B Informatics

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Federated Learning Systems
in the Industrial Internet of Things

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Thomas Blumauer-HieBI
Matrikelnummer 01126115

an der Fakultat fur Informatik

der Technischen Universitat Wien

Betreuung: Prof. Dr.-Ing. Stefan Schulte

Diese Dissertation haben begutachtet:

Javid Taheri Lin Wang

Wien, 17. Marz 2025

Thomas Blumauer-Hief3|

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

B Informatics

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Federated Learning Systems
in the Industrial Internet of Things

DISSERTATION
submitted in partial fulfillment of the requirements for the degree of
Doktor der Technischen Wissenschaften
by

Dipl.-Ing. Thomas Blumauer-HieBI
Registration Number 01126115

to the Faculty of Informatics

at the TU Wien
Advisor: Prof. Dr.-Ing. Stefan Schulte

The dissertation has been reviewed by:

Javid Taheri Lin Wang

Vienna, March 17, 2025

Thomas Blumauer-Hief3|

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Erklarung zur Verfassung der
Arbeit

Dipl.-Ing. Thomas Blumauer-HiefI

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. Méarz 2025

Thomas Blumauer-Hief3|

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Acknowledgements

During my PhD studies, I received immense support from numerous individuals who
shared their professional expertise and scientific abilities. This greatly aided my growth
in the research and development field.

I want to thank Prof. Dr.-Ing. Stefan Schulte for being my supervisor and providing
valuable feedback and advice at all times. This not only helped to improve my scientific
output but also fostered my personal growth.

Deep gratitude is sincerely dedicated to Dr. Daniel Schall, who supported me with
his professional experience. Leading the Distributed AI Research Group at Siemens,
Daniel facilitated access to invaluable resources and engaging projects. His guidance and
inspiration have been pivotal in my research process and the development of industrial
prototypes. As a researcher in this group, I want to thank my colleagues and co-authors
Jana, Safoura, Thomas, Elias, Alex, and Michael for great discussions, brainstorming
sessions, and support in implementing and running our systems.

I am very grateful to Prof. Javid Taheri, PhD (Queen’s University Belfast and Karlstad
University) and Prof. Dr. Lin Wang (Paderborn University) for reviewing this thesis
and providing very valuable input.

I want to thank my family for supporting my educational journey from the very beginning
and for always encouraging me to pursue my interests with dedication and resilience.

Many thanks to my friends, who accompany me through important phases of my life,
including my time at school and university.

Finally, my PhD studies would not have been possible without the immense emotional
support from my wife, Victoria. Every paper that forms the foundation of this thesis
required not only scientific contributions and innovative ideas but also a significant amount
of work to deliver the results. I wish to express my deepest gratitude to Vicy for her
unwavering mental support, her inspiring motivational speeches, and her unconditional
support throughout my research work and my life in general.

The work presented in this thesis was primarily funded by Siemens AG. Additionally,
Chapters [6| and [7| have been co-funded by the Austrian Research Promotion Agency
(FFG).

vii

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Kurzfassung

Im industriellen Internet der Dinge (engl. Industrial Internet of Things (IIoT))) liefern eine
Vielzahl von Sensoren und Gerédten Daten von Maschinen und Produktionsprozessen. Die
Anwendung von Analysemethoden und trainierten Machine Learning (ML)-Modellen auf
den Daten liefert aufschlussreiche Informationen zur Optimierung der Prozesse und somit
zur Steigerung der Produktivitdt. Mit dem Aufkommen von Federated Learning (FL)
werden dezentrale Geréte in die Lage versetzt, ML-Modelle kollaborativ zu trainieren,
ohne Daten zu teilen. Hierfiir aggregiert ein Server die von den Geréten gelieferten
Modellupdates (d. h. Mittelwertbildung der Parameter). Dieser Ansatz wahrt die Privat-
sphére der lokalen Gerdte und deren Benutzer und bietet die Moglichkeit, die Qualitat
der ML-Modelle zu steigern, da Wissen zwischen den beteiligten FL-Teilnehmern geteilt
wird, ohne Rohdaten offenzulegen.

Die Anwendung von FL in der Industrie und die Entwicklung von ganzheitlichen FL-
Systemen fiir industrielle Benutzer fithren jedoch zu offenen Fragen. Insbesondere besteht
ein Bedarf an Werkzeugen und Diensten zur Entwicklung, Bereitstellung und Ausfiih-
rung von FL-Lésungen und deren Integration in Industrieanwendungen. Aufgrund der
unterschiedlichen Konfiguration der einzelnen Gerite und Variationen in den zugrunde-
liegenden Prozessen und iiberwachten Maschinen, folgen die gesammelten Daten oft auch
heterogenen Datenverteilungen. Daher kann das Training eines globalen Modells durch
Mittelwertbildung zu einer unzureichenden Modellqualitit fithren. Ein weiteres Problem
ist die optimale Bereitstellung von Clients (Software auf den dezentralen Geréten) und ihre
Auswahl fiir FL-Prozesse. Dabei ist es fiir effiziente FL-Systeme entscheidend, die Latenz
zu minimieren und die Modellqualitit zu steigern. Ebenso gibt es noch kaum Integratio-
nen von FL-Lésungen in Geschéfts- und Fertigungsprozessen, da viele Voraussetzungen
fiir den operativen Einsatz noch nicht erfiillt sind.

Diese Arbeit prasentiert Systeme und Konzepte, die FL-Dienste fiir Problemstellungen
im IToT-Bereich anbieten, optimieren und deren Einsatz in betriebsiibergreifenden Setups
erldutert. Des Weiteren préasentiert diese Arbeit FL-Aktivitdten entlang des gesamten
Lebenszyklus von der Entwicklung bis zur Anwendungsintegration und dem Betrieb. Zur
Optimierung der Bereitstellung von FL-Lésungen stellen wir Ansétze fiir das Deploy-
ment und die Selektion von FL-Clients vor. Dabei beriicksichtigen wir Edge-, Fog- und
Cloud-Plattformen. Schliefilich werden Voraussetzungen fiir FL-Lésungen und bestehende

ix

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Problemstellungen aus der Praxis erfasst, um geeignete FL-Blueprints fiir die industrielle
Kollaboration abzuleiten.

Die vorgestellten FL-Systeme und Algorithmen werden anhand von Industriedaten
aus verteilten Datenquellen validiert. Dabei werden Verbesserungen der trainierten FL-
Modelle im Vergleich zum isolierten und lokalen Training von ML-Modellen und bereits
bestehenden FL-Ansétzen gezeigt. Die Ergebnisse der Client-Selektions-Optimierung
zeigen, dass die relevanten Metriken (z. B. Modellqualitét und Latenz) zum jeweilig besten
Ansatz der Klasse konvergieren. Unsere FL-Blueprints adressieren Problemstellungen
von 13 Unternehmen und liefern Architekturen zur Lésung praxisrelevanter Kiinstlicher
Intelligenz (KI)-Probleme.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Abstract

In the Industrial Internet of Things (IToT), a multitude of sensors and devices deliver data
from machines and production processes. Applying data analysis and trained [Machine
Learning (ML) models on the data provides insightful information for optimizing the
processes and therefore increasing productivity. With the rise of Federated Learning (FL),
decentralized devices are enabled to collaboratively train [ML| models without sharing
data. For this, a server aggregates (i.e., averages) the model updates delivered by devices.
This approach preserves privacy of the local clients and offers the potential to boost the
performance of ML models, since knowledge is shared between involved FL participants
without revealing raw data.

The application of FL in industry and the development of holistic FL systems for industrial
clients still face open issues. In particular, there is a need for providing tools and services
to develop, deploy, and run FL solutions and integrate them into industry applications.
Due to the diverse setup of individual devices and variations in underlying processes and
monitored machines, the collected data often follows heterogeneous data distributions
as well. Consequently, the training of a global model through averaging can result in
insufficient model quality. Another problem is the optimal deployment of clients and
their selection for FL runs. Essentially, it is crucial for efficient FL systems to minimize
the response time and boost the performance of the model. Furthermore, there is still a
gap to integrate FL solutions into business and manufacturing processes, since there is
only limited information on practical implementation guidelines available for industry.

This thesis presents systems and concepts that provide FL services to clients in the
1IoT considering strategies for optimizing models towards individual data distributions.
We support FL activities along the whole lifecycle from development to application
integration. To optimize deployments of FL solutions, we present approaches for client
placement and selection for FL clients by the server. For this, we consider edge, fog, and
cloud platforms. Finally, we survey the prerequisites and requirements for FL solutions in
practice and collect respective pain points to derive suitable FL blueprints for industrial
collaboration.

We evaluate the FL system(s) and proposed algorithms on industrial data from decen-
tralized data sources and show improvements in the performances of the trained FL
models as compared to isolated local ML and plain FL. The results of our deployment
and client selection optimization demonstrate flexibility and convergence to the relatively

X1

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

best platform for FL clients aiming for optimizing e.g., model performance and response
time. Our FL blueprints address the surveyed pain points of 13 companies and provide
architectures for solving identified |Artificial Intelligence (AI) problems with FL.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Contents

Kurzfassung ix
Abstract xi
Contents xiii
Publications XV
1 Introduction 1
1.1 Problem Statement! 2
1.2 Research Questions 5
1.3 Scientific Contributions 6
1.4 Thesis Structure 8
2 Background 9
2.1 Federated Learning| 9
2.2 Internet of Things 16
2.3 Compute Platforms: Cloud, Fog, and Edge Computing 19
3 Industrial FL — Requirements and Systems Design 25
3.1 Introduction 25
3.2 IFL Notationl e 27
3.3 Related Work 28
3.4 Requirements 29
3.5 System Design 31
3.6 Summary 37

4 Cohort-based FL
4.1 Introduction| .
4.2 System Design
4.3 _Evaluation! . .
4.4 Related Work
4.5 Summary| . .

Services for Industrial Collaboration on the Edge 39
................................ 39

............................... 41
................................ 51
................................ 62
................................ 64

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5 Lifecycle Management of FL Artifacts in Industrial Applications 67

5.1 Introductionl. 67
5.2 System Designl L 69
5.3 FEvaluationl. 74
5.4 Related Work! 81
5.5 Summary|o e 85
6 FL Deployments of Industrial Applications on Cloud, Fog, and Edge 87
6.1 Introductionl. 87
6.2 System Design 89
6.3 Evaluation. 94
6.4 Related Work 101
6.0 Summary e 103
7 FL Solution Blueprints for Use Cases Surveyed in Austrian Industries| 105
7.1 Introductionl. 105
7.2 Related Worklo 107
7.3 Methodology 108
7.4 Industry Personas 109
7.5 FL Blueprints 114
7.6 _Discussion! e 121
T.7 Summary 124
8 Conclusion and Future Work 125
8.1 Research Questions Revisited 125
8.2 Summary of Contributions|. 126
8.3 Future Workl 128
A _TFL Terms 131
List of Figures 133
List of Tables 135
List of Algorithms 137
List of Listings 139
Acronyms 141
Bibliography 145

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Publications

The research presented in this thesis is based on published work as listed in the following.

o Hiessl, T., Schall, D., Kemnitz, J., Schulte, S. (2020). Industrial federated learning —
requirements and system design. In: De La Prieta, F., et al. Highlights in Practical
Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS
Collection. PAAMS 2020. Communications in Computer and Information Science,
vol 1233. Springer.

o Hiessl, T., Lakani, S. R., Kemnitz, J., Schall, D., and Schulte, S. (2022). Cohort-
based federated learning services for industrial collaboration on the edge. Journal
of Parallel and Distributed Computing, 167, 64-76.

e Hiessl, T., Lakani, S. R., Ungersboeck, M., Kemnitz, J., Schall, D., and Schulte, S.
(2023). Lifecycle management of federated learning artifacts in industrial applica-
tions. In 2023 IEEE 7th International Conference on Fog and Edge Computing
(ICFEC) (pp. 7-15). IEEE.

e Blumauer-Hiessl, T., Schulte, S., Rezapour Lakani, S., Keusch, A., Pinter, E.,
Kaufmann, T., and Schall, D. (2024). Federated learning deployments of industrial
applications on cloud, fog, and edge resources. In 2024 IEEE 8th International
Conference on Fog and Edge Computing (ICFEC) (pp 19-26).

o Blumauer-Hiessl, T., Fessl, A., Breitfuss, G., Schall, D., and Schulte, S. (2024).
Federated learning solution blueprints for use cases surveyed in Austrian industries.
In 2024 TEEE 26th Conference on Business Informatics (CBI) (pp 80-89).

Additional published work can be found in the list below.

o Hiessl, T., Karagiannis, V., Hochreiner, C., Schulte, S., and Nardelli, M. (2019).
Optimal placement of stream processing operators in the fog. In 2019 IEEE 3rd
International Conference on Fog and Edge Computing (ICFEC) (pp. 1-10). IEEE.

o Hiessl, T., Hochreiner, C., and Schulte, S. (2019). Towards a framework for data
stream processing in the fog. Informatik Spektrum, 42, 256-265.

XV

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Schall, D., Hiessl, T., and Kemnitz, J. (2021). Method and system for operating
a technical installation with an optimal model. U.S. Patent Application No.
17/237,157.

Ding, A. Y., Peltonen, E., Meuser, T., Aral, A., Becker, C., Dustdar, S., Hiessl,
T., ... and Wolf, L. (2022). Roadmap for edge Al: A Dagstuhl perspective. ACM
SIGCOMM Computer Communication Review, 52(1), 28-33.

Holly, S., Hiessl, T., Lakani, S. R., Schall, D., Heitzinger, C., and Kemnitz, J. (2022).
Evaluation of hyperparameter-optimization approaches in an industrial federated
learning system. In Data Science—Analytics and Applications: Proceedings of
the 4th International Data Science Conference-iDSC2021 (pp. 6-13). Springer
Fachmedien Wiesbaden.

Ungersbock, M., Hiessl, T., Schall, D., and Michahelles, F. (2023). Explainable
federated learning: A lifecycle dashboard for industrial settings. IEEE Pervasive
Computing, 22(1), 19-28.

Keusch, A., Hiessl, T., Joksch, M., Stindermann, A., Schall, D., and Schulte, S.
(2023). Edge intelligence for detecting deviations in batch-based industrial processes.
In 2023 IEEE 21st International Conference on Industrial Informatics (INDIN) (pp.
1-8). IEEE.

Kemnitz, J., Weissenfeld, A., Schoeffl, L., Stiftinger, A., Rechberger, D., Prangl,
B., ... and Schall, D. (2023). An edge deployment framework to scale AI in
industrial applications. In 2023 IEEE 7th International Conference on Fog and
Edge Computing (ICFEC) (pp. 24-32). IEEE.

Lakani, S. R., Blumauer-Hie8l, T., Eder, J., and Schall, D. (2024). Computer-
implemented method and system for operating a technical device. 18/641,572.

Keusch, A., Blumauer-Hiessl, T., Furutanpey, A., Schall, D., and Dustdar, S.
(2024). Platform-agnostic MLOps on edge, fog and cloud platforms in industrial
IoT. International Conference on Web Information Systems and Technologies (pp.
71-79). SciTePress.

Lakani, S. R., Blumauer-Hiefll, T., Meixner, S., and Schall, D. (2025). Computer-
implemented method for operating a technical device using a model. US Patent
App. 18/711,992.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Introduction

In the Internet of Things (IoT), an ever-increasing number of heterogeneous objects
(things) is connected to the Internet providing applications for multiple domains like indus-
trial manufacturing, smart cities, smart grids, healthcare, retail, and logistics .
For this, data is generated by sensors and analyzed accordingly to derive insightful
information for improving the life of modern societies. In recent years, Machine Learning
(ML) has improved industrial manufacturing and process automation significantly, e.g.,
in fault classification, quality estimation, and soft sensing . For instance,
value-added and ML-based services and applications like Condition Monitoring (CM)
for production machines can be used to facilitate timely and cost-efficient maintenance
actions throughout the lifetime of a machine [CNG™18,[BLS™13].

To achieve these benefits, high-quality ML models require a significant amount of training
and testing data. This data is often considered privacy-sensitive and needs to be protected
from outside parties . In addition, there is often a lack of ground truth data, which
is referred to as the missing labeled data problem . This is especially the case in
industrial scenarios since some labels can only be assigned to a dataset, if critical and

potentially rare events (e.g., a machine breakdown) are observed [DODGS19].

Since the required large and labeled datasets should not be shared with centralized
servers for ML, a privacy-preserving way of knowledge sharing between collaborating
devices is desired. This is the goal of [Federated Learning (FL), as introduced by
McMahan et al. . FL is an approach for transferring knowledge as model
parameters (e.g., weights of neural networks) between (edge) devices without revealing
raw data. For this, models are trained locally on edge devices and are then uploaded to
an aggregation server that fuses model parameters e.g., by averaging. The aggregation
can be secured so that the server only learns the sum of all updated models instead of
individual model contributions from clients using secure aggregation . After
aggregation, the model is returned to the clients for evaluation. This process is executed

1

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

repeatedly either until a pre-defined number of communication rounds or a provided level
of quality (e.g., classification accuracy) is reached.

To optimize collective model training, various FL algorithms, e.g., [MMR™'17,[YCKB18|
PKH19,[YWL20], have been researched, with a specific focus on model aggregation and
client selection. Applying the concept of [FL| for industrial machines that are distributed
over multiple factories and facing heterogeneous environmental and operational conditions
is referred to as Industrial Federated Learning (IFL) [HSKS20].

At this time, still many challenges [KMA™21b| exist in FL which apply especially to
industrial clients [HSKS20] as described in the following subsections.

1.1 Problem Statement

1.1.1 Federated Learning Services for Independent Edge Devices

The initiation of FL training procedures usually involves the selection of clients by a
server, which functions as a central authority [KMAT21b,[MMR™17]. Considering an
edge computing environment, clients are typically deployed on edge devices that process
data (i.e., train models based on local data) in close proximity to data sources to ensure
data privacy and low latency . Servers are utilized to oversee and monitor the
distributed training process, managing the connected edge devices . Figure 1.1
depicts how FL can be applied considering a central model aggregation and several edge
devices that train on data generated by machines to e.g., improve ML model quality for
detecting anomalies in a production process.

In most FL approaches, the central authority defines the learning task, for instance,
choosing the ML model, hyperparameters, and the FL algorithm . However,
in industrial applications, users such as machine operators on production lines have unique
needs concerning business collaborations when partnering with other organizations to
enhance and sustain machine performance . For example, FL-based applications
can be deployed to a significant number of edge devices that can be located at multiple
sites of a given organization or even multiple organizations. Hence, although the same type
of problems are solved using a given application, diverse clients with their heterogeneous
edge devices, respective users, operating conditions, and data sources yield individual
restrictions that need to be considered in FL. Furthermore, clients can impose limitations
to only collaborate with certain partners or ensure collaboration with a specified minimum
number of partners to enhance the likelihood of actual enhancements in the ML model.
For this, approaches using central authorities are not fully applicable in industrial setups
and need to be adapted according to the participating clients.

A service-oriented system is required that enables individual clients to develop and submit
ML models to the server, facilitating FL-as-a-Service (FLaaS) . This approach
allows a group of independent, collaborating clients to apply FL on these models and to
consider individual restrictions. Finally, the resulting model can be used on their devices.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.1. Problem Statement

A Model
Aggregation &

Continuous
Updating
Global Model M1

I Edge Device E1 . | I Edge Device E3
o Edge Device E2
Model Training == | Local Model M1 === | Local Model M2 == | Local Model M3
and Evaluation L h—— b ——
e e e
I 11
|

ﬂ- 52
-\o
X,
<

Q o -
D f"‘, w1 L | |
Gaet:eration alg m " T m <l dl
QG D Q=D

Machine MA1 Machine MA2 Machine MA3 Machine MA4 Machine MAS

Figure 1.1: FL with industrial machines; Machines generate data that are used for
training and evaluating ML models on edge devices; Models are periodically sent to the
server for aggregation and distribution to other edge devices for knowledge sharing.

1.1.2 Skewed Data

A significant issue in FL is the problem of heterogeneous data distributions [KMA™21b],
a situation particularly prevalent in industrial sectors when machines function under
diverse operational conditions with different configurations [HSKS20].

For instance, considering different liquids that are pumped in industrial processes, one
can observe different error cases occurring over time detected by models using vibration
patterns as input data . Typically, one can observe that input data (e.g.,
vibration data) is varying across clients which is referred to as feature distribution
skew . Additionally, varying labels (e.g., error cases) can often be observed
as well, which is referred to as label distribution skew. This phenomenon corresponds to
the non-Independent and Identically Distributed (IID) data problem, which is a general
issue in ML and especially in FL [KMAT21b|. In non-IID settings, poor model quality
can be observed by individual clients as the model is validated on their local data after
FL has been applied for all clients . Therefore, FL systems need to provide
mitigation strategies in implemented FL algorithms.

1.1.3 Federated Learning in Machine Learning Lifecycles

Model engineers usually start a ML model lifecycle by identifying the underlying problem
that needs to be solved by learning a high quality model. To achieve this, typically a
lifecycle considers multiple stages like client instrumentation, model training (including hy-
perparameter optimization), (federated) model evaluation, and deployment .

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

Hence, stages in ordinary ML lifecycles need to be updated if FL comes into play as
additional complexity is added due to decentralization of tasks, heterogeneous resources
and privacy preservation.

Bonawitz et al. propose to start the FL process by centrally creating FL plans
that define the model and the instructions to be executed on every client. In the proposed
lifecycle, they consider an extended review and safety check of FL plans and an evaluation
of resources available to edge devices even before training is started. This ensures a safe
and robust execution as the training process is started on every involved edge device.

Furthermore, architectural patterns for client selection, clustering, model aggregation, de-
ployment selection of suitable edge devices, etc. can be applied in FL lifecycles |LLZ722].

In contrast to the centralized initiation of FL, [FLaaS-based approaches allow clients to
upload models and to trigger FL. with other clients by using an |Application Programming
Interface (API) provided by the FL server . So, training, validation, and
deployment is influenced by individual clients that are not only responsible for their
local ML lifecycle anymore. Hence, the quality of local data and the model resulting
from FL also affects other clients. This poses challenges when it comes to adopting and
validating models that have been created by possibly unknown clients with different data
distributions and potentially different contributions to the overall FL model.

Based on these considerations, there is a need to incorporate local ML lifecycle aspects
(e.g., model validation, pre- and postprocessing of data) into the overall management
of an FL lifecycle. In particular, customization steps for involved clients are needed to
e.g., adapt the FL model or its outputs to local use cases before it is applied on the
client’s IoT data. This can be relevant to provide quality-assured outputs as the FL
model is integrated into client applications. Overall, a suitable FL lifecycle facilitates
model quality, customization, and integrability for FL applications. For this, a holistic
lifecycle management (including individual lifecycle steps, the extension of existing ones
with new architectural patterns , or a novel composition of steps) are needed.

1.1.4 FL Deployments in Heterogeneous Environments

To solve generic or domain-specific problems on a larger scale, data scientists create
FL solutions and provide reusable models across multiple applications and deploy-
ments [ARPS20,|[KZDB16|. These applications can be downloaded and deployed to
available compute resources (e.g., edge devices). This enables users (e.g., machine opera-
tors, facility managers) to run the models and to react to outputs like identified anomalies
and critical conditions of connected things.

However, considering that FL is implemented in respective applications, (i.e., several
decentralized deployments of the application collaborate on a common model) additional
complexity is introduced, since the ML model is distributed to heterogeneous deployment
locations . Diverse resource capabilities result in differences in metrics like
response time (caused by changing communication and training time) [CAZ™20], energy

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.2. Research Questions

consumption , and model performance. To optimize these metrics, it is necessary
to investigate how client deployments can be managed, taking into consideration available
compute resources (e.g., cloud, fog, edge), as well as application constraints, in order to
achieve best results.

1.1.5 Implementation of FL in Industries

Multiple FL systems, approaches and frameworks have been proposed and use cases in

industry have been demonstrated [KMA™21a|. For example, applications are used in phar-

maceutical research and development |[OAPT23|, quality inspection in the manufacturing
industry , or text prediction while typing on mobile keyboards . In
manufacturing, robots can learn from each other to better execute their tasks by applying
FL on underlying ML models, which also holds for use cases in cooperative driving, where
detection and localization of safety-relevant events is important . However, the
implementation for practical use in real-world environments, such as industry, is lagging
behind. Most approaches presented in the literature are applied in lab settings, while the
transfer of FL into practice is not thoroughly investigated. This can be concluded from
the survey of Pandya et al. , where the surveyed approaches from the several
application fields (e.g., power grids, industries, healthcare) focus on various technical
aspects (e.g., communication, privacy) but not on the actual embedding into businesses.
For this, the current state of applying Allin a collaborative setup need to be surveyed
across different businesses. Based on that, identified use cases and implementation chal-
lenges need be addressed with FL designs and implementation plans for given industry

types.

1.2 Research Questions

Summarizing the described aspects from Section |1.1, challenges of FL services for clients
in heterogeneous deployment locations, dealing with non-I1ID data, FL lifecycles, and
industrial implementation strategies are identified as core issues in real-world scenarios.
To tackle these challenges, this work considers the research questions below. We will
revisit them in Chapter [8 and assess how our contributions address the research questions
with suitable solutions.

RQ1 How can systems and algorithms improve the operation of FL clients in real-world
environments with skewed data and independent edge devices?

To facilitate collaboration of multiple clients and improve their local ML models, an
FL system need to provide suitable services and apply algorithms for addressing the
non-IID problem. Additionally, individual and independent edge devices need to be
considered with respective requirements and a possibility for controlling the overall FL
process instead of have it controlled by a central authority. For this, we aim for designing
an FL system and evaluate it on real-world data.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

RQ2 How should ML/FL lifecycles (individual stages and overall composition) be up-
dated, enhanced, or managed by FL systems, to ensure high-quality models, customizability
for individual clients, and integrability of FL into applications?

The adaptation of ML lifecycles to decentralized and privacy-preserving FL lifecycles
requires a system that enforces the FL specifics discussed in Section [1.1. In particular,
data scientists and machine operators need to be supported to develop, deploy, integrate
and use FL solutions. Hence, we seck a solution by providing end-to-end support starting
with the development of FL solutions until the application can make use of trained FL
models.

RQ3 How can FL deployments be optimized on heterogeneous compute resources with
respect to response times, energy consumption and model performance?

As an FL system is about to be deployed across multiple locations, various deployment
options with different capabilities still exist. Available compute resources (e.g., on-premise
edge devices) can be selected or new ones can be used (e.g., on-demand cloud instances).
Trade-offs in response time and energy consumption need to be investigated and potential
implications to the model performance should be understood as FL is applied. Hence,
we aim to analyze different client deployments and seek for algorithms to optimize the
respective metrics.

RQ4 What are the current pre-requisites for FL in industry and how can FL solutions
be provided to overcome existing challenges?

Since FL is primarily utilized in research and has limited implementation in industry, our
goal is to identify and understand the barriers to its adoption. We want to understand
the pre-requisites and challenges of different companies in multiple industries to derive
suitable and actionable architectures that can be implemented. Furthermore, we seek
for collaboration models that demonstrate how different FL parties are involved in the
implementation and operation of FL systems.

1.3 Scientific Contributions

C1 IFL requirements and system design

The first contribution considers the analysis and discussion of requirements for an FL
system operating in the context of the IoT in industrial environments. Based on identified
requirements, a system design is proposed to faciliate collaborative ML model training.
The design comprises a domain model, an architecture of FL. components and a description
of supported workflows. Contribution C1 has originally been published in and
is presented in Chapter [3.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.3. Scientific Contributions

C2 FL services for independent edge devices with non-I1ID data

The second contribution includes the presentation of the IFL Process, a multi-step
approach that is provided as a service which encompasses algorithms for on-demand FL
requests and the subsequent building of groups of clients (= cohorts) with similar data
to address the non-IID data problem. The system is evaluated on industrial datasets
demonstrating improved model performance in classification accuracy when FL is applied

to groups of similar clients. We presented contribution C2 originally in [HRK™22] and
provide an extensive description in Chapter /4.

C3 Lifecycle management for FL artifacts

The third contribution consists of the design of an FL lifecycle (i.e., the IFL Lifecycle) that
supports the software development, publishing, deployment, and execution of FL solutions
using customizable software artifacts introduced as IFL Templates. The implementation
of the IFL Lifecycle includes key components such as the IFL Core, a Python library
for FL, and a distributed clustering algorithm called Federated Clustering (FedClust).
The approach is integrated into an industrial CM] application, enabling the provision
and consumption of extensible [FLaaS. The IFL Lifecycle is evaluated with exemplary
clustering scenarios using industrial data. We demonstrate the function of the lifecycle
management and the impact of different levels of privacy in FL. Contribution C3 has
originally been presented in and is considered in Chapter 5|in this thesis.

C4 Optimization of client selection on cloud, fog, and edge resources

The fourth contribution introduces an IFL deployment architecture that enables FL
execution in a multi-location setup, utilizing cloud, fog, and edge platforms for client
training. We propose an optimization approach called IFL Opt, based on Integer Linear
Programming (ILP), for client selection in FL. This approach takes into account factors
such as energy consumption, time, and model performance. Furthermore, for model
performance optimization, we propose XMeanCohorting, an FL algorithm where cohorts
of clients from different deployment locations are created to faciliate the learning process.
The evaluation considers a real-world industrial dataset from the electronics manufacturing
industry, comparing different FL client deployments on cloud, fog, and edge nodes with
the optimized approach. We provide a detailed description of contribution C4 in Chapter |6
which has originally been published in [BHSRL™24.

C5 FL blueprints for industry personas

The fifth contribution provides a collection of use cases, challenges, and requirements
for industrial |All applications based on interviews conducted with 13 companies across
multiple industries in Austria. This is used to create industry personas that represent
different business types and their specific fields of industrial Al applications that can
benefit from FL. Additionally, FL blueprints, which include system architectures and
implementation steps, are designed to offer solutions tailored to the identified industry

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

personas. This contribution has originally been presented in [BHFB™24] and is described
in detail in Chapter 7.

1.4 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2| provides background in-
formation and introduces main concepts that are used in subsequent chapters. Chapters |3
through |7 constitute the main matter and correspondingly address the five contributions.
In Chapter 3, we present identified requirements and propose a system design for gen-
eral industrial use of FL. Chapter 4] provides the detailed design, implementation and
evaluation of a service-based FL system. To demonstrate how developers and operators
benefit from FL lifecycle management, we provide details in Chapter 5. In Chapter 6, we
propose an FL deployment architecture and evaluate optimizations of energy consumption,
model performance, and response times. FL blueprints are presented in Chapter |7 for
implementing FL for different industry personas. In Chapter 8|, we conclude the thesis
with a summary of the scientific contributions, a discussion of the research questions and
an overview of the future work. The Appendix A|includes a summary of the (I)FL-specific
terms introduced in this thesis.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Background

In this thesis, FL approaches and systems are presented to address challenges in an
environment of decentralized data and compute resoures with the main goal to provide
high-quality ML models. The following sections describe the background of this work
considering basic FL concepts, compute platforms for executing FL jobs, and the IoT] as
main data source for FL tasks.

2.1 Federated Learning

FL is a decentralized learning approach based on ML initially proposed by McMahan
et al. . Multiple devices are involved with the goal to train a ML model in a
privacy-preserving way. For this, each device holds local data samples that are not shared
with other parties (i.e., servers, other devices). This eliminates the need to exchange
potentially sensitive data. The original algorithm, named Federated Averaging (FedAvg)
(see Algorithm [1)), considers a server and multiple clients (devices). A parametric base
model my is passed as input. This can either be provided by the server, acting as the
central authority, or uploaded by individual clients. The server iterates over a number
of communication rounds R, where a subset S, of clients are selected and requested to
train and provide an updated model (line |5). For this, the client executes an ML training
procedure (line 8)), considering input data X!, the number of local iterations (epochs)
E and the local model. The latter one is a parametric model with a weight matrix
that is updated (trained) by applying a loss function [on the previous iteration’s model
and labels (expert input), provided in every batch b € B (see line [12). As the client
returns the local model to the server (line 15), the server averages the model parameters
(line 7) of all clients. The server weights the respective client contribution using the
number of local data samples n;. In an alternative approach, instead of iterating for R
rounds, the algorithm continues to iterate until the loss function converges for all involved

9

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2. BACKGROUND

clients . With this approach, the resulting model after R communication rounds

is called the global model (mpg) considering the learning results of all involved clients.

Algorithm 1 Federated Averaging (FedAvg)

Input: parametric base model mg, number of communication rounds R, set of clients
K, fraction of clients to be considered in each round C. Input for each client: input
features X!, number of local data samples for the i-th client n;, sum of all local data
samples n, local epochs F, learning rate «

Server execution:
1: for round r =1,..., R do
2 c+ max(C-K,1)
3: S, + (random subset of ¢ clients)
4: for client t; € S, do
5: mZ_l « ClientUpdate(t;, my)
6: end for
T M = 0
8: end for

ClientUpdate(t,m) // Run task ¢ on client
9: B + (X" split into batches of size)

10: for epoch e € 1..F do

11: for batch b € B do

12: m < m — aVi(m,b)

13: end for

14: end for

15: return m to server

The use of FL provides many advantages for the involved parties [KMA™21a, MMR™17].

First, the aspect of privacy preservation is considered by design, since no raw data of

the clients leave the device. The model updates shared with the server are parameters

that are focused on the learning task rather than the raw data. Second, the performance
of the underlying model can be improved as compared to isolated ML training with
only the local data as training input. In these local setups, often insufficient data and
labels are present, which could lead to poor model quality . To avoid this, FL
is used as a collaborative approach that allows to share the learning results between
clients. Hence, performance metrics used in training and validation can significantly be
improved. For example, one commonly used metric for classification tasks is accuracy,
that is the number of correctly classified data samples divided by the number of overall
data samples . Third, the workload in the training process is parallelized by using
the compute resources provided by client devices. Hence, scaling up the number of
involved devices can lead to significant improvements in a short period of time, instead
of using only a few devices. Fourth, no raw data upload to a central instance is needed,
which reduces network load .
10

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Federated Learning

2.1.1 FL Settings

In a setting without FL, individual learners apply ML and in most cases Deep Learning
(DL) techniques to train parametric models (e.g., neural networks). For this, training
procedures are executed on local compute resources to derive a model that infers a target
variable with sufficient quality. The inference can be carried out on other resources.
Another common learning setting is to upload data from a decentralized fleet of devices
(e.g., data sources) to a central data center, which distributes the learning process to a
cluster of compute nodes in the same data center [DCMT12,[KMA"21a|. This is referred
to as data center distributed learning that benefits from parallelization of the training
workload and typically very fast networks.

In FL, there are two important settings that are recognized, cross-silo FL and cross-device
FL [KMA*21a). Cross-silo FL considers a few (2-100) clients with an own data silo (e.g.,
database or larger data centers storing an organization’s data). The involved clients
are almost always available and typically connect to a central server to participate in
FL. In contrast to data center distributed learning, cross-silo FL. never discloses data of
individual clients or nodes. Cross-device FL makes use of a large distributed fleet of IoT
or mobile devices (up to 10'9) . The availability of the involved devices is
decreased since only a fraction of the devices are online at any given time. The primary
bottleneck is often the communication, since network conditions can fluctuate (e.g., for
mobile devices), which is more stable in the cross-silo FL case. Approximately 5% of
the devices involved in an FL. communication round drop out due to battery, network,
or idleness requirements . In both FL settings, typically, the data is very
heterogeneous following different data distributions considering the multitude of devices.
Each client can only access the local data and no data samples from other clients. This
is not given in data center distributed learning, where data can be shuffled and balanced
across the nodes.

In our approaches presented in this work, we primarily consider the cross-silo FL setup
with less than 100 clients and industrial IoT data.

2.1.2 Horizontal and Vertical FL

To train on local data, the FL system need to be aware of the data structure and data
partitioning on the client’s side . For this, two types of data partitioning
approaches are distinguished i.e., [Horizontal Federated Learning (HFL) and [Vertical
Federated Learning (VFL).

HFL considers the same structure (schema) of data samples on every device. The
term [HFL| is derived from the idea of splitting a dataset horizontally and therefore
providing partitions of different data samples with the same features . For
example, considering a schema of vibration data measured from an IoT sensor mounted
on an industrial pump, we would have three dimensions <z, y, z> and potentially
a label <anomaly status> created by an expert telling whether the data sample is

11

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

12

Data from A
Data === mm -
samples

DatafromA 1 Horizontal
Data Federated

samples Learning

Vertical Federated Learning

Data from B Data from B

Features Features

(a) Horizontal Federated Learning (b) Vertical Federated Learning

))

Figure 2.1: Data partitioning types in FL [YLCT19]

anomalous [KBG™T22|. Hence, every client can train on the same type of ML model (e.g.,
a neural network predicting the anomaly status based on x, y, z).

Figure 2.1a depicts the idea of [HFL|, showing two parties A and B with an overlapping
area of features.

In contrast, [VFL mainly considers different data schemes but overlapping data
samples as depicted in Figure [2.1b. The term VFL|is based on the idea of splitting a
dataset vertically and therefore providing partitions of different features with the same
data samples . For instance, two companies operate in the same region or
have a business partnership and therefore share data from the same persons. While one
company focuses on retail transactions of a person, the other company considers bank
account data. In the industrial domain, this can be data from a partial product (e.g., test
data from an engine) for one party and quality inspection data for the integrated end
product (e.g., test data from a vehicle) . The learning process considers two
different models (e.g., neural networks with different structure and output) [YLCT19).
Both parties train their model on local data and share (encrypted) outputs with each
other (often with a trusted third-party collaborator). Depending on the architecture
of the models and how they are connected (e.g., output of the model from company A
is considered as input for the model of company B), the backpropagation is initiated
accordingly so that both parties can adapt their models to reduce the loss from the
overall loss function. For model inference, both parties need to collaborate as well to
share (encrypted) model output and provide a global result (e.g., overall product quality).

In this thesis, we mainly consider [HFL settings, and show how FL models perform as
multiple clients with the same data schema collaborate. In Chapter |7, we provide FL
solution architectures for industrial collaboration covering also [VFLL

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Federated Learning

2.1.3 Non-IID, Personalization and Cohorts

In Section [1.1.2, we have addressed the problem of non-IID| data and identified poor
model quality as an issue if a global FL model is trained on clients with heterogeneous
data distributions.

To provide the mathematical background, we highlight the definition of IID| in the
following [Kle06]. The random variables X1, Xo,..., X,, are IID if they satisfy two

conditions:

¢ Independence
The joint probability distribution of any subset of these variables is the product of the
individual distributions. i.e., [P(X1 = z1, X2 = x2,.... X, = zp,) = [[1L; P(X; =

;)]

o Identity
All random variables follow the same probability distribution, i.e., [P(X;) = P(Xj)]
forall7,5 €1,2,...,n

The setup of IID is rarely given in real-world data as for example [oT|data from industrial
domains . To address the non-IID problem in FL and to derive an FL. model
that is suitable for being applied at the client’s side, the concept of personalization is
used . In general, personalization is about updating the global FL. model to
better fit to local client data distribution so that the model is close to the local optima.
Since the local (edge) client device often belongs to a user, the term personalization has
been used to express the adaptation to a personal setup . Assuming a non-I1D
setup, the global model (i.e., the weights) can drift towards the local optima of a subset
of clients and therefore move away from another subset of clients that have different data
distributions [TYCY23|. Furthermore, the global model (weights) can move towards an
average of local optimas (by the definition of FedAvg), which is not suitable for all of
them. For this, it is the task of an FL system to provide strategies to personalize the
model to come as close as possible to the local optimum of each client, still facilitated by
suitable knowledge sharing using FL.

Throughout this thesis, we make use of the concept of FL Cohorts, or in short, cohorts.

FL Cohorts address model personalization by grouping together clients with similar data
distributions within the same FL Population, or in short, population, which is the set of

all clients joining an FL server using the same ML model for learning [HSKS20,HRK "22].

