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Abstract

This thesis studies the cost–optimal operation and expansion of a district heating portfolio
under electricity–market uncertainty. A two–stage stochastic optimization model with
hourly resolution over the planning horizon 2025–2035 is developed to assess the role of
power-to-heat technologies—electric boilers (EB) and heat pumps (HP)—when partici-
pating in the day-ahead (DA), intraday (ID), and balancing markets. The technology set
comprises HP, EB, combined heat and power (CHP), geothermal (GT), solar thermal
(ST), waste-to-energy (WtE), and tank thermal energy storage (TTES).

Market uncertainty is represented by an exogenous-input autoregressive model (AR-X)
that generates price scenarios conditional on wind and photovoltaic feed-in. Five discrete
levels ”trajectories” (low, lower, base, higher, high) are constructed for each market; their
Cartesian product yields 25 joint DA/ID price scenarios. First-stage decisions determine
investments and capacities; second-stage problems optimize hourly dispatch scenario-wise.
To manage downside risk, the objective augments expected cost with a Conditional
Value-at-Risk (CVaR) term, enabling a tunable trade-off between mean performance and
tail losses.

Key findings are threefold. First, explicit access to ID and reserve provision (mFRR-down
capacity reservation only ; physical activation is not modeled) enables more opportunistic
electrification, shifting HP operation into low-price hours and monetizing EB’s flexibility.
Second, the optimal portfolio exhibits a robust two-block structure: WtE provides
dependable baseload, while HP/EB coordinated by TTES supply the flexible share.
Third, in a stylized case study calibrated to an existing physical district heating network in
Salzburg, the stochastic approach can reduce total system costs relative to a deterministic
baseline by ≈ 9%, illustrating the value of scenario-based market participation and
risk-aware planning.
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Kurzfassung

Diese Arbeit untersucht die kostenoptimale Betriebsführung und den Ausbau eines
Fernwärmeportfolios unter Unsicherheit auf den Strommärkten. Hierzu wird ein 2-stage
stochastic optimization model mit stündlicher Auflösung für den Zeitraum 2025–2035
entwickelt. Bewertet wird die Rolle von Power-to-Heat-Technologien—Elektrokessel (EB)
und Wärmepumpe (HP)—bei Teilnahme am Day-Ahead- (DA), Intraday- (ID) und
Regelenergiemarkt. Der betrachtete Technologiesatz umfasst HP, EB, Kraft-Wärme-
Kopplung (CHP), Geothermie (GT), Solarthermie (ST), Waste-to-Energy (WtE) sowie
Tank-Wärmespeicher (TTES).

Die Marktunsicherheit wird über ein autoregressives Modell mit exogenen Eingängen (AR-
X) abgebildet, das Strompreisszenarien in Abhängigkeit von Wind- und PV-Einspeisung
generiert. Für DA und ID werden jeweils fünf diskrete Trajektorien (low, lower, base,
higher, high) definiert; ihr kartesisches Produkt ergibt 25 gemeinsame Preisszenarien.
In der ersten Stufe werden Investitions- und Kapazitätsentscheidungen getroffen, in
der zweiten Stufe erfolgt der stündliche Dispatch szenarioweise. Zur Begrenzung von
Abwärtsrisiken wird die Erwartungswert-Zielfunktion um einen Conditional Value-at-Risk
(CVaR) ergänzt, wodurch ein einstellbarer Trade-off zwischen durchschnittlichen Kosten
und Verlusten in den Extremen möglich ist.

Die Ergebnisse lassen sich wie folgt zusammenfassen: (i) Der explizite Zugang zum ID-
Markt und die Vorhaltung von mFRR-down-Reserve (capacity reservation only ; physische
Aktivierung wird nicht modelliert) ermöglichen eine opportunistischere Elektrifizierung.
HP-Betrieb wird systematisch in Niedrigpreisstunden verschoben und die Flexibilität des
EB monetarisiert. (ii) Das optimale Portfolio zeigt eine robuste Zwei-Blöcke-Struktur:
WtE stellt eine verlässliche Grundlast, während HP/EB—koordiniert über TTES—den
flexiblen Anteil bereitstellen. (iii) In einer an ein bestehendes physisches Fernwärmenetz
in Salzburg kalibrierten Fallstudie kann der stochastische Ansatz die Gesamtsystemkosten
gegenüber einem deterministischen Basismodell reduzieren (um ca. 9%), was den Wert
szenariobasierter Marktteilnahme und risikobewusster Planungsansätze unterstreicht.
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1 Introduction

1.1 Motivation

The ongoing expansion of renewable energy sources (RES) in the European power system
is leading to increasingly volatile electricity price dynamics. These are characterized by
frequent periods of low or even negative prices, particularly driven by high shares of
wind and solar generation. This development creates new economic opportunities for
district heating (DH) operators, especially through the flexible operation of power-to-heat
technologies such as large-scale heat pumps, electric boilers, and thermal energy storage
systems.

At the same time, DH is expected to play a major role in future heat supply, potentially
covering up to 50% of total heating demand in urban areas [1]. Decarbonizing these
systems requires not only the integration of renewable heat sources but also a shift toward
electricity-based heat generation. Flexibility and optimized operational strategies are
therefore key to ensuring cost-efficient and sustainable system transformation.

While the Day-Ahead (DA) electricity market is already considered in optimization
models, the Intraday (ID) and balancing market is often neglected. However, due to its
higher temporal resolution and short-term responsiveness, the ID market offers additional
flexibility potential. It allows for better integration of volatile RES generation and for
minimizing electricity procurement costs through real-time adjustments. Furthermore,
balancing markets—such as the market for manual Frequency Restoration Reserve
(mFRR)—provide additional economic value streams, especially through down-regulation
offers (mFRR-down), which reward the temporary reduction of electricity consumption.

This thesis aims to develop a stochastic DH optimization model that integrates multiple
electricity markets: the DA market, the ID market, and the balancing market (mFRR-
down). The goal is to analyze how optimal dispatch strategies, investment decisions, and
overall system costs are affected by participation in these markets. The resulting insights
are intended to support strategic planning for DH operators aiming to enhance flexibility
and cost-efficiency in a renewables-dominated energy landscape.
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1 Introduction

1.2 Research Question

This thesis investigates how the participation of DH systems in various electricity markets
affects optimal investment and dispatch decisions. In particular, it compares two model
variants:

• a deterministic base model without electricity market scenarios, considering only
average DA prices, and

• a stochastic two-stage model that integrates DA and ID price scenarios, as well as
the balancing market (mFRR down).

The stochastic price scenarios are generated using an adapted AR-X regression model,
which incorporates forecast bandwidths of photovoltaic and wind generation based on
current literature. This enables a more realistic representation of market uncertainty and
short-term price fluctuations.

The following research questions are addressed:

1. How can different electricity markets, especially the Intraday and bal-
ancing electricity markets, be integrated into typical district energy
optimization models?

2. To what extent do the optimal generation portfolio and dispatch decisions
of district heating systems change when market uncertainties, Intraday
prices, and balancing market revenues are considered compared to a
conventional deterministic model?

The first question focuses on the necessary model extensions, including the development of
a scenario-based stochastic optimization framework, the temporal integration of ID market
dispatch, and the modeling of mFRR reserve provision (balancing) by flexible power-to-
heat technologies. It addresses how price uncertainty, short-term market responsiveness,
and balancing capacity provision can be adequately represented in techno-economic
energy system models.

The second question quantifies the practical implications of these model extensions. It
evaluates changes in investment strategies, operational schedules, and total system costs
when transitioning from a simplified, deterministic approach to a comprehensive model
that reflects real-world market dynamics and uncertainty.

3



1 Introduction

1.3 Case Study Region

The regional analysis for this thesis focuses on the Oberpinzgau region in the province
of Salzburg, Austria. This alpine area comprises nine municipalities and lies within the
district of Zell am See, bordering Tyrol and located near the borders of Carinthia and
South Tyrol (Italy). The region is characterized by a mix of mountainous terrain, a low
share of permanently settled land (only around 10% of the area), and a strong dependency
on tourism and agriculture. The main transportation corridors, including the B165/B168
federal roads and the Pinzgauer Lokalbahn railway, run through the valley along the river
Salzach. The population density within the permanent settlement areas is approximately
283 inhabitants/km2. Moreover, there is no natural gas grid available in the region, which
further increases the relevance of alternative heat supply strategies [2].

Figure 1.1: Existing DH Netzwork in Mittersill; Source: [3]

As part of the national climate and energy strategy, the Oberpinzgau region has been
identified as a “Klima- und Energiemodellregion” (KEM) [2] due to its significant
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1 Introduction

potential for the use of renewable energy. 6 DH systems already exist in the area,
all based on biomass. However, according to the Austrian Forest Inventory (”ÖWI”),
only a remaining expansion potential of about 10% of the currently used biomass
can be considered sustainable. This indicates that future developments of new DH
networks in the region will likely require alternative renewable or electricity-based heat
sources. Furthermore, according to the KEM Oberpinzgau report, approximately 79% of
buildings in municipalities without access to DH are still heated with fuel oil, which is
counterproductive to national climate targets.

For the purposes of this thesis, one of the existing biomass-based DH networks has
been selected as a reference system. The chosen network is located in the municipality
of Mittersill and supplies around 20 GWh of thermal energy per year. The design
characteristics of this system, such as thermal demand and spatial extent, are used as
the foundation for developing a representative case study.

The goal is not to replicate the existing network, but to explore how a similar DH system
could be newly designed using cost-optimal technology combinations that account for
electricity market participation. This approach assumes that similar heating networks
could be developed in other nearby municipalities (e.g., Bramberg, Hollersbach, or
Niedernsill), where there is no biomass-based DH in place. The analysis explicitly considers
the integration of electricity market dynamics by allowing cost-optimal dispatch and
investment decisions across three market levels: the DA, ID and balancing energy (mFRR-
down) markets.

Figure 1.2: Hotmaps Demand Norm Profile AT32 (Salzburg)
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1 Introduction

To characterize the heat demand for the case study, standard hourly load profiles from
the Hotmaps [4] database were used. These were scaled to match the annual energy
demand of the Mittersill reference network. In addition, monthly data for February to
May 2025 from the actual network operator were made available. A comparison of the
measured values with the Hotmaps profiles for the state of Salzburg shows a very good
agreement, validating the use of Hotmaps profiles for the full-year simulation.

The case study region offers an ideal test environment to analyze the economic and
operational effects of flexible, electricity-based DH in alpine rural areas. The modeling
results can thus be interpreted as representative not only for Mittersill, but also for
similar medium-scale municipalities in the region that aim to decarbonize their heating
sector while facing biomass supply limitations.

6



2 Background and Model Inputs

2.1 District Heating

Heating accounts for approximately half of the EU’s total energy demand, yet the sector
has made far less progress in decarbonisation compared to electricity. Residential heating
is still dominated by individual gas boilers, reflecting a strong reliance on imported
fossil fuels and exposing the EU to geopolitical risks. While previous efforts focused
mainly on energy efficiency through building retrofits, there is now a growing emphasis
on transforming the heat supply itself.

Figure 2.1: Evolution of DH systems to 4G; Source: [5]
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2 Background and Model Inputs

DH offers a strategic solution by enabling the use of local, renewable, and otherwise
wasted heat sources—such as surplus industrial heat (IEH), geothermal energy (GT),
and solar thermal systems (ST). Urban DH networks are particularly well suited for
integrating combined heat and power (CHP), waste-to-energy (WtE), and a broad mix
of renewable sources. Studies indicate that surplus heat in Europe could theoretically
cover nearly the entire heating demand. DH systems are also evolving toward a fourth
generation [6], marked by lower distribution temperatures and closer integration with
the power sector. This new generation increasingly utilizes technologies like large-scale
heat pumps (HP), or electric boilers (EB), positioning DH as a key pillar in Europe’s
transition to a low-carbon, resilient energy system.

2.2 District Heating in Austria

In 2015, DH accounted for approximately 22% of Austria’s total heat demand. According
to the Heat Roadmap Europe 4, this share should increase to at least 40% by 2050 to
support a cost-effective and low-carbon energy transition. Technically and economically,
an expansion up to 65% would be feasible without significantly raising overall system
costs [7].

Figure 2.2: Baseline share of DH in 2015 and the minimum recommended level of DH share in HRE4;
Source: [7]

8



2 Background and Model Inputs

2.2.1 Technology Parameters

CO2 Emissions

According to Austria’s electricity disclosure data (approximate share), 84.72% of the
electricity mix is attributed to renewable energy sources [8]. The Guarantees of Origin
(HKN) used throughout Austria for electricity disclosure resulted in average CO2 emissions
of 61.68g/kWh. This value refers exclusively to the energy sources covered by the
guarantees of origin.

As of May 2025, the average price of EU Emission Allowances (EUAs) under the European
Union Emissions Trading System (EU ETS) is approximately 65e per tonne of CO2,
reflecting current market conditions. This price represents the cost for companies to
emit one tonne of CO2 within the EU ETS framework, which applies uniformly across
all participating member states, including Austria. The EU ETS serves as a central
instrument in the EU’s climate strategy by setting a cap on total emissions and allowing
trading of emission allowances.

This average price is based on market observations and short-term forecasts, considering
the dynamic nature of carbon pricing within the EU ETS. For the most up-to-date and
detailed information on EUA prices, the European Energy Exchange (EEX) provides
real-time data on its Market Data Hub: [9].

In line with long-term climate targets, several institutions, including the European
Commission and the International Energy Agency, project a significant rise in CO2 prices
under the EU ETS. Based on official scenario modelling [10], average EUA prices are
expected to reach between 82e and 160e per tonne of CO2 by 2030. Depending on
the policy trajectory and emission reduction commitments, these projections reflect the
anticipated tightening of emissions caps and the increasing cost of carbon-intensive energy
use.

Therefore, for long-term modeling purposes, a forward-looking CO2 price trajectory
within this range is considered scientifically justified and consistent with current EU
climate policy frameworks. In this context, a value of 100e per tonne of CO2 is selected
for use in the optimization model as a representative and policy-aligned estimate for the
year 2030.

