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Kurzfassung
Der neue Trend zur Implementierung von Energiegemeinschaften bringt neue Herausforderun-
gen für die Zuverlässigkeit der Energieversorgung mit sich. EGs nutzen hauptsächlich erneuer-
bare Energiequellen, wie beispielsweise Photovoltaikmodule, deren Leistung von den Umge-
bungsbedingungen abhängt. Während sonniger Stunden können PV-Anlagen überschüssige
Energie erzeugen. Dies kann zu Überlastungen in Übertragungsleitungen und Überspannun-
gen in Hochspannungsanlagen, Transformatoren und Generatoren führen.

Das Ziel dieser Masterarbeit ist die Entwicklung und Implementierung eines fortschrit-
tlichen Energiemanagementsystems für lokale EGs und der Einsatz fortschrittlicher Opti-
mierungstechniken zur Verbesserung der Netzstabilität, insbesondere zur Minimierung von
Leitungsüberlastungen, zur Reduzierung von Busspannungsverletzungen und zur Optimierung
der Stromverteilung.

Vier verschiedene Algorithmen wurden in der Python-Umgebung implementiert. Im ersten
Schritt wird eine Monte-Carlo-Simulation angewendet, um die Systemzuverlässigkeit zu be-
werten und Schwachstellen zu identifizieren. Im zweiten Schritt werden zwei fortschrittliche
metaheuristische Optimierungsalgorithmen – Partikelschwarmoptimierung und Genetischer
Algorithmus – eingesetzt. Diese Algorithmen führen eine Lastumverteilung durch, um opti-
male Lasten zu finden, unter denen das System stabil arbeitet. Im letzten Schritt wird ein
Künstliches Neuronales Netz implementiert. Das KNN wird anhand eines Datensatzes aus
PSO - oder GA-Ergebnissen trainiert.

Tritt im System ein Leistungsungleichgewicht oder eine Instabilität auf, kann der trainierte
Algorithmus sofort neue Generatorleistungen vorhersagen, die mit der aktuellen Last im Gle-
ichgewicht sind. Dies ermöglicht eine sofortige Wiederherstellung der Systemstabilität, ohne
dass komplexe Optimierungsalgorithmen erneut ausgeführt werden müssen.

Die Ergebnisse zeigen, dass der kombinierte Ansatz die Betriebseffizienz steigert und die
Systemstabilität auch bei variablen Last- und Erzeugungsbedingungen aufrechterhält. Diese
Methodik bietet einen skalierbaren Rahmen für die zukünftige Entwicklung intelligenter En-
ergiegemeinschaften. Diese Arbeit trägt zur Entwicklung intelligenter EMS-Frameworks für
zukünftige dezentrale und auf erneuerbaren Energien basierende Energiesysteme bei.



Abstract
The new trend of implementing Energy Communities (ECs) brings new challenges related to
the reliability of energy supply. ECs use mainly renewable energy sources (RES), such as
photovoltaic panels (PV), whose output depends on environmental conditions. During sunny
hours, PVs can generate excess power. It can lead to overloads in transmission lines and
overvoltages in high-voltage equipment, transformers (TR), and generators.

This thesis aims to design and implement an advanced Energy Management System (EMS)
for local ECs. The main objective is to use advanced optimization techniques to improve grid
stability, namely minimizing line overloads, reducing bus voltage violations, and optimizing
power distribution.

Four different algorithms were implemented in Python and Power Factory environments.
The first stage applies a Monte Carlo simulation to assess system reliability and identify
vulnerable areas. In the second stage, two advanced metaheuristic optimization algorithms,
Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), are used. These algorithms
perform a load redispatching to find optimal loads under which the system operates stably.
An Artificial Neural Network (ANN) is implemented in the final stage. The ANN is trained
on a dataset obtained from PSO or GA results.

When a power imbalance between supply and demand or instability occurs, the trained
algorithm can instantly predict a new set of generator outputs balanced with the current
load. This allows in a short time for the restoration of system stability in a short time
without rerunning complex optimization algorithms.

The results show that the combined approach enhances operational efficiency and main-
tains system stability, even under variable load and generation conditions. This methodology
provides a scalable framework for the future development of intelligent energy communities.

This work contributes to the development of intelligent EMS frameworks for future decen-
tralized and renewable energy systems.
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1. Introduction
Energy Communities are groups of people, companies, or local authorities that collaborate
to produce and utilize electricity from renewable sources. They help reduce dependence on
large energy companies and increase the use of clean energy. ECs can reduce energy costs and
give local people more control over their energy supply. They also support the goals of the
European Union for carbon neutrality. This section provides an overview of ECs and explains
why they are becoming increasingly important. Their emergence will be discussed from two
different perspectives: public and technical.

1.1. Background
Over the last decade, Europe’s energy structure has undergone significant changes in response
to issues of CO2 emissions and environmental protection. The first serious step was taken in
2015 in Paris, where the so-called "Paris Agreement" was signed [1].

The Paris Agreement aims to limit global warming and combat climate change. The EU and
all its member states have signed and ratified the Paris Agreement and are firmly committed
to its implementation. By approving the agreement, the EU and its countries are legally
bound by the goal of keeping global temperatures within safe limits.

To reach this goal, the EU has, among other things, launched the European Green Deal
strategy, which puts in place measures and rules to drastically reduce emissions and transform
its economy into a climate-neutral one by 2050. As required by the Paris Agreement, the EU
submitted its long-term emissions reduction strategy and its updated climate plans (nationally
determined contribution, NDC) before the end of 2020. The EU aims to reduce EU emissions
by 2030 by at least 55% compared to 1990 levels as a step towards reaching neutrality by
2050 [2].

To achieve climate neutrality, EU countries have gradually begun to adopt the widespread
use of Renewable Energy Sources (RES). To successfully and timely achieve climate goals,
the number of renewable and non-dispatchable sources of electricity generation in European
countries continues to increase. Furthermore, some countries, such as Austria and Iceland,
aim to achieve carbon neutrality by 2040 [3].

Such goals have led to the emergence of new and flexible types of energy systems, including
Virtual Power Plants (VPPs), Microgrids, Digital Grids, and Energy Communities (ECs).
The present study will focus on the latter type.

In a general sense, the EC is an association of groups of citizens, companies, local businesses,
and local government agencies that have decided to cooperate in producing electricity from
RES and thus be able to meet their energy needs with a clean, affordable, and locally produced
alternative. ECs can be viewed from both public and technical perspectives.

1.2. Energy communities from a public perspective
ECs motivate citizens to support the transition to clean energy, increasing public acceptance of
renewable energy projects and promoting private investment. ECs can effectively restructure
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1.3. Energy communities from a technical perspective

existing energy systems, empowering citizens to manage the energy transition locally and
benefit from improved energy efficiency, lower bills, reduced energy poverty, and greater local
opportunities for green jobs.

Recognizing the potential contribution of Energy Communities (ECs) to achieving a safer,
more affordable, and cleaner energy system for Europe, the REPowerEU plan has set out
a common policy objective of establishing one energy community per municipality with a
population of over 10,000 by 2025 [4].

By acting as a single entity, ECs can access all relevant energy markets equally with other
market participants. Under EU law, an EC can be any legal entity, including an association,
cooperative, partnership, non-profit organization, or limited liability company.

Renewable ECs are a significant step towards energy independence and climate neutrality,
and solving associated technical issues, such as line overload and overvoltages, is a top priority.

1.3. Energy communities from a technical
perspective

ECs are groups of electricity producers and consumers, generally located in the same area,
with a high share of RES. ECs can operate autonomously or remain interconnected with the
main (external) grid during peak demand periods. In the present work, three different ECs
with different energy sources are linked via the external grid.

ECs’ key ideas are their focus on cooperation, energy sharing through transmission lines,
reducing energy costs through advanced energy management, minimizing the carbon footprint
through the use of RES, and improving energy independence.

However, RES highly depend on weather conditions, leading to unstable generation. More-
over, with the increased share of RES, specific technical issues can arise, such as overloads in
transmission lines and voltage violations on buses.

Thus, an important task is promptly responding to changes in generation and consump-
tion and restoring the balance between them, thereby preventing excessive current through
transmission lines and other expensive equipment, such as TR or generators. As a rule, load
flow calculations were performed for the traditional assessment of reliability and flexibility of
the power system in worst-case scenarios. This approach has worked well in the past when
variations in consumption levels were slow, and the largest part of electricity generation was
dispatchable. However, introducing more non-dispatchable and variable distributed power
generation into the power grid means that the parameters in the power system are no longer
deterministic, but stochastic to a larger extent.

Considering the changes in the power system and the expected continuation of these
changes, the European Commission recommends using probabilistic methods for load flow
calculations in the electricity system. According to this report, the preferred methods are
Monte Carlo (MC) methods [5].

MC simulation is a mathematical technique for predicting the possible outcomes of an
uncertain event. This method analyzes past data and predicts a range of future outcomes.
For the current work, MC is actively used to perform a large number of load flow calculations
with different parameters of loads and generators. As a result, the most vulnerable areas of
the power grid were identified.

The next stage will be to optimize the overloaded power grid and bring it to a stable
state. Since the investigated model includes a large number of different electrical elements,
traditional mathematical optimization techniques, such as linear programming (LP), quadratic
programming (QP), and the gradient descent method (GD), may not be applicable.
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1. Introduction

So, more advanced techniques should be implemented for more complex and extended power
grids, where meta-heuristic methods should be applied.

Two of the most commonly used meta-heuristic algorithms are:

• Genetic Algorithm (GA)

• Particle Swarm Optimization (PSO)

These methods enable the finding of new, optimized parameters for loads and generators,
which will serve as the basis for applying an ANN. Ultimately, the ANN model was trained
on this new, optimized dataset, allowing for the rapid prediction of generator setpoints and
ensuring a balance between demand and supply without the need to rerun PSO or GA.

This work can also be seen as part of an EMS. An EMS is a framework used by power
grid operators to monitor, control, and optimize the operation of the power system, ensuring
reliability and efficiency. Current research is focusing on these goals.

All algorithms contributed to the EMS by performing load management (redispatch) and
enhanced grid stability, while considering all technical system constraints.

1.4. Research questions
As the title of the thesis suggests, "Optimal Energy Management for Interconnected Local
Energy Communities," the work aims to address the following central research question:

How can modern modeling, optimization, and machine learning techniques be
effectively applied to improve the operational reliability and efficiency of au-
tonomous energy communities?

To answer this question, the following sub-questions are investigated:

1. How can Monte Carlo simulation be utilized to evaluate power system reliability and
pinpoint critical vulnerabilities under uncertain load and generation conditions?

2. How accurately can machine learning algorithms predict future PV generation based
on historical data?

3. Which optimization method - PSO or GA - provides better performance in mitigating
overloads and voltage violations? What are the comparative strengths and limitations
of each?

4. To what extent can ANNs replace traditional optimization tools (such as PSO and GA)
in real-time power distribution?

1.5. Overview of the thesis
To answer the above research questions, the thesis is divided into the following chapters:

Chapter 1 provides a general overview of ECs from a technical and public perspective, and
also motivates the use of ECs.

Chapter 2 provides an overview of the primary optimization methods used in the work:
PSO, GA, ANN, and Random Forest Regression.

Next, Chapter 3 describes the methodology. The studied energy grid is described in detail,
along with all the preparatory stages for optimization. Specifically, the necessary data frames
for the MC simulation are created, the parameterization of the PV panels is carried out using
machine learning methods, and finally, the application of PSO, GA, and ANN is described.
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1.6. Nomenclature

Chapter 4 presents the results of the methods mentioned above. Furthermore, the calcula-
tion results are compared not only numerically but also graphically.

Chapter 5 is devoted to comparing the effectiveness of the methods used, assessing their
scalability, practical potential, and identifying their limitations.

The final chapter 6 summarizes the study’s results, formulates the main findings, discusses
the limitations of the approaches used, and suggests directions for future work.

1.6. Nomenclature
F Function of interest (e.g., power flow)
Si i-th set of input variables in MC simulation
nS Total number of simulations (Monte Carlo)
f(x) Probability density function
µ Mean value of the distribution
σ Standard deviation of the distribution
λ Rate parameter of exponential distribution
F1 Objective function for minimizing power losses
Vi Voltage phasor magnitude at bus i
θi Voltage angle at bus i
Yij Admittance magnitude between bus i and j
F2 Voltage deviation objective
vi Per-unit voltage magnitude at bus i
NG Number of generators
NB Number of buses
Pgi Active power generation of generator i
PDj Active power demand at bus j
PL Total active power losses in the system
Qgi Reactive power generation of generator i
QDj Reactive power demand at bus j
QL Total reactive power losses in the system
P min

gi Minimum active power generation of generator i

P max
gi Maximum active power generation of generator i

Qmin
gi Minimum reactive power generation of generator i

Qmax
gi Maximum reactive power generation of generator i

|Vi|min Minimum voltage magnitude at bus i
|Vi|max Maximum voltage magnitude at bus i
F Overall objective function (fitness)
L Line overloads (in % or MW)
T Transformer overloads
V Voltage deviations from nominal
Sactive Unbalanced active power in the system
Sreactive Unbalanced reactive power in the system
w1, ..., w5 Weights for individual objective terms

5



2. State-of-the-art and progress
beyond

This chapter provides an overview of the legislative documents signed at the level of EU
Member States, with the primary purpose of accelerating the emergence of ECs without
excessive bureaucratic obstacles. In particular, the RED I, RED II, and RED III documents
will be discussed. Additionally, the European Green Deal and the REPowerEU strategy will
be briefly reviewed as part of the broader EU policy aimed at reducing CO2 emissions.

2.1. Historical background and legislative evolution
of renewable energy communities

ECs represent a modern energy grid design model in which citizens, businesses, and govern-
ments cooperate to generate and exchange energy locally. These communities are typically
located in one area. In traditional grid management, all energy is centralized, meaning it
is supplied from a single source (e.g., a cogeneration plant). In the case of ECs, energy
production is based on sustainability, participation, and decentralization principles.

This approach aims to transform passive consumers into active participants in the energy
transition, helping to overcome the technical, legal, and social challenges that often hinder
the large-scale deployment of renewable energy.

ECs are distinguished from other distributed generation models by their strong focus on
community involvement, environmental sustainability, and local benefits, including energy
independence, reduction of greenhouse gas (GHG) emissions, and social inclusion.

Although the 2015 Paris Agreement provided renewed political momentum for climate
action, the first significant step towards combating GHG was taken with the ratification
of the Kyoto Protocol (1997), which inspired European nations to promote decentralized
energy production by supporting local cooperative projects [6]. For example, at this time,
Germany adopted the Renewable Energy Act, which introduced feed-in tariffs to stimulate
small-scale producers and encourage the development of local projects based on solar and
wind technologies [7].