To be precise, an FL Cohort groups the FL Tasks, or in short, tasks, that represent the
client requests to participate in FL. Since a task refers to exactly one client, it is valid to
describe an F'L. Cohort as a group of clients, which we do in this work. Similarly, this
holds for FL Populations.

The grouping enhances the model accuracy by allowing clients to share updates only
within a specific subset of clients. Thus, FIL Cohorts prevent potential inaccuracies
from knowledge transfer among dissimilar clients. In our presented approaches (see

13

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

14

Chapters 3-6), we provide cohort-based strategies for personalizing FL. models so that the
validation metrics (e.g., accuracy) for involved clients are improved as compared to plain
vanilla approaches such as global FL. model with weight averaging or individual ML.

2.1.4 Privacy Preservation Approaches

As mentioned earlier, FL provides the advantage of supporting a certain level of privacy
preservation by design since no raw data is shared with other parties. Although only
model updates are shared with the server, potential attackers could try to infer data
samples by analyzing the previous model, the model update, and the resulting model

after one communication round [KMA™21a|. For this, approaches with suitable counter
measures have been developed that are commonly used in FL systems.

A prominent concept is differential privacy, that enables privacy preservation in FL by
allowing model learning without disclosing personal information . Differential
privacy has been developed in the context of statistical reports and queries with the
goal to allow for querying statistical aggregates and still keeping individual information
private . A typical approach to ensure privacy is to add noise to the data. In FL
settings, clients perturb their information (i.e., model weights that should be shared) and
send the randomized versions to the server . The aggregation on the server
leads to a valid FL. model to be used by the involved parties. Nevertheless, the model
performance can be impacted by the noise since there is a trade-off between the level of
privacy (which increases as more noise is added) and the time of converging to a desired
model performance.

Another approach for preserving privacy in FL is provided by secure aggregation proto-
cols . For this, the client’s encrypt the models before they are shared with the
server. The server can still perform the aggregation and relevant operatons on the masked
models, without knowing the actual parameters. This reduces the risk that adversaries
can leak information.

2.1.5 FL Model Lifecycle

Similar to ML, FL. models follow a certain lifecycle starting with initiation and ending
with deployment and monitoring . Figure 2.2 depicts the operations that are
done with the model along the lifecycle. In contrast to ML, the decentralized nature of
FL requires to broadcast the base model to all clients. Subsequently, all clients start to
execute the training and transmission step and the server performs model aggregation.
If the evaluation shows that the model has not converged, another training iteration is
executed. Otherwise, the deployment and monitoring of the FL. model can be started by
the clients. As the model is in use (i.e., processing data tuples and providing inference
results), the monitoring activity can initiate a new FL model lifecycle iteration if the
model performance degrades.

In Section |5, we consider a broader definition of the FL lifecycle by regarding a lifecycle
of model-generating objects (FL code artifacts), instead of FL models. This helps to

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Federated Learning

’

Initiation Broadcast Training Transmission

erver

0o

[performance degrades] [not converged]

Client
[converged]

@ Monitoring Deployment Evaluation Aggregation

Figure 2.2: FL model lifecycle |[LLZT22]

address the development and integration of FL solutions.

2.1.6 Basic FL Architectures

To implement FL systems, typically, client-server-based architectures are chosen for dis-
tributed training and central model aggregation . For this, the communication
style is mostly synchronous, as the server waits for the contributions of selected clients.
However, with the rapid increase of FL research in recent years, various systems have
been proposed and several architectural patterns arised. Lo et al. surveyed
important patterns for practical use, as summarized in the following.

To manage clients, the client registry pattern provides the possibility to hold the state
of clients and their FL tasks on the server after initial registration. The client selector
pattern enables the server for selecting clients to increase the performance and system
efficiency. To separate clients into groups with respect to e.g., data distribution, available
resources or geolocation, the client cluster pattern has been proposed. Regarding model
aggregation, multiple patterns exist, i.e., asynchronous aggregator for asynchronous global
model updating whenever a client provides an update without waiting for all contributions
in a communication round, decentralized aggregator for settings without a central authority
(server) in place, and hierarchical aggregator for adding additional aggregators on the
edge layer to perform partial aggregation and therefore improve efficiency. Further
patterns have been applied in the area of training and model management, i.e., training
configurator for providing a platform to the user to run and control the FL training
processes, heterogeneous data handler for providing strategies to handle skewed data, and
message compressor to reduce the size of exchanged messages increasing communication
efficiency.

In this thesis, we design FL systems that implement a subset of these patterns (e.g.,
client cluster in Chapter |4/ or client selector in Chapter 6) and demonstrate how to tackle
the underlying challenges with them.

2.1.7 FLaaS

In this work, we provide FL systems supporting the concept of FLaaS. For this, we

consider definitions of Kourtellis et al. [KKP20] and Mazzocca et al. [MRM™23|, who

15

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

16

specify relevant properties associated with FLaaS. We also add additional properties to
the definition of FLaa$| as it was originally published in [HRK™22].

To motivate FLaaS, Kourtellis et al. state that without a dedicated service model
for FL, independent third parties are unable to collaborate on shared ML models while
protecting user privacy. Additionally, the lack of a service model makes it challenging for
developers and data scientists to deploy FL solutions quickly and easily, which hinders
the broader adoption of FL.

Hence, we describe [FLaaS| as a service model for FL supporting the following properties
of Kourtellis et al. [KKP20]: 1) FLaaS eliminates the need for algorithm development and
tuning (e.g., in Chapter 4, a service provides pre-defined algorithms that can be selected
by the client). 2) Collaborative model building for single and multiple applications is
supported (i.e., models can be shared between different clients via APT if permitted). 3)
Clients can describe the data types that are considered as model input in the training
stage. 4) FLaaS addresses the management of privacy and permissions (e.g., defining
access to the models and data).

Mazzocca et al [MRM™'23] add the following property: 5) Clients are enabled to define
their specific requirements for FL training, e.g., quality metrics, aggregation strategies,
and the number of nodes involved.

Finally, we consider two more properties from the work on cohort-based FL to complete
the idea of FLaaS (see Chapter 4): 6) Clients can explicitly request participation in
FL rounds (e.g., by using an API), instead of automatically being invoked by a central
authority (server). 7) Clients can be grouped into populations or cohorts via API
considering client requirements (e.g., selected algorithm, business partner criteria) and
data types if requested. With this, collaboration with other parties can be controlled by
the client.

2.2 Internet of Things

In the [IoT), physical things connect to the Internet, which enables to access sensor data
remotely and control parts of the physical world with suitable actuators . The
technology already exists for more than a decade, but the increase in the number of
deployed things (often referred to as smart objects) enables more applications and large
data collections that can be processed with powerful compute platforms. Things are
considered to be either directly equipped with sensor technology or can be identified by
devices in the near proximity by using e.g., Radio Frequency Identification (RFID) tags

or (bar)codes [KS22].

Integrating data from various things into applications enables a multitude of use cases
that span across logistics, energy savings, physical security and safety, the medical domain,
and industry . The latter for example, is often about predictive maintenance and
CM) use cases, where machines are monitored with the goal to predict critical conditions
and potential breakdowns . If identified correctly, suitable maintenance actions

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.2. Internet of Things

are derived, which could save high costs that can occur in cases of severe mechanical
issues or production outages.

IoT sensors are often characterized by technical constraints as limitations in e.g., process-
ing power, battery power, storage and memory . Furthermore, IoT solutions
and platforms are characterized by providing capabilities for real-time processing of sensor
data to gain valuable insights, scalability to provide reliable systems as more sensors are
introduced, and the capability to handle heterogeneity, since multiple different device
types might be integrated.

2.2.1 Protocols

To enable connectivity of things, a number of protocols are considered to communicate
data . For example, Bluetooth, ZigBee, and WLAN exist for communication
in short-range (10m-100m) wireless networks. As things data is captured by compute
resources with basic data processing capabilities (e.g., IoT gateways), several protocols are
used to upstream data to application services (e.g., in the cloud). These protocols include
WebSocket as simultaneous two-way communication approach, the request-response-based
Constrained Application Protocol (CoAP) and MQTT. In this thesis, we use MQTT
in our FL system implementations to collect data from sensors (e.g., vibration sensors)
and to implement an FL protocol between client and servers for exchanging model
updates. For this, we make use of the publish-subscribe protocol provided by MQTT.
MQTT enables reliable communication based on the Transmission Control Protocol
(TCP) . Furthermore, the protocol offers comparably low transmission times and
energy consumption, especially for larger message sizes.

2.2.2 10T Data Processing and Analysis

To process and analyze the generated data of sensors and other IoT devices, multiple

processing techniques and platforms can be considered as depicted in Figure 2.3/ [KKG™20).

While basic data processing like data denoising, outlier detection, missing data imputation,
and data aggregation can be executed directly by resource-constrained sensors or IoT /edge
devices, higher level data analysis and learning techniques often require more powerful
compute resources provided e.g., by cloud platforms or dedicated Virtual Machines (VMs)
as part of fog or edge computing environments. For this, we provide details on compute

platforms in Section 2.3/ and also highlight the characteristics when it comes to apply FL.

In the IoT, most of the collected data is time series data that is sampled in fixed-time
intervals or irregularly [SDO18CMF20|. The temporal context of IoT data implies that
there can be a dependency between different points in time (e.g., data at time ¢ correlates
with data from time t-n)

Given a time series of IoT data, a prominent use case is to detect anomalies [CMFEF20)].

For this, techniques reach from simple approaches like threshold-based outlier detection
(either setting manual thresholds or adding statistical mean and variance as corridor
for acceptable values) to complex statistical and ML-based models. For this, regression

17

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

18

/ Solution Approaches loT Data Analysis Platforms
[Deep Learning] [Cloud Computing]
[Machine Learning] [Fog Computing]
[Artificial Intelligence] 4 g | Edge Computing |

(Knowledge Generation & Decision Making J

N
JE
loT Data Fusion
C
loT Sensér Data Processing

AN

nla

‘Data Denoising’ ‘ Outlier Detection Missing Data Imputation ’ ‘ Data Aggregation ’

\§ AN
JL
[loT Sensor Data

Z <

loT Sensoﬁs}, Actuators, Devices ﬁ]
Figure 2.3: IoT data processing [KKG™20].

models can be defined to predict future time series values based on the historical series.
This can identify trends towards future anomalies and reveals potentially unacceptable
outliers. Supervised ML-based approaches can be applied by assigning labels to historical
spans of time series values. For example (based on a similar case in Chapter |4), spans
of 10 seconds of time series data can be labeled with a specific machine condition (e.g.,
failure, upcoming issue, idle). These labels can be used for training e.g., a neural network
to classify the machine condition. For this, characteristical variables (e.g., mean, variance,
kurtosis, frequencies, amplitude) are computed from the 10 seconds signal and used as
features for the training.

2.2.3 Industrial IoT

Similarly, time series analyses can be beneficial for the industry, as loT devices collect
data from various assets (machines) and production processes. This field is known as
[ToT, which Boyes et al. [BHCW 18] provide a comprehensive definition for:

“A system comprising networked smart objects, cyber-physical assets, associ-
ated generic information technologies and optional cloud or edge computing
platforms, which enable real-time, intelligent, and autonomous access, col-
lection, analysis, communications, and exchange of process, product and/or
service information, within the industrial environment, so as to optimise

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Compute Platforms: Cloud, Fog, and Edge Computing

overall production value. This value may include: improving product or
service delivery, boosting productivity, reducing labour costs, reducing energy
consumption, and reducing the build-to-order cycle”

Given an [[IoT| setup and the pervasion of edge computing resources in the proximity of
the production process, it seems natural to apply FL to further improve locally trained
models. For example, FL can facilitate anomaly detection as individual clients operate
on data islands [LGNT21]. Data islands are isolated data collections that cannot be
centralized as edge devices are not willing to share the potential privacy sensitive data.

In this thesis, we train and apply models on IoT time series data from industrial data
sources (see Chapters 4, 5 and 6). With FL, we aim for improving model quality (e.g.,
classification accuracy) in a collaborative way considering multiple distributed data
sources as e.g., vibration sensors mounted on pumps. The value for the underlying
industrial machines is a timely detection of issues that can be inferred from the measured
vibration signals.

2.3 Compute Platforms: Cloud, Fog, and Edge Computing

To execute FL jobs, different decentralized compute resources can be utilized for client
(training) and server (aggregation) jobs. For this, multiple platforms can be chosen if not
already available on-premise resources are used. In the following sections, we introduce
the conceptual basics of cloud, fog and edge computing and discuss their suitability for
executing data processing jobs like FL.

2.3.1 Cloud Computing

Cloud computing is a paradigm that enables on-demand access to networked compute
resources with rapid (de)provisioning [MGT11]. Different deployment models exist to
host and to provide these resources i.e., private cloud for individual use for a single
organization, community cloud for a collective use between multiple organizations, public
cloud for general use for the public, and hybrid cloud that is a mix between two or more of
the aforementioned deployment models. The well-known public cloud model (e.g., AWS?,
Azure?, Google Cloud Platform?®), provides compute resources in large data centers and
multiple regions world-wide on the premises of the cloud provider. On the contrary,
private cloud solutions often need to be operated by the using company itself.

One of the main advantages of cloud computing over on-premise resources is the efficent
resource management [QLDGO09|. For this, resources are often pooled to be efficiently
shared with other customers as they are needed on-demand. To use compute resources,

"https://aws.amazon.com, accessed 2024-07-22
Zhttps://azure.microsoft.com/, accessed 2024-07-22
3https://cloud.google.com/qgcp, accessed 2024-07-22

19

https://aws.amazon.com
https://azure.microsoft.com/
https://cloud.google.com/gcp

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

20

often [VMs| are used (Infrastructure-as-a-Service (IaaS)) to address compute loads de-
manded by e.g., application developers. Any of the used products is typically paid per
use, and as demanded resources need to be increased (e.g., memory, CPU, storage) the
price per unit of time is updated as well.

Similarly, one can conclude that the role of application developers and e.g., the role of data
scientists, also seek to directly utilize Platform-as-a-Service (PaaS)| [MG™11] resources as
databases, data lakes, analytics and ML workflows to provide e.g., FL training procedures
on data collected in the cloud. The [PaaS model supports to abstract from the underlying
infrastructure like the operating system. Hence, easy usage of software components
for data processing underlines the suitability for FL jobs in the cloud. In particular,
the scalability of resources addresses varying training loads in FL. However, some FL
organizations might hesitate to upload training data to storages apart from on-premise
locations.

2.3.2 Edge Computing

To move compute resources closer to the potential end user, the concept of edge computing
has been introduced . Edge computing provides high-bandwidth, low-latency
and realtime access to data from the close proximity. One aspect that differentiates
edge computing from cloud computing is the location of the servers. While in cloud
computing they are located in larger data centers reachable over the Internet, for edge
computing, the servers are located at the edge of the network. Having compute and storage
resources available at the edge of the network, enables latency-sensitve applications for
use cases dealing e.g., with (video) analytics, data caching, or location-specific services.
In particular, there can be a benefit for applications that facilitate near realtime pre-
processing on the edge and partial forwarding of compute loads and data to the cloud for

highly scalable processing [Sat17].

Edge devices also complement the [oT) since data generated by nearby edge devices can
be processed on the edge with 95% less latency and energy consumption . IoT
devices (e.g., air quality sensors, electrical devices) benefit from the edge servers as data
processing entities (data consuming and data producing). This is because a massive load
in the core network is avoided as compared to transferring large volumes of IoT data
continuously to cloud servers and back . Using edge devices in these scenarios
can significantly save costs, since data transfer is typically charged by cloud providers.

Furthermore, edge computing also integrates heterogeneous and potentially resource-
constrained devices . These devices can also dynamically join the network and
disconnect at a later stage. For this, additional resource management capabilities are
needed to e.g., efficiently assign resources to the tasks that need to be executed.

Two examples for edge systems are the open source platform EdgeX Foundry? and the

https://www.edgexfoundry.org/, accessed 2024-07-22

https://www.edgexfoundry.org/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Compute Platforms: Cloud, Fog, and Edge Computing

commercial Siemens Industrial Edge platform®. Both platforms provide connectors to
read from various IoT data sources (e.g., industrial machines) and to forward data to
target systems (e.g., cloud storages or other IoT devices) [VSPT23|. Furthermore, they
provide the capability to host custom software applications in containers via Docker®.
In general, a central management server (i.e., Industrial Edge Management (IEM) and
EdgeX Server) is used to distribute and deploy applications to the distributed edge
devices, each running Industrial Edge Device (IED) or EdgeX. Device platform services
provide capabilities for monitoring applications, storing data, and controlling data flows.

The suitability for executing FL jobs on edge devices is inherently given by the design,
since edge nodes are close to data sources and IoT data can be streamed into the storage
of edge devices for training. However, the compute capabilities are often heterogeneous
throughout different device types , which can be a bottleneck if resource-
intensive training jobs are executed, and therefore delay the model training .

Edge Intelligence

Since FL is designed to train and apply Al where the data is collected, often close to the
data sources on the edge, it can be categorized as an edge intelligence approach. Taheri
et al. define edge intelligence as “running Al on the edge” aiming for optimal
model performance, cost, privacy, and reliability. This involves the four pillars of edge
intelligence that are caching, training, inference, and offloading. As such, edge systems
are tasked with coordinating and executing these tasks on the edge instead of in the
cloud, which can be used for offloading tasks if necessary.

Service Placement

Edge computing often faces the service placement problem, where service entities (data

processing and storage) need to be deployed to nodes in the edge network |[WJH™21].

This is a complex problem since potentially conflicting factors are present such as e.g.,
communication latency (to users and other nodes), heterogeneous maintenance and
operational costs, and available resources such as GPU or CPU power. The goal is to

optimize the |Quality of Service (QoS) or resulting costs for the deployed application(s).

Specifically, in the case of FL, a|Collaborative Edge Service Placement (CESP)| problem
arises when considering multiple dependent edge nodes that need to share model updates
as identified by Wang et al. . This could involve a server or multiple clients
running on the edge and collaborating on a global model. In Chapter 6, we deploy
FL clients to various platforms (i.e., edge system) and focus on optimizing selected
clients. For this, we aim to optimize e.g., energy consumption (cost-related) and model
performance (QoS-related).

Shttps://www.siemens.com/global/en/products/automation/topic-areas/
industrial-edge.html, accessed 2024-07-22
°https://www.docker.com/} accessed 2024-07-22

21

https://www.siemens.com/global/en/products/automation/topic-areas/industrial-edge.html
https://www.siemens.com/global/en/products/automation/topic-areas/industrial-edge.html
https://www.docker.com/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

22

Metropolitan

,\'T‘thessk Area Network Core Network
etwor (M AN)
:} loT [

7
0 Kk

Mobile Computing

N

/

> Internet

Fog|Computing

@+—>
L1

< Edge

(Core) Cloud

> Computing

IComputing

number of hops >

Figure 2.4: Mapping of edge, fog and cloud computing in the network context [YFNT19].

2.3.3 Fog Computing

In 2012, Bonomi et al. initially coined the term fog computing as highly
virtualized platform that provides storage and compute resources somewhere between
end devices and cloud data centers. As the term edge computing has arised in the
mid 2010s, the boundary to the term fog computing has been refined [YENT19]. In
principle, edge computing considers resources in the local network and access network,
while fog computing resources are located in the access network and the higher-level
Metropolitan Area Network (MAN) as depicted in Figure 2.4. Hence, fog computing
provides resources anywhere from things (IoT) to cloud.

A fog system follows design goals such as low latency, efficiency (energy), and general-
ity . The latter refers to general APIs and services that are provided to users
for hosting and operating applications. This is enabled by virtualization and APIs for e.g.,
system monitoring, network management, |VM)| scheduling, load balancing, authentication,
location services, communication services to support IoT sensor data ingest, and cloud
agents for connecting to cloud platforms.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Compute Platforms: Cloud, Fog, and Edge Computing

Basic architectures for fog computing are hierarchical and flat . A hierarchical
architecture incorporates two, three, or even more layers, with resource-constrained
nodes positioned on layers near IoT devices, resulting in low latency. More powerful
resources are located on the top layers, which results in higher latency. This pattern can
be generalized to consider cloud nodes in the top layer and edge nodes on the lowest layer.
A flat architecture is organized in neighbourhoods with diverse capacities . In
this configuration, even powerful nodes are placed close to IoT devices, facilitating the
execution of resource-demanding tasks while still maintaining low latency.

Given a set of (fog) nodes and ToT-based services, the problem of service placement needs
to be addressed . The available nodes need to be selected and services need to
be deployed. For example, a suitable placement (i.e., deployment) of the services would
be to minimize expected execution times and communication latencies.

In FL, potentially FL servers run in geospatially distributed fog nodes, while individual
clients are deployed close to the data-generating sensors on edge devices . For
this, the fog can be used to dynamically select the best fog nodes for model aggregation,
considering geo distances, response times, and availability of sufficient compute resources.
Furthermore, even multiple fog nodes can be used for providing redundant aggregation
services, avoiding a single point of failure and facilitating the reliability of the system. In
other settings, one can apply fog resources to temporarily store data which is used for
client training.

In Chapter |6, we analyze the impact of deploying and selecting clients from cloud, fog,
and edge platforms. We investigate trade-offs between the platforms and analyze the
execution of FL jobs on heterogeneous resources. For this, we consider IIoT| data, three
real-world compute platforms and multiple scenarios to provide a realistic comparison.

23

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Industrial FL. — Requirements and
Systems Design

3.1 Introduction

Industrial manufacturing systems often consist of various operating machines and automa-
tion systems. High availability and fast reconfiguration of each operating machine is key
to frictionless production resulting in competitive product pricing . To ensure
high availability of each machine, often (CM is realized based on ML| models deployed
to edge devices e.g., indicating anomalies in production . The performance of
these ML models clearly depends on available training data, which is often only available
to a limited degree for individual machines. Increasing training data might be realized by
sharing data within the company or with an external industry partner . The
latter approach is often critical as vulnerable business or private information might be
contained.

FL enables to train a ML model on multiple local datasets contained in local edge devices
without exchanging data samples . As introduced in Chapter [2, in this privacy-
preserving approach, typically a server receives parameters (e.g., gradients or weights of
neural networks) from local models trained on decentralized devices and averages these

parameters to build a global model [MMR™17].

To solve the aforementioned challenges of successfully applying ML| models in industrial
domains, [FL| needs to be adapted. Therefore, the integration of operating machines and
its digital representations named assets'| need to be considered as depicted in Figure 3.1.
Assets generate data on the shop floor during operation. Edge devices record this data
to enable training of ML/ models e.g., in the field of anomaly detection aiming to identify

1https ://documentation.mindsphere.io/MindSphere/apps/asset—-manager/
introduction.html, accessed 2024-07-22

25

https://documentation.mindsphere.io/MindSphere/apps/asset-manager/introduction.html
https://documentation.mindsphere.io/MindSphere/apps/asset-manager/introduction.html

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

INDUSTRIAL FL — REQUIREMENTS AND SYSTEMS DESIGN

26

ML Model
(FL Population 1)

ML Model
(FL Population 2)

A Model
FL Cohort 1

Global Model M2.1 and M2.2

Aggregation &
Global Model M1
| I I I |
1 |

FL Cohort 2

Continuous
Updating T l
Edge Device E1 Edge Device E2

o T T —
Model Training == | Model M1 (E1) Model M2.1 (E2)| T====r | Model M2.2 (E2) Model M1 (E3)| === | Model M2.2 (E3)
— — =
e

and Evaluation
® &y @

I — — o — =
-} - - "o -
e G BE A HllE Rl

Asset A1 Asset A2 Asset A3 Asset A4 Asset AS
(Asset Type T1) (Asset Type T2) (Asset Type T2) (Asset Type T1) (Asset Type T2)

Edge Device E3

Figure 3.1: [FL| with industrial assets; Assets generate data that are used in learning
tasks for ML Models executed on edge devices; Learning tasks for ML Models based on
the same asset type are part of an FL Population; Learning tasks for ML Models with
similar data are part of an FL Population subset named FL Cohort; Knowledge transfer
in continuously evaluated and updated FL Cohorts ensures optimal collaboration with
respect to model performance and business partner criteria

abnormal behavior of machines in production. To improve the model quality, FL is
applied by aggregating model parameters centrally in a global model e.g., in the cloud,
and sending out updates to other edge devices. Typically, all models of local learning
tasks corresponding to the same [ML| problem are updated. This set of tasks is called
an FL Population. In the depicted industry scenario, an FL Population is a group of all
learning tasks (or clients), whereas the models are trained on asset data with the same
data scheme, which is typically ensured if assets are of the same asset type, e.g., learning
tasks of models M2.1 (E2), M2.2 (E2), and M2.2 (E3) belong to FL Population 2, since
they are based on assets of Asset Type T2. In contrast, learning tasks of models M1 (E1)
and M1 (E3) belong to FL Population 1. However, assets even of same asset type could
face heterogenous environmental and operation conditions which affect recorded data.
Due to these potential dissimilarities in asset data, negative knowledge transfer can
be caused by the model updates which decreases model performance . For this,
industrial |[FL systems need to consider FL Cohorts as subsets of an FL Population. This
enables knowledge sharing only within e.g., FIL. Cohort 2 including M2.2 models using
similar asset data.

This chapter has originally been published in 2020 [HSKS20|. At that time, applying FL
in industrial settings had not been addressed profoundly. Therefore, this work has aimed

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.2. IFL Notation

to provide an initial foundation in terms of requirements, a basic notation, a generic
system design and a set of workflows (WFs) that should be supported by IFL systems to
meet industrial requirements. These concepts are extended, implemented and evaluated
in Chapter [4.

To establish this foundation, the proposed IFL System aims to improve collaboration on
training and evaluating ML models in industrial environments. In particular, the system
supports knowledge exchange in FIL Cohorts involving industrial clients that train on
asset data. Furthermore, it needs support for continuous adaption of F'L Cohorts as
ML| models evolve over time. To additionally support efficient |F'L| with high quality of
asset data, we aim for resource optimization of involved edge devices and appropriate

consideration of Quality of Information (Qol) metrics [LSKW02].

Our contribution in this chapter comprises:

o List of requirements for an IFL system.

e System design with a domain model, a system architecture, and supported WFs for
IFL

For this, we build on FL systems and approaches from [BEG™19,CNSR20, LWLX19,
MMR™17|SS15] and incorporate industry concepts as well as experience from industrial
projects.

The remainder of this chapter is organized as follows: In Section |3.2 we refer to the
basic notation of FLL We review related work in Section [3.3| and subsequently present
requirements of IFL in Section 3.4. The design of the IFL System is presented in
Section 3.5 with respect to supported WFs, domain models, and architectures. We
conclude in Section 13.6.

3.2 IFL Notation

Based on the discussion in Section [2.1] and the motivational example in Section 3.1,
we introduce the basic notation of an IFL| system. We extend the FL| notation by
Bonawitz et al. that defines device, FL Server, FL Task, FL Population and FL
Plan. Devices are hardware platforms as e.g., industrial edge devices or mobile phones,
running FL Clients to execute the computation necessary for training and evaluating
ML Models. To use [FL, an FL Client communicates to the FL Server to run FL Tasks
for a given FL Population. An FL Population is a globally unique name that identifies
a learning problem which multiple F'L. Tasks have in common. An FL Task represents
the client’s request to participate in the FL process with a specified ML Model. The FL
Server aggregates results (i.e., model updates), persists the global model, and provides it
to FL Clients of a given FL Population. an FL Plan corresponds to an FL Task and

represents its federated execution instructions for the FL Server and involved FL Clients.

It consists of sequences of [MLJ steps as e.g., data pre-processing, training, and evaluation

27

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

INDUSTRIAL FL — REQUIREMENTS AND SYSTEMS DESIGN

28

to be executed by FL Clients and instructions for aggregating ML Models on the FL
Server. Furthermore, we detail FL Cohorts that group multiple clients (i.e., FL Tasks)
within the same FL Population and with similarities in their underlying asset data.

3.3 Related Work

3.3.1 FL Systems

In 2019, most of the [FL studies had focused on federated algorithm design and efficiency
improvement . Besides that, Bonawitz et al. built a scalable produc-
tion system for FL aiming to facilitate learning tasks on mobile devices using TensorFlow?.
Furthermore, NVIDIA Clara® provides an SDK to integrate custom ML Models in an
FL| environment. This system has been evaluated with data from the medical domain,
considering a scenario with decentralized image datasets located in hospitals .

Between 2019 and 2024, the FL systems research has been progressing and has mostly
organized around the following taxonomy provided by Liu et. al : Aggregation
optimization, heterogeneous FL, secure FL, and fair FL. The latter one addresses fair
client selection, fair model optimization and fair contribution evaluation. A few FL
frameworks for running an FL system have already been existing in 2019, i.e., open
source frameworks such as PySyft*, TensorFlow Federated (TFF)°, and FATES. PySyft
is a Python framework that enables operating (i.e., training) on remote data, which we
use as underlying framework in Chapter [4. FATE is a framework developed by WeBank
(China). It implements several secure computing protocols and provides a mechanism for
deploying the framework (i.e., clients) in a distributed way . TFF is based on
TensorFlow and enables researchers and developers to test and simulate FL algorithms

on their data [BKKZ22].

In 2020, Flower has been released. Flower supports multiple aggregation algorithms, is
language- and communication-agnostic, and addresses heterogeneous clients [BTM™20].

NVIDIA FLAREP has been developed as part of NVIDIA Clara” and has been considered
as its own open source project since 2021. NVIDIA FLAREFE supports the simulation,
provisioning, orchestration, and monitoring of FL runs.

Open FI/'Y has originally been founded by Intel and was released as open source project
by VMWare, University of Pennsylvania and Flower Labs in 2023. The framework

2https://www.tensorflow.orqg/, accessed 2024-07-22
3https://devblogs.nvidia.com/federated-learning-clara/, accessed 2024-07-22
“https://github.com/OpenMined/PySyft, accessed 2024-07-22
Shttps://www.tensorflow.org/federated, accessed 2024-07-22
Shttps://fate.fedai.org/} accessed 2024-07-22

"https://flower.ai/, accessed 2024-07-22
8https://developer.nvidia.com/flare, accessed 2024-09-14
%https://docs.nvidia.com/clara/index.html) accessed 2024-09-14
Ohttps://openfl.io/} accessed 2024-07-22

https://www.tensorflow.org/
https://devblogs.nvidia.com/federated-learning-clara/
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://fate.fedai.org/
https://flower.ai/
https://developer.nvidia.com/flare
https://docs.nvidia.com/clara/index.html
https://openfl.io/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.4. Requirements

provides secure communication through certificates, a command line interface and a
Python API as well as extensible interfaces to ensure model training with arbitrary ML

libraries |BKKZ22].

3.3.2 Client Selection

Nishio et al. optimize model training duration in FL by selecting only a subset of
FL Clients. Since they face heterogeneous conditions and are provisioned with diverse
resource capabilities, not all F'L Clients will manage to deliver results in decent time. For
this, only those who deliver before a deadline are selected in the current training round.
To achieve the best accuracy for the global model, the FL Server may select FIL Clients
based on their model evaluation results on held-out validation data . This allows
to optimize the configuration of FL Tasks such as centrally setting hyperparameters for
model training or defining the optimal number of involved FL Clients. These approaches
are relevant to IFL systems as well. However, the IFL System additionally selects FL
Clients based on collaboration criteria with respect to potential F'L| business partners.

Client selection has further been addressed in many approaches after 2020. Most of
them optimize the model accuracy, convergence rate, fairness, and resource usage, taking
into account heterogeneous FL devices . For example, Abdel et al. ,
propose to select clients so that overall resource wastage (training time of clients that do
not contribute) is minimized.

3.3.3 Continuous Federated Learning

Liu et al. propose a cloud-based FL system for reinforcement tasks of robots
navigating around obstacles. Since there exist robots that train much and therefore
update ML Models continuously, the authors identify the need for sharing these updates
with other federated robots. These updates are asynchronously incorporated in the global
model to eventually enhance navigation skills of all involved robots. Based on that, in
IFL| the continuous updates are used to re-evaluate data similarity that is needed to
ensure high model quality within an FL Cohort.

3.4 Requirements

In this section, we present requirements that should be covered by an IFL System. Based
on FL system features discussed in Chapter 2, we add requirements with respect to
industrial data processing and continuous adaptation of the system.

3.4.1 Industrial Metadata Management

To support collaboration of FL Clients, we identify the requirement of publishing metadata
describing the organization and its devices. Based on this, FIL Clients can provide criteria
for collaborating with other selected FL Clients. Although actual raw data is not shared

29

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

INDUSTRIAL FL — REQUIREMENTS AND SYSTEMS DESIGN

30

in FL| FL enables to adhere to company policies for interacting with potential partners.
Asset models as provided by Siemens MindSphere'!| describe the data scheme for 1IoT
data. Since industrial FIL Clients target to improve ML models using asset data, metadata
describing the assets builds the basis for collaborating in suitable FL Populations.

3.4.2 FL Cohorts

As discussed in Sections 2.1.3| and 3.3.2, FL Client selection plays a role in FL| to
reduce the duration of e.g., training or evaluation . Furthermore, client selection
based on evaluation using held-out validation data can improve accuracy of the global
model . In our experience, these approaches do not sufficiently address data
generated by industrial assets and processed by FL Clients. For this, our approach aims
for considering asset data characteristics for achieving optimal accuracy and performance
for all individual client models. To this end, we identify the requirement of evaluating
models in regards to similarities of asset data influenced by operating and environmental
conditions. This is the basis for building FL Cohorts of FL Tuasks using asset data
with similar characteristics. FL Cohorts enable that FL Clients only share updates
within a subset of FL Clients, whose submitted FL Tasks belong to the same FL Cohort.
These updates probably improve their individual model accuracy better, as if updates
would be shared between FL Clients that face very heterogeneous data due to e.g.,
different environmental or operating conditions of involved assets. In manufacturing
industries there are situations where assets are placed in sites with similar conditions, as
e.g., placing production machines onto shop floors with similar temperature, noise and
other features considered in the model prediction. Nevertheless, the conditions might be
different in other shop floors or factories and still there is a need to apply FL between
them to improve model performance. This can especially be the case if multiple different
companies collaborate. In such cases, the IFL System needs to build FL Cohorts.

3.4.3 Quality of Information

Since each FL Client trains and evaluates on its local dataset, aggregated global models
result from datasets with diverse |Qol. Furthermore, due to different agents operating in
the industry as e.g., fully autonomous control systems as well as semi-autonomous ones
with human interaction |[Jen94], different data recording approaches can influence |Qol of
asset datasets. Lee et al. discuss different dimensions of |Qol| as e.g., free-of-
error, relevancy, reputation, appropriate amount, believability, consistent representation
and security. Based on that, we derive that there is the need to evaluate |Qoll on FL
Clients and use resulting metrics on the FL Server to decide on the extent of contribution
of an individual FL Client in the parameter aggregation process. Storing |Qol metrics next
to existing industrial metadata of participating organizations further enhances building
and updating suitable FL Cohorts.

11https ://documentation.mindsphere.io/MindSphere/apps/asset-manager/
introduction.html, accessed 2024-07-22

https://documentation.mindsphere.io/MindSphere/apps/asset-manager/introduction.html
https://documentation.mindsphere.io/MindSphere/apps/asset-manager/introduction.html

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.5. System Design

3.4.4 Continuous Learning

Allincreasingly enables operation of industrial processes to realize flexibility, efficiency,
and sustainability. For this, often domain experts have to repeatedly understand new data
with respect to its physical behavior and the meaning of parameters of the underlying
process . Continuously involving domain experts and data scientists in updating
ML Models by e.g., providing labels to recently recorded time series data, is a resource-
intensive process that can be faciliated by continuously collaborating in FL. Based on
that, we identify the need of supporting continuously re-starting FL processes and cohort
reorganization over time to consider major changes in asset time series data.

3.4.5 Scheduling and Optimization

Executing FL Plans can cause heavy loads on edge devices, as e.g., training of ML
Models on large datasets . Bonawitz et al. identified the need for
device scheduling. This involves that e.g., multiple FIL Plans are not executed in parallel
on single devices with little capacities, or that repeated training on older datasets is
avoided while training on FL Clients with new data is promoted. For industry purposes,
it further needs optimization of cohort communication. This means that FL Tasks linked
to an FIL Cohort can be transferred to other cohorts if this improves communication
between involved FL Clients with respect to e.g., latency minimization [HKH"19]. We
believe this decreases model quality due to preferring communication metrics over model
quality metrics. However, [FL systems need to consider this trade-off in an optimization
problem and solve it to maximize overall utility. Furthermore, collaboration restrictions
of FIL Clients need to be considered in the optimization problem. This ensures that
no organization joins FL Cohorts with other organizations that they do not want to
collaborate with.

3.5 System Design

3.5.1 Domain Model

To establish a domain model for IFL, we consider FL terminology as well as
concepts from industrial asset models as discussed in Section |3.4.1. For this, Figure 3.2
depicts FL Population, FL Server, FL Client, FIL Task and FL Plan as discussed in
Section 3.2, Herein, we consider to deploy and run the FL Server either in the Cloud or on
an Fdge Device. The FL Client is hosted on an industrial edge device, that is a hardware
device on a given location. To support scheduling and optimization decisions of the FL
Server, the Edge Device contains resource usage metrics and hardware specifications
(hwConfig). An FL Task refers to an ML Model that needs to be trained with an
algorithm on a given Dataset consisting of time series values. The scheme of the Dataset
is defined by an Aspect Type, which contains a set of Variables. Each Variable has
name, unit, dataType, default Value and length attributes to define the content of the
corresponding time series values. The qualityCode indicates whether a variable supports

31

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

INDUSTRIAL FL — REQUIREMENTS AND SYSTEMS DESIGN

32

FL Population 0. 1 FL Server

+ id: String FL Cohort + name: String Cloud

. 1 .
+ description: String + name: String + networklInfo: String 9. + name: String

+ dataCenter: Location

1 [
FL Plan

+id: String o1 1] o] o 1 1) o

FL Task Edge Device 10 FL Client

+ instructions: Instructions(]

+ name: String

+ id: String + name: String

ML Model ! 0.

+ type: String

+ name: String
+ name: String

+ config: String

+ location: Location

+ algorithm: String

0.* 1
1 0.*

Dataset Parameter

+ resourceUsage: ResourceUsage

+ hwConfig: HWConfig

O"* . .
0.* 0.* Organization

+ name: String + name: String Asset + name: String

+ values: TimeSeries + value: Object +id: String + industry: String

0.* . 1.% . .
0.* + name: String —-’ + location: Location

Asset Type + location: Location ﬁ
0.

+id: String + envDescription: Environment

Variable

+ name: String

+ name: String

+ description: Strin,
P 9 Aspect Type + unit: String

]
o
Aspect U + name: String «@—— + dataType: String
Lf_
;

+ description: String + defaultValue: String

+ name: String

+ category: String + qualityCode: Boolean

+ length: Integer

Figure 3.2: Domain model

Open Platform Communications (OPC)| Quality Codes!?. This enables to record and
evaluate Qol metrics on the FIL Client as discussed in Section 3.4.3. Since industrial FL
Tasks typically consider data from industrial assets, we define an Asset (e.g., a concrete
engine) operating on a given location facing environmental conditions (envDescription).
The asset is an instance of an Asset Type (e.g., an engine) that collects multiple Aspects
(e.g., surface vibrations) of corresponding Aspect Types (e.g., vibration) again collecting
variables (e.g., vibrations in x,y,z dimensions). The asset is connected to an Edge Device
which is recording data for it. To express the complexity of industrial organizations,
hierarchical asset structures can be built as it is depicted with recursive associations
of Assets and related Asset Types, considering nesting of e.g., overall shop floors, their
assembly lines, involved machines and its parts. Finally, we introduce FL Cohorts as
groups of FL Tasks. an FL Cohort is built with respect to similarities of Assets considered

2https://www.opcsupport .com/s/article/What-are-the-OPC-Quality-Codes), ac-
cessed 2024-10-01

https://www.opcsupport.com/s/article/What-are-the-OPC-Quality-Codes

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.5. System Design

'
'

1 WF 1: FL Client

' bl

N Registration

'

' o
t(WF2:Cohort |, ! X .