Assuming a linear increase in CO2 prices between 2025 and 2030, starting at 65e per
tonne in 2025 and reaching 100e per tonne in 2030, the annual growth rate is calculated
as:

Annual increase =
100e − 65e

2030− 2025
=

35e

5
= 7e/year (2.1)
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2 Background and Model Inputs

Extrapolating this trend linearly to the year 2035 yields the following estimate:

Price2035 = 100e + (5 · 7e) = 135e/t CO2 (2.2)

COP Calculation

To determine the hourly COP of the large-scale HP, a temperature-dependent approach
based on the Lorenz efficiency model is applied, as described in [11]. This method considers
the logarithmic mean temperatures of both the heat source and the heat sink to determine
a theoretical COP value. To reflect real-world conditions, this value is then multiplied by
a technology-specific efficiency factor. This method accounts for thermodynamic losses by
incorporating logarithmic mean temperatures of both the heat source and the heat sink.

Hourly outdoor air temperature values Tt [◦C] are used as the inlet temperature of
the heat source (Tsource,in,t), while the outlet temperature is assumed to be 5K lower
(Tsource,out,t = Tt − 5). On the sink side, fixed values of 75 ◦C for supply and 40 ◦C for
return temperature are used, as these reflect the conditions of the case study presented
in this thesis and are based on data from a real-world DH system [12]. All temperatures
are converted to Kelvin before calculation.

The logarithmic mean temperatures for the heat source and sink are calculated as follows:

Tlm,source,t =
Tsource,in,t − Tsource,out,t

ln
�

Tsource,in,t

Tsource,out,t


 (2.3)

Tlm,sink =
Tsink,out − Tsink,in

ln
�
Tsink,out

Tsink,in


 (2.4)

Using these, the theoretical COP according to the Lorenz model is determined as:

COPLorenz,t =
Tlm,sink

Tlm,sink − Tlm,source,t
(2.5)

To reflect technical and practical inefficiencies, the realistic COP is obtained by multiplying
the Lorenz COP with a technology-specific efficiency factor ηLorenz. For large-scale HPs in
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2 Background and Model Inputs

the 10MW range, a value of 0.60 is applied, based on data from existing installations and
current projects that typically operate 7,000–8,000 hours per year and have an expected
lifetime of 15–25 years [11]:

COPreal,t = ηLorenz · COPLorenz,t (2.6)

This method enables the calculation of realistic, time-resolved COP values for an en-
tire year based on hourly ambient air temperatures and fixed network temperature
assumptions.

Electricity Network Tariffs

For the case study region Oberpinzgau in Salzburg, electricity network tariffs are based
on the tariff structure of Salzburg Netz GmbH for Netzebene 3. Both the capacity-based
Leistungspreis [50,640e/MW/year] and the energy-based Arbeitspreis [7.2e/MWh] are
considered in the modelling of electricity-based heat generation technologies.
In addition, for the provision of balancing reserves (mFRR down) in the Salzburg AG area
an energy-based network fee of Arbeitspreis = 0.85e/MWh applies; the corresponding
capacity component of about 1,000e/MW/year is omitted because its contribution is
negligible in the context of this study.
To simplify the analysis, certain cost components have been excluded: network loss
charges (Netzverlustentgelte) are not taken into account, potential subsidies or tariff
reductions are disregarded, and any further network usage charges related to balancing
services beyond the stated items are neglected so that the focus remains on the primary
cost drivers relevant for the optimisation model.

2.2.2 Investment Costs, Fixed and Variable O&M Costs

In this thesis, data for investment costs (CAPEX) is mainly derived form the Danish
Energy Agency (DEA)[11]. Accurate data for specific countries such as Austria, or even
for subnational regions is rarely available. Therefore, implemented and planned projects
are additionally used as sources for estimating specific investment costs.

In addition to CAPEX, fixed and variable operating expenditures (OPEX) are considered.

11



2 Background and Model Inputs

HP Investment Costs, Fixed and Variable O&M Costs

For example, the planned project ”ThermaFLEX Wien Spittelau High Temperature Heat
Pump” has a budget of approximately 40 millione for a capacity of 16MW, as stated in
[13]. This corresponds to specific investment costs of 2.5 millione/MW.

According to the Danish Energy Agency [11], specific investment costs for air-source
compression HPs in the 3MW range are estimated at 0.95 millione/MW in 2025 and
0.86 millione/MW by 2030. In addition, the study by Billerbeck et al. [14] assumes
specific investment costs of 0.76 millione/MW for large-scale air-source HPs used in DH
systems. This estimate aligns with the general trend towards cost-efficient electrification
of heating and supports the assumed cost trajectories in this thesis.

While large-scale compression HPs are largely derived from established industrial re-
frigeration technologies, they often require customized components capable of handling
higher pressure levels due to elevated temperature demands in DH. These specific re-
quirements, along with relatively low production volumes—especially for units exceeding
10MW—restrict economies of scale and contribute to higher unit costs. In contrast, HPs
in the 1–10MW range offer promising potential for standardization and modular design,
which could significantly reduce specific investment costs through larger production series
and simplified project execution [15]. It is assumed that the investment costs of HPs will
decrease over time, at an estimated rate of 1.97% per year

In addition to investment costs, fixed and variable operating expenditures must be
considered. According to the Danish Technology Catalogue [11], fixed O&M costs for large-
scale HPs in the 3MW range are estimated at 2,000e/MW and year, which corresponds
to approximately 0.21% of the specific investment cost. Furthermore, variable O&M costs
are reported as 2.2e/MWh of thermal output. These low O&M values reflect the relatively
simple mechanical structure and low maintenance requirements of industrial-scale HP
systems.

Investment Costs EB, Fixed and Variable O&M Costs

In the case of electric boilers integrated into DH systems, the PtH feasibility study for
biomass heating plants in Salzburg estimates that a 1.5MW installation entails investment
costs of approximately 0.26 millione/MW, while a 3MW system may reach around 0.22
millione/MW [16].

According to the study, installations exceeding 1MW in size can offer a robust business
case with payback periods of less than 10 years, assuming good integration into electricity
markets and stable revenues from negative secondary control reserve capacity.

In contrast, smaller systems below 1,MW are found to be significantly less cost-effective
due to higher specific investment costs and limited economic potential in the balancing

12



2 Background and Model Inputs

market.

On the other hand, according to the Danish Energy Agency [11], the specific investment
costs for EB in the 1–5MW range are estimated at approximately 0.15 millione/MW for
400/690V systems in 2020, decreasing slightly to 0.14 millione/MW by 2030. For systems
operating at 10–15kV, the costs are significantly lower, around 0.07 millione/MW. In
this thesis, EB are assumed to operate at 400/690V. It is assumed that the investment
costs of EB will decrease slightly over time, at an estimated rate of 1.37% per year, mainly
due to market expansion and increased sales volumes, rather than through significant
technological improvements.

In addition to investment costs, fixed and variable operating expenditures must be
considered. According to the Danish Technology Catalogue [11], fixed O&M costs for large-
scale EB are estimated at 1,070e/MW and year, which corresponds to approximately
0.71% of the specific investment cost. Variable O&M costs are reported as 0.9e/MWh
of thermal output. These relatively low O&M values reflect the simple design and high
technical availability of EB systems.

Electric boilers are modelled as direct electricity-to-heat units with an efficiency of 99%,
supplying either directly to the DH network or to TTES.

Investment Costs CHP, Fixed and Variable O&M Costs

CHP plants based on biomass combustion with steam turbines, as reported in [17], show
specific investment costs of approximately 3.1 millione/MWel. This value is based on a
biomass-fired CHP plant with a thermal output of around 17MWth and a net electrical
output of 5MWel.

In the Technology Data Catalogue of the Danish Energy Agency, similar values for CHP
plants based on biomass woodchip combustion are reported, with specific investment
costs of approximately 3.5 millione/MWel. At a typical total efficiency of ηtotal = 0.85,
the specific investment costs of biomass CHP plants are:

Investment per MWth = 3.5 ·
	

5MWel

17MWth



≈ 1.03millione/MWth (2.7)

In biomass-fuelled CHP plants (e.g. using wood chips), no CO2 price is typically applied,
as emissions are considered climate-neutral under sustainable forest management and are
not accounted for in the EU ETS [18].

Gas-fired combined cycle plants with backpressure steam turbines in the 10–100MW range
show significantly lower specific investment costs of approximately 1.30 millione/MWel
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2 Background and Model Inputs

in 2020 and 1.20 millione/MWel in 2030 according to the Danish Energy Agency. In
this thesis, due to the case study’s location where no natural gas connection is available,
the investment cost assumptions of 3.3e/MWel for CHP are based on a medium-scale
biomass CHP plant. According to data provided by the Danish Energy Agency, a typical
biomass CHP plant (wood chips) is assumed to operate with an electrical efficiency of:

ηel = 0.29 (2.8)

and a total efficiency of:

ηtotal = 0.85 (2.9)

From this, the thermal efficiency can be derived as:

ηth = ηtotal − ηel = 0.56 (2.10)

The power-to-heat ratio s, also referred to as the specific electricity yield, is calculated
as the ratio of electrical to thermal efficiency:

s =
ηel
ηth

=
0.29

0.56
≈ 0.518 (2.11)

This implies that for every 1MWh of thermal energy extracted, approximately 0.518MWh
of electricity is also generated. Both values refer to the useful energy outputs extracted
from the CHP process. Furthermore, It is assumed that the investment costs of biomass
CHP will decrease slightly over time, at an estimated rate of 1.59% per year.

In addition to investment costs, fixed and variable operating expenditures must be
considered. According to the Danish Technology Catalogue [11], fixed O&M costs for
CHP systems are estimated at 4.3% of the specific investment cost. Variable O&M costs
are reported as 4.5e/MWh of thermal output. These values reflect the more complex
mechanical structure and the higher maintenance and operational requirements of CHP
units compared to purely electric heating technologies.

Investment Costs WtE, Fixed and Variable O&M Costs

In the case of waste-to-energy heat-only plants (WtE HOP), the Whitebook Waste-to-
Energy in Austria reports that specific treatment costs of below 100e per ton of residual
waste can be achieved for small-scale facilities (with annual capacities of approximately
80,000 to 100,000 tons), provided that existing infrastructure and year-round heat
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2 Background and Model Inputs

utilization are available. Capital expenditures represent the largest cost component,
accounting for 37–53% of total treatment costs depending on project-specific parameters
such as site characteristics, available infrastructure, and plant scale [19].

According to the Danish Energy Agency, specific investment costs for waste-to-energy
heat-only plants (HOP) with flue gas condensation are estimated at approximately 580e
per annual tonne of waste input in 2020, corresponding to about 1.74 millione/MW of
heat output and 1.71 millione/MW of heat output by 2030 [11]. Therefore it is assumed
that the investment costs of WtE HOP will decrease marginally over time, at an estimated
rate of 0.17% per year.

In Austria, the average generation of municipal solid waste amounts to approximately
521 kg per capita per year, according to [20]. Assuming that around 60–70% of this waste
is suitable for thermal utilization, a significant portion of the waste stream could be used
as input for WtE plants, particularly for the provision of DH services. In line with typical
values from waste incineration plants documented by the Danish Energy Agency, the
lower heating value (LHV) of municipal solid waste is assumed to be

Hwaste = 2.7MWh/ton (2.12)

The net operational cost of the plant considers both direct operation and maintenance
costs as well as revenues from gate fees. Specifically, the operational expenditure is set to

cop = 22.9e/ton and cwaste = −50e/ton. (2.13)

Furthermore, the average fossil CO2 emissions per ton of waste are estimated based on a
typical emission factor of 37 kg/GJ. With the given heating value, this corresponds to

eCO2 = 0.36 tCO2/ton (2.14)

These values are used consistently in the variable cost calculation of the model. According
to Directive (EU) 2023/959 [21], the inclusion of municipal waste incineration in the
EU ETS is being considered from 2028 onward, with a potential obligation starting in
2030; therefore, CO2 pricing is only incorporated into the optimization model from 2030
onwards.

For waste-to-energy heat-only plants without flue gas condensation, a lower heating
value (LHV)-based thermal efficiency of

ηth,LHV = 0.876 (2.15)

is assumed in the model. This value is based on typical gross efficiencies of 76% reported
on a higher heating value (HHV) basis for WtE plants at DH return temperatures around
40°C [11]). To ensure consistency with the fuel input data, the efficiency is converted to
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an LHV basis using a typical HHV/LHV ratio of 1.15 for municipal solid waste (average
values: 12.2MJ/kg HHV and 10.6MJ/kg LHV).

According to the Danish Technology Catalogue [11], fixed O&M costs for waste-to-energy
(WtE) plants are estimated at 4.5% of the specific investment cost. Variable O&M costs
are reported as 7.4e/MWh of thermal output. These relatively high values reflect the
need for continuous flue gas cleaning, residue handling, and the complex operational
processes involved in municipal waste incineration.

Investment Costs GT, Fixed and Variable O&M Costs

Deep, medium-depth, and shallow GT energy systems exhibit some of the highest
specific investment costs among heat source technologies for DH. According to a joint
analysis by Agora Energiewende and Fraunhofer IEG, these costs typically range from
2.2-3.6 millione/MW th, with 60–80% of the total capital expenditure attributed to the
development of the GT heat source itself [15]. At favorable locations with low geological
risk, drilling costs alone can drop to around 1.8–2.2 millione/MW, depending on borehole
depth and success probability. For shallow GT energy systems including the HP unit,
specific investment costs are reported to be approximately 2.50 millione/MW.

More granular data from the Danish Energy Agency’s Technology Catalogue estimates
total investment costs for GT heat-only plants with compression HPs at approximately
2.65 millione/MW in 2025, decreasing to 2.50 millione/MW by 2030 for systems with
1,200m depth and DH temperatures of 80/40°C [11]. The share of the HP unit itself
amounts to approximately 0.67 millione/MW. For deep GT configurations, specific
investment costs are reported to be approximately 6% higher. Furthermore, it is assumed
that the investment costs for this technology decrease slightly over time, at an estimated
annual rate of 1.16%.

In this thesis, a GT heat source is assumed at a depth of approximately 800m, with a
constant reservoir temperature of 35°C. This value is based on a typical GT temperature
gradient of 3.5 ◦C per 100m depth, as reported for Austrian conditions by the Energie-
institut an der Johannes Kepler Universität Linz [22]. The simplified assumption of a
constant source temperature allows for the use of a time-invariant COP for the associated
compression HP.

