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Abstract

This thesis investigates the comparative performance and energy consumption of Rust and C-based

virtual General Purpose Input Output (GPIO) drivers in the Linux kernel. For the experimental platform

a Raspberry Pi 4 Model B is used. The research aims to evaluate the implications of integrating Rust, a

language known for its memory safety features, into the Linux kernel development.

The findings reveal that Rust-based drivers, while offering enhanced safety and reliability, have

longer execution times and higher energy consumption compared to their C counterparts. Specifically,

Rust modules demonstrated an approximate 8% increase in execution time for the basic variant, 11%

with the inclusion of a wait queue, and 14.3% with both a wait queue and a spinlock. Energy con-

sumption measurements showed that Rust modules consumed 46.15% more energy in the basic variant,

27.68% more with a wait queue, and 33.86% more with both a wait queue and a spinlock. Although the

Rust based module performed slower than the C equivalent, Rust might still be a viable alternative to

C, because of easier and quicker debugging compared to C, which in the long run leads to safer and

more stable software.
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Kurzfassung

In dieser Arbeit wird die Leistung und der Energieverbrauch von Rust- und C-basierten virtuellen

GPIO-Treibern im Linux-Kernel untersucht. Als Versuchsplattform wird ein Raspberry Pi 4 Model B

verwendet. Die Forschung zielt darauf ab, die Auswirkungen der Integration von Rust, einer Sprache,

die für ihre Speichersicherheitsfunktionen bekannt ist, in der Linux-Kernelentwicklung zu bewerten.

Die Ergebnisse zeigen, dass Rust-basierte Treiber zwar mehr Sicherheit und Zuverlässigkeit bieten,

aber im Vergleich zu ihren C-Pendants längere Laufzeiten und einen höheren Energieverbrauch haben.

Konkret zeigte sich, dass das Rust-Modul eine um 8% längere Ausführungszeit für die Basisvariante, um

11% längere Ausführungszeit mit der Verwendung einerWarteschlange und eine um 14,3% längere Aus-

führungszeit bei der Verwendung einer Warteschlange und einem Spinlock, aufweist. Messungen des

Energieverbrauchs ergaben, dass Rust-Module in der Basisvariante 46,15% mehr Energie verbrauchten,

27,68% mehr mit einer Warteschlange und 33,86% mehr mit einer Warteschlange und einem Spinlock.

Obwohl das Rust-basierte Modul langsamer war als das C-Äquivalent, könnte Rust immer noch eine

brauchbare Alternative zu C sein, da das Debugging im Vergleich zu C einfacher und schneller ist, was

auf lange Sicht zu sicherer und stabiler Software führt.
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Chapter 1

Introduction

At the heart of every operating system lies the kernel. The kernel is a fundamental part of the oper-

ating system. It manages the systems’ resources such as the Central Processing Unit (CPU), memory

allocation, and Input/Output (I/O) devices to ensure that they are used efficiently and fairly among all

running processes. In addition, the kernel handles the management of the creation, scheduling, and

termination of those processes. It is important that each process has the necessary CPU time and re-

sources to guarantee a proper functioning. Also part of these responsibilities are tasks that manage

devices (called “device drivers”), because they act as an interface between the hardware and software

parts of a computer. Furthermore, the kernel handles security and access control to ensure that there

is no unauthorized access to system resources [4].

One of the most used kernels is the Linux kernel. The Linux kernel, developed in 1991 by Linus

Torvalds, has become increasingly important in the last decade. Most supercomputers, servers, and

mobile phone operating systems rely on the Linux kernel [5, 6]. Due to the sharp increase of embed-

ded and Internet of Things (IoT) devices, more devices are running Linux than ever before. Since the

development of the Linux kernel, there was (mainly) only one programming language present: C. This

changed with the release of the 6.1 Kernel in October 2022. Although the kernel fully supported Rust

in October 2022, the first Linux drivers written in Rust were released in Linux 6.8 in December 2023.

The reason why the support for Rust was implemented was because of concerns about the Linux

kernel’s maintainability and scalability, due to concurrency and memory bugs could never be com-

pletely eliminated [7,8]. Rust promises memory safety and consistency with C [9]. This memory safety

is achieved via the principle of ‘Ownership’. Some programming languages such as Java or Python

have garbage collection that periodically check for no-longer-used memory while the program is run-

ning. In languages such as C, memory gets manually allocated and deallocated. Rust on the other hand

manages its memory via a certain system of ownership with a special set of rules that the compiler

1



2 Chapter 1. Introduction

checks [10]. In case the rules are violated, the program won’t compile. In Rust, each value, which is

a piece of data stored in memory with a specific type, is owned by a single scope where it is defined.

The transfer of ownership of a value to a function, which is a subroutine or a block of reusable code,

involves passing that value from one part of the code (the caller) to another (the called function), re-

sulting in the caller losing access to the value after the call. This concept of ownership enables static

analysis of the lifetime of each heap-allocated object and explicit deallocation. When its lifetime ends,

the value is automatically dropped, and its storage is reclaimed [11].

Rust has shown to be safer than C, C++, Java, Go, and Python, while still being among the top from

a performance point of view [12]. In Android, the share of memory vulnerabilities out of all vulnera-

bilities dropped from 76% in 2019 to 35% in 2022 after the switch to Rust [13]. This should improve the

quality of device drivers. Drivers are specialized kernel modules that interface directly with hardware

components, providing low-level control functions. They are able to communicate through the com-

puter bus or communication subsystem with the devices. Every device type has its own device driver.

Furthermore device drivers on Windows don’t work on Linux, which means they are also operating

system specific [14].

Device drivers serve as a translator between the hardware and the operating system. This allows

the operating system to access and control hardware without detailed knowledge about the hardware.

There are three different types of device drivers. Character device drivers, which transmit data char-

acter by character. This is used in keyboards or serial ports. Block device drivers manage, as the name

suggests, data in blocks. Examples are hard drives or USB storage devices and the final type are net-

work device drivers. Network device drivers deal with network interfaces which handle transmission

and receiving of data packets over a network [15]. As mentioned above, Rust was allowed as a second

language for the Linux kernel, to enhance memory safety and security. This is because Rust prevents

common programming errors such as buffer overflows and null pointer dereferences. Those are the

main sources of security vulnerabilities in the kernel. Another advantage of Rust is that the writing

of safe concurrent code is facilitated. The kernel often has to deal with multiple processes and threads

simultaneously. Consequently, the addition of Rust might help to improve the overall quality of the

kernel [16].

The (initial) focus of Rust in the kernel is on writing new drivers [16]. Drivers are a good place to

start gradually introducing Rust to the kernel, because device drivers are isolated pieces of code. So

they can be tested and and integrated without affecting the core functionality of the kernel [17].
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1.1 Research objective

The aim of this thesis is to address the following research question:

What are the differences in (i) performance, (ii) energy consumption, and (iii) safety between a

Rust-based virtual General Purpose Input Output (GPIO) driver and an equivalent C-based driver in

the Linux kernel?

We address this research question by the design of an evaluation platform using a Raspberry Pi 4

Model B.

The thesis is divided in different chapters.

Chapter 2 examines the state of the art and how it developed. Chapter 3 addresses the system setup,

which contains the setup of the experimental environment and the test setup, such as target platform,

kernel customization as well as the used tools. We discuss the practical aspects of this thesis including

writing kernel modules in C, in Rust, and test cases in chapter 4. Chapter 5 presents the results of

the experiments. Finally chapter 6 gives a conclusion that summarizes the findings and discusses their

implications.
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Chapter 2

State of the art

The evolution of Operating Systems (OSes) has been an important part in the development of modern

computing [18]. From the early days of mechanical switches and punch cards to the creation of ac-

cessible Graphical User Interfaces (GUIs). This chapter discusses the historical progression of OSes as

well as the different kernel architectures and their advantages and disadvantages. Furthermore, the in-

tegration of the Rust programming language in the Linux kernel is discussed. Finally some Rust-based

driver projects are presented.

2.1 Operating System

The first computers were not using an Operating System (OS), the user had to enter a program part by

part in machine code. At the beginning mechanical switches were used and later on stacks of punch

cards helped to program the computer.

The beginning of the OS dates back to the 1950s. The goal was to make more efficient use of the

computer resources, which were expensive at that time. Those systems were called ‘batch processing

systems’, because they allowed to run one job. Programs and data were submitted in batches, therefore

the name.

The next evolution step was the ‘multi-batch’ system. This allowed computers to run various dif-

ferent jobs at once. This allowed for the usage of the processor and I/O devices at the same time. Those

jobs were usually created with punch cards or utilizing computer tape and a small error would cause

the program to fail and a restart would be necessary. Due to those reason the software development

process was slow and tedious.

To deal with that, operating system designers developed the concept of ‘multiprogramming’. This

allowed for several jobs to be in themainmemory at the same time. In addition the concept of interrupts

was added. Interrupts enable a unit of the system to get the attention of another unit. When the system

5



6 Chapter 2. State of the art

gets an interrupt it saves the state of the interrupted part of the program, then it services the interrupt

and afterwards it restores the saved state.

In the 1960s typewriter-like terminalswere developed that allowed for the use of a highly-interactive

environment, which enabled quick responses to user requests. This was possible due to the construction

of time-sharing systems. One of those was theMassachusetts Institute of Technology (MIT) Compatible

Time-Sharing System (CTSS). CTSS was able to ensure high usage of expensive computer resources by

running a conventional batch stream and provided the programmer who edited or debugged programs

with a quick response [19].

With the development of the first GUI based operating systems in the 1980s, computers were more

intuitive and user friendly, which is the standard even until today [20].

