mascherbauer et al. 2022)

ID Type Age Class Af (m2)
Useful energy

demand for space
heating (W/m2)

1 SFH 1890-1918 129 161.8
2 SFH 1890-1918 129 132.1
3 SFH 1919-1944 136 160.2
4 SFH 1919-1944 136 146.2
5 SFH 1945-1960 144 136.1
6 SFH 1961-1970 154 105.9
7 SFH 1971-1980 163 105.9
8 SFH 1981-1990 166 93.4
9 SFH 1991-2000 170 88.9
10 SFH 2001-2008 170 69.1
11 SFH 2009-2011 170 69.1

In the publication Mascherbauer et al. (2024), the SFH building stock in Austria is rep-
resented by 36 building types. Information about the buildings is provided in Table A.2.
The appendix ”mon” indicates that the buildings are under protection. Gen2, gen3, and
gen4 indicate that these buildings have undergone a certain renovation, with higher num-
bers representing more recent renovations. Figure A.2 shows that most HPs have been
installed in modern buildings.

Figure A.2: Number of buildings with HPs in the Austrian SFH building stock (Andreas
Müller 2021; Mascherbauer et al. 2024).
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Table A.2: Building IDs with 5R1C parameters (Mascherbauer et al. 2024)

ID Name
Genera-
tion of

renovation
Age class Af (m2) Hve Hop Htr,w

Cm (mio.
J/K)

1
SFH A mon

-
1890-1918 129 36

229 101
532 1 242 87

3 2 250 78
4 3 198 76
5

SFH A
-

1890-1918 129 36
227 101

536 1 241 87
7 2 250 78
8 3 164 67
9

SFH B mon
-

1919-1944 136 38
290 116

4610 1 306 100
11 2 316 89
12 3 206 78
13

SFH B
-

1919-1944 136 38
288 117

4614 1 305 100
15 2 316 89
16 3 189 74
17

SFH C
-

1945-1960 144 41
278 116

3118 1 295 99
19 2 304 89
20 3 183 70
21

SFH D
-

1961-1970 154 44
193 95

3322 1 206 82
23 2 212 77
24 3 150 68
25

SFH E
-

1971-1980 163 46
204 101

3526 1 214 90
27 2 226 79
28 3 159 71
29

SFH F
-

1981-1990 166 46
141 79

3530 1 149 71
31 2 142 69
32 SFH G - 1991-2000 170 48 120 71 3133 1 122 68
34 SFH H - 2001-2008 170 48 90 59 19
35 SFH I - 2009-2012 170 48 87 62 19
36 SFH dh - 2012-2019 170 48 59 47 19

A.2 5R1C formulation
In this part of the appendix, the formulation of the 5R1C model as described in DIN ISO 13790
is described. Additional symbols used for the equations are presented in Table A.3.

Table A.3: Additional list of symbols used for the mathematical formulation of the 5R1C
and 6R2C model.

Character Unit Description
U W/m2K heat transfer coefficient
ψ W/mK heat transfer coefficient for thermal bridges
l m length
χ W/K heat transfer coefficient through punctual thermal bridge
Htr,1 W/K transmission heat transfer coefficient
Htr,2 W/K transmission heat transfer coefficient
Htr,3 W/K transmission heat transfer coefficient
hms W/K transmission heat transfer coefficient between the outside air and the

surface area node
btr - heat transfer adjustment factor
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Table A.3: Additional list of symbols used for the mathematical formulation of the 5R1C
and 6R2C model.

Character Unit Description
bve - temperature adjustment factor for airflow
qve m3/s air volume flow
k J/m2K specific thermal capacity of building element
HD W/K transmission heat transfer coefficient for direct heat transmission to the

external environment
Hg W/K transmission heat transfer coefficient to the ground
HU W/K transmission heat transfer coefficient to unconditioned rooms
HA W/K transmission heat transfer coefficient to adjacent buildings
Λat - dimensionless ratio between the surface area of all surfaces facing into the

room and the usable area
θair

◦C Indoor air temperature
θoutside

◦C Outdoor air temperature
θsup

◦C Supply air temperature
θs

◦C Temperature of the surface node
θm

◦C Temperature of the thermal mass
θm,avg

◦C Average temperature of the thermal mass
θfloor

◦C Temperature of the floor heating system
φHC W Heating or cooling demand
φia W Heat gains to the air node
φint W/m2 Internal heat gains
φsol W/m2 Solar gains
φst W Heat gains to the surface node
φm W Heat gains to the thermal mass
φm,tot W Total heat flow into the thermal mass
Qheating W Heat input from floor heating
Cm J/K Thermal capacity of the building mass
Cf J/K Thermal capacity of the floor heating system
Hve W/K Ventilation heat transfer coefficient
His W/K Heat transfer between air and surface node
Hms W/K Heat transfer between mass and surface node
Hem W/K Heat transfer from mass to exterior
Hw W/K Heat transfer through windows
Hf W/K Heat transfer from floor heating to indoor air
Af m2 Heated floor area
Atot m2 Total surface area of the building
Am m2 Effective mass-related area
Aj m2 Surface area of building element j
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Figure A.3: 5R1C circuit representation

Figure A.3 shows the circuit representation of the 5R1C model described in the DIN
ISO 13790. The relation between outside temperature (θoutside), indoor temperature (θair)
and heating demand (φHC) is provided by the following equations. A detailed description
of the calculation methodology can be found in DIN ISO 13790. In the following equa-
tions, φ represents any kind of heat flow in W and θ is used to describe temperatures in ◦C.