The COP is calculated using the temperature-based approach presented in Equations
(2.3) to (2.6) of this thesis, which accounts for the logarithmic mean temperatures on
the source and sink sides. A Lorenz efficiency factor of ηLorenz = 0.50 is applied to reflect
practical system limitations. Based on the assumed source temperature of 35°C and sink
temperatures of 75°C (supply) and 40°C (return), the resulting COP used in the model
is COPGT = 6.69.
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In addition to the electricity required for the HP itself—which is implicitly captured
in the COP—geothermal systems typically require further electrical energy to operate
auxiliary components such as submersible pumps and reinjection systems. These elements
ensure continuous fluid circulation between the production and injection wells. According
to the Danish Energy Agency, this auxiliary electricity consumption is not included in the
COP definition and typically ranges between 2% and 10% of the extracted thermal energy,
depending on site-specific depth and flow conditions. In this thesis, a representative value
of 5% is applied to account for these non-COP-related electricity demands.

In addition to investment costs, fixed and variable operating expenditures must be
considered. According to the Danish Technology Catalogue [11], fixed O&M costs for
GT heat-only plants are estimated at approximately 0.83% of the specific investment
cost. Variable O&M costs are reported at 5.7e/MWh of thermal output. These O&M
values reflect the higher maintenance demands and auxiliary systems required for GT
operation, including submersible pumps, reinjection, and water treatment systems.

Investment Costs ST, Fixed and Variable O&M Costs

For example, the DH project in Grenaa, Denmark, is listed in [23] with specific investment
costs of approximately 0.33 millione/MW of thermal capacity, based on a collector area
of 20,673m² and a total capacity of 14.5MW. Systems in the capacity range between 3
and 5MW show specific investment costs of approximately 0.55 millione/MW.

According to the Danish Energy Agency, the specific investment costs for a solar DH
system with a collector area of 10,000m² are reported at approximately 429e/MWh
of annual heat output [11]. Based on a typical annual solar yield of 450kWh/m², this
corresponds to a total annual heat generation of about 4.5GWh. Assuming that 1MW
of installed thermal capacity requires roughly 1,350m² of collector area, the resulting
full load hours are estimated at approximately 600h/year. This allows the conversion of
the given value into specific investment costs of roughly 0.26 millione/MW of installed
thermal capacity. In contrast, [14] reports specific investment costs of 0.31 millione/MW
of installed thermal capacity for ST systems. A comparatively low annual cost decrease of
0.86% is applied, reflecting the limited cost-reduction potential expected for this mature
technology.

In this thesis, a maximum collector area of 10,000m2 is assumed for the ST installation.
The system is designed with flat plate collectors (FPC), which are the most commonly
used collector type in European solar DH applications [23]. These systems typically
achieve output temperatures of up to 70°C depending on weather conditions, orientation,
and flow rate. For modeling purposes, a constant output temperature of 65°C is assumed
throughout the year, reflecting an average operational value under central European
conditions.
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Since the DH supply temperature exceeds the solar field output, an auxiliary heat
upgrading device is integrated. However, due to the relatively small temperature lift
(from 65°C to 75°C), electrically driven compression HPs would operate inefficiently or
may not be technically feasible. Therefore, an absorption heat pump (AHP) is used
instead, which is thermally driven and more suitable for this application. AHPs can
achieve supply temperatures up to 85–87°C and exhibit typical COP of up to 1,7 [11].

The ST system is modeled with an annual conversion efficiency of 45% in 2020, increasing
to 48% by 2030, which corresponds to typical yield levels of around 450/kWh/m2/a [11].

The AHP required for temperature elevation is assigned specific investment costs of 0.56
millione/MW of thermal output, based on data reported by the Danish Energy Agency
[11]. These costs reflect the additional infrastructure needed to match the thermal output
of the solar field to the DH network requirements. Similar to other technologies, cost
reductions over time are expected; for AHPs, an annual decrease of 0.93% is assumed,
reflecting limited potential for economies of scale and innovation in this mature technology
segment.

In addition to investment costs, fixed and variable operating expenditures must be
considered. According to the Danish Technology Catalogue [11], fixed O&M costs for
the ST collector field are estimated at approximately 0.03% of the specific investment
cost, while variable O&M costs amount to 0.30e/MWh of thermal output. Additionally,
land lease costs are assumed at 0.10e/MWh, resulting in total variable O&M costs of
0.40e/MWh. For the thermally driven AHP used to upgrade the solar output temperature,
fixed O&M costs are assumed to be 0.4% of the specific investment cost, and variable
O&M costs are estimated at 1.00e/MWh. These values reflect the low maintenance
requirements of passive collector fields as well as the additional operational costs associated
with the thermal driving cycle and auxiliary components of the AHP.

Investment Costs TTES, Fixed and Variable O&M Costs

For the case study presented in this thesis with an annual heat generation of 20GWh and
a 24-hour storage duration, assuming a uniform daily load, the required storage capacity
is approximately 55MWh. Given typical energy densities of water-based TTES systems
in the range of 60–80kWh/m³ [24], this corresponds to a required volume of roughly
1,000 to 1,500m³.

According to Jörg Worlitschek, specific investment costs TTES systems range between
180e and 220e/m³ [25]. Assuming a representative design volume of 1,200m³, the
resulting total investment amounts to approximately 0.22–0.26 millione. Based on an
assumed energy density of 70 kWh/m³, this corresponds to specific investment costs of
approximately 2,600–3,100e/MWh of daily storage capacity.
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Comparable values are also reported in [26], where a TTES installation with a storage
volume of 3,000m³ is associated with specific investment costs of around 2,900e/MWh
of daily storage capacity.

From a techno-economic perspective, TTES is more favorable for smaller-scale applications
or urban areas with limited space (<10,000m³), while PTES becomes increasingly
attractive at larger scales due to lower unit costs. The economic trade-offs between TTES
and PTES highlight the importance of site-specific conditions and system sizing when
selecting suitable storage technologies for DH systems [26].

The following calculation is based on an assumed storage volume of 1,200m³ and an
energy density of 70 kWh/m³ for TTES:

Edaily = V · e = 1,200m3 · 70 kWh

m3
= 84,000 kWh = 84MWh (2.16)

Assuming specific investment costs of 3,000e/MWh of daily storage capacity, the total
investment is calculated as:

Itotal = 84MWh · 3,000 e

MWh
= 252,000e (2.17)

With a storage duration of 24 hours, this corresponds to a thermal power output of:

Pth =
Edaily

24 h
=

84MWh

24 h
= 3.5MW (2.18)

Finally, the specific investment cost per MW of thermal output is:

Specific cost =
Itotal
Pth

=
252,000e

3.5MW
= 72,000e/MW = 0.072Mio.e/MW (2.19)

In [27], a maximum hourly charging and discharging capacity of 40MW is assumed for a
TTES system with a volume of 3,000m³. Based on this reference, and considering that
the TTES unit in this case study is dimensioned at approximately 1,200m³—about one
third of the reference size—a scaled technical limit of 13.3MW is applied to define the
upper boundary for charging and discharging. This value serves as a technical constraint
in the model and does not necessarily reflect the actual operational load profile.
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In the literature, TTES systems are reported with varying assumptions depending
on the temperature level, insulation quality, and storage duration. For example, a
detailed modeling study on high-temperature TTES assumes hourly heat losses of 0.04%,
representing relatively conservative conditions for large-scale system simulations [28].

In contrast, empirical data from IRENA indicate that well-insulated seasonal storage
tanks operating at around 90°C can retain heat with less than 10% energy loss over six
months [29].

In this thesis, a total thermal loss of 20% over a six-month period is assumed for TTES
operation. This corresponds to an hourly storage retention factor of approximately
0.99962, equating to 0.038% heat loss per hour. In addition, a charging and discharging
efficiency of 0.95 is applied to account for thermal losses during input and extraction
processes.

In addition to investment costs, fixed and variable operating expenditures must be
considered. According to typical values used in techno-economic assessments of thermal
storage systems, fixed O&M costs for TTES are estimated at approximately 1.0% of
the specific investment cost. Variable O&M costs are generally very low due to the
passive nature of TTES and are assumed to be 0.10e/MWh of thermal energy charged
or discharged. These O&M values reflect the minimal maintenance requirements and
the absence of active mechanical components, apart from standard instrumentation
and control. Additionally, a charge/discharge cost of 5.5e/MWh is assumed to reflect
auxiliary electricity use and operational cycling effects.

To simplify the optimization framework, dynamic constraints such as ramp-up times,
minimum up/down times, or startup delays of the thermal generation units are not
considered. All technologies are modeled as fully dispatchable within each timestep,
assuming instantaneous availability of their installed capacity.
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Technology Specific Investment Costs Fixed O&M Var O&M

[e/MW] [e/MW] [e/MWh]

Heating
Technology

HP 850,000 1,785 2.2

EB 200,000 1,420 0.9

CHP 3,300,000 141,900 4.5

WtE 1,900,000 78,000 7.4

GT 2,200,000 18,260 5.7

ST / HP (AHP) 300,000 / 600,000 90 / 2,400 0,4 / 1,0

Storage
Technology

TTES 72,000 720 0.1

Table 2.1: Technology-specific CAPEX and O&M cost assumptions

2.3 Electricity Market

According to [30], european electricity prices have shifted to exchange-based trading since
market liberalization, with hourly prices set in DA and ID auctions. These prices inherit
clear deterministic structure from demand: weekday/weekend patterns and seasonal shifts
in daily load (midday vs. evening peaks).
Beyond those regularities, electricity’s limited storability and the need to balance supply
and demand every single hour produce hallmark features: high volatility, mean reversion,
and occasional jumps/spikes.

In this thesis, three price series are used: (i) the ENTSO-E DA hourly price for Austria
(AT), (ii) the EPEX intraday ID3 index for 2019 (the only intraday year available), and
(iii) mFRR-down prices. The mFRR-down series is fed into the optimization model as a
daily average applied uniformly to all 24 hours of the respective day.
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Figure 2.3: Routine of Electricity Market; Source: [31]

For intraday electricity price forecasting (EPF), this thesis follows the literature for
example [31] and work with the EPEX ID3 index. Conceptually, ID3 is the volume-
weighted average of transaction prices in the last three hours before delivery, ignoring
trades in the final 30 minutes within control zones. Let b(d, s) denote the delivery start
of product s on day d and define the half-open window

Td,s
3 =

�
b(d, s)− 3, b(d, s)− 0.5

�
. (2.20)

With V d,s
k and P d,s

k the traded volume and price at timestamp k in that window, and
Wd,s the set of relevant transactions (domestic and cross-border; excluding cross-trades),
the EPEX definition is

ID3d,s =

�
k∈Td,s

3 ∩Wd,s V
d,s
k P d,s

k�
k∈Td,s

3 ∩Wd,s V
d,s
k

. (2.21)

If there are no trades in Td,s
3 , EPEX extends the averaging window; if no trades at all

occur, the respective DA (hourly) or intraday auction (quarter-hourly) price is used. The
index is economically relevant—it underlies intraday cap/floor futures—and is empirically
justified since most continuous intraday volume concentrates in the ID3 window.

2.3.1 Electricity Price Forecasting

EPF has matured into a broad field spanning statistical time–series models, machine
learning, and hybrids. Yet, as highlighted by a recent comprehensive review, comparisons
have often lacked rigor due to non-public datasets, short test periods, and weak baselines.
[32] address these shortcomings by publishing multi-year benchmark datasets, standard-
ized evaluation practices (including proper significance testing), and open-source baselines.
They also identify two families that consistently provide strong reference performance
across markets: (i) parameter-rich econometric regressions estimated with LASSO/elastic-
net (the “Lasso Estimated AutoRegressive,” LEAR, i.e., fARX-type with regularization),
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and (ii) comparatively simple deep neural networks (DNN), both implemented in the
EPFtoolbox.

From a methods perspective, modern “statistical” EPF typically uses linear models
with many calendar, autoregressive, and exogenous features and applies implicit feature
selection via LASSO/elastic-net. This regularization both shrinks and selects coefficients,
yielding robust parameter-rich models that often outperform more parsimonious AR(·)
or ARIMA baselines; variance-stabilizing transformations and careful treatment of sea-
sonality further improve accuracy. The best-practice recommendations in [32]—year-long
rolling backtests, strong baselines (LEAR/DNN), appropriate error metrics with sig-
nificance testing—are followed here insofar as they align with the scenario-generation
objective.

Positioning

This thesis does not aim at minimizing point forecast errors (e.g., MAE) for operational
trading; instead, it repurposes the open and reproducible EPF setup of [32] into an X-model
(AR-X without the AR part) to generate diverse DA and ID price scenario paths. The
intention is to capture a broad dispersion of structurally different conditions—accepting a
deliberately higher MAE—so that the stochastic optimization can exploit market-driven
flexibility. Methodological details of the X-model and the rolling design are given in
Subsection 3.2.1.

Negative Prices and ARMA (AutoRegressive-Moving Average) Models

Negative prices are a structural feature of European markets (allowed at EEX since
2008). A common and effective approach is to separate deterministic components (trend;
daily/weekly/annual patterns) from a stochastic residual, which can be modeled with
mean-reversion and ARMA/ARIMA processes; regime switching and an explicit treatment
of negative prices markedly improve fit. In evaluations on EEX data, mean-reversion and
ARMA delivered the lowest RMSE (and lower MAE than GARCH), while ARMA/ARIMA
better preserved daily shapes. These insights motivate variance-stabilizing transformations
and robust residual handling compatible with negative values.

Modeling choices and summary

Guided by [32], this thesis employs strong, transparent baselines and rigorous rolling
evaluation; however, the objective is scenario diversity rather than minimal MAE. ID
modeling and evaluation rely on ID3; the X-model with exogenous drivers is used to
generate DA/ID price paths for the two-stage stochastic optimization (Subsection 3.2.1).
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In this chapter, the methodological framework for solving the district heating optimization
problem using two-stage stochastic programming is presented. The objective of this thesis
is to enable district heating operators to participate in the DA and especially in the ID and
balancing electricity market with flexible electricity-powered district heating technologies.
These technologies include heat pumps, electric boilers and heat storage. The first part of
this chapter describes the optimization problem with a brief mathematical introduction
and the second part the electricity price simulation.