2.2 Different kernel designs

Modern OSes are complex and big software systems that serve as a fundamental interface between

computer hardware and user applications. Due to their wide scope it is difficult to design them, both in

security and functionality. The kernel is the most important part of an OS. It is responsible for all the

basic system service and it is constructed in a layered fashion. Starting from the process management

to the interfaces up to the rest of the OS, such as libraries. Stacked on top of all this are the applications.

One of the main differences between the OS and the user-mode software is that user-mode software

can be removed and changed from the user. Parts that reside in the OS, such as a clock interrupt handler

can’t be changed by the user. But the distinction is not always as clear as in the mentioned example, so

it is not always possible to draw a clear boundary. [21, 22].

There have been different approaches for the design of OSes. Microkernel-based OSes, monolithic-

based OSes and hybrid-based OSes [23, 24].

In the next part the differences, advantages and disadvantages of the different designs will be dis-

cussed.

2.2.1 Monolithic kernel

Monolithic kernels, contrary to microkernels, contain most services in the part of the system that exe-

cutes in privileged mode. With added complexity comes an explosive growth in millions of source lines

of code (MSLOC). Code that can be executed in privileged mode has the potential to bypass security

and can therefore lead to insecurities [25].

In computer science there are hierarchical protection domains, also called ring levels. They provide

different levels of access to resources within the architecture of the computer system. Different archi-
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tectures provide a different amount of ring levels. The AArch32 microprocessor family has up to seven

modes and the used AArch64 microprocessor family supports four so called Exception Levels (ELs).

They are arranged from EL0 (least privileged) to EL3 (most privileged). In systems without a hyper-

visor, the kernel space has the highest privileges because it directlymanages the hardware. Applications

are the least privileged and have therefore also the most access restrictions to resources. Those access

rings exist to improve security and to prevent applications from misusing resources. There are special

mechanisms in place so an outer ring can also access resources from an inner ring and allow for context

switches [1]. Over time OSes have become more complex. Features such as dynamic module loading,

multithreading and kernel locks were added [23].

In Figure 2.1 the Linux kernel space, a monolithic kernel design, is shown. A monolithic kernel ar-

chitecture is an architecture in which all kernel components reside and share the kernel Virtual Address

Space (VAS). The Linux kernel space consists of the following components [1]:

• Core kernel: Responsible for essential tasks such as managing processes.

• Memory Management: Manages the system memory.

• Virtual Filesystem Switch (VFS): Provides ways for the kernel to interact with different filesys-

tems e.g. ext4, FAT32.

• Block I/O: Handles input and output operations for block devices like hard drives.

• Network protocol stack: Implements necessary protocols to allow communication over a net-

work.

• Inter-Process Communication (IPC): Allows for different programs to communicate with each

other.

• Sound support: Handles everything audio related.

• Virtualization support: Includes the virtualization technology called Kernel-based Virtual Ma-

chine (KVM). Allows to run multiple virtual machines on a single physical machine.

Furthermore, there is architecture specific code (arch-specific), Kernel initialization (init), security

frameworks (security) as well as various device drivers [1].

As seen in Figure 2.2 monolithic kernels contain VFS, IPC, Scheduler, Virtual Memory as well as

Device Drivers and Dispatcher.

This means the basic system services such as memory management, I/O communication, interrupt

handling and the file system are all managed in privileged mode. Having everything in the kernel

space also leads to some disadvantages such as large kernel size, lack of extensibility as well as bad

maintainability. A larger code size leads to longer compilation times during bug fixing and also to a

more unreliable system [26].
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Figure 2.1: Linux kernel space - major subsystems and block [1]

2.2.2 Microkernel

To handle the disadvantages mentioned in the previous section the idea of microkernels appeared at

the end of the 1980’s. The idea was to reduce the functionality of the kernel to basic process commu-

nication and I/O control. This allows the other system services to reside in user space and be used

as normal processes [21]. A microkernel consists of core services, such as threads, signals, message

passing, synchronization, scheduling as well as timer services. To add more functionality cooperative

processes are implemented. Cooperative processes are used to extend functionality. These processes act

as servers, handling requests from clients in a true client/server model. This approach moves services

like device drivers and file systems out of the kernel and into user space, keeping the kernel minimal

and focused on core tasks like process communication and basic hardware management. This design

enhances modularity and system stability [24].

In comparison to monolithic kernels that use signals and sockets for inter process communication,
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microkernels use message queues. Message queues are built as a First In – First Out (FIFO) queue. This

means all the incoming messages are stored in a message queue and each message queue takes the

responsibility for various kinds of messages [21].

Microkernels remove the functions, such as device drivers, protocol stacks and file systems from

the kernel [27]. The OS kernel is separated into distinct parts that are isolated by memory protection

barriers [23, 28].

In Figure 2.2 the structure of a monolithic and a microkernel are shown.

Figure 2.2: Structure of monolithic and microkernel-based operating systems

Utilizing a smaller size kernel has the goal to enhance reliability by providing only basic process

communication. A disadvantage of this separation is the created overhead that leads to limited perfor-

mance, compared to a monolithic approach [23].

2.2.3 Hybrid kernel

To mitigate the aforementioned degradation of performance, a hybridization was investigated. The hy-

brid kernel combines characteristics of the microkernel as well as the monolithic kernel. Basic services

are provided through a compact core that handles essential tasks such as memory and process manage-

ment. In addition device drivers and file systems are provided via user space as separate processes [29].

In Figure 2.3 the hybrid structure is visible. Compared to a monolithic kernel, which has everything

in the kernel space, or the microkernel based operating system, which puts all but the most basic parts

into the user space, the hybrid kernel based operating systemmoved the Application IPC and the device
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Figure 2.3: Structure of monolithic and hybrid kernel based operating systems

drivers back to the kernel space.

It allows for strongly logically connected components to reside in the same memory space. The

advantage of this approach is that it can utilize the modularity and flexibility of a microkernel without

losing the performance benefits of a monolithic kernel [23, 30].

The hybrid kernel approach is used in various modern systems such as Apple’s iOS or Windows

10 [30].

2.3 Device drivers

As mentioned in chapter 1, device drivers serve as a translator between the hardware and the operating

system. This allows the OS to communicate with the hardware and the hardware with the OS. This

meansmost of the device drivers will run in kernel space, although user space drivers also exist in Linux,

such as Filesystem in Userspace (FUSE) [31]. Using user space drivers may lead to worse performance

and higher CPU loads, with a relative increase of 31% [32].

Linux allows to develop kernelmodules independentlywithout recompiling thewhole kernel source.

Those are so called ‘out-of-tree’ modules. This is achieved via the Linux Kernel Module (LKM) frame-

work, which allows for dynamically linking of external modules [1]. In Figure 2.4, the building and

inserting of an out-of-tree kernel module using the ‘insmod’ command is shown.

It is not possible to load all kinds of modules via the LKM framework. CPU scheduler or memory
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Figure 2.4: Building and inserting a kernel module [1]

management can’t be loaded dynamically into the kernel. So those kernel modules are practical for the

use with device drivers [1].

The Linux kernel assigns a unique number to each driver, the so called ‘major’ and ‘minor’ numbers.

They are stored in the same 32-bit integer. The 20 Least Significant Bits (LSB) are for the minor number

and the remaining 12 Most Significant Bits (MSB) are used for the major number [33].

There are three types of device drivers: block device drivers, character device drivers as well net-

work device drivers. Network drivers are needed when working with a network interface, block drivers

are used for mass storage and character device drivers are the most flexible ones. This thesis also fo-

cuses on the development on character device drivers. A character device driver is based on a stream

of bytes, this is similar to a serial port [15].

2.4 Rust for Linux

Rust for Linux (RFL) is a device driver Application Programming Interface (API) that enables the devel-

opment of Linux kernel extensions using the programming language Rust. It is a systems programming

language developed by Mozilla and has focus on memory safety and performance [34].

Rust is designed to provide safety while still keeping the performance characteristics of unsafe

languages. It is a programming language that has the ability to eliminate a wide class of low-level
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vulnerabilities and therefore improving the security of the Linux kernel. Rust implements memory

safety without the need for a managed runtime or a garbage collector. It also uses the the concept

of ‘ownership’, which means that every value is assigned to a single owner. This defines the scope

in which it is characterized. Through function calls it’s also possible to move the ownership. The

caller will loose all access to the value after this call. Using the ownership concept allows for explicit

deallocation. After the lifetime of the value, the value is dropped and the storage is regained. This

confined ownership model is sometimes too restrictive. So Rust allows to use ‘unsafe’ Rust. Unsafe

Rust allows operations such as dereferencing raw pointers in C [11]. Rust also uses so called ‘traits’.

Traits are a collection of properties a certain type can use. They can guarantee to the compiler that the

used type behaves a certain way [2].

In addition, certain aspects of low-level driver code have the need to use different unsafe operations

such as unsafe type casts, combinations of manual memory management and reference counting or

arithmetic pointer operations, which could lead to a decrease of the overall security of Rust [11].

Device drivers are one of the biggest sources of OSes errors in the kernel [35]. Mitigating those

vulnerabilities would create a more stable and secure OS. There have been various different approaches

to improve the security of the kernel. For example executing device drivers in an isolated subsystem

which resides on top of minimal microkernels [36]. Another approach is using virtual machines [37].

Backward-compatible driver execution frameworks is another approach to increase security [38]. As

well as different methodologies using software and hardware in the kernel itself [39, 40]. But as of

now, none of these options are in the mainline kernel due to different issues, such as high performance

overhead and practical use regarding security features.

This leads to a search for a more practical solution, with low-overhead, safe programming and the

ability of writing device drivers in Rust. RFL implements certain Rust bindings for individual kernel

subsystems, such as network, block , as well as, non-volatile memory on Peripheral Component In-

terconnect (PCI)e. With those bindings, Rust has the ability to communicate with kernel interfaces

that are implemented in C. In addition, those Rust bindings enable a safe Rust interface using a set of

high-level abstractions and wrapper types. A schematic overview of the the interactions between Rust

Drivers, Rust Abstractions and C Code is shown in Figure 2.5.