θair,t =
His × θs,t +Hve × θsup,t + φia + φHC,t

His +Hve
(A.1)

θsup describes the air temperature from the ventilation system. If no ventilation system
with heat exchangers is adopted θsup is set to θoutside. In this study, ventilation systems
are neglected.

φia = 0.5× φint (A.2)
φint describe the internal heat gains in W/m2. For simplification, the internal gains (φint)
are kept constant, although in reality they can change every hour.

The node temperature θs is calculated throughthe following equation:

θs,t =
Hms × θmavg ,t + φst,t +Hw × θoutside,t +Htr1 × (θsup,t +

φia+φHC,t

Hve
)

Hms +Hw +Htr1
(A.3)

The average temperature of the thermal mass (θmavg ,t) in each timestep is calculated
as follows:

θmavg ,t =
θm,t + θm,t−1

2
(A.4)

θm,t and θm,t−1 represent the temperature of the thermal mass in the current and in the
previous timestep and have to be calculated for each timestep individually:
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θm,t =
θm,t−1 × ( Cm

3600 − 0.5× (Htr3 +Hem)) + φmtot,t

Cm
3600 + 0.5× (Htr3 +Hem)

(A.5)

with

φmtot,,t = φm,t+Hem×θoutside,t+Htr3×(φst,t+Hw×θoutside,t+
Htr1

Htr2
×(

φia + φHC,t

Hve
+θsup,t))

(A.6)

φst,t = (1− Am

At
− Hw

9.1×At
)× (0.5× φint + φsol,t) (A.7)

with φsol describing the solar gains.

φm,t =
Am

At
× (0.5× φint + φsol,t) (A.8)

Every parameter described with anH represents a transmission heat transfer coefficient
and is given in W/K. All building-specific parameters are described in the following
equations:

Htr1 =
1

1/Hve + 1/His
(A.9)

with Hve being the ventilation transfer coefficient.

Htr2 = Htr1 +Hw (A.10)

Htr3 =
1

1/Htr2 + 1/Hms
(A.11)

His = his ×Atot (A.12)
with his being the heat transfer coefficient between the air node θair and the surface node
θs which equals to 3.45W/m2K. Atot denotes the total surface area of the building in m2.

Atot = Λat ×Af (A.13)

where Af is the effectively used floor area in m2 and Λat represents the dimensionless ratio
between the surface area of all surfaces that face into the space and the effective area. Λat

is set to 4.5.

Hem = 1/(
1

Hop
− 1

Hms
) (A.14)

Hms is provided in W/K:
Hms = hms ×Am (A.15)

hms denotes the heat transfer coefficient between the nodes m and s and is fixed with
9.1W/m2K. Am is the effective mass-related area in m2 and is calculated with following
formula:

Am =
C2
m�

(Aj × k2j )
(A.16)

Aj represents the surface area of the building element j in m2 and kj represents the specific
thermal capacity of a building element j in J/m2K. Cm is provided in J/K and denotes
the total thermal capacity of the building mass:

Cm =
�

(kj ×Aj) (A.17)
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Hop = HD +Hg +HU +HA (A.18)
HD, Hg, HU , and HA represent the transmission heat transfer coefficients for direct heat
transmission to the external environment (HD), for the steady-state heat transmission to
the ground (Hg), through unconditioned rooms (HU ), and to adjacent buildings (HA). The
calculation of these four parameters is described in the DIN ISO 13789. In the following
equation HX stands for either HD, Hg, HU , HA:

HX = btr,x × (
�
i

Ai × Ui +
�
k

lk × ψk +
�
j

χj) (A.19)

with Ui being the heat transfer coefficient in W/m2K for the respective building ele-
ment i.
ψ... linear heat transfer coefficient for a thermal bridge
l... length of a thermal bridge
χ... heat transfer coefficient for a punctual thermal bridge
btr,x... adjustment factor if the temperature on the other side of the component is not
equal to the temperature of the external environment

The total ventilation heat transfer coefficient (Hve) is calculated as follows:

Hve = ρa × ca × (
�
k

bve,k × qve,k) (A.20)

ρa × ca... volume-related heat storage capacity of the air in J/m3K
qve... the time-averaged air volume flow
bve... the temperature adjustment factor for airflow element k. If the supply air tempera-
ture is not equal to the temperature of the external environment, bve 	= 1.
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A.3 Validation of the model
In this section, the developed FLEX model is critically questioned, and the strengths and
limitations of the approach are provided and discussed. In the first part, the optimization
framework and the dynamic behavior of buildings are compared to IDA ICE, a known
building simulation tool. In literature, the 5R1C approach has been investigated and
compared to other models. Lauster et al. (2014) used the 5R1C model to verify their
implementation of the VDI 6007-1. Cirrincione et al. (2019) compared both the 5R1C ap-
proach from DIN ISO 13790 and the newer version of the calculation from EN ISO 52016
to results from Energy Plus. Both methods show a good estimation of the heating demand
at a monthly level, however the EN ISO 52016 overestimated cooling needs even more than
the 5R1C approach. In Michalak (2014), the 5R1C approach is also compared to Energy
Plus for 10 different Polish cases. Results show that the calculated heating demand is
realistic. However, the dynamic thermal behavior was not investigated. A comparison of
the dynamic thermal behavior of the 5R1C model is done in Bruno et al. (2016b) with
TRYNSIS. Results show that with very high thermal mass, the 5R1C does not predict
the dynamic behavior accurately when it comes to heating; with moderate thermal mass,
the predictions are good. For cooling, the dynamic behavior differs significantly from the
TRYNSIS calculation.