Figure 3.1 depicts the flowchart of the applied methodology.
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Figure 3.1: Flowchart of the applied methodology

The primary objective of the DH model is to ensure continuous thermal energy supply
to all consumers based on their hourly heating demand profiles. To meet this demand,
the model can choose from a variety of technologies. For the heating system, 6 different
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generation technologies are available which are described in 3.1. Additionally the network
includes a thermal storage technology, which accommodate the volatile nature of electricity
prices and provides flexibility in meeting the demand profiles.

The primary objective of this work is the integration of DA, ID and balancing electricity
market mechanisms into an existing energy optimization model, in order to systematically
account for the exploitable flexibility these markets offer. The underlying model focuses
solely on the energy supply side, aiming to meet the thermal demand of consumers
without considering the physical distribution network [33]. Consequently, infrastructure
components such as pipelines, pumps, and associated hydraulic flow dynamics are not
included in the scope of this work. As a result, network-related losses and pressure-driven
constraints are not reflected in the optimization outcomes.

The two-stage stochastic optimization model presented in 3.1.2 generates a cost-effective
configuration of the mentioned DH technologies, based on the defined input parameters
and constraints. This enables district heating operators to operate their systems according
to economically optimal dispatch schedules.

3.1 Optimization Problem

Optimization problems are mathematical models used to find the best possible solution
from a set of feasible alternatives. These problems play a crucial role in various fields,
including engineering, economics, logistics. The goal of an optimization problem is to
either maximize or minimize an objective function while satisfying a set of constraints
resulting in a better decision-making, cost reduction, and improved efficiency.

3.1.1 Mathematical Introduction

In general, an optimization problem is characterized by an objective function [34]:

max / min
x1,x2,...

f(x1, x2, . . . ) (3.1)

subject to
gi(x1, x2, . . . ) ≤ bi, i = 1, . . . , p

hj(x1, x2, . . . ) = 0, i = 1, . . . , q
(3.2)

with variables

max(min) Maximization (Minimization) problem

x1, x2, . . . Decision variables

f(x1, x2, . . . ) Objective function

gi(x1, x2, . . . ) p Inequality constraints

hi(x1, x2, . . . ) q Equality constraints.

(3.3)
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This thesis builds upon an existing linear programming (LP) optimization model, which
is described in Section 3.1.2, to develop a two-stage stochastic programming model.
Compared to deterministic optimization models with fixed parameters, stochastic pro-
gramming models involve uncertainty in the data. Uncertainties in the data can be
expressed through probability distributions. Another approach is the scenario-based
method. This means that the probability distribution is discretized into a set of possible
realizations, referred to as “scenarios”, each assigned a specific probability.

With a finite set of scenarios Ω = {ω1, . . . , ωS} ⊆ Rr and probabilities P (ωs) = ps for
all s = 1, . . . , S, the stochastic model can be written as the “deterministic equivalent”
[35]. This approach transforms the stochastic problem into a large linear programming
problem and can be expressed as follows:

cTx + p1q
T y1(x) + p2q

T y2(x) + . . . + pSq
T yS(x)

s.t.

Ax = b

T1x +W1y1(x) = h1

T2x +W2y2(x) = h2
...

. . .
...

TSx +WSyS(x) = hS

x ∈ Rn, y1(x) ∈ Rm, y2(x) ∈ Rm, . . . , yS(x) ∈ Rm

(3.4)

Where cTx represents the first-stage problem and corresponds to investment costs and
fixed costs in this thesis. pSq

T yS(x) represents the second-stage problem, weighted with
specific scenario probabilities and corresponds to variable costs. The variable costs are
responsible for the respective dispatch of the different, flexible DH technologies in the
day-ahead and intraday electricity market. Ax = b represents the constraint of the
first-stage problem with A as the coefficients and x the decision variables. TS represents
the transition matrix, which is not present in this thesis. WSyS(x) represents the recourse
matrix WS at each scenario and yS(x) the second-stage decision variable.

Although the transition matrix is not present, the second stage-decision variable is
indirectly dependent on the first-stage decision variable. So this means the problem is
still defined by a two-stage stochastic programming model.

3.1.2 2-Stage Stochastic Optimization Model

An early version of the district energy optimization model by [33] serves as a basis for this
work. The goal was to modify the existing infrastructure of the model to accommodate
power flexible district heating technologies, enabling participation in the DA, ID and
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balancing electricity market.
The following district heating technologies or generation units are part of the existing
model:

• Heat Pump
• Electric Boiler
• Combined Heat and Power (gas in the original model, biomass in the new model)
• Waste Incineration (in the new model Waste to Energy)
• Tank Thermal Energy Storage
• Geothermal
• Solar Thermal
• Industrial Excess Heat
• Aquifer Thermal Energy Storage
• Deep Geothermal

Not all these technologies are interesting with regard to the DA, ID and balancing
electricity market. Therefore the following technologies are addressed in this work:

Heat pumps and electric boilers. These two have the greatest potential for participating
in the DA and especially the ID and balancing electricity market, due to their direct
power flexibility and rapid ramping capabilities.

CHP plants, as long as they are not heat-only units. This assumption is made in this
thesis, therefore this technology provides both direct and indirect power flexibility.

Tank thermal energy storage is generally considered to provide indirect power flexibility.

Waste to Energy is typically treated as an inflexible technology. In the original model it
was configured to produce electricity; in this thesis, that assumption is dropped and the
unit is modeled solely as a heat only plant (HOP).

Geothermal includes a heat pump to lift the temperature to the district-heating supply
temperature and is therefore modeled as an electricity-driven, power-flexible technology.

The remaining four technologies are only considered peripherally in this work due to
their lack of direct power flexibility. Deep geothermal energy, aquifer thermal energy
storage, and industrial excess heat are excluded entirely and not further considered in
this thesis. Although industrial excess heat could function as a technology with indirect
power flexibility, it is not further addressed here, as it cannot be directly dispatched in
DA or ID or balancing markets and is also not present in the region of the case study.

Figure 3.1 illustrates the schematic of the DH system, including the various heating and
storage technologies.
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Figure 3.2: Schematic of the DH system

An overview of the heating technologies including abbreviations and descriptions is
depicted in table 3.1. In the following, the abbreviation TE refers to Thermal Energy.

Technologies Description Input Output

HP Heat Pump Electricity TE

EB Electric Boiler Electricity TE

CHP Combined Heat and
Power

Biomass TE and Electricity

WtE Waste to Energy Waste TE

TTES Tank Thermal Energy
Storage

TE TE

GT Geothermal TE through Heat
Pump

TE

ST Solar Thermal Solar Energy TE

Table 3.1: Technologies
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3.1.3 Objective Function

The existing LP model follows the general structure of cost minimization as the objective
function, including investment costs, fixed costs, and variable costs across all technologies.
In this work, the objective function was extended into a two-stage stochastic problem
incorporating different DA and ID electricity price scenarios. These scenarios reflect
the uncertain nature of electricity markets and their prices which are, among other
factors, linked to uncertain weather data. More about that in section 4. The modified
and extended objective function is given as follows:

min
C

�
τ∈T

�
y∈Y

	
Cinv
τ,y (Q, cinv) + Cfix

τ,y (Q, cfix) +
�
s∈S

�
ps

�
t∈T

Cvar
τ,s,y,t(qDA, qID, DA, ID)





+ β

	
τrisk +

1

1− α

�
s∈S

psδs



(3.5)

and the respective technologies are represented through the vector τ :

T = {HP, EB, CHP, WtE, TTES, GT, ST}. (3.6)

The model sets, variables and parameter are described in the following tables, table 3.2,
table 3.3 and table 3.4 respectively:

Pyomo Sets

y ∈ Y = {2025, 2030, . . . , 2050}, t ∈ N Years with index y

s ∈ S = {1, 2, 3, . . . , 10}, t ∈ N Electricity Price Scenarios with index s

t ∈ T = {1, 2, 3, . . . , 8760}, t ∈ N Hours with index t

Table 3.2: Model setsl
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Pyomo Variables Description Unit

Cinv
τ,y Investment costs of the respective technology with index

τ and index y over years
e

Cfix
τ,y Fixed costs of the respective technology with index τ

and index y over years
e

Cvar
τ,s,y,t Variable costs of the respective technology with index

τ , index s over scenarios, index y over years and index
t over hours

e

Q New installed generation or storage output of the re-
spective technology per year with index y

MW

qDA Dispatch of the respective technology with index τ in
the DA electricity market, index s over scenarios, index
y over years and index t over hours

MWh

qID Dispatch of the respective technology with index τ in
the ID electricity market, index s over scenarios, index
y over years and index t over hours

MWh

Table 3.3: Model variables

Pyomo Parameters Description Unit

cinv Specific investment costs of the respective technol-
ogy with index τ and index y over years

e/MWh

cfix Specific fixed costs of the respective technology
with index τ and index y over years

e/MWh

ps Probability of the respective scenario with index s N
DA DA electricity price of the respective scenario with

index τ , index y over years and index t over hours
e

ID ID electricity price of the respective scenario with
index τ , index y over years and index t over hours

e

Table 3.4: Model parameters
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3.1.4 Conditional Value at Risk (CVaR)

To account for the inherent uncertainty and volatility in electricity prices—particularly in
the ID market—this work incorporates a risk-averse optimization approach using CVaR.
Although average electricity prices in the ID market are often lower compared to the
DA market, they are also subject to significantly higher short-term fluctuations. If the
optimization model were to minimize expected costs alone, it might over-utilize the ID
market based solely on its lower average prices, neglecting the potential for extreme cost
outcomes under unfavorable scenarios. To mitigate this risk, a CVaR-based penalty term
is integrated into the objective function.

The CVaR term is expressed in monetary units (Euro) and penalizes scenarios within
the upper tail of the cost distribution—specifically, the most expensive 10% of scenarios
when using a confidence level of α = 0.90. This effectively discourages the model from
dispatching excessive amounts of EB or HP output via the ID market if such a strategy
results in high-cost outcomes under certain price scenarios.

Formally, the CVaR component added to the objective function is:

β

	
τrisk +

1

1− α

�
s∈S

psδs



(3.7)

where:

• τ is a decision variable representing the Value-at-Risk (VaR) threshold, i.e., the
α-quantile of scenario-dependent costs,

• δs is a non-negative slack variable representing the amount by which the cost in
scenario s exceeds τ ,

• ps is the probability weight of scenario s,

• β is a risk-weighting factor determining the influence of CVaR in the objective
function,

• S is the set of all price scenarios.

The model enforces that at most (1− α) of the total probability mass exceeds the
threshold τ , thus implementing a probabilistic upper-bound on high-cost realizations.
The variables δs allow the model to quantify the excess cost in such cases, and these
excesses are then penalized proportionally.

This mechanism introduces a risk-sensitive behavior in the optimization. Rather than
relying purely on expected value minimization, the model explicitly accounts for tail risks
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in the cost distribution of ID electricity procurement. As a result, dispatch decisions for
HP and EB are made more conservatively when relying on volatile ID prices. The model
thereby strikes a balance between exploiting the typically lower mean prices of the ID
market and avoiding excessive exposure to unfavorable pricing scenarios.

This formulation is aligned with methods presented in recent literature, particularly those
using CVaR to control the cost risks of CHP and heat pump operation under electricity
market uncertainty. It provides a theoretically sound and practically relevant extension
for optimizing flexible technologies under stochastic market conditions.

3.1.5 Constraints

Several constraints in this model are based on the deterministic district energy optimiza-
tion framework developed by [33], which was taken over at an early development stage.
These constraints have been substantially adapted or extended in the course of this thesis.
In particular, additional formulations were introduced to reflect the explicit participation
in both the DA and ID electricity markets.

Demand Balance Constraint

To ensure that the thermal demand is met at every point in time, the following constraint
defines the hourly heat balance for all scenarios and years. The sum of thermal energy
supplied by all generation technologies, including the discharge from the thermal energy
storage, must equal the respective hourly heat demand. In contrast to the original
formulation in [33], the thermal storage in this model is exclusively charged by electricity-
based technologies, allowing for flexible operation based on electricity market price
signals.

qHP
s,y,t + qEBs,y,t + qCHP

s,y,t + qWtE
s,y,t + qGT

s,y,t

+ qSTs,y,t + qTTES,out
s,y,t − qTTES,in

s,y,t = qDs,y,t : ∀s ∈ S, y ∈ Y, t ∈ T
(3.8)

Table 3.5 provides an overview of the model variables involved in the demand balance
constraint, including their functional meaning and corresponding unit of measurement:
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Pyomo Variables Description Unit

qHP
s,y,t Thermal energy supplied by the heat pump in scenario

s, year y, and hour t
MWh

qEBs,y,t Thermal energy supplied by the electric boiler in scenario
s, year y, and hour t

MWh

qCHP
s,y,t Thermal energy supplied by the combined heat and

power plant in scenario s, year y, and hour t
MWh

qWtE
s,y,t Thermal energy supplied by the waste-to-energy plant

in scenario s, year y, and hour t
MWh

qGT
s,y,t Thermal energy supplied by the geothermal source in

scenario s, year y, and hour t
MWh

qSTs,y,t Thermal energy supplied by the solar thermal plant in
scenario s, year y, and hour t

MWh

qTTES,out
s,y,t Thermal energy discharged from TTES to the district

heating network
MWh

qTTES,in
s,y,t Thermal energy charged into the TTES from generation

units
MWh

qDs,y,t Thermal heat demand to be met by the system in sce-
nario s, year y, and hour t

MWh

Table 3.5: Model variables used in the demand balance constraint

Heat Pump Constraints

The heat pump’s variable operating cost accounts for DA and ID electricity procurement,
variable O&M and grid energy charges, and a credit from mFRR-down capacity reservation
(no activation energy is modeled):

cHP,var
s,y,t = qHP,el,DA

s,y,t · pDA
s,y,t + qHP,el,ID

s,y,t · pIDs,y,t −
qHP,mFRR↓
s,y,t · pmFRR↓

s,y,t , : ∀s ∈ S, y ∈ Y, t ∈ T.
(3.9)

Consistency with the device’s electrical headroom is enforced by limiting reserved mFRR-
down capacity to the unused electrical input at each hour:

qHP,mFRR↓
s,y,t ≤ QHP,max

s,y

COPs,y,t
− �

qHP,el,DA
s,y,t + qHP,el,ID

s,y,t

�
, : ∀s ∈ S, y ∈ Y, t ∈ T. (3.10)
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Symbol Description Unit

cHP,var
s,y,t Variable operating cost of HP in (s, y, t), incl. DA/ID pur-

chases, O&M, grid charge, and mFRR-down credit (capacity
only)

e

qHP,el,DA
s,y,t Electrical consumption bought on DA market MWh

qHP,el,ID
s,y,t Electrical consumption bought on ID market MWh

qHP,mFRR↓
s,y,t Reserved mFRR-down electrical capacity (no activation) MWh

pDA
s,y,t, p

ID
s,y,t DA / ID electricity price e/MWh

pmFRR↓
s,y,t mFRR-down capacity price e/MWh

Table 3.6: Heat pump variables/parameters used in (3.9)–(3.10).