Rust drivers internally include run-time checks and guarantee correct reference counting. This

allows that the driver can be utilized in a safe subset of Rust. Furthermore, this enables the security

benefits of the Rust programming language [11].

RFL is still new, it was officially added to the kernel in 2021 and the first Rust drivers appeared in

December 2023 in the kernel. In lines of code, it is 0.125% of the whole kernel code. Most of the code

is found in scheduling, memory management, and Interrupt Request (IRQ) infrastructure. Drivers, on
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Figure 2.5: Overview of Rust Drivers, Rust Abstraction and C Code interactions [2]

the other hand, have only been around 2% [11, 41].

To write device driver kernel modules, RFL relies on bindgen, which automatically creates foreign

function interface (FFI) bindings from the header files in the kernel [10]. Bindgen uses the C header

files to translate the C structures and function declaration into compatible structures for Rust. Those

bindings are then used to create a kernel ‘crate’ that is utilized as a trusted layer between the device

driver implemented in safe Rust and the unsafe kernel. The Rust compiler cannot verify Linux C code,

so the Rust drivers that use the provided safe interface by abstractions need to trust that the underlying

C code is correct [2, 11].

In the following sections the three existing driver projects, Non-Volatile Memory Express (NVMe),

Native Rust User Datagram Protocol (UDP) Tunneling Network Driver and the Null Block Driver will

be covered. The Null Block Driver is the only driver that is already actively used in the kernel.

2.4.1 NVMe Driver

NVMe based solid state devices allow for high performance in regard to latency and peak bandwith. It

is a software based standard, with the purpose of optimizing Solid State Disks (SSDs) attached through

the PCIe interface [42].

The Rust NVMe driver project aims to implement a PCI NVMe driver in safe Rust for use within the

Linux Kernel. Its primary goal is to enable the development of safe Rust abstractions and demonstrate
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the viability of Rust as a language for building high-performance device drivers.

As shown in Figure 2.6 the performance of the Rust NVMe driver is similar to the C driver for 4 KiB

block sizes. The C driver performs better than the Rust driver by up to 6% with a 512 B block size [3].

Figure 2.6: Analysis of the Rust and C NVMe driver (January 2023) [3]

At the moment, this driver is not intended for general use and is still in development.

2.4.2 Native Rust UDP Tunneling Network Driver

Gonzales et al. concentrate on the implementation of a Rust-based UDP tunneling network driver in the

Linux kernel. The authors compare the performance to a similar driver written in C. In contrary to the

C driver, the Rust driver utilizes abstractions, which increases the speed of the development process.

To allow developers to perform operations that the compiler can not guarantee are safe, Rust pro-

vides the unsafe keyword. This lets programmers mark specific functions or code blocks where the

compiler should skip certain memory safety checks. In these cases, it is up to the developer to ensure

the code upholds Rust’s safety guarantees even without compiler enforcement. However, this intro-

duces a challenge: while only unsafe code can directly cause memory issues, the resulting bugs might

appear elsewhere in the program, even within safe code.

Due to the more complex process, such as handling pointer structures with socket buffer, more
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Interface Mean Min Max σ Points outside 95% interval

Baseline 122.2 117 127 1.10 176
C 126.8 120 132 1.37 273
Rust 127.1 121 134 1.34 176

Table 2.1: Latency Measurements in Microseconds

Interface Mean Min Max σ

Baseline 934.30 930.95 934.39 7.97× 10−2

C 915.79 913.92 915.93 8.15× 10−2

Rust 915.78 911.89 915.92 1.03× 10−1

Table 2.2: Throughput Statistics in Mbps

effort is required to safely wrap the C API. The results show that the Rust driver has a slightly higher

latency of 0.19% and a marginally lower throughput of -0.0009% as seen in Table 2.1 and Table 2.2 [2].

2.4.3 Null Block Driver

A null block driver refers to a driver that simulates a block device but does not actually perform any

real I/O operations. Its main use case is for testing and debugging purposes, because it discards all

data written to it. Furthermore, it can also be used in scenarios where interaction with real storage is

unnecessary, but integration with the kernel block subsystem is still required [43].
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Chapter 3

Evaluation Platform Design

In this chapter the evaluation platform design will be discussed, which is used for the development of

device drivers, including the choices for platform, tools and kernel configurations. The main goal of

this chapter is to discuss the setup, the cross-compilation of a customized kernel for the Raspberry Pi

4 Model B, the target platform and the used tools. These customizations include support for Rust, on

which the future device drivers will be developed and tested.

3.1 Virtual Machine Setup

The development environment is hosted on a Virtual Machine (VM) running Ubuntu Server 22.04 Long

Term Support (LTS). The host for the VM is aWindows 11 machine. The VM is utilized as a build server

for cross-compiling the kernel and modules. Using a VM instead of a native system has the purpose

of using an isolated and controlled building environment. The decision to use Ubuntu 22.04 LTS was

mainly chosen because of its stability, long-term support and compatibility for the required tools [44].

3.2 Target platform: Raspberry Pi 4 Model B

As the goal of the thesis is to compare I/O device drivers in both C and Rust, a Raspberry Pi 4 Model B

implementationwas selected. The single-board computer was chosen due to its performance, versatility

and support for Linux.

It is an efficient and powerful minicomputer, that is constantly improving due to the development

involvement of embedded systems scholars and researchers. The Raspberry Pi 4 Model B is used in

multiple applications from home automation system, motion capture security cameras, Artificial In-

telligence (AI) assistants as well applications across the biological domain and the implementation of

neural networks [45–47].

17
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3.2.1 Technical specifications

Below the Specifications of the Raspberry Pi 4 Model B are presented:

• Processor: Broadcom BCM2711, Quad core

• Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

• RAM: 8GB LPDDR4-3200 SDRAM

• Bluetooth: Bluetooth 5.0, BLE

• Wi-Fi: 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless

• USB: 2 USB 3.0 ports; 2 USB 2.0 ports

• Ethernet: Gigabit Ethernet

• HDMI: 2 × micro-HDMI ports (up to 4kp60 supported)

• Storage: MicroSD Card Slot

• Power Supply: 5.1V 3A USB Type C Power

• Dimensions: 85.6mm × 56.5mm

Furthermore the Raspberry Pi 4 Model B allows for simple interaction with the hardware via GPIO

pins and peripherals. To communicate with the Raspberry Pi 4 Model B a Universal Serial Bus (USB) to

Transistor-Transistor Logic (TTL) converter is used as seen in Figure 3.1.

Figure 3.1: Image of Raspberry Pi 4 Model B with USB to TTL converter

The USB to TTL converter allows to communicate between USB-enabled devices, such as a laptop
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and TTL logic devices, such as the Raspberry Pi 4 Model B. This is needed because kernel messages

appear before Secure Shell (SSH) is available and a serial connection helps in the debugging process.

The serial connection is set as follows:

• Baudrate: 115200

• Databits: 8

• Parity: none

• Stopbits: 1

• Timeout: 10

3.3 Kernel Selection and Customization

The kernel, which is used in this project is based on the official Raspberry Pi github respository, to be

specific the 6.12.y branch is used. This kernel was chosen for multiple reasons:

• With its latest changes in January 2025, the software reflects the current state-of-the-art.

• Its projected end-of-life (EOL) is December 2026 [48].

• It contains all the newest changes to support Rust.

The exact kernel used is the 6.12.9-v8. V8 means that it is running on a 64 bit architecture instead

of a 32 bit one. To differentiate the custom kernel, the name was changed to ‘6.12.9.-v8-FTG_V2’. By

default, Rust is not enabled on the default kernel, so some changes needed to be made to the kernel to

enable Rust support and add the implemented Rust samples. Here are themost important modifications,

created by the kernel helper script ‘diffconfig’.

$ LOCALVERSION "" -> "-v8-FTG_V2"

$ MODVERSIONS y -> n

$+RUST y

$+RUSTC_VERSION_TEXT "rustc 1.84.0 (9fc6b4312 2025-01-07)"

$+SAMPLES_RUST y

Before the introduction to the actual programming part and the first simple program in Rust and

C, it is necessary to delve a bit more into the mechanics of the Linux kernel and especially the logging.

To emit messages in user space with the C programming language the printf() glibc API can be

utilized [49]. In the kernel, on the other hand, there is no access to the printf() API.

Therefore a reimplemented version of the printf() command - the pr_*() or dev_*() macro - is used.

For the first simple ‘Hello, World!’ program (see Listing 4.1) the pr_info() macro will be used to write
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to the kernel memory ring buffer. In the main module, the I/O device driver, the dev_*() macro will get

utilized, because it is specifically designed for logging messages in the context of device drivers [1].

3.4 Tools

This subsection will discuss the deployed tools to measure performance and energy consumption of

the device drivers.

3.4.1 FNB58USB tester

To measure power consumption, a FNB58USB tester will be used. It is a USB tester device which is

designed tomeasure and display various electrical parameters of USB ports aswell as connected devices.

The FNB58USB tester can be used to measure voltage, current, power and energy consumption. The

specification is as shown in Table 3.1:

Figure 3.2: Image of the test setup with FNB58 and Raspberry Pi 4 Model B

According to the specifications in Table 3.1 the accuracy of the current at 0.5A could be off by

±0.000 27A. Therefore, the meter will be used for long-term stress tests, which should reveal trends

related to power usage. In addition, it has been used in other embedded systems based projects to

measure energy consumption [50].