None of the above-mentioned studies focused on DR using the 5R1C model. If the
indoor set temperature is constantly changed through optimization, the predicted energy
demand could deviate strongly from the real one. Thus, the following questions are formu-
lated: Can the thermodynamic behavior of a building equipped with an HP and controlled
with a HEMS using the 5R1C approach be accurately modeled? Will an optimization using
the 5R1C approach also lower its electricity cost when calculated with a building dynamic
simulation tool? To answer these questions, the HP operation is optimized for nine build-
ings located in Salzburg, Austria, using the FLEX model. The resulting optimized indoor
set temperatures are then provided to the IDA ICE model, which calculates the energy
demand for the exact same buildings. This way, it is shown whether the proposed control
strategy of the FLEX model would work based on the results of a more sophisticated
building simulation model.

Another limitation of the model is that it uses perfect foresight over the year. This
may lead to an overestimation of the possible cost savings and load-shifting potentials.
In the second part of this chapter (A.3.3), a rolling horizon approach is therefore tested
against the existing model. It is shown that in order to achieve good results with a rolling
horizon approach, the state of the thermal mass capacity within the building has to be
monetized at the end of the horizon window.

A.3.1 Comparison of FLEX with IDA ICE
This section analyzes how the control strategy of the optimized 5R1C model would af-
fect the results if implemented in IDA ICE regarding cost reductions and the potential
of shifted energy. The model runs in IDA ICE are conducted with two different heating
systems: once with an optimal heating system, meaning the heat is distributed without
losses in the houses, and once with a floor heating system. The analysis is done for nine
representative buildings located in Salzburg, Austria. Five of the buildings are SFHs, and
four are MFHs. The thermal mass and the insulation level determine the thermodynamic
behavior of the buildings. In Figure A.4, the properties of these nine buildings are visu-
alized. The exact values used for the 5R1C model are presented in Table A.4. Detailed
information that was used to model these buildings in IDA ICE, from which also the RC
parameters were derived, is provided in the Appendix A.5.
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Figure A.4: Building properties of the buildings used to validate the model.

Table A.4: Properties of the buildings modeled with FLEX and IDA ICE

Building Af (m2) Hop Htrw Hve CM factor Am factor internal gains
(W/m2)

SFH 1 B 221.4 469.3 37.8 63.5 3 934 822 4.0 4.1
SFH 1 S 221.4 191.6 22.0 63.6 3 415 854 4.2 4.1
SFH 5 B 221.6 315.1 46.8 59.7 2 198 880 4.1 4.1
SFH 5 S 221.6 165.1 24.5 60.9 1 647 301 3.8 4.1
SFH 9 B 188.7 79.6 21.1 51.0 1 369 608 4.2 4.1
MFH 1 B 390.8 715.5 77.4 177.8 3 482 782 3.6 4.1
MFH 1 S 390.8 363.4 50.3 178.0 3 020 247 3.7 4.1
MFH 5 B 526.5 545.9 110.4 195.0 1 976 692 3.2 4.1
MFH 5 S 526.5 311.6 73.9 192.8 1 825 799 3.3 4.1

The following approach was taken to test if optimization of the HP in a building using
the 5R1C approach yields satisfactory results regarding cost minimization and shiftable
electricity demand. The heating system operation of the nine above-described buildings
is optimized using the 5R1C model. This optimization’s resulting indoor set temperature
is used as input for the IDA ICE model. The resulting energy demand curves and costs
from both models are compared with each other. This is done with the day-ahead price
profile from 20191 with an added grid fee of 20 cent/kWh, depicted in Figure A.5.

1https://www.entsoe.eu/

https://www.entsoe.eu/
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Figure A.5: Electricity price from Austria in 20191 used for the comparison between the
5R1C and the IDA ICE model.

According to literature and tests done within this thesis, the hourly 5R1C model sim-
ulates the heat demand best for buildings that are medium to poorly insulated with a
high specific thermal mass. The 5R1C model is not as accurate for well-insulated and
lightweight buildings. The analysis showed that especially buildings with floor heating
systems can not be modeled to a satisfying accuracy with the 5R1C approach, which is
also a common finding in literature (Sperber et al. 2020a). Therefore, the 5R1C model
was extended by a second capacity and a sixth resistance to mimic the transient thermal
behavior of the floor heating system.

A.3.2 Improving 5R1C approach to a 6R2C model
Simply increasing the thermal mass of a building with floor heating to change the transient
behavior does not work. The literature mentions that RC models need at least two capac-
ities to accurately represent the dynamic behavior of the building mass for buildings with
floor heating (Sperber et al. 2020a). Thus, a second capacity was added to the existing
5R1C model as presented in Figure A.6.

The new 6R2C model has two undefined parameters: the capacity of the floor (Cf ) and
the heat transfer coefficient between the floor node and the air temperature (HF ). These
values can not be integrated into the optimization as variables without introducing non-
linearity to the problem. Therefore, a combination of values was used in the optimization
for the 6R2C model, with the indoor temperature being constrained to the temperature
from the IDA ICE model in optimization mode. The resulting heating demand was then
compared to the heating demand of the IDA ICE model using the mean squared error and
the parameter combination between Hf and Cf with the smallest error. For HF , values
ranging from 2 to 11 W/m2K were tried. The heat transfer coefficient in floor heating
systems should range between 8 and 11 W/m2K according to Cholewa et al. (2013) de-
pending on the temperature difference between operational and room temperature. For
Cf , it was assumed that the total thermal mass remains the same, and therefore, the value
of Cf was subtracted from the thermal mass Cm. Cf per square meter was changed in
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Figure A.6: Adding a second capacity for the floor heating system to the 5R1C model,
making it a 6R2C model.