The investment cost constraint for the heat pump links the newly installed capacity to its
specific investment cost. This constraint ensures that investment costs are only incurred
for additional capacity built in a given year and scenario:

cHP,inv
s,y = QHP,inv

s,y · cHP,unit
s,y : ∀s ∈ S, y ∈ Y (3.11)

Variable / Parameter Description Unit

cHP,inv
s,y Investment cost of the heat pump in scenario s

and year y
e

QHP,inv
s,y Newly installed heat pump capacity MW

cHP,unit
s,y Specific investment cost of the heat pump e/MW

Table 3.7: Heat pump investment variables

In addition to investment costs, annual fixed O&M costs are accounted for in a separate
constraint. These are assumed to be 0.21% of the specific investment costs, as detailed in
Section 2.2.2.

To ensure consistent accounting of heat flows, the following constraint enforces the
internal heat balance of the heat pump. The total heat output must equal the sum of the
heat directly fed into the district heating network and the heat directed to the thermal
energy storage:
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qHP
s,y,t = qHP→TTES

s,y,t + qHP→DHN
s,y,t : ∀s ∈ S, y ∈ Y, t ∈ T (3.12)

Variable / Parameter Description Unit

qHP
s,y,t Total thermal output of the heat pump MWh

qHP→TTES
s,y,t Heat from HP directed to the tank thermal energy

storage
MWh

qHP→DHN
s,y,t Heat from HP directly fed into the district heating

network
MWh

Table 3.8: Heat pump internal heat flow variables

The following constraint links the electricity consumption from both the day-ahead and
intraday markets to the thermal output of the heat pump. The total heat generated
comprising the amount directly supplied to the district heating network and the portion
injected into TTES must equal the sum of electricity consumed in both markets multiplied
by the respective COP:

qHP→TTES
s,y,t + qHP→DHN

s,y,t =
�
qHP,el,DA
s,y,t + qHP,el,ID

s,y,t



· COPHP

s,y,t : ∀s ∈ S, y ∈ Y, t ∈ T

(3.13)

Variable / Parameter Description Unit

COPHP
s,y,t Coefficient of performance of the heat pump at

hour t
–

Table 3.9: Heat pump thermal-electric coupling variables

To ensure that the heat pump does not exceed its installed thermal capacity, the following
constraint sets an upper bound on the total hourly heat feed-in:

qHP
s,y,t ≤ QHP,max

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.14)
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Variable / Parameter Description Unit

QHP,max
s,y Installed thermal capacity of the heat pump in

scenario s and year y, defining the maximum hourly
heat feed-in

MW

Table 3.10: Heat pump capacity constraint parameter

Electric Boiler Constraints

The electric boiler’s variable operating cost accounts for DA and ID electricity procurement
and a credit from mFRR-down capacity reservation (no activation energy is modeled):

cEB,var
s,y,t = qEB,el,DA

s,y,t · pDA
s,y,t + qEB,el,ID

s,y,t · pIDs,y,t −
qEB,mFRR↓
s,y,t · pmFRR↓

s,y,t , : ∀s ∈ S, y ∈ Y, t ∈ T.
(3.15)

Consistency with the device’s electrical headroom is enforced by limiting reserved mFRR-
down capacity to the unused electrical input at each hour:

qEB,mFRR↓
s,y,t ≤ QEB,max

s,y − qEB,th
s,y,t

ηEBs,y

, : ∀s ∈ S, y ∈ Y, t ∈ T. (3.16)

Symbol Description Unit

cEB,var
s,y,t Variable operating cost of EB in (s, y, t), incl. DA/ID purchases

and mFRR-down credit (capacity only)
e

qEB,el,DA
s,y,t Electrical consumption bought on DA market MWh

qEB,el,ID
s,y,t Electrical consumption bought on ID market MWh

qEB,mFRR↓
s,y,t Reserved mFRR-down electrical capacity (no activation) MWh

qEB,th
s,y,t Thermal output dispatched by EB MWh

QEB,max
s,y Installed thermal capacity of EB MW

ηEBs,y EB efficiency (th/el) –

Table 3.11: Electric boiler variables/parameters used in (3.15)–(3.16).

The investment cost constraint for the electric boiler links the newly installed capacity
to its specific investment cost. This ensures that capital expenditures are only incurred
for additional capacity built in a given year and scenario:

36



3 Methodology

cEB,inv
s,y = QEB,inv

s,y · cEB,unit
s,y : ∀s ∈ S, y ∈ Y (3.17)

In addition to investment costs, annual fixed O&M costs are accounted for in a separate
constraint. These are assumed to be 0.21% of the specific investment costs, as detailed in
Section 2.2.2.

To ensure consistent accounting of heat flows, the following constraint enforces the
internal heat balance of the electric boiler. The total thermal output must equal the sum
of the heat directly fed into the district heating network and the heat directed to the
thermal energy storage:

qEBs,y,t = qEB→TTES
s,y,t + qEB→DHN

s,y,t : ∀s ∈ S, y ∈ Y, t ∈ T (3.18)

Variable / Parameter Description Unit

qEBs,y,t Total thermal output of the electric boiler MWh

qEB→TTES
s,y,t Heat from EB directed to the tank thermal energy

storage
MWh

qEB→DHN
s,y,t Heat from EB directly fed into the district heating

network
MWh

Table 3.12: Electric boiler internal heat flow variables

The following constraint ensures consistency between electricity consumption and thermal
output. The total heat generated, both directly supplied to the district heating network
and injected into the thermal storage, must equal the electricity consumption (from both
markets) multiplied by the electric boiler’s efficiency:

qEB→TTES
s,y,t + qEB→DHN

s,y,t =
�
qEB,el,DA
s,y,t + qEB,el,ID

s,y,t



· ηEBs,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.19)

To ensure that the electric boiler does not exceed its installed thermal capacity, the
following constraint sets an upper bound on the total hourly heat feed-in:

qEBs,y,t ≤ QEB,max
s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.20)
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Combined Heat and Power Constraints

The variable operating costs of the CHP unit are derived from fuel input and market
interactions. Biomass consumption is multiplied by the biomass price, while electricity
consumed from the DA and ID markets is credited against the total cost, reflecting the
CHP’s co-generation structure and potential electricity recovery:

cCHP,var
s,y,t = qCHP,bio

s,y,t ·pbios,y,t−
�
qCHP,el,DA
s,y,t · pDA

s,y,t + qCHP,el,ID
s,y,t · pIDs,y,t



: ∀s ∈ S, y ∈ Y, t ∈ T

(3.21)

Variable / Parameter Description Unit

cCHP,var
s,y,t Variable cost of heat pump operation e

qCHP,bio
s,y,t Biomass input to the CHP plant MWh

pbios,y,t Biomass price in scenario s, year y and hour t e/MWh

qCHP,el,DA
s,y,t Electricity consumption of heat pump from DA

market
MWh

qCHP,el,ID
s,y,t Electricity consumption of heat pump from ID

market
MWh

Table 3.13: Combined Heat and Power cost-related variables

The investment cost constraint for the combined heat and power unit links the newly
installed electrical capacity to its specific investment cost. This ensures that capital
expenditures are only incurred for additional capacity built in a given year and scenario:

cCHP,inv
s,y = QCHP,el,inv

s,y · cCHP,unit
s,y : ∀s ∈ S, y ∈ Y (3.22)

Variable / Parameter Description Unit

cCHP,inv
s,y Investment cost of the CHP unit e

QCHP,inv
s,y Newly installed electrical capacity of CHP unit MW

cCHP,unit
s,y Specific investment cost of CHP unit e/MW

Table 3.14: CHP investment variables
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In addition to investment costs, annual fixed O&M costs are accounted for in a separate
constraint. These are assumed to be 4.3% of the specific investment costs, as detailed in
Section 2.2.2.

To ensure consistent energy accounting and technical feasibility of CHP operation, the
following constraints define the relationship between fuel input, thermal and electrical
output, and the maximum combined feed-in capacity of the CHP unit:

qCHP
s,y,t + qCHP,el

s,y,t ≤ QCHP,mix,max
s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.23)

qCHP
s,y,t = qCHP,bio

s,y,t · ηCHP
s,y · αCHP,heat

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.24)

qCHP,el
s,y,t = qCHP,bio

s,y,t · ηCHP
s,y · αCHP,el

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.25)

qCHP,el
s,y,t = qCHP,el,DA

s,y,t + qCHP,el,ID
s,y,t : ∀s ∈ S, y ∈ Y, t ∈ T (3.26)

Variable / Parameter Description Unit

qCHP
s,y,t Thermal output of the CHP unit MWh

qCHP,el
s,y,t Electrical output of the CHP unit MWh

QCHP,mix,max
s,y Maximum combined thermal and electrical feed-in

capacity
MW

ηCHP
s,y Overall efficiency of the CHP unit –

αCHP,heat
s,y Heat share of the useful output –

αCHP,el
s,y Electricity share of the useful output –

Table 3.15: CHP heat and electricity balance variables
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Waste to Energy Constraints

The variable operating costs of the WtE unit are calculated based on the amount of
waste processed and emissions produced. A gate fee is credited, while costs are incurred
for the carbon content of the waste stream according to the CO2 certificate price (see
Section 2.2.2).

cWtE,var
s,y,t =

�
qWtE
s,y,t

hWtE
s,y

�
· (−cwastes,y ) +

�
qWtE
s,y,t

hWtE
s,y

�
· γWtE,CO2

s,y · pCO2
s,y,t : ∀s ∈ S, y ∈ Y, t ∈ T

(3.27)

Variable / Parameter Description Unit

cWtE,var
s,y,t Variable cost of WtE operation e

qWtE
s,y,t Thermal output from WtE plant MWh

hWtE
s,y Specific heat content of waste MWh/ton

cwastes,y Gate fee for waste disposal e/ton

γWtE,CO2
s,y CO2 emission factor of waste tCO2/ton

pCO2
s,y,t CO2 certificate price e/tCO2

Table 3.16: WtE variable cost-related parameters

The investment cost of the WtE unit is defined by the specific investment cost and the
additional installed capacity:

cWtE,inv
s,y = QWtE,inv

s,y · cWtE,unit
s,y : ∀s ∈ S, y ∈ Y (3.28)

Variable / Parameter Description Unit

cWtE,inv
s,y Investment cost of the WtE unit e

QWtE,inv
s,y Newly installed thermal capacity of WtE unit MW

cWtE,unit
s,y Specific investment cost of WtE unit e/MW

Table 3.17: WtE investment parameters
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In addition to investment costs, annual fixed O&M costs are accounted for in a separate
constraint. These are assumed to be 4.5% of the specific investment costs, as detailed in
Section 2.2.2.

The thermal output of the WtE unit is determined by the amount of waste input, its
heat content, and the efficiency of the process:

qWtE
s,y,t = qwastes,y,t · ηWtE

s,y · hWtE
s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.29)

The following constraint limits the maximum thermal output of the WtE unit:

qWtE
s,y,t ≤ QWtE,max

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.30)

Variable / Parameter Description Unit

qwastes,y,t Waste input to the WtE unit ton

ηWtE
s,y Thermal efficiency of WtE unit –

QWtE,max
s,y Maximum thermal output capacity of WtE unit MW

Table 3.18: WtE balance and capacity variables

Geothermal Constraints

The geothermal heat pump unit converts electricity from the DA and ID markets into
heat with a fixed COP. Variable operating costs include both electricity procurement and
additional electricity-related O&M costs of 5.7EUR/MWh, which are added per unit
of electricity consumed. For reasons of readability, these O&M costs are incorporated
directly into the electricity price terms and are not shown separately in the equation.

cGT,var
s,y,t = qGT,el,DA

s,y,t · �pDA
s,y,t

�
+ qGT,el,ID

s,y,t · �pIDs,y,t� : ∀s ∈ S, y ∈ Y, t ∈ T (3.31)

41



3 Methodology

Variable / Parameter Description Unit

cGT,var
s,y,t Variable cost of geothermal operation e

qGT,el,DA
s,y,t Electricity input from DA market MWh

qGT,el,ID
s,y,t Electricity input from ID market MWh

Table 3.19: Geothermal variable cost components

Geothermal heat output is directly derived from the sum of DA and ID electricity input
multiplied by the geothermal COP:

qGT
s,y,t =

�
qGT,el,DA
s,y,t + qGT,el,ID

s,y,t



· COPGT

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.32)

The geothermal feed-in is technically limited by the installed thermal capacity:

qGT
s,y,t ≤ QGT,max

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.33)

Investment costs are incurred only when new thermal capacity is installed:

cGT,inv
s,y = QGT,inv

s,y · cGT,unit
s,y : ∀s ∈ S, y ∈ Y (3.34)

Variable / Parameter Description Unit

qGT
s,y,t Thermal output of geothermal unit MWh

QGT,max
s,y Maximum thermal feed-in capacity MW

COPGT
s,y Coefficient of performance of the geothermal sys-

tem
–

QGT,inv
s,y Newly installed thermal capacity MW

cGT,inv
s,y Investment cost for geothermal unit e

cGT,unit
s,y Specific investment cost e/MW

Table 3.20: Geothermal capacity and investment parameters
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In addition to investment costs, annual fixed O&M costs are accounted for in a separate
constraint. These are assumed to be 0.83% of the specific investment costs, as detailed in
Section 2.2.2.