As shown in Figure 3.2, the FNB58 is connected to a power source and the Raspberry Pi 4Model B via



3.4. Tools 21

USB C. For the test setup the USB to TTL converter is removed to not interfere with the measurements.

Table 3.1: Device Specifications
Index Range Resolution Accuracy

Monitor voltage 4V to 28V 0.000 01V ± (0.2‰ + 2)
Monitor current 0A to 7A 0.000 01A ± (0.5‰ + 2)
Monitor power 0W to 120W 0.000 01W ± (0.5‰ + 2)
Load equivalent internal resistance 0Ω to 9999.9Ω 0.0001Ω ± (0.5‰ + 2)
D+/D- voltage 0V to 3.3V 0.001V ± (1.0‰ + 2)
Equipment temperature −10 ◦C to 100 ◦C 1 ◦C ± (1.2‰ + 3)
Capacity 0Ah to 9999.99Ah 0.000 01Ah
Energy used 0Wh to 9999.99Wh 0.000 01Wh
Cable resistance 0Ω to 9999.9Ω 0.0001Ω
Equipment running time 99d 23h 59min 59s 1 s
Record time 99d 23h 59min 59s 1 s
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Chapter 4

Test Case Development

As already mentioned in Chapter 1, the kernel modules will be implemented on a Raspberry Pi 4 Model

B. In Chapter 3 the complete setup of the kernel and their changes got explained. This chapter addresses

the writing of the modules in Rust and C.

4.1 Writing a basic kernel module

It has been customary in the programming world to start with a simple program called ‘Hello, World!’.

The first module will be a simple ‘Hello, World!’ program, which prints to the kernel log. In the

following a comparison between the C ‘Hello, World!’ module and the Rust ‘Hello, World!’ module

will be presented. In this chapter, the source code of the module as well as the generated assembly code

will be discussed. For readability purposes the addresses of the Rust assembly code are shortened.

23
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4.1.1 Analysis of C ‘Hello, World!’ code

The beginning in Listing 4.1 shows the license and the included header files, which provide the nec-

essary files for kernel module development. From line 6 until line 9 the metadata for the module is

defined.

In line 11 the actual code starts, the module’s initialization function. This means it will be executed

as soon as the module is loaded. If it is loaded at startup, it will write ‘Hello, World! From a C module’

into the kernel memory buffer at the start. Defined at line 17 is the exit function. This defines the actions

that are taken as soon as the module is removed. It can also be referred to as a clean-up function.

Lines 22 and 23 are essential because they are responsible for registering the functions as initializa-

tion and cleanup functions.

Listing 4.1: helloworld_c.c: A simple kernel module in C that prints ‘Hello, World!’
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/module.h>
4 #include <linux/kernel.h>
5
6 MODULE_LICENSE("GPL");
7 MODULE_AUTHOR("Fabian T. Garber");
8 MODULE_DESCRIPTION("A simple Hello World module in C");
9 MODULE_VERSION("1.0");
10
11 static int __init hello_init(void)
12 {
13 pr_info("Hello, World! From a C module.\n");
14 return 0;
15 }
16
17 static void __exit hello_exit(void)
18 {
19 pr_info("Goodbye, World! From a C module.\n");
20 }
21
22 module_init(hello_init);
23 module_exit(hello_exit);

4.1.2 Analysis of Rust ‘Hello, World!’ code

In the Rust module in Listing 4.2 there is a similar structure. Line 2 is a documentation comment, which

gives a brief description of the module. Instead of ‘includes’, like in C, Rust uses the use command to

import all the necessary items, which are needed to interact with the kernel. The module block at line

6 sets all the metadata. Line 14 creates a ‘struct’ name ‘HelloWorld’. This ‘struct’ represents the module

itself, usually it will hold any module-specific data or state. Due to the simplicity of the program, it

does not have any member in this case.

Line 16 implements the kernel::Module trait for the ‘HelloWorld struct’ 1. This trait defines the

methods the kernel module must implement. This trait defines the methods the kernel module must
1A trait in Rust defines a set of methods that types can implement to share common behavior.
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implement. Similar to the C example, we have an initialization function in line 17. The Rust example,

different to the C one, returns the initialized ‘HelloWorld struct’, indicating successful initialization.

For the cleanup function the ‘Drop’ trait is implemented for the ‘HelloWorld struct’. As seen in line 24

the ‘Drop’ trait defines the ‘drop’ method, which is called when an instance of the ‘struct’ goes out of

scope. In this case when the module gets removed/unloaded.

Listing 4.2: helloworld_rust.rs: A simple kernel module in Rust that prints ‘Hello, World!’
1 // SPDX-License-Identifier: GPL-2.0
2 //! Simple Hello World Rust kernel module.
3
4 use kernel::prelude::*;
5
6 module! {
7 type: HelloWorld,
8 name: "hello_world_rust",
9 author: "Fabian T. Garber",
10 description: "A simple Hello World Rust kernel module",
11 license: "GPL",
12 }
13
14 struct HelloWorld;
15
16 impl kernel::Module for HelloWorld {
17 fn init(_module: &'static ThisModule) -> Result<Self> {
18 pr_info!("Hello, World! From a Rust module.\n");
19 Ok(HelloWorld)
20 }
21 }
22
23 impl Drop for HelloWorld {
24 fn drop(&mut self) {
25 pr_info!("Goodbye, World! From Rust a module.\n");
26 }
27 }

To summarize, apart from the differences in syntax the structure of the programs is fairly similar:

Definition of module metadata, initialization and cleanup function and both modules invoke a print

method that prints to the kernel ring buffer.

4.1.3 Analysis of the C assembly code

Similar structure on the surface level does not tell us what it looks like on the machine level. To analyze

that, the generated object files were disassembled into assembler code. In the next subsection the

differences in actual assembly code will be discussed.

The assembler code for the C module is shown in Listing 4.3. Only relevant lines of code will be

analyzed - load and move instructions will not be discussed. There are two main blocks of instructions:

the ‘init_module’ from line 6 to 16 and the ‘cleanup_module’ from line 20 to 29.

First is the ‘init_module’.

Line 7 starts with calculation of a pointer authentication code (PAC) for the stack pointer (sp) and

saves it. This is done to protect against stack smashing attacks. This is an attack where the a program
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writes more data to a buffer located on a stack than what is actually allocated for that buffer, therefore

creating a stack buffer overflow. This can lead to corruption of adjacent data, such as return addresses.

Attackers could exploit this by executing arbitrary code [51].

Line 8 stores the frame pointer (x29) and the link register (x30) onto the stack.

Line 9 moves the sp to x29 and line 10 loads the ‘init_module’ function.

Line 12 branches to the _printk function.

Line 15 authenticates the sp using the previously stored PAC. This is done to check that the sp has

not been tempered with.

Line 16 returns from the function.

The cleanup_module won’t be discussed because, apart from the move instruction that returns 0,

it’s the same.

A ‘Hello, World!’ program is a very basic program, therefore the assembly code is quite short and

understandable.

Listing 4.3: C ‘Hello, World!’ assembly code
1 helloworld_c.o: file format elf64-littleaarch64
2
3
4 Disassembly of section .init.text:
5
6 0000000000000000 <init_module>:
7 0: d503233f paciasp
8 4: a9bf7bfd stp x29, x30, [sp, #-16]!
9 8: 910003fd mov x29, sp
10 c: 90000000 adrp x0, 0 <init_module>
11 10: 91000000 add x0, x0, #0x0
12 14: 94000000 bl 0 <_printk>
13 18: 2a1f03e0 mov w0, wzr
14 1c: a8c17bfd ldp x29, x30, [sp], #16
15 20: d50323bf autiasp
16 24: d65f03c0 ret
17
18 Disassembly of section .exit.text:
19
20 0000000000000000 <cleanup_module>:
21 0: d503233f paciasp
22 4: a9bf7bfd stp x29, x30, [sp, #-16]!
23 8: 910003fd mov x29, sp
24 c: 90000000 adrp x0, 0 <cleanup_module>
25 10: 91000000 add x0, x0, #0x0
26 14: 94000000 bl 0 <_printk>
27 18: a8c17bfd ldp x29, x30, [sp], #16
28 1c: d50323bf autiasp
29 20: d65f03c0 ret

4.1.4 Analysis of the Rust assembly code

In this subsection the generated assembly code from Rust will be looked at. It is shown in Listing 4.4.

At first glance it is clear that the amount of instructions is higher than on the C assembly code. It has

around 4 times more instructions.
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As before we will take a closer look at the ‘init_module’.

Compared to the C assembly code, the Rust assembly code has 43 instructions and the C version

10.

Not all the individual instructions will be discussed, instead only the differences and the reason for

those differences will get examined.

• Compared to the C assembly code the Rust version allocates significantly more stack space. Rust

allocates 80 bytes (Listing 4.4 line 90: sp,sp, #0x50) compared to the C version that allocates 16

bytes (Listing 4.3 line 8: x29, x30, [sp, #016]!).

• The Rust version uses more registers (x8, x19, x20, w8, w9) for temporary storage and calculation.

The C version uses only the registers x0, x29 and x30, but none specific to temporary storage.

• The C version does not use a conditional branch instruction (b.ne) like the Rust version.

• In the Rust version at line 48 and line 90 the (..)print11call_printk is called, while the C version

calls _printk. This indicates that the Rust code is using a wrapper function or at least a different

mechanism for printing message to the kernel log.