Figure A.7: Heatmap of the mean squared error for different Cf and Hf combinations.
The red-marked result shows the Cf , Hf combination with the minimum error satisfying
the maximum heating power constraints. Combinations in Grey proved to be infeasible.

steps 5 kJ/m2K, ranging from a minimum of 5 to a maximum of 250 kJ/m2K. To have a
comparable value of the shifted electricity to the 5R1C model, the boundary conditions for
the maximum heating power, both on the electrical and thermal side, are restricted by the
maximum heating powers (electrical and thermal) of the 5R1C model. Allowing the 6R2C
model to have a higher thermal power output would result in significantly higher shifted
energy demand, showing that the floor heating system could shift much more electricity
without violating indoor temperature constraints. The maximum power constraints make
the model infeasible in cases where Cf is either too high or Hf is too low. As an example,
the optimum feasible combination for one of the buildings is shown in Figure A.7. The
full mathematical formulation of the 6R2C model is provided in Appendix A.4.

The resulting best combination for Cf and Hf to mimic the behavior of IDA ICE is
shown in Table A.5. When considering the temperature difference between operational
and air temperature, the Hf values are in the upper range of values described in Cholewa
et al. (2013). The number of investigated buildings is too low to predict the Cf and Hf
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values reliably2. Further research with a lot more buildings needs to be conducted to
estimate the capacity of the floor reliably and the heat transfer coefficient between the
floor and indoor air based on available RC parameters.

Table A.5: Overview of chosen Cf (kJ/m2K) and Hf values (W/m2).

Building Cf factor [kJ/m2K] Hf [W/m2]
SFH 1 B 65 4
SFH 1 S 155 5.5
SFH 5 B 120 3
SFH 5 S 105 3.5
SFH 9 B 35 2
MFH 1 B 35 4
MFH 1 S 150 5.5
MFH 5 B 145 5.5
MFH 5 S 130 5.5

With the values from Table A.5, the 6R2C model was compared to the 5R1C and
IDA ICE models. On a yearly basis, the change in heat demand is insignificant between
the 5R1C and the 6R2C model (Figure A.8), which is expected as the resistances of the
building envelope are identical. The 5R1C model approximates the yearly heating demand
for each building well, which is in accordance with results from Cirrincione et al. (2019)
and Michalak (2014). Note that the heating demand for the IDA ICE model runs with
an ideal heating system, ignoring heating system distribution losses, which is why there
is a higher heating demand for floor heating. Only the heating demand of the SFH 9 B
(well-insulated and lightweight) is strongly underestimated by the 5R1C model. In the
following, we will use this building to analyze the hourly thermodynamic behavior as it
represents the worst case for the model.

Figure A.8: Yearly heat demand comparison between the 5R1C model and IDA ICE.
2Random Forest regression attempt resulted in R2 values of 0.13 and 0.5 for the prediction of Hf and Cf

respectively.
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When looking at the thermodynamic behavior in detail, we can see in Figure A.9 that
the hourly heating demand and the indoor temperature align well between the 5R1C and
IDA ICE. This means buildings with radiators as heating systems can be sufficiently well
represented, and the thermal load-shifting behavior can be adequately modeled. The only
discrepancy is the overall higher needed heating demand, which is due to the underesti-
mation of the 5R1C approach for this specific building. Suppose this building is equipped
with a floor heating system instead of radiators. In that case, the thermal response of
the building can not be adequately represented by the 5R1C model anymore, as shown
in Figure A.10. Figure A.10 depicts the heating demand and indoor temperature of the
IDA ICE, 5R1C, and 6R2C models. The IDA ICE model uses the 5R1C indoor temper-
ature as the set temperature. It is visible that when the 5R1C model pre-heats to 23°C,
the IDA ICE model, using floor heating, can not reach this indoor set temperature within
the pre-heating period due to the much higher thermal inertia. At the same time, the
indoor temperature decreases more slowly, leading to higher losses than anticipated by the
5R1C model. The ’6R2C following set temperature’ model is bound to the same indoor
temperature as the IDA ICE model. The mean squared error between the heating demand
of the ’6R2C following set temperature’ and the IDA ICE model was used to determine
the best parameters for Cf and Hf . It is visible that the 6R2C model follows the pattern
of the IDA ICE model, however, the magnitude can not be reached. This would be im-
possible without changing the other RC parameters to precisely match the two models’
heating demands. Finally, the ’6R2C optimized’ shows how the new 6R2C model would
behave if it were to minimize electricity costs. We can see a clear difference in the indoor
temperatures of the 5R1C and 6R2C models. Because of the inertia in the heating system,
the 6R2C model uses smaller price deviations to pre-heat the building. On Saturday and
Sunday, the indoor temperature in the 6R2C model behaves more realistically as the floor
heating saves thermal energy over prolonged periods.

Figure A.9: Hourly comparison of the heat demand between the 5R1C model and IDA ICE
over one week for house SFH 9 B with radiator heating.