: { Search Criteria } : : [WF & Sl and]
i [

WF 4: Update FL
Cohorts

'
h
| | WF 5: Evaluate Qol

A —

Posting Run FL Task

Y
s
m
5.‘?
29
3.3
22
a3z
o
e
"
-
=)
m
N
o
=
3
§
2
g
=]

Record new data and
add labels

Load collected
evaluation metrics

Define or refer to ML

Model used for FL Compute Qol metrics

Request catalog of consumption

Define info:
Organization, Edge rEge‘i:s:d(IESFe
Device, Aspect Types, Organiza!ioné
gesel Assets) Create FL Task (+ Compute similarity

Inform FL Server IS Tk

I

Submit Qol metrics

|

Re-evaluate client
selection (i.e.,

measures for involved
FL Tasks/Clients

|

refer to provided info
and ML Model)

I

[Submit FL Task }

metrics

Measure resource
usage and energy

| |

Define Cohort Search
Criteria

Collect (evaluation)

Submit info to FL. Split or Merge Inform FL Clients of

metrics form previous

' v v v v ' '
' [[v v ' '
' [[v [' '
' [v v v ' '
' ' ' ' ' '
' [[v v ' '
' [[v [' '
' [v v v ' '
' ' ' ' ' '
' [[v v ' '
- L L L L : :
' 1 ' 1 ! 1 ! 1 ' 1 1
' 1 ' 1 ! 1 ! 1 ' 1 1
l b L i o : :
' ' ' ' '
' v v v ' ' '
' [v v v ' '
' [[v [' '
' ' ' ' i ' '
' Sy [[AL Gtz 1 1| contribution weights) 1 | Bontiation ' FL Plan executions | 1
' ' ' ' ' '
' i [[i v v ['
' B B B] B '
N Register FL Client | | 1 Isubmit Cohort Searchi H | Attach FL Task to FL H H H H If async FL: H H Optimize QoS criteria | |
: (+info) ' : Criteria to FL Server | : Population ' : ' : Incorporate new | 1 : '
! ! ! ' model updates ! '
; Lo o l o L ’ L :
' : il : 1 : ll : 1 If sync FL: : i :
' 1 | Store Cohort Search |+ ! Create FL Cohorts I 1 || Registerfornew FL |, ! '
' !+ Crtieria for FL Client ! and FL Plans]] process B '
' ' ' ' ' '
' [[[v ['
' v v l v ' ['
' ' ' ' ' '
' [[v [['
'] 1 1 Execute FL Plans B]] '
! [v, (eg. apply FedAvg) ["o [!
' ' ' ' ' '
' ' v | v v ' '
1 'y oy L ' ' 'y '
: v v v t v '
' [1} Execute evaluation v [['
' Vo 1 1 and collect metrics . . ' '
I\\ l' I‘\ I’ ‘\\ ’ ~ l’ I‘\ " I\\ l' I‘ ~ "

Figure 3.3: IFL workflows

in the attached ML Model. So, creating FL Tasks intents to typically solve ML problems
based on Asset data, whereas the Aspect Type referred in the Dataset of the ML Model
are used in the linked Asset.

3.5.2 Workflows

To regard the requirements of Section 3.4, we propose seven WFs to be supported by the
IFL System as depicted in Figure 3.3 Each WF covers multiple steps to achieve a defined
task (e.g., client registration on the server). These WFs can be executed independently
but also combined to provide the functionalities of the IFL System. In Chapter 4, we
propose the IFL Process, providing an API and services for the combined end-to-end
execution of what we present in WFs 1-4. WF 7 (Optimization) is conceptually addressed
in Chapter |0.

WF 1: FL Client Registration

Assuming the FL Server to be in place, the FL Client starts participation in the IFL
System by registering itself. For this, the FL Client has to submit a request including
organization and Fdge Device information to the FL Server. Furthermore, Aspect Types
are handed in, describing the data scheme based on which the organization is willing to
collaborate in [FL| processes with other organizations. Additionally, the assets enabled for

33

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

INDUSTRIAL FL — REQUIREMENTS AND SYSTEMS DESIGN

34

FL|are posted to the FIL Server, to provide an overview to other organizations and to
ensure that IFL can build FL Cohorts based on respective environmental conditions.

WPEF 2: Cohort Search Criteria Posting

After FL Client registration, other FL Clients can request a catalog of Edge Devices,
Organizations and connected Assets. Based on this, Cohort Search Criteria can be created
which potentially include organizations, industries, and Asset Types as well as Aspect
Types that the user wants to filter for. This enables the creation of suitable FL Tasks
that should be part of a specific FL Population. If the underlying data distribution is
similar between the created FL Task and the assigned FL Tasks in the FL Population, it
can be even matched to a desired F'L Cohort, which is handled in WF' 3.

WPF 3: Submit and Run FL Tasks

The FL Client creates an FL Task including references to the ML Model without revealing
the actual dataset and submits it to the FL Server. If FL Tuasks target the same problems,
i.e., reference to the same Aspect Types and corresponding ML Model, the provided FL
Task is attached to an existing FL Population, otherwise a new FL Population is created.
[FL| then builds FL Cohorts of FL Tasks based on metadata provided during registration
and posted Cohort Search Criteria. If no Cohort Search Criteria is provided by the
FL Client, the submitted FL Tasks are initially considered in the default FL Cohort of
the given FL Population. To actually start FL, an FL Plan is created including server
and client instructions to realize e.g., FedAvg on the server and training
of ML Models on every involved FL Client. The configuration of FL Tasks allows for
defining parameters for supported algorithms of TFL| for e.g., setting break-up conditions
for FL or defining the number of repeated executions over time. FL Tasks are either
realized as training or evaluation plan. Therefore, the exchanged data between FL
Client and FL Server are different. While training plans typically include the sharing
of model parameters as e.g., gradients or weights of neural networks, evaluation plan
execution results in metrics that are stored by the FL Server to further enable FL Cohort
reconfiguration and optimization.

WF 4: Update FL Cohorts

Collected metrics in the |[FLi process enable to update FL Cohorts with respect to splitting
and merging FL Cohorts. Furthermore, moving FL Tasks between cohorts is considered
in [FLL The respective metrics include information like the environmental changes of
assets and model accuracy. Furthermore, similarity measures of ML Models are computed
based on possible server-provided data. If such evaluation data is present, a strategy for
updating FL Cohorts includes to put FL Tasks in the same FL Cohort, where its ML
Model predicts ideally the same output based on provided input samples.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.5. System Design

WF 5: Evaluate Qol

The |Qol of raw data used by each FL Client is computed on Edge Devices and mapped
to OPC Quality Codes. Besides using submitted Qoll for e.g., updating FL Cohorts, IFL
considers Qoll in the client selection and updating of contribution weights of FL Clients.
The latter one is applied when it comes to weighted averaging of model parameters as
defined in [MMR™17]. Hence, the model parameters delivered by individual clients can
be weighted differently according to their Qol metrics. This enables that clients with
high quality data can contribute more to the global model.

WPF 6: Continuous Learning

After time series data is updated and if needed properly labelled, the affected FL Client
informs the FL Server. For this, either synchronous or asynchronous
FL|can be used to integrate these new data and labels. In the asynchronous case, IFL
notifies FIL Clients of a given FL Population to update ML| models according to recent
improvements of one FL Client. In the synchronous case, the FL Population is notified
to enable assigned FL Clients to register for a new synchronous FL process.

WF 7: Optimization

First, the F'L Client collects resource usage (e.g., CPU, memory) and energy consumption
data from the underlying Edge Device to enable the aggregation of these metrics on
the FL Server. Second, network statistics (e.g., latency) are identified as recorded for
model update sharings between FL Clients and the FL Server. Third, statistics and
evaluation metrics of past FIL Plan executions e.g., duration of processing is loaded to
be incorporated into an optimization model. Finally, this model optimizes future FL
Plan executions considering QoS criteria as processing cost, network latency,
energy consumption, and cohort reconfiguration cost.

3.5.3 Architecture

To realize the WEFs presented in the previous section, we propose the [IFL| architecture
depicted in Figure 3.4.

Considering two types of parties involved in IFL|, we present the FL Application and
the FL Server, whereas the former is a container for a Industry Application that is a
domain-dependent consumer of IFL. Furthermore, the FL Application contains the FL
Client that interacts with the FL Server.

We now discuss the main components of the IFL System and its responsibilities. First,
the FL Client registration WEF|involves the Device Manager of the FL Client. It provides
an API to the Industry Application to register for FLL The Industry Application provides a
list of participating Edge Devices and general information of the organization. Forwarding
this to the Client Registry allows persistence in the Device & Asset Metadata Catalog
stored on the FL Server. Cohort Search Criteria posting is supported by the Dewice

35

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

INDUSTRIAL FL — REQUIREMENTS AND SYSTEMS DESIGN

36

RV(B ?YR
FL Client ;—F

Device Manager FL Task Manager Processor

FL Application
Industry Application —y Asset Model Datasets ML Models

|
?VR 6YR 9

FL Server H

& Asset o = FL Populati
e |] Client Registry Population Scheduler — opulation

N——7 FL Task Store

= T § 3

A Cohort Builder O—] Processor

- g

FL Resource Optimizer

Federated

Computation
Specifications

Metadata
Catalog

00

Figure 3.4: FL client and server architecture

Manager and Client Registry too, with additionally exposing an interface to the Cohort
Builder to provide the device & asset metadata catalog and the FL Cohort Search Criteria
for creating FL Cohorts.

Submitting new FL Tasks is initiated by invoking the FL Task Manager which is in charge
of enriching the information provided by the FL Task with information of the associated
ML Model and targeted Asset. After forwarding the FL Task to the server-side Population
Scheduler, it is mapped to the corresponding FL Population and persisted. Furthermore,
the Population Scheduler attaches scheduling information to timely trigger execution of
all FL Tasks of an FL Population. To actually run an FL Task, the Population Scheduler
hands it over to the Processor. It translates the F'L Task to an FL Plan and corresponding
instructions as defined in Federated Computation Specifications. Subsequently, it creates
the corresponding global ML Model and starts the FL process for a given FL Cohort
by connecting to all FL Clients that have FL Tasks in the same FL Cohort. This
information is provided by the Cohort Builder. Analogously to FIL Plans, there exists a
client counterpart of the Processor too. It invokes the client instructions specified in the

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.6. Summary

FL Plan to e.g., train or evaluate ML Models on local Edge Devices. Metrics resulting
from evaluation plans are provided by the Processor to the Cohort Builder to update
cohorts continuously. Further metrics from e.g., continuous learning approaches or |Qol
evaluations are stored and used directly by the Processor e.g., during model aggregation.
The FL Resource Optimizer connects to the metrics storage to incorporate parameters in
optimization models. After solving the optimization task, the solution is returned to the
Population Scheduler to trigger, e.g., cohort reorganization and to update the schedule
of FL Plan executions.

3.6 Summary

In this chapter, we identified the need for IFL| and provided a structured collection of
requirements and WFEs| covered in an [FL| architecture. Due to diverse conditions of assets
operating in industry, FL Clients are not advised to exchange ML Model parameters with
the global set of [FL| participants. For this, we concluded to consider FL Tasks grouped
in FL Cohorts aiming to share knowledge resulting from similar environmental and
operating conditions of involved assets. Furthermore, we highlighed that FL| can decrease
the amount of resource-intensive work of domain experts considering less continuous
updates of datasets and labeling to be done. Additionally, making use of metrics resulting
from (Qol and ML Model evaluations can be used for FL Cohort reorganizations and
weighting in the |[FL| process.

The IFL concepts that have been introduced in this chapter are used as a foundation
for the work that is presented in the next chapters. Hence, we extend these concepts
and implement the IFL System and the respective WFs (i.e., WF 1-4) in Chapter 4.
Furthermore, we evaluate how FL Cohorts perform with different cohort building algo-
rithms. To use FL for industrial applications, we implement a framework to facilitate
the development, integration and deployment of the FL Clients and the FL Server.
In Chapter 6, we evaluate the impact of deploying an IFL System on heterogeneous
platforms and test how cohort building can optimize model performance (WF 4 and
WF 7). WF 5 (Evaluate Qol) and WF 6 (Continuous Learning) are left as future work.

This chapter was originally published as a paper at the 18th International Conference on
Practical Applications of Agents and Multi-Agent Systems (PAAMS) in 2020:

Hiessl, T., Schall, D., Kemnitz, J., Schulte, S. (2020). Industrial federated learning —
requirements and system design. In: De La Prieta, F., et al. Highlights in Practical
Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS
Collection. PAAMS 2020. Communications in Computer and Information Science, vol
1233. Springer.

37

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Cohort-based FL Services for

Industrial Collaboration on the
Edge

4.1 Introduction

In our exploration of FL systems within the industrial context, we consider concepts
such as the client registration with suitable criteria and cohort building, as presented
in Chapter 3. Various FL algorithms have been investigated with a focus on model
aggregation and client selection [MMRT17,[YCKB18,PKH19,YWL20|. We extend this
investigation to model aggregation for clients operating on industrial machines that
encounter heterogeneous operational conditions. Particular attention is paid to the
formation and evaluation of cohorts, assessing how model quality can be enhanced
compared to FL applied to the overall set of participating clients. Our intention in this
chapter is to extend and update the concept of the IFL System that we have introduced
in the previous chapter. We implement the IFL System as multiple interacting services,
and discuss its capabilities and limitations. Furthermore, we evaluate the effectiveness
within an industrial setting by comparing different FL scenarios using real-world data.
Specifically, we demonstrate how to optimize collective model training with respect to
the accuracy of two underlying classification tasks for machines such as saws and pumps.
In the following, we motivate the main challenges as drivers for the proposed IFL System

and integrated algorithms.

Many of the challenges prevalent in FL, as outlined in Section 1.1/and the study by Kairouz

et al. [KMA™21b], are particularly relevant to industrial clients [HSKS20|. First, in the

majority of FL approaches the central authority defines the learning task by deciding e.g.,
on the used ML model, hyperparameters, and the FL algorithm [KMA™21b|. However,

39

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

40

as discussed in Chapters 1 and 3, in industrial applications, users (e.g., machine operators
in production lines) have individual requirements regarding business partnerships when
it comes to collaborations with other companies on improving and maintaining machine
performance . Hence, clients dependent on the learning task definition provided
by the server are restricted to centrally managed ML models, therefore applications, and
have no influence on selecting partners for FL. For example, pump manufacturers provide
their products to customers (clients) from various industries like manufacturing, food and
beverage, pharmaceutical engineering or water supply. Different use cases and therefore
operational conditions are present in these domains, which may require adaptations of
used ML models and hyperparameters for groups of clients. Moreover, even clients from
the same field have restrictions to collaborate only with selected partners or with at
least a defined minimum number of partners to increase the chance for actual ML model

improvements [DPM™22|.

Hence, there is a need for a service-based system, empowering independent clients to
create and submit ML models to the server and thereby enable FLaaS . Using a
FLaaS| approach allows a group of collaborating and independent clients to apply FL
on these models and subsequently use it on their machines. Furthermore, considering
client restrictions for collaboration partners and the applied FL algorithm on the server
provides flexibility to the clients.

Second, model updates for operating machines often need to be triggered explicitly in
industry under human supervision. This can be relevant in industry when ML models are
used to assist human users . Potential use cases are, e.g., condition classification
of factory machines, failure detection, or even optimization of production processes. To
update the used ML model with FL, a client may want to explicitly request participation
in FL rounds, instead of automatically getting invoked in periodical execution plans by
the server. This enables manual testing before deciding whether to use the model in
production. Although explicit participation in FL is not unique to IFL, this is significant
for industrial applications.

Third, a prominent challenge in FL is the problem of non-IID data (see Section [2.1.3),
which is especially present in industrial domains when machines operate with different
configurations under varying environmental and operational conditions . A
suitable example to explain this issue is addressed in Section [1.1.2, which considers
the pumping of different liquids. This process causes heterogeneous vibration patterns
resulting in skewed data. To not receive poor model quality as multiple clients apply
FL on their (skewed) local data, FL systems need to provide mitigation strategies in
respective FL algorithms.

This chapter addresses the aforementioned challenges of (i) enabling clients to individually
and independently select the used ML models and to define client criteria for collaboration
in FL, (ii) enabling clients to explicitly participate in FL. on an on-demand basis,
and (iii) non-IID data distributions by proposing an FLaaS| system. Notably, the
contributions are motivated and evaluated using scenarios from the industrial domain,
but as discussed above, similar problems also occur in FL in general.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2. System Design

The contributions of this chapter can be summarized as follows:

e Presentation of an FL process, the IFL Process, for industrial clients including two
algorithms dealing with individual and on-demand requests, and non-I1D data.

e Design and implementation of a service-based system, the IFL System, covering
the IFL Process and providing FLaaS|.

o Evaluation of the IFL System using two time series-based industrial datasets,
providing several physical clients (machines) and derived virtual ones. The results
on the model performance after FL are presented and compared in IID and non-I11D
scenarios.

We show that the IFL System considers on-demand participation of clients and yields
significant improvements in classification accuracy applying FL on cohorts of similar
clients rather than on the overall population.

The remainder of this chapter is organized as follows: We describe the IFL System design
in Section 4.2. In Section 4.3 we demonstrate the results of the FL experiments, and we
review related work in Section |4.4. We conclude in Section 14.5.

4.2 System Design

In order to present the design of our system, we first introduce the basic notation used
in this chapter in Section |4.2.1. For this, we extend the domain model from the previous
chapter (Section 3.5.1)) We reuse the concepts of clients, assets, asset types, models,
populations, cohorts and tasks and add concepts for (FL) algorithms, and cohort building
algorithms. Therefore, we address the dynamic aspects (cohort building and model
aggregation) that are described by the IFL Process. The IFL Process (see Section 4.2.2))
is the central approach that applies algorithms to build cohorts and execute FL on
respective similar clients. The architecture of the implemented service-based system that
supports the execution of the IFL Process, is described in Section 4.2.3|

4.2.1 Basic Notation

To describe our IFL System model formally, we introduce the notation presented in
Table 4.1. For this, we consider that a client ¢ € C' manages an asset a € A (e.g., a
concrete heating pump) of a given asset type type(a) (e.g, a centrifugal pump). Every
asset type defines a data scheme u(type(a)) that needs to match with the data scheme
v(m) required by the ML model m € M that client ¢ wants to train.

To participate in IFL, the i-th client ¢; submits a task ¢; to the IFL Server. For this,
the client needs to specify asset a'’, model m'i, the individually selected FL algorithm
algti € ALG for aggregating model weights, a cohort building algorithm cb* € C'B, and
federation criteria crit’e € C RIT before submitting ¢; to the server.

41

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

42

The federation criteria crit’ correspond to a set of requirements, where each need to be
fulfilled by the system to consider ¢; for upcoming FL rounds. So, we consider t; € T
with T C Ax M x CRIT x CB x ALG.

A population p is a set of tasks that refer to the same asset type type?, model m?, FL
algorithm alg? and cohort building approach cb?, where p C T with type? = type(a'i),
mP =mb, alg? = alg’, and cb? = cb* holds for all ¢; € p.

A cohort coh is a set of tasks with similar data distributions with coh C p. For this,
the cohort building approach cb? is used to assign every task within a population to a
cohort. Furthermore, we consider COHP as the set of all cohorts of population p. Hence,
for cohy, ... ,coh‘pCOHp| € COHP? it holds that coh? Cpforall je{l,...,|COHP|} with

coh? Ncoh} = {} and j # k.

Finally, FL is applied on population p using the FL algorithm alg? to train one model
per cohort coh; € COHP. For this, we consider mhi with m®hi = algP (coh;) for all
coh; € COHP.

Note that in the previous chapter, we introduced the concept of Cohort Search Criteria
for matching suitable cohorts for a given client. This concept is now generalized as
federation criteria, as these criteria are used not directly for cohort building but rather
for the overall participation in IFL.

Table 4.1: IFL System entities

Notation | Description

C Set of clients ¢; € C participating in IFL

A Set of assets a € A

M Set of ML models m € M

CRIT Set of federation criteria crit € CRIT

CB Set of cohort building approaches ¢b € CB

ALG Set of FL algorithms alg € ALG

T Set of tasks t; € T' submitted by clients

P Set of populations p € P

COH? Set of cohorts coh € COH? of a given population p

4.2.2 IFL Process

In our solution, we address the discussed challenges and propose the IFL Process depicted
in Figure 4.1. The process is executed by the IFL System, which consists of the IFL
Client (our implementation and extension of an FL Client from Chapter 3, referred to as
client for short) and the IFL Services hosted by the IFL Server (referred to as server
for short). The client can be deployed to edge devices to train and operate ML models
based on data generated by connected machines. The IFL Services offer an API to the
clients providing knowledge aggregation and distribution on a central server.

To support FL for edge-based industrial clients, the IFL Client and IFL Services provide
a four-step process (Figure 4.1). We have conceptually integrated WF 1 - WF 4 from

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2. System Design

’ 1. Asset Onboarding & ‘

Task Submission ’ 4. IFL Execution ‘

’ 2. Task & Model Registration ‘ ’ 3. Population & Cohort Building

Population 1

Cohort 1.1

Jask 1 Task 1 Task 2
3]
3
;;;;;; d d Task 4
oy di: & @ N (i X) Apply FL Algorithm
] I - IFL Client 2
Task 4 ML Model Task 5
o
o
o

Load Cohorts

D

. . Cohort 1.2
iz 8 di: & /[Tasks
. .
o @% a7 QIE ! gﬁ;’ -. Validate

Population 2

i
Ui

Results

ML Model

Provide ML models
3y i STl to clients

Cohort 2.1

|

| Clients | | Server |

Figure 4.1: IFL Process with 4 phases: 1. Clients are connected to their assets and
submit tasks using the IFL API to participate in FL. 2. Submitted tasks are registered
on the server referring to ML models used as base for FL. 3. Populations of tasks with
same asset types are created. Cohorts further split populations into clusters of tasks with
similar data distributions. 4. FL is executed for each cohort by applying the algorithm
selected by the clients. Finally, validating results and providing the ML model to clients.

Chapter 3 for client registration, federation criteria posting, and task handling (including
cohort building). The IFL Process covers the end-to-end process starting with the
registration of clients and resulting in an FL model for each cohort. As a prerequisite, we
consider deployed client applications that invoke the IFL Client to establish connectivity
to the IFL Services. Data is recorded from the asset and stored on the device. For this,
we assume a classification problem with input data provided as matrix X C RNs*Nv
with Ny variables and Ng samples, and a Ng-dimensional target vector y C RNs.

Asset Onboarding and Task Submission

The first step involves the IFL Client that needs to specify metadata that is referenced
in a task. This metadata contains the used asset with the corresponding asset type,
whereas the asset type can be reused, if other clients have already published this to the
server. Similarly, an ML model is created or selected from the server to be applied to
the data. This model is created upfront, based on the asset types’ corresponding data
structure and the ML task that needs to be solved.

Based on that, the client selects a cohort building approach. For this, the IFL Services
provide two approaches. The first approach applies a cluster algorithm based on input
data X to address potential feature distribution skew. The second approach clusters
based on target data y to consider label distribution skew. In both cases, the respective
cohort building approach is selected to reduce skewness within cohorts and to improve
performance of models that are trained in a cohort by applying FL.

43

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

44

Furthermore, clients specify the knowledge aggregation algorithm, e.g., FedAvg ,
and individual federation criteria e.g., the minimum number of clients in a population or
the minimum dataset size. This enables the client to control the knowledge aggregation
process, e.g., to avoid that knowledge is transferred only between a small number of
clients, which may lead to insufficient training results. Furthermore, this prevents that
knowledge from an individual model is transferred to only a few other clients that may
not contribute to the global model. To participate in IFL, clients then submit a task
with the mentioned specifications to the server using the IFL API.

Task and Model Registration

In the second step, the server stores the defined assets, uploaded ML models and the
tasks. Subsequently, the server verifies that the data scheme of the asset fits to the
data scheme required by the referenced ML model, i.e., u(type(a)) = v(m). Hence, it is
ensured that clients can participate in FL rounds when the model is trained on their
local data.

Population and Cohort Building

The third step assigns tasks to populations and further splits populations into cohorts.
This facilitates FL to be executed within small groups of similar clients. For this,
we consider the server to execute Algorithm 2| to assign tasks accordingly as they
are submitted by clients. First, to build populations, we consider tasks with equal
configurations. Particularly, we search for a population p with the same asset type, ML
model, cohort building algorithm and FL algorithm as referred to in task ¢;. This is
necessary to consider a valid FL setting, whereas the same algorithms and model need to
be applied on a common data scheme. If any population matches the task configuration
as checked in line |3, the task is added. Otherwise, a new population pje, is created and
added to the population store P on the server (lines 13 and 14).

Furthermore, it is required to reach a consensus regarding the federation criteria, i.e.,
all criteria crit’® have to hold for all tasks t; € p as verified in line [6. For instance,
we consider a criterion for requiring a minimum number of tasks in a population as a
precondition before starting FL. To formally describe this exemplary federation criterion,
let ¢(¢;) be a function with ¢(t;) < |p| for all t; € p, where ¢(¢;) returns the minimum
number of tasks that is required by ¢;. Based on that, the server eventually starts cohort
creation in line |7/ to improve model accuracy when FL is executed.

For this, we consider that data of individual clients can be non-IID. As we identified
in , non-I1D data can be observed when assets operate in heterogeneous industrial
environments. Hence, in CreateCohorts (p) (lines 16-33), the server makes use of
aggregated data that describe the clients data distribution.

For this, we consider two cohort building approaches i.e., Target Distribution and Input
Distribution. Applying the former one, the server requests the client to compute the
statistical moments mean, variance, skewness and kurtosis of the target data 3% in line 19.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2.

System Design

Algorithm 2 PopulationCohortBuilding

Input: new task ¢; received from client, populations P stored on the server

1:
2:

w

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

Update populations:
addedy, < False
for pe P do
if typeP = type(al’), mP = mbi algP = alg', and cb? = cb’ then
p—pUt
addedy, < T'rue
if crit’ holds for every t; € p then
COHP? < CreateCohorts(p)
break
end if
end if
end for
if not added;, then
Prew < {tz}
P+ PUppew
end if

CreateCohorts(p):
Initialize F' as n X m matrix for n tasks and m features
for t; € p do
if ¢b? = Target Distribution then
r < {mean(y'), var(y*), skew(y"), kurt(y'i)}
end if
if ¢b? = Input Distribution then
r < {mean(X%), var(X), skew(X"), kurt(X')}
end if
add row r to F
end for
for feature f € F' do
if std(f) < e then
remove f from F
end if
end for
k + elbow(F)
COH? < kMeans(F, k)
return COHP

45

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

46

These measures provide information on the shape of the data’s underlying distribution
function, i.e., location (mean), dispersion (variance), asymmetry (skewness) and the
form of tails (kurtosis). We use these features to capture the target distribution of every
client’s dataset as precise as possible, which is the basis for accurately assigning the
corresponding task to a cohort of tasks with similar target distributions. Therefore, we
can reduce label distribution skew in a cohort. In line 24, the features are returned to
the server and added as a new row to the feature matrix F.

The Input Distribution approach computes the mentioned moments based on all n
variables of the input matrix X% (line 22) and adds them to F. This feature matrix F
consists of |p| rows and u columns, where u is the number of features. Hence, using Target
Distribution we have u = 4, while for Input Distribution we consider u = 4 x n. Analogous
to Target Distribution, using Input Distribution we can reduce feature distribution skew.

Since F’ may contain many features with limited information, we remove all features f
from F with std(f) < € in line 28, where std(f) computes the standard deviation and e
is a pre-configured parameter on the server.

To eventually create the cohorts COHP, we apply the k-means [KMNT02| cluster algo-
rithm based on the reduced feature matrix F. The k-means cluster algorithm is an iterative
approach that considers a fixed number of k clusters, whereas data points are assigned to
cluster centers that minimize variance within clusters. Optimally, we want clusters where
all the data in a cluster are close to each other, and the distance between two clusters
is as large as possible. To identify k, we apply the elbow method [Tho53,[SAIR11| in
line 31 to find the optimal value with respect to the silhouette score. For this,
the elbow method iterates over increasing values of k applying k-means and stopping
when improvements of the silhouette score are no longer worth further computation. The
silhouette score is maximized if samples (= clients) have a relatively short distance to
other samples in the assigned cluster and a relatively large distance to samples from other
clusters. In line |32, we finally apply k-means with the identified k£ to assign all tasks
t; € p to cohorts COHP. We use the combination of k-means and the elbow method
since it can automatically be applied by the IFL Service without the need for human
validation of the number of built cohorts and still avoiding under- and over-fitting of the
trained cluster model.

IFL Execution

The fourth and final step in the IFL Process applies the selected FL|algorithm algP on
all created cohorts COHP as described in Algorithm 3. To start the execution, the server
loops through all coh € COHP and initializes the models mf{' for all tasks t; € coh; in
line 2. For this, the model architecture of the underlying neural network is created by
building all layers as defined in the base model m? of the population.

To actually share knowledge between the involved clients, FL algorithms can be invoked
by the server. In this work, we evaluate the integration of two FL algorithms in
the IFL Services to be applied on cohorts, i.e., FedAvg [MMR™17| and Sequential FL

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2. System Design

Algorithm 3 IFL Execution

Input: COH? received from population and cohort building step

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:

2
3
4
5
6:
7
8
9

Server execution:
for coh; € COH? do
initialize mff for all tasks t; € coh;
for round r =1, ..., R do
if alg? = FedAvg then
for task t¢; € cohj do
mli , « ClientUpdate(t;, mt)

endhfor (oohy|

CO. j 1 CO j ti
Mg i = Joomy] 2i=1 Mt
end if

if alg? = SeqFL then
for task t; € coh; do
miﬂrl — ClzentUpdate(tza mf’l)

end for
coh; ¢ tlcon,|
J 0 J
mr+1 (—TTL,H_I (_mr
end if
end for

validate and send mghj to all clients ¢; of tasks t; € coh;
end for

ClientUpdate(t,m) // Run task ¢ on client
B « (X' split into batches of size B)
for epoch e € 1..E do

for batch b € B do

m < m — aVi(m,b)

end for
end for
return m to server

47

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

48

(SeqgFL) [CBL™18]. We selected the two algorithms since they are well-established and
often considered as a benchmark for FL.

Both algorithms trigger client training by iterating over tasks ¢; of the processed cohort
cohj, and calling ClientUpdate (t, m) (lines|6 and 12). In this function (lines 19-25)),
the dataset X is split into batches B and is iterated several times as defined in the
number of epochs E. In line 22, the model is updated using one step of gradient descent
optimization, considering a loss function [and a learning rate alpha. After iterating the
defined number of epochs, the optimized model is returned to the server in line 25, to
exchange the gained knowledge with other clients.

In FedAvg, this is achieved by summing up model weights from all clients of a given round
and dividing it by the number of tasks in the cohort |coh;| as presented in line 8. In our
approach, we integrated a simplified equally weighted averaging, whereas in the original
FedAvg approach client models are weighted with an additional factor expressing the
proportion of the number of examples Ng, of client ¢; with respect to the total number
of examples. Using our approach does not reveal this information of the dataset to the
server. In the next round, the aggregated model is again distributed to all clients.

In SeqFL, the model is passed sequentially from one client to another, whereas the
subsequent client optimizes the model that the previous client has optimized before. The
result of the last client in a given round r is used as input for the first client of round
7+ 1 (line 14).

After training using either of the aforementioned algorithms, the resulting model mghj is
validated by involved clients on their local test datasets as stated in line [17. This yields
validation metrics (i.e., test set accuracies) that are passed to the clients along with the
model, which concludes the IFL execution. As a result, the client is enabled to decide
whether to operate the IFL-based model or an individually trained model on the edge

device.

4.2.3 System Architecture

To run the IFL Process described in Section 4.2.2, the IFL System provides the service-
based architecture depicted in Figure |4.2. This architecture is an extension of the general
IFL architecture introduced in the previous chapter (Section 3.5.3) and provides further
implementation details. As compared to the previous chapter, no resource optimization
and associated metrics are considered in the implementation architecture, since this will
be the focus in Chapter [6.

In the FLaaS| approach, we consider two main locations i.e., the shop floor and the
IFL Server. On the shop floor, assets are operated and generated data (e.g., measured
vibrations) are sent to an Edge Device to train an ML model that can be used for e.g.,|CM.
The IFL Server consists of the IFL Services that provide an interface to onboard assets,
submit tasks, and apply FL on cohorts of clients. This architecture allows multiple clients
from different locations (i.e., shop floors) to use the IFL Services and participate in FL.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2. System Design

IFL Client on Edge Devices

To support the asset onboarding and task submission step in the IFL Process as described
in Section 4.2.2, the IFL Client is deployed to FEdge Devices and invoked by the Industry
Application. The Industry Application can include arbitrary business logic that makes
use of [FLaaS|to train ML models on recorded asset data. To support this, the IFL Client
connects to the IFL Services and creates an IFL Task. The corresponding metadata (e.g.,
asset, ML model) is stored along with the used dataset on a local data storage to ensure
transparency on the training history.

After submitting a task, the IFL Client starts a local Worker Node that can run e.g.,
the ClientUpdate (t, m) function (see lines [19ff in Algorithm 3) to be invoked by the
server.

For this, the IFL Client provides the training and test dataset to the Worker Node to
optimize the model m in the respective communication round. As a prerequisite, the
Worker Node needs to register at the Worker Network that is located on the IFL Server.
This enables that Worker Nodes can be found, as a lookup on the server is initiated to
invoke clients. Worker Nodes are relevant in this architecture, since they enable isolated
training per task. This training can even be outsourced to trusted Fdge Devices by
spawning Worker Nodes on remote locations if local resources (e.g., memory) are already
fully utilized.

IFL Services

To provide [FLaaS|, the IFL Process is supported on the server side, which considers
Client Registry, Population Scheduler, Cohort Builder, and the Processor as independent
services. We further consider a database for assets, associated asset types, and ML
models. The latter are considered as base ML models, reflecting a DL neural network
architecture with untrained weights.

Using the Client Registry, the ML models can be created by clients and used by other
clients by referring to them in the submitted tasks. For this, the Client Registry provides
an API that accepts assets, asset types, ML models and tasks. After data scheme
validation (see Section [4.2.2)), the task is forwarded to the Message Broker. This broker
supports a publish/subscribe messaging architecture to share processed output (i.e.,
validated tasks, built populations, and cohorts) between the services. This enables
loosely-coupled services, whose instances can be scaled up and down considering varying
loads of task submissions.

To support the population and cohort building as addressed in Section 4.2.2, the popula-
tion scheduler consumes tasks from the Message Broker and assigns them to a population.
If provided federation criteria hold for all clients, the population is published to the
Message Broker for cohort building.

The Cohort Builder queries the Worker Network for registered Worker Nodes of clients
that have submitted tasks to the currently processed population. The query mechanism

49

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

50

| IFL Architecture

IFL Services

@ Population Cohort | o | Worker

Scheduler Builder Network

0 0 J
Message Broker .

Client
Registry = (Populations)@ohor@ | Processor
f {7
Database
Trained
ML Models

Shop |Asset Edge Device

0 o) Worker

(e x IFL Client 1 Node

| |
d =
< Local Storage

L Industry
Application Assets) Datasets) G/IL Model)

Figure 4.2: IFL architecture: edge-based IFL Client and IFL Services

is useful since the selective approach does not invoke clients of other populations blocking
their resources. Next, the client statistics are retrieved from the Worker Nodes, to build
cohorts (see Algorithm |2)).

To address the IFL FExecution process step, as described in Section |4.2.2, the Processor
service subscribes to created cohorts on the Message Broker and applies the selected
FL algorithm. For this, the Processor sends the ML model to respective Worker Nodes
and retrieves the updated model after training. After the last communication round, the
trained model is validated on test data by the Worker Nodes. To deploy the model to the
shop floor, participating clients can download the model as provided by the Processor
API.

With this architecture and the IFL Process, we directly address the FLaaS| properties 1-4
that we have introduced in Section 2.1.7, since 1) no algorithm development is required,
2) collaborative model building is supported through an API, 3) clients describe the
input data types via specifying the asset, and 4) permissions for collaboration (and
therefore access to models) can be specified in the federation criteria. Properties 5-7 are
covered, since 5) clients can specify federation criteria, 6) explicit participation of clients
is supported through APIs, and 7) cohorts of collaborating clients can be built.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Evaluation

4.3 Evaluation

In this section, we show the applicability of the IFL Process on different datasets including
industrial data. We evaluate our IFL System approach on IID] and non-IID datasets.

In the following, we explain our evaluation setup (Section |4.3.1). The characteristics of
the datasets used for our evaluation and the scenarios designed from these datasets are
described in Section 4.3.2. Our experimental design is explained in Section |4.3.3. Finally,
the evaluation results based on the designed scenarios are reported in Section 4.3.4)

4.3.1 Experimental Setup

All the experiments are run on a Windows machine with 3.0 GHz Intel Xeon Scalable
Processor with 8 CPU cores and 32 GiB RAM, hosting the IFL Services. IFL Clients
run on a Windows machine with 3.3 GHz Intel Xeon Scalable Processor with 2 CPU
cores and 4 GiB RAM.

The implementation of the IFL System uses PySyft', an open source framework for
private DL/ to operate on data that resides on remote locations, i.e., the server invokes
PySyft to connect to the clients and to train ML models on their local datasets. The
Worker Nodes and Worker Network communication, as described in Section 4.2.3) is
implemented using PyGrid®. PyGrid is based on PySyft and adds the functionality for
registering nodes and searching for nodes in a network to eventually establish connection
between the IFL Services and the Worker Nodes on the Edge Devices.

4.3.2 Datasets

We evaluate our proposed approach using two real-world datasets from industry. In
this section, we explain the characteristics of each dataset and elaborate on the ML
approaches used on these datasets.

Pump Condition Classification Dataset

This dataset contains acceleration data from five pumps. The data is obtained from
multiple measurements [KBG™22| using an IIoT sensor, namely the SITRANS multi
sensor |[BGvDH19|. The sensor provides 512 acceleration samples at three dimensions

every minute, thus providing a time series representation.

The time series data is labeled based on the conditions of the pumps. Figure 4.3| shows a

schematic view of the virtual Z-axis from 70,000 samples obtained from one of the sensors.

As it can be seen, there are six classes indicating anomalous or healthy conditions. The
healthy conditions are healthy stationary normal load (the load of pumped water at the
range of 50"%3), healthy stationary partial load (the load is [12.5’”73, 37.5%3]), and idle
state (the pump is turned off). The anomalous conditions are hydraulic blockade failure

"nttps://github.com/OpenMined/PySyft, accessed 2024-07-22
2https://github.com/OpenMined/PyGrid, accessed 2024-07-22

51

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PyGrid

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

52

1.5 1

1.0 1

Z-axis

0.5 1
6 35600 70600
samples
. Healthy stationary normal load . Cavitation error . Dry-run error

I Healthy stationary partial load B Hydraulic blockade error B 1die state

Figure 4.3: Pump classification dataset: a schematic view of samples from one sensor.

(nothing was pumped at the start of pumping), dry-run error (nothing was pumped at
the end of pumping), and cavitation error (the water in a pump turns to a vapor at low
pressure).

We follow a sliding window approach for collecting data with a window size of 512 and a
step size of 256. We then extract Mel-frequency Cepstral Coefficients (MFCC) as features
(20) from the samples in each window. MFCCs are widely used as features for audio
classification. We employ it here for acceleration data as both have strong relation due
to air-borne and structure-borne sound transmission [CH13].

We consider two evaluation scenarios for this dataset: 1) pump classification |IID where
the distribution of target data (i.e., pump conditions) is IID, and 2) pump classification
non-IID with a non-IID| target distribution. In both cases, we consider the five pumps
as data sources for the used clients. For the 11D case, we artificially create nine clients,
with each client being assigned a subset of data of 1-3 pumps such that all class labels
are represented. The clients receive on average 26,554 samples. For the non-I1ID case,
we artificially create ten clients, where each pump dataset is divided between two
clients on average with respect to independent and time-separated measurements. These
measurements were performed on different days considering even adjustments in between
like, e.g., dismantling and rebuilding of pumps, or removing and reattaching screws to
address feature and label skews . With this, each of the non-IID clients receives
212,738 samples on average.