In parallel, the EU launched a standard energy policy. The Green Paper on Energy Se-
curity [8] emphasized the importance of diversifying energy sources and promoting citizen
participation. These initiatives led to growing political support for renewable energy across
Europe.

A significant step in the EU’s development was Directive 2009/28/EC (RED I) [9], which
established legally binding targets for the share of renewable energy within the EU. According
to this Directive, 20% of Europe’s energy consumption should be utilized by renewable energy
by 2020. This directive created the foundation for integrating citizen participation models,
such as ECs, into national energy frameworks.

The next step in this evolution was Directive 2018/2001/EU (RED II), which formally
introduced the legal definition of renewable ECs and encouraged their integration into national
energy markets. This was the culmination of legislative evolution. RED II removed numerous
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2.2. European regulatory framework: RED II and the Clean Energy Package

regulatory and technical barriers, enabling citizens to produce, consume, store, and share
energy.

2.2. European regulatory framework: RED II and
the Clean Energy Package

Directive 2018/2001/EU, commonly known as RED II, is a key component of the EU Clean
Energy Package. This legislative package has significantly impacted the development and legal
recognition of ECs across EU Member States. RED II introduces a clear legal framework for
promoting and integrating renewable energy into national energy systems [10].

According to RED II, an EC is a legal entity controlled by local members whose primary
objective is to generate social, environmental, or economic benefits at the community level
rather than financial profit.

RED II, which entered into force in December 2018, requires Member States to achieve
a minimum of 32% renewable energy in their gross final energy consumption by 2030. The
directive includes several measures to achieve this goal, including explicit support for RECs.
RED II focuses on three main elements:

• Self-consumption: Under the directive, citizens and communities have the right to gen-
erate, store, and share renewable energy.

• Access to networks: Member States must ensure fair and non-discriminatory access
for ECs to the electricity distribution networks. This includes the obligation to re-
move bureaucratic and technical barriers that typically prevent small producers from
participating in the energy market.

• Economic support: National governments are encouraged to promote ECs by adopting
economic support schemes such as feed-in tariffs, tax reliefs, or fixed compensation
models.

These elements, in general, aim to empower local actors, simplify participation in the energy
transition, and accelerate sustainable development at the community level. RED II is a key
policy for building a decentralized, citizen-driven energy system across Europe.

2.3. International regulatory framework: RED III
The third revision of the Renewable Energy Directive was RED III [11]. It was officially
adopted in October 2023 as part of the Fit for 55 package to boost the use of sustainable
energy in combating climate change. The directive updates RED II to achieve the more
ambitious targets of the European Green Deal and the REPowerEU plan to reduce GHG
emissions by 55% by 2030 and strengthen the EU’s energy independence.

RED III sets an ambitious target: 42.5% of Europe’s total energy consumption must come
from renewable sources by 2030, with an additional push toward 45%. This is a significant
increase compared to the 32% target set by RED II. Member states are required to update
their National Energy and Climate Plans (NECPs) to align with these targets.

In addition, the Directive sets specific targets for essential sectors: First, it simplifies and
speeds up the permitting process for renewable energy projects to address delays. Second,
it introduces binding sub-targets for renewable hydrogen use in Industry 42% and transport
5.5% by 2030. Third, supports the development of renewable fuels of non-biological origin to
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2. State-of-the-art and progress beyond

bring down dependence on fossil fuels. Fourth, encourages collaboration between EU member
states to meet renewable energy goals.

RED III’s most notable features are simplifying and shortening administrative approval
timelines for new renewable energy installations. For renewable installations located in des-
ignated “go-to” areas, the maximum permit duration is 12 months, while for projects outside
these zones, the limit is 24 months. These measures were created to eliminate unnecessary
bureaucracy and facilitate the rapid growth of renewable energy infrastructure.

Furthermore, RED III strengthens the role of ECs by recognizing them as central actors in
the decentralized energy transition. By promoting distributed energy generation, particularly
through PV, wind, and biomass installations at a local scale, ECs can help achieve energy
autonomy and support the EU’s climate neutrality goals.

The Directive is already influencing progress in countries such as Germany and Denmark,
where people have already participated in the energy market through energy cooperatives and
state incentives.

2.4. The Austrian EAG and Its Role in Energy
Communities

The Renewable Energy Expansion Act - EAG (Erneuerbaren-Ausbau-Gesetz) was created to
support green energy systems in Austria. This Act is a new law that aims to increase the share
of renewable energy in Austria’s electricity generation to 100% by 2030 and to achieve climate
neutrality in the country by 2040. The EAG regulates key issues related to the promotion of
renewable energy and is thus the successor to the Green Electricity Act (ÖSG, also known as
ÖkostromG).

The EAG enables the creation of energy communities. For example, people from all
over Austria can join to form an energy community and thus share the energy they generate.

To achieve the target of 100% renewable energy in electricity production, the Austrian
Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology
has set the goal of increasing electricity production from renewable sources by 27 terawatt
hours (TWh) by 2030, taking into account the projected electricity consumption. This increase
in green electricity production must be achieved under strict environmental criteria. For
context: Austria’s total electricity consumption in 2021 was around 72 TWh [12].

The planned increase of 27 TWh of green electricity is to be distributed among the indi-
vidual renewable energy technologies as follows:

• Photovoltaics: 11 TWh

• Wind power: 10 TWh

• Hydropower: 5 TWh

• Biomass: 1 TWh

The EAG aims to achieve the desired increase of a total of 27 TWh of green electricity through
various, partly new, instruments [12]:

1. Promoting the expansion of renewable energy through investment grants

2. Promoting the expansion of renewable energy through a market premium model

3. Promoting energy communities
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The study will only consider the fourth EAG instrument - promoting energy communities.
With the introduction of the EAG, the legislature is also promoting the formation of energy

communities for the first time. These communities, usually at the local level, strive to achieve
the highest possible utilization of renewable energies within their membership. They can also
store surplus green electricity or divert it to higher-level grids and sell it. Energy communities
can receive a market premium for surplus green electricity—that is, electricity fed into the
general grid rather than consumed by the energy community—as long as the share of surplus
electricity does not exceed 50% of the electricity produced within the energy community [12].

In an energy community, different actors can come together and share the energy they
generate; they can consume it jointly, store it, and/or sell it. A built-in smart meter and
the measurement and storage of quarter-hourly values (opt-in) are required for billing within
the energy community. A contractual/membership relationship exists between you and the
energy community.

There are two types of ECs: renewable and citizen energy communities. This study reveals
the significance of Citizen Energy Communities. According to [13]: The concept of an energy
community can also be implemented beyond the local or regional level, even beyond the
boundaries of a grid area; in this case, a Citizen Energy Community is established. It
can have participants in different grid areas. It may only generate, share, store, consume,
or sell electrical energy, and this electricity does not have to be generated exclusively from
RES. Since there is no geographical proximity here and, in extreme cases, the energy must be
transported across Austria, there are no reduced grid tariffs – the normal grid fees apply, just
as when purchasing from a supplier. The renewable energy subsidy must also be paid for the
electricity shared in the citizen energy community.

This legal context provides the basis for modeling the coordinated energy distribution
between different actors. In this thesis, such coordination is realized by modeling three ECs
with centralized optimization mechanisms. These actors do not represent formal legal ECs,
but are technically inspired by the citizen ECs structure as authorized by the EAG.

Thus, while the legal framework defines the boundaries and rights of the ECs in Austria, this
study examines their technical and operational potential in the modeled microgrid structures.

2.5. Clarification of Framework Assumptions
In this thesis, the concept of interconnected energy systems is inspired by Energy Communi-
ties as promoted in the European legislative context (e.g., RED II and RED III directives).
However, it is essential to emphasize that the presented model does not imply mandatory com-
pliance with the European Union’s legal rules or regulatory requirements. Instead, the study
considers private microgrids operating in coordination, to evaluate the potential of opti-
mization algorithms under defined supply conditions, rather than reproducing the regulatory
environment.

The model assumes a purely technical structure in which three systems are interconnected
via an external grid and exchange electricity in a way that resembles the behavior of an energy
community.

This clarification is included to ensure the reader does not misinterpret the simulation as a
regulatory implementation. References to RED I, II, III, and the EC framework illustrate the
relevance and possible application areas of the studied optimization methods, not to imply
legal enforcement.
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2.6. Methodology: Monte Carlo Simulation, PSO,
GA, and ANN optimization algorithms

In this section, a planning strategy based on a stochastic optimization method is proposed
to solve optimal power management problems, such as improving total cost, minimizing total
power losses, reducing voltage violations, and reducing overloads. Two optimization algo-
rithms, PSO and GA, are reviewed and compared.

2.6.1. Monte Carlo Simulation
The output can be regulated and controlled by traditional generation, such as from a combined
heat and power (CHP) plant, representing a deterministic value. Therefore, load flow calcula-
tions can be performed using standard methods, including the Newton-Raphson, Gauss-Seidel,
or Fast Decoupled Load Flow (FDLF) [14].

However, as mentioned earlier, ECs contain a high share of RES, the generation of which
directly depends on weather conditions, such as sunlight and wind. Unlike CHP plants, the
output from RES is stochastic in nature. Moreover, with an increase in the number of RES,
the behavior becomes increasingly probabilistic and less predictable.

For performing load flow calculations of such networks, the EU Commission proposes [5]
the use of probabilistic methods for load flow analysis, particularly MC simulation. This
method has found wide application in many fields of science. In the context of power systems,
especially with the growing deployment of RES, MC is used to simulate and evaluate the
likelihood of different operational outcomes under uncertainty.

Monte Carlo simulation is a mathematical technique for predicting the possible outcomes
of uncertain events by running many scenarios. It involves repeatedly performing load flow
calculations in power systems, each time with different randomized input parameters such as
RES generation and load demand. Thus, MC simulation does not replace traditional power
flow methods; instead, it builds upon them by applying them iteratively under stochastic
input conditions to evaluate the system’s behavior under uncertainty. Each iteration was
based on a pre-calculated mean value µ and the standard deviation σ [15].

In this project, instead of historical data, a dataset with six pre-calculated different sce-
narios was used. Each scenario has different initial parameters for generators and loads. For
example, Scenario 1 represents 100% base load and generation, Scenario 2 reduced both to
70%. Scenario 3 -increases to 110%, and so on. The data frame created in this way considers
the probabilistic distribution of generation and load and serves as the input basis for the MC
simulation.

The number of MC iterations is independent of the system size. The stopping criterion
is usually a fixed number of iterations. In the project, 1000 iterations were performed. The
primary objective of the MC calculation was to assess the system’s stability, flexibility, and re-
liability, and to determine which lines are most susceptible to overvoltage or voltage violations
under uncertain operating conditions.

2.6.2. Overview of Particle Swarm Optimization (PSO)
After identifying unstable elements in the power grid, which consists of three interconnected
ECs, the system must be optimized to meet key technical objectives: minimizing line overload-
ing, reducing voltage violations on buses, and improving overall system stability. The optimal
power flow (OPF) is the primary and most effective method for operating and managing the
electrical network.
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Unlike standard load flow analysis, which determines the system’s state based on given
inputs (generation, load, etc.), OPF adds intelligence and has an optimization objective [16].
It calculates the "best possible" values to optimize the objective function, such as minimiz-
ing total power losses or reducing total voltage violations, taking into account all technical
constraints and network features.

There are different mathematical techniques for solving the OPF problem. For example,
linear programming (LP), quadratic programming (QP), the gradient descent method (GM),
and the Newton method can be implemented. However, they have limitations [17]:

• They can be used for small or simplified power systems. Real-world systems are too
complex for them.

• These methods are designed for continuous objective functions. So, they may fail if the
problem contains discrete or non-continuous values.

• They require smooth (differentiable) functions. For example, Newton’s Method requires
smooth functions; otherwise, the method cannot find an optimal solution.

To conduct OPF calculations for modern, complex, and nonlinear power systems, meta-
heuristic algorithms should be used. Two of the most commonly used meta-heuristic algo-
rithms are: Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

PSO is initially inspired by nature. This method is based on how bird flocks or insect swarms
move in groups. The primary property of such populations is the exchange of information. If
one participant in this group finds a better point (e.g., a food source), the entire group moves
in this direction.

In the context of power systems, each “particle” in PSO represents a possible candidate
solution – a unique set of parameters such as active power generation, reactive power, and
load reduction factors. The algorithm iterates through all possible sets of system parameters
under which the power grid model can reach a stable and optimal state.

The quality of each solution is evaluated using a fitness function (FF). The FF evaluates
how good the current solution is. In this project, the FF penalizes [18]:

• Line overloads

• TR or generator overloading,

• Voltage violations beyond allowed limits.

The optimization process continues until convergence, when the value of the FF becomes
smaller and new iterations do not change its value. At this point, PSO has found a new set
of optimized parameters under which the power system operates stably without any technical
issues.

These parameters are then used in a final load flow calculation, which confirms that over-
loads and voltage violations have been successfully mitigated.

2.6.3. Overview of Genetic Algorithm (GA)
While the previous algorithm, PSO, was inspired by swarm behavior in nature, GA is based
on the principles of biology, particularly genetics. GA describes its operations using biological
terminology such as chromosomes, genes, and mutations [19].

The initial population with a certain number of individuals (called chromosomes) is created
as the first step. In the context of power systems, each “chromosome” in GA represents a
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possible candidate solution—a unique set of parameters, such as active power generation,
reactive power, and load reduction factors.

Each chromosome consists of multiple genes. Genes are properties of chromosomes. In the
context of power systems, genes refer to the parameters of electrical elements, such as the
active and reactive power of generators or loads.

If the value of FF is high, the power grid should be optimized. The population undergoes a
process of selection, crossover (recombination), and mutation, where two parent chromosomes
combine to produce a new offspring. In the recombination process, each new generation
becomes better than each previous one, since only the best characteristics are taken from the
parent chromosomes. This process is repeated many times, and GA gradually improves the
final solution.

The quality of each solution is evaluated using an FF, as described in the PSO section,
which penalizes line overloads, voltage violations, and instability. The optimization continues
until convergence - that is, when the value of the FF becomes smaller and new iterations do
not change its value.

In the study, the best1bin differential evolution strategy was chosen for crossover. Ac-
cording to the [20] the ‘best1bin’ strategy is a good starting point for many systems. This
approach ensures that the best solution is always used to generate new candidates, thereby
accelerating convergence and providing more stable results than purely random strategies.