To quantify how much the load shifting potential is underestimated by the FLEX model
for buildings with floor heating systems, we use the definition provided in Section 3.2 for
Ẽshifted. For buildings with radiators, the difference in shifted electricity between IDA ICE
with an ideal heating system and the 5R1C model is low. It is partly attributed to the
ignored heat distribution losses of the ideal heating system. The relative electricity de-
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Figure A.10: Hourly comparison of the heat demand and the indoor temperature between
the 5R1C, 6R2C, and IDA ICE model over one week for house SFH 9 B with floor
heating.

mand shifted by IDA ICE, with floor heating, on the other hand, exceeds the calculated
shifted demand of the 5R1C model in every building except in SFH 9 B (Figure A.11 and
A.12). In the SFH 9 B building, the 5R1C model underestimates the heating demand.
Buildings with low heating demand have a higher relative shifting potential. On the other
hand, the IDA ICE calculations with an ideal heating system depict a lower amount of
shifted electricity, which is also attributed to the overall lower heating demand shown in
Figure A.8. At the same time, the high inertia of the floor heating system necessitates
an early reactivation of the HP so as not to let the indoor temperature fall below 20°C
in the subsequent hours. This lowers the calculated shifted electricity. The 6R2C model
(’6R2C following set temperatures’) compares much better in terms of shifted electricity
demand both in absolute and relative values to the buildings using a floor heating system
(in Figure A.12 and A.11). Only in the SFH 9 B building is the relative shifted electricity
demand much higher than IDA ICE anticipated (Figure A.11). Again, this is attributed
to the underestimation of the heating demand and evens out when looking at the absolute
shifted demand in kWh (Figure A.12).

Figure A.11: Relative amount of
shifted electricity in % with differ-
ent models over one year.

Figure A.12: Absolute amount of
shifted electricity in kWh with dif-
ferent models over one year.
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Using the 6R2C model in a normal optimization mode for buildings with a floor heating
system results in a much higher shifted electricity than using the 5R1C model. Since the
thermodynamic behavior is now considered in the optimization, demand is shifted more
efficiently, minimizing losses. If the heat losses are correctly estimated by the RC com-
ponents of the 5R1C and 6R2C models, the 6R2C model represents buildings with floor
heating systems much better. The error made in estimating the shifted electricity as an
absolute percentage is provided in Table A.6. Buildings with floor heating systems would
shift 1.4 to 5.2 times more electricity than estimated by the 5R1C model. The shifting
potential seems to be underestimated the most for badly insulated buildings with a rela-
tively low thermal mass (SFH 5 B and MFH 5 B). On the other hand, the extension of the
floor heating system without a direct connection to the outdoor temperature or surface
temperature node will delay heat losses when the floor is heated up. The optimization
uses this delay to its advantage.

Table A.6: Error when estimating the shifted electricity with the 5R1C model if the
building uses a floor heating system. The error represents how much more electricity is
shifted by the 6R2C model when optimized compared to the 5R1C model for the same
building.

Building Error (%)
SFH 1 B 326
SFH 1 S 234
SFH 5 B 512
SFH 5 S 242
SFH 9 B 141
MFH 1 B 186
MFH 1 S 329
MFH 5 B 415
MFH 5 S 234

Generally, it can be said that the shifted amount of electricity calculated with the
5R1C model is most realistic for heavy-weight buildings with low insulation and a radia-
tor heating system. For well-insulated buildings, the shiftable amount of heating demand
is overestimated in relative terms for radiator-heated buildings with differences between
0.1% and 39% and heavily underestimated for buildings with a floor heating system. For
buildings with poor insulation and low thermal mass the shifted heating demand is un-
derestimated the most. However, this kind of building rarely has a floor heating system
installed. For buildings with better insulation, the error is much smaller. This difference
can be further minimized if a heating buffer tank is included. Therefore, using the 6R2C
model will not affect the accuracy at the country level within the existing uncertainties
concerning the accuracy of building stock data.

The high inertia of the heating system impacts the achievable cost reductions. In Fig-
ure A.13, the change in operation cost if the FLEX model optimizes the heating operation
is shown. Since the optimization is done with the 5R1C model, it always results in a cost
reduction. However, for buildings with higher thermal inertia due to high insulation levels,
we see that the indoor set temperatures provided by the FLEX model can result in an
increase in operation cost for the IDA ICE model. The effect of the increased thermal
inertia due to the floor heating system shows a higher change in costs than with the ideal
heating system, as more energy is shifted. For the highly efficient building SFH 9 B, the
costs drastically increase because the losses are much higher than anticipated by the 5R1C
model due to the higher indoor temperature (see Figure A.10). For lightweight buildings
with a high insulation level, the 5R1C model does not represent the transient thermo-
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dynamic behavior accurately enough to reduce the operation costs by optimizing the HP
operation. The change to the 6R2C model shows that almost all buildings have a higher
potential for cost savings due to the higher possible shiftable energy. However, the cost
savings are not as strongly underestimated as the shifted energy is overestimated. Cost
savings are not as high because, with the additional capacity, demand is shifted at much
lower price spreads, resulting in small additional cost advantages. In conclusion, possible
cost savings for buildings with floor heating systems optimized through a 5R1C approach
are slightly underestimated.

Figure A.13: Change in operation cost for the IDA ICE simulation if the FLEX optimiza-
tion operates the building’s heating system.