Listing 4.4: Rust ‘Hello, World!’ assembly code
1 helloworld_rust.o: file format elf64-littleaarch64
2
3
4 Disassembly of section .text:
5
6 0000000000000000 <<add1>helloworld_rustNtB2_10<HW><add2>_<modinit>>:
7 0: d503233f paciasp
8 4: d10103ff sub sp, sp, #0x40
9 8: a9037bfd stp x29, x30, [sp, #48]
10 c: 9100c3fd add x29, sp, #0x30
11 10: 90000008 adrp x8, 0 <<add1><hw>_rustNtB2_10<HW><add2>_<modinit>>
12 14: 91000108 add x8, x8, #0x0
13 18: 52800029 mov w9, #0x1 // #1
14 1c: a90027e8 stp x8, x9, [sp]
15 20: 52800108 mov w8, #0x8 // #8
16 24: 90000000 adrp x0, 0 <_RNvNt<add2>_<k>print14format_strings4INFO>
17 28: 91000000 add x0, x0, #0x0
18 2c: 90000001 adrp x1, 0 <<add1><hw>_rustNtB2_10<HW><add2>_<modinit>>
19 30: 91000021 add x1, x1, #0x0
20 34: 910003e3 mov x3, sp
21 38: 52800222 mov w2, #0x11 // #17
22 3c: a901ffff stp xzr, xzr, [sp, #24]
23 40: f9000be8 str x8, [sp, #16]
24 44: 94000000 bl 0 <_RNv<add2>_<k>print11call_printk>
25 48: a9437bfd ldp x29, x30, [sp, #48]
26 4c: 2a1f03e0 mov w0, wzr
27 50: 910103ff add sp, sp, #0x40
28 54: d50323bf autiasp
29 58: d65f03c0 ret
30
31 000000000000005c <<add1><hw>_rustNtB4_10<HW><add3>_4core3ops4drop4Drop4drop>:
32 5c: d503233f paciasp
33 60: d10103ff sub sp, sp, #0x40
34 64: a9037bfd stp x29, x30, [sp, #48]
35 68: 9100c3fd add x29, sp, #0x30
36 6c: 90000008 adrp x8, 0 <<add1><hw>_rustNtB2_10<HW><add2>_<modinit>>
37 70: 91000108 add x8, x8, #0x0
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38 74: 52800029 mov w9, #0x1 // #1
39 78: a90027e8 stp x8, x9, [sp]
40 7c: 52800108 mov w8, #0x8 // #8
41 80: 90000000 adrp x0, 0 <_RNvNt<add2>_<k>print14format_strings4INFO>
42 84: 91000000 add x0, x0, #0x0
43 88: 90000001 adrp x1, 0 <<add1><hw>_rustNtB2_10H<HW><add2>_<modinit>>
44 8c: 91000021 add x1, x1, #0x0
45 90: 910003e3 mov x3, sp
46 94: 52800222 mov w2, #0x11 // #17
47 98: a901ffff stp xzr, xzr, [sp, #24]
48 9c: f9000be8 str x8, [sp, #16]
49 a0: 94000000 bl 0 <_RNv<add2>_<k>print11call_printk>
50 a4: a9437bfd ldp x29, x30, [sp, #48]
51 a8: 910103ff add sp, sp, #0x40
52 ac: d50323bf autiasp
53 b0: d65f03c0 ret
54
55 00000000000000b4 <cleanup_module>:
56 b4: d503233f paciasp
57 b8: d10143ff sub sp, sp, #0x50
58 bc: a9037bfd stp x29, x30, [sp, #48]
59 c0: f90023f3 str x19, [sp, #64]
60 c4: 9100c3fd add x29, sp, #0x30
61 c8: 90000013 adrp x19, 0 <<add1><hw>_rustNtB2_10<HW><add2>_<modinit>>
62 cc: 39400268 ldrb w8, [x19]
63 d0: 7100051f cmp w8, #0x1
64 d4: 540001e1 b.ne 110 <cleanup_module+0x5c> // b.any
65 d8: 90000008 adrp x8, 0 <<add1><hw>_rustNtB2_10<HW><add2>_<modinit>>
66 dc: 91000108 add x8, x8, #0x0
67 e0: 52800029 mov w9, #0x1 // #1
68 e4: a90027e8 stp x8, x9, [sp]
69 e8: 52800108 mov w8, #0x8 // #8
70 ec: 90000000 adrp x0, 0 <_RNvNt<add2>_<k>print14format_strings4INFO>
71 f0: 91000000 add x0, x0, #0x0
72 f4: 90000001 adrp x1, 0 <<add1><hw>_rustNtB2_10<HW><add2>_<modinit>>
73 f8: 91000021 add x1, x1, #0x0
74 fc: 910003e3 mov x3, sp
75 100: 52800222 mov w2, #0x11 // #17
76 104: a901ffff stp xzr, xzr, [sp, #24]
77 108: f9000be8 str x8, [sp, #16]
78 10c: 94000000 bl 0 <_RNv<add2>_<k>print11call_printk>
79 110: a9437bfd ldp x29, x30, [sp, #48]
80 114: 3900027f strb wzr, [x19]
81 118: f94023f3 ldr x19, [sp, #64]
82 11c: 910143ff add sp, sp, #0x50
83 120: d50323bf autiasp
84 124: d65f03c0 ret
85
86 Disassembly of section .init.text:
87
88 0000000000000000 <init_module>:
89 0: d503233f paciasp
90 4: d10143ff sub sp, sp, #0x50
91 8: a9037bfd stp x29, x30, [sp, #48]
92 c: a9044ff4 stp x20, x19, [sp, #64]
93 10: 9100c3fd add x29, sp, #0x30
94 14: 90000008 adrp x8, 0 <init_module>
95 18: 91000108 add x8, x8, #0x0
96 1c: 52800033 mov w19, #0x1 // #1
97 20: a9004fe8 stp x8, x19, [sp]
98 24: 52800108 mov w8, #0x8 // #8
99 28: 90000000 adrp x0, 0 <_RNvNt<add2>_<k>print14format_strings4INFO>
100 2c: 91000000 add x0, x0, #0x0
101 30: 90000001 adrp x1, 0 <init_module>
102 34: 91000021 add x1, x1, #0x0
103 38: 910003e3 mov x3, sp
104 3c: 52800222 mov w2, #0x11 // #17
105 40: a901ffff stp xzr, xzr, [sp, #24]
106 44: f9000be8 str x8, [sp, #16]
107 48: 94000000 bl 0 <_RNv<add2>_<k>print11call_printk>
108 4c: 90000014 adrp x20, 0 <init_module>
109 50: 39400288 ldrb w8, [x20]
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110 54: 7100051f cmp w8, #0x1
111 58: 540001e1 b.ne 94 <init_module+0x94> // b.any
112 5c: 90000008 adrp x8, 0 <init_module>
113 60: 91000108 add x8, x8, #0x0
114 64: 52800029 mov w9, #0x1 // #1
115 68: a90027e8 stp x8, x9, [sp]
116 6c: 52800108 mov w8, #0x8 // #8
117 70: 90000000 adrp x0, 0 <_RNvNt<add2>_<k>print14format_strings4INFO>
118 74: 91000000 add x0, x0, #0x0
119 78: 90000001 adrp x1, 0 <init_module>
120 7c: 91000021 add x1, x1, #0x0
121 80: 910003e3 mov x3, sp
122 84: 52800222 mov w2, #0x11 // #17
123 88: a901ffff stp xzr, xzr, [sp, #24]
124 8c: f9000be8 str x8, [sp, #16]
125 90: 94000000 bl 0 <_RNv<add2>_<k>print11call_printk>
126 94: 39000293 strb w19, [x20]
127 98: a9444ff4 ldp x20, x19, [sp, #64]
128 9c: a9437bfd ldp x29, x30, [sp, #48]
129 a0: 2a1f03e0 mov w0, wzr
130 a4: 910143ff add sp, sp, #0x50
131 a8: d50323bf autiasp
132 ac: d65f03c0 ret

Also taking a look at the rest of Listing 4.4, it is obvious that there is more overhead than on the

C equivalent. The ‘cleanup_module’ consists of more instructions and in addition to that there are

multiple instructions to set up the module and the ‘Drop’ trait.

As already mentioned in the introduction, Rust provides memory safety. To achieve this additional

safety and error handling, further instructions are needed. Rust also has mangled names, which embeds

more information about types and functions. This results in larger code size. An additional reason could

be compiler optimization. The Rust compiler might not yet be as optimized as the C compiler.

4.2 GPIO Modules

4.2.1 Purpose and Functionality

The main purpose of GPIO modules is to interact with the environment using sensors and actuators.

They provide control and monitoring capabilities and are therefore an essential part of embedded sys-

tems. GPIO pins can either be used as input, with data from an external source that is provided to the

system, which is used for sensors or switches but they can also be configured as an output to commu-

nicate to outside devices, such as motors or relays [52, 53].

They can be implemented as virtual GPIO modules or physical GPIO modules in hardware.

The next subsections will discuss the differences of virtual and physical GPIO modules.

4.2.2 Hardware GPIO Device Drivers

Hardware GPIO device drivers are software components that provide an interface between the operat-

ing system and the physical GPIO pins on a hardware device.
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These drivers allow to access and manipulate the GPIO pins. Key functionalities of hardware GPIO

device drivers are pin configuration, data transfer, interrupt handling as well as pin multiplexing.

4.2.3 Virtual GPIO Device Drivers

Virtual GPIO device drivers simulate the behavior of GPIO pins without the need for actual hardware.

They create a software abstraction of GPIO functionality to allow for the development and testing of

applications. Virtual GPIO device drivers have some advantages over physical ones in the scope of this

thesis, because there are no hardware dependencies.

There is no physical hardware required. Testing, debugging and comparing the two device drives

to each other is easier because of a controlled environment. Virtual GPIOs provide a more consistent

and reproducible test and in addition it allows to focus on the functionality and logic of the module

without limitations from external factors, such as hardware.