2.6.4. Comparison of PSO and GA
Both GA and PSO are meta-heuristic optimization techniques, but they differ in their con-
cepts: PSO represents swarm intelligence, where particles update their positions based on
individual and global best solutions.GA represents evolutionary principles (crossover and mu-
tation) to generate improved offspring.

GA does not require the function to be continuous or differentiable because it explores
many possible solutions randomly and through evolutionary operations (selection, crossover,
mutation). In contrast, PSO updates particles based on gradient directions and is better
suited for smooth and continuous functions.

Looking ahead, here are some important differences between the two algorithms: PSO
typically converges faster (around 10 seconds) but may become stuck in local optima. At the
same time, GA is better suited for global optimization, but can take significantly longer to
compute, especially for 200 iterations. As will be seen in Chapter 4.1, GA found a better
FF value of 2511, compared to 3569, indicating that it optimized the system better. This
shows that both algorithms have reached the global minimum, and the difference in results is
minimal, which means both methods work about equally well.

2.6.5. Application of Artificial Neural Network (ANN)
The final stage of the study involves the application of an artificial neural network (ANN)
model [21], [22]. This algorithm serves as an add-on to the previously conducted PSO and
GA optimizations. The ANN is trained using optimized data obtained from the PSO results.

The ANN is a non-parametric model, meaning it does not rely on predefined mathematical
equations or system-specific parameters. Instead, it learns to approximate the input-output
relationship directly from data samples. Once trained, it can generalize to new, unknown
input conditions and provide fast predictions without additional system-level computation.

In this work, the ANN was trained on a dataset consisting of 400 samples, and then tested
on 100 samples to evaluate its predictive performance. The model demonstrated a low Mean
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Absolute Error (MAE), indicating a high level of accuracy.
The key advantage of ANN is its ability to perform calculations almost instantly if the load

changes and the balance between demand and generation is disturbed.
This eliminates the need to re-run computationally and time-intensive metaheuristic op-

timization algorithms such as PSO or GA each time the load profile changes. It should be
noted that the ANN model demonstrates high accuracy only within the range of conditions
for which it was trained. The MAE (Mean Absolute Error) value remains low for small load
fluctuations within 5–10%.

However, in unusual or critical situations—for example, when the load changes by more
than ±30–50%—the neural network may produce incorrect values of generator output because
such atypical values are beyond the trained sample. With deeper fluctuations, it is necessary
to repeat the meta-heuristic calculations and retrain the ANN model.
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3. Research Methodology and
Technical Design

This chapter presents a sequential description of the project, including all calculations. The
analysis and justification of the electrical experimental models used are given, and their ver-
ification is also carried out. Each mathematical algorithm used in the work is explained in
more detail using flowcharts.

3.1. Overview of the Methodological Approach
The project begins by analyzing a simplified power system consisting of a single EC. As the
study progresses, this model becomes more complex, increasing to three interconnected ECs
with numerous electrical elements, including RES. The corresponding extended power grid
model is shown in Appendix A.1.

All simulations and analyses were carried out in two software environments:

• DIgSILENT PowerFactory (PF) – a modern software for modeling electrical systems of
any complexity

• Python – used for automation, optimization, and machine learning tasks.

In some stages, Microsoft Excel was also used to visualize the results.
Using the special library “powerfactory” [23], Python gains access to PF and expands its

original capabilities. For example, as described above, 1000 iterations were calculated as part
of the MC simulation. With Python, this was performed instantly. However, manually calcu-
lating so many iterations without Python would be extremely difficult and time-consuming.
This method would not find application at real energy facilities, where it is necessary to
perform calculations and optimize the network quickly.

Initially, a single-EC model was used to set up and verify the Python code. After verifica-
tion, the model was expanded to three ECs, interconnected through an external grid. When
connecting the three models, technical issues emerged, including overloads on the lines and
voltage violations on buses. So, the optimization was necessary.

Meta-heuristic optimization methods—PSO and GA—were implemented to optimize the
power grid. The final stage involved the use of a trained ANN, which enabled it to respond
almost instantly to any change in load and restore the energy balance to the system. These
methods will be described in detail in the following sections.

3.1.1. Difference from Existing Work
To better position the methodology applied in this work, a comparison is made with the 2024
Master’s thesis by Florian Strebl [24], which follows a different modeling approach to energy
communities.

The main difference between the current approach and that of Florian Strebl lies in the
methodological direction and focus. Florian Strebl investigates the impact of large-scale
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deployment of energy communities on distribution networks using deterministic sce-
narios based on the Austrian and European legislative framework. A wide range of prede-
fined configurations was created that combine different levels of urbanization and penetration
rates of flexible resources, such as photovoltaics, batteries, electric vehicles, and heat pumps.
Each scenario is optimized using Femto.jl with two objectives: minimizing individual costs
("No Community") and optimizing costs at the community scale ("Community"). These
optimized results are then analyzed using static load flow calculations in DIgSILENT Power-
Factory for both low-voltage and medium-voltage networks. The main findings indicate that
the impact of energy communities is greater in less urban areas and with higher levels of
flexibility. Peer-to-peer trading within communities has only a limited effect due to economic
constraints. Overall, communities can reduce residual load and improve self-consumption, but
these effects are modest and context-dependent. Standard key performance indicators (KPIs),
including self-sufficiency level, self-consumption level, transformer loading, voltage levels, and
line utilization, were used to assess system behavior.

However, Streble’s approach is limited by the lack of stochastic modeling and does not
account for uncertainty, variability, or system behavior under stress. The analysis focuses on
fixed assumptions and does not account for the unpredictability of the real world.

In contrast, the current work considers the stochastic nature of loads (utilizing a Monte
Carlo Simulation). It aims to optimize the system at various load levels using modern machine
learning techniques, including PSO, GA, and ANN.

3.2. Technical overview of employment Algorithms
The theoretical basis explaining the nature of MC Simulation, PSO, GA, and ANN is provided
in Section 2.6. Next, the mathematical part will be considered.

3.2.1. Monte Carlo Simulation
Monte Carlo Simulation is widely used in power system studies due to the increasing presence
of stochastic variables, such as renewable energy sources and varying loads. This numeri-
cal method is based on repeated random sampling, particularly useful for solving complex
and nonlinear problems where analytical solutions are not readily available. The main idea
is to perform multiple simulations by randomly varying the input parameters according to
predefined probability distributions, and then analyzing the outcomes statistically [25, 26].

In the context of European power system planning, the application of probabilistic models,
particularly Monte Carlo simulation, has been recommended for adequacy assessments [27].

It can use both historical and simulated data as input values for loads and generation in
the power system. The input values are represented as distributions from which variables are
randomly selected. The system is solved multiple times, each time for a different set of random
variables. The results are then processed together as probability distributions describing the
possibility of possible load flows [25].

The estimated expected value of a quantity Ê(F ) can be computed as follows [14]:

Ê(F ) = 1
nS

nS�
i=1

F (Si) (3.1)

Here, F is the function of interest, Si is the ith set of input variables, and nS is the total
number of simulations.
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In power system studies, MC Simulation is applied to nonlinear power flow equations,
allowing the estimation of the probability distribution of power flows across transmission lines.
Unlike deterministic approaches, MC Simulation enables the use of full nonlinear equations
without requiring simplification. However, this comes at the cost of increased computational
effort due to the large number of repeated simulations.

In probabilistic load flow studies, power system loads are typically modeled using a normal
(Gaussian) distribution [28, 29]. The corresponding probability density function is given by:

f(x) = 1√
2πσ

e− (x−µ)2

2σ2 (3.2)

where µ represents the mean value of the distribution, and σ2 is the variance. As will be
indicated further, within the framework of this work, these values will be calculated auto-
matically using special Python libraries. The variable x may, for instance, denote the power
demand at a particular bus.

In this study, the stochastic modeling of generator outputs is based on a predefined set
of six deterministic scenarios (Figure 3.7) representing different operating levels of nominal
capacity. These six values were used to compute the mean (µ) and standard deviation (σ) for
each generator.

Subsequently, a normal (Gaussian) distribution f(x) was fitted to this synthetic dataset,
and 1000 random samples were drawn using the NumPy library. These samples served as
input to the Monte Carlo simulation, providing variability in generation across iterations.

Although no outlier filtering was applied in this work, it is common in probabilistic modeling
to limit the influence of the distribution tails. A typical approach is to constrain the values
within the interval [µ − 3σ, µ + 3σ], which covers 99.7% of all possible outcomes. This helps
exclude extreme values that may not be physically feasible, especially when simulating critical
infrastructure such as power systems.

Such truncation can be implemented programmatically using functions like scipy.stats.
truncnorm from the SciPy library [30], which allows sampling from a normal distribution with
specified lower and upper bounds. While the synthetic nature of the input data in this study
already implies a bounded behavior, tail clipping may be added in future implementations to
ensure numerical stability and realism in the generated samples.

3.2.2. Overview of Particle Swarm Optimization
The objective function of the PSO optimization aims to minimize voltage violations on buses,
reduce losses, and mitigate overloads in transmission lines. The details of the objective func-
tion are provided below. The mathematical formulation used in this study is directly adapted
from the approach proposed by Singh et al. [18], where the PSO algorithm was success-
fully applied to the IEEE 9-bus system. Their work served as a foundation for adapting the
mathematical formulation to the system considered in this study.

Minimization of Transmission Losses
The active power losses in transmission lines can be calculated using the following equation:

F1 =
NB�
i=1

NB�
j=1
j ̸=i

|Vi||Vj ||Yij | cos(θij + δj − δi) (3.3)

where:
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• |Vi|∠δi is the voltage phasor in bus i,

• Yij∠θij is the admittance between bus i and j.

Voltage Deviation Minimization
To maintain the voltage profile close to nominal values (1.0 p.u.), the voltage deviation

objective is expressed as:

F2 =
NL�
i=1

|vi − 1| (3.4)

where vi is the per-unit voltage magnitude at bus i, and NL is the total number of buses
considered in the voltage deviation calculation.

Constraints
The following restrictions must be considered when calculating the OPF:

Active Power Balance
The total active power supply should be equal to the power demand and losses:

NG�
i=1

Pgi −
NB�

j=1
PDj + PL

 = 0 (3.5)

where, PDj is the active power demand and PL is the active power losses.
Reactive Power Balance

NG�
i=1

Qgi −
NB�

j=1
QDj + QL

 = 0 (3.6)

where, QDj is the reactive power demand and QL is the reactive power losses.
Losses
Active power demand and active power losses are given as:

PL =
NB�
i=1

NB�
j=1
j ̸=i

|Vi||Vj ||Yij | cos(θij + δj − δi) (3.7)

Reactive power demand and reactive power losses are given as:

QL =
NB�
i=1

NB�
j=1
j ̸=i

|Vi||Vj ||Yij | sin(θij + δj − δi) (3.8)

Operation limits
The active and reactive generation of all generators should be between the minimum and

maximum values:
P min

gi ≤ Pgi ≤ P max
gi , (i = 1, 2, ..., NG) (3.9)

Qmin
gi ≤ Qgi ≤ Qmax

gi , (i = 1, 2, ..., NG) (3.10)
Voltage limits
The voltage at all buses must be within the minimum limit and maximum limit.

|V min
i | ≤ |Vi| ≤ |V max

i |, (i = 1, 2, ..., NB) (3.11)

17



3. Research Methodology and Technical Design

Objective function
The objective function (fitness) used in this study is designed to penalize several undesired
conditions in the power system:

F = w1 · L + w2 · T + w3 · V + w4 · Sactive + w5 · Sreactive (3.12)

It represents a weighted sum of five components, each reflecting a specific network issue.

• L – total line overloads (in percent or MW),

• T – transformer overloads,

• V – voltage violations at buses (deviation from nominal value),

• Sactive – unbalanced active power in the system,

• Sreactive – unbalanced reactive power in the system.

The weights w1, w2, w3, w4, w5 [31] allow prioritizing the severity of each objective. In this
work, the values used were:

w1 = 10, w2 = 5, w3 = 8, w4 = 100, w5 = 100

This parametrization ensures that the optimization algorithm prioritizes balancing active
and reactive power while also considering overloads and voltage profiles.

Algorithm for solution technique
Based on the flowchart shown in Figure 3.1, the standard GA is governed by the following
phases:

Figure 3.1.: Flowchart of PSO [17]

The PSO algorithm employed in this study follows a standard iterative procedure and
comprises the following steps:
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1. Initialization: Random initialization of particle velocities and positions within the
defined search space.

2. Velocities values:
In the PSO, each particle represents a candidate solution and is characterized by two
vectors: a position vector xi and a velocity vector vi. The velocity initialization step
refers to the random assignment of initial velocity values to all particles. These values
determine the direction and speed at which each particle will explore the solution space.
The particles’ positions and velocities are then updated iteratively using the following
standard equations [17]:

xi(t + 1) = xi(t) + vi(t + 1) (3.13)

vi(t) = vi(t − 1) + c1r1[lb(t) − xi(t − 1)] + c2r2[gb(t) − xi(t − 1)] (3.14)

where:
• xi(t), vi(t) are the position and velocity of particle i at iteration t,
• lb(t) is the best position found so far by particle i (local best),
• gb(t) is the best position found among all particles (global best),
• r1, r2 ∈ [0, 1] are uniformly distributed random numbers,
• c1, c2 are acceleration coefficients.

This initialization ensures diversity in the swarm and enables the algorithm to begin
exploring the solution space effectively.

3. Objective Function Evaluation: Calculation of the objective (fitness) function for
each particle.

4. Update Step: Updating both global and local best positions and fitness values based
on performance.

5. Convergence Check: If the stopping condition (maximum number of iterations or
sufficient fitness level) is met, the algorithm terminates.

6. Output: The best-found solution is reported.

This procedure was implemented in Python using a custom iterative loop. The particle
update logic, boundary handling, and fitness evaluation were written manually, with sup-
port from a specialized PSO library for vectorized updates. Full implementation details are
provided in Section 3.5.1.

This algorithm structure is adapted from [17] and applied to the power flow optimization
in this study.

3.2.3. Overview of Genetic Algorithm
The second meta-heuristic algorithm applied in this study is the GA, which is inspired by
the principles of natural selection and biological evolution. GA is particularly well-suited for
solving nonlinear and complex optimization problems in power and energy systems.

For the GA, the objective function and system constraints remain unchanged, as previously
defined in the PSO section.
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The algorithmic framework used in this study is based on the approach in [32], which has
shown successful application to benchmark power systems such as IEEE 6-bus, 14-bus, and
30-bus networks. In this study, the same methodology is adapted and applied to the developed
ECs using a built-in Python library.