Solar Thermal Constraints

The ST module models a collector field coupled with an absorption heat pump. The
total thermal output consists of the collected solar heat and the effect of the heat pump,
defined by a thermal COP. No electricity consumption is considered for the absorption
unit, so variable costs are set constant.

cST,var
s,y,t = 1.4 : ∀s ∈ S, y ∈ Y, t ∈ T (3.35)

Variable / Parameter Description Unit

cST,var
s,y,t Variable cost of solar thermal operation including

land lease
e

Table 3.21: Solar thermal cost-related variables

The investment cost constraint for the solar thermal system distinguishes between the
installed thermal collector capacity and the absorption heat pump component. It also
accounts for land lease costs proportional to collector surface:

cST,inv
s,y = QST,thermal

s,y · cST,unit
s,y +QST,HP

s,y · cHP,unit
s,y : ∀s ∈ S, y ∈ Y (3.36)

Variable / Parameter Description Unit

cST,inv
s,y Investment cost of the ST system e

QST,thermal
s,y Installed thermal collector output MW

QST,HP
s,y Installed absorption heat pump capacity MW

cST,unit
s,y Specific investment cost of ST field e/MW

cHP,unit
s,y Specific investment cost of absorption HP e/MW

Table 3.22: ST investment variables
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In addition to investment costs, annual fixed O&M costs are accounted for in a separate
constraint. These are assumed to be 0.28% of the specific investment costs, as detailed in
Section 2.2.2. Additionally, land lease costs based on collector area are included.

The total thermal output from the solar thermal system in any hour must not exceed
the installed thermal capacity:

qSTs,y,t ≤ QST,max
s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.37)

Variable / Parameter Description Unit

qSTs,y,t Total thermal output of solar thermal system MW

QST,max
s,y Installed thermal capacity of the ST system MW

Table 3.23: Solar thermal feed-in constraint variables

The absorbed solar energy is calculated based on the solar irradiance, collector area, and
efficiency:

qST,source
s,y,t =

pST,irr
s,y,t · pST,area

s,y

1,000,000
· ηSTs,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.38)

Variable / Parameter Description Unit

qST,source
s,y,t Thermal energy directly from solar radiation MW

pST,irr
s,y,t Solar irradiance in scenario s, year y, hour t W/m²

pST,area
s,y Installed collector area m²

ηSTs,y Solar thermal efficiency –

Table 3.24: Solar radiation utilization variables

To capture the performance of the integrated absorption heat pump, the following
constraint ensures that the total thermal output of the solar thermal system corresponds
to the solar collector output multiplied by the thermal COP:

qSTs,y,t = qST,source
s,y,t · COPST

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.39)
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Variable / Parameter Description Unit

COPST
s,y Thermal coefficient of performance of absorption

HP
–

Table 3.25: Solar thermal absorption heat pump coupling

Tank Thermal Energy Storage Constraints

To ensure that the thermal energy input and output of the TTES system does not
exceed the allowable maximum charge and discharge rates, the following constraints are
implemented:

qTTES,in
s,y,t ≤ RTTES

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.40)

qTTES,out
s,y,t ≤ RTTES

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.41)

Variable / Parameter Description Unit

qTTES,in
s,y,t Thermal energy discharged from TTES into the

DH network
MWh

qTTES,out
s,y,t Thermal energy stored in TTES as output from

the DH network (EB, HP)
MWh

RTTES
s,y Maximum charge and discharge rate MW

Table 3.26: TTES power flow constraints

The state of charge (SOC) of the TTES is governed by the following dynamic constraint.
It accounts for thermal losses and round-trip efficiency:

kTTES
s,y,t =

������������
kTTES
s,y−5,8759 · λs,y + ηTTES

s,y · qTTES,out
s,y,0 − qTTES,in

s,y,0

ηTTES
s,y

, if t = 0, y > 2025

0, if t = 0, y = 2025

kTTES
s,y,t−1 · λs,y + ηTTES

s,y · qTTES,out
s,y,t − qTTES,in

s,y,t

ηTTES
s,y

, otherwise

(3.42)
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Variable / Parameter Description Unit

kTTES
s,y,t Thermal energy content (state of charge) MWh

kTTES,max
s,y Maximum storage capacity MWh

λs,y Thermal loss factor –

ηTTES
s,y Round-trip efficiency –

Table 3.27: TTES energy balance parameters

The total energy stored must not exceed the maximum capacity:

kTTES
s,y,t ≤ kTTES,max

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.43)

To ensure a smooth year-to-year transition, the final SOC at the end of the planning
horizon is constrained to a minimum value:

kTTES
s,y,8759 = 0 : ∀s ∈ S, y ∈ Y (3.44)

Investment costs are calculated based on newly installed capacity:

cTTES,inv
s,y = kTTES,inv

s,y · cTTES,unit
s,y : ∀s ∈ S, y ∈ Y (3.45)

Annual fixed costs are modeled as 1% of the corresponding investment costs and are only
incurred in years with newly installed capacity.

The variable operating costs of the TTES depend on the total energy charged and
discharged. A fixed surcharge of 0.1 EUR/MWh is applied but not shown explicitly:

cTTES,var
s,y,t =

�
qTTES,in
s,y,t + qTTES,out

s,y,t



· cTTES,ch/dis

s,y : ∀s ∈ S, y ∈ Y, t ∈ T (3.46)

Variable / Parameter Description Unit

c
TTES,charge/discharge
s,y Specific charge/discharge cost of the TTES e/MWh

Table 3.28: TTES charge/discharge cost parameter
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3.2 Electricity Price Simulation

3.2.1 AR-X Forecasting Model

This subsection follows the open, reproducible EPF setup introduced by [32] and uses
it as a reference point for modeling choices. In that framework, the LEAR model is
a parameter-rich AR-X specification (multivariate 24-hour formulation) estimated via
LASSO; it combines recent price lags, day-ahead exogenous forecasts, and weekday
dummies, typically after a variance-stabilizing transformation, and is re-estimated on
rolling windows. The study also codifies best practices (year-long test sets, rigorous
baselines, standardized evaluation) and provides the EPFtoolbox for reproducibility [36].

LEAR (reference model per Lago et al.)

Let pd,h denote the day-ahead price for delivery day d, hour h, and let Xd,h denote the
exogenous feature vector composed of the 24-hour blocks of exogenous inputs for days d,
d−1, and d−7. The LEAR reference model has the following structure:

pd,h = f
�
pd−1, pd−2, pd−3, pd−7, x

i
d, x

i
d, x

i
d−1, x

i
d−1, x

i
d−7, x

i
d−7, θh

�
+ εd,h (3.47)

=

24�
i=1

θh,i · pd−1,i +

24�
i=1

θh,24+i · pd−2,i +

24�
i=1

θh,48+i · pd−3,i +

24�
i=1

θh,72+i · pd−7,i

+

24�
i=1

θh,96+i · x1d,i +
24�
i=1

θh,120+i · x2d,i +
24�
i=1

θh,144+i · x1d−1,i +

24�
i=1

θh,168+i · x2d−1,i

+
24�
i=1

θh,192+i · x1d−7,i +
24�
i=1

θh,216+i · x2d−7,i +
7�

i=1

θh,240+i · zd,i + εd,h.

Here, θh = [ θh,1, . . . , θh,247 ]
⊤ collects the 247 coefficients of the LEAR specification

for hour h (96 price-lag terms + 144 exogenous terms + 7 weekday dummies). In the
original benchmark of [32], estimating this specification with LASSO shrinks many of
these coefficients exactly to zero.

Variance-stabilizing transforms (e.g., asinh on median/MAD-standardized prices) and
daily rolling recalibration are recommended and shown to improve robustness [32].

Modified model used in this thesis (pure X-model with ridge)

For scenario generation rather than minimum-MAE (Mean Absolute Error) forecasting,
the autoregressive part is intentionally removed and the estimation switched from LASSO
to ridge. Implementation follows the EPF toolbox documentation [36] (LEAR/feature
handling), with adaptations for pure X-model ridge estimation.
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Let pd,h denote the day-ahead price for delivery day d and hour h. Let x1d,i and x2d,i
be the exogenous forecasts for wind and PV available on d−1 for delivery day d, hour
i = 1, . . . , 24. Let zd,k be weekday dummies (k = 1, . . . , 7). For each hour h, the X-model
drops all price lags and uses only the current-day 24-hour blocks of exogenous inputs
(hourly wind and PV forecasts available on d− 1) plus weekday effects:

pd,h = θh,0 +
24�
i=1

θh,i · x1d,i +
24�
i=1

θh,24+i · x2d,i +
7�

k=1

θh,48+k · zd,k + εd,h. (3.48)

The coefficient vector for hour h is θh = [ θh,1, . . . , θh,55 ]
⊤ (24 wind + 24 PV + 7 weekday

dummies), with intercept θh,0.

Parameters are estimated hour-by-hour via ridge regression on a rolling window, with stan-
dardized targets and features (intercept unpenalized). This design deliberately removes
autoregressive price terms to avoid persistence-driven fits and to preserve a transparent
mapping from fundamentals to prices, which is preferable for scenario generation; LEAR
remains a strong forecasting benchmark with high accuracy reported in the literature.

Training–testing setup and recalibration

• Day-Ahead (DA): rolling daily re-estimation with a two-year calibration window;
the test period is one full year, during which price paths are produced day by
day from the re-estimated hourly models. This aligns with the recommendation to
evaluate over year-long spans [32].

• Intraday (ID): only the year 2019 of ID3 is available; to maintain the rolling
protocol, the 2019 series is duplicated to construct a one-year training segment
(weekday-aligned) preceding the one-year test segment. Models are then re-estimated
daily on a one-year window and used to generate hourly ID paths.

Scenario generation mechanism

For each scenario family (e.g., low . . . high), the exogenous drivers are scaled according to
literature-based factors (separately for wind and PV). The calibrated hourly ridge models
are then evaluated on these counterfactual inputs to produce five distinct price paths per
market (DA and ID), with the full procedure repeated over the test year as described in
the next subsection 4. The result is a set of structurally different, reproducible trajectories
that reflect sensitivity to renewable conditions rather than optimized point accuracy [32].

3.2.2 Scenario Generation

In this section, the methodology for generating electricity price scenarios for the opti-
mization of the district heating system is presented. The focus lies on the generation
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of DA and ID price scenarios, their correlation with renewable electricity generation
(photovoltaic and wind), and the construction of representative scenario paths to be used
in the two-stage stochastic optimization model as presented in 3.1.2.

3.2.3 DA Price Simulation Methodology

As shown in section 3.2.1 ,the Day-Ahead price scenarios are generated using a modified
AR-X framework, where the autoregressive (AR) component is intentionally omitted.
This results in a pure exogenous (X) model driven solely by external inputs, specifically
forecasted photovoltaic (PV) and wind power generation. The goal is not to accurately
predict prices but to explore a plausible range of future electricity price developments
under varying renewable generation conditions. A high MAE is deliberately accepted to
ensure scenario diversity.

The exogenous inputs are based on real forecast data up to 04.05.2025. For the period
beyond that date, data from 2024 are reused in a weekday-aligned fashion (e.g., 06.05.2024
was a Monday, so it is reused for 05.05.2025, also a Monday). This ensures realistic intraday
and seasonal patterns while maintaining internal consistency.

For each market (DA and later ID), five scenario paths are generated based on different
assumptions regarding renewable generation as described in secton 4. These paths are
labeled as follows:

• High: Extremely high PV and wind generation (upper bound of literature-based
forecast range)

• Higher: Moderately high renewable generation

• Base: Median level

• Lower: Moderately low renewable generation

• Low: Very low PV and wind generation (historical reference level, e.g., 2023/2024)

Each scenario is simulated using the same price generation model, with the only difference
being the input levels of PV and wind generation.

Correlation Between DA Prices and Renewables

The inverse relationship between electricity prices and renewable generation is a well-
documented phenomenon, primarily driven by the merit-order effect. To validate this
within the scenario framework, historical and simulated data are analyzed.
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Scatterplot Analysis

The following scatterplots show the relationship between DA prices and PV (left) and
wind generation (right):

Figure 3.3: Scatterplot correlation between DA prices and pv / wind generation forecast

It is evident that both PV and wind generation exhibit a negative correlation with DA
prices. High renewable infeed tends to lower the marginal cost of electricity generation,
thus suppressing market prices. This behavior is reflected in the structure of the price
simulation model.

Time-Series Visualization

To further illustrate this dynamic over time, a representative week in summer 2024
(calendar week 30) is shown in figure 3.4.
Here, we observe that price minima often coincide with PV or wind generation peaks.
Conversely, during periods of low renewable availability, price spikes become more frequent.
This temporal behavior confirms that the price simulation model appropriately maps
renewable infeed to expected price signals.
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Figure 3.4: Relationship between pv, wind and DA price in summer 2024 (week 30)

Validation of Price Simulation

The simulated prices are compared against real DA prices to assess whether the magnitude
and structure of price variation is realistic, without aiming for high forecast precision. The
figure below compares the daily mean values of original DA prices with a high renewable
scenario simulation for the year 2035:

Figure 3.5: Daily average DA prices in 2025/2024 with simulated high RES DA price path in 2035
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It is visible that the simulation captures the general seasonal price trend and realistic
variability. Deviations are expected and desired, as the purpose is to span a representative
uncertainty range for the stochastic optimization.

Additionally, the simulated price path for the high scenario in 2035 is shown below for
the two-week period from 01.07.2024 to 14.07.2024:

Figure 3.6: 2 week comparision of DA price 2024 with siumlated high RES DA price 2035

The variation over time reflects expected shifts due to renewable generation patterns, as
well as occasional spikes due to modeled volatility in market dynamics. The spread of
simulated values forms the basis for defining the five DA scenario paths.

3.2.4 ID Price Simulation Methodology

Unlike for the Day-Ahead market, no full dataset of ID prices is available for future
years. The only historical data accessible covers the year 2019. Therefore, a spread-based
methodology is applied to derive ID price scenarios.

Historical Spread Calculation

The historical spread is defined as the difference between DA and ID prices at each hourly
time step t:
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Spread2019(t) = DA2019(t)− ID2019(t) (3.49)

This spread reflects the systematic difference between both markets and exhibits distinct
temporal patterns due to trading dynamics, renewable forecast errors, and market
liquidity.