As a learning approach, we use an Artificial Neural Network (ANN) with two dense layers
with 64 units each using Rectified Linear Units (ReLu) activations and followed by 40%
dropout, and a last output layer without any activation function (5,894 total parameters).
We use this dropout-rate to avoid that the model is biased towards a single client. We
consider just two dense layers to limit the number of parameters, which increase training

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

4.3. Evaluation

time and would require larger datasets. However, to facilitate classification (i.e., linear
separability), the number of units per layer (64) is chosen to be significantly greater than
the input features (20). This model is then considered as our base model m? that is
uploaded to the server and used by tasks of population p for evaluation.

To train all the clients based on the same scale of data, the input data is normalized
using a Gaussian distribution before being fed into the model.

Material Classification Dataset

Machine 1

I
ES
®
>
[)

-4.6 ® ; ®

Vibration
hhdbhdh
w o B~ N O @
=
F —=

-6.0

] A) P » 9 A o ¥
0@ Q’Qq Q& Qp‘* Q’OJ o& 0@ e& o
3 3 J o F & 3 3 o
P + > » I > P 2 o
Time
(a)
Machine 2
—30| @ , ® p ®
-35
- L B E
© -4.0
T -45
| .
2 50
>
U L
6.0 A b
o A o -) o A o 5
hg v v 0V 2 " Q
on, o'Qq on, 0& o > 0& 0'00’ o 0’ o
o & & F F Q 2 o o
f19 > e I » © > » o
Time

Figure 4.4: Material hardness labels for two machine tools. Each row shows vibration
time series data for one machine, colors indicate different material hardness.

This dataset contains vibration data and material hardness labels from two machine
tools that process metals. The vibration data is obtained at a frequency of 1Hz, thus
providing 60 samples per minute. The objective here is to classify material hardness

53

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

54

based on vibration data. As it can be seen in Figure 4.4, there are six material hardness
classes in this dataset.

It can be observed that some materials are only machined from one of the machine tools,
thus the distribution of hardness labels between the machines is not uniform. Furthermore,
the dataset is imbalanced, for example, the material with hardness label A has been
observed more than the other material hardnesses. FL is reasonable and applicable
for this dataset because 1) both machines are similar in construction and 2) non-IID
distribution of material hardness labels makes transferring one model for both machines
not applicable.

In this use case, we demonstrate how IFL can be applied on a small scale, considering
only two assets (i.e., machine tools) generating non-IID data, and still enabling ML
model improvements.

The input vibration time series data is split into sequences of maximum two continuous
hours during the operation time of the machines. These sequences are normalized and
divided into training and test data, keeping 70% of sequence data for training. Our data
is obtained from these sequences following a sliding window approach, with a window size
of 120 (i.e., samples of every two minutes). For training sequences, we have overlapping
windows to cover the entire data with a stepsize of 60, whereas for testing sequences, we
do not use any overlapping. We then compute Fast Fourier Transform (FFT) on
the samples and consider the magnitude of the computed FF'Ts as our features. This
yields a 120-dimensional feature vector.

We consider one evaluation scenario for this dataset using two clients, each representing
a real (physical) machine tool. The target data distribution (i.e., material hardness) is
non-IID and the data is imbalanced. We have a total number of 5,985 samples for the
first client and 7,136 samples for the second client.

As a learning approach, we employ an ANN| with two dense layers, each with 256 units,
each using ReLu activations and followed by 40% dropout, and a last output layer without
any activation function (98,310 total parameters).

4.3.3 Experimental Design

All the scenarios as discussed in Section |4.3.2|are provided in a/JavaScript Object Notation
(JSON)| format. The scenario JSON contains configuration for clients, tasks, assets, and
the used model.

The client configuration provides settings for the client’s name, the path to a client
dataset, the tasks associated with a client, and additional organizational descriptions.

The task configuration has settings for the selected FL algorithm alg'® (FedAvg or SeqFL),
the cohort strategy cb’i (if cohorts of similar clients should be built for federation and
the algorithm to be used for building cohorts), and federation criteria crit'i (e.g., the
minimum number of required clients that need to join a population to start the training).

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Evaluation

The asset configuration gives settings for name, description, location, and environment
description of an asset.

The model configuration provides settings for the path of the base model to be used for
federation, and the training parameters (e.g., number of communication rounds, number
of epochs per communication round, learning rate, batch size, etc).

Based on the aforementioned configuration parsed from the scenario|JSON| the individual
client processes independently create their assets, refer to a common ML model, and
eventually submit tasks to the Client Registry API to join for FL.

After FL is finished, resulting ML models are validated using classification accuracy. If
applicable, we consider classification accuracy on cohort test data (i.e., test data from all
the clients in a cohort) to ensure comparability between models trained only on client
data, models trained on central data, and models trained with FL on cohorts. To further
compare cohort-based FL with FL not using cohort building (i.e., FL algorithm is applied
on the overall population), we consider classification accuracy on the overall population.
Finally, the clients download the model using the Processor API to conclude the IFL
Process which terminates the evaluation scenario.

4.3.4 Results

In this section, we report on experiments evaluating the performance of our IFL System
on multiple scenarios from three datasets (as described in Section 4.3.2)) using Fed Avg
and SeqFL algorithms.

In all the experiments, our base model for training is an |[ANN| model. We use Py-
Torch for training and prediction. We compute loss using the cross-entropy
loss function [Bis07]. Since we deal with non-IID data, we use a weighted cross-entropy
loss function. The loss [is computed for each class ¢ separately and can be written as:

exp x[c]
> exp [j]

= weight[c](—z[c] + log Z exp z[j])

l(x,c) = weight|c] x —log (4.1)

where z is an observation (i.e., the output logit of an |ANN for a sample whose size is
equal to the number of classes), and weight[c] is the class weight computed for each
client independently considering a balanced heuristic inspired by [KZ01].

The class weight can be described as:

~Ns__if Ng. >0,
weight]c] = { o Nse ‘ (4.2)

0, otherwise

where Ng is the total number of samples for each client, N¢ is the total number of classes
provided as a training parameter to each client because there can be classes which are

55

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

56

Accuracy Development of all Tasks Accuracy Development of all Tasks

Accuracy
o o
'S o
Accuracy
o o
'S o

- - - r 0.0 ‘ r . ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Communication Rounds Communication Rounds

(a) FedAvg (b) SeqFL

Figure 4.5: Accuracy of the federated model trained on the two clients (one per two
machine tools) using the material classification dataset.

not present for a particular client, and Ng, is the number of samples for this class in a
client dataset.

We perform batch optimization for training where training loss is computed on batches
of data instead of the entire data due to memory efficiency and overfitting problem. For
optimization, we use the Adam optimizer and a batch size of 128. In order to
compromise between time and performance, we keep the learning rate le — 3 in our
experiment. A lower learning rate makes training much slower and a higher learning rate
might deteriorate the performance.

Impact of IFL on Non-IID Data

The material classification dataset as discussed in Section 4.3.2 has non-IID data and
target distribution. We provided two scenarios for each |[FL| algorithm with a default
cohort strategy (when no cohort is built). We trained a federated model with two clients
(one for each machine tool). The training is done for 300 communication rounds and one
epoch per communication round for each client. The average accuracy on the test data
of this dataset is shown in Figure [4.5. As it can be seen, the accuracy of the federated
model improves after each communication round from initial accuracies of 50% and less.
We obtain for both clients a slightly higher accuracy using the FedAvg algorithm. But in
both cases, we get the best accuracy of 76% in spite of non-IID data distribution which
underlines the usability of our IFL System.

Impact of Cohort-based IFL on IID Data

We have shown the applicability of our IFL System on industrial data with two clients.
Next, we evaluate our approach on the pump classification IID dataset (Section 4.3.2)

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Evaluation

Client Performance Comparison Client Performance Comparison
] ||
| | [] []]] |]
0.9 4 0.9 4
> * * >
2 == ¥ L 2 |m m m m * * * .
5 08 5 08
2 2
E g * * % 4 L] °
______________________ ® * * * * ° *
0.7 1 . ° ° 0.7 o - °
- cohort 1 n - cohort 1
- cohort o = - cohort
- cohot @ individual training - cohot 2
L] — = o cohart i mods! L] — = o cohart i modal
T T T T T T T T T 0.6 +— T T T T T T T T
737 738 739 740 741 742 743 744 745 761 762 763 764 765 766 767 768 769
Task IDs Task IDs
(a) FedAvg (b) SeqFL

Figure 4.6: Client performance comparison on the pump classification dataset with 11D
target distribution. Every client is represented by a task ID and has four accuracy metrics
resulting from different ways of model training: FL, individual training, cohort central
training, and global FL (no cohort FL model).

with 9 clients where the data has an [ID| target distribution. Our federation criteria in
both scenarios is the minimum number of clients for starting federation which we set as
9 (the total number of clients).

Figure 4.6/ shows evaluation results of this scenario after 30 communication rounds and 5
epochs per communication round. The performance of the federated model is compared
with three other evaluation approaches:

e No cohort FL model: A federated model is trained on the training data of all the
clients and tested on the test data of all the clients.

e Cohort central training: Training and test datasets of cohort members are aggre-
gated by the server which results in one joint training and test dataset per cohort.
For each cohort, one model is trained and tested on the corresponding cohort
dataset without applying FL.

o Individual training: A model is trained on each client and transferred to the other
clients (i.e., testing on cohort test data).

So, for each cohort and approach all clients share one model, except for individual
training, which considers one model per client (task id). It can be seen in Figure 4.6 that
the accuracy of the cohort-based FL| model is higher than the global FL| model. The
cohort building approach in this experiment is based on input data. Although, the result
as depicted in Figure [4.6| considers a target distribution that is IID] the input data of
pump conditions does not have [[ID] distribution. More precisely, the input data of some
pump conditions are more similar to each other than other pump conditions. Therefore,

o7

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

58

Accuracy Development of all Tasks Accuracy Development of all Tasks

F_’— = =

1= F’

o
=Y
o
(o]

=
o
=
o

o
~

Accuracy
Accuracy

o
~

B cohort 1l m cohortl

| == cohort 0 ““] == cohort 0

I cohort 2 I cohort 2
‘ " ‘ v ‘ 0.0 ‘ Y , v v

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Communication Rounds Communication Rounds

(a) FedAvg (b) SeqFL

o
N
o
N

S
=]

Figure 4.7: Accuracy of the federated model after each communication round on the
pump classification dataset for 9 clients with IID target distribution.

we obtained a higher performance by learning separate [FL| models on similar groups of
clients. This result highlights our contribution using a cohort-based IFL approach with
either FedAvg or SeqFL algorithms.

The best result achieved using federation on each cohort is shown in Figure [4.6/ as cohort
central training. It can be observed that we can achieve an accuracy close to cohort
central training using our IFL System. In order to show the importance of using FL
in this scenario, we compare the accuracy of the federated model on each cohort with
the individual training. We can observe that our federated model on average improves
the accuracy of each client compared to the individual training. Using FedAvg, this
improvement can be seen more clearly than for SeqFL. This emphasizes the applicability
of FL| for this experiment.

The average accuracy on the test data after each communication round is shown in
Figure 4.7. It can be seen that the federated model reaches an accuracy above 80% just
after a few communication rounds. We can see that cohort 2 has the highest accuracy.
The reason is that this cohort has only one client, therefore [FL| performs like a central
model (without federation) for this cohort. The accuracy of |[FL for the clients in cohort 1
is slightly lower than others. As it can be seen in Figure 4.6, the cohort central training
accuracy for this cohort is also lower than the other cohorts. Therefore, FL| cannot
achieve a higher accuracy. One reason for the lower performance of cohort 1 is that it
has more clients compared to the other cohorts and some of these clients (e.g., task 740)
are not fitting the cohort very well. Therefore, it increases the risk of contributing model
updates with below-average quality clients.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Evaluation

Client Performance Comparison Client Performance Comparison

" !
0.9 1 L * = a
021 T |]]
08 @ o]]]
L * | “m m = L
> 07 o []
I . S . > J * *_]
g 0w & * *
g 06) * * o X *
[] [] L]
0.5 0.6
[]
0.4
034 []

(b) SeqFL

Figure 4.8: Client performance comparison on the pump classification dataset with non-
IID target distribution. Every client is represented by a task ID and has four accuracy
metrics resulting from different ways of model training: FL, individual training, cohort
central training, and global FL (no cohort FL model).

Impact of Cohort-based IFL|on Non-IID Data

We showed that cohorts can improve the performance of the IFL System on datasets
with IID target distribution. We now go one step further and evaluate the performance
of a cohort-based IFL system on the pump classification non-IID (Section 4.3.2) with
non-IID target distribution with 10 clients. For this experiment, we also provided two
scenarios, each considering one |[FL|algorithm. The cohort strategy in both scenarios is
based on input data distribution. And the federation criteria in both scenarios is the
minimum number of clients for starting federation which is set as 10 (the total number
of clients). Figure 4.8 shows the evaluation results after 30 communication rounds and
five epochs per communication round. It can be seen that the federated models achieve
a high accuracy compared to their respective cohort central models. Furthermore, the
cohort-based approach gives on average a higher performance than the no cohort federated
model. This result also emphasizes the impact of finding similarity between clients and
using them in federation.

Figure 4.9 shows the average accuracy on the client test data of this dataset after each
communication round. As it can be observed, the federated model reaches at least 80%
accuracy just after a few communication rounds. It can be seen that in cohorts with
more clients such as cohort 2 in Figure 4.9al or cohort 1 in Figure 4.9b, the accuracy of
some clients is lower than the other clients in the same cohort. The reason is that we
used the individual client test datasets and the k-means clustering approach for building
cohorts. The clusters are initialized randomly and the clients get assigned to the clusters
with the minimum mean squared distance. The random cluster initialization may result
in outliers during assignment.

59

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

60

Accuracy Development of all Tasks Accuracy Development of all Tasks

F

L

o
=Y
o
(o]

=
o
=
o

o
~

Accuracy
Accuracy

o
~

| - cohort 2 | - cohort 1
I cohort 1 | Ml cohort 0
I cohort 0 I cohort 2
‘ " ‘ v ‘ 0.0 ‘ Y , v v
5 10 15 20 25 30 0 5 10 15 20 25 30
Communication Rounds Communication Rounds

(a) FedAvg (b) SeqFL

o
N
o
N

S
=]

(=]

Figure 4.9: Accuracy of federated model after each communication round on the pump
classification dataset for 10 clients with non-IID target distribution.

4.3.5 Discussion

As we have demonstrated in the evaluation, the IFL Process with the integrated cohort
building and FL algorithms can be applied to improve ML models for industrial scenarios.
Our FLaaS-based approach provides FL to client processes by considering their IFL tasks
and defined metadata. So, the clients explicitly submit the tasks using the Client Registry
API, and download the resulting model using the Processor API. This invocation of the
service-based architecture and the IFL Process addresses the challenges of (i) individual,
independent, and (ii) explicit participation in FL with (iii) non-IID data. The individual
implications of the presented solutions are discussed in the following:

Impact of datasets on defining clients The respective experiments are limited to
two industrial datasets with a small number of assets. Therefore, the findings may not
be generalizable. For example, the pump condition classification dataset only contains
acceleration data from five pumps, but resulted in 9-10 different clients. Furthermore,
the measurements and conditions were recorded by different experts and due to the asset
complexity, partial load and error creation resulted in additional data skews.

Impact of cohort-based FL Our experimental evaluation proves the applicability
of our cohort-based IFL system especially on non-IID data. It can be seen that the
accuracy of a cohort-based approach is on average higher than for FL| models without
considering cohorts. However, a limitation is shown in Figures 4.9a and 4.9b. The clusters
are initialized randomly and the clients get assigned to the clusters with the minimum
mean squared distance. The random cluster initialization may result in outliers during
assignment. Therefore, providing a dynamic cohort-assignment approach that enables

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Evaluation

changes in cohort assignment between communication rounds, is part of our future work,
which we discuss in Chapter 8|

FL versus model transfer The results reported on industrial datasets (i.e., pump
classification and material classification datasets) indicate that FL|is applicable and
reasonable for these datasets. Based on our results, transferring a model from one client
to the others is not applicable for these datasets and does not give higher accuracy than
FL. However, as it can be seen in Figure 4.6bl the individual training result of cohort 1
for task 761 performs slightly better than the FL. model. The potential reason might be
that this client has either more data or more variety of data in this cohort. Making an
adaptive approach, for deciding if FL or model transferring should be used in a cohort is
an interesting research question we have not covered yet.

Impact of FL| algorithm on model performance FedAvg performs better than
SeqFL for all the evaluated scenarios. The potential reason is that in FedAvg, the
parameters of all the clients are averaged in every communication round. Whereas in
SeqFL, the model is passed from one client to the other. All the clients contribute, but
the federated model of SeqFL is significantly impacted by the training of the last client.

Impact of FL algorithms on fair model sharing The selection of FL algorithms
could also prevent clients from just waiting for federated model updates without individual
contributions. If clients select FedAvg, each client needs to provide the locally trained
model to the server before a federated model is aggregated and distributed. So, if clients
do not contribute, subsequent model updates would not be received after aggregation. In
contrast, selecting SeqFL could lead to transfer models from client A to B, although B
might not have contributed something before.

Impact of resource-constrained edge devices on FL In our evaluation, all the
clients are running on machines with similar resource capabilities. Yet, we have not
considered heterogeneous resource-constrained Edge Devices and volatility in the utiliza-
tion of e.g., CPU, GPU, memory, and network. This information can be used to avoid
inefficient training e.g., due to overloaded Edge Devices. Since our current focus was on
the applicability of the IFL System on Edge Devices, we considered optimizing accuracy
rather than optimizing resources consumption. Our IFL Services will be extended in
Chapter 6/ to address the optimization of clients on several platforms and heterogeneous
devices.

Realistic applicability of the IFL system Although independent clients can always
register for FLaaS as provided by our IFL System, they can also drop out due to e.g.,
missing resources, volatile connectivity, or intended stopping since the model is already
mature enough. Therefore, the remaining clients in the cohort miss potential valuable
contributors and the model quality could stagnate, which may cause the server to restart
FL with a new cohort organization considering new clients as well. Furthermore, the IFL

61

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

62

Services do not provide rewards for clients with already mature models to join or stay in
the system. This is also relevant in the early stages of the IFL Process, as only a limited
number of clients might have joined. Since our system creates a subset structure (tasks
in cohorts in populations), only a few clients collaborate initially, which can slow down
the training progress. For this, introducing a reward system for providing model updates
could solve the cold start problem and could prevent drop-outs.

4.4 Related Work

Despite being a recent research topic, FLi has been studied widely in various applica-
tions [BCM ™18, SRET18,|[FVH19|. The basic idea of [FL|as proposed in is to
federate a global [FL| model among all the clients. However, one of the main challenges
in [FL|is that the client’s data especially in real-world scenarios are non-1ID [ZXLJ21].
Thus, a global [FL| model might not perform well for all the clients.

To overcome this problem, clustered FL approaches are proposed where clusters (or
cohorts) of similar clients are identified and the model is personalized for each cluster.
Clustered FL approaches can be classified into two categories: centralized approaches
where the server identifies a client’s assignment to a cluster [GHYR19,SMS21|, and
decentralized approaches where the clients choose and update the model parameters
that best fit them [GCYR22, MMRS20]. We followed a centralized cohort (clustered) FL
approach by considering features (statistical moments) extracted from the client’s data.
However, the IFL Clients can influence the cohort building by defining the cohort building
approach and by defining the federation criteria that affect prior population building.
In our work, the server also identifies the number of required cohorts. Building cohorts
(clusters) on the server in our work is efficient because only few features from clients
are used. As it is shown in Section 4.3.3], a cohort-based [FL| approach yields a higher
performance than a global FL especially for scenarios with non-IID data distribution.

The FedAvg algorithm aggregates model parameters by averaging the value of local
parameters from clients in each communication round . Clients often have
different dataset sizes and data distributions, thus training an effective global model with
a good convergence using FedAvg is challenging. Therefore, the clients’ contribution in
aggregation operation of FedAvg is weighted either proportional to their local dataset
size or using multiple criteria such as the diversity of the dataset, data quality,
and dataset size of clients’ local datasets . In our work, all clients are weighted
equally. This way, we do not use any information about clients’ dataset sizes on the
server. In our experiments, we still obtained good convergence during training with equal
contribution weights.

Selecting edge-based clients for participating in |[FL| rounds is an important aspect for
reducing communication cost and potentially long-lasting training times. This can be
due to heterogeneous compute capabilities provided on resource-constrained edge devices.
Clients may be selected randomly [MMR™17,NY19] or based on pre-defined criteria
such as availability of their resources . In our approach, we follow a clustered

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.4. Related Work

FL| approach, using all the available clients for building a population. As discussed in
Section 4.3.1 clients’ resources are similar in our evaluation setup. Therefore, we did
not need to include any resource-based criteria on the server for selecting the clients.
However, in the IFL System, we consider client-defined federation criteria for building
populations. This could be used as a basis for defining requirements on resources that
are provided on edge devices of potential FL partners.

Focusing on edge-based FL, Feraudo et al. provide an architecture that enables
asynchronous FL for edge devices using a publish/subscribe pattern. For this, the client
registers for FL by sending a message to a Message Broker, which notifies the server that
waits until the end of a pre-defined timespan to consider the start of FL rounds. Similarly,
Bonawitz et al. propose an FL system enabling edge devices to declare their
training intention on a central server that starts FL as a required number of clients
have joined. Furthermore, the authors consider selection and rejection of clients on the
server. Hence, both approaches address the challenge of a varying number of edge devices,
particularly unavailable edge devices. Our IFL Services enable clients to define e.g., a
minimum number of FL partners, using custom federation criteria. This democratic
approach provides more power to the edge clients, e.g., by reducing the required minimum
number of FL partners if too little clients joined in previous FL attempts due to potential
unavailability.

To provide FLaaS to edge and mobile devices, Kourtellis et al. [KKP20] provide high-level

APIs that can be invoked by mobile apps to collaborate on common ML problems.

The authors propose a hierarchical scheme for collecting model updates on local device
services considering potentially multiple apps. The updates can be forwarded to e.g., edge
nodes or central servers for aggregation. Furthermore, the authors address challenges
like the design of collaboration across (hierarchical) network topologies, permission and
privacy management, and forms of providing FL-based ML models to clients. However,
the approach does not provide a service for building cohorts based on the client data
distribution, which is relevant for non-IID datasets.

Since the original publication of this chapter in 2022, research in the area of FLaaS
has of course further advanced. Mazzocca et al. propose a FlaaS-based
approach that addresses the trustworthiness of the FL process. For this, clients authorize
at the server with an identifier and associated claims. The claims are verified by the
server to check whether the client is allowed to participate in an FL training. If the
participation is allowed, the model that is trained by the client is validated on a server-side

validation dataset. The resulting validation metrics influence the reputation of the client.

The reputation is then considered as contribution weight to control to which extent
a client should contribute to the global FL. model. For example, if malicious clients
want to contribute with a model that is not properly trained on a suitable dataset or
certain weights have been manipulated (poisoned model), the reputation is poor and
the contribution to the global FL. model is avoided or decreased accordingly. With
this approach, the authors ensure trustworthiness with respect to access and model
contribution.

63

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COHORT-BASED FL SERVICES FOR INDUSTRIAL COLLABORATION ON THE EDGE

64

Zheng et al. focus on secure and communication-efficient FLaaS. To achieve
this, the clients provide obscured model updates that can only be decrypted by the server
using a public-key /private-key approach. This secure aggregation algorithm is extended
with a model quantization approach. Therefore, the model updates are quantized (i.e.,
the numerical precision of the weights is reduced) on the client side after training and
before they are sent to the server. The authors have demonstrated that these secured FL
model updates can maintain both model accuracy and communication speed, competing
with unencrypted approaches. In this chapter, we have not addressed security and
communication efficiency. However, we see this as a crucial aspect to provide trustworthy
FLaaS.

Han et al. address the optimization of both FL training and inference services.
In the proposed setup, the model is served by the clients and therefore the inference
is provided by them at the edge of the network (e.g., for IoT-based applications or
autonomous vehicles) The authors identify a trade-off between the training and the
inference part, since both need compute and communication resources. Hence, to
maintain high-quality inference results, the model need to be trained and updated by FL
continuously, which can in turn lead to a backlog of inference requests that need to be
served. To optimize the inference performance, both with respect to speed and quality, an
online decision-making algorithm (FedLS) is proposed to adaptively balance the resources
between the model training and inference. In comparison to most of the published
approaches (including our FLaaS-based approach), the inference service optimizations
are added as relevant and novel features that need to be further investigated in the future
as discussed in Chapter 8.3.

4.5 Summary

In this chapter, we have presented the IFL System, consisting of the IFL Services and the
IFL Client that provide FLaaS for edge-based clients connected to industrial machines.
The machine data is used by potentially multiple deployments of the IFL Client to
collaboratively train ML models. For this, we introduced the IFL Process that includes
a four-step approach enabling cohort-based FL and therefore addressing the challenge
of non-IID data. We proposed a service architecture that supports the IFL Process by
providing APIs to clients for participating in FL rounds.

As discussed, our IFL System has three main contributions, (i) explicit participation in
FL on an on-demand basis, (ii) an architecture supporting individual and independent
collaboration on shared ML models, and (iii) handling non-IID data distributions using
cohort-building.

To the best of our knowledge, we provided the first cohort-based FL service system
considering the characteristics and requirements of industrial clients. Furthermore, using
client metadata and statistical moments for cohort building is a unique approach that
both considers client preferences and local data distribution to handle non-IID data.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.5. Summary

Evaluation on diverse and real-world industrial data is missing in current FL literature.

We have shown the potential of our IFL System by applying it on two completely
diverse and large real-world industrial datasets, used for pump condition classification
and material classification. Our results also show the importance of a cohort-based FL
approach, yielding higher accuracies on average compared to executing FL algorithms on
the overall population.

This chapter has originally been published in the Journal of Parallel and Distributed
Computing in 2022:

Hiessl, T., Lakani, S. R., Kemnitz, J., Schall, D., and Schulte, S. (2022). Cohort-based
federated learning services for industrial collaboration on the edge. Journal of Parallel
and Distributed Computing, 167, 64-76.

65

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Lifecycle Management of FL
Artifacts in Industrial
Applications

5.1 Introduction

In recent years, high volumes of decentralized [oT| data have been collected in indus-
try [MVM16]. In many cases, sensors are involved in recording this data, which is often
analyzed in [ML| applications to e.g., classify critical machine conditions in production to
provide timely maintenance services [KBG™22]. In these cases, privacy-preserving ap-
proaches such as FL| became a promising factor [MMR™17], due to private or confidential

data [SS15].

With the IFL System, we have presented an approach for FL in industrial setups in the
previous chapters. So far, we have mainly addressed the FL interactions between clients
and the server to provide a high-quality model. For this, aspects like the domain model,
workflows, and architecture of IFL systems have been provided to support [FLaaS. In
contrast, this chapter delves into the development and execution support provided for
FL-based applications. It encapsulates the journey from creating FL software artifacts,
integrating them into client applications and using resulting FL. models for inference.
Hence, we present an approach that addresses the full lifecycle of an FL software artifact
and propose a framework for development and execution. This framework reuses the IFL
Process (see Chapter 4)) as part of a Python library (IFL Core) that we introduce in
this chapter. The IFL Core can be used by both the server and clients to run FLaaS
and extend it with custom behavior. To illustrate the applicability, we demonstrate the
integration of a FL-based clustering algorithm into a |[CM] app.

67

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

68

To motivate our contributions for IFL, we discuss the challenges for providing FL services
at scale and integrating applications that successfully solve industrial use cases.

First, typically, models resulting from FL are supposed to serve many clients .
Therefore, a scalable use of FL-powered applications is intended. However, not all
clients operate in the same context. For example, data structure, data quality, and
requirements for how the models are integrated into applications and services can be
different [RBPT22,|SYL21]. Hence, there is a need for customization, as for example,
client-specific pre-processing before the model is trained to align the input data with the
global model. Furthermore, as the model is typically used in prediction, client-specific
post-processing may be applied before the output is served to applications. Combining
scalable deployments with customization, one should aim for serving as many clients as
possible with a given Al solution and still addressing local client contexts.

Second, the development and deployment of scalable and still customizable TFL-based
solutions is a multi-step process often involving data scientists, I'T professionals
and operators . Partially, this is addressed by ModelOps approaches .
These approaches support the operationalization of models by executing a lifecycle
with automated pipelines covering e.g., data processing, (re-)training, validation, and
deployment. This bridges the gap from model development to model operation in
production. To provide this for FL, the clients on the edge layer need to be involved in
the lifecycle as well . However, managing the lifecycle of a model resulting from
FL does not address client-specific customization and adaptation to the local context. We
identify the need for end-to-end lifecycle management of software artifacts that address
client context-aware processing steps for this purpose. This enables customized and
extensible FLaaS|, which in turn can be integrated into edge-based client applications.

Third, running analytic edge applications like [CM| on the shop floor demands repeated
updates to react to changing operation modes or new business requirements .
Presuming that edge apps make use of FL to e.g., improve classification of asset conditions,
FL capabilities may need to be updated as well. This may include algorithmic updates
of client or server training for optimizing model performance, updates of communication
patterns and protocols due to security reasons, or simply changes in the format of input
data or resulting predictions. For this, in [FLaaS| scenarios, operators on the shop floor
need to have the flexibility to either explicitly pull updated artifacts or have them pushed
by the central authorities that manage the service.

Fourth, in industrial scenarios, labels are often missing entirely and hence unsupervised
problems like clustering are faced . For instance, to cluster operating conditions
in production processes, one can use a cluster model trained on the data of other sites
to improve the detection of previously unseen anomalies. Similarly to supervised FL
scenarios, one cannot assume having access to third-party data for improving local models.
Therefore, there is a need for deploying a privacy-preserving FL artifact and applying a
collaborative clustering algorithm to provide [FLaaS to edge clients.

This chapter provides the following contributions:

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.2. System Design

o The design of an IFL Lifecycle that supports the software development, publishing,
deployment and execution of FL solutions based on customizable software artifacts
(IFL Templates, or in short, templates).

e Implementation of the IFL Lifecycle, including the main components such as the
IFL Core (Python library for FL), and a distributed clustering algorithm, named
FedClust. The IFL Lifecycle enables the IFL Process from Chapter |4, as it is used
in the IFL Core-based FL solutions.

o Integration of the approach in industrial |[CM| applications for providing and con-
suming extensible [FLaaS|

o Evaluation of the IFL Lifecycle with clustering scenarios using industrial data to
show the potential for improvements to the underlying ML model and the system’s
ability to facilitate collaboration among multiple clients.

For this, we make use of a small subset of IFL. components from the previous chapter
(Section 4.2.3) in the proposed IFL Core, i.e., to register clients, store and manage base
ML models, as well as to aggregate models. The modular IFL Core library is subject
to be integrated in FL solutions that can be managed along the proposed IFL Lifecycle
and integrated into applications. Compared to the IFL Services in the previous chapter,
we ensure extensibility of IFL functions (e.g., client training, server aggregation) and
customizability of holistic FLi solutions. This FL solution-centered approach includes the
customization of steps as e.g., pre-processing of input data, FL, model validation, and
post-processing of FL results.

The remaining parts of this chapter are organized as follows: In Section 5.2, we describe
the IFL Lifecycle management and its main components. In Section 5.3, we demonstrate
the results of the clustering experiment that we integrated into a CM application. We
review related work in Section 5.4/ and conclude in Section |5.5.

5.2 System Design

5.2.1 Basic Notation

To describe our approach, we define and describe the main entities used in the IFL
Lifecycle. First, the template is a software artifact e.g., a Python module or Jupyter
notebook with dependencies, that can be created to implement ML/FL models in
dedicated functions considering e.g., data preprocessing, training, aggregation, validation,
and prediction. The template can be packaged and published to a server. Based on that,
the template can be shared with clients for distributed execution of FL. For this, the

server executes the Server Stage part of the template as defined in a dedicated function.

This function contains logic for running the FL services using the IFL Core. The IFL
Core is a library and a framework that covers a significant part of FL lifecycles, i.e.,
client registration, local training, model and knowledge aggregation, and distributed

69

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

70

model validation. Clients also use the library during the Client Stages. These stages are
specific to client parts of FL lifecycles and therefore implement local data preprocessing,
registration requests to the server, training, or validation based on local held-out test
datasets. Clients download the templates from the template registry and run the
corresponding stages to participate in FL. In both Server Stage and Client Stages, the
Template Runtime executes the respective functions. The Template Runtime provides
interfaces to load (training) data as input for the templates, return trained models for
local use, and apply model inference (prediction) using the trained model based on
ingested features.

5.2.2 Templates

To address the customizability of FL solutions with distributed client contexts (i.e.,
client data), we present how templates can be defined for a distributed FL deployment.
Listing [5.1] depicts a basic FL template implemented in Python. To identify Server
Stage and Client Stages (i.e., training and prediction), the t.exec decorator is defined
accordingly. This is necessary for the server and client runtimes to perform related
functions. The Server Stage is implemented in lines 1-3, which run the FL services
provided by the IFL Core. The client training stage is defined in lines 5-8. As this is
executed on client locations, local data is passed to the function to be used in FL training
rounds in line 8. Note that this is the part where the IFL Process (Chapter 4) is executed
to train and provide an FL model. The context of the client can be used to inject local
configurations and to e.g., store models to be applied in prediction (line 10-13).

Based on that, data scientists, for example, can enhance the template with client-
context-aware pre- and post-processing behavior. Finally, the template can be packaged
and uploaded to a server for scalable use in multiple deployments and applications, as
addressed in Section 5.2.4.

Listing 5.1: IFL Template definition in Python

@t .exec (Stage.SERVER)
def start():
ifl core.start_server ()

@t .exec (Stage.TRAINING)
@template.inject_context ()
def train(data, context):

context ['model’] = ifl_core.train_FL (data)

0~ O Uk Wi

J—
o ©

@t .exec (Stage.PREDICTION)
@t.inject_context ()
def prediction(features, context):
return context[’model’].predict (features)

e
W N =

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.2. System Design

5.2.3 IFL Core and FL-enabled Templates

The FL capabilities on which IFL Templates are based, are provided by the modular
and extensible architecture depicted in Figure |5.1. The library is not limited to being
used just by templates. As part of the |API, the classes IFL Client API and IFL Server
API provide access for client participation in FL rounds, and for hosting IFL Services
respectively. Flexibility is provided for different means of implementing FL. On the one
hand, an FL solution can be defined centrally, i.e., as a template that can be deployed to
a distributed fleet of edge clients. On the other hand, FL can be provided by hosting
a server and providing the IFL Client API to different applications for collaboratively
solving ML tasks.

Note that in contrast to the IFL System in Chapter |4, the IFL Core is a portable library
for both server and client instead of providing a static FL server. This facilitates the
integration into IF'L Templates that can be deployed as holistic FL solutions.

To start, the client invokes the function start FL(...) of IFL Client API and provides
information of the task the system needs to execute. This includes the data, the FL
algorithm to be applied, collaboration criteria (e.g., minimum number of clients) and the
model to be trained (see Chapter 4). To define the mean of communication (e.g., MQTT)
used for client server interaction, a respective Communicator needs to be selected or
customized. For this, IFL Core provides MQTT support out-of-the-box by defining host,
port and potential credentials for a given MQTT broker. The Registry is an internal
store of metadata used by the server to manage submitted tasks. According to these
tasks, the server executes the corresponding protocol of collaboration, which we term flow.
In particular, FLFlow covers basic supervised FL execution with FedAvg
which averages weights of parametric models and shares the resulting global model
with clients. The FedClustFlow, which we present in Section [5.2.5| in detail, solves
distributed clustering problems by facilitating knowledge exchange between the clients.
The currently supported flows are compositions of (Commands (CMDs), which are chained
to cover e.g., Registration of clients, Training of local models, Upload Local Training
Results, Global Training of a global model, sharing the global model with Global Model
Update, and Validation. The Trainer module provides interfaces and respective default
implementations that are invoked by the CMDs to realize client training (Default Client
Trainer), model aggregation and global model training (Default Server Trainer).

The trainer interfaces provide extensibility to the IFL Core consumers, since individual
implementations can be passed to override behavior in the defined flows. Furthermore,
communication protocols can be integrated with the communicator interfaces, to consider
potential security and performance aspects specific to an edge client’s environment. Based
on that, this addresses the need for extensible and modifiable FL capabilities required by
industrial operators.

71

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

72

E <<function>> <<function>> <<function>> IFL Template
11 Training Stage | | Prediction Stage | | Server Stage P

|
start_FL(talsk, communicator) | start_Server(communicator)

4 v v

‘IFL Client API’ ‘IFL Server API] API

Communicators]

gy |
L egistry
4 N\

| FedClustFlow | FLFlow | Flows

L J
/[Registration][Global Model Update] [Global Training] CMDS\

| Training || Upload Local Training Results | | Validation |

J

N

S
[Default Client Trainer] [Default Server Trainer] Trainer

N J

Figure 5.1: IFL Core architecture with template as consumer

5.2.4 IFL Lifecycle

To provide end-to-end support for IF'L Templates, reaching from development to continu-
ous operation, we present the IFL Lifecycle in Figure 5.2l Note that the IFL Process
(Chapter 4), which includes selected WFs of Chapter 3, is only a part of the IFL Lifecycle.
The IFL Process covers the client-server interplay in a FLaaS| style as the template is
executed.

Based on Section [5.2.3], the first steps in the template lifecycle involve the development,
testing and packaging of templates in the development environment of a data scientist.
These phases are supported by the template framework that comprises function decorators
as shown in Figure 5.2 and the Template Runtime for executing developed templates.
The next step is to publish the packaged template to a server (e.g., via file upload), which
is then triggered to deploy one template instance to a server-hosted Template Runtime.
This executes the Server Stage and therefore makes use of the IFL Core. To execute the
corresponding Client Stage, the server could either deploy the template to the runtimes
of clients that are connected to the server (push), or clients could download the template
on-demand (pull).

With this, the control of FL participation can be centralized using the push approach, or

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.2. System Design

] . Development
Development Packaging Environment
Server
Exec:
Publishing HDeploymentHServer Stage

rstarts serve Trainer
IFL Core Extensions
Client | J—‘{Regstranon H IFL Core Workflows Execution]
Integration Exec:

Training)
Stage Operation Prediction Model
L Deployment

Figure 5.2: IFL Lifecycle

participation can be chosen by the decentralized clients using the pull approach. The
push approach can be used to train a global model on data that cannot be accessed e.g.,
by a data scientist who operates on the server side. In contrast, the pull approach is
more suitable for data scientists or operators who are working on the edge client side
and want to explicitly consume FLaaS as presented in Chapter 4.

To address the extensibility of scalable edge-based client applications making use of FL,
Figure 5.2/ considers an integration step. For this, the application consumes models
of FL. templates after executing the training stage with the client runtime. Since new
templates can be added and existing ones can be updated with new deployments on an
ongoing basis, the application is continuously updated with e.g., model training or pre-
and post-processing logic.

Finally, the template execution results in new model deployments that can be used in
continuously executed prediction to serve the client (application) with results during
operation.

5.2.5 Federated Clustering

For distributed industrial edge clients, labels are often not present at every client location.
Therefore, by applying cluster algorithms in a collaboration with multiple clients, cluster
models can be shared and used to improve the local identification of clusters. Hence, to
address this style of FL and to present a concrete algorithm that is realized in IFL Core
to be used in IFL Templates, we introduce [FedClust| in Algorithm [4.

FedClust consists of a client part (lines 1-10) and a server part (lines 11+ [15). The client

starts with local clustering using k-means [KMN7T02| and the elbow method |[Thob3
SAIR11]. The k-means algorithm is a method of grouping data points into a fixed number

73

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

74

of clusters, based on minimizing variance within each cluster. The elbow method is
used to determine the optimal number of clusters by iteratively applying k-means with
increasing values of k, and stopping when the improvement in cluster optimization is no
longer significant.