As recommended in [17], the standard GA procedure consists of five key phases, each of
which is described below.

Algorithm for solution technique
Based on the flowchart shown in Figure 3.2, the standard GA is governed by the following
phases:

1. Generate an initial random solution. A population of candidate solutions (indi-
viduals) is randomly generated. Each individual is represented as a chromosome - a
vector containing potential solutions (data sets) for the electrical system.

2. Evaluate the fitness function. The objective function (e.g., minimizing active power
loss, minimizing overload, achieving power balance between supply and demand) is cal-
culated for each individual, determining how "fit" or suitable the solution is. Individuals
with better performance have a higher chance of being selected.

3. Perform the selection. Based on the fitness values, the best chromosomes (sets of
parameters) are selected.

4. Application of genetic operators, such as crossover and mutation. The best
chromosomes are selected for the selection, and they undergo crossover, where they
combine to create a new offspring. The next step is mutation, which introduces small
random changes to add diversity, essential for exploring new regions of the search space.
Moreover, additional diversity is essential for avoiding local minima and improving
global optimization.

5. Verification of the stopping criteria. The algorithm iteratively evolves the popu-
lation until a stopping criterion is met, such as a maximum number of generations or
the convergence of fitness values.
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Figure 3.2.: Flowchart of GA [17]

A detailed explanation of the Python implementation will be presented in Section 3.5.2.

3.2.4. Overview of Artificial Neural Network
ANN was used as the final stage of the research, based on [22].

ANN are computational models that emulate the parallel processing capabilities of the
human brain. ANNs process input data, learn patterns, and make predictions or classifications
based on the knowledge they acquire.

An ANN consists of interconnected nodes, or artificial neurons, organized into layers. Each
neuron receives inputs, processes them, and produces an output. The functioning of ANNs
imitates how the human brain processes information. Just like biological synapses connect
neurons in the brain, artificial neurons are linked through weights. These weights can be
strengthened or weakened during training, similar to how synaptic strength changes in bio-
logical learning.

The artificial neuron model typically comprises three core components: input weights,
a summation function, and an activation (or transfer) function. Collectively, these elements
enable the network to compute weighted sums and apply nonlinear transformations to generate
the desired output.

The architecture employed corresponds to the well-known Multilayer Perceptron (MLP),
as illustrated in Figure 3.3. This MLP model has proven effective in capturing various types
of nonlinear relationships in energy systems [33].
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Figure 3.3.: Flowchart of ANN

In this study, the input weights, summation, and activation functions are automatically
initialized and optimized using a dedicated Python library.

This study employs an ANN for regression purposes, specifically to predict the active power
output Pgen. The implementation relies on the MLPRegressor class from the scikit-learn
Python library. The model structure, including the choice of activation functions, hidden
layers, training iterations, and error evaluation, is guided by both the official documentation
and example implementations from the open-source community:

• Official scikit-learn documentation [34].

• GitHub source of scikit-learn documentation [35].

These resources formed the basis for the ANN implementation in Python, which was utilized
in this work. A detailed explanation of the code will be presented in Section 3.5.3.

3.2.5. Parametrization of PV installations
Parameterization of PV panels also requires a correct approach. One option for parameterizing
in PF is to specify active powers manually.

To enhance the modeling’s reliability, the active power values were based on predictions
from historical PV generation data instead of being set arbitrarily. The active power data for
2023 in Austria (8760 hours) are utilized as input data. This data was sourced from the official
ENTSO-E (European Network of Transmission System Operators for Electricity) website [36].

Initially, a simple linear regression was used to predict future active power values. However,
this method showed a low level of correlation between actual and predicted values, which is
also confirmed by unsatisfactory quality metrics - a low determination coefficient R2

test, which
indicates that the model cannot capture patterns.

Later, a more powerful algorithm, the Random Forest Regression, was selected, which
ensured high prediction accuracy. The model reproduced the active power values with minimal
deviations between the training and test samples, demonstrating a high level of correlation.
A detailed explanation of the code will be presented in Section 3.4.1.

The linear regression model was implemented in Python, utilizing publicly available exam-
ples and documentation. In particular, the structure of the model and syntax were guided
by:
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• The official documentation of the LinearRegression class from the scikit-learn library
[37].

• A practical Python example of linear regression published on GeeksforGeeks [38].

These sources provided step-by-step guidance for model definition, training, and perfor-
mance evaluation using metrics such as R2

test and MSE.

3.2.6. Comparative approach and modeling setup
Later in this chapter, a detailed review of the above methods and their implementation in
Python and PF will be given.

A simplified EC is first modeled to verify the Python code at the first stage. Then the
model is expanded to three ECs connected via the external network, including RES and
diesel generators. Each model is first modeled without optimization (base case) and then
optimized separately using PSO and GA optimizations. The last stage is the application of
the ANN algorithm based on PSO results.

In critical operating modes, the optimization algorithms redistribute the load, considering
the available capacity, reducing the overload on all network elements. In particular, one of the
specified conditions is to limit the generator load to no more than 80% of their rated capacity,
which avoids their operation in overload mode.

Running a diesel generator at a consistent and appropriate load level can significantly im-
prove efficiency. Diesel generators often operate most efficiently at a load of around 80% of
their rated capacity. Avoid overloading or underloading the generator, as this can lead to
inefficiencies and shorten its lifespan [39]. Moreover, operating a diesel generator at 80% can
lead to the most efficient fuel consumption. Running the generator at very low loads can
increase fuel consumption per unit of electricity generated, making the operation less efficient
[40]. Furthermore, continuously operating at or near 100% can also lead to overheating, ac-
celerated wear, and, in extreme cases, equipment failure. This risk is especially pronounced
in regions with high ambient temperatures—such as the Middle East—where cooling systems
may become insufficient under peak loads. Therefore, many grid operators apply an opera-
tional limit of approximately 80% of the nominal power to ensure long-term reliability and
thermal stability of the generation units.

The objective of this comparison is to analyze how optimization algorithms affect:
• reduction of voltage violations on buses;

• efficiency in reducing line loads;

• efficiency in reducing generator and transformer loads;

• balance of active and reactive power.
It is important to note that the total volume of generated energy from RES remains un-

changed in all scenarios. Optimization only redistributes the internal load and generation to
improve system operation.

3.3. Initial Power System Modeling and Model
Verification

The first stage of the research is the verification of the Python code. The simulation model
is based on the CIGRE medium-voltage reference network, which is included as a predefined
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example in the DIgSILENT PowerFactory [41]. Figure 3.4 and figure 3.5 show the initial
simplified model of one EC before and after Load Flow calculation. Table 3.1 represents the
quantity of electrical elements in the initial EC model. It contains:

Element Quantity
Diesel generators (DG) 3
Transformers (TR) 5
Loads 11
Buses 18
External grid 1

Table 3.1.: Components of the initial EC model

The parameters of the elements are given in Table 3.2, 3.3, 3.4, 3.5:

# Name Active Power [MW] Reactive Power [MVar] Apparent Power [MVA]
1 Diesel Generator 1 3.892 0.0 3.892
2 Diesel Generator 2 2.048 0.0 2.048
3 Diesel Generator 3 2.048 0.0 2.048

Table 3.2.: Power parameters of diesel generators in the initial EC model

# Name Active Power [MW] Reactive Power [MVar] Apparent Power [MVA] Power Factor
1 Load_1 1.401 0.5 1.5 0.949
2 Load_11 0.360 0.1 0.4 0.949
3 Load_12 0.944 0.2 1.0 0.970
4 Load_14 0.723 0.4 0.8 0.894
5 Load_3 0.724 0.4 0.8 0.894
6 Load_4 0.481 0.1 0.5 0.970
7 Load_5 0.959 0.2 1.0 0.970
8 Load_6 0.718 0.1 0.7 0.986
9 Load_7 0.120 0.1 0.2 0.707
10 Load_8 0.720 0.2 0.8 0.949
11 Load_9 0.840 0.5 1.0 0.868

Table 3.3.: Power parameters of loads in the initial EC model

# Name Type
1 Transformer_0_1 Transformer Type 25MVA 50Hz 110/20kV
2 Transformer_0_12 Transformer Type 25MVA 50Hz 110/20kV
3 Trf Conv 1 Transformer Type 5MVA 50Hz 10–20kV
4 Trf Conv 2 Transformer Type 5MVA 50Hz 10–20kV
5 Trf Conv 3 Transformer Type 5MVA 50Hz 10–20kV

Table 3.4.: List of transformers in the EC model
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3.3. Initial Power System Modeling and Model Verification

# Name Target Voltage [kV] ΔV max [%] ΔV min [%]
1 T0 110.0 5.0 -5.0
2 T1 20.0 5.0 -5.0
3 T10 20.0 5.0 -5.0
4 T11 20.0 5.0 -5.0
5 T12 20.0 5.0 -5.0
6 T13 20.0 5.0 -5.0
7 T14 20.0 5.0 -5.0
8 T2 20.0 5.0 -5.0
9 T3 20.0 5.0 -5.0
10 T4 20.0 5.0 -5.0
11 T5 20.0 5.0 -5.0
12 T6 20.0 5.0 -5.0
13 T7 20.0 5.0 -5.0
14 T8 20.0 5.0 -5.0
15 T9 20.0 5.0 -5.0
16 Term Conv 1 10.5 5.0 -5.0
17 Term Conv 2 10.5 5.0 -5.0
18 Term Conv 3 10.5 5.0 -5.0

Table 3.5.: Voltage parameters of buses in the EC model

After running the power flow calculation in PF, all elements are highlighted in green,
indicating that there are no voltage violations or overloaded elements in the system [42]. The
results of the power flow calculation are shown in Figure 3.6(left).

Next, the Python code is compiled. After running the code, a DataFrame with results
was built. Figure 3.6(right) shows the output of the Python calculation, presenting the same
results for line loading as obtained in PowerFactory. This confirms that the code has been
correctly written and can be used for further simulations and optimizations.

Conclusions of the initial verification stage:

• A simplified EC model was successfully built in PF, and a Python code was written to
automate calculations.

• The combination of PF and Python allows a flexible, fast, and efficient tool for power
system analysis.

• The verification confirmed that both software have identical results, meaning that
Python can be used for further research.
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Figure 3.4.: Initial simplified model of one EC before Load Flow calculation [41]
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Figure 3.5.: Initial simplified model of one EC after Load Flow calculation
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Figure 3.6.: Results of Load Flow calculation using PF and Python

3.3.1. Preparing data for Monte Carlo simulation
After the model is successfully verified for operation and all preparatory calculations are
performed, the next step is to analyze the probability of overloads in transmission lines and
generators using the MC simulation [43].

As shown in Figure 3.5, the current model operates without technical issues. To simulate
stressed operating conditions for the model, a loop was applied in the Python code to gradually
increase the load by 1% per iteration until any line in the system exceeds the defined overload
threshold.

In this research, the loop’s stopping criterion is set to 10% overload on at least one trans-
mission line. This ensures the system experiences significant stress, providing a realistic base
for the MC simulation.

MC simulation typically requires historical data to predict output. However, in this work,
instead of historical data, a custom dataset of six different power flow scenarios is used. These
scenarios have different active power generation and load combinations, providing a realistic
spread of input conditions.

As shown in Figure 3.7, the power values for generators and loads are changed six times,
each time filling the DataFrame for lines and generators. This DataFrame serves as the input
data for the MC simulation.

This modeling choice allows a more realistic assessment of potential overloads and voltage
issues under diverse operating conditions.

Figure 3.7.: Code block for generating the six scenarios
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3.3. Initial Power System Modeling and Model Verification

Generation and load levels were varied simultaneously in six scenarios (70%, 85%, ..., 120%
of nominal values). These bounds reflect the physical limitations of the units and ensure that
the simulated injections remain within technically feasible ranges. This approach is explained
by the partial autonomy of the studied Energy Communities, where generation is based on
renewable sources and diesel generators with uncertain and unstable output. In such systems,
neither generation nor consumption can be considered strictly controlled or deterministic,
which justifies the simultaneous stochastic variation of both processes.

The scenarios were assumed to be stochastically independent across generators, meaning
that variations in one generator’s output were not correlated with variations in others. This
assumption simplifies the sampling process and avoids the need to model interdependencies
between generation units.

The scenario outputs for all generators are summarized in 3.6, which provides the basis for
the subsequent statistical analysis.

name GenLoad0 GenLoad1 GenLoad2 GenLoad3 GenLoad4 GenLoad5
Diesel Generator 1 3.892 2.724 3.3082 3.697 4.2812 4.671
Diesel Generator 2 2.048 1.433 1.741 1.946 2.2528 2.457
Diesel Generator 3 2.048 1.433 1.741 1.946 2.2528 2.457

Table 3.6.: Resulting values for generator outputs after the six scenarios

To better understand the variation in generator outputs, a probability density function
(PDF) was calculated for DG1, as shown in Figure 3.8. The PDF follows an approximately
Gaussian distribution, characterized by the mean value (µ) and the standard deviation (σ)
derived from the scenario data.

The mean value indicates the central tendency of the generator’s output, while the standard
deviation quantifies the variability across the scenarios. A small σ reflects stable operation
with low fluctuation in power output, whereas a large σ suggests significant variability and
potential instability in generator performance. In Figure 3.8, the mean is marked by a vertical
red dashed line, and the σ boundaries are indicated by orange dashed lines.

The PDF follows an approximately Gaussian distribution. The bounded range (70%–120%
of nominal) ensures that extreme or unrealistic values are excluded, while the use of multiple
scenarios captures a realistic spread of operational states.

For a more direct comparison between all generators, Figure 3.9 presents the output values
for each case (Case0–Case5) in a bar chart. This visual format highlights that DG1 consis-
tently operates at higher levels compared to DG2 and DG3, and in certain scenarios (e.g.,
Case 5) exceeds its nominal capacity. This condition represents a potential overload, which,
in real-world operation, could lead to accelerated wear or even damage to the generator.

Together, Figures 3.8 and 3.9 provide complementary insights: Figure 3.8 captures the
statistical distribution of DG1’s output, while Figure 3.9 shows the discrete case-by-case
values for all generators. These statistical profiles will be used as probabilistic inputs for the
Monte Carlo simulation, enabling a realistic estimation of overload probabilities under diverse
operating conditions.
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Figure 3.8.: Normal Distribution of DG1

Probabilistic model for DG1. Based on the six scenario values from Table 3.6, for
DG1 the sample mean and standard deviation are:

µDG1 = 3.762 MW, σDG1 = 0.63 MW.