To ensure temporal consistency between DA and ID price spreads, the 2019 spread values
are matched by weekday and hour to the simulation horizon. For example, all Mondays at
13:00 in the simulated DA price series are assigned spread values from Mondays at 13:00
in 2019. This alignment preserves typical weekly patterns in the DA–ID price differences
and avoids distortions caused by mismatched calendar structures.

Statistical Characterization of the Spread

The spread is analyzed over the course of the year to identify recurring structures. Key
statistical indicators such as mean and standard deviation are computed. A plot of the
annual spread time series is included to visualize typical patterns.

Figure 3.7: Daily average DA prices in 2019 with corresponding DA–ID spread

The analysis shows that the average spread in 2019 was + 1.44e/MWh, indicating that
intraday prices were, on average, lower than day-ahead prices. This observation reflects
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the typical behavior of an electricity market, where late adjustments in generation or
demand are often made at lower marginal costs.

Additionally, the standard deviation of the spread was found to be 8.30e/MWh. This
considerable variability highlights the necessity of modeling multiple spread paths instead
of relying on a single deterministic correction. The spread’s volatility reflects the complex
dynamics of short-term market behavior and justifies the use of five distinct spread
scenarios in the stochastic optimization model.

Forecast Errors and Economic Interpretation

To improve the explanatory quality and realism of spread modeling, an X-model approach
is applied using renewable forecast errors as exogenous variables. The underlying economic
rationale is as follows:

• Positive Forecast Error (FE): The forecast overestimates actual generation, i.e.,
. This leads to a shortage of renewables in real time, requiring expensive balancing
measures. The ID price rises, hence the spread decreases.

• Negative Forecast Error (FE): The forecast underestimates actual generation,
i.e., . More renewables are available in real time than expected, leading to oversupply.
The ID price drops, and the spread increases.

Formally, the forecast error is defined as:

FEPV (t) = PVforecast(t)− PVactual(t) and

FEWind(t) = Windforecast(t)−Windactual(t).
(3.50)

Expectation Fall A:

FEPV,,Wind > 0 ⇒ ID price ↑ ⇒ Spread ↓ (3.51)

Expectation Fall B:

FEPV,,Wind < 0 ⇒ ID price ↓ ⇒ Spread ↑ (3.52)

This leads to a negative correlation between forecast error and the DA–ID spread.
This hypothesis is tested empirically in the dataset.

However, data inspection revealed significant limitations in the PV forecast data. Starting
from February 2019, the PV forecasts and actual generation values became nearly identical,
resulting in almost zero variability in the PV forecast error. This can be clearly seen in
the corresponding scatterplot, where all values concentrate around zero.
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Figure 3.8: Scatterplot correlation between spread and pv / wind forecast errors

Therefore, PV forecast errors were excluded from the X-model.

Wind forecast errors, by contrast, remained variable throughout the year. Their dis-
tribution ranges from approximately –1500 MW to +1000 MW, and they exhibit a
weak to moderate negative correlation with the spread (ρ = –0.225). This confirms their
explanatory power for modeling the spread.

Scenario Generation and Application

Using the same X-model approach as for the DA prices, spread scenarios are generated
based on five predefined wind forecast error trajectories. These correspond to: High,
Higher, Base, Lower, and Low forecast deviation paths.

The final intraday price scenarios are then computed using the following relation:

ID(t) = DA(t)− Spread(t) (3.53)

This method ensures internal consistency between DA and ID prices and avoids implausible
market dynamics such as negative prices or unrealistic divergences. It also captures the
structural effect of wind forecast uncertainty on the spread. To preserve coherence
across scenarios, each DA price path—generated based on varying renewable generation
forecasts—is paired with a corresponding spread path derived from different levels of
forecast error. Table 3.29 provides an overview of the selected pairings and their rationale.
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Forecast Trajectory DA Price Spread Rationale

High PV/Wind Very low Low Error Excellent forecast quality; ID
prices significantly lower than
DA.

Higher PV/Wind Low Lower Error Good forecast; ID market still
yields cheaper prices than DA.

Base Medium Base Error Mid-level generation with aver-
age forecast reliability.

Lower PV/Wind High Higher Error Reduced generation and de-
creasing forecast quality.

Low PV/Wind (2025) Very high High Error Unchanged 2025 forecast trajec-
tory; high forecast error, ID re-
mains high

Table 3.29: Scenario pairing of DA price paths and spread price paths

Scenario Tree Construction

The five DA scenario paths are later combined with five corresponding ID paths (generated
via spread modeling, see section 4.1) to form a total of 25 scenario combinations. Each
combination is assigned a joint probability based on literature-based assumptions about
PV and wind forecast accuracy.

This probabilistic scenario tree is then used as input for the two-stage stochastic opti-
mization problem, enabling the model to optimally invest in and dispatch flexible heat
generation technologies under uncertainty in electricity market prices.
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To simulate plausible electricity price trajectories until 2035, this thesis integrates scenario-
based variations in renewable electricity generation from photovoltaic (PV) and wind.
These variations are guided by three major Austrian scenario sources, which provide
quantitative long-term outlooks on technology-specific development paths as described in
Chapter 4.2.

4.1 Scenario Tree

The respective projections serve as reference points for defining five stylized expansion
trajectories per technology: low, lower, base, higher, and high. These trajectories are
used as exogenous inputs to the electricity price simulation model described in Chapter
3.2.1. In line with fundamental energy market logic, a high expansion trajectory for
renewables typically results in a low electricity price scenario, and vice versa, as shown
in the following figure, which presents the resulting scenario tree:

HIGH

HIGHER

BASE

LOWER

LOW

HIGH

HIGHER

BASE

LOWER

LOW

90 - 100%

65 - 90%

35- 65%

10- 35%

0- 10%

10%

25%

30%

25%

10%
p = 0,1 x 0,1 = 0,01

p = 0,3 x 0,3 = 0,09

LOW

LOWER

BASE

HIGHER

HIGH

Wind, PV
DA ID5 x 5 Price Scenarios Range ProbabilityRES

Figure 4.1: Scenario tree of electricity price scenarios
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Each of the five renewable expansion paths results in five corresponding electricity price
trajectories in both the DA and Intraday ID markets. Combining these DA and ID
trajectories yields 25 unique scenario combinations, reflecting the full range of possible
market outcomes.

To represent uncertainty in a structured way, each trajectory is assigned a heuristic
probability range. The bounds of these ranges are not strictly determined by the scenario
studies themselves; rather, the three Austrian scenarios are used as orientation, and the
upper and lower bounds for each trajectory are extended beyond the scenario corridor to
capture a broader spectrum of uncertainty. These probability intervals are not derived
from empirical data, but reflect plausibility-based likelihood bands for each expansion
level:

• High: 90–100%
• Higher: 65–90%
• Base: 30–65%
• Lower: 10–30%
• Low: 0–10%

The joint probability of each DA-ID scenario is calculated as the product of the respective
DA and ID trajectory probabilities. For example, if both the DA and ID “base” trajectories
are assigned a probability of 30%, the resulting combined scenario has a joint probability
of:

p = 0.3× 0.3 = 0.09 (4.1)

The resulting electricity price paths serve as stochastic inputs to the two-stage stochastic
optimization model, as described in Chapter 3.1.2.

4.2 DA Forecast Trajectories

The first source is the EU project SUSPLAN[37], whose Austrian analysis foresees that
installed capacities could rise to approximately 18 GW of photovoltaics and 4 GW of wind
by 2050. TU Wien’s “Green” and “Red” scenario variants illustrate divergent trajectories.
More specifically, between 2030 and 2040, the “Green” pathway projects a approximately
430% rise in PV (corresponding to an average annual growth rate—Compound Annual
Growth Rate, CAGR—of 15%) and 38% in wind (3,5% CAGR).

The second scenario framework used in this work is the national ”Stromstrategie 2040”
developed by Austrian authorities. According to the baseline scenario, photovoltaic
electricity generation is projected to increase from 6.93 TWh in 2024 to 32.6 TWh by

58



4 Scenarios

2040 (CAGR 10.2%). In the more ambitious “ÖNIP” trajectory, PV output is expected
to rise to 40.5 TWh over the same period, implying an annual growth rate of 11.7%.
Wind generation increases from 10.8 TWh in 2024 to 39.9 TWh in 2040 (CAGR 8.5%).

The following figure presents the “Stromstrategie 2040” scenario projection:

Figure 4.2: Electricity generation scenarios in “Stromstrategie 2040”; Source: [38]

Finally, the third source used to frame the scenario corridor is an analytical projection
from e.venture. It estimates Austria’s installed PV capacity to grow from 8 GW in 2024
to 13 GW by 2030 (CAGR 8.4%) and to 19 GW by 2035 (CAGR 7.9%). Wind capacity
is projected to rise from 4 GW to 7 GW by 2030 (9.8% per year), and further to 10 GW
by 2035 (7.4% CAGR).

Taken together, these three scenario sources provide a robust and differentiated basis for
the stylized trajectories used in this thesis. The derived scenario corridor reflects varying
levels of ambition in renewable expansion and directly informs the stochastic input to
the electricity price model.

To ensure transparency and reproducibility, Table 4.1 summarizes the quantitative
assumptions for all five stylized expansion trajectories (low, lower, base, higher, high) for
each technology (PV and wind). For each trajectory, the table provides the initial value
of installed capacity for 2025, the compound annual growth rate (CAGR) for the periods
2025–2030 and 2030–2035, as well as the resulting capacities for 2030 and 2035. These
values serve as exogenous scenario inputs for the electricity price model described above.
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Trajectory
2025
[GW]

CAGR 2030
[%]

2030
[GW]

CAGR 2035
[%]

2035
[GW]

PV

low 8.25 1.00 8.25 1.00 8.25

lower 8.25 1.075 11.84 1.0675 16.42

base 8.25 1.10 13.29 1.09 20.44

higher 8.25 1.1125 14.06 1.1025 22.90

high 8.25 1.15 16.59 1.14 31.95

Wind

low 4.04 1.00 4.04 1.00 4.04

lower 4.04 1.0713 5.70 1.06 7.63

base 4.04 1.095 6.36 1.08 9.34

higher 4.04 1.1013 6.54 1.09 10.06

high 4.04 1.12 7.12 1.10 11.47

Table 4.1: Definition of renewable capacity expansion trajectories for PV and wind for scenario analysis

The quantitative scenario definitions for photovoltaic (PV) and wind are not only
presented in Table 4.1, but also visualized in the following figures. Each plot illustrates
the full set of stylized development paths (“trajectories”) from 2025 to 2035, providing
an intuitive comparison of the possible expansion corridors for each technology.

Figure 4.3 shows the five PV trajectories, highlighting both conservative and ambitious
growth assumptions.
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Figure 4.3: PV Trajectories

The corresponding scenario set for wind installed capacity is depicted in Figure 4.4. The
spread between the “low” and “high” scenarios illustrates the breadth of possible wind
power expansion in Austria.

Figure 4.4: Wind Trajectories
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4.3 Spread Forecast Error Trajectories

To account for the uncertainty in forecast accuracy, five wind forecast error scenarios are
defined for each future year (y ∈ {2030, 2035}). These are implemented by scaling the
historical 2019 wind forecast error time series with scenario-specific factors αscen

y .

The scaling factors are based on findings from [39], which demonstrate a measurable
improvement in day-ahead wind forecast accuracy between 2013 and 2020 in several
European countries. The reported MAE reductions of 20-30% support the plausibility of
improved accuracy scenarios.

Table 4.2: Wind forecast error scaling factors for scenario generation

Scenario Description αscen
2030 αscen

2035

Low Highly accurate forecasts 0.6 0.5

Lower Improved forecasts with better models 0.8 0.7

Base Reference level: current forecast quality 1.0 1.0

Higher Slightly degraded forecasts (volatility) 1.2 1.1

High Extreme uncertainty (e.g., due to climate change) 1.5 1.4

Each scenario is applied by multiplying the original 2019 forecast error time series with
the respective αscen

y . This method provides a consistent and data-driven way to represent
varying levels of future uncertainty in forecast accuracy.
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In this chapter, the results of the developed district heating optimization models are
presented and compared. Two model configurations are analyzed to evaluate the impact
of electricity market integration and uncertainty on optimal investment and dispatch
decisions.

The first model represents a conventional deterministic optimization approach, in which
a single trajectory of DA electricity prices is used without scenario-based uncertainty or
participation in additional electricity markets.

The second model extends this formulation by incorporating uncertainty in both DA
and ID electricity prices through a scenario-based stochastic framework. Furthermore, it
includes the possibility to participate in the balancing market via mFRR down reserve
provision. This configuration is designed to answer the research questions posed in this
thesis by demonstrating how flexible electricity market participation affects the operation
and structure of district heating systems.

The following sections present the results of each model individually and conclude with a
comparative analysis highlighting the key differences in costs, technology deployment,
and market interactions.

5.1 Deterministic Model Results

This section discusses the outcomes of the deterministic optimization where a single DA
electricity price trajectory determines both investment and dispatch decisions. The model
co-optimizes technology capacities for heat supply (EB, HP, ST, WtE, GT, CHP) as
well as TTES, and schedules hourly operation over the representative model years 2025,
2030 and 2035. Unless noted otherwise, reported costs aggregate investment, incremental
fixed costs (i.e., the yearly increase in fixed cost relative to the previous model year), and
variable costs over the hours of the respective model year.

5.1.1 Load curve and load duration curve

The chronological load curve for 2025 demonstrates how the portfolio meets the hourly
district heating demand while using the storage to shift heat across hours. WtE provides
a high, near-baseload contribution for most hours; the HP operates intermittently at or
close to its capacity in clusters when electricity prices and temperatures are favorable;
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EB is largely unused in 2025; TTES both discharges (positive) and charges (negative),
visible as areas above and below the zero line. The demand trajectory sits above the
stacked supply, confirming that the operational constraints balance in every hour.

Figure 5.1: Load curve in 2025 deterministic model.