For each cluster obtained with k-means, the client computes its centroid (line [5) and
adds it to the set of data to be disclosed to the server (line 6). Then, the client randomly
selects some data points from the cluster according to the privacy disclosure parameter pd
and adds them to the disclosed dataset (line 7). The number of samples can be controlled
with pd, ranging from 0% (privacy preserving) to 100% (disclosing all data samples) In
the case of sharing 0% of data samples, only the centroids are shared. In line 9, the client
sends the disclosed data to the server and receives a trained global model.

With this, the resulting clusters are equal for all clients, which we refer to as cluster
alignment. With aligned clusters, a given cluster label can be interpreted equally at every
client location. This facilitates the scalable use of applications deployed to multiple client
locations, each potentially relying on cluster results as served by a template.

On the server side, the algorithm first calculates the optimal number £gopq; of clusters
using the elbow method on the disclosed data received from all clients (line [11). If kgopas
is less than or equal to 1, the server defaults to the maximum number of clusters provided
by any client (line [13). This avoids trivial clustering with one single cluster, which can be
the case for small numbers of disclosed data samples. Then, the server applies k-means
clustering on the disclosed data using the determined number of clusters to obtain the
global model (line [15) that is shared with all clients (line 16).

5.3 Evaluation

In this section, we demonstrate how FedClust| is executed as a template in the IFL
Lifecycle integrated into an industrial [CM| system. We evaluate the applicability of
the overall system and the effects of collaboration on an unsupervised problem with
real-world vibration time series data from pumps. Compared to the previous chapter, we
make use of the same dataset but consider only four pumps and no labels for training,
since the underlying ML problem is about clustering similar vibration patterns. The
scenarios cover different numbers of clients and privacy settings.

5.3.1 Experimental Setup

The experiments are executed on a server and multiple clients, each running on a Linux
machine with a 3.3Ghz Intel Xeon Scalable Processor with 2 CPU cores and 4 GiB RAM.
Server and client applications are implemented with Python'| using a common MQTT
broker for asynchronous message exchange. To execute data pre-processing, clustering,
model-sharing and validation, the implemented FedClust template and the invoked IFL

"https://www.python.org/, accessed 2024-07-22

https://www.python.org/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Evaluation

Algorithm 4 FedClust

Input: training data TRAIN, privacy disclosure pd € [0, 1]
Clients executes:
D « {} // data disclosed for server clustering
k < elbow(TRAIN)
C + kMeansClusters(TRAIN, k)
for ce C do

centroid, + ﬁ Z‘jcl a;

D <« D U centroid,

D + D UrandomSelect(c, pd)
end for
m <« getFedClustModel FromServer(D, k)
return m

._.
e

Input: client data CD «+ |J! D;, cluster counts K <« |J; k;
Server executes:

11: kglobal — elbow(DC)

12: if kglobal # 1 then

13: k?global = maXLKI k;

14: end if

15: m < kMeansModel(DC, kgiobal)

16: shareWithClients(m)

Core make use of PyTorch?. The template code is developed in a Jupyter notebook?,
then compiled to a corresponding Python class containing all the implemented functions
and stages, and finally packaged with all dependencies to be provided for decentralized
execution.

5.3.2 Data

The [FedClust| template is applied to vibration time series data that consists of three
dimensions with 512 samples per minute measured from four pumps. Multiple measure-
ments have been carried out using the SITRANS Multisensor .
The dataset considers six conditions (healthy and anomalous) of the underlying pumps
as described in Section 4.3.2L The healthy conditions comprise healthy stationary normal
load, healthy stationary partial load, and idle state (pump is turned off). In contrast,
hydraulic blockade (rotation in the pump is not possible), dry-run error (air in the
pump), and cavitation error (pumped water vaporized at low pressure) are the anomalous
conditions.

The pumps use case is suitable to demonstrate IFL scenarios to support industrial
collaboration, since there are several conditions to be clustered and assets generating
relatively similar data. Clients can improve local condition clustering, using the global

Zhttps://pytorch.org/, accessed 2024-07-22
3https://jupyter.org/} accessed 2024-07-22

75

https://pytorch.org/
https://jupyter.org/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

76

model resulting from the IFL Lifecycle. However, our approach is not limited to pumps,
and can be applied to other data since dataset-specific processing can be covered in
templates and Trainer functions.

5.3.3 Scenarios and Experimental Design

We consider two scenarios, each with a different number of involved clients, to test
collaboration on small (four clients) and larger (33 clients) scales.

Scenario 1 - Four Clients

Scenario 1 involves four clients with data from a measurement of one pump with four
sensors attached at different locations. Kach sensor corresponds to one client. The
distribution of conditions (labels) is similar across all clients. However, we consider two
subscenarios, each with six conditions, where Scenario la has an unbalanced dataset
with one dominant label (healthy stationary partial load), while Scenario 1b considers a
balanced dataset. This is relevant to investigate the impact of label distribution per client.
Although there are generally no privacy restrictions among the four clients operating on
the same pump, data sharing is avoided in this scenario. This is done to demonstrate the
applicability of FL for clients with sensors located at different locations. In this scenario,
we exclude the extension of handling a default k as defined in line 12 of Algorithm [4.

The clients train on 20% of the local data and validate the cluster models on 80% of the
local data. The data is split randomly to ensure similar data distributions in training
and test set.

Scenario 2 - 33 Clients

The larger scale Scenario 2 is based on 33 clients, with heterogeneous label distributions
to reflect real-world operations in different environments. For this, all four pumps
are involved in eleven measurements with three sensors used per measurement. Three
subscenarios are considered to compare the impact of balancing datasets and a variation
in the cluster algorithm. The latter considers setting a default number of clusters to be
identified on the server’s global clustering if the elbow method does not find an optimal k.
With this change, all samples should no longer be assigned to one cluster. So, Scenario 2a
considers unbalanced datasets on every client location, Scenario 2b additionally considers
the algorithmic extension using the default number of clusters, and Scenario 2c uses
balanced data and the default number of clusters.

Variants

For any of the aforementioned scenarios, we further investigate how FedClust| impacts
the clustering of (unseen) classes that are not part of the training set. In Scenario 1, we
remove 50% (three out of six) of the labels, including input data, from the training set.
In Scenario 2, we remove only 16.6% (one out of six) since some of the 33 clients have

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Evaluation

no more than three conditions in the dataset. We additionally investigate the impact of
disclosing privacy (i.e., clients upload raw data samples to the server) on multiple levels
considering 10%, 20%, 50%, and 100% of data sample uploads.

Performance Metric: Purity

To compare the scenario runs as they are executed in the IFL Lifecycle, performance met-
rics are computed in the validation phase of the IF'L Core. For this, the FedClust|/template
makes use of the purity metric , which is defined as purity = % Zle maxjlc; Nl
where N is the number of samples, k is the number of clusters, ¢; corresponds to the i-th
cluster, and /; is the set of elements with the label j representing the ground truth. The
purity can range from 0 to 1 and is computed on every client based on local test data and
shared with the server to compute the average purity. We compare individual clustering
with global clustering sharing centroids and global clustering sharing additional data
samples. For individual clustering, purity is computed based on the individually trained
model, while for the other two approaches, the global model is used for computing the
purity. To enable more generalizable conclusions, we run all scenarios three times and
report the average of the collected (average) purities.

5.3.4 Scenario Execution using the IFL Lifecycle

To demonstrate how the IFL Lifecycle can be integrated to facilitate FL (i.e., FedClust])
on [[IoT| data, we describe the process of executing the scenarios with an implemented
[IoT-based application for CM. The task of the CM system (see Figure 5.3) is to execute
templates on ingested sensor data (i.e., cluster pump conditions) on every client with
the help of the IFL Core. The CM system provides the IFL Lifecycle Cockpit to publish
and distribute templates to a fleet of client devices. The client devices host the (CM app
for collecting sensor data, creating datasets and starting the training via the runtime
to finally make use of the resulting model for continuously predicting conditions based
on streaming data. As depicted in step 1 in Figure |5.3, we assume the role of a data
scientist and develop the [FedClust| template, invoking Algorithm |4/ as provided by the
IFL Core. To provide FedClust| to multiple clients, we publish the template to the IFL
Lifecycle Cockpit Web application via file upload in step 2.

To run the Server Stage that makes use of lines [11415] in Algorithm |4, we start the
template deployment in step 3a. This causes the IFL Lifecycle Cockpit to deploy the
template to the runtime on the server in step 3b. Assuming the role of the operator of
the local CM process, we start with step 4a by onboarding the sensors (define MQTT
topics for upstreaming sensor data) and assigning the data stream to a logical entity,
namely an asset, representing the pump.

In the execution of the scenarios, the sensor data ingest to the respective client MQTT
brokers is started in step 4b, making use of a Python script that simulates the data
upstream from pumps. This is relevant to enable the CM app to collect a dataset
for the training. To apply clustering to the data, as defined in the client part of the

7

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

78

Server

Runtime

1. develop
& test <<Template>>

Federated | IFL
Clustering | Core
IFL Lifecycle

Cockpit Stage: Server
2. publish template ~ \ N\ -----

Data 3a. start template deployment L4
Scientist 4a. onboard sensors, assets MQTT
K 5. initiate template download Broker (FL) 7. federating.j

6a. start model training
/ 6b. Client 1 / 6b. Client n\
<<Web Application>>" provide — <<Web Application>>) provide
. data set o data set
C.OHf.'iItlon Runtime : S
Monitoring (CM) ! Monitoring (CM)
App <<Template>> | !

A
Federated [|FL bp
4c. sensor data Clustering | core 4c. sensor data

MQTT Stage: Training MQTT
K Broker j K Broker

4b. sensor data from pump 4b. sensc:)r data from pump

3b. deploy
template

o <<Template>>
<<Web Application>>

Condition

Operator Runtime

<<Template>>
Federated IFL>
Clustering Core

Stage: Training

4

Figure 5.3: Evaluation: Condition monitoring system integrating the IFL Lifecycle to
perform |[FedClust| of pump conditions

template (invoking lines 1-9 of Algorithm 4), we initiate the template download to the
client device in step 5 and start the training in step 6a. This triggers the CM app
to provide the dataset to the runtime and starts the template execution. Finally, the
FedClust knowledge exchange between the clients is performed (step 7: federating) and
the resulting global models are returned to the involved client CM app deployments.
The validation is performed in the template and the CM app stores the resulting purity
metrics that are presented in the next section.

5.3.5 Results of the FedClust| Template Execution

The resulting purity metrics of the [FedClust| template execution are now presented for
each of the defined scenarios to demonstrate the effect of collaboration on local cluster
problems facilitated by the IFL Lifecycle. As a result, we compare the purity of individual
training (clients train on their own data without federation), centroid sharing (federation
with only client centroids shared), and federation with various disclosing factors.

Scenario 1: Four Clients

The average purity of federated clustering with centroid sharing is close to that of
individual training, as shown in Figure 5.4a and Figure 5.4c. The reason why centroid

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Evaluation

sharing is not outperforming individual training is that clients face the same classes in
the validation set. Hence, no new knowledge is transferred between the clients. However,
for individual training, there is no cluster alignment over the involved clients, which is
the case for centroid sharing.

In Figs. 5.4b and 5.4d, we observe higher (unbalanced case) and slightly higher purity
(balanced case) for centroid sharing as compared to individual training. Since we have
randomly removed 50% of the labels (incl. corresponding input data) from the training
set, clients require knowledge from collaborators to correctly cluster test data samples
with unseen conditions. This can improve (CM scenarios that use clustering, as not all
conditions might be present at one location.

We observe that disclosing more data does not yield better results; centroid sharing is
enough for federated clustering. As shown in Figs. [5.4a) and |[5.4bl, when dealing with
unbalanced data, disclosing more data (disclosure factor greater than 0) may result in
lower purity than simply sharing the centroid. This is due to the fact that data is selected
randomly for disclosure, and data items might be from the most dominant cluster. As
can be seen, the results for higher disclosure factors are similar to the centroid sharing in
the case of a balanced dataset (Figs. 5.4c and 5.4d).

However, the problem of not finding a proper k with the elbow method on the server
(see line |11/in Algorithm 4) still persists for some lower privacy disclosure levels. Hence,
only one cluster was built globally, and the purity decreases dramatically as validating
the global model for the clients. For this, we investigate the impact of using a minimum
default k in Section [5.3.5.

Scenario 2: 33 Clients

We now evaluate [FedClust| with 33 clients to investigate a large-scale CM setup for
clustering and the effect of default k used on the server with both unbalanced and
balanced data.

In Figs. 5.5a and 5.5b, we see that collaborative runs (centroid sharing and privacy
disclosure) produce relatively poor results when compared to individual training. This
changes when the default k is used, as shown in Figs. [5.5¢5.5f. Without that, only one
global cluster is built in the global model, which decreases purity. Furthermore, we can
see that balancing data does not further increase purity if the default k is already set.
This suffices for the used dataset, but in cases where more conditions are present, the
default k might just be a lower boundary and balancing could help to identify more
clusters.

The centroid sharing approach shows competitive performance especially in cases with
unseen labels in test data. In Figure|5.51f, centroid sharing outperforms individual training,
which was harder than in the four client scenario, since we now only consider one unseen
label. This underlines the positive impact of sharing knowledge in a collaborative
approach.

79

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5. LIFECYCLE MANAGEMENT OF FL. ARTIFACTS IN INDUSTRIAL APPLICATIONS
0-7 individual training 0-7
0 6./ 066 centroid sharing
> 0.5 ~05. °
= ° = ° ° °
5 >
304 y y y 304
203 203
© J . ©
0.2 centroid sharing 0.2
individual training
0.1 0.1
o oO—————————————+—+—
O O O O O O O o o O m O O O O O O O O o O W
PV W00 Yoo PV WRU0o Yoo
privacy disclosure privacy disclosure
(a) unbalanced data (b) unbalanced data and unseen labels
0.6
individual tramlng
/ 0.5
]
- . .
4; 0.4 Zoa4 centroid sharing
5 5 ° °
Q_ Q.03
D'\ (@)} ® PS
E 3
0.2 centroid sharing 0.2
0.1 0.1 individual training
o—r——————— 0 —F—r—T—"T—"T—"T—T—
© © 90000000 © © 9 909000000
H N W b U1 O N 0O O H N W bk U1 O N 0O
privacy disclosure privacy disclosure
(c) balanced data (d) balanced data and unseen labels
Figure 5.4: Scenario 1: Average purity results of FedClust| with four clients
80

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.4. Related Work

When we use the default k, we see that increasing the privacy disclosure factor does
not significantly increase purity. Hence, centroid sharing is sufficient in the presented
scenario and no raw data is revealed to the server. Therefore, there is no natural trade-off
between privacy preservation and performance.

The centroid sharing results from the 33 clients scenario with unbalanced data (Figs. |5.5a
and |5.5b)) are now compared with the four clients scenario with unbalanced data (Figs. 5.4a
and 5.4b). As it can be seen, the four clients scenario provides higher purities in centroid
sharing than the 33 clients scenario. Although there are more collaborators in the latter
scenario, the heterogeneous data distribution makes it hard to leverage the potential.
Here, both the unbalanced data at the client locations and data distributions, which
are relatively non-IID between involved clients, can have an impact. The phenomenon
of non-IID data is a general issue in FL , and the presented results show
that this is valid for [FedClust| as well. In particular, given a group of many clients with
similar data distributions, the group might dominate the global clustering with their
shared cluster centroids (and potentially shared data samples). Hence, centroids of clients
that have different data distributions could be seen as outliers on the server and are
not considered as separate clusters. Therefore, increasing the number of collaborators
requires non-IID-aware approaches, such as grouping clients with similar data distribution
into cohorts and restricting global model training to occur only within these cohorts, as
presented in Chapter 4.

5.3.6 Discussion on Scalability in Industrial Setups

The presented scenarios demonstrate that the [FedClust template can be provided to more
than 30 clients and executed respectively. Once the template is developed, packaged,
and published, it can be executed by any participating client concurrently. However, the
FL interactions (i.e., FLFlows provided by the IFL Core) require a central server and
some clients might drop out in real-world settings due to limited compute resources and
connectivity . An additional overhead for larger real-world setups is the matching
of clients that want to collaborate with each other and have similar data distributions (see
Chapter 4). Therefore, further evaluation needs to address these overhead aspects that
could limit the scalabilty for larger setups.

5.4 Related Work

Lo et al. provided a reference architecture for FL systems, including patterns
to address recurring design problems. The patterns have been surveyed based on a
Systematic Literature Review (SLR) and consider significant parts of an FL lifecycle
e.g., registration, client clustering, client selection, training, aggregation, evaluation,
monitoring, and model deployment. However, the patterns in the lifecycle consider the
model as the main managed entity, whereas our approach manages the template as
model-generating entity in the IFL Lifecycle. For this, we support phases before clients
register for FL-based model training, to support development, packaging, publishing,

81

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5. LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS
0.7 0.7
individual trainin] .
064 g 0.6/ individual training
> 0.5 > 0.5
= £
= 5 0.4
Q.0'4 [I] ® [o o O []]
203 203
@® @©
0.2 0.2
01 . . - centroid sharing
centroid sharing
O T T T T T T T T T T 1 0 T T T T T T T T T T 1
©O OO0 OO0 OO0 o o R O O 00 000 o0 o0 ok
N WD U o N o N WA U o N O
privacy disclosure privacy disclosure
(a) unbalanced data (b) unbalanced data and unseen labels
0.7 0.7
064 individual training 0.6 individual training
°) °
> 0.5 hd ’ >05% ®° *
) =
5 0.4 5 0.4
o o
[@)]
%o 3 > 0.3
centroid sharing
0.2 0.2 centroid sharing
0.1 0.1
O O O O O O O o O O~ O O O O O O O O O o
=N WD U o N o N WD U o N oo
privacy disclosure privacy disclosure
(c) unbalanced data and default k (d) unbalanced data, unseen labels, default k
0.7 0.7
0.6 | | 0.6 centroid sharing
individual training
QO'S o o ° ' _é‘o"r’ ° » ®
504 504
o o
203 203
© © L A
0.2 0.2 individual training
centroid sharing
0.1 0.1
© o 9o o000 o0o0o90 0w © oo 90009000 O0or
= N WA U N o N WU o N o ©
privacy disclosure privacy disclosure
(e) balanced data, default k (f) balanced data, unseen labels and default k
82 Figure 5.5: Scenario 2: Average purity results of FedClust| with 33 clients

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.4. Related Work

roll-out, and execution of the defined FL behavior, and the operations of FL models in
the prediction stage.

Kairouz et al. propose an FL lifecycle with phases for problem identification
and client instrumentation. While the former one is a purely manual task of the model
engineer, the latter addresses the instrumentation of client devices with data processing
and the collection of additional metadata (e.g., labels). With this, the authors consider
lifecycle phases even before the model is instantiated and can be trained. However, this
refers only to a high-level workflow that is not integrated into a lifecycle management
environment as we demonstrated with the integration into the IFL Lifecycle Cockpit and
the |[CM| app in Section [5.3.4.

Zhuang et al. introduce EasyFL, a low-code FL platform that addresses
an FL lifecycle with two phases. First, an implemented FL algorithm is tested in the
experimental phase. Second, the tested FL algorithm is deployed into production, where
it trains and evaluates on distributed client data until the resulting model is served.
Developers make use of a Python library with minimal coding effort to run pre-defined FL
algorithms, while for expert users algorithms can be customized. EasyFL provides an API
to register (containerized) server nodes, client nodes, models, and datasets. The platform
executes the defined algorithm in the respective server and client training flows. Similar
to our approach, EasyFL supports the execution of customizable FL code. However,
the lifecycle followed by EasyFL does not address the management of FL artifacts, i.e.,
providing ways to share FL code and allow clients to pull these artifacts to make use of
FLaaS. Furthermore, FL is executed by a central authority (e.g., data scientist), while
individual clients can just be registered as worker nodes.

Beutel et al. present Flower, an FL framework to implement customizable
client and server behavior. With Flower, client training, validation, and server aggregation
can be implemented using either pre-defined functions (i.e., strategies) provided by the
tool or by customizing the functions to fit specific needs. The communication protocol for
client-server interaction is based on synchronous remote procedure calls, which can also be
updated with a custom protocol (e.g., MQTT). Similar to Flower, the IFL Core provides
out-of-the-box Trainer functions (corresponding to Flower strategies) and customizable
communication protocols. However, the IFL Core provides each client an interface for
submitting tasks to individually define e.g., algorithms and collaboration criteria. With
this, clients can individually impact the FL process given the local context. Hence, not
all clients have to follow the same behavior (i.e., Trainer functions or strategies).

AWS SageMaker? inference pipelines enable the definition of ML training and correspond-
ing data processing to deploy resulting models to AWS resources and to serve inference
requests. The deployment is supposed to serve all client requests that follow a pre-defined
schema for the payload that is used in the model inference. However, at this time, there
is no integrated solution suitable for deploying inference pipelines to edge devices for

Yhttps://aws.amazon.com/de/sagemaker/, accessed 2024-07-22

83

https://aws.amazon.com/de/sagemaker/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.

LIFECYCLE MANAGEMENT OF FL ARTIFACTS IN INDUSTRIAL APPLICATIONS

84

serving clients with |[FLaaS| [DC21]. Hence, there is no client-specific customization for
processing FL-based inference results.

This holds true for Microsoft Azure® (ML and Edge Stack) as well. It enables to download
and (re-)train ML models and use them for inference on edge devices, however, FLaaS is
not supported for client locations out-of-the-box.

The Katulu FL Suite®| provides a Software Development Kit (SDK) integrating Flower
to define and deploy containerized pipelines to distributed compute resources (e.g., edge
devices). This enables to execute FL jobs on a server and multiple involved clients pushed
by a central authority. In contrast, our approach further considers to pull templates with
defined FL pipelines to participate in [F'LaaS.

Mashhadi et al. introduce an FL clustering approach based on |[DL| models. For
this, the authors pretrain a cluster model on the server based on an incomplete centralized
dataset. Subsequently, the FedAvg algorithm is involving the clients for optimizing the
DL, Although FedClust considers the option for privacy disclosure, our approach makes
no initial assumption on a centralized dataset that needs to be on the server.

Based on that, we provide two novel aspects: 1) an approach for managing the lifecycle
of a model-generating entity (template) instead of managing a model lifecycle, and 2)
customizable and still scalable [FLaaS.

Since 2023, when this chapter was originally published, there have been advancements
in research and development of FL frameworks. Beltran et al. surveyed
FL frameworks with an emphasis on decentralized FL. This approach considers the
aggregation of individual contributions to be carried out by the clients, rather than
centrally by the server. For example, FedML’ is an FL library that enables FL for
a distributed fleet of edge devices . In combination with the FedML-based
platform named TensorOpera AI®, FedML can be used in FL software artifacts that
are deployed to registered clients (e.g., smartphones, browsers, data silos) for model
training. The responsibility of aggregation within a certain topology can be defined
in the algorithm that is deployed. In comparison to our template approach that also
considers inference services for applications as part of the Client Stages, the integration
of FedML artifacts into applications is only supported indirectly. For this, a separate
MLOps pipeline (provided by TensorOpera AI) deploys and serves resulting models.

Another direction of research focuses on applying FL to Large Language Models (LLMs)
to boost the performance of these models . Therefore, finetuning (training
only a subset of model parameters) is applied in a decentralized setup using multiple
data silos and compute resources. In this setup, FL enables the use of data that is
potentially only accessible for respective parties (enterprises), and FL utilizes more

Shttps://azure.microsoft.com, accessed 2024-07-22
Shttps://katulu.io/} accessed 2024-07-22
"https://fedml.ai/homel accessed 2024-10-01
8https://tensoropera.ai/, accessed 2024-10-01

https://azure.microsoft.com
https://katulu.io/
https://fedml.ai/home
https://tensoropera.ai/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.5. Summary

compute resources in parallel to tackle the complex training task. For example, FATE-
LLM is a system that applies FL. on LLMs supporting multiple approaches .
First, an approach for federating homogenous LLMs over multiple clients that finetune
their local models is provided. For heterogeneous local models in different sizes (different
number of parameters), a second approach adds a common mentee model for every client
that is used for FL. The mentee models transfer the learned knowledge to the respective
heterogeneous local models by applying knowledge distillation. Knowledge distillation
refers to the approach of transferring knowledge from a larger teacher model to a smaller
student model (mentee model). In a third approach, FATE-LLM provides knowledge
distillation on the server using a larger teacher LLM and a smaller student model that is
then used for FL. between all involved clients.

5.5 Summary

In this chapter, we presented the IFL Lifecycle for managing FL artifacts considering
publishing, deployment, execution (training and prediction), and the integration into
client applications. With this, clients can be served with |[FLaaS in a scalable and still
customizable way. We presented an extensible library for FL, the IFL Core, which
includes the proposed clustering algorithm FedClustl

In the evaluation, we have shown how [FedClust| is executed as template along the IFL
Lifecycle. For this, the IFL Lifecycle has been integrated into a (CM| application for
clustering conditions of industrial pumps. In the deployment and execution of the
small-scale (Scenario 1) and the large-scale scenario (Scenario 2), we demonstrated the
applicability of [FedClust and the IFL Lifecycle. We have shown that disclosing client
data to the server does not yield better performance than the privacy-preserving approach
that only shares local cluster centroids.

This chapter was published as a paper at the 7th IEEE International Conference on Fog
and Edge Computing (ICFEC) in 2023:

Hiessl, T., Lakani, S. R., Ungersboeck, M., Kemnitz, J., Schall, D., and Schulte, S. (2023).

Lifecycle management of federated learning artifacts in industrial applications. In 2023

IEEE 7th International Conference on Fog and Edge Computing (ICFEC) (pp. 7-15).

IEEE.

85

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

FL Deployments of Industrial

Applications on Cloud, Fog, and
Edge

6.1 Introduction

One goal of FL is to improve model performance for all involved clients given an underlying
ML task such as classification . ToT-based applications utilize FL to improve
the performance of ML models for industrial use cases like quality inspection
or CM of production machines [HSKS20, HRK™22|. To realize use cases in IFL setups,
collaboration between industrial partners requires resource efficiency [ASCF23|YL21|
for multiple production lines, and a way do deal with heterogeneous data between

partners [HPMG20).

The problem of resource efficiency of course also applies to the IFL Lifecycle that we have
introduced in the previous chapter. So far, we have primarily focused on supporting the
development and execution of IFL artifacts and their integration into applications (e.g.,
CM). Now, we turn our attention to optimal deployment and client selection. This includes
research on different deployment styles of clients on available platforms (e.g., cloud, fog,
or edge) and dynamic optimization of selected clients with the goal to minimize the
overall used resources (e.g., energy) by still maximizing model performance. Specifically,
we aim to support optimal decision-making for efficient operations, particularly for IFL

Templates.

In this context, still many challenges for a practical deployment in industry exist to
provide scalable solutions.

First, determining the optimal deployment of clients across various compute platforms like
cloud, fog, and edge is an important question to address resource efficiency [EARMAA 18|,

87

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

88

. This deployment decision is crucial for achieving improved FL performance,
reduced latency, and lower energy consumption. While larger companies may have
diverse resources across all platforms, smaller businesses often rely on simpler solutions,
as e.g., on-demand cloud instances or a few on-premise (edge) devices only. Understanding
the implications of real-world FL deployments on different compute platforms is essential
for planning suitable compute infrastructure . This enables companies to
optimize resource utilization and ensure efficient FL operations within [[IoT| environments.
Hence, it is necessary to identify appropriate deployment strategies considering cloud,
fog, and edge resources or a suitable mix with respective benefits and limitations.

Second, selecting suitable clients that are deployed on heterogeneous resources is a known
problem in FL . Overall, clients should be selected to optimize performance
metrics i.e., maximize overall model performance (e.g., accuracy), or minimize completion
time and energy consumption of the FL process. Client selection on the server becomes
more complex as the granularity of clients changes due to a re-design of the FL setup (e.g.,
creating multiple edge clients instead of a single one in a fog data center). For instance,
this can be applied to an industrial setup, where the overall factory is represented with a
single client that can be split to multiple production line clients. The resulting FL model
can help to improve the production process e.g., with an enhanced anomaly detection
accuracy. This is possible since there may exist other production lines with similar
characteristics (e.g., data distribution) that benefit from model sharing through FL (see
cohort concept introduced in Chapter 4)). However, instead of connecting a single FL
client for the given factory with other factories, the fine-grained multi-line approach
might help to tailor the model to the specific process. Obviously, this increases the
number of FL participants, which adds complexity to the client selection process. This
is especially the case for a multi-platform deployment. Therefore, we identify the need
for optimizing client selection given a fine-grained setup of clients and a multi-platform
deployment with cloud, fog, and edge resources.

Third, the problem of personalization arises when collaboratively trained FL models
need to be adapted to perform effectively on local data . Multiple clients are
involved with different data distributions generated by the underlying industrial processes.
This is the case in deployments where multiple production lines have their own slightly
different data distribution. So, engaging in collaborations with other clients may enhance
the model performance, but it can also result in challenges such as misclassifications when
applied to local data. This can be the occurrence of false positives in an anomaly detection
application for identifying product errors in a complex production process .
Hence, industrial clients need to address the challenge of personalization for their models
to achieve best model quality.

To solve this, this work makes the following contributions:

e An IFL deployment architecture for executing FL in a multi-location setup using
cloud, fog, and edge platforms for client training.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.2. System Design

o An ILP:based optimization approach (IFL Opt) for client selection, considering
energy consumption, time, and model performance.

e The FL algorithm XMeanCohorting that supports personalization by building
cohorts (= groups of similar clients) to boost performance in the FL aggregation.

e Evaluation on a real-world industrial dataset from the electronics manufacturing
industry comparing different FL client deployments on cloud, fog, and edge nodes.

In the last chapter, IFL Templates have been introduced which are facilitated by the
IFL Core library. The IFL Lifecycle manages templates and supports the integration
into applications. Based on that, this chapter extends the IFL Core with additional
optimization for client selection and personalization. In addition, the IFL Core is
integrated into IFL-based applications running on multiple platforms. Another evaluation

dataset, with process data from assets of two real-world factories [BHKS™ 23], is used in
this chapter as well.

The remainder of this chapter is structured as follows: Section 6.2 presents the system
design. Section 6.3| evaluates the system by discussing resulting performance metrics
in three scenarios. Section [6.4] discusses related work, and Section [6.5 concludes the
chapter with a summary of the findings.

6.2 System Design

We propose a system design that addresses the challenges of deploying FL clients in
different granularities (e.g., factory or production line clients) to multiple platforms. The
main building blocks include an FL library (IFL Core) with extensions for optimizing
client selection (IFL Opt), and cohort building (XMeanCohorting). The building blocks
are integrated and used in the proposed FL system to optimize performance metrics.

6.2.1 Architecture
IFL Core

To provide FL services for multiple clients, the IFL Core Python library is used. As
compared to the architecture from the previous chapter depicted in Figure [5.1, we now
highlight the extensions that are relevant for personalization and optimization as part of
the overall FL procedure in Figure [6.1. For the sake of simplicity, we avoid presenting all
previously introduced CMDs and flows from the IFL Core.

In the first stage, the IFL Client API is invoked for registering clients for FL. The
server manages the process of FL. by aggregating local model updates and sharing the
result with involved clients. Furthermore, local model validation is iteratively enforced

before passing the resulting FL model to the IFL Client API and further to the caller.

To address client selection with efficient use of resources and optimal performance, the

89

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

90

start
s . FL | Cohort XMean executle FL REIExeeUton
Server | |Registry —

> q . for cohorts
AP Builder | Cohorting N Aggre- Client

gator Selector

IFL Server

A register for FL:

]
model sharing &

IEL Client API {Model Training Handler met;ics tra:sfer IFL Opt ME:)I’IgCS

| Validator | |Measuring|

IFL Client

Figure 6.1: IFL Core with main components for client and server

IFL Opt module has been added and is invoked after each (communication) round. A
round refers to one iteration of client training, model upload and server aggregation.
IFL Opt supports client selection by using metrics recorded in the added Metrics Log
that includes e.g., energy consumption, model performance, processing time and network
delay. These are needed parameters for the ILP-based optimization model, which we
present in Section [6.2.2.

To address model personalization, the IFL Core considers additional local training on
the global model that results from the FL process. This final step adapts the model
to the local data distribution . To further boost model performance through
advanced personalization, we added the XMeanCohorting algorithm which we describe
in Section [6.2.3l It builds cohorts of clients with similar data distributions that result in
multiple cohort models instead of a single global model. XMeanCohorting is invoked by
the Cohort Builder that collects statistical metadata of the underlying data distribution.

IFL Deployment

The IFL Core can be used to connect clients from multiple locations (i.e., factories and
underlying production lines) as the library is integrated into server and client applications
and deployed to available resources. For this, Figure 6.2 depicts a multi-platform
architecture, presenting deployment strategies for multiple locations like factories and
production lines. The architecture considers four vertical layers, the production process
with data-generating machines (assets), and the three independent compute platform
layers edge, fog, and cloud. Process data (e.g., product features for quality inspection)
is retrieved from process controllers by the collector edge device that pre-processes and
stores the data in a factory-wide database. The collector device is deployed to the edge
layer to filter for relevant training data therefore reducing the overall data load that is
streamed to the database.

To execute FL, potentially multiple resource nodes are considered per location. For this,
compute instances (e.g.,|VMs) can be used to host the IFL Client, a service using the
IFL Core for FL and serving the resulting FL model to improve the production process
(e.g., by detecting product quality issues). The multi-platform strategy is beneficial to

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

6.2. System Design

data transfer
D

IFL comm.
€--->
IFL Server ®s--=-==========---
IFL Client < ----

VM
m IFL Client € ----
I—I

1]) .
Collector IFL Client & - - IFL Client
& ~ N

| EII < I ‘ l Production

Fog

e e

[
Collector

Edge

e Process
(Controller] [Asset(s)) (Controller| [Asset(s)]
Location ID: 1 Location ID: 2

Figure 6.2: IFL deployment architecture for multiple locations

gain flexibility for executing peak loads like FL training. It allows for utilizing trade-offs
between platforms with respect to energy consumption, network delay, and processing
time.

For each location, the used IFL Clients identify themselves with a joint location ID at
the server. The location ID refers to the data that is used by the client e.g., overall
factory data, or production line data. This allows different granularities with respect to
real-world FL collaborators (factories and production lines). A resource-efficient approach
can be achieved by adopting a coarse-grained setup, where a single client with a single
location ID is assigned per factory.

In order to optimize model performance, it can be beneficial to implement a fine-grained

setup, where multiple clients per factory are instantiated, each with a unique location ID.

Hence, more clients with similar data distributions can be identified. This is relevant in
cases where a factory consists of multiple production lines that each have a similar process

but generate slightly different data distributions (e.g., products have different components).

Hence, only those clients (i.e., production lines) with similar data distributions are enabled
to collaborate with FL. This reduces the risk for a poor FL model quality.

91

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6. FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE
6.2.2 Optimization Model
The ILP-based optimization model IFl Opt uses the metrics log with the parameters
defined in Table 6.1] to select clients for the upcoming round. Beside performance metrics,
Table 6.1 contains the decision variable z;; that determines which clients should be
selected to minimize the objective function in Eq.|6.5. This function is a weighted sum of
min-max-normalized values for the overall energy consumption e, overall response time r,
and sum of model performances (e.g., accuracies) of all clients a from the most-recent
round. The variables for the performance values for a given round j are defined in Egs. [6.1
to|6.4. Since not all clients participate in each round, we introduce the prev function that
returns the metrics from the most recent round where the clients delivered the metrics.
The min and max values of e, r, a are computed in the first round, where IFL Opt is not
invoked and all clients are selected.
Table 6.1: Notation of parameters and variables
Symbol Description
k Number of rounds in FL
D Set of devices providing resources for clients
n Number of devices in D
m Number of locations collaborating in FL
L, Set of clients of the p-th location with p € 1..m
€ij Energy consumption of client 7 in round j € 1..n
Qij Model performance metric of client ¢ in round j € 1..n
dij Network delay for transferring the trained model to the server for client ¢ in round
jeln
Lij Processing and training time of client ¢ in round j € 1..n
€ Minimum increase in performance value between two rounds
Tij Decision variable for selection of client 4 in round j € 1..n
rj = Maxrj (6.1)
3
with
Tij = ti,prev(i,j)xij + di,prev(i,j)xij (62)
n
i=0
n
;= Qi pren(i) Tij (6.4)
i=0
92

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.2. System Design

Objective function:

€; — Emi T — Tmi A; — Amyg
L] = wew + w, J mwn_ Wy J min (65)
€max — €min Tmax — Tmin Gmaz — Amin
Constraints:

dowy>1 for all p € 1..m (6.6)

ieL,
8ij > €xij foralli e 1l.n (6.7)

with

51']' = (ai,prev(i,j) - ai,prev(i,prev(i,j)))xij (68)

Two constraints limit the objective function. First, Eq. [6.6| requires that at least one
client from a given location ¢ is involved. This ensures that data from all the locations is
considered in FL to increase the potential for high model performance values. If more
than one client is involved, additional resources on the location are used.

The constraint in Eq. 6.7 ensures that only clients who have shown a minimum increase
in model performance in previous rounds are selected. This constraint aims to increase
the probability of further improving the overall model with their contribution. However,
it is considered only if a; ,ren(ij) aNd @ prev(iprev(i,j)) are defined. If the problem cannot
be solved, another optimization run without this constraint is started. This can be the
case in scenarios where constraints 6.6/ and 6.7] do not match, since e.g., there is only one
client ;; in the location L,, but d;; is lower than the required e.

6.2.3 Cohort Building: XMeanCohorting

Model performance can be poor if FL is applied to clients with data from multiple
underlying data distributions and sources, since no other similar client might match
for collaboration. Therefore, it can be beneficial to split clients with respect to the
original data source if possible (e.g., splitting data from factory clients into subsets
for finer-grained production line clients). Based on this new client design, the model
performance can be further improved through personalization. For this, we subset the
clients into cohorts with similar data distribution as proposed in Algorithm 5. The inputs
are the mean(X}) values of all the features X of the local datasets as computed by all

clients. We create a new matrix F' by concatenating all delivered means row-wise in line 2.

To reduce the ¢ dimensions to ¢" dimensions (default=2), we apply Principal Component
Analysis (PCA) |Jol02] to receive F" in line 3. PCA provides lower dimensionality by
still capturing the main variance of the data distribution. This method is needed in

93

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

94

Algorithm 5 XMeanCohorting

Input: mean(X;) for all i € D, cluster dimensions ¢"
1: Initialize F' as n X ¢ matrix for n clients and ¢ features
F < concatenate mean(X;) for all i € D
F" + PCA(F,q")
k < elbow(F™)
cohorts < kMeans(F", k)
return cohorts

line 4 and 5| to faciliate clustering solutions. For this, we apply k-means
and the elbow method . The k-means algorithm is a technique for partitioning
data points into a predetermined number of clusters, aiming to minimize the variance
within each cluster. The elbow method is employed to identify the optimal number of
clusters by iteratively performing k-means with progressively larger values of k until
further improvements become insignificant. Finally, the cluster result of k-means can be
used as client-to-cohort assignment for subsequent client selection in the IFL Core. This
algorithm extracts the key similarities between clients to facilitate collaboration among
multiple locations that may have high-dimensional data.

6.3 Evaluation

In this section, we demonstrate how different deployment styles of an industrial FL setup
perform on real-world data. We evaluate client deployments in multiple scenarios consid-
ering edge, fog, and cloud as well as multi-platform deployments with optimized client
selection using IFL Opt. We further investigate the effect of using the XMeanCohorting
algorithm in a production line FL setup.