In the Monte Carlo study we model the DG1 active-power injection as a truncated normal
random variable,

PG1 ∼ N (µ, σ2) truncated to [L, U ],

where the truncation bounds L (Lower bound) and U (Upper bound) are taken directly from
the scenario design:

L = 2.724 MW (70%), U = 4.671 MW (120%).

A common approach is to constrain the values within the interval:
�
µ − 3σ, µ + 3σ

�
=

[1.874, 5.65] MW, which covers 99.7% of all possible outcomes under a normal distribution.
However, this range exceeds the feasible operating limits of DG1. Therefore, sampling is
restricted to [L,U], ensuring compliance with the generator’s technical limits and preventing
unrealistic injections. The same probabilistic modeling framework is applied to the remaining
generators (and, analogously, to loads).

Thus, the necessary framework for conducting the MC simulation has been created.
A bar chart was created based on the DataFrame to better understand the data distribution

and the differences between the six scenarios.
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Figure 3.9.: Generator load values for each scenario (Case0 to Case5)

3.3.2. Estimation of the probability of overloads using Monte
Carlo Simulation

The simulation can begin once the required input data for the MC has been successfully
obtained. The simulation requires two parameters:

• The mean value µ,

• The standard deviation σ.

These two parameters define the normal (Gaussian) distribution. In this project, they can
be calculated automatically based on the six previously defined load flow scenarios, which can
be seen in Table 3.6.

To simulate the stochastic variation in generation or load, a Monte Carlo loop was im-
plemented using the NumPy library, as shown in the Figure 3.10. At each iteration, a new
sample of active power values was drawn from a normal distribution based on previously
computed mean and standard deviation values. These samples are later used as input to load
flow calculations to analyze the network response.

Figure 3.10.: Parametrization using NumPy library

The variable random_loads_gen represents a single realization of generator power values
for one Monte Carlo scenario. These values are inserted into the power system model to
compute the resulting power flows, line loadings, and potential overloads.
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Detailed numerical and graphical results of the MC simulation will be given in the next
chapter.

3.3.3. System modernization: Installing an additional parallel
line

The result obtained from the MC simulation showed that certain lines, in particular Line
3_4, experience overloads more often than others.

One cost-effective and most straightforward option for reducing the line load is to install
a second parallel line with identical electrical parameters. In PF, this second line is installed
parallel to L_3_4 and called L_3_4_parallel. A fragment of the modified PowerFactory
topology is shown in Figure 3.11.

Figure 3.11.: Fragment of the model with a parallel line installed

Repeated calculations did not reveal any overloaded lines. The following section will provide
a detailed evaluation of the effectiveness of this upgrade. Conclusions of the MC-Simulation:

• The issue of power line overload using the Monte Carlo approach was investigated.

• By modeling different scenarios of initial conditions, the probability of overloads was
estimated, and the most vulnerable sections of the network were identified.

• As a result of the analysis, the solution to the overload problem of L_3_4 was to install
an additional parallel line L_3_4_parallel, which reduced the load and improved the
reliability of the entire system.
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3.4. Extended Model: Three Energy Communities -
Increased Complexity and Overloads

The next step is to increase the complexity of the model. In real-world systems, several ECs
can be linked through the external grid and operate in coordination. During peak load hours,
surplus energy from one EC can flow to another.

The new extended model consists of three ECs with an identical structural configuration.
They differ in their power sources:

• EC1 operates only on DGs,

• EC2 includes only PV panels,

• EC3 combines one DG and one PV panel.

As mentioned before, the large number of RES is the main characteristic of ECs. All ECs
are interconnected through a common external grid. The current system includes:

• 45 transmission lines

• 13 TR

• 33 loads

• 8 PV installations

• 4 DG

The PF model diagram is provided in the Appendix A.1.

3.4.1. Parametrization of PV installations
The generator and load parameters in the second and third ECs were taken from the already
configured EC1. In addition, these communities contain PV panels, which must also be
correctly parameterized with real operating conditions.

The parameterization of PV will be carried out using machine learning techniques for the
greatest accuracy and realistic representation. The model will predict future active power
values for the PV panel based on historical data.

3.4.2. Simple Linear Regression prediction algorithm
To assess the correctness of the model’s prediction, three metrics are typically used: the
coefficient of determination of the training data R2

train, the coefficient of determination of the
test data R2

test, and the mean square error (MSE).
The coefficient of determination of the training data R2

train shows how well the model has
learned from the training set (usually 80% of the set is allocated for training and 20% for
testing). A value of R2

train close to 1 indicates a high degree of fit to the training data.
The coefficient of determination for the test data R2

test shows how well the model predicts
new data it has not seen before. A value close to 1 indicates high prediction accuracy.

In some cases, R2
train may be high, while R2

test is much lower. This often means overfitting,
when the model remembers the training data too well but fails to generalize to new data.
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The third parameter is the value of the mean square error (MSE), which represents the
average error between the predicted and actual values, squared. The smaller the MSE, the
better the model’s performance.

Initially, for forecasting, simple linear regression was used for the analysis, where the active
power of the PV panels was a function of time (in hours). However, the limited data set (only
active power and hours) led to an extremely low coefficient of determination:

• R2
train = 0.0021 on training data,

• R2
test = 0.0017 on test data,

• MSE = 0.0236 on test data.

Such low values indicate no correlation between the real and predicted data. This means
that linear regression cannot be used for forecasting. The performance of linear regression
can be seen in Figure 3.12.

Figure 3.12.: Performance of Linear Regression algorithm

3.4.3. Random Forest Regression algorithm
To improve the model’s prediction accuracy, new parameters were added to Table 3. Initially
containing only time and power, the table was expanded with new columns: day, month, and
holidays, reflecting seasonality, day of the week, and weekends. These parameters will help
the model to find more meaningful patterns in the data that were previously hidden and not
obvious.

Since the data is highly nonlinear and dispersed, a more powerful machine learning algo-
rithm was used – Random Forest Regression [44].

The results show excellent learning performance. The model predicts the power values with
high accuracy and low error. The results are shown in Figure 3.13.

• R2
train = 0.9928 on training data,

• R2
test = 0.9475 on test data,

• MSE = 0.0012 on test data.
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Figure 3.13.: Performance of Random Forest Regression algorithm

A plot for estimating the prediction quality is shown in Figure 3.14. The blue points
represent the real data, while the red lines show the model’s predictions. The plot shows that
the red lines lie close to the blue dots, indicating a strong fit. The dataset was split with 80%
used for training and 20% for testing, which is a common practice in machine learning.

The red lines lie on the blue dots, demonstrating accurate convergence. Appendix B.1
contains detailed Python code with explanations.

Table 3.7.: Expanded input dataset for Random Forest Regression algorithm
Time Power Month Day Holidays

1 0 1 1 1
2 0 1 1 1
3 0 1 1 1
4 0 1 1 1
5 0 1 1 1
6 0 1 1 1
7 0 1 1 1
8 0 1 1 1
9 0.0020169 1 1 1
10 0.013406 1 1 1
11 0.027662 1 1 1
12 0.036961 1 1 1
13 0.042793 1 1 1
14 0.042995 1 1 1
15 0.032854 1 1 1
16 0.0133 1 1 1
17 0.0014256 1 1 1
18 0 1 1 1
19 0 1 1 1
20 0 1 1 1
21 0 1 1 1
22 0 1 1 1
23 0 1 1 1
24 0 1 1 1
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Figure 3.14.: Comparison of predicted and actual power values

To visualize the seasonality of PV power generation, the overall plot was divided into six
subplots for different periods of the year, each representing a specific period. This helps to
visualize the power generation in different seasons of the year. The following periods were
selected:

• Winter: 0–1500 hours

• Spring: 1500–3500 hours

• Summer: 3500–5500 hours

• Autumn: 6000–8500 hours

• Peak Summer: 4400–5100 hours with the most active solar period

• Valley Winter: 0–750 hours with minimum solar activity

Figure 3.15 shows the predicted power for each season.
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Figure 3.15.: Seasonal segmentation of forecasted vs actual PV power generation

This stage plays one of the key roles in the accurate parameterization of PV panels. The
model was trained on real PV data for 2023 and proved high accuracy in forecasting.

As a result, the grid operator can now utilize the algorithm in a power plant to estimate the
expected power at any future time. Without this stage, the power of PV would be manually
selected, reducing the reliability of further calculations.

The use of machine learning to predict future output is used in professional power system
studies, which increases the reliability of all the following stages, including PSO, GA, and
ANN.

As a test of the model’s forecasting performance, the predicted PV power will be presented
for two dates:

• Summer forecast: July 15, 12:00,

• Winter forecast: January 5, 12:00.

The figure 3.16 shows the forecasting procedure using the trained model in Python. The
operator only needs to enter the desired date and time (e.g., July 15 or January 5 at 12:00),
and the result will be generated automatically. This allows for the forecasted PV power value
to be calculated for any specified moment.

37



3. Research Methodology and Technical Design

Figure 3.16.: Power forecast results

The numerical results of the PV forecast are presented in Figure 3.17:

Figure 3.17.: Power forecast results

The visualization of the predicted PV power for two selected points is shown in Figure 3.18:
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Figure 3.18.: Visualization of forecast results

The results confirm that the model provides adequate forecasts. In winter, the predicted
power value is 0.03 MW, which indeed reflects low solar radiation. In summer, the power is
significantly higher and accounts 0.19 MW, which indicates a higher level of solar radiation.

For the parameterization of the PV panels, the value of the winter period was selected,
in which the load on the electrical system increases due to additional heating and lighting.
Solar generation drops significantly due to reduced irradiation and daylight hours. Thus, the
worst case is “built in", making the model resistant to peak loads. Figure 3.19 shows the
parameterized PV panels in the PF.

Figure 3.19.: Parameterization of PV panels in the PF

With the successful parameterization of PV panels, the new extended model is now ready
for analysis (Appendix A.1). However, after integrating the three ECs, new challenges have
emerged. Particularly, EC1 has overloads in several lines and voltage violations, indicating
potential reliability issues. These elements are highlighted in red, indicating technical issues.
It means that optimization methods are needed to improve grid stability.
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3.5. Estimation of the probability of overloads using
Monte Carlo Simulation

Similar to the previous part, an MC analysis will be performed for a new model consisting of
three interconnected ECs.

The repeated MC simulation is essential for assessing reliability and identifying potential
vulnerabilities. The power grid is now more complex, with RES, DGs, and an external grid.
The degree of uncertainty is higher, mainly due to PV and variable loads.

Six different cases were calculated by changing the initial data of generators, PV instal-
lations, and loads as part of the simulation. All calculation results were combined into one
single DataFrame, which serves as the basis for the Monte Carlo analysis.

Detailed numerical and graphical results of the MC simulation will be presented in the next
chapter.

3.5.1. Application of PSO Optimization
After completing all preparatory work, an OPF can be carried out to optimize the system
and bring it to a stable state, without voltage violations and overloaded elements.

Since the current power grid is too complex for traditional methods, such as the Newton-
Raphson approach, a metaheuristic algorithm should be applied.

The first chosen algorithm is PSO. As previously described, PSO iterates through all possi-
ble sets of system parameters, aiming to minimize the value of FF. Consequently, PSO helps
to find the optimal power distribution and reduce overloads.

Currently, the energy system operates in an unstable mode (see Appendix A.1). Overloads
are observed on all elements. On most buses, especially in EC1, voltage drops are more than
50%. Considering all technical constraints and limitations, the PSO optimization will be
applied to the system. The parametrization of FF is shown in Figure 3.20.

In the context of power systems, PSO has been widely used for various optimization prob-
lems such as economic load distribution (ELD), voltage control, and overload mitigation.
For example, [31] demonstrates the effectiveness of PSO in overload control in transmission
systems under both normal and critical operating conditions. The selection of PSO parame-
ters (weight coefficients) was based on literature guidelines [45] and adjusted empirically for
convergence.

The implementation in this study follows the standard PSO procedure, which includes
particle initialization, fitness evaluation, updating of personal and global records, and updates
to position and velocity. The algorithm terminates when the convergence criteria are met or
a predefined number of iterations is reached.
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3.5. Estimation of the probability of overloads using Monte Carlo Simulation

Figure 3.20.: Parametrization of the FF in PSO algorithm

The weight coefficients prioritize the following objectives:
• w1 – line overloads,

• w2 – transformer overloads,

• w3 – voltage violations,

• w4 – power imbalance,

• w5 – excessive load shedding.
Thus, the objective is to minimize the overall value of "F". Optimization will be needed if

the value of FF is high, indicating a lot of technical issues.
The Python code for running the PSO algorithm [46], which will attempt to find the optimal

distribution of power and loads, reducing losses, overloads, and voltage violations, is shown
in Figure 3.21.

Figure 3.21.: Parametrization of the PSO algorithm
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This code initializes PSO by finding the best set of parameters that minimizes the value of
FF. It performs 200 iterations, during which the particles will update their position based on
the best solutions found, and returns two values:

• best_solution – a vector of optimized values found by PSO (new optimized parame-
ters).

• best_fitness – the minimum value of the FF after optimization.

After the PSO optimization, new parameters for generators and loads were determined,
which will ultimately be automatically configured in PF. These new parameters ensure that
the power grid experiences no technical issues.

The next chapter will present results and tables with new optimized parameters.

3.5.2. Application of GA Optimization
The Python code for running the GA algorithm, which will attempt to find the optimal
distribution of power and loads, reducing losses, overloads, and voltage violations, is shown
in Figure 3.22.

The parametrization of FF remains unchanged and is shown in Figure 3.20.

Figure 3.22.: Parametrization of the GA algorithm

Table 3.8 provides explanations for each parameter.
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Table 3.8.: Description of GA parameters
Parameter Description
strategy=’best1bin’ This strategy ensures that the best solution is always

used for generating new candidates. This accelerates
convergence and provides more stable results compared
to other random strategies.

popsize=20 Population size represents the number of possible solu-
tions in each generation.

mutation=(0.5, 1) Adds more randomness and can help avoid getting stuck
in a local minimum.

recombination=0.7 Specifies how often parent solutions will be mixed for
new individuals. Increasing the crossover helps find a
good solution faster, but reduces diversity.

tol=1e-6 Convergence threshold. When the difference between
generations becomes less than 1e-6, the algorithm stops.

maxiter=200 Maximum number of iterations. 200 was defined as the
sufficient minimum.

disp=True Enables output of optimization progress information
during execution.

After the GA optimization, new parameters for the power grid were achieved, and the
system does not experience any technical issues when using them.

The next chapter will present results and tables with new optimized parameters from PSO
and GA algorithms.

3.5.3. Application of ANN
PSO and GA are sources of "ideal" solutions. They found values of Pgen that are balanced with
the load, but they require a long time to calculate, especially if many real-time simulations
are needed [47].