4.3 C Module

We develop kernel modules as out-of-tree modules. This means it is not necessary to recompile the

whole kernel, just the desired module. The modules are then getting uploaded to the Device Under

Test (DUT) and inserted using the command ‘insmod’. This allows for better flexibility and makes it

easier to debug errors in the module. To interact with the module from userspace input/output control

(ioctl), system calls are used.

To make it possible to actually use the device, it is necessary to define file operations. In Listing 4.5

a sample file operations ‘struct’ in C is shown. In the kernel it is located under ‘include/linux/fs.h’. It

allows to interact with the device via different methods. In Listing 4.5 the functionality for an owner,

to open the device, release the device, read it and use ioctl is shown. This allows to communicate with

the driver via ther userspace.

Listing 4.5: vgpio_c.c: File operations in C
1 static struct file_operations fops = {
2 .owner = THIS_MODULE,
3 .open = device_open,
4 .release = device_release,
5 .unlocked_ioctl = device_ioctl,
6 .read = device_read,
7 };

In Listing 4.6 the ‘device_ioctl’ function of the C module is shown. This function allows to commu-

nicate to the kernel module via the userspace using the ‘GPIO_SET_VALUE’ and ‘GPIO_GET_VALUE’

commands.
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Listing 4.6: vgpio_c.c: Device ioctl in C module
1 static long device_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2 {
3 struct gpio_data data;
4
5 switch (cmd) {
6 case GPIO_SET_VALUE:
7 if (copy_from_user(&data, (struct gpio_data __user *)arg, sizeof(data)))
8 return -EFAULT;
9 if (data.pin < 0 || data.pin >= NUM_GPIO_PINS)
10 return -EINVAL;
11
12 gpio_values[data.pin] = data.value;
13
14 if (debug)
15 dev_info(dev, "GPIO[%d] set to %d\n", data.pin, data.value);
16 break;
17
18 case GPIO_GET_VALUE:
19 if (copy_from_user(&data, (struct gpio_data __user *)arg, sizeof(data)))
20 return -EFAULT;
21 if (data.pin < 0 || data.pin >= NUM_GPIO_PINS)
22 return -EINVAL;
23
24 data.value = gpio_values[data.pin];
25
26 if (copy_to_user((struct gpio_data __user *)arg, &data, sizeof(data)))
27 return -EFAULT;
28 break;
29
30 default:
31 return -EINVAL;
32 }
33 return 0;
34 }

4.4 Rust Module

The Rust file operations structure, shown in Listing 4.7, looks similar to the C module, but with some

distinct differences. Most of the properties are the same (owner, open, release, read, and ioctl) except

the last line. The ‘Some’ keyword is an ‘enum’ variant of the ‘Option’ type. The ‘Option’ type is used

to represent an Optional value. This means every ‘Option’ is either ‘Some’ and contains a value, or

‘None’, and does not contain a value.

Here in in the ‘file_operations’, ‘Some’ is used to wrap function pointers. Setting it to ‘Some’ means

that it is here and that it should be used. In case a function pointer is not used, it is set to ‘None’. Another

difference is the ‘read’ line. Here it specifies the C calling convention, which is needed to interact with

the C code in the Linux kernel, the underscores are just used as placeholders for the parameters and

the return values. This last line ‘..unsafe core::mem::zeroed() ’ is necessary because it ensures that all

remaining fields are properly initialized with zero.
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Listing 4.7: vgpio_rust.rs: File operations in Rust module
1 static VGPIO_FOPS: VgpioFops = VgpioFops(kernel::bindings::file_operations {
2 owner: THIS_MODULE,
3 open: Some(vgpio_open),
4 release: Some(vgpio_release),
5 read: Some(vgpio_read as unsafe extern "C" fn(_, _, _, _) -> _),
6 unlocked_ioctl: Some(vgpio_ioctl),
7 ..unsafe { core::mem::zeroed() }
8 });

Listing 4.8: vgpio_rust.rs: Device ioctl in Rust module
1 pub extern "C" fn vgpio_ioctl(
2 _file: *mut bindings::file,
3 cmd: u32,
4 arg: u64,
5 ) -> c_long {
6 let mut data: GpioData = unsafe { core::mem::zeroed() };
7
8 match cmd {
9 GPIO_SET_VALUE => {
10 let ret = unsafe {
11 bindings::copy_from_user(
12 &mut data as *mut GpioData as *mut core::ffi::c_void,
13 arg as *const core::ffi::c_void,
14 core::mem::size_of::<GpioData>() as u64,
15 )
16 };
17 if ret != 0 {
18 return -(bindings::EFAULT as c_long);
19 }
20 if data.pin < 0 || data.pin >= 8 {
21 return -(bindings::EINVAL as c_long);
22 }
23 unsafe {
24 VGPIO_PINS[data.pin as usize] = data.value;
25 }
26 },
27 GPIO_GET_VALUE => {
28 let ret = unsafe {
29 bindings::copy_from_user(
30 &mut data as *mut GpioData as *mut core::ffi::c_void,
31 arg as *const core::ffi::c_void,
32 core::mem::size_of::<GpioData>() as u64,
33 )
34 };
35 if ret != 0 {
36 return -(bindings::EFAULT as c_long);
37 }
38 if data.pin < 0 || data.pin >= 8 {
39 return -(bindings::EINVAL as c_long);
40 }
41 unsafe {
42 data.value = VGPIO_PINS[data.pin as usize];
43 }
44 let ret = unsafe {
45 bindings::copy_to_user(
46 arg as *mut core::ffi::c_void,
47 &data as *const GpioData as *const core::ffi::c_void,
48 core::mem::size_of::<GpioData>() as u64,
49 )
50 };
51 if ret != 0 {
52 return -(bindings::EFAULT as c_long);
53 }
54 },
55 _ => return -(bindings::EINVAL as c_long),
56 }
57 0
58 }
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In Listing 4.8, the ‘device_ioctl’ function of the Rust module is shown. Both C and Rust handle

GPIO set/get ioctl commands in a similar way: they copy data from user space, validate the pin number,

update or retrieve the pin value, and copy data back if needed. Rust uses fixed-size arrays and explicit

unsafe blocks for raw pointer manipulation, and kernel bindings to interface with the underlying C

kernel API. In addition Rust’s implementation adds type safety and clearer boundaries around unsafe

operations.

4.5 Test Cases

To test the differences in the C and Rust modules, different variants of the C and Rust modules are used.

All of them are tested with 1 billion GPIO write accesses.

To determine the efficiency of the the used modules, the modules are separated into three different

variants. In the first case, they are using spinlocks and a wait queue. The second is without a wait

queue but with a spinlock and the third module variant is not using a wait queue nor a spinlock.

A spinlock is the lowest-level of mutual exclusion (mutex) mechanism, which is used for synchro-

nizing access to data shared in the kernel. The spinlock has a serious impact on the performance of the

applications it is used in. Therefore, a spinlock should only be used for operations that are finished in

a very short period of time, to not waste resources [54, 55].

A wait queue is basically used to process blocking input and output. This is done by either waiting

for a given event to occur or waiting until a certain condition becomes ‘true’. It is a list that includes

sleeping processes and a spinlock to protect the access [56].

4.6 Power consumption

The fast development of IoT devices leads to more and more systems deployed. Large-scale IoT systems

are composed of thousands of devices. Many of those systems are deployed out-doors and need batteries

to be powered. There has been extensive research to extend the battery lifespan of those systems.

There are mainly two ideas for energy saving: first is reducing the power consumption and second is

decreasing the active phase of the devices [57].

GPIO pins are used for waking up the device and/or driving external actuators. Furthermore, they

are used for communication with other devices or systems, using various transmission protocols. This

is why it is important that device drivers, for example for GPIO devices, are efficient and quick.

Therefore, it is crucial to minimize the time spent in the active phase to reduce the overall energy

consumption of the device.
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Chapter 5

Evaluation

This chapter presents data for the measurements that were taken during the tests. In Figure 5.1, charts

of the Raspberry Pi 4 Model B running without any of the virtual GPIO modules are shown. The x-axis

is formatted as hh:mm:ss. The measured values are current, energy, power and voltage. The mean

power is 1.386W.

Figure 5.1: Baseline chart for Raspberry Pi 4 Model B

In Figure 5.2 an example test run of the C kernel module with wait queue and spinlock for 1 billion

write accesses is shown.

The first chart in Figure 5.2 shows the used current, the second chart shows an energy consumption

35
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Figure 5.2: Graph for 1 billion write accesses with C kernel module with wait queue and spinlock

of 2.66Wh, the third chart shows the power consumption. In the current or power part of the figure

it is visible when the module started and when it ended due to an increase and later a decrease of the

current consumption. In the fourth chart the voltage is visible, which is stable at around 5.2V. The

Rust charts follow a similar pattern, but with different values.

As mentioned previously without the module active the DUT has a mean power consumption of

1.386W. The mean power consumption during this specific run was 2.930W.

5.1 Statistics

To determine the number of tests that need to be conducted for the C module with wait queue and

spinlock, a confidence level of 99% was set. A margin of error (E) of 60 seconds was specified. Five runs

were measured, and the results are shown in Table 5.1. The required number of tests was calculated

using the formulas derived from sample size determination principles [58].
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Run Time (s)

1 3207
2 3649
3 3348
4 3412
5 3040

Table 5.1: Run times for 1B GPIO writes on the C module with wait queue and spinlock.

Sample Mean (X̄):

X̄ =

�
Xi

n0
= 3333.2s

Sample Standard Deviation (s):

s =

��
(Xi − X̄)2

n0 − 1
≈ 228.05s

Required Number of Tests (n):

n =
�z · s

E

�2 ≈ 56.12

So 57 tests are necessary to have a confidence of 90% with a 50 seconds error margin.

The variables are described in the following list:

• n0: The initial sample size number.

• n: The number of tests required to achieve the desired confidence level and margin of error.