6.3.1 Experimental Setup

The virtual machines in the cloud are Linux machines with a 3.0Ghz Intel Xeon Scalable
Processor with 4 CPU cores and 16 GiB RAM hosted in Frankfurt (GER) using Amazon
Web Services (AWS)!. The fog instances run as virtual Linux machines in a local data
center in Vienna (AUT) based on Intel Xeon SP Gold 6230 20C/ 40T - 2,1GHz/ 3,9GHz.
Each instance is provided with 8 CPU cores and 16 GiB RAM. For edge deployments,
we use Siemens industrial PCs? including five microbox PCs (SIMATIC IPC427E) with
Intel Core i5-6442EQ CPU @ 1.90GHz (three devices) and Intel Xeon CPU E3-1505L v5
@ 2.00GHz (two devices) all with 4 cores and 16 GiB RAM. Additionally, we use one
rack PC (SIMATIC IPC847E) with Intel Xeon E-2278GE CPU @ 3.30GHz (8 cores and
128 GiB RAM) as edge device. These are located in two labs in Vienna (AUT).

"https://aws.amazon.com/} accessed 2024-07-22
Zhttps://www.siemens.com/global/en/products/automation/pc-based.html, ac-
cessed 2024-07-22

https://aws.amazon.com/
https://www.siemens.com/global/en/products/automation/pc-based.html

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.3. Evaluation

6.3.2 Industrial Use Case and Data

The IFL System and its different deployment styles are evaluated on a real-world dataset
from the electronics industry. For this, we address a multi-step manufacturing process
for [Printed Circuit Boards (PCBs)| given a quality inspection task in two factories.
The process starts with printing solder paste onto the PCB through a stencil, ensuring
precise application, followed by component placement. Reflow soldering is conducted
with specific temperature profiles, and |Automated Optical Inspection (AOI) verifies
component alignment and soldering integrity. However, this step is prone to error slipage,
which motivates the use of an Al model to classify PCBs with respect to the three
classes OK, error, and pseudo-error using process data from all steps. The process data
include 16 numerical features, e.g., height, area, offset, pos-r and pos-y, size-y, size-y
of the printed solder paste, and image quality and the original label of the AOI. The
datasets of the two factories have a size of 975k and 610k rows respectively. The derived
supervised learning problem is faciliated by class labels introduced by human inspectors
in case of error classifications of the AOI. Possibly, the error is a false positive which is
then re-labelled as pseudo-error. To reduce human inspection, the new classifier can be
attached to the quality inspection process.

6.3.3 Scenarios and Experimental Design

Overall, we consider three scenarios that address the aforementioned quality inspection
problem with different FL. deployments and configurations. Each scenario has a set of
seven deployments that are instantiated, executed and compared. The basic deployments
are edge, fog and cloud, where all clients are deployed to the respective environment.
Additionally, multi-platform deployments consider all three compute platforms with a
subset of selected clients applying IFL Opt in four versions i.e., eq opt (equal weights:
Wy = Wy = We = %), time opt (w, = 1 and w, = w. = 0), perf opt (wg, = 1 and
wy, = we = 0), energy opt (we =1 and w, = we = 0)

Scenario 1

In particular, Scenario 1 (factory FL) demonstrates the collaboration of two factories
using two clients (one per factory) for the basic deployments and six clients (three per
factory: cloud, fog, and edge) for the multi-platform deployments.

Scenario 2

Scenario 2 (production line FL) considers three subsets for each of the two factory datasets.

Hence, six production lines (= clients) are instantiated overall, whereas each of them
hold data from different types of PCBs. While the basic deployments consider six clients,
the multi-platform ones use 18 clients (three per production line).

95

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

96

Scenario 3

Scenario 3 (production line FL with cohorts) applies FL similar to Scenario 2 but
builds cohorts using XMeanCohorting to facilitate suitable collaboration between similar
production lines.

Both scenarios 2 and 3 demonstrate FL collaboration on a multi-line level with more
clients as compared to factory FL and investigate the impact of data heterogeneity by
comparing cohort-based FL with FL using FedAwvg.

Metrics

Deployments are benchmarked using six to nine metrics measured by IFL Core, including
response time, energy consumption, and model performance. Response time metrics

comprise the average network delay defined as avg net delay = % Z?:l (l >y dij> and

n

the total network delay defined as total net delay = 22?21 max;-; d;j. The average pro-

cessing time (avg proc time = % Z?:l (% A tij)) is calculated as the mean processing
time (i.e., data processing, training, metrics calculation) across all devices and rounds.
The total processing time is determined as total proc time = ?:1 max;- t;j. The total
energy consumption (total energy = Zle (D11 €4)) is computed by summing up the
energy consumption of all involved clients in each round. To compare the deployments
with respect to model performance, the validation average balanced accuracy is defined
as val avg bal acc = %Z?:l afal, where a?“l is the balanced accuracy used as model
performance metric computed on the validation dataset of client i after all rounds using
40% of client data. Analogously, the validation average f1 score is defined as val avg f1 =
s, azf). The maximum average f1 score (max avg f1 = maxé?:l(% o azfjl)) signi-
fies the highest mean f1 score over all rounds. Finally, the maximum average balanced
accuracy (maz avg bal acc = max?zl(% o af]‘ﬂ)) denotes the highest mean balanced
accuracy among all rounds. Both maxz avg f1 and max avg bal acc can be used to

identify the maximum model performance considering model personalization.

6.3.4 Scenario Execution

We now demonstrate how the execution of the scenarios is performed using three compute
platforms and a suitable FL solution to train the classifier for the PCB problem. For this,
we create an [FL Template (see Chapter 5), which defines the code for ML training and
data processing on the client side and the model aggregation (i.e., FL with or without
cohorting) and the parameters for IFL Opt on the server side using Python, PyTorch?®
and the IFL Core. The used model is a feedforward neural network with four layers in
total (incl. classification head) and max 256 neurons per layer. The network is trained in
five epochs per round with a batch size of 64.

3https://pytorch.org/} accessed 2024-07-22

https://pytorch.org/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.3. Evaluation

According to the scenario definition, the client instances are provisioned using the
Infrastructure as Code (IaC)| tool Terraform? for cloud and fog. Following that, the
runtime is deployed to each client of the respective platform, which includes edge devices.
Subsequently, the client’s runtime installs and executes the template. After all clients
are registered on the server, the FL procedure is repeated for ten rounds. The metrics
are continously measured by the IFL Core and reported to the server. For energy
consumption metrics, the IFL Core integrates Code Carbon®. This Python package is
designed to estimate and monitor the energy consumption of code execution. Based on
all delivered client metrics, IFL Opt is applied after every round and clients are selected
from different resources. To ensure robustness, we execute all scenarios five times and
collect mean and Standard Deviation (SD)| values. These are presented in the dynamite
plots (bar for mean and whiskers for SD) in Figs. 6.3/ to 6.6,

6.3.5 Results of the PCB Quality Classification

The resulting metrics are now presented and discussed for all three scenarios. We
compare the deployments in the respective scenario and reason about the impact of
selected platforms, granularity of deployed clients (factory or line deployment), FL
aggregation (with or without cohorting), and optimized client selection.

Factory FL Scenario: Two factories with 2-6 Clients

The network delay metrics in Figs. 6.3a and |6.3b show the highest values (avg net delay ~
0.3s and total net delay =~ 4s) for the edge deployment on average, closely followed by
the energy opt deployment. This is due to the corresponding network distance between
the edge clients and the server in the cloud. The fog deployment has improved network
delay but is still inferior to the cloud, which benefits from a close connection to the server
in the same data center.

The energy opt approach relies on edge devices, while the time opt approach considers

cloud instances in this scenario, as the values are similar in their respective deployments.

This is elucidated in the processing time metrics in Figs. 6.3c/ and 6.3d. However, here
we observe that fog values are similar to edge values (avg proc time is between 4.3s
and 4.7s and total proc time is between 45s and 49s), while cloud still outperforms
both (1s and 12s respectively). One possible reason could be the selection of different
hardware. However, the effect is not solely caused by hardware aspects, but also by the
energy measurement process performed by clients during training. Code Carbon retrieves
benchmark data from the Internet to estimate and monitor the running process, favoring
approaches with minimal network delay, such as those using cloud clients. This limitation
hinders direct comparisons of training times but emphasizes the significant impact of
network distances within an FL scenario.

Yhttps://www.terraform.io/} accessed 2024-07-22
Shttps://codecarbon.io/} accessed 2024-07-22

97

https://www.terraform.io/
https://codecarbon.io/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

98

The total energy used for FL is depicted in Figure 6.3e. The best performance is achieved
by edge and energy opt with less than 0.0002 kWh. On the contrary, perf opt might
extensively utilize numerous resources (up to six clients) across all platforms, leading to
more than three times the energy consumption. A medium level of energy is used by the
instances from fog and cloud. The edge devices in this scenario are two microbox PCs
with comparably limited resources in contrast to fog and cloud. So, for a target factory
FL setup, energy can be saved by selecting compute resources without overprovisioning
as long as the complexity of the underlying ML task is manageable.

The model performance values depicted in Figs. [6.3f to |6.31 show comparable results
for the basic deployments, since no deployment-specific aspect could influence the model
quality. However, for the multi-platform deployments val avg bal acc and val avg f1
perform inferior. This could be because the multi-platform deployment involves more
clients (six) compared to the basic deployment (two) in the initial rounds, which is
necessary to collect enough metrics for IFL Opt. The increased number of clients in the
multi-platform deployment can lead to diverse local models, which may result in poorer
metrics after aggregating and validating the global model. However, both maz avg f1 and
maz avg bal acc show improved performance values, even in multi-platform deployments.
This is because of the personalization before validation. Clients with slightly different
data distribution benefit from this additional local training, which is relevant in the case
of the two factories producing different types of PCBs.

Production Line FL Scenario: 6-18 Clients

Figure 6.4] depicts six metrics for the production line FL scenario. The network delay
metrics inherently highlight the outcome of the factory FL scenario, wherein the delay
decreases as the deployments get closer to the server in the cloud. We observe higher
standard deviations for all deployments. That is due to the increased number of clients
in this scenario as network traffic and the probability for higher delays can increase.

The time opt approach is close to the cloud deployment. This holds for the processing
time metrics in Figs. 6.4c/and 6.4d as well.

In terms of energy usage, cloud and energy opt have the lowest values. This is different
from the factory FL scenario with two clients, where edge performed the best. In the
current scenario, six edge devices are used, including a high-power rack PC and other
CPU types. This suggests that utilizing on-demand resources in the fog or cloud, or
other edge devices with lower energy consumption, can be beneficial. However, this is
only true if high-power edge devices are not needed for other purposes and if fog or cloud
deployments are supported for local production lines and factories.

The perf opt approach again uses too many devices. Although the performance in terms
of val avg bal acc is similar to other approaches, there is no notable advantage for
resource-intensive operations. This is because the classifier cannot further be improved
using FedAwvg, when collaborating clients have heterogeneous data.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

O'EI?EI()

L]
|
led:;

3ibl
Your know

6.3. Evaluation

0.4

0.3

sec

0.2

NI

Qp‘b <<°q\o oQ <)}o‘? {\o‘? ol
<& 6\ E
&

(a) avg net delay

50 -
40
g 30
20
10 &1 W l]
R CTR. T B
Q,bQ QOQ\O O&'QOQ oR ‘\0‘?
Tl
Q’Q

(d) total proc time

L i

0.6

0.5

0.4

(ob@ <<°°’\o° & o‘? & &

&

(g) val avg f1

sec
ES

[¥]

b, g i

¢ > &
e><><<°\o o‘?ooo
L °<<,°<°qeé<‘§

(b) total net delay

0.0006
0.0005

< 0.0004

2

~0.0003
0.0002
0.0001 | =

& <<°g OQ oQ oQ oQ
‘o ‘\(\ Qe' (5\
QI

(e) total energy

0.9

S & °°0Q oQ &
‘o ((\ Qé‘ QA
S

(h) max avg f1

:(,b°’ QOQ\O OQ * & KX
o & e{‘
P]
&

(¢) avg proc time

0.7

0.6
0. i I

(({bc» <<o°’\° OQ oQ oQ 5\0‘?
4\@ q% &

w

(f) val avg bal acc

U.QII Iy

0.8

0.7

e O b
& <€ Oo o @o‘? &

S &
&

(i) max avg bal acc

Figure 6.3: Scenario 1 — Factory FL with 2-6 clients

Production Line FL Scenario with Cohorts: 6-18 Clients

Similar to the previous scenario, clients consider data for the respective production lines,
but the IFL Server applies XMeanCohorting to facilitate collaboration only between
similar production lines with results depicted in Figure 6.5. For network delay and
processing time, the metrics are comparable to Scenario 2, since the only change in

99

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

100

0.25

0.20 4 4

3

sec
w
sec

o
20.15

o i i

& O)

P & L o S & & o QL &
b@ o OQ 0 <&oe;\o Qp"’ & \o OQ B 6\0 ((/bc, < \o OQ O 50 \\0
40 (° E & ,((“ @ K &((\ E &

& <& é‘

(a) avg net delay (b) total net delay (¢) avg proc time

100 0.00175
I 0.65

o 0.00150
0.00125 0.60
U 601‘ =
@ £0.00100 0.55
0.00075+ . _ -
0.00050 ' =
[1 5 N | | | 0451 M

& S5 E oQ 0" oQ SRIF S & S o 0Q
& ((\ Q‘Z' \Q' ‘o ((\ Q@ © <> <° Qe, Cg
‘<r <o <o

(d) total proc time (e) total energy (f) val avg bal acc

Figure 6.4: Scenario 2 — Production line FL: 6-18 clients

processing is the aggregation on the server.

However, we can observe that the energy-intensive perf opt slightly performs best with
val avg bal acc ~ 0.8. Compared to Scenario 2, only similar clients collaborate on
respective cohort models instead of contributing to a single global model. XMeanCohorting
enables that clients with similar PCBs join the same cohort, i.e., we observe three cohorts
with three, two, and one client for the basic deployments and cohorts of nine, six and
three clients for the multi-platform deployments respectively.

One potential reason for improved model performance using a multi-platform deployment
is the parallel training, since more local epochs are trained on a given dataset in total.
Although this can lead to relatively high accuracy values in a shorter duration, the
energy consumption is increased. If time constraints are not a concern, individual clients
utilizing the same computing platform may achieve similar model performance, though
slightly delayed.

As seen in all scenarios, the multi-platform approaches using IF'L Opt do not always
provide best solutions as compared with the three basic deployments. This is due to
initial overhead where all resources are used to identify the most suitable client selection

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.4. Related Work

5 51 o
4 4 i
o o
$3 g3 |
2
214 1 I
B 1
1
L VR TORE 3~
FOR °°0Q oQ <\o‘? & & <<ch°~>° oF KK F & QOQ\O OQ aoQ 60‘3 R
‘o @ Q® ‘Oj\ ‘(zok\@ QE® ?}6\ <(° A
«* <& &*
(a) avg net delay (b) total net delay (¢) avg proc time

sec

o

ool i 0.00150 -
0.00125
60
£0.00100 0.7
-t
40 0.00075
= B 0.
20 0.00050 . I o

b
Q’bﬁy QOQ\O OQ‘ o‘? oQ oQ Q,bq <(o 26 OQ o‘?{\oQQ‘oQ (&Q"’ O OQ c>Q oQ oQ
& & & Ce e & qz «q
<& <<,
(d) total proc time (e) total energy (f) val avg bal acc

Figure 6.5: Scenario 3 — Production line FL. with cohorts: 6-18 clients

for the optimization target based on the metrics needed as parameters. However, it can
be seen that approaches with the respective preferences (weights) converge close to the
best deployment. Furthermore, flexibility is ensured by changing selected clients and
platforms after every round. Hence, robustness against clients with high network delay

or processing time, named stragglers [PHCM?21]|, is facilitated.

The impact of cohorts is underlined in Figure 6.6/ that depicts grouped bar charts com-
paring production line FL. with and without cohorts, i.e., XMeanCohorting is compared
with FedAvg. For val avg bal acc in Figure [6.6a, XMeanCohorting outperforms FedAvg
by 10-15% on average. Considering additional personalization, the performance increases
by 15% up to 95% reflected by max avg bal acc in Figure 6.6b. Hence, combining
cohort-based FL for the three production line clients with additional personalization
facilitates optimal training.

6.4 Related Work

The FL research community experiences rapid development in implementation practices
and approaches like client selection [FZG723]. We discuss the most important related

101

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

102

no Cohorting #¥4% Cohorting no Cohorting %22 Cohorting
1.0 1.00

091 0.95 1

0.90
0.8

0.85
0.7

H

0.6

0.54

AR
A
R

(a) Val avg bal acc (b) Max avg bal acc
Figure 6.6: Production line FL. with and without cohorts

approaches.

Rajagopal et al. present deployments of the FL server on edge, fog, and
cloud resources. The authors measure performance metrics such as energy consumption,
network usage, cost, execution time as well as latency and conclude that edge deployments
outperform fog and cloud. Different platforms for server deployments are considered
by Nguyen et al. as well. However, they consider a hierarchical deployment
with clients on the edge and servers in the fog and cloud. They present an optimized
selection of servers in the fog for a global aggregation on the cloud server to reduce the
overall completion time and global loss. However, these approaches do not address client
deployments on multiple platforms, and respective optimization of the client selection.
In our work, we consider the impact of FL client deployments and selection, which is
important as FL systems are implemented e.g., in factories, as multiple data center and
edge device options are available for optimal resource usage.

When it comes to setup an FL deployment between multiple industry partners, Oldenhof
et al. || propose multiple cloud accounts for collaboration in the pharmaceutical
industry. The authors emphasize the high demand in computation power given a drug
discovery problem and FL runs that have been executed annually for three years. In our
work, the FL deployment considers additional fog and edge resources that can provide
more resource-efficient FL services (e.g., w.r.t energy consumption) given already existing
devices (e.g., for production line data collection) with appropriate capacity for solving the
underlying ML task. This is suitable in FL processes that are repeated more frequently
on less demanding ML tasks with a subsequent model deployment for providing inference
services on the same (training) device close to the data source. Hence, training and
inference services can be integrated into the same application to reduce complexity for

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.5. Summary

the user, as presented in Chapter 5l

Chahoud et al. introduce dynamical placement of FL clients through container
deployment addressing changing workloads and increasing the availability of clients in
areas that lack training resources. While our approach does not dynamically deploy new
FL clients, the IFL deployment architecture allows for registering many devices from the
same location, as identified by the location id. Based on set (weight) parameters of IFL
Opt, the optimization controls the number of used resources for a given location. The
resources are selected according to the collected performance metrics.

Abdel et al. propose to select clients so that overall resource wastage is
minimized, i.e., training time of clients that do not contribute to the overall model
performance is limited and stale updates of previous rounds are integrated also if they
were sent late. However, client selection is considered as isolated task. On the contrary,
our work integrates the IFL Opt approach into a system with preceding cohort-building
of clients from multiple locations with a suitable data and client splitting. This faciliates
model performance, energy consumption and completion time.

In 2024, after this chapter was originally published, de Souza et al. also
provided an approach combining resource optimization and model personalization. Specif-
ically, they aim for reducing the communication and computation overhead by only
sharing some layers of parameters and not the overall model. After sharing the respective
layers, the local training is executed to personalize the model to optimize on the eval-
uation dataset of the client. To further reduce the computation overhead, the authors
introduced a decay function in the client selection procedure. This function gradually
limits the number of selected clients as the FL. communication rounds progress and the
model begins to converge.

Chahoud et al. addressed the topic of on-demand deployment of containers
(including FL client software) to mobile devices. Hence, edge devices are not even
pre-provisioned with FL clients and are selected for contributing models, but they rather
get containers deployed as they move to new areas. This is relevant if there is no or
only limited data in certain areas so that contributions from respective edge devices are
needed.

6.5 Summary

In this chapter, we presented an FL system that supports FL client deployments on
multiple locations using cloud, fog, and edge resources. We integrated the presented
cohort-building algorithm XMeanCohorting and the ILP-based client selection IFL Opt
to improve model performance, energy consumption, and FL completion time.

In the evaluation, we have presented FL runs with different client deployment strategies
using cloud, fog, and edge resources and a real-world industry use case addressing a
quality inspection problem in a PCB manufacturing process. We executed three scenarios
evaluating FL deployments on factory level with 2-6 clients and on production line level

103

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

FL DEPLOYMENTS OF INDUSTRIAL APPLICATIONS ON CLOUD, FOG, AND EDGE

104

with 6-18 clients. In each scenario, we compared basic deployments with multi-platform
deployments using the IFL Opt approach. We have shown that model performance is
increased by 10-15% as XMeanCohorting is applied. Furthermore, IFL Opt facilitates
convergence of the multi-platform approaches to the relatively best basic deployment
while still ensuring flexibility for updating the client selection in each round.

This chapter was published as a paper at the 8th IEEE International Conference on Fog
and Edge Computing (ICFEC) in 2024:

Blumauer-Hiessl, T., Schulte, S., Rezapour Lakani, S., Keusch, A., Pinter, E., Kaufmann,
T., and Schall, D. (2024). Federated learning deployments of industrial applications on
cloud, fog, and edge resources. In 2024 IEEE 8th International Conference on Fog and
Edge Computing (ICFEC) (pp 19-26).

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

FL Solution Blueprints for Use
Cases Surveyed in Austrian
Industries

7.1 Introduction

With the emergence of Industry 4.0, new opportunities for further optimization in
production have been unfolded using connected, decentralized and decision-making
systems . In this regard, important enabling technologies are the [IoT and Al
which support the provision of insights based on data streamed from various sources in
production.

FL|arose as a collaborative approach for training /All models between multiple partners.
Companies, for instance, Original Equipment Manufacturers (OEMSs), can offer FLaaS to
their industrial clients for the purpose of enhancing the performance of their ML| models.
These models are primarily utilized to analyze IIoT| data generated from production
machinery. The goal is to improve these models beyond what would be possible with
only local ML training. Since data is often limited at one location (e.g., site, company),
IFL can be used between networked industrial systems for autonomous or adaptive
decision-making in production using e.g., robots, edge devices, and [Programmable Logic
Controllers (PLCs)| [SNBF21]. However, in practice, Al and FL systems still face
challenges to be adopted, i.e., to be considered for solving data-intensive problems.

In the previous chapters, we have addressed IFL system aspects and how these aspects
can be optimized to provide high-quality models in a resource-efficient way. To better
understand the status of FL in the industry and its practical adoption for real-world
use cases, we conducted an interview-based study that is presented in this chapter.
Given our observation that FL is rarely used in practice outside of research setups

105

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

106

and Proof of Concepts (PoCs), our goal is to understand the requirements and derive
blueprints for future adoption of collaborative Al and FL-based approaches.

Each blueprint is considered an FL-based solution design for identified business types
to address their needs and Al use cases in a decentralized environment (e.g., a service
company and its customers). For this, not only the learning part is relevant, but also the
inference and the way data (model input and results) are processed. The concepts of
IFL Templates and previously defined architectures are not explicitly mentioned in the
blueprints. Nevertheless, the FL solutions (i.e., training) can be realized with templates
and the IFL Core, as well as with a statically deployed IFL System providing FLaaS| for
the involved parties. This is facilitated with well-defined interfaces for ingesting data,
executing FL, and retrieving the resulting FL. model via API.

To adopt Al and ML in industrial production, certain prerequisites need to be addressed
as e.g., strategic alignment, available resources and knowledge, innovation culture, and
data accessibility . If these prerequisites are fulfilled and if there exists a certain
potential for increasing efficiency with suitable models, the AT adoption process still needs
to be implemented in practice. Therefore, respective use cases need to be transformed
into actionable plans including concrete architectures for implementation. For this, the
interview study, conducted with thirteen employees from eleven Austrian companies from
different domains, should build the basis for the actionable plans. In detail, we want
to report up-to-date industry use cases, related pain points, and attitudes towards the
implementation of Al and FL. Furthermore, we identify business types including their
characteristics and how companies can be supported in the adoption of AI and FL.

While the technical feasibility of FL has been demonstrated in the previous chapters,
in industrial use cases and research such as drug discovery |[OAP*23], the
actual adoption in the manufacturing industry is lagging behind. To address this issue,
the respective FL-based solutions need to be tailored to identified business types and
involved parties. In this context, we analyze the business types and investigate how the
main collaborations of involved parties can be facilitated with FL. For this, we assume
that these parties aim to use and improve ML models facing limited data or privacy
restrictions. Additionally, there is a need to understand how the parties interact and
which tasks need to be done as the FL solution is implemented.

To address the aforementioned needs, this chapter makes the following contributions:

e A collection of use cases, challenges, and requirements for industrial Al applications
based on the interview results of eleven companies (thirteen persons) in multiple
Austrian industries.

o Identification of three industry personas representing business types and their
industrial Al application fields that can be facilitated with FL.

e Three FL blueprints addressing system architectures and implementation steps for
identified personas.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.2. Related Work

Considering these contributions, we focus on the actual transfer from FL systems to
different types of industrial companies with their respective use cases. We want to provide
insights on the current state in industry, real-world use cases, and suitable IFL blueprints
as solutions. Thus, we provide an outlook how concepts of this thesis can be transferred
to industrial companies.

The remainder of this chapter is structured as follows: Section |7.2 discusses the related
work. Section 7.3 presents the methodology used for the interviews and the subsequent
identification of personas, which are summarized in Section [7.4. For each persona, we
derive an FL blueprint as presented in Section |7.5/and discussed in Section 7.6. Section 7.7
concludes the chapter with the main findings and future work.

7.2 Related Work

FL research experiences accelerated growth in technical approaches [NDPT21]. In this
work, we discuss the related approaches focusing on understanding industry requirements
through interviews and the application in practice.

Johnk et al. have interviewed 25 Al experts in organizations and derived Al
readiness factors in five categories (i.e., strategic alignment, resources, knowledge, data,
and culture). Collaborative work between the departments is highlighted as a significant
factor in successfully adopting Al In contrast, our work centers on identifying industry
personas, their prerequisites, and Al application fields to derive blueprints for intra- and
inter-organizational collaboration using FL.

To decide upon a suitable FL architecture for own use cases, Lo et al. present de-
cision models for architectural patterns for e.g., training, aggregation, model deployment,
and client registration. For this, they analyze functional and non-functional require-
ments based on a systematic literature review. In this chapter, we do not only provide
architectural solutions, but rather holistic blueprints for adoption in organizations. This
is relevant since the implementation also needs a clear picture on how to collaborate
between involved parties apart from technical aspects.

Deng et al. present a platform for IFL, where individual parties submit
tasks that can be evaluated for suitable collaboration. This requires matching data
schemes and the same underlying ML problem (e.g., tool wear prediction in a machining
process). If this is given, the partners can be selected by the submitting party and FL
is started. Hence, this platform has to be very specific for selected use cases and needs
to have a significant number of potential collaborators to enable FL runs. Similarly, a
platform-based FLaaS approach is presented by Ungersboeck et al. , where
the platform enables control and transparency on the underlying FL process managing
multiple clients, their tasks and resulting models. Both approaches can be considered as
a generic and technical FL solution applicable to many industries and use cases. However,
there still exists the need for addressing the adoption of FL solutions with specific roles
and responsibilities to ensure successful deployment and operations.

107

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

108

Interview-based studies for surveying requirements of FL systems have been conducted in
Germany by Verlande et al. [VLR23|[VRL23|. The goal is to understand how FL systems
can be designed for improving IT security in Human Resource Management (HRM)| for
e.g., detecting malware in recruiting processes. Expert interviews result in requirement
catalogues addressing user experience and service design. The main system qualities
that are expected from the interviewees are easy installation and maintenance, low effort
of operations, and a high reliability of results. Furthermore, system design elements
have been proposed to integrate FL systems into a recruiting process. In our work, we
survey the requirements in Austria’s production industry with the goal of generalizing
requirements to build three industry personas. In contrast to Verlande et al., we do
not only focus on the identification of requirements of a given corporate function (i.e.,
HRM), but we rather aim for deriving FL solution blueprints that can be implemented
in multiple industries.

7.3 Methodology

In this chapter, we explain how a qualitative research approach has been applied to
derive insights from the interview data. The generation of qualitative data was realized
by means of guideline-based (expert) interviews, which is a widespread, differentiated,
and methodologically well-developed method [Helll]. The qualitative interviews were
conducted as expert interviews ,@ﬂ, as these had to meet special selection
criteria. The expert interview is a special form of the guided interview and is defined
by selection and status of the interviewees ,. The interview data were
subsequently processed using qualitative content analysis and presented in form of industry
personas that are a conceptual extension of the Al personas according to Holzinger et

al. [AKK22).

Data Collection

Before the interviews were conducted, a semi-structured interview guideline was prepared.
Based on the research questions, the interview guideline consists of the following major
topics: 1) current pain points or use cases that could be solved by Al, ii) questions
about data, data management and maturity levels including time series data and storage
management of data such as on-premise computing vs. cloud computing vs. edge com-
puting, iii) time series data analysis and AI solutions, and iv) the (potential) application
or usage of [FL. Additionally, a slide set was prepared to explain to the participants
(where necessary) the concepts of i) time series data, ii) edge-computing vs. on-premise
computing vs. cloud computing, and iii) FL. All interview partners were recruited through
either the different company networks of the authors or through private relationships.
Additionally, the authors used LinkedIn to promote the study on social media to recruit
further participants. The interviews were conducted online using MS Teams. Except for
one interview, all were recorded (audio and video) and automatically transcribed. All

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.4. Industry Personas

interviews were conducted in German, for presenting the results, the respective quotes
were translated into English.

Analysis

The analysis of the collected primary data has been carried out in the form of qualitative
content analysis according to Glaeser and Laudel . The basic procedure consists of
understanding and interpreting the collected data and texts (interview transcripts) in a
systematic, rule-based manner. The aim of the analysis is to filter out Al-relevant aspects
from the material according to previously defined classification criteria (structuring).
The data analysis started with the definition of the structuring dimensions and the
further differentiation into individual characteristics. The main chapters of the interview
guidelines were selected as the central structuring dimensions. The results were processed
by extracting, summarizing, and comparing relevant topics and aspects from the data
material and then condensed into “industry personas” [HKK™22|.

Participants

Finally, thirteen (n = 13) male people agreed to participate in the interviews. Eleven (n =
11) of them hold an MSc in a technical study (e.g., telematics, automation engineering,
automotive engineering), one (n = 1) of them studied business administration and
one (n = 1) of them holds an apprenticeship diploma. The participants reported
to work in different industrial sectors (number of participants in brackets) such as
automotive industry (3), metal industry (3), electronics (2), logistics (2), paper production
industry (1), mechanical engineering (1), and waste management (1).

7.4 Industry Personas

During the interview analysis, we were able to cluster the interview results and derive three
interview-overarching industry personas based on the method for persona identification
and description by Holzinger et al. . In this regard, we use the concept of
personas for Al systems as archetypes that help designers to focus on the goals and needs
throughout the Al product development process . Based on that, we define an
industry persona as a representative model of a specific business type within an industry,
conceptualized based on their common traits, goals, and pain points in implementing
AT applications (including collaborative Al approaches such as FL). The three identified
industry personas are i) service business, ii) production optimization, and iii) complex
product and project business. The personas are described with respect to five dimensions
i.e., goal of the persona, structural and behavioral aspects of the industry or the business,
Al applications planned to be used, pain points regarding the implementation, and the
attitude towards AI/FL. Depending on the insights gained from the interviews, we need
to mention that interview participants could be related to one or more industry persona,
vice versa other participants could not be assigned to any of the industry personas (e.g.,
P7, P8), as shown in Table 7.1.

109

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

110

Table 7.1: Industry personas and assigned participants

Industry Persona (IP) Participants
IP 1: Service Business P1, P5, P6, P9
IP 2: Production Optimization P2, P3, P5, P6, P11
IP 3: Complex Product and Project Business P4, P10, P12

7.4.1 General Interview Results

The interview results show that there exists a plethora of different reasons for the
application of AT solutions or the desire to introduce AI solutions into companies. These
reasons are manifold and very diverse, like for example, “ ... finding use cases to open
up new business areas using AI” (P1), “We always want/need to be at the forefront of
technology” (P5), “... addressing problems that can be solved with data-based approaches”
(P1) or to develop “new project ideas” (P2, P9), or apply new “imaging technologies’
(P2, P9). However, as stated by P7 and P8 Al solutions are mostly used for small but
very specific solutions. Answers regarding the improvement of services or processes were
for example “Optimisation of systems (machines) and production processes using AI”
(P6) or “Predictive planning for the customer” (P5).

)

7.4.2 Industry Persona 1: Service Business
Goal

The goal of this industry persona is related to improving services towards their customers.
For example, P1 is an Al manager and data scientist working in logistics. Their goal
is to develop recommender systems based upon time series data from deployed logistic
systems at the customer’s site to offer suggestions on how to improve the customer’s
businesses. Another example is related to P5, who is a production manager in a mechanical
engineering company. Their goal is to create predictions, trends, or forecasts for long-time
customers e.g., to predict a customer’s order requirements. P9 is a product manager in
logistics. They also need customer data to be able to develop additional services for e.g.,
maximizing transparency of a logistic system’s state.

Structural and behavioral aspects

All interviewees have existing (P1, P6, P9) and also long-time (P5) relationships with
their customers.

AT Applications

In all three examples of the interviews P1, P5 and P9 mentioned above, Al could help
to provide and/or improve forecasting or recommender services (P1, P5, P9) or develop
new services for their customers (P1, P9) based on the data provided by their customers.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.4. Industry Personas

Pain Points

However, data sharing was and still is a difficult topic. For example, P1 stated that it is
“hard to get customer data” and P6 stated that “ .. but the more complex the solution of
the subcontractors is, the less is revealed”. From the perspective of P5, their customers
say that the order process has worked as it is now for decades, why should they change
anything.

Attitude towards AI/FL

The attitudes towards Al and FL are ambiguous. For example, P1 stated that sharing
AT models related to FL strongly depends on the use case and that the fear exists of
sharing such a model with direct competitors. P5 refers to the fear of Al on the one
hand of his own employees and on the other hand on the side of the customers towards
“never change a running system”. In contrast, P9 clearly stated that their customers are
willing to share their data if the use of data is legally (contractually) secured and if the
benefits of the service provided are comprehensible and recognizable.

7.4.3 Industry Persona 2: Production Optimization
Goal

The goal of this industry persona is related to production optimization within the
companies of the interview partners. We uncovered several concrete examples, where
existing processes could be improved when introducing an Al solution. For example,
P5, who is a production manager in a mechanical engineering company explained that
in his company there is one colleague in the office who programs all the production
machines. This person has to extract the existing parameters used for programming
i.e., which material is processed on which machine with which tools and how. The goal
would be to have an Al that could take over the programming. Al could be used to
create pre-generated programs where the same material is processed with the same tools
on the same machine. An AI would have a lot of potential in this respect. Another
example provided by P5 is about implementing Industry 4.0, meaning digitization and in
this regard reducing the paper usage in the company. He stated that “we have actually
reached the point where 80-90% of production is paperless. We no longer use paper at all,
whether it’s delivery notes, invoices, etc. Everything is digital; the only place where we
still have paper is in accounting because the accounting department is a bit stiff.” This is
where the changeover is taking the longest. P6 is a data scientist and developer in the
metal industry. From his perspective, there is much potential for Al regarding control
systems to optimize systems and related production processes. Control systems are
time-critical and have a cycle time of 100ms—mno more and no less. P11 is the head of
automation technology in the automotive industry. In their company, spot welding is
used to assemble different parts of cars. Based on the continuously recorded process data
(e.g., with the Microsoft Business Intelligence Tool), the plan is to use an Al solution to
analyze the welding points for anomalies and then send notifications to maintenance or

111

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

112

production if an anomaly is detected. A more general statement was given by P2, who is
a senior data scientist working in production industry. He is aware that establishing new
Al solutions or new data science solutions in the company is a very difficult job. So, their
goal is to find ways to introduce new Al solutions together with potential target users.

Structural and behavioral aspects

All interviewees with this persona (P2, P3, P5, P6, P11) have found different types
of processes that could be improved by using Al. P3 refers to improving the ordering
process, while P5, P6 and P11 really point out Al solutions to improve manufacturing
processes. Additionally, P2 and P5 see a lot of potential regarding different process
improvements using Al, however, they clearly state that the human factor needs to be
thoroughly considered.

Al Applications

Possible Al solutions that could help to improve the processes are object and anomaly
detection (P11), forecasting (P3), generative Al for code and maybe text generation (P5)
as well as parameter estimation for optimizing programming and control processes (P5,
P6).

Pain Points

The pain point mentioned by P3 is as follows: the time and effort needed to put an order
entry into their internal ERP system is especially for small orders very high and puts
pressure on the balance sheet. So far, there exists no good solution for automatically
recording small orders, but Al could help. The goal would be to automatically record
the order data including all relevant information independent of the order size. P5
described his pain point as follows: The programming of the production machines works
well as it is, but there is the “human factor, who unfortunately sometimes makes sloppy
mistakes, who doesn’t remember certain empirical values, who then has to spend a lot of
time searching for these empirical values”. For the paperless office example, P5 reported
that fear of new technologies or Al is a big issue. Although he thinks that AI could
offer more opportunities than risks, the introduction must be well-planned. The whole
implementation process must function as one uniform system, all data must be available
in the right places so that everyone can work with it. P6 recognizes the potential of
Al regarding their control systems, however, their control systems are currently lagging
behind Al In terms of software, the control systems would be ready (solutions with
GPUs), but in terms of hardware, it is not yet fast enough i.e., real-time control by Al
is not yet possible. Regarding analyzing the welding points, P11 mentioned two pain
points: this use case has not yet been realized, first due to resource bottlenecks and
second because of insufficient computing power. P2 stated that “Production engineers
are very busy and don’t have time to deal with new data science methods.”, therefore, it is
difficult to convince them to use newly developed Al solutions.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.4. Industry Personas

Attitude towards AI/FL

The attitude towards Al is there, however, there are several challenges that need to be
overcome before being able to introduce Al in the respective companies. Especially P2
and P5 refer to the human factor that needs to be considered. P2 clearly states that in
order to introduce a new Al solution, the management needs to be on board and the target
groups need to be shown a clear benefit (e.g., reducing workload, increasing security).
Similarly, P5 raises the issue of fear of AI, thus, his employees must be integrated into
the introduction process, and this must be done very carefully. Additionally, P3 and P6
state that they would like to introduce Al for process improvement, however, P3 stated
that for his use case, no Al solution exists that could solve his problem, while P6 states
that the software needed for solving his problem is there, but the hardware is still too
slow.

7.4.4 Industry Persona 3: Complex Product and Project Business
Goal

The goal of this industry persona is related to improving the quality of products in the
manufacturing process. This means to establish a quality control process and better
product management to continuously ensure the product functionality at the end-of-line.
For example, P4 is a simulation engineer from the automotive industry. During test
drives with their vehicles, they look at the physical variables that are recorded e.g., bus
data that combines different components so-called “black-boxes” like the steering control
of the vehicles including camera sensors. Therefore, they equip the vehicles with sensors
to measure speeds, accelerations, any physical variables, wheel speed distances etc. They
look at how a vehicle reacts when it gets into a certain situation i.e., whether it reacts
correctly or incorrectly. If it is reacting incorrectly, they look at where the error comes
from. Similarly, P12 is the head of development of high-voltage systems in the automotive
industry. During vehicle testing, they continuously measure and collect data. As a driver,
one can set triggers in the event of a fault, but the drivers do not know whether the fault
has perhaps occurred already before the current event. In both cases, the goal is to use
AT to support error detection in vehicles during test drives. Another example is provided

by P10, who is a product owner for ML| and quality inspection in the metal industry.

They produce high-performance components for engines, transmissions, and industrial
applications which need to fulfil very high quality standards. Al is mainly applied in
in-line and end-of-line quality inspection.

Structural and behavioral aspects

P4 and P12 stated that Al could help to enhance the quality control processes e.g., during
vehicle testing. In the case of P10, Al could help to improve the quality of their products
(quality prediction through anomaly detection and classification).