ANN is a fast substitute for PSO and GA. It was trained on the results obtained from
PSO: Pload serves as the input, and Pgen is the output. Once trained, the ANN can, in a short
time, predict the optimal Pgen value for a given Pload, without running complex iterative
optimization each time.

The optimized values of loads and generators from PSO were saved into two separate .csv
files:

• X – input data (loads)

• Y – output data (generators)

500 synthetic input-output pairs were generated by repeating the base case and adding
Gaussian noise to train the model. Data from 400 samples were used for training, while the
remaining 100 were used for testing the forecasting accuracy. The Python code for ANN is
shown in Figure 3.23.
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Figure 3.23.: Parametrization of ANN

The dataset was split, with 80% (i.e., 400 samples) used for training and 20% (100 samples)
for testing, which is a common practice in machine learning.

The neural network model is based on the MLPRegressor from the scikit-learn library,
using two hidden layers, each containing 64 neurons [48]. The ReLU activation function is
applied, and the training is performed over a maximum of 2000 iterations. The model weights
are not manually specified but automatically initialized and optimized during training. The
Python code for model creation and training is shown in Figure 3.24.

Figure 3.24.: Model creation and training

For assessing the model’s prediction performance, the value of MAE [49] was calculated,
and plots for actual and predicted power were built.

Figure 3.25 shows four plots corresponding to four generators. The blue line represents the
value of active power (in MW) obtained after PSO optimization. The orange line shows the
predicted value calculated by the neural network.

The value of MAE is 0.0398 MW and indicates the high accuracy of the model. This
means that the ANN can reproduce the power distribution of generators obtained from PSO
(or GA) much faster.
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Figure 3.25.: Comparison of predicted and actual power values

The obtained power values were automatically exported to PowerFactory. Recalculation
of the Load Flow confirmed the mode’s stability and the absence of overloads. As a result,
the grid operator at the power plant can now use the algorithm to estimate reliable generator
output in real time for any updated load scenario. Without this approach, the operator would
have to repeat the PSO or GA calculation for every change in load, which is computationally
inefficient.

As mentioned, the ANN model demonstrates high accuracy only within the range of condi-
tions for which it was trained. The MAE (Mean Absolute Error) value remains low for small
load fluctuations within +—5–10% .

However, in unusual or critical situations—for example, when the load changes by more
than ±30–50%—the neural network may produce incorrect values of generator output because
such atypical values are beyond the trained sample. In such cases, it is recommended that
optimization be rerun using PSO or GA.

Figure 3.26 shows the ANN’s applicability limits for different levels of load change:

• The red line indicates the initial load level (100%), where the MAE is 0.0398 MW.

• The blue line shows the growth of the MAE with an increase or decrease in load relative
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to the trained level.

The plot shows that when the load changes by more than 30%, the MAE value increases
significantly, making the model unreliable. If the load changes beyond ±40–50%, the neural
network becomes incorrect.

This indicates that the ANN model works effectively within the trained range, but is not de-
signed to extrapolate to extreme conditions. In such cases, the ANN model must be retrained,
using updated data from PSO or GA.

Figure 3.26.: Applicability limits for different levels of load change
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4. Results and Discussion
This chapter presents a structured overview of all the obtained results. The subsection num-
bers correspond to the methodological steps of the previous part. Each section contains a
graphical, numerical, and theoretical interpretation of the results. Additional diagrams and
models can be found in Appendix A.

4.1. Result of Monte Carlo Simulation
Table 4.1 presents the input data for generators used in 1000 iterations for Load Flow calcu-
lations. The grid’s most vulnerable and potentially critical lines can be identified based on
these values.

Figure 4.1.: Input data for generators for 1000 iterations

A threshold of 10% line overload was defined to classify a line as overloaded. Table 4.2
shows the results of the MC simulation. According to Table 4.2, lines L_3_4 and L_3_8
were overloaded in 80.7% and 36.8% of the simulated cases, respectively. This indicates
that these lines are the most critical regarding reliability and should be monitored during grid
operation.
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Figure 4.2.: Overload results for lines

The visualization of results is shown in Figure 4.3, clearly indicating that line L_3_4 and
L_3_8 are in a critical state.

Figure 4.3.: Probability of line overloads across 1000 Monte Carlo simulations
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4.2. Result for modernized system with an
additional parallel line

For reducing line overloads, the new additional line L_3_4_parallel was installed parallel
to line L_3_4 . Table 4.4 represents the results of the MC simulation for the modernized
network. According to the Table 4.4 , the overload probabilities for lines L_3_4 and L_3_8
were significantly decreased to 12.8% and 22.1% of the simulated cases, respectively, compared
to the previous case 80.7% and 36.8%.

Figure 4.4.: Overload results for lines

Figure 4.5 shows the new distribution of overload probabilities. It shows that the addi-
tional parallel line led to load redistribution across multiple lines. Not only was the overload
probability in line L_3_4 decreased, but also in line L_3_8 from 36.8% to 22.1%. As a
result, overall grid stability increased.
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Figure 4.5.: Probability of line overloads across 1000 Monte Carlo simulations

4.3. Results of the extended model with three
interconnected Energy Communities

The three Energy Communities (EC1, EC2, and EC3) are interconnected via a common ex-
ternal grid node, which serves as a simplified representation of the higher-level transmission
network. This connection allows for power exchange between the communities while maintain-
ing their semi-independent operation in most scenarios. Figure A.1 in Appendix A illustrates
this configuration in detail. The External Grid element ensures voltage reference and acts as
a slack bus, enabling simulation of realistic grid-interconnected behavior.

The MC simulation is carried out similarly for this model, precisely as in Subsection 4.1.
Based on the calculated mean value and standard deviation, 1000 iterations were performed.
The results are presented in Figure 4.6.

As shown in the figure, most of the lines in EC1 demonstrate a high probability of overload,
indicating potential reliability issues. Most of the lines in EC1 and several lines in EC3 operate
in a potentially critical state in more than 50% of the simulated cases.

The naming of the lines has the following logic:

• Lines in EC1 contain only two numbers (e.g., L_3_4, L_1_2).

• Lines in EC2 end with the number 2 (e.g., L_3_4_2, L_1_2_2).

• Lines in EC3 end with the number 3 (e.g., L_3_4_3, L_1_2_3).
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4.3. Results of the extended model with three interconnected Energy Communities

This naming logic helps to distinguish which EC each line belongs to.

Figure 4.6.: Probability of line overloads across 1000 Monte Carlo simulations

Figure 4.7 shows the voltage magnitude at the buses. The logic of the bus names is similar
– the last number represents the corresponding EC. Two different plots were built:

• Top chart: voltage magnitude in per unit (p.u.),

• Bottom chart: voltage magnitude in kilovolts (kV).

As the figure shows, EC1 experiences extreme voltage drops of over 50% on several buses.
The low voltage values in this scenario result from a deliberately non-optimized stress

situation in which there is a sharp increase in load with no voltage regulation mechanisms.
Since the model does not include reactive power compensation or voltage regulation devices
(e.g., OLTCs or capacitor banks), the system exhibits significant voltage dips at high loads.

The model includes scenarios with a sharp increase in demand and insufficient local gener-
ation or voltage control. Since the network is weakly connected at the medium voltage level
and most generation is decentralized, voltage violations on the buses can occur if the load
exceeds local capabilities. Such unrealistic voltages were part of the motivation for applying
optimization algorithms (PSO, GA). This simulation intentionally creates a critical scenario
in which the network operates at its limits. This allows for identifying weak points in the
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system, assessing its resilience to overloads, and testing the effectiveness of optimization al-
gorithms under extreme loads. Without optimization or redistribution, the extended system
cannot actually maintain acceptable voltage levels at critical nodes. A detailed explanation
is provided in Section 4.3.2.

The complete network topology of the interconnected energy communities, including the
external network connection, is presented in Appendix A Figure A.1. As shown, the EC1,
EC2, and EC3 models are connected via a 110kV high-voltage bus T0. This centralized
backbone structure enables the exchange of energy between communities and serves as a
single point of interconnection.

Figure 4.7.: Voltage magnitude at the buses

To confirm the data, Figure 4.8 shows the busbar voltage results from PowerFactory.
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Figure 4.8.: Voltage magnitude at the buses in PowerFactory

For example, bus T14 has the voltage magnitude 18.7 kV, which can be seen in Figure
4.7. In the Figure 4.9, a grid fragment from PowerFactory. This bus is underloaded.

Figure 4.9.: Voltage magnitude at the bus T13 in PowerFactory

Appendix A.1 represents the power grid, and EC1 is indeed highlighted in red and blue,
indicating bus overloads and voltage violations.

The results of the MC simulation confirm the presence of significant reliability problems
within the power grid, which requires optimizing and stabilizing the entire system.

4.3.1. Application of PSO Optimization
To evaluate the instability of the current power grid, the FF was first calculated, resulting in
a high value of 18784, indicating significant system imbalance. After applying the PSO opti-
mization algorithm, the FF was reduced to 3569, demonstrating a substantial improvement
in system stability. Although the FF does not directly correspond to a physical parameter,
it serves as a metric to evaluate how far the system deviates from optimal operation. In
real-world power systems, minor deviations are expected; thus, the objective is not to achieve
a perfect zero but to ensure a reliable and stable operating point.
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However, some errors are still present:

• PSO could not eliminate all overloads, but significantly reduced them.

• Voltage drops on the buses are present, but do not exceed unacceptable limits.

• Generators still operate at maximum power, but the limits are not exceeded.

Results from Python are presented in Figure 4.10.

Figure 4.10.: Results of PSO from Python

Table 4.11 and Table 4.12 represent the best new parameters for generators and loads found
by PSO, under which the system doesn’t have any technical issues.

Figure 4.11.: Optimized parameters for generators

Note: Diesel Generator 3_2 corresponds to the EC2.

Figure 4.12.: Optimized parameters for loads

These new parameters of generators and loads were exported to PF, where they were used
for Load Flow analysis. After performing the Load Flow calculation, the system doesn’t
experience any technical issues. New optimized power grid from PF can be seen in Appendix
A.2, indicating that there are no more overloaded or critical operation elements.

4.3.2. Visualization of PSO optimization results
Figure 4.13 presents the impact of PSO on line loading. The plot shows the reduction in
line overload on transmission lines after optimization. A bar chart is used, where the blue
bars show the loading values before optimization, and the orange bars show the values after
optimization.
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For example, the overload on Line 2_3 was reduced from 12% to 2%.

Figure 4.13.: Impact of PSO on line loading

Before the PSO optimization (Figure A.1), the power flows were primarily directed from
the external grid through the upper buses and downward into EC1, supplying the loads along
the path. This reflects a critical scenario in which the demand in EC1 exceeds the generation
limits of the local diesel generators. As a result, additional energy is drawn from neighboring
EC2 and EC3 via the external grid to compensate for the deficit in EC1.

Figures 4.14 and 4.15 show pieces of the electrical network at scale, with the directions of
power flows indicated.

For example, in Figure 4.14, the active power flows on lines L_1_2 (between T1 and T2),
L_2_3, and L_3_4 are clearly directed toward the internal loads of EC1.

After applying PSO optimization in Figure 4.15, the direction of power flows changes.
Power is now primarily supplied by local diesel generators within EC1, and flows are redi-
rected outward, away from the generators and toward the distribution nodes. The algorithm
effectively reduced the system load to acceptable limits (while respecting the 80% generation
constraint), enabling EC1 to become self-sufficient.

As shown, the Line L_1_2, L_2_3, L_3_4, and L_3_8 now carry power away from
the generators in EC1. This redistribution reduces loading on key transmission lines, as seen
in comparing line utilization before and after PSO.

That is, the algorithm reduced the generator power to a safe level and simultaneously
redistributed the loads to ensure a power balance.

55



4. Results and Discussion

Figure 4.14.: Network fragment at scale before PSO optimization

Figure 4.15.: Network fragment at scale after PSO optimization

In PowerFactory, the line loading percentage is defined as the ratio of the actual apparent
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power flow to the rated (thermal) apparent power capacity of the line. Mathematically, the
loading Li of line i is computed as:

Li = |Sactual,i|
Srated,i

× 100%,

where:

• |Sactual,i| =
�

P 2
i + Q2

i is the magnitude of the actual apparent power (in MVA) flowing
through line i,

• Srated,i is the rated (thermal limit) apparent power capacity of the line, commonly
referred to as Rate A in PowerFactory [42].

This means that a loading value of 100% corresponds to the maximum allowable thermal
capacity of the line under normal operating conditions. The values presented in the opti-
mization results (e.g., 10–12%) indicate that the lines are operating well below their thermal
limits.

However, low thermal loading does not necessarily imply that the system is voltage-stable.
Voltage violations can still occur due to poor reactive power distribution, inadequate voltage
control, high penetration of distributed generation (e.g., PV), or weak network topology.
Additionally, in this study, some scenarios involve sudden increases in active power demand,
which locally stress the voltage profile and can cause temporary undervoltage situations.
Therefore, voltage quality issues can emerge even when current loading values remain low,
and it is possible to observe significant voltage drops or rises even when line loadings remain
within safe thermal limits.

Figure 4.16 presents the impact of PSO on generator loading. The plot evaluates the effi-
ciency of load redistribution among the available generators, demonstrating the effectiveness
of PSO in balancing loads.

While the generator loading is visibly reduced after PSO optimization, the algorithm si-
multaneously reduces the total system load as shown in Figure 4.17. This is a key principle
of the implemented strategy — the PSO adjusts both generation and load to maintain power
balance while avoiding overloads and voltage violations.

Figure 4.16.: Impact of PSO on generator loading
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As can be seen, the generators’ output was reduced to approximately 80% of their capacity.
A detailed explanation of this action is presented in section 3.2.6.

Figure 4.17 presents the impact of PSO on load redistribution. The algorithm performed
load redispatch so that overloads and voltage violations did not emerge in the system. Under
these parameters, the system operates stably.

For example, the Load_5 was reduced from 4 MW to 2 MW, and the Load_1_2 from
3.2 MW to 1 MW.

Figure 4.17.: Impact of PSO on loads redisctribution

Figure 4.18 demonstrates the impact of PSO on bus voltages. This plot evaluates the
voltage levels on the power system buses before and after optimization. Before optimization,
several buses experienced voltage violations, falling below the target level of 20 kV. After
applying PSO, voltage levels were successfully stabilized.

For example, the voltage at T10 and T11 increased from 18.25 kV to 20 kV .