The results in this section showed that the transient thermodynamic behavior of heavy-
weight buildings with poor to medium insulation is represented well by the 5R1C model.
Their costs can be decreased by optimizing the HP operation through the 5R1C model.
On the other hand, lightweight buildings and floor heating systems are poorly represented,
which can lead to increased costs if these buildings are optimized with a 5R1C approach.
For buildings with radiator heating systems, the 5R1C approach slightly overestimates the
potential of shifting electricity, and for buildings with floor heating systems, the shift-able
electricity is strongly underestimated. Especially for badly insulated, lightweight buildings
with floor heating systems, the model needs an adaptation to estimate load shifting and
cost reduction potentials accurately. To do so, a second capacity and a sixth resistance
were introduced to the model, imitating the floor heating system’s thermodynamic be-
havior. With the developed 6R2C model, it was shown that buildings with floor heating
systems can shift 1.4 to 5 times more electricity than anticipated by the 5R1C model. This
is equivalent to the increase in load shifting potential when a thermal hot water storage for
heating is implemented into the 5R1C model (explained in Section 4.1 and Mascherbauer
et al. (2024)). Since not enough buildings were simulated to find a strong correlation
between the RC parameters and the new Cf and Hf values, the 6R2C model is not used
for analysis at the country level. However, to compensate for lost flexibility due to the
missing thermal capacity, small thermal storage was added to buildings, which are usually
added to HPs to enable a smoother operation of the HP. Adding a thermal storage to
the 6R2C model does not result in significantly higher shifted electricity or operation cost
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reduction because the HP in every building is limited in its thermal power. An increased
shifting potential, however, would be more visible in scenarios where the electricity price
signal changes with low frequency, offering long periods to pre-heat all available storage
plus the thermal mass of the heating system and building together.

A.3.3 Perfect forecast vs. rolling horizon
Studies investigating the optimal sizes for building appliances or heating systems often
use an optimization approach with perfect forecasting. When using this approach, un-
certainties in forecasts for an optimal operation controller are neglected. Golmohamadi
(2021b) creates a stochastic model predictive controller for HP buildings, focusing on ther-
mal inertia and heat storage in the building. They find that ambient temperature and
electricity price uncertainty have a more significant impact on the economic analysis than
the domestic hot water consumption uncertainties. This section investigates how large the
error is by assuming a perfect forecast horizon compared to a rolling horizon approach.

Sridhar et al. (2024) identified a gap in the literature when it comes to modeling sin-
gle houses with HEMS over the whole year with a rolling horizon approach and different
electricity prices. They use a rolling horizon approach over the whole year but do not
monetize storage levels at the end of each modeling horizon. Monetization of the SOC of
any storage is also referred to as ”cost to go” (Park et al. 2021) or ”terminal cost” (Abdu-
fattokhov et al. 2021) of storage. Few studies focus on the cost to go for the thermal mass
of a building. In Sridhar et al. (2024), the thermal mass is not modeled, only the thermal
capacity of the indoor air. Modeling the thermal mass without monetizing the state of
the thermal mass in the last timestep affects the results of an optimization significantly.
The effects of preheating the thermal mass on the heating demand can last for more than
48 hours (Weiß et al. 2019b). Prat et al. (2024) investigate the optimal forecast horizon
for different storage and show that the efficiency of a storage significantly impacts the
needed forecast horizon. Also, the results deteriorate if no forecasting horizon is chosen,
and instead, a fixed value for the storage has to be met at the end of each iteration. They
also state that the optimal forecast window for each storage type changes over time.

A practical approach usually taken to model and control heating systems in buildings is
model predictive control (MPC). For example, in H. Wang et al. (2023), an XGBoost-based
predictive control is created for a commercial building with a heating, ventilation, and air
conditioning (HVAC) system. Their results show that through DR, the operation cost can
be effectively reduced by up to 27%, but the optimization was only done until 9 pm in the
evening when the building closes. Thus, the thermal mass of the building is not monetized
at the end of the optimization and does not impact the results. In X. Luo et al. (2019)
an HVAC for a MFH is optimized using an MPC with the goal of making the building
operation grid-friendly. Peak demand could be reduced to 44% of the original peak. An
MPC can provide an optimal solution for the considered forecast window. However, under
certain circumstances, an MPC can lead to a sub-optimal control strategy if, for example,
future input variables or boundary conditions change significantly. Building controls are
usually optimized using an MPC for a certain time horizon for which sufficiently good fore-
casts exist. With a larger time horizon, MPCs generate better results, but the uncertainty
in forecasts increases drastically. Laguna et al. (2022) created a methodology to dynam-
ically determine the optimal size of the rolling horizon windows based on the capacity of
the thermal mass. They state that the optimization window has to be large enough to use
the full potential of the thermal mass to shift loads. However, forecasts for weather and
price data are usually not reliable enough for such long time periods. Oviedo-Cepeda et al.
(2021) use MPC to optimize a building’s energy management with a PV, geothermal HP,
and floor heating. They use forecast intervals of 1, 3, and 5 days. The MPC using a rolling
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horizon for the optimization improved significantly when increasing the horizon window
from 1 to 5 days. Hu et al. (2019) developed an MPC controller for a building with floor
heating, minimizing the electricity cost of a HP. The prediction horizon in this study is
set to 12h, and the horizon is updated every hour with a sampling time of 30 minutes.
Results show that daily electricity costs were reduced by 1.8-18% compared to a conven-
tional on-off controller. In none of the studies are the results from the MPC-controlled
building compared to those of a scenario where the building operator has perfect foresight.

The following analysis shows the difference between a perfect foresight optimization
and a rolling horizon approach. It is shown that introducing terminal costs for the thermal
mass at the end of the horizon can influence the optimal solution significantly. All symbols
used within this section are provided in Table A.7.

The rolling horizon approach was implemented as follows: Every day at 12 o’clock,
the algorithm received the new day ahead prices for the next day. Thus, the optimization
is solved for 36 hours (12 remaining hours of the current day plus the whole next day)
as demonstrated in Figure A.14. However, only the first 24 hours are used for building
controls. To incentivize the optimization to keep energy in the storage, terminal costs (Γ)
were calculated using the average dual variables (ξavg) from the previous day. The effect
of using the dual variables of the prior day can be well observed in Figure A.15, where the
rolling horizon lags behind the perfect forecast for 24 hours.