113

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

114

AT Applications

Regarding existing Al applications or solutions, P4 stated that his company has taken
first very small steps towards using Al. For example, they use Al during test drives, in
their case the road is filmed from the vehicle using a built-in camera. They analyze the
videos and try to automatically recognize traffic signs so that they do not have to label
them manually. P12, for example, is aware that there exists an Al application to support
the data analysis of the data collected through vehicle testing, however, this application
is currently not used. In contrast, P10 mentioned that they already use different Al
solutions for quality assurance. For example, they use in-line and end-of-line anomaly
detection, where they simply recognize “good” and “bad” images through classification
(DL). Regarding the optimization of production processes (production planning) like for
example which orders are placed on which system at which time, their Al is used for
bottleneck identification or to optimize the capacity utilization.

Pain Points

For example, P12 mentioned that they store all technical data from vehicle testing on
huge on-premises, thus on servers/hardware located in the organisation’s own facilities.
However, this data or information is currently not used at all. In this regard, pattern
analysis could be used to uncover the problems in the vehicles. This has potential, but
they are not yet utilizing this potential. P12 stated that they are “sitting on a treasure
trove of data that they could/should exploit”. One suggestion provided by P12 is that in
their case Al could be used to automatically detect errors during vehicle tests. Upfront,
the Al could be fed with the functional load specification and then the AI can monitor the
measurement technology during driving to see whether the vehicle behaves as expected
or whether an error occurs. P10 mentioned that their major barrier to implementing
AT solutions is often related to the lack of resources. To be able to develop/train good
models, it needs domain experts i.e., the specialists/experts in production or on the plant
in question, however, these experts are often not available. Additionally, he stated that
predictive quality and predictive maintenance seem to have great potential and that
many use cases have been launched in this regard, however, they have almost never been
established.

Attitude towards AI/FL

Here, the attitudes towards Al and FL are similar to those mentioned in the first industrial
persona. For example, P4 stated that Al is generally rejected, or technicians or even car
testers have existential fears, namely that Al could replace them.

7.5 FL Blueprints

To address the industry personas with their goals to realize Al-based applications in a
complex business environment with multiple involved parties, we propose three solution

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.5. FL Blueprints

blueprints making use of FL. Applying FL facilitates the collaboration between the
involved parties (e.g., service companies with their customers) to jointly train the Al
models that are integrated into the applications.

In this section, we introduce the fundamentals used in the FL blueprints, followed by
each blueprint’s system design, implementation steps, and collaboration mode.

7.5.1 Fundamentals
Collaboration Mode

To the best of our knowledge, there are currently no classification terms describing
the awareness and activities of an FL party on how it collaborates in an FL solution.
Therefore, we introduce two collaboration modes that are specified for each involved
party in FL.

Implicit FL is given for a party if FL is performed in the background without the need
for intervention or (re)configuration. This applies to parties that use e.g., applications
for analytical purposes and directly or indirectly generating data and labels. Only minor
initial setup (e.g., acknowledging that FL happens in the background) is tolerated in
implicit FL.

Explicit FL is given if the party is aware that FL is applied and has the possibility to
actively control the learning process by e.g., providing datasets, selecting collaborators,
starting FL runs, and deploying models. In explicit FL, collaborators (e.g., data scientists
of a consortia) need to align on the planned runs and the potential impact, while this is
abstracted away by e.g., service providers in implicit FL.

Data Partitioning

According to the partitioning of samples and features, we recap the following terminologies
from Chapter [2:

Horizontal Federated Learning (HFL)|is given if involved parties have datasets with

different data samples (e.g., products) but with the same features (e.g., name, color).

Hence, each party is a client that trains models with the same architecture locally and
forwards them to the server for aggregation into a global model to facilitate knowledge
exchange.

Vertical Federated Learning (VFL) is given if involved parties have datasets with
the same data samples but with different features. Hence, different model architectures
are used and trained on the client (= passive party). Typically, these models are defined
as Split Models, since the output (i.e., matrix of real values) is combined by the server
(= active party) as input into another model. The active party provides the labels and
initiates the global learning process with backpropagation.

115

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

116

v | FL Server -
; Provider '
: . Collaboration Application Service !
l\gog;al Aggrsegat_lon <> Criteria Fceeildb?Ck > (e.g., Insights| Company !
aring Service Evaluator ollector for Service '
; A L A Improvement)
o] S EUSSSS———————
: - Filter
FL Client
P lized ¥ i
ersonalize Inference Engine Customer
FL Model . .
Trainer Application '
Data Source (e.g. Customers !
J & Labels Forecasting, :
Recommen-
Data Adaptor I dation)
Labeling Tool

Figure 7.1: IFL blueprint for service businesses

7.5.2 FL Blueprint 1: Service Business

To provide value-adding services for sold products, service companies (industry persona
1) can make use of product-related usage insights collected from the customers. However,
since customers are often hesitating to share (raw) data for ML-based services (e.g.,
product anomaly detection), a trustful infrastructure and collaboration mode has to be
established. Additionally, the value of used applications need to be clear and recognizable
for the customers supporting the product usage over the whole lifetime.

Figure |7.1) provides an architecture with two main parts, i.e., the server operated by
the Service Company and the client installation that runs on the side of the Customers.
Both sides run applications for e.g., forecasting product wear and making suitable recom-
mendations. While the Customer Application is heavily based on raw data originating
from data sources like [IoT| sensors that come with the bought product, the Provider
Application of the Service Company is based on non-privacy-disclosing feedback data from
customers. Hence, the Service Company aims to provide suitable services (e.g., predictive
maintenance) based on processed inference results (e.g., classifications of product issues)
of multiple customers.

To support these applications, HFL is used to train a common model for all customers.
This is relevant to increase the quality of the inference results which is the main input
for the Customer Application. Therefore, the architecture in Figure |7.1] considers the
FL Client component that runs the Data Adaptor to map data from data source into
the schema used as input for the ML model. The Trainer runs the training procedure
pre-defined by the Service Company to iteratively optimize the model. Based on that,
FL is applied by using the Model Aggregation & Sharing Service that aggregates and

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.5. FL Blueprints

distributes an FL model in each iteration. However, to ensure that models are shared
only between trusted parties (avoiding knowledge transfer to competitors), the Trainer
registers the FIL Client with respective criteria for participation on the server using the
Collaboration Criteria Fvaluator. Since the data distributions of involved FL Clients
are typically heterogeneous, the Trainer ensures that the model is adapted to the local
data distribution (e.g., with a final local training after the last iteration) and stored as
Personalized FL Model.

Furthermore, the customer side runs the Inference Engine to execute the model for each
data tuple coming from the data source. The inference results are forwarded to the
Filter, which enables to specify which results should be forwarded and shared with the
Feedback Collector of the Service Company. With this, the data flow to the server and the
respective privacy level can be controlled. To improve the model quality, human expertise
is considered in respective supervised learning setups by adding labels to recorded data
tuples using the LabeLing Tool. In this case, the tool allows for manual data labeling (e.g.,
adding class labels for observed product issues). Additionally, labels are extracted from

the Customer Application to seamlessly incorporate feedback into the learning process.

For this, the tool would act as a backend service for the application.

To implement this blueprint, the participating parties need to consider the following steps:
First, the server infrastructure is deployed to the Service Company on suitable compute
and storage resources as defined in the given IT strategy (e.g., cloud, on-premise data
center). Second, the data ingest needs to be configured for each FIL Client to specify which
local data points are used for FL. If the setup considers a Customer Application, this can
be pre-configured in a suitable user interface during the installation process. Third, the
Customer Application can be used and labels are generated as feedback is provided by
the customer by e.g., documenting product-related issues. Fourth, the collected dataset
is used by the deployed system to initiate HFL to increase model performance. The
updated and personalized model is then used in the Customer Application to e.g., improve
product anomaly detection. Finally, local insights resulting from the model inference are
uploaded to the Service Company according to the configurable filter.

The collaboration mode can be described as implicit FL with initial configuration effort
since FL is executed in the background as the Customer Application is used. The
configuration effort is limited to the data mapping using the Data Adaptor and the
definition of collaboration criteria for FL. Hence, the collaboration is suitable for setups
that run on a long-term basis (e.g., product lifetime with service support) without
explicitly intervening in the FL process.

7.5.3 FL Blueprint 2: Production Optimization

To optimize complex production processes and individual production steps, AI models
can be used for e.g., anomaly detection and root cause analysis purposes, which allows
timely intervention and therefore reduction of costs. Based on the resulting insights, the
process automation system can be updated with suitable parameters. This addresses the

117

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

118

FL Server '
FL Company ;
Model Aggregation Metrics & Deployment <«—{Configurator & On-Premise !
& Sharing Service Validation Service Service Dashboard | Data Center :
A 7
FL Client 1 Process
. Analytics
Personalized >I Inference Engine Application
FL Model Trainer (e.g., Angmaly 5
Detection, | Shop Floors !
Data Source Root Cause / Sites |
J & Labels Ana|ysis) H
Data Adaptor
Process-based Process
Label Extractor |¢ Control

Figure 7.2: IFL blueprint for production optimization between multiple sites

need of the production optimization persona to tackle the lack of skills and error-prone
production steps.

In this regard, we propose the architecture in Figure [7.2| supporting Process Analytics
Application(s). Multiple sites and shop floors of a company are involved to share knowledge
and therefore boost performance for the model(s) used in the backend of the respective
app deployments. To this end, the FL-based setup considers two main parts.

First, the FL Server is deployed to a data center with access to all involved sites (e.g.,
on-premise deployment). In addition, the FL Configurator € Dashboard is connected to
the server for managing and monitoring the FL process. With this, responsible experts
from the sites can initiate a new FL run with multiple involved clients, according to the
underlying model and data distribution that need to be suitable for significant model
improvements. Therefore, the Model Aggregation € Sharing Service provides FLaaS for
the sites considering HFL for comparable production steps and corresponding ML tasks.
The metrics (e.g., classification accuracies) resulting from local validation of the FL model
are collected by the Metrics & Validation Service, which provides on-demand validation
runs for the experts using the FL Configurator & Dashboard. Based on presented metrics
from different clients and the respective development over time using the dashboard
functionality, the experts can make use of the Deployment Service. It supports deploying
the model to sites that likely benefit from the knowledge transfer with e.g., a better
anomaly detection rate in the underlying process.

Second, the FL Client is considered at every site for local training and to support the
execution of the Process Analytics Application. The process data is retrieved from the
Process Control via standards like OPC| and is then stored in the Data & Label Storage
for subsequent training. The Process-based Label FExtractor analyzes the process data by

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.5. FL Blueprints

identifying e.g., manual interventions and events such as process interruptions that are
considered unusual to derive class labels and store them along with the training data.
This implicit way of extracting labels makes use of an initial configuration (e.g., using
thresholds and rules) and complements explicit labeling, where data is manually labeled
in the storage by experts on-demand. Both styles are relevant to collecting as many
labels as possible to enable improved model performance. Based on data and labels,
the Data Adaptor and Trainer are used the same as for the service business to create a
Personalized FL Model. However, in this case, it is configured by the site experts that
finally make use of the FL. Configurator to load the (personalized) model into the site’s
Inference Engine. After that, the data tuples received from the underlying process are
continuously ingested into the Inference Engine and the result is forwarded to the Process
Analytics Application to optimize the site’s production. Furthermore, the inference results
can be used for updating parameters and set points in the process control. This enables
a closed-loop automation cycle enhanced with FL.

The implementation steps for this blueprint consider an initial setup on every site selecting
hardware resources for FL and process analytics and the installation of the presented
services. Based on that, the FL initiatives are planned by data scientists and experts of
the sites to figure out which sites can collaborate on a joint model. The HFL process
is then initiated with the FL Configurator and the results are validated before the
deployment decision is made by the experts. For this, the impact of the updated model
for the process analytics needs to be discussed, and potentially be executed in a test
environment before the model inference is used in production.

The collaboration mode is explicit FL as the responsible experts from the sites are actively
starting and controlling the FL process using the FL Configurator & Dashboard. This is
relevant since the impact on production is given for every site by updating values for
the automation layer using the process control. While the decision for joint FL runs
involves multiple site experts, the deployment decision of finished FL models is made
by single sites. To address the limited availability of site experts (e.g., process and
production engineers), the main effort of model building, training and initial validation
can be decoupled and solved by central data scientists. The remaining work comprises
the initial setup (e.g., data mapping and ML task definition) and the final validation
before models are deployed to production environments.

7.5.4 FL Blueprint 3: Complex Product and Project Business

Product or project development between multiple Subcontractors and a Prime Contractor
can be a complex task especially when it comes to system integration [Hob98]. Multi-firm
alliances are maintained to coordinate the production process with close interactions
between partners. In particular, the quality inspection process is an important use case
that can be supported with an FL solution.

For this, Figure |7.3| provides an architecture for VFL between a Prime Contractor as

Active Vertical FL Party and involved Subcontractors as Passive Vertical FL Parties.

119

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

120

| Active Vertical

'| FL Party End Product
Labels Analysis App
: Vertical FL (e.g., Anomaly

-~ Inference Engine

B X
Aggregator Aggregated & Aggregator gtﬁ(a:;[ilgln,
E Model A A Classification,

A4

Root Cause
Analysis)

Trainer Local Model :
Collaboration ;
Criteria Evaluator T Vertical FL :
[“— Configurator &
Dashboard :
Data Adaptor oA :
Prime

Contractor |

Passive Vertical
1| FL Party

Partial

Split Model Product
Inference Engine » Analysis App

Trainer

(e.g., Anomaly| '

N Ly Detection) .
Local Model

Data Adaptor 4—@7
Sub !

Contractor |

Figure 7.3: IFL blueprint for complex product and project businesses

The overall goal of the Prime Contractor is to improve the end product by e.g., gaining
insights into the product quality using the End Product Analysis App that is based on
the trained FL model and collaborative inference of all contractors. This application
supports e.g., quality classification, anomaly detection, or root cause analysis as the
product is assembled. Similarly, the Subcontractor is interested in product quality of
the respective part using the Partial Product Analysis App. To supply these apps with
sufficiently trained FL models, the Vertical FL Configurator Dashboard is used by the
Prime Contractor to initiate the FL process and control it accordingly by monitoring
validation results. On both sides, VFL is applied.

For this, a Subcontractor’s Trainer trains models on their local Data Source (e.g., tabular,
image-based or time series-based quality data resulting from product inspection) after
applying the Data Adaptor to map the local data as input features. A Subcontractor
has two options, training of a Local Model without sharing insights with the server, and
training a Split Model. The latter one is trained in the context of VFL as the output (e.g.,
values in the last layer in a neural network) is forwarded to the active VFL party (i.e.,
the Prime Contractor). With this, the active party can combine the outputs of multiple
passive parties using the Vertical FL Aggregator, and plugging the outputs into the model

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.6. Discussion

of the active party. Hence the combined output is compared with the Labels (e.g., product
quality classification after assembly), and using a suitable loss function, the errors are
backpropagated to all involved parties. The repeated execution of this training procedure
enables to train all Split Models and the combined global one. This approach is useful to
enable model inference for the End Product Analysis App in a holistic way considering
features of partial products that have been assembled into the end product. For this, the
inference results of the Subcontractors (using the respective Inference Engine) need to be
combined as well by the Prime Contractor using the Inference Engine & Aggregator. The
collective inference output is displayed in the analysis app and allows for e.g., root cause
analysis and anomaly detection in a detailed way to provide feedback to each contractor.

Although there is no model exchange between the Subcontractors, the Collaboration
Criteria Evaluator is considered in this blueprint to configure under which conditions
VFL is executed. The respective criteria can be configured on the passive party as the
Trainer registers for FL. at the active party. Furthermore, the Prime Contractor can
use the VFL Configurator & Dashboard as a frontend for the Collaboration Criteria
Evaluator to centrally control which Subcontractors (i.e., input features) are considered
in the overall model (or multiple models in case of product variants). Additionally, the
Inference Engine of the Subcontractors can be configured to only forward inference results
to the Prime Contractor if specified accordingly. These settings address the hesitancy of
Subcontractors to share data and collaborate accordingly since the configurability allows
the involved parties to control what is shared while supporting use cases as root cause
analysis and therefore immediate problem-solving.

The implementation of this blueprint considers the initial setup to install the FL services
for the active and passive parties as well as the analysis applications. Afterwards, the
training and the inference data flow need to be configured in a rule-based style to ensure
which output is shared. In the meantime, the Prime Contractor collects and provides
the Labels for an initial set of training data. Next, the VFL training is started and
monitored using the VFL Configurator € Dashboard. As the model quality increases to
an acceptable level, each party needs to deploy the model to the respective Inference
Engine. Hence, the collective inference process is initiated and runs continuously in the
background providing insights to the connected apps.

The collaboration mode of this blueprint is explicit FL for the active party since the
FL runs need to be started and controlled by the Prime Contractor using the VFL
Configurator & Dashboard. For the passive party, implicit FL is given since FL is applied
seamlessly in the background after the rules for inference and model output sharing are
declared in the setup phase. In case if no collaboration is required or acceptable for
certain data instances, the Local Model can be used for isolated inference.

7.6 Discussion

In this section, we discuss the FL blueprints for the identified personas based on the
five dimensions presented in Table [7.2. We have defined these dimensions to provide

121

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

122

distinguishing characteristics and comparability of the blueprints.

Table 7.2: Properties of the proposed FL solution blueprints

Complex
Service Production Product and
Business Optimization Project
Business
FL paradigm HFL HFL VFL

Collaboration mode

implicit FL

explicit FLL

implicit FL (passive
party) and explicit
FL (active party)

privacy-preserving
product usage
insights for
additional services

improved processes

through FL models

and interaction with
process control

usage of
Subcontractor Split
Models for detailed
feedback for the end

product

Key benefit
Main addressed
needs

integration of quality
and usage feedback

optimizing (manual)
error-prone tasks

privacy-preserving
and configurable
interaction between
contractors

Main implementa-
tion challenge

rollout of solution
and initial data
collection

initial setup effort
and achieving
production-readiness

master operations
and collecting
inference results from

all Subcontractors

First, the FL paradigm is HFL for the service business and the production optimization
blueprints. This paradigm is used in the majority of approaches in literature ,
since it is less complex than VFL due to the same ML model architecture used by all
clients. For the mentioned personas, HFL is applied since all involved clients collect
the same data scheme from a similar product or production process. The resulting
(personalized) FL model can be used by everyone without further dependencies on other
parties when it comes to inference. This is different for complex product and project
businesses as the Subcontractors view different data schemes and therefore apply VFL.
A Split Model architecture needs additional alignment between the involved parties in
the setup process as well as for the joint inference. However, a Split Model can be used
individually for the local dataset focusing on analytics tasks for the partial product only.

Second, the collaboration mode is implicit FL for the service business blueprint and the
passive party in the complex product and project business blueprint. This setup supports
parties that do not want to be in the loop of the FL process and rather focus on the
application that is based on the model in the backend. For this, the system needs to be
installed by the provider or main contractor with sufficient technical resources. While the
explicit FLL mode (applied in the production optimization blueprint and for the active
party in complex product and project business) provides certain controllability of the
learning and deployment process, implicit FL reduces obstacles in the adoption of an

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7.6. Discussion

FL-based system especially for customers and Subcontractors that need to be convinced.
Although Subcontractors are not explicitly involved in the FL process, the model still
needs to be deployed to validate the suitability in local production.

Third, the key benefit of the service business blueprint is to provide product usage insights
from customers in a privacy-preserving and agreed way. This lowers the barrier to con-
necting with customers and retrieving information that can be integrated into additional
services like predictive maintenance. This can be used on the server side (Service Com-
pany) or directly on the client side (customer). For the production optimization blueprint,
multiple sites connect to improve their processes with FL models for e.g., reduction of
rejected production batches . The direct integration of the inference results
into the process control using e.g., edge devices provides a low-latency approach for near
real-time automation systems. However, based on the latency requirements of the use
case, the FL. model needs to be optimized and executed on a suitable hardware architec-
ture . The Prime Contractor in the complex product and project business
blueprint can use the detailed insights from all Split Models of involved Subcontractors
to e.g., identify errors in partial products or certain combinations of them in the end
product. However, this needs input from the Inference Engines of Subcontractors, which
can control what is forwarded to the Prime Contractor’s inference aggregator. While
this addresses the Subcontractor’s concerns regarding data sharing, the overall inference
result of the combined FL model cannot be derived sometimes. It can be concluded that
further agreements (i.e., service levels) need to be in place to successfully collaborate on
a long-term basis.

Fourth, the main addressed needs are the integration of quality and usage feedback
to provide improved services, the optimization of (manual) error-prone tasks, and the
privacy-preserving and configurable interaction between contractors to e.g., improve the
product (quality). While these needs have been identified from different personas and
addressed by corresponding FL blueprints, there is a certain overlap of architectural
core components (i.e., Collaboration Criteria Evaluator, Trainer, Data Adaptor, Model
Aggregation € Sharing Service). These components ensure the general attributes of IFL,
to ensure privacy, heterogeneous data schemes and data distributions, and collaborations
with selected partners. However, the blueprints are not limited to the respective personas
and can rather be applied in different use cases.

Fifth, the main implementation challenge for the service blueprint is the rollout of
the solution and the initial data collection. In particular, the customers need to use
the application for a significant period to provide enough labels for FL. The service
provider needs to identify the requirements of the customers, to e.g., configure the
collaboration criteria in the client setup. Similarly, the initial setup effort is relevant in
the implementation of the production optimization blueprint as well. In addition, to
make the FL setup production-ready, multiple runs with involved sites might be necessary
until the FL model can be deployed to production. Furthermore, general data availability
(i.e., data recording in processes through either manual input or IIoT sensors) need to
be given for FL, which cannot be taken as granted as P5 mentions that a number of

123

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. FL SoLUTION BLUEPRINTS FOR USE CASES SURVEYED IN AUSTRIAN INDUSTRIES

124

departments have hardly digitalized their processes. For the complex product and project
business blueprint, the main challenge is to master the operations that are needed to not
only apply VFL but also to integrate inference results. To derive an aggregated inference
result, all inputs are relevant and need to be collected from potential stragglers. This
process lasts until all sub-products are produced and assembled and the model inference
is applied on all Split Models as well as the combined model.

7.7 Summary

In this chapter, we presented the results of thirteen interviews in several Austrian
industries to identify, e.g., Al applications, pain points, and the attitude towards Al
and FL. The interviews have been conducted in 2024, to analyze the prerequisites for
collaborative Al solutions (i.e., FL) because the industry has not yet adopted these
technologies significantly. Based on that, we derived industry personas, each aiming
to improve their underlying business or production activities (i.e., service business,
production optimization and complex product and project business). To provide suitable
AT solutions, we present three collaborative implementation blueprints (one per industry
persona) using FL. Each blueprint consists of a system architecture, implementation steps,
and a collaboration mode for the involved parties. For this, we introduced two novel
definitions i.e., implicit FL. and explicit FL. The FL blueprints have been discussed with
respect to five dimensions (FL paradigm, collaboration mode, key benefit, main addressed
needs, and main challenge) and the related work addresses other interview-based FL
studies and system designs for industrial use.

To the best of our knowledge, this is the first work to offer practical FL designs, imple-
mentation guidelines for industry personas, and an outline for inter-party collaboration.

This chapter was published as a paper at the 26th International Conference on Business
Informatics in 2024:

Blumauer-Hiessl, T., Fessl, A., Breitfuss, G., Schall, D., and Schulte, S. (2024). Federated
learning solution blueprints for use cases surveyed in Austrian industries. In 2024 IEEE
26th Conference on Business Informatics (CBI) (pp 80-89).

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Conclusion and Future Work

Finally, we provide a summary of the results that have been presented in this thesis. We
revisit the research questions from Section 1.2 and provide a critical analysis how we
addressed these questions with the contributions in Section [8.1. In Section 8.2, we give
an overview of the contributions and how they advanced the current state of the art.
Section 8.3 concludes this thesis with an outlook on the future work.

8.1 Research Questions Revisited

RQ1 How can systems and algorithms improve the operation of FL clients in real-world
environments with skewed data and independent edge devices?

To address this research question, we have proposed the IFL System (Chapter |3) with
service interfaces for heterogeneous (edge) clients. The concept of cohorts has been
introduced in the context of ML on [IloT-based asset data. To provide a solution for
skewed asset data, we introduced the IFL Process (Chapter 4) enabling FL for cohorts of
clients with similar data distributions. We have shown that the cohort-based FL model
performance (accuracy) outperforms FL scenarios without cohorts or individual training.
The proposed architecture supports individual and independent collaboration on shared
ML models for every client by considering respective tasks with client requirements (i.e.,
federation criteria).

RQ2 How should ML/FL lifecycles (individual steps and overall composition) be updated,
enhanced, or managed by FL systems, to ensure high-quality models, customizability for
individual clients, and integrability of FL into applications?

With the IFL Lifecycle presented in Chapter [5, we enable to manage FL artifacts
(= IFL Templates) considering steps including development, publishing, deployment,
execution (training and prediction), and the integration into client applications. Using

125

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8.

CONCLUSION AND FUTURE WORK

126

IFL Templates for given use cases, clients can be served with |[FLaaS|in a scalable and
still customizable way. We presented an extensible library for FL, the IFL Core, which
can be used to create an IFL Template for further integration into client applications
(e.g.,|CM). In combination, the IFL Core and IFL Templates provide functionality for
quality validation in a decentralized way as well as pre- and post-processing steps to
facilitate the creation of high-quality and customized results for individual clients.

RQ3 How can FL deployments be optimized on heterogeneous compute resources with
respect to response times, energy consumption and model performance?

In Chapter |6, we have presented an architecture for an FL system that supports FL
client deployments on multiple locations using cloud, fog, and edge resources. The
cohort-building algorithm XMeanCohorting facilitates the improvement of the model
performance through personalization based on the cohorts concept. We have shown that
model performance is increased by 10-15% as XMeanCohorting is applied. To further
address the optimization of model performance and especially response times and energy
consumption, the ILP-based client selection IFL Opt approach has been introduced. IFL
Opt allows for the convergence of the multi-platform approaches to the relatively best
basic deployment while also providing the flexibility to modify the selection of clients in
each iteration.

RQ4 What are the current pre-requisites for FL in industry and how can FL solutions
be provided to overcome existing challenges?

In Chapter |7, we presented interview results of 13 interviewees from Austrian industries.
They have been asked to provide information with respect to Al applications, pain points
in the underlying processses or in the implementation, and the attitude towards Al
and FL. This can be considered as pre-requisites for future FL implementations, as
there are no FL implementations in place so far. We have derived industry personas,
and provide FL blueprints as a basis for a solution for each of them. The blueprints
comprise architectures, implementation steps and collaboration modes to address the
collaboration between involved parties. The proposed solution i.e., the collaboration
models facilitate 1) performance improvements of commonly used ML models (e.g., for
production optimization on different sites), 2) privacy-preserving training on data that is
not accessible for a remote party (e.g., service company), and 3) distributed training and
inference on product (parts) for a complex product integration using vertical FL. The
proposed approaches address the surveyed challenges of the personas and can therefore
be used to reduce the barrier for implementation in industry.

8.2 Summary of Contributions

In this thesis, we have shown how FL systems can be used to address needs of privacy-
preserving learning that comes with improvements for underlying ML models in distributed
setups with limited data and labels. Several algorithms have been integrated in the

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8.2. Summary of Contributions

proposed |[FLaaS-based systems to tackle the challenges of non-IID data, client selection
optimization, and personalization of models. An holistic lifecycle management supports
the process of developing FL solutions until eventual deployment and integration into
applications. To support the implementation in industry, FL blueprints are provided for
three identified industry personas. The presented approaches are connected to several
industrial scenarios and use cases, either as basis for requirements or as evaluation
environment.

In Chapter 3, we have designed an FL system (IFL System) for industrial requirements
and setups. The motivational scenario considers [IoT| input data from industrial assets
operating in heterogeneous environments. We have addressed the non-IID data problem
by using the concept of population and cohort building based on the input metadata of
clients. We have formulated workflows that need to be considered in IFL Systems like
e.g., individual FL client registration, matching of clients through joint metadata and
federation criteria for collaboration with other partners.

We provide a detailed design of the IFL System in Chapter [4. The IFL Process has
been introduced, providing [F'LaaS| for individual and independent clients. A key part is
the proposed PopulationCohortBuilding (Algorithm 2), that is integrated into the IFL
Process. In the evaluation scenarios, we used vibration data from sensors mounted on
centrifugal pumps to classify several conditions of the pump. We have shown that the
cohort building algorithm outperforms individual FL and central learning. The results
have been close to the optimum where all data has been centralized for a given cohort.

In Chapter |5, we introduced the IFL Lifecycle, which manages FL artifacts (= templates)
throughout publishing, deployment, execution, and integration into client applications.
The IFL Lifecycle is a process that is supported by the presented components, i.e., 1) the
IFL Core library for developing FL training and prediction functionality, 2) the server
for executing the server stage of the defined template, 3) and client applications (e.g.,
CM applications) for running the client stages for training and prediction (incl. pre-
and post-processing). The template approach enables clients to develop scalable and
customizable FL solutions. The templates can be used for tackling e.g., supervised or
unsupervised tasks in an FL context. To address unsupervised FL (i.e., distributed and
privacy clustering), we have proposed the FedClust| algorithm with configurable levels of
privacy disclosure. In the evaluation, we have demonstrated how FedClust| is executed as
a template along the IFL Lifecycle. To do this, we have integrated the IFL Lifecycle into
a|CM| application for clustering industrial pump conditions. Through the deployment and
execution of both a four-client and a 33-client scenario, we showcased the applicability of
FedClust| and the IFL Lifecycle. Our findings revealed that sharing only local cluster
centroids using a privacy-preserving approach achieves similar performance to disclosing
client data to the server.

In Chapter 6, we provided a deployment architecture for FL, enabling client deployments
across multiple locations, utilizing cloud, fog, and edge resources. To enhance model per-
formance, reduce energy consumption, and improve FL. completion time, we incorporated
the cohort-building algorithm XMeanCohorting and the ILP-based client selection IFL

127

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8.

CONCLUSION AND FUTURE WORK

128

Opt into the FL system. In the evaluation, we presented FL runs that utilized different
client deployment strategies, including cloud, fog, and edge resources. We also employed
a real-world industry use case, which addressed a quality inspection problem in a PCB
manufacturing process. We conducted three scenarios to assess FL. deployments at both
the factory and production line levels, involving 2-6 clients and 6-18 clients, respectively.
Within each scenario, we compared basic deployments with multi-platform deployments
using the IFL Opt approach. Our findings demonstrated that applying XMeanCohorting
led to a 10-15% improvement in model performance. Additionally, IF'L Opt facilitated the
convergence of multi-platform approaches towards the best-performing basic deployment,
while still allowing for flexibility in updating the client selection in each round. We have
also found that fine-grained client splitting (e.g., one client per site and multiple clients
per factory) facilitated better cohort building and therefore provided improved model
performance.

Chapter |7 presented the results of 13 interviews conducted in various Austrian industries,
aiming to identify AI applications, pain points, and the attitudes towards Al and FL.
Based on these findings, industry personas were derived, each focusing on improving
specific business or production activities such as service business, production optimiza-
tion, and complex product and project business. To offer suitable Al solutions, three
collaborative implementation blueprints utilizing FL. have been presented, with each
blueprint tailored to a corresponding industry persona. These blueprints encompass
system architectures, implementation steps, and collaboration modes for all involved
parties. To support this, two novel definitions were introduced, namely implicit FL. and
explicit FL.

8.3 Future Work

This chapter concludes the thesis by providing an outlook to future work that may extend
or complement the presented contributions.

First, in the context of cohort-based IFL systems (Chapters |3/ and 4), efficient asyn-
chronous FL for industrial edge devices without involving a server as central authority is
an interesting future research direction. In particular, long-running (industrial) processes
with infrequent data and label updates might benefit from continuous model updates
shared with appropriate partners in the cohort. Hence, it can be worth investigating
the effect of asynchronous updates that are shared continuously or at relatively short
intervals in contrast to synchronous updates executed after relatively large intervals.
This may enable fine-grained improvements of model quality and may avoid rollbacks of
model updates that caused a negative knowledge transfer (= decreasing model quality).
Furthermore, forecasting of potentially negative knowledge transfer could complement
the idea of dynamically reorganizing cohorts over time. This can be relevant as the
underlying data distribution of a client can change so that either some clients are excluded
from a cohort, or new ones join. It can also be relevant to partially exchanging model
updates between neighboring (similar) cohorts to further optimize model performance.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8.3. Future Work

Furthermore, cohort reorganization between two communication rounds may reduce
cohort building problems (e.g., random initialization in clustering) that can lead to a poor
cohort model quality. Potentially, it is interesting to derive an individual FL model for a
given client that has collaborated with different other clients over multiple communication
rounds. Overall, developing innovative strategies to guarantee efficient FL. models across
diverse client cohorts can yield significant benefits.

Second, we plan to evaluate the IFL Lifecycle (Chapter 5) as part of the CM system in
a real production environment based on heterogeneous edge devices. Investigating how
users of CM applications apply concrete FL templates and interact within a group of
collaborators would be interesting to reveal potential shortcomings of the proposed IFL
System in the field. When it comes to apply globally trained cluster models as resulting
from [FedClust, it is relevant to answer the question to which extent the collaborators
can help an individual client to correctly cluster local data. In particular, new cluster
labels should be correctly used in inference tasks, even though these labels have not been
utilized during the training of an individual client. Therefore, as future work, it could
be interesting to evaluate the performance of |FedClust| on additional industrial datasets,
especially considering variations in the number of unseen labels in the test data set.

Third, as future work based on Chapter 6, we plan to support the automated splitting
of clients (i.e., their respective datasets) into finer-grained clients with a single data
distribution and support automated provisioning of these. This can help to improve model
performance through more homogenous cohorts of finer-grained clients. The automated
provisioning of finer-grained clients may optimize the used resources and potentially
reduces the manual effort of organizing clients by e.g., data scientists. Additionally,
optimizing the deployment of resulting FL models for inference services could be of
interest. Han et al. (see Section 4.4) have already optimized the interplay
between inference and FL training on the same device to provide high-quality inference
results. However, the deployment of inference services to optimal locations, potentially
decoupled from the locations of the dependent training clients, has not been addressed in
FL so far.

Fourth, in Chapter |7, we proposed blueprints for solving Al problems with FL. As future
work, the three blueprints need to be implemented in companies representing the different
industry personas. Subsequently, another interview-based study should be considered
to survey feedback from the implementation and ongoing operations. This can be of
interest to investigate how these blueprints can be extended to provide optimal results
(e.g., high model performance, low energy consumption, short response times) for the
underlying problems. Overall, practical FL systems and solutions should be validated in
the field with respect to the resulting model improvements, the impact on the underlying
use case, the ease of use in a group of collaborators, customizability, and scalability.

129

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

APPENDIX

IFL Terms

Table A.1: IFL terms used in this thesis

IFL Term Description

Client Stages Code that defines the behavior for training and inference on
the client.

FL Cohort A group of clients (or interchangeably a group of FL Tasks)

with similar data distribution. An FL Cohort is a subset of
an FL Population.

FL Plan Execution instruction(s) for an FL Task (e.g., training and
validating the model on the client).

FL Population A group of FL Tuasks created by clients which train models on
asset data with the same data scheme. In this thesis, an FL
Population is interchangeably considered as a group of clients,
since an FL Task identifies the client and contains respective
metadata for grouping.

FL Task Representation of client requests for participating in FL.

IFL Applying the concept of FL| to industrial machines distributed
across multiple factories, facing heterogeneous environmental
and operational conditions.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

IFL Client FL clients (software) addressing industrial requirements and
considering data of industrial assets.

[3ibliothek,
Your knowledge hub

131

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A. IFL TERMS
Table A.2: IFL terms used in this thesis (ctd.)
IFL Term Description
IFL Core A Python library for FL that supports FLaaS and can be

132

extended with custom behavior.

IFL Execution

Final stage of the IFL Process, which executes FL for identified
cohorts, validates results, and provides the model to involved
clients.

IFL Lifecycle

An FL lifecycle supporting the software development, pub-
lishing, deployment, and execution of FL solutions (e.g., IFL
Templates). The IFL Lifecycle includes the IFL Process.

IF'L Process

A multi-step approach that is provided as a service which
encompasses algorithms for on-demand FL requests, the sub-
sequent building of groups of clients (= cohorts) with similar
data to address the non-IID data problem, and the FL training
procedure.

IFL Server

Server that runs the IFL Services.

IFL Services

Software services providing an API to the IFL Clients providing
knowledge aggregation and distribution on a central server.

IFL System

A system consisting of IFL Clients and IFL Services provided
by the IFL Server.

IFL Template

Customizable software artifact with stages for defining server
and client code (i.e., Server Stage and Client Stages) making
use of the IFL Core.

Industry Applica-
tion

Application that can make use of IFLL

ML Model

Representation of an ML model referenced in a FL Task consid-
ering multiple parameters and a training dataset (see domain
model in Figure 3.2).