Figure 4.18.: Impact of PSO on bus voltages
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4.3.3. Applying PSO optimization for 85% scenario
As an additional test of the algorithm’s performance and proving its resilience, PSO was
applied to a scenario with an 85% load and generation. The new power grid is presented in
Appendix A.5. As you can see, there are no elements highlighted in red, which means that
the new grid does not have any severe technical issues, however the optimization is needed to
improve overall grid stability.

Figure 4.19 presents the impact of PSO on load redistribution.
For example, the Load_5 was reduced from 2.4 MW to 1.5 MW, and the Load_1_2

from 2.1 MW to 0.95 MW.

Figure 4.19.: Impact of PSO on loads redisctribution

Figure 4.20 demonstrates the impact of PSO on bus voltages. This plot evaluates the
voltage levels on the power system buses before and after optimization. Before optimization,
several buses experienced voltage violations, falling below the target level of 20 kV. After
applying PSO, voltage levels were successfully stabilized.

For example, the voltage at T6 and T7 increased from 19.2 kV to 19.7 kV .

Figure 4.20.: Impact of PSO on bus voltages
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According to European standards, particularly EN 50160 ([50, 51]), which defines volt-
age characteristics in public electricity supply systems, the permissible voltage violations for
medium-voltage grids (typically 1 kV to 36 kV) are as follows:

• The standard allows a voltage variation of ±10% of the nominal voltage under normal
operating conditions.

• This means the voltage must remain within 90% to 110% of the nominal value (e.g., for
a 20 kV system, the acceptable range is 18 kV to 22 kV).

As can be seen from the figures 4.18 and 4.20, all bus voltages remain within acceptable
limits, thus complying with the EN 50160 standard.

4.3.4. Application of GA Optimization
The first step is evaluating the FF. Before applying GA optimization, the FF value remains
18784 and equals the initial state (as in PSO).

As specified in the code (see Figure 3.22), the number of iterations was set to 200.
Figure 4.21 presents the results from Python during the first five and last five iterations.

The FF gradually decreased, resulting in a value of 2511.

Figure 4.21.: Results of GA from Python during 200 iterations

Table 4.22 and Table 4.23 represent the best new parameters for generators and loads found
by GA, under which the system has no technical issues.

Figure 4.22.: Optimized parameters for generators
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Figure 4.23.: Optimized parameters for loads

The system operated without technical issues after performing a Load Flow calculation
with these new parameters. New optimized power grid from PF can be seen in Appendix A.2,
indicating that there are no more overloaded or critical operation elements.

4.3.5. Visualization of GA optimization results
Visualization of the GA optimization results for line loading, load redistribution, and bus
voltages shows patterns almost identical to those achieved with PSO. Therefore, the plots are
not included again to avoid redundancy. Detailed illustrations of such effects can be seen in
Figures 4.13, 4.17, and 4.18.

However, the plot of generator power distribution in Figure 4.24 differs from the previous
one in Figure 4.16. After GA optimization, generators operate at an average load of 60%,
compared to an average of 80% with PSO.

This plot shows the better efficiency of load redistribution compared to PSO.

Figure 4.24.: Impact of GA on generator loading

The observed reduction in generator load and line load is due to the fact that the GA
algorithm simultaneously regulates generator outputs and consumption, ensuring that the
power balance is maintained.

4.4. Technical comparison of two algorithms
Both GA and PSO are meta-heuristic optimization techniques, but they differ in their ap-
proach:
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• PSO represents swarm intelligence, where particles update their positions based on
individual and global best solutions.

• GA represents evolutionary principles (selection, crossover, and mutation) to generate
improved solutions.

GA does not require the function to be continuous or differentiable because it explores
many possible solutions randomly and through evolutionary operations (selection, crossover,
mutation). In contrast, PSO updates particles based on gradient directions and is better
suited for smooth and continuous functions.

Table 4.1 presents the main parameters for comparison of the two algorithms.

Table 4.1.: Technical comparison between PSO and GA
Method Fitness Function Convergence Speed Local Optima

PSO 3569 Medium (10 seconds) High
GA 2511 Slow (3 minutes) Low

PSO typically converges faster but may get stuck in local optima, while GA is better
suited for global optimization but can take significantly longer to compute, especially for 200
iterations. GA found a better FF value of 2511, compared to 3569, optimizing the system.
However, since both algorithms reached values near the global minimum, the overall difference
in results is slight, so both approaches can be considered adequate.

Interestingly, their core optimization strategies differ: for optimization, PSO starts from a
random position in space and then gradually improves the global solution by following the
best particle. In contrast, GA immediately begins with two parent solutions with the best
characteristics. This means that, after the first iteration, PSO still has a high FF value, while
GA already has a low value. This can be seen from Figure 4.21, where exactly after the
first iteration, the FF value drops significantly from 18784 to 5226. This presents the core
difference between the two algorithms.

4.4.1. Visualization of technical comparison
To better understand and visualize the results, plots were built for lines, generators, and bus
voltages. Each plot includes three parameters: before optimization, after GA, and after PSO.

Figure 4.25 shows that the orange bars (after GA) are, in most cases, lower than the green
bars (after PSO). The GA optimization showed better results, reducing line overloads more
effectively.
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Figure 4.25.: Comparison of line loading bar chart

Figure 4.26 represents a pie chart with a percentage comparison of cases in which GA
outperformed PSO. As shown, GA reduced line loading more effectively in 84.4% of the
cases.

Figure 4.26.: Percentage comparison of line loading pie chart

Therefore, GA is more efficient in optimizing line loading.
Figure 4.27 presents the generator loading. In both cases, the generators do not experience

overload operating conditions.
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Figure 4.27.: Generator loading comparison

Although the total generator output power decreases after optimization, the system remains
balanced. This is because the optimization algorithm simultaneously reduces the load (as
shown in the Figure 4.28) values on certain buses to maintain power balance. This way, the
total demand is adapted to the available generation power.

Figure 4.28 shows the comparison of active and reactive power of the loads. The power
was reduced to approximately the same values in both algorithms. This indicates that both
GA and PSO found the minimum acceptable load level, considering all the system’s technical
limitations.

Figure 4.28.: Active and reactive power comparison bar chart

Figure 4.29 clearly shows the percentage comparison. As shown, GA performed slightly
better than PSO in active power reduction, while GA significantly outperformed PSO in
reactive power, achieving better values in 87.9% of the cases.
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Figure 4.29.: Active and reactive power comparison pie chart

Figures 4.30 and 4.31 illustrate busbar voltage violations. The voltage levels are nearly equal
in both cases and do not exceed the acceptable limits. This confirms that both algorithms
effectively maintain voltage stability in the system.

Figure 4.30.: Bus voltage comparison 20 kV

65



4. Results and Discussion

Figure 4.31.: Bus voltage comparison 10.5 kV

Thus, both algorithms effectively executed load dispatch, minimized line overloading and
voltage violations, and attained a more balanced generation distribution.

4.4.2. Economic comparison of PSO and GA
The Day Ahead Price 150 EUR/MWh (23.02.2025) of electricity was taken from APG [52].
The example of calculation for GA is presented in Figure 4.32. The calculation for PSO is
identical.

Figure 4.32.: Example for calculation from Python

The total cost of electricity consumed after optimization was calculated for both algorithms,
considering the spot price of electricity. This calculation was performed by summing up the
entire load after optimization and multiplying it by the spot price. The calculation was
conducted for both hourly and annual cases.

The first case provides an estimate of the immediate effect of optimization, and the sec-
ond case allows for estimating the global economic impact, which is important for long-term
analysis. The results are shown below:

• Hourly cost after GA optimization: 4,347 EUR
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• Annual cost after GA optimization: 38.079 million EUR

• Hourly cost after PSO optimization: 4,959 EUR

• Annual cost after PSO optimization: 43.441 million EUR

Figure 4.33 shows a bar plot with a comparison of two algorithms.

Figure 4.33.: Annual cost comparison

The annual difference is around 5.362 million EUR and shows that the economic effect
could be significant in the long term.

4.5. Applying of ANN
As discussed previously, the ANN was trained on the optimized results from PSO data (from
two .csv files) (see Figure 3.23) and will try to predict the output. Once trained, the ANN can,
in a short time, predict the optimal Pgen value, which is calculated based on the given Pload
without running complex iterative optimization each time. However, the ANN algorithm is
applicable only for minor disturbances.

The algorithm for checking the functionality of the ANN is as follows:

1. New loads were created manually. In Table 4.2, previous and new load parameters are
presented. For example, new loads are now 80% of the initial value.
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Table 4.2.: Active power of loads
Pinitial 80%

1.893142 1.5145136
0.00866921 0.006935368
0.6547431 0.52379448
0.5737207 0.45897656
0.9410952 0.75287616
4.17507 3.340056
1.751664 1.4013312

0.00722706 0.005781648

2. New loads can be inserted in PF.

3. Already learned and trained ANN is used for the prediction of new parameters for
generators. From Figure 4.34, it can be seen that Xbase serves as data input and
imports data directly from PF. The variable Ypred is then used to predict the new
generator outputs.

Figure 4.34.: Generator values prediction

4. The predicted active power values for generators Ypred are presented in the Figure 4.35.

Figure 4.35.: Updated generator parameters in Python

These data can now be directly inserted into PF for further Load Flow analysis. This
occurs automatically using a block in the Figure 4.36.

Figure 4.36.: Updated generator parameters in Python
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Updated data in the PF interface are represented in the Figure 4.37.

Figure 4.37.: Updated generator parameters in PowerFactory interface

5. Performing Load Flow calculation to confirm that the model works without technical
issues (see Appendix A.2). This confirms the ANN can respond to minor disturbances
and automatically re-dispatches generator output, considering all technical limitations.

The Figure 4.38 illustrates the quality assessment of load and generation balancing.

Figure 4.38.: Power balance in PowerFactory after applying ANN-predicted generator
setpoints

• Total active generation = 30.915 MW

• Total load + losses = 29.8 + 1.1 = 30.9 MW

This confirms that the balance is nearly perfect (ΔP ≈ 0.015 MW), validating the cor-
rectness of the ANN.

The value of MAE can also be calculated, which represents the comparison of the absolute
error (0.015 MW) with the total load (29.8 MW) or how accurately the algorithm matched
the new generation values to the consumption:

MAE = 0.015
29.8 · 100 = 0.0503% (4.1)

The deviation represents less than 0.05% of the total system load, demonstrating that the
ANN redispatch was performed with high precision [53].

Conclusions of the optimization chapter:
In this chapter, PSO and GA algorithms contributed to the Energy Management System

(EMS) by performing load management, optimally adjusting demand and generation, and
considering all technical system constraints. Both algorithms successfully minimized trans-
mission line overloads and improved system stability.

Further comparisons demonstrated that GA required more computational time but provided
slightly better fitness function results, making it a viable alternative for solving complex OPF
problems.

As a final stage, an ANN was trained on optimized PSO data. Once trained, it allowed the
system to react quickly to minor disturbances. The ANN found new generator parameters
and ensured the balance between supply and demand, avoiding calculating long and complex
meta-heuristic algorithms. This demonstrates the potential of the ANN as a fast and reliable
tool for real-time OPF applications.
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5. Synthesis of results

5.1. Reference to the Research Question
The research aimed to develop a robust optimization framework for three ECs interconnected
through an external grid. Many RES, especially PV installations, can lead to overloaded con-
ditions. Two classical meta-heuristic (PSO, GA) and one machine learning (ANN) approach
were selected for power and load dispatch.

The aim was successfully achieved. By comparing results from tables or PF models, it was
proved that all line overloads and voltage violations in the system were reduced, and overall
grid stability was improved. The optimization algorithms ensured that the power balance was
preserved: load levels were dynamically adjusted in line with the reduced generator capacities,
avoiding excess demand and maintaining system equilibrium. Moreover, the initial value of
FF in both algorithms was also significantly reduced, indicating a decrease in technical stress
in the power grid.

5.2. Transferability and Scalability of Results
As previously discussed, this framework can be utilized by grid operators in power plants to
rapidly respond to energy disturbances and stabilize the system within seconds. Once trained,
the ANN model is capable of conducting real-time generator dispatch.

Since the entire model was built in PF, it can be easily extended to more complex sys-
tems, including even more ECs with other electrical elements. Importantly, this does not
require reconfiguring the Python code, as the model is deeply integrated with Python. All
system parameters are imported into the code and can be used for further optimization. All
implemented tools (MC, PSO, GA, ANN) are automated and linked.

Moreover, by changing different key parameters—such as the threshold for MC simulation,
number of iterations for PSO and GA, or the target date in the future for PV output
(see 3.4.3 Random Forest Regression algorithm)—the system can be broadly and deeply in-
vestigated in multiple scenarios, considering numerous factors.

5.3. Strengths and limitations of the methodology
Table 5.1 compares the three implemented algorithms based on their FF performance, con-
vergence speed, and ability to escape local optima.

Table 5.1.: Comparison of implemented algorithms
Method Fitness Function Convergence speed Local optima

PSO 3569 Medium (10 seconds) High
GA 2511 Slow (3 minutes) Low

ANN - Instant Low
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5.4. Acquired skills

PSO typically converges faster but may become stuck in local optima, while GA is better
suited for global optimization but can take significantly longer to compute, especially for 200
iterations. GA found a better FF value. ANN requires pre-optimized data from either PSO
or GA for training. However, it cannot be applied to severe technical disturbances without
retraining.

Thus, while PSO and GA are more suitable for optimizing full-scale systems, ANN can be
used in real-time to balance power supply and demand under mild fluctuations.

Moreover, as seen before, PSO is a more favorable approach for covering energy demand.
However, if the priority is loss minimization and generation efficiency, GA works better,
although it leads to lower load satisfaction.

5.4. Acquired skills
While working on this project, several important engineering and analytical skills were ac-
quired. First, strong programming skills in Python and confident use of PF for power system
modeling and simulation were achieved. Using these two programs in combination has ex-
panded their initial boundaries and allowed them to investigate the power grid more deeply
and perform more serious calculations that would be impossible manually (e.g., 1000 MC load
flow calculations).

A deep understanding of various optimization algorithms, including Particle Swarm Op-
timization (PSO), Genetic Algorithms (GA), and Artificial Neural Networks (ANN), was
gained, enabling the development and testing of complex operational strategies. These skills
are highly transferable and applicable to real-world power systems and control centers.

MC simulation provided insights into power grid reliability analysis. Additionally, the
project included machine learning, specifically forecast regression algorithms, to predict future
PV outputs, contributing to better system planning and predictability.

An important lesson was also understanding which algorithm is appropriate for which
scenario. For example, an ANN is best suited for real-time use under moderate disturbances,
while PSO and GA are more suitable for solving complex optimization problems under critical
system conditions.