Figure A.14: Rolling Horizon Approach

Γ = SOC · ξavg (A.21)

Terminal cost of the thermal mass
Calculating the terminal cost (Γ) for the SOC of the thermal mass was done by using
the dual variable ξbuilding of the corresponding constraint in the optimization model. The
dual variable represents the cost needed to pre-heat the thermal mass by one degree. It
is not possible to use the dual variable of the same time horizon to estimate the value of
the storage at the end of the horizon without making the problem non-linear. Therefore,
the mean value of the hourly dual values from the previous day was taken. As this dual
variable goes to zero at the end of each horizon, only the first 24 values of each time
horizon are used instead of all 36 to prevent distortion of the mean.

Γthermal mass = ΔTbuilding mass · ξbuilding avg · βheat demand (A.22)

ξbuilding avg =
1

24

�
ξbuilding,t t ≤ 24 (A.23)

The equations for φst, φm and φmtot (A.7, A.8 and A.6) are used as constraint for
the thermal mass temperature in the optimization model. As mentioned, ξbuilding rep-
resents the dual variable of this constraint. The thermal mass temperature difference
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ΔTbuilding mass is the difference between the thermal mass temperature the building would
have if no demand response is used and the thermal mass temperature at the last step
of the horizon. The binary parameter βheat demand ensures that Γthermal mass is zero if no
heating is required in the respective period. Since ξbuilding avg is from the previous day, with
rising temperatures in Spring, the values for ξbuilding avg might be strongly overestimated if
no heating is required anymore. The same accounts for Autumn, however, here no solution
to the problem was found. The effect is shown in Figure A.15, where it is clearly visible
that the value of the dual variable for the rolling horizon is significantly different from
day 250 to 320. The binary parameter βheat demand fixes this problem for Spring, where
a similar difference would be observed. Future research needs to be done to tackle this
problem and to ensure a better approximation of the terminal cost in Autumn.

Figure A.15: Dual variable values for the thermal mass temperature constraint. Com-
paring the calculated daily mean duals from the rolling horizon with the values in the
respective hour in the perfect foresight optimization.

By monetizing the remaining energy in the thermal mass, the rolling horizon opti-
mization increases the shifted energy significantly compared to a rolling horizon approach
where terminal costs are not evaluated (Figure A.16). The difference can also be ob-
served in the relative cost decrease throughout the year visualized in Figure A.17. As
reported in the literature (e.g., Zhang et al. (2021)), better-insulated buildings achieve a
higher relative cost decrease through the optimized operation of the HP. Still, the absolute
cost savings are higher for buildings with high demand (as shown in Mascherbauer et al.
(2024)). By monetizing the thermal energy in the thermal mass, the relative cost decrease
can be increased significantly in the rolling horizon approach. It is also visible that this ap-
proach works better for poorly insulated buildings, as the relative cost decrease is higher
in those buildings compared to the maximum achievable cost reductions in the perfect
foresight. The reason for this discrepancy is the increasing inaccuracy of the terminal cost
for buildings with better insulation, as pre-heating them influences the heating demand
for a longer, not forecastable, time. To see how a larger time horizon would impact the
results, a 3-day rolling horizon approach was implemented as well. It was assumed that the
weather could be forecasted sufficiently well for these 3 days. For the next three days, the
day-ahead price of the next day was copied three times, implying that the day-ahead price
would not change significantly. As visible in Figure A.16 and A.17, using only a 3-day
forecast instead of one day did not improve the results significantly. Only by introducing
the terminal cost can we see a huge improvement, and the rolling horizon optimization
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achieves similar results both with a one- and three-day horizon window.

Figure A.16: Shifted energy throughout the whole year with different optimization meth-
ods for all buildings using only the thermal mass for load shifting.

These results show that the perfect foresight method applied in the FLEX model,
compared to a more practical approach with a rolling horizon window, yields acceptable
results for buildings that only use the thermal mass for load shifting. A rolling horizon
approach can achieve similar results in regard to shifted electricity and potential cost
savings when implemented correctly.
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Figure A.17: Relative cost decrease for optimization with perfect foresight and rolling
horizon using only the thermal mass for load shifting.

Terminal cost of storage
To find the terminal cost of both the heating-, DHW tank, and the battery, all nine
buildings were equipped with either a 700 or 1500 L heating tank, a 300 or 700 L DHW
tank, and a 7 kWh or 15 kWh battery, depending on if they are SFH or MFH, respectively.

At first, the terminal cost (Γ) for the battery and water tanks was estimated the same
way as the thermal mass by using the dual variables of the respective constraints for the
SOC. However, it turned out that the rolling horizon optimization performed worse when
the thermal storage and batteries were monetized this way than when their terminal costs
were not included in the objective function at all. The reason for this was the very high
dependency on electricity prices, which were volatile. Compared to the thermal mass, the
shadow variables for the battery, DHW, and heating tank were much more volatile. In
Figure A.18, we see the comparison of the daily mean duals from the rolling horizon com-
pared to the dual variables from the perfect forecast optimization. Especially in summer,
the average of the daily dual variable is often different due to PV-generated electricity.
Thus, by taking the average shadow variable from the previous day, the value of the
charged storage is frequently overestimated in the rolling horizon approach, leading to a
sub-optimal result. The same can be observed for the dual variables of the DHW and
heating tank in Figure A.19 and A.20.