Server Stage

Code that defines the behavior of the FL server.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

List of Figures

|1.1 FL with industrial machines; Machines generate data that are used for training

| and evaluating ML models on edge devices; Models are periodically sent to

| the server for aggregation and distribution to other edge devices for knowledge

..................................... 3
2.1 Data partitioning types in FL [YLCT19] 12
2.2 FL model lifecycle [LLZT22] 15
2.3 IoT data processing [KKGT20]. 18
2.4 Mapping of edge, fog and cloud computing in the network context [YFNT19]. 22
|3.1 |FL with industrial assets; Assets generate data that are used in learning tasks |
| for ML Models executed on edge devices; Learning tasks for ML Models based |
| on the same asset type are part of an FL Population; Learning tasks for |
| ML Models with similar data are part of an FL Population subset named |
| FL Cohort; Knowledge transfer in continuously evaluated and updated FL |
| Cohorts ensures optimal collaboration with respect to model performance and |
| business partner criterial oL Lo o 26
3.2 Domain model 32
3.3 TFL workflows|. 33
3.4 FL client and server architecture 36
4.1 IFL Process with 4 phases: 1. Clients are connected to their assets and |
| submit tasks using the IFL API to participate in FL. 2. Submitted tasks |
| are registered on the server referring to ML models used as base for FL. 3. |
| Populations of tasks with same asset types are created. Cohorts further split |
| populations into clusters of tasks with similar data distributions. 4. FL is |
| executed for each cohort by applying the algorithm selected by the clients. |
| Finally, validating results and providing the ML model to clients.|. 43
4.2 IFL architecture: edge-based IFL Client and IFL Services 50

52

|4.3 Pump classification dataset: a schematic view of samples from one sensor. |

4.4 Ma

| time series data for one machine, colors indicate different material hardness. 53
4.5 Accuracy of the federated model trained on the two clients (one per two |
machine tools) using the material classification dataset. 56

133

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.6 Client performance comparison on the pump classification dataset with 11D

| target distribution. Every client is represented by a task ID and has four

| accuracy metrics resulting from different ways of model training: FL, individual

| training, cohort central training, and global FL (no cohort FL model). . . 57
4.7 Accuracy of the federated model after each communication round on the pump |
| classification dataset for 9 clients with IID target distribution.| 58
4.8 Client performance comparison on the pump classification dataset with non- |
| IID target distribution. Every client is represented by a task ID and has |
| four accuracy metrics resulting from different ways of model training: FL, |
individual training, cohort central training, and global FL (no cohort FL |
model). 59

4.9 Accuracy of federated model after each communication round on the pump |
| classification dataset for 10 clients with non-1ID target distribution.| . . . 60
|5.1 [IFL Core architecture with template as consumer|. 72
5.2 ifecyclel oo oL 73
5.3 Evaluation: Condition monitoring system integrating the IF'L Lifecycle to |
| perform [FedClust of pump conditions| 78
|5.4 Scenario 1: Average purity results of [FedClust with four clients 80
[5.5 Scenario 2: Average purity results of [FedClust| with 33 clients 82
6.1 IFL Core with main components for client and server| 90
6.2 IFL deployment architecture for multiple locations| 91
6.3 Scenario 1 — Factory FL with 2-6 clients 99
6.4 Scenario 2 — Production line FL: 6-18 clients| 100
. nario 3 — Pr ion line FL. with cohorts: 6-18 clients/ 101
6.6__Production line FL. with and without cohorts 102
[7.1 IFL blueprint for service businesses/. 0. 116
[7.2 IFL blueprint for production optimization between multiple sites 118
[7.3 IFL blueprint for complex product and project businesses 120

134

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

List of Tables

4.1 ITFL System entities e 42
6.1 Notation of parameters and variables 92
[7.1 Industry personas and assigned participants|o 110
[7.2 Properties of the proposed FL solution blueprints/ 122
A.1 _IFL term: in this thesis, 131
A.2 TFL terms used in this thesis (ctd.) 132

135

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

List of Algorithms

S o <F
— <f <t I~ O
o - - .
S0 .
[.
{olile)
olla :
[yl -] - .
~— o . .
l- .
o) -+
nu--
-—Hm . . .
oL ..
@ |4 -
40 |0
o <clle - a
> oo . A
<O H R
[SIREE) S
Tl |03 0
O -H|O <
FEIREEIRN()) 0
@ | || X @)
S K e
O3 ©
O QA Q
O Of | >
M) o) H | XX
— =t D)

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg

137

qny a8pajmous| JNoA

Sayloiqie

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Listings

70

5.1 IFL Template definition in Python|

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg

139

qny a8pajmous| JNoA

Sayloiqie

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Acronyms

AT Artificial Intelligence. [xii, 5, |7}, |31, 105
ANN Artificial Neural Network. 52, [54), 55
AOI Automated Optical Inspection. (95

APIT Application Programming Interface. |4, [71

AWS Amazon Web Services. 83, 94

CESP Collaborative Edge Service Placement. 21
CM Condition Monitoring. |1}, 7, |16} 25, |48}, 67-69) 74, 77, 79, 83, [85, 87, 126, 127
CMD Command. 71

CoAP Constrained Application Protocol. [17
DL Deep Learning. (11} |49} 51} 84, 114

FedAvg Federated Averaging. 9, [44

FedClust Federated Clustering. |7} 69, 73182, |84} 85, [127, 129, 134

FFT Fast Fourier Transform. 54

FL Federated Learning. [ix, xi, |1, [2, 25531}, 133537, 46/, 5663, 67, [105] [108, 128} 131}, 133

FLaaS FL-as-a-Service. [2, 4, |7}, |15} [16, 40, 41}, |48-50, |64, |67-69, |72, 8385, [105], |106,
126, 127

HFL Horizontal Federated Learning. (11} |12}, 115

HRM Human Resource Management. |108

TIaaS Infrastructure-as-a-Service. 20

141

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

IaC Infrastructure as Code. |97
IFL Industrial Federated Learning. 2l 27,29, 31, 34, 35, 37, 56, 5860, |68, 132
ITD Independent and Identically Distributed. |3, 13, 51, 52, 54, |56, 57, |59

IToT Industrial Internet of Things. iix, xi, 18,19, 23, 30, 51, 77, |88, (105, 116, |123, 125,
127

ILP Integer Linear Programming. 7, (89, 90, 92

IoT Internet of Things. 1,9, |13}, |16} 20} 67, 87
JSON JavaScript Object Notation. |54), 55
LLM Large Language Model. 84

MAN Metropolitan Area Network. 22
MFCC Mel-frequency Cepstral Coefficients. |52

ML Machine Learning. xi, 1, 11, 25-27, 35, |51, |67, 105, 113

OEM Original Equipment Manufacturer. 105

OPC Open Platform Communications. |32, 118

PaaS Platform-as-a-Service. 20

PCA Principal Component Analysis. (93
PCB Printed Circuit Board. 95

PLC Programmable Logic Controller. 105

PoC Proof of Concept. |106

Qol Quality of Information. 27, 30, 32, |35} |37

QoS Quality of Service. 21, 35

ReLu Rectified Linear Units. 52}, 54

RFID Radio Frequency Identification. |16

SD Standard Deviation. 197

SDK Software Development Kit. 84

142

SLR Systematic Literature Review.

TCP Transmission Control Protocol. 17

VFL Vertical Federated Learning. 115

VM Virtual Machine. 22,

WPF workflow.

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg

143

qny a8pajmous| JNoA

Sayloiqie

“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[AASC19]

[AATA*+21]

[AB14]

[ARPS20]

[ASCF23]

[ATMT21]

[ATOS*21]

[BBS6]

Bibliography

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh,
and Sunav Choudhary. Federated learning with personalization layers.
arXiv preprint arXi:1912.00818, 2019.

Abdulmalik Alwarafy, Khaled A. Al-Thelaya, Mohamed Abdallah, Jens
Schneider, and Mounir Hamdi. A survey on security and privacy issues
in edge-computing-assisted internet of things. IEEFE Internet of Things
Journal, 8(6):4004-4022, 2021.

Sebastian Abt and Harald Baier. Are we missing labels? a study of the
availability of ground-truth in network security research. In 2014 Third
International Workshop on Building Analysis Datasets and Gathering
Ezperience Returns for Security (BADGERS), pages 40-55. IEEE, 2014.

Mohammed Aledhari, Rehma Razzak, Reza M. Parizi, and Fahad Saeed.
Federated learning: A survey on enabling technologies, protocols, and
applications. IEEFE Access, 8:140699-140725, 2020.

Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and
Suhaib A. Fahmy. Refl: Resource-efficient federated learning. In Eigh-
teenth Furopean Conference on Computer Systems, EuroSys '23, page
215-232. ACM, 2023.

Sawsan Abdulrahman, Hanine Tout, Azzam Mourad, and Chamseddine
Talhi. Fedmccs: Multicriteria client selection model for optimal iot
federated learning. IEEFE Internet of Things Journal, 8(6):4723-4735,
2021.

Sawsan AbdulRahman, Hanine Tout, Hakima Ould-Slimane, Azzam
Mourad, Chamseddine Talhi, and Mohsen Guizani. A survey on federated
learning: The journey from centralized to distributed on-site learning
and beyond. IEEFE Internet of Things Journal, 8(7):5476-5497, 2021.

Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier
transform and its applications. McGraw-Hill New York, 1986.

145

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[BCM*18]

[BEG*19]

[BGvDH19]

[BHCW18]

[BHFB+24]

[BHKS 23]

[BHSRL*24]

[BIKT17]

[Bis07]

146

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky,
Toannis Ch Paschalidis, and Wei Shi. Federated learning of predictive
models from federated electronic health records. International Journal
of Medical Informatics, 112:59-67, 2018.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecny, Stefano
Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou,
Daniel Ramage, and Jason Roselander. Towards federated learning at
scale: System design. arXiv preprint arXiv: 1902.01046, 2019.

Thomas Bierweiler, Herbert Grieb, Stefan von Dosky, and Michael Hartl.
Smart Sensing Environment — Use Cases and System for Plant Specific
Monitoring and Optimization. In Automation 2019, pages 155-158. 2019.

Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. The
industrial internet of things (iiot): An analysis framework. Computers
in Industry, 101:1-12, 2018.

Thomas Blumauer-Hiessl, Angela Fessl, Gert Breitfuss, Daniel Schall,
and Stefan Schulte. Federated learning solution blueprints for use cases
surveyed in austrian industries. In 26th International Conference on
Business Informatics (CBI 2024), pages 80-89. IEEE, 2024.

Thomas Blumauer-Hiessl, Thomas Kaufmann, FErik Schwulera,
Michael Kiihne-Schlinkert, Konstantin = Schmidt, and Boris
Scharinger. Federated learning in industry. https:
//Www.slemens.com/global/en/products/automation/
topic—-areas/artificial-intelligence—-in—-industry/
whitepaper—-federated-learning—in—-the—industry.html]

2023.

Thomas Blumauer-Hiessl, Stefan Schulte, Safoura Rezapour Lakani,
Alexander Keusch, Elias Pinter, Thomas Kaufmann, and Daniel Schall.
Federated learning deployments of industrial applications on cloud, fog,
and edge resources. In 2024 IEEFE 8th International Conference on Fog
and Edge Computing (ICFEC), pages 19-26. IEEE, 2024.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,
and Karn Seth. Practical secure aggregation for privacy-preserving
machine learning. In 2017 ACM SIGSAC Conference on Computer and
Communications Security, page 1175-1191. ACM, 2017.

Christopher M Bishop. Pattern recognition and machine learning.
Springer New York, NY, USA, 2007.

https://www.siemens.com/global/en/products/automation/topic-areas/artificial-intelligence-in-industry/whitepaper-federated-learning-in-the-industry.html
https://www.siemens.com/global/en/products/automation/topic-areas/artificial-intelligence-in-industry/whitepaper-federated-learning-in-the-industry.html
https://www.siemens.com/global/en/products/automation/topic-areas/artificial-intelligence-in-industry/whitepaper-federated-learning-in-the-industry.html
https://www.siemens.com/global/en/products/automation/topic-areas/artificial-intelligence-in-industry/whitepaper-federated-learning-in-the-industry.html

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[BKKZ22]

[BLM14]

[BLST13]

[BMZA12]

[BTM*20]

[CAZ*+20]

[CBL*18]

[CBZ20]

[CH13]

[CKD*04]

Alexander Brecko, Erik Kajati, Jiri Koziorek, and Iveta Zolotova.
Federated learning for edge computing: A survey. Applied Sciences,
12(18):9124, 2022.

Alexander Bogner, Beate Littig, and Wolfgang Menz. Interviews mit
Experten: eine prazisorientierte Einfiihrung. Springer-Verlag, 2014.

Subramaniam Bagavathiappan, Barid Baran Lahiri, Thangavelu Sar-
avanan, John Philip, and T Jayakumar. Infrared thermography for
condition monitoring—a review. Infrared Physics & Technology, 60:35-55,
2013.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In First Edition of the
MCC Workshop on Mobile Cloud Computing, pages 13-16, 2012.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan
Parcollet, and Nicholas D Lane. Flower: A Friendly Federated Learning
Research Framework. arXiv preprint arXiv:2007.14390, 2020.

Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie
Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl:
A tier-based federated learning system. In International Symposium
on High-Performance Parallel and Distributed Computing (HPDC' ’20),
pages 125-136. ACM, 2020.

Ken Chang, Niranjan Balachandar, Carson Lam, Darvin Yi, James
Brown, Andrew Beers, Bruce Rosen, Daniel Rubin, and Jayashree
Kalpathy-Cramer. Distributed deep learning networks among institu-
tions for medical imaging. Journal of the American Medical Informatics
Association, 25, 03 2018.

Michele Compare, Piero Baraldi, and Enrico Zio. Challenges to iot-
enabled predictive maintenance for industry 4.0. IEEE Internet of
Things Journal, 7(5):4585-4597, 2020.

Lothar Cremer and Manfred Heckl. Structure-borne sound: structural
vibrations and sound radiation at audio frequencies. Springer Science &
Business Media, 2013.

Chris Clifton, Murat Kantarcioundefinedlu, AnHai Doan, Gunther
Schadow, Jaideep Vaidya, Ahmed Elmagarmid, and Dan Suciu. Privacy-
preserving data integration and sharing. In 9th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, page 19-26.
ACM, 2004.

147

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[CMF20]

[CNGT18]

[CNSR20]

[COM23]

[CSMT24]

IDC21]

[DCM*12]

[DLLW23]

[DODGS19]

[DPM+22]

148

Andrew A. Cook, Goksel Misirli, and Zhong Fan. Anomaly detection
for iot time-series data: A survey. IEEE Internet of Things Journal,
7(7):6481-6494, 2020.

Inés Sittén Candanedo, Elena Hernidndez Nieves, Sara Rodriguez
Gonzélez, M. Teresa Santos Martin, and Alfonso Gonzdlez Briones.
Machine learning predictive model for industry 4.0. In Lorna Uden,
Branislav Hadzima, and I-Hsien Ting, editors, Knowledge Management
in Organizations, pages 501-510. Springer International Publishing, 2018.

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asyn-
chronous online federated learning for edge devices with non-iid data.
In 2020 IEEE International Conference on Big Data (Big Data), pages
15-24, 2020.

Mario Chahoud, Safa Otoum, and Azzam Mourad. On the feasibility
of federated learning towards on-demand client deployment at the edge.
Information Processing € Management, 60(1):103150, 2023.

Mario Chahoud, Hani Sami, Azzam Mourad, Hadi Otrok, Jamal Ben-
tahar, and Mohsen Guizani. On-demand model and client deployment
in federated learning with deep reinforcement learning. arXiv preprint
arXiv:2405.07175, 2024.

Randy DeFauw and Collin Cudd. Applying Federated
Learning for ML at the Edge. AWS architecture blog, 12
2021. https://aws.amazon.com/blogs/architecture/

applying—federated-learning-for-ml-at-the-edge/.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed deep
networks. In 25th International Conference on Neural Information
Processing Systems - Volume 1, page 1223-1231. Curran Associates Inc.,
2012.

Tianchi Deng, Yingguang Li, Xu Liu, and Lihui Wang. Federated
learning-based collaborative manufacturing for complex parts. Journal
of Intelligent Manufacturing, 34(7):3025-3038, 2023.

Alberto Diez-Olivan, Javier Del Ser, Diego Galar, and Basilio Sierra.
Data fusion and machine learning for industrial prognosis: Trends and
perspectives towards industry 4.0. Information Fusion, 50:92—-111, 2019.

Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian
Becker, Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmiiller, Mad-
husanka Liyanage, Setareh Maghsudi, Nitinder Mohan, Jorg Ott, Jan S.

https://aws.amazon.com/blogs/architecture/applying-federated-learning-for-ml-at-the-edge/
https://aws.amazon.com/blogs/architecture/applying-federated-learning-for-ml-at-the-edge/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[DR*14]

[dSMdC*24]

[EARMAA18]

[FKM+23]

[FVH19]

[FYSt20]

[FZG*23]

[GBMP13]

Rellermeyer, Stefan Schulte, Henning Schulzrinne, Giirkan Solmaz, Sasu
Tarkoma, Blesson Varghese, and Lars Wolf. Roadmap for edge ai: a
dagstuhl perspective. SIGCOMM Comput. Commun. Rev., 52(1):28-33,
March 2022.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical Computer
Science, 9(3-4):211-407, 2014.

Allan M de Souza, Filipe Maciel, Joahannes BD da Costa, Luiz F
Bittencourt, Eduardo Cerqueira, Antonio AF Loureiro, and Leandro A

Villas. Adaptive client selection with personalization for communication
efficient federated learning. Ad Hoc Networks, 157:103462, 2024.

Ponciano Jorge Escamilla-Ambrosio, Abraham Rodriguez-Mota, Eleazar
Aguirre-Anaya, Raul Acosta-Bermejo, and Moisés Salinas-Rosales. Dis-
tributing computing in the internet of things: Cloud, fog and edge
computing overview. In Yazmin Maldonado, Leonardo Trujillo, Oliver
Schiitze, Annalisa Riccardi, and Massimiliano Vasile, editors, NEO
2016: Results of the Numerical and Evolutionary Optimization Work-
shop NEO 2016 and the NEO Cities 2016 Workshop, pages 87—115.
Springer International Publishing, 2018.

Tao Fan, Yan Kang, Guogiang Ma, Weijing Chen, Wenbin Wei, Lixin
Fan, and Qiang Yang. Fate-llm: A industrial grade federated learning
framework for large language models. arXiv preprint arXiv:2310.10049,
2023.

Ferdinando Fioretto and Pascal Van Hentenryck. Privacy-preserving
federated data sharing. In 18th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 638-646. International
Foundation for Autonomous Agents and Multiagent Systems, 2019.

Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea
Popescu, Richard Mortier, Shigiang Wang, Paolo Bellavista, and Jon
Crowcroft. Colearn: Enabling federated learning in mud-compliant iot
edge networks. In Third ACM International Workshop on Edge Systems,
Analytics and Networking (EdgeSys '20), pages 25-30. ACM, 2020.

Lei Fu, Huanle Zhang, Ge Gao, Mi Zhang, and Xin Liu. Client selection
in federated learning: Principles, challenges, and opportunities. IEEFE
Internet of Things Journal, 10(24):21811-21819, 2023.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements,
and future directions. Future Generation Computer Systems, 29(7):1645—
1660, 2013.

149

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[GCYR22]

[GHYR19]

[GL10]

[GSDH17]

[Hell1]

[HKH*19]

[HKK*22]

[HLS™20]

[HMR19]

[Hob9g]

[HPH18]

150

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An
efficient framework for clustered federated learning. IEEE Transactions
on Information Theory, 68(12):8076-8091, 2022.

Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Ro-
bust federated learning in a heterogeneous environment. arXiv preprint
arXiv: 1906.06629, 2019.

Jochen Glédser and Grit Laudel. FExperteninterviews und qualitative
Inhaltsanalyse. Springer-Verlag, 2010.

Zhiqgiang Ge, Zhihuan Song, Steven X. Ding, and Biao Huang. Data
mining and analytics in the process industry: The role of machine
learning. IEEE Access, 5:20590-20616, 2017.

Cornelia Helfferich. Die Qualitat qualitativer Daten, volume 4. Springer,
2011.

Thomas Hiessl, Vasileios Karagiannis, Christoph Hochreiner, Stefan
Schulte, and Matteo Nardelli. Optimal placement of stream processing
operators in the fog. In 2019 IEEE 3rd International Conference on Fog
and Edge Computing (ICFEC), pages 1-10, 2019.

Andreas Holzinger, Michaela Kargl, Bettina Kipperer, Peter Regitnig,
Markus Plass, and Heimo Miiller. Personas for artificial intelligence (ai)
an open source toolbox. IEFE Access, 10:23732-23747, 2022.

Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi
Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang
Qiu, et al. Fedml: A research library and benchmark for federated
machine learning. arXiv preprint arXiv:2007.13518, 2020.

Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube,
Kaoutar El Maghraoui, Anupama Murthi, and Punleuk Oum. ModelOps:
Cloud-Based Lifecycle Management for Reliable and Trusted Al In 2019
IEEE International Conference on Cloud Engineering (IC2E), pages
113-120, 2019.

Mike Hobday. Product complexity, innovation and industrial organisa-
tion. Research Policy, 26(6):689-710, 1998.

Adnan Husakovi¢, Eugen Pfann, and Mario Huemer. Robust machine
learning based acoustic classification of a material transport process. In
2018 14th Symposium on Neural Networks and Applications (NEUREL),
pages 1-4, 2018.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[HPMG20]

[HRK*22]

[HRLU™23]

[HRM™* 18]

[HSKS20]

[HWJH24]

[JAM*23]

[Jen94]

[Jol02]

[TWW21]

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The
non-IID data quagmire of decentralized machine learning. In 37th Inter-

national Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 4387-4398. PMLR, 13-18 Jul 2020.

Thomas Hiessl, Safoura Rezapour Lakani, Jana Kemnitz, Daniel Schall,
and Stefan Schulte. Cohort-based federated learning services for in-
dustrial collaboration on the edge. Journal of Parallel and Distributed
Computing, 167:64-76, 2022.

Thomas Hiessl, Safoura Rezapour Lakani, Michael Ungersboeck, Jana
Kemnitz, Daniel Schall, and Stefan Schulte. Lifecycle management of
federated learning artifacts in industrial applications. In 2023 IEEE 7th
International Conference on Fog and Edge Computing (ICFEC). IEEE,
2023.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Francoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Feder-
ated learning for mobile keyboard prediction. CoRR, abs/1811.03604,
2018.

Thomas Hiessl, Daniel Schall, Jana Kemnitz, and Stefan Schulte. In-
dustrial Federated Learning — Requirements and System Design. In
Highlights in Practical Applications of Agents, Multi-Agent Systems,
and Trust-worthiness. The PAAMS Collection, pages 42—-53. Springer
International Publishing, 2020.

Pengchao Han, Shigiang Wang, Yang Jiao, and Jianwei Huang. Federated
learning while providing model as a service: Joint training and inference
optimization. In IEEE INFOCOM 202/ - IEEE Conference on Computer
Communications, pages 631-640. IEEE, 2024.

Zohaib Jan, Farhad Ahamed, Wolfgang Mayer, Niki Patel, Georg Gross-
mann, Markus Stumptner, and Ana Kuusk. Artificial intelligence for
industry 4.0: Systematic review of applications, challenges, and oppor-
tunities. Ezpert Systems with Applications, 216:119456, 2023.

Nick R. Jennings. The archon system and its applications. In 2nd
International Conference on Cooperating Knowledge Based Systems
(CKBS-9/), pages 13-29, 1994.

Ian T Jolliffe. Principal component analysis for special types of data.
Springer, 2002.

Jan Johnk, Malte Weiflert, and Katrin Wyrtki. Ready or not, ai
comes—an interview study of organizational ai readiness factors. Busi-
ness & Information Systems Engineering, 63:5-20, 2021.

151

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[KAH*19)

[KB14]

[KBG+22]

[KHJ 23]

[KHY*19)

[KKG+20]

[KKP20]

[K1e06]
[KMA*21a]

[KMA*21b)]

152

Wagzir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif
Ahmed. Edge computing: A survey. Future Generation Computer
Systems, 97:219-235, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Jana Kemnitz, Thomas Bierweiler, Herbert Grieb, Stefan von Dosky,
and Daniel Schall. Towards Robust and Transferable IIoT Sensor based
Anomaly Classification using Artificial Intelligence. In Data Science—
Analytics and Applications, pages 14—19. Springer, 2022.

Alexander Keusch, Thomas Hiessl, Martin Joksch, Axel Stindermann,
Daniel Schall, and Stefan Schulte. Edge intelligence for detecting devia-
tions in batch-based industrial processes. In 2023 IEEFE 21st Interna-
tional Conference on Industrial Informatics (INDIN), pages 1-8. IEEE,
2023.

Mareike Kritzler, Jack Hodges, Dan Yu, Kimberly Garcia, Hemant
Shukla, and Florian Michahelles. Digital companion for industry. In
Companion Proceedings of The 2019 World Wide Web Conference, page
663-667. ACM, 2019.

Rajalakshmi Krishnamurthi, Adarsh Kumar, Dhanalekshmi Gopinathan,
Anand Nayyar, and Basit Qureshi. An overview of iot sensor data
processing, fusion, and analysis techniques. Sensors, 20(21), 2020.

Nicolas Kourtellis, Kleomenis Katevas, and Diego Perino. FLaaS: Fed-
erated Learning as a Service. In 1st Workshop on Distributed Machine
Learning, pages 7-13, 2020.

Achim Klenke. Wahrscheinlichkeitstheorie, volume 1. Springer, 2006.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1-2):1-210, 2021.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert
Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adria Gascon, Badih Ghagzi, Phillip B. Gibbons, Marco Gruteser,
Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchin-
son, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Kho-
dak, Jakub Konecny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrede Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,
Richard Nock, Ayfer Ozgiir, Rasmus Pagh, Hang Qi, Daniel Ramage,

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[KMN+02]

[KS20]

[KS22]

[KSLP19]

[KZ01]

[KZDB16]

[LDSP18]

[ILGN*21]

[LHL*21]

Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebas-
tian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramer,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang,
Felix X. Yu, Han Yu, and Sen Zhao. Advances and Open Problems in
Federated Learning. Foundations and Trends® in Machine Learning,
14(1-2):1-210, 2021.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D.
Piatko, Ruth Silverman, and Angela Y. Wu. An efficient k-means

clustering algorithm: analysis and implementation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(7):881-892, 2002.

Vasileios Karagiannis and Stefan Schulte. Comparison of alternative ar-
chitectures in fog computing. In 2020 IEEE jth International Conference
on Fog and Edge Computing (ICFEC), pages 19-28. IEEE, 2020.

Hermann Kopetz and Wilfried Steiner. Internet of things. In Real-Time
Systems: Design Principles for Distributed Embedded Applications, pages
325-341. Springer International Publishing, 2022.

Vasileios Karagiannis, Stefan Schulte, Joao Leitao, and Nuno Preguica.
Enabling fog computing using self-organizing compute nodes. In
2019 IEEE 3rd International Conference on Fog and Edge Comput-
ing (ICFEC), pages 1-10. IEEE, 2019.

Gary King and Langche Zeng. Logistic regression in rare events data.
Political Analysis, 9(2):137-163, 2001.

Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel.
The emerging role of data scientists on software development teams. In
38th International Conference on Software Engineering, pages 96-107.
ACM, 2016.

Jay Lee, Hossein Davari, Jaskaran Singh, and Vibhor Pandhare. Indus-
trial artificial intelligence for industry 4.0-based manufacturing systems.
Manufacturing Letters, 18:20-23, 2018.

Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen
Kang, and M. Shamim Hossain. Deep anomaly detection for time-series
data in industrial iot: A communication-efficient on-device federated
learning approach. IEEE Internet of Things Journal, 8(8):6348-6358,
2021.

Quyuan Luo, Shihong Hu, Changle Li, Guanghui Li, and Weisong Shi.
Resource scheduling in edge computing: A survey. IEEE Communica-
tions Surveys € Tutorials, 23(4):2131-2165, 2021.

153

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[LK18]

[LLGL24]

[LLPZ21]

[LLPZ23]

[LLZ+22]

[LSKWO02]

[LWLX19]

[LXZ15]

[Man08]

[Mar03]

[MBPS*+23]

IMG+11]

154

Kelvin Lui and Jeff Karmiol. Al infrastructure reference architecture.
https://www.ibm.com/downloads/cas/W1JQOBNJV, 2018.

Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances
on federated learning: A systematic survey. Neurocomputing, 597:128019,
2024.

Sin Kit Lo, Qinghua Lu, Hye-Young Paik, and Liming Zhu. FLRA: A
Reference Architecture for Federated Learning Systems. In Furopean
Conference on Software Architecture, pages 83-98. Springer International
Publishing, 2021.

Sin Kit Lo, Qinghua Lu, Hye-Young Paik, and Liming Zhu. Decision
models for selecting architectural patterns for federated machine learning
systems. Awvailable at SSRN 4474488, 2023.

Sin Kit Lo, Qinghua Lu, Liming Zhu, Hye-Young Paik, Xiwei Xu, and
Chen Wang. Architectural patterns for the design of federated learning
systems. Journal of Systems and Software, 191:111357, 2022.

Yang Lee, Diane Strong, Beverly Kahn, and Richard Wang. Aimq:
A methodology for information quality assessment. Information &
Management, 40:133-146, 2002.

Boyi Liu, Lujia Wang, Ming Liu, and Chengzhong Xu. Lifelong federated
reinforcement learning: A learning architecture for navigation in cloud
robotic systems. CoRR, abs/1901.06455, 2019.

Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a
survey. Information Systems Frontiers, 17:243-259, 2015.

Christopher D Manning. Introduction to information retrieval. Syngress
Publishing, 2008.

Winfried Marotzki. Leitfadeninterview. In Hauptbegriffe Qualitativer
Sozialforschung: Fin Wirterbuch, page 114. Leske + Budrich, 2003.

Enrique Toméas Martinez Beltran, Mario Quiles Pérez, Pedro
Miguel Sanchez Sanchez, Sergio Lopez Bernal, Gérome Bovet, Manuel Gil
Pérez, Gregorio Martinez Pérez, and Alberto Huertas Celdran. Decen-
tralized federated learning: Fundamentals, state of the art, frameworks,
trends, and challenges. IEEE Communications Surveys € Tutorials,
25(4):2983-3013, 2023.

Peter Mell, Tim Grance, et al. The NIST definition of cloud computing.
NIST Special Publication, 2011.

https://www.ibm.com/downloads/cas/W1JQBNJV

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[MMR*17]

[MMRS20]

[MPP+21]

[MRM 23]

[MSM21]

[MVM16]

[NCOD22]

[NDP+21]

[NY19)

[OAP+23]

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep
Networks from Decentralized Data. In 20th International Conference
on Artificial Intelligence and Statistics, volume 54, pages 1273-1282.
PMLR, 2017.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh.
Three approaches for personalization with applications to federated
learning. arXiv preprint arXiv: 2002.10619, 2020.

Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang,
Ali Dehghantanha, and Gautam Srivastava. A survey on security and
privacy of federated learning. Future Generation Computer Systems,
115:619-640, 2021.

Carlo Mazzocca, Nicolo Romandini, Matteo Mendula, Rebecca Monta-
nari, and Paolo Bellavista. Truflaas: Trustworthy federated learning as
a service. IEEE Internet of Things Journal, 10(24):21266-21281, 2023.

Afra Mashhadi, Joshua Sterner, and Jeffrey Murray. Deep Embedded
Clustering of Urban Communities Using Federated Learning. In 2021
International Joint Conference on Neural Networks (IJCNN), pages 1-8,
2021.

Dimitris Mourtzis, Ekaterini Vlachou, and Nikolaos Milas. Industrial
Big Data as a Result of IoT Adoption in Manufacturing. Procedia CIRP,
55:290-295, 2016.

Van-Dinh Nguyen, Symeon Chatzinotas, Bjorn Ottersten, and Trung Q
Duong. Fedfog: Network-aware optimization of federated learning over
wireless fog-cloud systems. IFEE Transactions on Wireless Communi-
cations, 21(10):8581-8599, 2022.

Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Seneviratne,
Jun Li, and H. Vincent Poor. Federated learning for internet of things:
A comprehensive survey. IEEE Communications Surveys € Tutorials,
23(3):1622-1658, 2021.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning
with heterogeneous resources in mobile edge. In 2019 IEEFE International
Conference on Communications (ICC), pages 1-7. IEEE, 2019.

Martijn Oldenhof, Gergely Acs, Baldzs Pej6é, Ansgar Schuffenhauer,
Nicholas Holway, Noé Sturm, Arne Dieckmann, Oliver Fortmeier, Eric
Boniface, Clément Mayer, et al. Industry-scale orchestrated federated
learning for drug discovery. In AAAI Conference on Artificial Intelligence,
volume 37, pages 15576-15584, 2023.

155

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[PF13]

[PGM*19]

[PHCM?21]

[PKH19]

[PSJ*23]

[QLDGOY]

[RBP*22]

[RBWA21]

[RMB23]

156

Foster Provost and Tom Fawcett. Data Science for Business: What you
need to know about data mining and data-analytic thinking. O’Reilly
Media, Inc., 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an
imperative style, high-performance deep learning library. In 33rd Inter-
national Conference on Neural Information Processing Systems. Curran
Associates Inc., 2019.

Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. Sage-
flow: Robust federated learning against both stragglers and adversaries.
Advances in Neural Information Processing Systems, 34:840-851, 2021.

Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust aggre-
gation for federated learning. arXiv preprint arXiv:1912.13445, 2019.

Sharnil Pandya, Gautam Srivastava, Rutvij Jhaveri, M. Rajasekhara
Babu, Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, Spyri-
don Mastorakis, Md. Jalil Piran, and Thippa Reddy Gadekallu. Fed-
erated learning for smart cities: A comprehensive survey. Sustainable
Energy Technologies and Assessments, 55:102987, 2023.

Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. Cloud computing:
An overview. In Ist International Conference on Cloud Computing,
pages 626—631. Springer, 2009.

Swarna Priya Ramu, Parimala Boopalan, Quoc-Viet Pham, Praveen Ku-
mar Reddy Maddikunta, Thien Huynh-The, Mamoun Alazab, Thanh Thi
Nguyen, and Thippa Reddy Gadekallu. Federated learning enabled
digital twins for smart cities: Concepts, recent advances, and future
directions. Sustainable Cities and Society, 79:103663, 2022.

Emmanuel Raj, David Buffoni, Magnus Westerlund, and Kimmo Ahola.
Edge mlops: An automation framework for aiot applications. In 2021
IEEE International Conference on Cloud Engineering (IC2E), pages
191-200, 2021.

Shinu M. Rajagopal, Supriya M., and Rajkumar Buyya. Fedsdm: Feder-
ated learning based smart decision making module for ecg data in iot
integrated edge—fog—cloud computing environments. Internet of Things,
22:100784, 2023.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[Rou87]

[SAIR11]

[Sat17]

[SD16]

[SDO1§]

[SMD21]

[SMS21]

[SNB*21]

[SNS+17]

[SRET18]

[SS15]

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53-65, 1987.

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan.
Finding a “kneedle” in a haystack: Detecting knee points in system be-
havior. In 2011 31st International Conference on Distributed Computing
Systems Workshops, pages 166-171. IEEE, 2011.

Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30-39, 2017.

Weisong Shi and Schahram Dustdar. The promise of edge computing.
Computer, 49(5):78-81, 2016.

Omer Berat Sezer, Erdogan Dogdu, and Ahmet Murat Ozbayoglu.
Context-aware computing, learning, and big data in internet of things:
A survey. IEEFE Internet of Things Journal, 5(1):1-27, 2018.

Rituparna Saha, Sudip Misra, and Pallav Kumar Deb. Fogfl: Fog-
assisted federated learning for resource-constrained iot devices. IFEE
Internet of Things Journal, 8(10):8456-8463, 2021.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered
federated learning: Model-agnostic distributed multitask optimization
under privacy constraints. IEFE Transactions on Neural Networks and
Learning Systems, 32(8):3710-3722, 2021.

Stefano Savazzi, Monica Nicoli, Mehdi Bennis, Sanaz Kianoush, and Luca
Barbieri. Opportunities of federated learning in connected, cooperative,
and automated industrial systems. IEEE Communications Magazine,
59(2):16-21, 2021.

Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. Optimized iot service placement in the fog. Service
Oriented Computing and Applications, 11(4):427-443, 2017.

Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin,
and Spyridon Bakas. Multi-institutional deep learning modeling without
sharing patient data: A feasibility study on brain tumor segmentation.
In International MICCAI Brainlesion Workshop, pages 92-104. Springer,
2018.

Reza Shokri and Vitaly Shmatikov. Privacy-Preserving Deep Learning.
In 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), page 1310-1321. ACM, 2015.

157

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[SSAT21]

[SYL21]

[TBZ*+19)

[TDZD23]

[Tho53]

[TS10]

[TYCY23]

[UHSM23]

[VDP96]

[VLR23]

[VRL23]

158

Niclas Simmler, Pascal Sager, Philipp Andermatt, Ricardo Chavarriaga,
Frank-Peter Schilling, Matthias Rosenthal, and Thilo Stadelmann. A
Survey of Un-, Weakly-, and Semi-Supervised Learning Methods for
Noisy, Missing and Partial Labels in Industrial Vision Applications. In
2021 8th Swiss Conference on Data Science (SDS), pages 26-31. IEEE,
2021.

Yuxin Shi, Han Yu, and Cyril Leung. Towards fairness-aware federated
learning. arXiv preprint arXiv:2111.01872, 2021.

Nguyen H. Tran, Wei Bao, Albert Zomaya, Minh N. H. Nguyen, and
Choong Seon Hong. Federated learning over wireless networks: Opti-
mization model design and analysis. In IEEE Conference on Computer
Communications, pages 1387-1395. IEEE, 2019.

Javid Taheri, Schahram Dustdar, Albert Zomaya, and Shuiguang Deng.
AI/ML on edge. In Edge Intelligence: From Theory to Practice, pages
183-211. Springer International Publishing, 2023.

Robert L Thorndike. Who belongs in the family? Psychometrika,
18(4):267-276, 1953.

Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques, pages 242—-264. IGI Global, 2010.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards
personalized federated learning. IFEE Transactions on Neural Networks
and Learning Systems, 34(12):9587-9603, 2023.

Michael Ungersbock, Thomas Hiessl, Daniel Schall, and Florian Micha-
helles. Explainable federated learning: A lifecycle dashboard for indus-
trial settings. IEEE Pervasive Computing, 22(1):19-28, 2023.

H. Van Dyke Parunak. Applications of distributed artificial intelligence
in industry. In Gregory M. P. O’Hare and Nick R. Jennings, editors,
Foundations of Distributed Artificial Intelligence, pages 139-164. Wiley
Interscience, 1996.

Lisa Verlande, Ulrike Lechner, and Stefi Rudel. Design of a federated
learning system for it security: Towards secure human resource manage-
ment. In 11th Latin-American Symposium on Dependable Computing,
page 131-136. ACM, 2023.

Lisa Verlande, Steffi Rudel, and Ulrike Lechner. Requirements for a
federated learning system to strengthen IT security in human resource
management. In Wirtschaftsinformatik 2028 Proceedings, 2023.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[VSP+23]

[WJHT21]

[WLD*20]

[WYY*19]

[YCKBI18]

[YFN*19]

[YHQLI15]

[YL21]

[YLCT19]

[YWL20]

Riccardo Venanzi, Michele Solimando, Marina Patrali, Luca Foschini,
and Periklis Chatzimisios. Siemens and edgex iiot platforms: A functional
and performance evaluation. In IEEFE International Conference on
Communications, pages 834-839. IEEE, 2023.

Lin Wang, Lei Jiao, Ting He, Jun Li, and Henri Bal. Service place-
ment for collaborative edge applications. IEEE/ACM Transactions on
Networking, 29(1):34-47, 2021.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad
Farokhi, Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. Federated
learning with differential privacy: Algorithms and performance analysis.
IEEFE Transactions on Information Forensics and Security, 15:3454-3469,
2020.

Su Weibin, Liu Yun, Du Yi, Dong Yingguo, Pan Mingbo, and Xu Gang.
Three-real-time architecture of industrial automation based on edge

computing. In 2019 IEEE International Conference on Smart Internet
of Things (SmartloT), pages 372-377. IEEE, 2019.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett.
Byzantine-robust distributed learning: Towards optimal statistical rates.
In 35th International Conference on Machine Learning (ICML), vol-
ume 80, pages 5650-5659. PMLR, 2018.

Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fate-
meh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. All
one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, 98:289—
330, 2019.

Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing:
Platform and applications. In 2015 Third IEEE Workshop on Hot Topics
in Web Systems and Technologies (HotWeb), pages 73-78. IEEE, 2015.

Rong Yu and Peichun Li. Toward resource-efficient federated learning
in mobile edge computing. IEEE Network, 35(1):148-155, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Transactions on
Intelligent Systems and Technology, 10(2), 2019.

Penggian Yu, Laura Wynter, and Shiau Hong Lim. Fed+: A family of fu-
sion algorithms for federated learning. arXiv preprint arXiv:2009.06303,
2020.

159

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[ZGWZ22]

[ZHLZ10]

[ZLL*23]

[ZXB*21]

[ZXLJ21]

160

Weiming Zhuang, Xin Gan, Yonggang Wen, and Shuai Zhang. Easyfl:
A low-code federated learning platform for dummies. IEEE Internet of
Things Journal, 9(15):13740-13754, 2022.

XM Zhao, Qinghua Hu, Yaguo Lei, and Ming J. Zuo. Vibration-based
fault diagnosis of slurry pump impellers using neighbourhood rough set
models. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, 224(4):995-1006, 2010.

Yifeng Zheng, Shangqi Lai, Yi Liu, Xingliang Yuan, Xun Yi, and Cong
Wang. Aggregation service for federated learning: An efficient, secure,
and more resilient realization. IEEE Transactions on Dependable and
Secure Computing, 20(2):988-1001, 2023.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao.
A survey on federated learning. Knowledge-Based Systems, 216:106775,
2021.

Hangyu Zhu, Jinjin Xu, Shiging Liu, and Yaochu Jin. Federated learning
on non-iid data: A survey. Neurocomputing, 465:371-390, 2021.

	Kurzfassung
	Abstract
	Contents
	Publications
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Thesis Structure

	Background
	Federated Learning
	Internet of Things
	Compute Platforms: Cloud, Fog, and Edge Computing

	Industrial FL – Requirements and Systems Design
	Introduction
	IFL Notation
	Related Work
	Requirements
	System Design
	Summary

	Cohort-based FL Services for Industrial Collaboration on the Edge
	Introduction
	System Design
	Evaluation
	Related Work
	Summary

	Lifecycle Management of FL Artifacts in Industrial Applications
	Introduction
	System Design
	Evaluation
	Related Work
	Summary

	FL Deployments of Industrial Applications on Cloud, Fog, and Edge
	Introduction
	System Design
	Evaluation
	Related Work
	Summary

	FL Solution Blueprints for Use Cases Surveyed in Austrian Industries
	Introduction
	Related Work
	Methodology
	Industry Personas
	FL Blueprints
	Discussion
	Summary

	Conclusion and Future Work
	Research Questions Revisited
	Summary of Contributions
	Future Work

	IFL Terms
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Bibliography