Overall, this work provided a holistic view of modern energy system optimization and
demonstrated how classical methods and AI can complement each other in developing future-
ready energy solutions.
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6. Conclusions

6.1. Appropriateness of the research question and
methodology

The primary research question was how to ensure the reliable and sustainable operation of
ECs with a high share of RES. To address this, a robust optimization framework was required.
Since traditional deterministic optimization algorithms are not suitable for complex, dynamic
systems, two meta-heuristic algorithms (PSO and GA) and one machine learning algorithm
(ANN) were implemented.

PSO and GA were used for full-scale optimization under various operating scenarios, while
ANN was used as a fast-response tool for daily power balancing fluctuations. Both numerical
results and visualizations confirmed that these algorithms optimized the system and ensured
optimal power flow.

6.2. Lessons learned from the synthesis of results
MC simulation can be a powerful tool for predicting potential vulnerabilities in a system.
Moreover, as proven above, it can be successfully applied to simplified and complex systems.
The possibilities are especially expanded when combining Python and PF.

Meta-heuristic algorithms inspired by natural and biological processes (PSO and GA) suc-
cessfully fulfilled the network optimization tasks. The FF values were significantly reduced in
both cases, indicating improved operating conditions and enhanced system stability.

6.3. Overcoming the Limitations in Future Work
Although the implemented framework demonstrated high efficiency in power flow optimization
and generation redistribution in various scenarios, certain limitations were identified that may
guide future research and improvements.

First, the ANN model cannot provide accurate results under significant system disturbances.
To overcome this limitation, the model can be trained on a broader and more diverse dataset,
not only on PSO, as in this research, but also on other algorithms under all possible system
operation scenarios. Thus, ANN will be able to analyze a larger number of patterns and will
not go beyond the usual values.

Second, despite its fast convergence, the PSO algorithm may become stuck in local optima.
This limitation can be addressed by applying hybrid approaches, such as combining PSO with
GA or reinforcement learning (RL) methods, which enable fast exploration and improved
global search capabilities.

Third, the GA computation time increases significantly with the number of iterations.
Future research may consider integrating parallel computing or cloud optimization techniques
to reduce computational overhead and improve scalability.
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6.4. Optimization of Peer-to-Peer (P2P) Energy Trading

Finally, while the integration between Python and PF has been successfully established,
the framework can be even more flexible by connecting it to external data sources such as
SCADA systems or weather APIs. This will enable real-time predictions, thereby improving
the accuracy and applicability of the optimization.

An additional extension of the study could be to include multi-energy systems, where
renewable sources such as wind, biomass, or hydrogen could be trained using an ML approach
to predict the combined output of these sources, with optimization algorithms able to maintain
a stable operation and balance between generation and consumption in the power grid.

6.4. Optimization of Peer-to-Peer (P2P) Energy
Trading

Peer-to-peer (P2P) energy trading allows members of ECs to exchange surplus renewable
energy directly with each other. Optimization techniques such as PSO, GA, and alternative
metaheuristics such as Artificial Bee Colony (ABC) and Gray Wolf Optimization (GWO)
can be applied to improve the efficiency of such transactions. These algorithms support the
development of adaptive pricing mechanisms and optimal trading strategies tailored to local
supply and demand conditions.

6.5. Policy and Regulatory Alignment in the EU
Context

Future research can address regulatory and policy-related challenges ECs face within the
European Union. This includes aspects such as grid access, tariff structures, and participation
in local energy markets. By incorporating predictive modeling and scenario analysis, the
impact of different regulatory frameworks can be evaluated, providing valuable insights for
aligning technical developments with evolving EU energy policies.

6.6. Socio-Economic and Environmental Impact
Assessment

The research can be further extended to assess the broader socio-economic and environmental
implications of deploying optimized PV systems within ECs. Machine learning models may be
utilized to predict long-term energy savings and reductions in carbon emissions. In parallel,
optimization algorithms can help evaluate cost-benefit trade-offs, supporting decision-making
processes that balance individual incentives with collective sustainability goals.

6.7. Outlook on Future Work in this Field of
Research

This research can be expanded much more widely and in-depth. For example, to predict the
output of PV panels, other machine learning algorithms may be applied in place of Random
Forest Regression to potentially improve accuracy, such as Extreme Gradient Boost (XG-
Boost), Support Vector Regression (SVR), Long-Short-Term Memory Network (LSTM), and
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6. Conclusions

multiple linear regression (MLR). They can achieve more accurate results than Random Forest
Regression.

Instead of PSO and GA, other equally powerful algorithms can be applied, such as Artificial
Bee Colony (ABC), Gray Wolf Optimization (GWO), Flower Pollination Algorithm (FPA),
Crow Search Algorithm (CSA), Group Search Optimization (GSO), Cuckoo Search Optimiza-
tion, Moth-Swarm Algorithm (MSA), Bacterial Foraging Algorithm (BFA), SHADE, JAYA,
and Moth-Flame Optimizer (MFO), among many others.

However, as an additional experiment, the parameters of PSO and GA’s settings can be
significantly changed, making results more accurate, but the calculation time will increase
proportionally.

Additionally, the model could integrate real-time electricity market prices, and the ANN
will instantly respond to fluctuations between load and generation, ensuring minimal costs.
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A. System Schematics

A.1. Initial interconnected power grid

A.2. Optimized power grid after PSO, GA, and
ANN

A.3. Power grid in critical state before PSO
optimization

A.4. Power grid in critical state after PSO
optimization

A.5. Power grid for 85% scenario before PSO
optimization
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A. System Schematics
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Figure A.1.: Initial interconnected power grid
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A.5. Power grid for 85% scenario before PSO optimization
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Figure A.3.: Power grid in critical state before PSO optimization
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A.5. Power grid for 85% scenario before PSO optimization

lo
ad

in
g=

80
,8

 %
lo

c_
na

m
e=

Tr
f C

on
v 

2 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

Tr
f C

on
v 

3(
2)

 
lo

ad
in

g=
79

,4
 %

lo
ad

in
g=

1,
8 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

lo
ad

in
g=

1,
8 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

Tr
an

sf
or

m
er

_0
_1

2(
2)

 
lo

ad
in

g=
32

,6
 %

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

Tr
an

sf
or

m
er

_0
_1

(2
) 

lo
ad

in
g=

36
,4

 %

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
12

_1
3_

3 
lo

ad
in

g=
1,

4 
%

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
1.

.
lo

ad
in

g=
1,

4 
%

lo
ad

in
g=

0,
8 

%
lo

c_
na

m
e=

L_
7_

8_
3 

Q
ge

n=
0,

00
 M

va
r

Q
ge

n=
0,

00
 M

va
r

Pg
en

=0
,0

0 
M

W
Pg

en
=0

,0
0 

..
Q

ge
n=

0,
00

 M
..

Q
ge

n=
0,

00
 M

..
lo

c_
na

m
e=

L_
..

lo
ad

in
g=

0,
8 

%

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
3_

8_
3 

lo
ad

in
g=

0,
4 

%

lo
ad

in
g=

0,
6 

%
lo

c_
na

m
e=

L_
9_

10
_3

 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
0,

6 
%

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
0,

7 
%

lo
ad

in
g=

0,
6 

%
lo

c_
na

m
e=

L_
8_

9_
3 

Q
ge

n=
0,

00
 M

va
r

Q
ge

n=
0,

00
 M

va
r

Pg
en

=0
,0

0 
M

W

Pg
en

=3
,0

0 
..

Q
ge

n=
10

,0
0 

..
Q

ge
n=

10
,0

0 
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
2,

1 
%

lo
ad

in
g=

1,
7 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
1,

7 
%

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
1,

7 
%

lo
ad

in
g=

30
,0

 %
lo

c_
na

m
e=

Tr
an

sf
or

m
er

_0
_1

2(
1)

 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

41
,9

 %
lo

c_
na

m
e=

Tr
an

sf
or

m
er

_0
_1

(1
) 

Q
ge

n=
0,

00
 M

va
r

Q
ge

n=
0,

00
 M

va
r

Pg
en

=0
,0

0 
M

W

lo
ad

in
g=

1,
3 

%
lo

c_
na

m
e=

L_
12

_1
3_

2 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

1,
3 

%
lo

c_
na

m
e=

L_
1.

.
Q

ge
n=

0,
14

 M
va

r
Q

ge
n=

0,
14

 M
va

r
Pg

en
=3

,0
0 

M
W

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
7_

8_
2 

lo
ad

in
g=

0,
5 

%
lo

ad
in

g=
0,

5 
%

lo
c_

na
m

e=
L_

..
Q

ge
n=

0,
00

 M
..

Q
ge

n=
0,

00
 M

..
Pg

en
=0

,0
0 

..

lo
ad

in
g=

0,
4 

%
lo

c_
na

m
e=

L_
3_

8_
2 

Q
ge

n=
0,

00
 M

va
r

Q
ge

n=
0,

00
 M

va
r

Pg
en

=0
,0

0 
M

W

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
9_

10
_2

 
lo

ad
in

g=
0,

9 
%

lo
ad

in
g=

0,
9 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

lo
ad

in
g=

0,
7 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
5,

52
 M

..
Q

ge
n=

5,
52

 M
..

Pg
en

=3
,0

0 
..

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
8_

9_
2 

lo
ad

in
g=

1,
6 

%

lo
ad

in
g=

60
,2

 %
lo

c_
na

m
e=

Tr
f C

on
v 

1(
1)

 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

60
,2

 %
lo

c_
na

m
e=

Tr
f C

on
v 

2(
1)

 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

60
,0

 %
lo

c_
na

m
e=

Tr
f C

on
v 

3(
1)

 
Q

ge
n=

0,
14

 M
va

r
Q

ge
n=

0,
14

 M
va

r
Pg

en
=3

,0
0 

M
W

lo
ad

in
g=

0,
5 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
2,

44
 M

..
Q

ge
n=

2,
44

 M
..

Pg
en

=3
,0

0 
..

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
1,

6 
%

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
1,

8 
%

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
1,

8 
%

lo
ad

in
g=

16
,0

 %
lo

c_
na

m
e=

Tr
an

sf
or

m
er

_0
_1

2 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

17
,6

 %
lo

c_
na

m
e=

Tr
an

sf
or

m
er

_0
_1

 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

1,
5 

%
lo

c_
na

m
e=

L_
12

_1
3 

Q
ge

n=
0,

00
 M

va
r

Q
ge

n=
0,

00
 M

va
r

Pg
en

=0
,0

0 
M

W

lo
ad

in
g=

1,
5 

%
lo

c_
na

m
e=

L_
1.

.
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
7_

8 
lo

ad
in

g=
0,

1 
%

lo
ad

in
g=

0,
1 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

lo
ad

in
g=

0,
3 

%
lo

c_
na

m
e=

L_
3_

8 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
9_

10
 

lo
ad

in
g=

0,
2 

%
lo

ad
in

g=
0,

2 
%

lo
c_

na
m

e=
L_

..
Q

ge
n=

0,
00

 M
..

Q
ge

n=
0,

00
 M

..
Pg

en
=0

,0
0 

..

lo
ad

in
g=

0,
2 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

Pg
en

=0
,0

0 
M

W
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
lo

c_
na

m
e=

L_
8_

9 
lo

ad
in

g=
0,

1 
%

lo
ad

in
g=

80
,8

 %
lo

c_
na

m
e=

Tr
f C

on
v 

1 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

80
,0

 %
lo

c_
na

m
e=

Tr
f C

on
v 

3 
Q

ge
n=

0,
00

 M
va

r
Q

ge
n=

0,
00

 M
va

r
Pg

en
=0

,0
0 

M
W

lo
ad

in
g=

0,
1 

%
lo

c_
na

m
e=

L_
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

Pg
en

=0
,0

0 
..

Pg
en

=0
,0

0 
..

Q
ge

n=
0,

00
 M

..
Q

ge
n=

0,
00

 M
..

lo
c_

na
m

e=
L_

..
lo

ad
in

g=
0,

2 
%

T9
_3

T9
_2

T9

I=
0,

05
2 

kA
Q

=1
,3

40
42

 M
va

r
P=

1,
16

05
3 

M
W

P=
0,

64
30

9 
M

W
Q

=-
2,

12
12

3 
M

va
r

I=
0,

06
5 

kA

I=
0,

05
7 

kA
Q

=0
,7

80
81

 M
va

r
P=

-1
,8

03
62

 M
W

P=
5,

56
40

0 
M

W
Q

=0
,9

27
33

 M
va

r
I=

0,
16

4 
kA

I=
0,

09
1 

kA
Q

=-
3,

07
92

4 
M

va
r

P=
-0

,5
06

15
 M

W

P=
-5

,0
57

85
 M

W
Q

=2
,1

51
91

 M
va

r
I=

0,
16

0 
kA

P=
0,

38
..

Q
=0

,0
06

..
I=

0,
01

1 
..

I=
0,

01
5 

..
Q

=0
,1

51
..

P=
-0

,4
9.

.

P=
0,

11
..

Q
=-

0,
15

..
I=

0,
00

6 
..

-3
8,

3
0,

99
19

,8

19
,9

0,
99

-3
8,

6

20
,2

1,
01

-2
3,

7

C
reated w

ith D
IgSILEN

T Pow
erFactory Education Licence

Figure A.4.: Power grid in critical state after PSO optimization
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Figure A.5.: Power grid for 85% scenario before PSO optimization
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B. Python Code

B.1. Random Forest Regression for PV prediction

Listing B.1: Python code for Random Forest Regression

# Loading of ENTSO -E data
PV_dataset = pd. read_csv (’C:/ Users/ Nikita / Desktop / PV_Dataset .csv

’, sep =’;’)

# X input data , y objective function ( output )
X = PV_dataset [[’Time ’, ’Month ’, ’Day ’, ’Holidays ’]]
y = PV_dataset [’Power ’]

# Convert "y" to a one - dimensional array
y = y. values . ravel ()

# Split into training and test samples
X_train , X_test , y_train , y_test = train_test_split (X, y,

test_size =0.2 , random_state =42)

# Training the Random Forest model
model_rf = RandomForestRegressor ( n_estimators =100 , random_state

=42)
# model_rf = LinearRegression ()
model_rf .fit(X_train , y_train )

# Testing the Random Forest model
y_train_pred = model_rf . predict ( X_train )
y_test_pred = model_rf . predict ( X_test )

print(f"R^2 on training data: { r2_score (y_train , y_train_pred )
:.4f}")

print(f"R^2 on test data: { r2_score (y_test , y_test_pred ):.4f}")
print(f"MSE on test data: { mean_squared_error (y_test ,

y_test_pred ):.4f}")
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