Adding all the storage and PV to the houses shows the relative cost reduction in Fig-
ure A.22. In all methods for the rolling horizon approach, the terminal cost for the building
mass was included. It is visible that the achievable cost reductions through the rolling
horizon approach are limited compared to the perfect foresight. Especially the costs for
building SFH 9 B even increase when optimizing the operation with a one-day forecast.
Including terminal costs with the above-mentioned strategy minimizes the cost increase.
However, the long-term effects of charging various storage systems are too unpredictable
to optimize the building correctly. A considerable improvement is achieved if the forecast-
ing window is increased by three days. However, the total amount of shifted electricity
(Figure A.21) is in all cases very close to the FLEX calculation with perfect foresight. In
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Figure A.18: Dual variables of the SOC for the battery for House SFH 9 B.

Figure A.19: Dual variables of the SOC for the DHW tank for House SFH 9 B.

Figure A.20: Dual variables of the SOC for the heating tank for House SFH 9 B.
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both Figures A.21 and A.22, a third analysis for the 3-day rolling horizon is shown, where
the price for all 3 days is perfectly forecasted. This results in slightly better operation cost
savings (Figure A.22), but for the sake of estimating the potential of DR, using the same
day-ahead price for the next 3 days can provide a good approximation (see Figure A.21).

The previous analysis used the day-ahead price in 2019 in Austria. This begs the
question of whether different prices will affect this approach, for example, if prices change
drastically from one day to another, as we saw when gas prices spiked in 2021 and 2022.
The impact of more volatile prices on the operation cost savings is shown in Figure A.23.
In 2021, electricity prices in Austria spiked at the end of the year, and 2022 showed more
volatile prices than any previous year. With more volatile prices, the optimization can
increase the relative cost reduction while having a more accurate price forecast over the
next 3 days instead of one, increasing the possible operation cost reduction significantly
for higher volatile prices. In this figure, it is also clearly visible that the rolling horizon
approach performs better if the storage is not modeled with terminal costs. This indicates
that calculating the terminal costs through the shadow variables of the previous day is
not a suitable method for storage that can be easily charged and discharged within the
horizon window. As mentioned before, the terminal costs are often overestimated due to
the PV generation, which skews the mean dual variable. Also, the different dual variables
of the storage are impacted by the SOC of the other storage, which might be completely
different from the day before. The volatility of the prices did not impact the performance
of the different rolling horizon methods on the shifted energy. With higher price volatility,
more electricity was shifted uniformly. The ratios between each method and the perfect
forecast remained the same.

Figure A.21: Shifted energy throughout the whole year with different optimization meth-
ods for all buildings. Buildings are equipped with PV, a DHW tank, a buffer tank, and a
stationary battery.

The analysis has shown that the potential to shift electricity in different buildings is
not unrealistic when estimated using a perfect foresight approach. On the other hand, cost
savings for single buildings can only be lower when using the rolling horizon approach.
When implementing a rolling horizon approach to optimize the HP operation of a building,
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Figure A.22: Relative decrease in cost comparison for the buildings equipped with PV,
Battery, DHW, and heating tank.

Figure A.23: Relative decrease in cost comparison for the buildings equipped with PV,
Battery, DHW, and heating tank for 2019, 2021, and 2022.
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the terminal cost for the building’s thermal mass has to be considered to achieve better
results. At the same time, the presented methodology for estimating the terminal cost
of different storage appliances is not suitable if a building has multiple storage devices
installed.
Table A.7: List of symbols used for the comparison between perfect forecast and rolling
horizon

Character Unit Description
βheat demand - binary variable stating if heat demand is greater than zero
Γ EUR/K or

EUR/kWh
terminal cost

ξbuilding EUR/K dual variable of Equation 3.23
ΔTbuilding mass K temperature difference

A.4 6R2C formulation
In this section of the appendix, the mathematical formulation of the 6R2C model is de-
scribed. Figure A.24 shows the circuit representation of the 5R1C model with the extension
of the floor heating node f , which is connected to the room temperature node via the re-
sistance Hf . Hf describes the heat transfer rate between the floor heating and the indoor
environment. Cf is connected to the node f and represents the thermal capacity of the
floor heating system.

Figure A.24: 6R2C circuit representation

The 6R2C model is equivalent to the 5R1C model in its mathematical formulation for
the nodes s and m. The indoor air temperature θair is calculated through:

θair =
θs ∗His +Hve ∗ θoutside + φia + θf ∗Hf

His +Hve +Hf
(A.24)

The temperature of the added floor node is calculated with the following equation.
The floor capacity is discretized using the Crank–Nicolson method.

θfloor, t =
Hf ∗ θair,t +Qheating,t + θfloor, t-1 ∗ ( Cf

3600 − 0.5 ∗Hf )
Cf

3600 + 0.5 ∗Hf

(A.25)
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The rest of the equations describing the heat flows in the nodes s and m are identical
to the ones from the 5R1C model.

θmavg ,t =
θm,t + θm,t−1

2
(A.26)

φst,t = (1− Am

At
− Hw

9.1×At
)× (0.5× φint + φsol,t) (A.27)

θs,t =
θair,t ∗His + θmavg ,t ∗Hms + θoutside,t ∗Hw + φst,t

His +Hms +Hw
(A.28)

The Crank–Nicolson method is also used to discretize the equation describing the
thermal mass temperature of the building, like in the DIN ISO 13790.

φm,t =
Am

Atot
∗ (0.5 ∗ φint + φsol,t) (A.29)

θm,t =
θm,t−1 ∗ ( Cm

3600 − 0.5 ∗ (Hms +Hem)) + φm,t +Hms ∗ θs,t +Hem ∗ θoutside,t
Cm
3600 + 0.5 ∗ (Hms +Hem)

(A.30)

A.5 Building specifics for assessing model accuracy with
IDA ICE
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