• X̄ : The sample mean of the run times.

• s: The sample standard deviation of the run times.

• z: The z-score corresponding to the desired confidence level. For a 90% confidence level, z ≈
1.645.

• E: Is the margin of error.

• σ: The population standard deviation. In practice, this is often estimated using the sample stan-

dard deviation s.

The same was done for the other variants. In Table 5.2 the confidence rate, margin of error and the

needed number of tests is presented.
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Module variant Margin of Error (s) Required Samples Confidence Level (%)

C module 1 17 99
Rust module 1 14 99
C module (wait queue) 20 84 99
Rust module (wait queue) 20 35 99
C module (wait queue / spinlock) 60 96 99
Rust module (wait queue / spinlock) 60 72 99

Table 5.2: Required number of samples for different confidence levels and margins of error.

5.2 Results

The results of the average running times and the mean power consumption for eachmodule and variant

are shown in Table 5.3. As expected, the running time of each variant increases with the complexity in

the C module and the Rust module.

As the complexity increases, the running times get longer. This is especially significant when using

a spinlock, as it blocks the CPU and keeps it busy-waiting until the lock is released.

The chart shows that in each variant the Rust implementation is slower than the C implementation

by about 8% in the basic variant, to 11% in the variant with wait queue and by 14.3% in the variant with

wait queue and spinlock.

Module variant Average running times (s) Percentage difference (%)

C module 581
Rust module 630 +8.43
C module (wait queue) 1347
Rust module (wait queue) 1539 +14.25
C module (wait queue / spinlock) 3221
Rust module (wait queue / spinlock) 3572 +10.89

Table 5.3: Average running times and percentage differences of the module variants.

Module variant Energy consumption (Wh) Percentage difference (%)

C module 0.39
Rust module 0.57 +46.15
C module (wait queue) 1.12
Rust module (wait queue) 1.43 +27.68
C module (wait queue / spinlock) 2.54
Rust module (wait queue / spinlock) 3.40 +33.86

Table 5.4: Energy consumption and percentage difference of the module variants.

In Figure 5.3 and Figure 5.4 a better visual representation of the compared data is shown.

Even with the lowest complex variant of the module in Rust, the average power consumption is
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Figure 5.3: Bar chart for average running times of tested modules.

higher than the most complex variant of the C module. The C module variants average power con-

sumption increases with adding a wait queue by 9.5% and with the added spinlock another 7.5%. This

leads to an average power consumption of 2.84W.

On the other hand, the Rust module in its least complex version already has an average power

consumption of 3.26W, but increases only by 2.1% with and added wait queue and by 2.7% with an

additional spinlock.

The average power consumption difference between the two modules is for the least complex vari-

ant at +35%, for the variant with wait queue +26% and for the variant with the added spinlock and the

wait queue +20%.

This shows that the Rust version uses more energy. In addition to the slightly longer running

time, this leads to the following differences in energy consumption as shown in Table 5.4. The biggest

difference with +46.15% more energy consumption has the basic variant of the module, because the

overhead of the rust module has a bigger impact at this level of complexity. The variant with just the
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Figure 5.4: Bar chart for average power consumption of tested modules.

wait queue already has a lower difference in energy consumption with +27.68% and the most complex

variant has a difference of +33.86% compared to the C module.

In Figure 5.3 the average running times of all the modules and variants are shown and compared.

The chart shows that the average running times of the Rust modules are longer than the ones of the C

module.

In Figure 5.4 the average power consumption of the modules and variants is compared. The Rust

module uses more power than the C module in all the available variants.
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Conclusion

The integration of Rust into the Linux kernel marks a significant evolution in the development of oper-

ating systems, particularly in enhancing the safety and reliability of device drivers. This thesis explores

the comparative performance and energy consumption of Rust-based and C-based virtual GPIO drivers

on a Raspberry Pi 4 Model B.

The fundamental role of the Linux kernel in managing system resources and ensuring efficient

operation is discussed as well the historical progression of operating systems, kernel architectures, and

the recent integration of Rust into the Linux kernel. Rust, known for its memory safety features, is

introduced as a promising solution to reduce memory safety vulnerabilities, which are prevalent in

programming languages, such as C [59, 60].

The implementation outlines the development of basic kernel modules in both C and Rust, provid-

ing a comparative analysis of their structure and generated assembly code. The analysis reveals that

Rust introduces additional safety checks and abstractions, resulting in more complex assembly code

compared to C. Due to Rusts additional security features, Rust does not compile if there are memory

vulnerabilities present. This is different to how the C compiler works. Therefore, developing in Rust

provides a more convenient platform, because the errors are already getting caught during the compi-

lation and not during the runtime as in C. This allows for easier and quicker debugging sessions.

The evaluation chapter discusses the results of performance tests, power and energy consump-

tion measurements. The findings show that Rust-based drivers have longer running times and higher

energy consumption compared to their C counterparts. Specifically, Rust modules were found to be

approximately 8% slower in the basic variant, 11% slower with a wait queue, and 14.3% slower with

both a wait queue and a spinlock. The energy consumption of Rust modules is also higher, with the

basic variant consuming 46.15% more energy, the variant with a wait queue consuming 27.68% more

energy, and the variant with both a wait queue and a spinlock consuming 33.86% more energy. This is

41
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partly because of longer running times, but also due to the reason that the power consumption of the

Rust module was higher.

At the moment Rust-for-Linux still has some limitations, such as not having access to all important

APIs. One example of this is the direct memory access (DMA) layer [61]. Without this, Rust device

drivers won’t be able to set up memory areas for DMA transfers. As Rust-for-Linux is an actively

developed project, it is likely that more and more APIs will be available in the future. This will allow

for future works to focus on increasingly more complex device drivers.
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Listing A.1: vgpio_rust_wq_sl.rs: Rust module with wait queue and spinlock
1 // SPDX-License-Identifier: GPL-2.0
2
3 //! A simple Rust character device using the C API.
4
5 #![allow(missing_docs)]
6
7 use kernel::prelude::*;
8 use kernel::bindings;
9 use kernel::c_str;
10 use kernel::error::code;
11 use core::ffi::{c_int, c_long};
12 use core::marker::PhantomData;
13 use kernel::sync::*;
14 use kernel::pin_init;
15 use core::sync::atomic::{AtomicBool, Ordering};
16
17 module! {
18 type: VgpioRust,
19 name: "vgpio_rust",
20 author: "Fabian T Garber",
21 description: "A virtual Rust GPIO module",
22 license: "GPL",
23 }
24
25 const DEVICE_NAME: &CStr = c_str!("vgpio_rust");
26 const CLASS_NAME: &CStr = c_str!("vgpio");
27
28 const GPIO_SET_VALUE: u32 = 0x40086701;
29 const GPIO_GET_VALUE: u32 = 0x80086702;
30
31 #[repr(C)]
32 struct GpioData {
33 pin: c_int,
34 value: c_int,
35 }
36
37 struct VgpioInner {
38 pins: [c_int; 8],
39 }
40
41 #[pin_data]
42 struct VgpioData {
43 c: u32,
44 #[pin]
45 vgpio: SpinLock<VgpioInner>,
46 }
47
48 impl VgpioData {
49 fn new() -> impl PinInit<Self> {
50 pin_init!(Self {
51 c: 0,
52 vgpio: new_spinlock!(VgpioInner { pins: [0; 8] }),

49
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53 })
54 }
55 }
56
57 static mut VGPIO_DATA: Option<Pin<Box<VgpioData>>> = None;
58
59 static GPIO_CHANGED: AtomicBool = AtomicBool::new(false);
60
61 static mut GPIO_WAITQUEUE: bindings::wait_queue_head_t =
62 bindings::wait_queue_head_t {
63 lock: core::mem::MaybeUninit::uninit(),
64 task_list: kernel::bindings::list_head {
65 prev: core::ptr::null_mut(),
66 next: core::ptr::null_mut(),
67 },
68 };
69
70 #[repr(transparent)]
71 struct VgpioFops(kernel::bindings::file_operations);
72 unsafe impl Sync for VgpioFops {}
73
74 static VGPIO_FOPS: VgpioFops = VgpioFops(kernel::bindings::file_operations {
75 owner: core::ptr::null_mut(),
76 open: Some(vgpio_open),
77 release: Some(vgpio_release),
78 read: Some(vgpio_read as unsafe extern "C" fn(_, _, _, _) -> _),
79 unlocked_ioctl: Some(vgpio_ioctl),
80 write: None,
81 llseek: None,
82 poll: None,
83 mmap: None,
84 flush: None,
85 ..unsafe { core::mem::zeroed() }
86 });
87
88 struct VgpioRust {
89 major: i32,
90 class: *mut bindings::class,
91 device: *mut bindings::device,
92 _marker: PhantomData<*mut ()>,
93 }
94
95 unsafe impl Send for VgpioRust {}
96 unsafe impl Sync for VgpioRust {}
97
98 impl kernel::Module for VgpioRust {
99 fn init(_module: &'static ThisModule) -> Result<Self> {
100 pr_info!("vgpio_rust: module loaded.\n");
101
102 unsafe {
103 VGPIO_DATA = Some(Box::pin(VgpioData::new()));
104 }
105
106 unsafe {
107 bindings::init_waitqueue_head(&mut GPIO_WAITQUEUE);
108 }
109
110 let major = unsafe {
111 bindings::__register_chrdev(
112 0,
113 0,
114 1,
115 DEVICE_NAME.as_char_ptr(),
116 &VGPIO_FOPS.0,
117 )
118 };
119 if major < 0 {
120 pr_err!("vgpio_rust: failed to register device: {}\n", major);
121 return Err(code::EINVAL.into());
122 }
123
124 let class = unsafe { bindings::class_create(CLASS_NAME.as_char_ptr()) };
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125 if class.is_null() {
126 pr_err!("vgpio_rust: failed to create class\n");
127 unsafe {
128 bindings::__unregister_chrdev(major as u32, 0, 1,
129 DEVICE_NAME.as_char_ptr());
130 }
131 return Err(code::EINVAL.into());
132 }
133
134 let dev = ((major as u32) << 20) | 0;
135 let device = unsafe {
136 bindings::device_create(
137 class,
138 core::ptr::null_mut(),
139 dev,
140 core::ptr::null_mut(),
141 DEVICE_NAME.as_char_ptr(),
142 )
143 };
144 if device.is_null() {
145 pr_err!("vgpio_rust: failed to create device\n");
146 unsafe {
147 bindings::class_destroy(class);
148 bindings::__unregister_chrdev(major as u32, 0, 1,
149 DEVICE_NAME.as_char_ptr());
150 }
151 return Err(code::EINVAL.into());
152 }
153
154 pr_info!("vgpio_rust: registered character device under
155         /dev/vgpio_rust.\n");
156
157 Ok(VgpioRust {
158 major,
159 class,
160 device,
161 _marker: PhantomData,
162 })
163 }
164 }
165
166 impl Drop for VgpioRust {
167 fn drop(&mut self) {
168 let dev = ((self.major as u32) << 20) | 0;
169 unsafe {
170 if !self.device.is_null() {
171 bindings::device_destroy(self.class, dev);
172 }
173 if !self.class.is_null() {
174 bindings::class_destroy(self.class);
175 }
176 bindings::__unregister_chrdev(self.major as u32, 0, 1,
177 DEVICE_NAME.as_char_ptr());
178 }
179 pr_info!("vgpio_rust: module unloaded.\n");
180 }
181 }
182
183 #[no_mangle]
184 pub extern "C" fn vgpio_open(
185 _inode: *mut bindings::inode,
186 _file: *mut bindings::file,
187 ) -> c_int {
188 pr_info!("vgpio_rust: device opened.\n");
189 0
190 }
191
192 #[no_mangle]
193 pub extern "C" fn vgpio_release(
194 _inode: *mut bindings::inode,
195 _file: *mut bindings::file,
196 ) -> c_int {
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197 pr_info!("vgpio_rust: device released.\n");
198 0
199 }
200
201 #[no_mangle]
202 pub extern "C" fn vgpio_read(
203 _file: *mut bindings::file,
204 buf: *mut u8,
205 count: usize,
206 pos: *mut bindings::loff_t,
207 ) -> isize {
208 pr_info!("vgpio_rust: read called with count={}\n", count);
209
210 let ret = unsafe {
211 bindings::wait_event_interruptible(
212 &mut GPIO_WAITQUEUE,
213 GPIO_CHANGED.load(Ordering::SeqCst),
214 )
215 };
216 if ret != 0 {
217 pr_info!("vgpio_rust: read interrupted by signal\n");
218 return -bindings::EINTR as isize;
219 }
220
221 GPIO_CHANGED.store(false, Ordering::SeqCst);
222
223 let msg = b"GPIO state changed\n";
224 let len = msg.len();
225
226 let offset = unsafe { *pos as usize };
227
228 if offset >= len {
229 return 0;
230 }
231
232 let bytes_left = len - offset;
233 let to_copy = count.min(bytes_left);
234
235 if buf.is_null() {
236 pr_err!("vgpio_rust: error: buf is null!\n");
237 return -(bindings::EFAULT as isize);
238 }
239
240 let res = unsafe {
241 bindings::copy_to_user(
242 buf as *mut core::ffi::c_void,
243 msg[offset..offset + to_copy].as_ptr() as *const core::ffi::c_void,
244 to_copy as u64,
245 )
246 };
247
248 if res != 0 {
249 pr_err!("vgpio_rust: error: copy_to_user() failed with {}\n", res);
250 return -(bindings::EFAULT as isize);
251 }
252
253 unsafe {
254 *pos += to_copy as i64;
255 }
256
257 to_copy as isize
258 }
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Listing A.2: vgpio_c.h: C module header file
1 #ifndef VGPIOC_H
2 #define VGPIOC_H
3
4 #include <linux/ioctl.h>
5
6 #define MAJOR_NUM 158
7
8 struct gpio_data {
9 int pin;
10 int value;
11 };
12
13 #define GPIO_SET_VALUE _IOW(MAJOR_NUM, 0, struct gpio_data)
14 #define DEVICE_NAME "vgpio_c"
15 #define DEVICE_PATH "/dev/vgpio_c"
16
17 #endif

Listing A.3: vgpio_c_wq_sl.c: C module with wait queue and spinlock
1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/kernel.h>
4 #include <linux/fs.h>
5 #include <linux/uaccess.h>
6 #include <linux/cdev.h>
7 #include <linux/device.h>
8 #include <linux/spinlock.h>
9 #include <linux/wait.h>
10 #include <linux/version.h>
11 #include <linux/types.h>
12 #include <linux/printk.h>
13
14 #include "vgpio_c.h"
15
16 MODULE_LICENSE("GPL");
17 MODULE_AUTHOR("Fabian T Garber");
18 MODULE_DESCRIPTION("Virtual GPIO Driver");
19 MODULE_VERSION("0.7");
20
21 #define NUM_GPIO_PINS 8 // Number of virtual GPIOs
22
23 #define GPIO_SET_VALUE _IOW(MAJOR_NUM, 0, struct gpio_data)
24 #define GPIO_GET_VALUE _IOR(MAJOR_NUM, 1, struct gpio_data)
25
26 // Debug flag (default: 0)
27 static int debug = 0;
28 module_param(debug, int, 0644);
29 MODULE_PARM_DESC(debug, "Enable debug output (default: 0)");
30
31 static struct class *vgpio_class = NULL;
32 //static struct device *vgpio_device = NULL;
33 static spinlock_t gpio_lock;
34 static wait_queue_head_t gpio_wait_queue;
35 static bool gpio_values[NUM_GPIO_PINS] = {0};
36 static bool gpio_changed = false;
37
38 // Device Open
39 static int device_open(struct inode *inode, struct file *file)
40 {
41 dev_info(dev, "Virtual GPIO device opened\n");
42 try_module_get(THIS_MODULE);
43 return 0;
44 }
45
46 // Device Close
47 static int device_release(struct inode *inode, struct file *file)
48 {
49 dev_info(dev, "Virtual GPIO device closed\n");
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50 module_put(THIS_MODULE);
51 return 0;
52 }
53
54 // Device IOCTL
55 static long device_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
56 {
57 struct gpio_data data;
58
59 switch (cmd) {
60 case GPIO_SET_VALUE:
61 if (copy_from_user(&data, (struct gpio_data __user *)arg, sizeof(data)))
62 return -EFAULT;
63 if (data.pin < 0 || data.pin >= NUM_GPIO_PINS)
64 return -EINVAL;
65
66 spin_lock(&gpio_lock);
67 gpio_values[data.pin] = (bool)data.value;
68 gpio_changed = true;
69 spin_unlock(&gpio_lock);
70 wake_up_interruptible(&gpio_wait_queue);
71
72 if (debug)
73 dev_info(dev, "GPIO[%d] set to %d\n", data.pin, data.value);
74 break;
75
76 case GPIO_GET_VALUE:
77 if (copy_from_user(&data, (struct gpio_data __user *)arg, sizeof(data)))
78 return -EFAULT;
79 if (data.pin < 0 || data.pin >= NUM_GPIO_PINS)
80 return -EINVAL;
81
82 spin_lock(&gpio_lock);
83 data.value = gpio_values[data.pin];
84 spin_unlock(&gpio_lock);
85
86 if (copy_to_user((struct gpio_data __user *)arg, &data, sizeof(data)))
87 return -EFAULT;
88 break;
89
90 default:
91 return -EINVAL;
92 }
93 return 0;
94 }
95
96 static ssize_t device_read(struct file *file, char __user *buf,
97 size_t len, loff_t *offset)
98 {
99 if (wait_event_interruptible(gpio_wait_queue, gpio_changed))
100 return -ERESTARTSYS; // If interrupted
101
102 gpio_changed = false;
103 char data = '1';
104 if (copy_to_user(buf, &data, 1))
105 return -EFAULT;
106
107 return 1;
108 }
109
110 // File Operations
111 static struct file_operations fops = {
112 .owner = THIS_MODULE,
113 .open = device_open,
114 .release = device_release,
115 .unlocked_ioctl = device_ioctl,
116 .read = device_read,
117 };
118
119 // Module Init
120 static int __init virtual_gpio_init(void)
121 {
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122 int ret = register_chrdev(MAJOR_NUM, DEVICE_NAME, &fops);
123
124 spin_lock_init(&gpio_lock);
125 init_waitqueue_head(&gpio_wait_queue);
126
127 if (ret < 0) {
128 dev_alert(dev, "%s failed with %d\n",
129 "Sorry, registering the character device ", ret);
130 return ret;
131 }
132
133 vgpio_class = class_create(DEVICE_NAME);
134
135 device_create(vgpio_class, NULL, MKDEV(MAJOR_NUM, 0), NULL, DEVICE_NAME);
136
137 dev_info(dev, "Virtual GPIO driver loaded\n");
138 return 0;
139 }
140
141 // Module Exit
142 static void __exit virtual_gpio_exit(void)
143 {
144 device_destroy(vgpio_class, MKDEV(MAJOR_NUM, 0));
145 class_destroy(vgpio_class);
146 unregister_chrdev(MAJOR_NUM, DEVICE_NAME);
147 pr_info("Virtual GPIO driver unloaded\n");
148 }
149
150 module_init(virtual_gpio_init);
151 module_exit(virtual_gpio_exit);
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