The load duration curve (LDC) for 2025 obtained by sorting hours by descending demand
highlights roles more clearly. WtE spans a large share of the ranked hours and thus acts as
the system’s backbone. HP is concentrated toward higher-load hours, i.e., it is dispatched
strategically to shave peaks together with TTES discharge. Charging of TTES spreads
over a wide range of lower-load hours (negative area), indicating systematic arbitrage
between moderate-demand periods and peak periods. The absence of CHP, ST and GT
in the LDC is consistent with their non-investment in this scenario.
Two single-technology load curves further explain operating patterns: the HP runs in
bursts around its nameplate output, with long stretches of zero—typical for an asset
driven by electricity price and temperature; WtE, by contrast, is near constant with
limited turndown, reflecting a baseload unit with low (sometimes even negative) marginal
cost.

Annual dispatch by technology (2025-2035)

Annual heat dispatch evolves over time as capacities change. In 2025, WtE dominates
the supply mix and TTES performs meaningful charge–discharge cycles. By 2030, HP’s
annual output increases markedly; by 2035, HP becomes the second strong pillar next to
WtE, while EB appears as a peak-shaving and residual balancing unit. ST, CHP and GT
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Figure 5.2: Load duration curve in 2025 deterministic model

remain unused.

Figure 5.3: Hourly heat supply of the Heat Pump in 2025.

Policy note (WtE CO2): Starting in 2030, the deterministic setting includes CO2

prices for WtE to reflect potential policy changes under uncertain legislation. This shifts
WtE’s effective marginal cost upward compared to 2025, mildly reducing its dispatch
share where economically justified and reinforcing the role of HP and TTES in covering
higher-load hours.
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This evolution indicates a strategy of baseload + flexible electrification: commit to a
stable WtE block, then grow electrified heat with HP (and later EB) to follow residual
demand, and use TTES to time-shift between electricity price/demand conditions.

Figure 5.4: Hourly heat supply of Waste-to-Energy in 2025.

New installed capacities

The capacity expansion schedule confirms this narrative. The model installs a large block
of HP and substantial WtE together with a sizeable TTES in 2025. In 2030, the system
adds another tranche of HP and a small amount of storage. In 2035, it introduces EB
capacity, while other technologies remain unchanged.

Interpreting this path:

• Front-loading HP and WtE in 2025 leverages immediate cost and emissions bene-
fits: WtE as a steady, low-marginal-cost provider; HP as a high-efficiency, price-
responsive source.

• Additional HP in 2030 expands the flexible share as electricity prices and demand
patterns make electrification increasingly attractive.

• EB in 2035 acts as a low-CAPEX, high-marginal-cost peaker to cover short residual
peaks that would be expensive for HP to size for, and to provide operational
resilience.

• TTES is built early to enable shifting from moderate-price hours to peak hours; a
small top-up in 2030 fine-tunes the balance between HP sizing and storage depth.

• ST, CHP, GT: the model finds no investment case under the assumed cost and
price trajectories.
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Figure 5.5: Annual heat dispatch by technology (2025/2030/2035).

Figure 5.6: New installed capacity by model year (TTES in 103 m3).

Cost breakdown by technology

Figure 5.7 reports total annual cost per technology for 2025 (CAPEX for 2025, the
increment in fixed cost versus 2020/previous model year, and the sum of hourly variable
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cost). WtE and HP form the largest cost blocks, consistent with their output shares
and investments. TTES contributes a distinct but much smaller cost component driven
by investment and fixed charges (variable cost is minor). ST is negligible; EB has no
noticeable cost in 2025 because capacity is not yet installed.

Figure 5.7: Total annual cost by technology in 2025 (CAPEX + ΔFix + Var).

Summing over the horizon 2025–2035 (as the sum of the three annual blocks—i.e.,
CAPEX in each model year + that year’s ΔFix + that year’s Var, without any extra
weighting because the weighting is already embedded in the constraints), HP becomes
the highest-cost technology across the period. WtE ranks second, TTES third, EB fourth,
with ST, CHP, and GT negligible.

A few remarks are important for interpretation:

• The model’s WtE variable cost can be negative in some hours/years (e.g., gate fees
offsetting operating cost). Even so, total annual WtE cost can be positive once
CAPEX and fixed charges are included; in other years with little new investment
and strong gate-fee effects, the net annual WtE cost may turn small or negative.

• HP costs are dominated by investment and fixed charges (capacity-driven) plus
electricity purchase (variable). The pronounced 2025 and 2030 investments explain
the high contribution in those years and the overall horizon total.

• EB appears only in 2035. Its modest horizon total signals a classic peaker role: low
CAPEX installed late, modest operating hours, but valuable for covering residual
peaks.
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Figure 5.8: Total cost by technology over 2025-2035, computed as the sum of yearly (CAPEX + ΔFix +
Var).

• TTES costs consist primarily of CAPEX and fixed charges. The benefits are visible
indirectly through reduced peak capacity needs and shifted HP/EB operation rather
than through the TTES bar itself.

5.2 2-Stage Stochastic Model Results

Model set-up. The two-stage stochastic model optimizes first-stage investments and
second-stage operations across multiple price and demand scenarios. All reported costs are
scenario-probability expected values and are defined consistently year by year as: CAPEX
in the respective model year + Delta Fix (incremental fixed charge) + hourly variable
costs. Hourly costs are already weighted inside the model via year expansion range; no
additional weighting is applied in the plots.

Dispatch structure over time (expected value). Figure 5.9 separates DA, ID, and
mFRR-down reserve for EB/HP and shows thermal feed-in for all technologies. HP
delivers the bulk of flexible heat; electrical input is procured via both DA and ID and
shifts as electrification grows. EB becomes more active in 2035 and provides a large
amount of mFRR-down reserve, which reduces net operating costs through capacity
payments. WtE remains the thermal baseload; from 2030 onward, CO2 pricing is applied
to WtE in the model (reflecting regulatory uncertainty), which slightly increases its
variable term. TTES shifts energy from lower-price to higher-price hours.
Figure 5.10 complements this view with the chronological load curve and the load-duration

69



5 Results

Figure 5.9: Stochastic model: annual dispatch per technology and market channel (expected value).

curve for 2035: HP and WtE cover broad bands; EB fills short residual peaks; TTES
charges in low-load/low-price hours and discharges near peaks.

Investments (expected value). The expected new capacity per model year (Figure 5.11)
broadly follows the deterministic pattern: early HP and TTES in 2025, a small HP top-up
in 2030, and a noticeable EB addition in 2035. In expectation, a minor EB share appears
already in 2025, reflecting that some scenarios install EB earlier.

Costs by technology in 2035. The side-by-side comparison to the deterministic model
for 2035 (Figure 5.12) shows lower stochastic costs for EB and HP due to price-adaptive
DA/ID procurement and EB’s mFRR-down provision. WtE remains stable but slightly
higher once CO2 charges apply.

Costs over the full horizon (2025–2035). Aggregating the three model years as
a sum of annual blocks (CAPEX + Delta Fix + Var per year; no extra weighting),
the stochastic model achieves lower totals (Figure 5.13). HP remains the largest cost
contributor, but is slightly lower than in the deterministic case. WtE decreases overall
despite CO2 pricing due to interactions with HP/TTES. EB acts as a late peaker with
modest horizon cost. TTES is mainly CAPEX/fixed-charge driven; its benefit appears
indirectly via reduced capacity needs and avoided price spikes.

System total. Figure 5.14 summarizes the total system cost: the stochastic solution is
cheaper than the deterministic reference.

Remark on balancing services. In the model, mFRR-down is represented as reserve
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Figure 5.10: Stochastic model: chronological load curve (top) and load-duration curve (bottom) for 2035.

availability (capacity provision). The physical activation of balancing energy and its
settlement is neglected. Including activation revenues would likely further improve the
economics of flexible assets (EB/HP), so the reported stochastic costs should be seen as
conservative.
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Figure 5.11: Stochastic model: expected new installed power per year.

Figure 5.12: Costs by technology in 2035: deterministic vs stochastic (expected, consistent definition).

5.3 Comparison of the 2 Models

Market participation under uncertainty. Compared to the deterministic case, the
stochastic framework explicitly values DA/ID procurement options and mFRR-down
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Figure 5.13: Total cost by technology over 2025–2035 (sum of annual CAPEX + Delta Fix + Var):
deterministic vs stochastic.

Figure 5.14: Total system cost over 2025–2035: deterministic vs stochastic (expected).

reserve provision. It shifts HP operation more opportunistically into low-price hours and
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monetizes EB’s reserve capability in 2035, while TTES is used more effectively against
price spreads.

Investment timing. Both models electrify early (HP and TTES in 2025). In the
stochastic expected solution, a small EB share already appears in 2025 (reflecting a
subset of scenarios), but the qualitative pattern remains “HP/WTES first, EB later.”

Cost impact. Across years and over the full horizon, the stochastic model reduces total
costs, in particular for EB and HP in 2035, while WtE remains dependable but carries
CO2 charges after 2030. WtE contributes less cost in the stochastic run because more
hours are shifted to HP and EB whenever expected DA/ID prices make electrification
cheaper (including CO2), and TTES reinforces this shift by arbitraging between price
levels. Numerically, total system cost over 2025–2035 amounts to about 11.79 millione
in the deterministic model and 10.70 millione in the stochastic expected solution; the
stochastic design is therefore cheaper by roughly 1.09 millione, i.e. about 9.2%.

System architecture. Both solutions converge to a robust two-block portfolio: baseload
(WtE) plus flexible electrified heat (HP + EB), coordinated by TTES. The stochastic
solution fine-tunes dispatch and (slightly) investment shares where expected marginal
value is highest.

Limitations and implication. Because balancing-energy activation is not modeled,
the stochastic cost advantage is likely understated. Extending the model with activation
settlement would probably increase the economic value of EB/HP further.
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While the Day-ahead (DA) electricity market is already considered in optimization models,
the Intraday (ID) market and balancing services are often neglected. In response to
Research Question 1, this work develops a modeling framework that integrates DA, ID,
and mFRR-down into a two-stage stochastic optimization for district-heating portfolios.
Building on a deterministic portfolio model, the formulation is independently extended
to a two-stage setting with DA/ID price scenario paths and a CVaR term to manage
downside risk. The framework is calibrated to an existing physical district heating
network in Salzburg (stylized representation) and focuses on electricity-driven heat
supply alongside Waste to Energy (WtE), Combined Heat and Power (CHP), Solar
Thermal (ST), Geothermal (GT), and Tank Thermal Energy Storage (TTES).

Regarding the integration itself (Research Question 1), three building blocks were essential.
First, electricity procurement for heat pumps (HP) and electric boilers (EB) is split
explicitly between DA and ID; participation in mFRR-down is modeled as capacity
reservation only (no activation energy settlement). Second, the case-study technology
set was tailored to the Salzburg context: no natural-gas technologies; WtE modeled
as heat-only plant (HOP); biomass-fired CHP (instead of gas); deep geothermal and
aquifer TES omitted; no industrial excess heat. Third, several transparent simplifications
keep the problem tractable and focused on market-driven flexibility: ID represented
via ID3; reserve prices applied as daily averages (hourly series difficult to source at
scale); network hydraulics not modeled; TTES is modeled with constant charging and
discharging efficiencies (implying a fixed round-trip efficiency) and with hourly standing
losses.

Concerning knowledge gain (Research Question 2), three robust differences emerge when
comparing the Salzburg-calibrated stochastic framework with the rebuilt deterministic
DA-only baseline (same techno-economic parameters and demand). (i) Dispatch becomes
more price-responsive: HP operation systematically shifts into low-price hours, and EB
headroom is monetized through reserve Provision. (ii) The resulting portfolio exhibits a
persistent two-block pattern: WtE supplies dependable baseload, while HP/EB coordi-
nated by TTES provide the flexible, arbitrage-oriented share across DA/ID. (iii) Total
system costs decline materially in the case study (by ≈ 9%), showing that explicit ID par-
ticipation can change both operational schedules and investment timing in economically
meaningful ways.

Implications are twofold. Where ID access and balancing products are available—or
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electricity price volatility is material, the proposed two-stage stochastic framework is
preferable to DA-only deterministic models, because it captures both the value and
the risk of short-notice flexibility and better informs HP/EB sizing and Timing. For
early-stage screening, or in contexts without ID access and negligible reserve options,
a simpler DA-only formulation remains adequate. Looking ahead, a combined pathway
is promising: retain the market-integration layer developed here when power-to-heat is
central, and complement it with broader scenario families (weather extremes, fuel and
CO2 price trajectories, regulatory shifts) when such uncertainties are decision-relevant
for the region under study. Where access to mFRR-down exists, the case-study results
indicate that capacity reservation can provide a meaningful cost contribution; the full
economics of activation are left for future work.

Outlook. Several targeted extensions would strengthen the analysis:

• Add balancing-energy activation: endogenize random activation volumes, energy
remuneration, and baseline interactions to capture full reserve economics and the
dispatch trade-off between DA/ID schedules and expected activation.

• Use higher-resolution reserve prices: move from daily averages to hourly series
(via automated data collection or from synthetic hourly shapes calibrated to daily
aggregates) to sharpen price-spread signals for TTES and EB.

• Broaden uncertainty beyond electricity prices: introduce stochastic biomass and
CO2 price paths; a compact design with a small set of cross-cutting scenarios
(low/base/high levels and slopes) keeps problem size tractable (with scenario
reduction if needed).

• Evolving market design: test sensitivities where ID/real-time trading becomes
dominant or DA liquidity changes; in such regimes, short-notice flexibility (HP/EB
with TTES) gains value and the stochastic treatment becomes even more important.

• Network-tariff reform for power-to-heat : evaluate reduced/exempt capacity and
energy charges; such policies directly lower HP/EB operating costs and can shift
optimal sizing and timing toward earlier/larger electrification.

Treating market uncertainty endogenously rather than optimizing to a single expected
trajectory, changes both operations and structure in economically meaningful ways.
Embedding activation mechanics, richer stochastic drivers (including fuels and CO2),
higher-resolution reserve prices, and prospective tariff/market reforms is a natural next
step and is expected to further strengthen the business case for flexible, electrified heat
portfolios coordinated by modest thermal storage.

76



Bibliography

[1] Muhammad Bilal Siddique, Dogan Keles, Fabian Scheller, and Per Sieverts Nielsen.
“Dispatch strategies for large-scale heat pump based district heating under high
renewable share and risk-aversion: A multistage stochastic optimization approach.”
In: Energy Economics 136 (2024), p. 107764. issn: 0140-9883. doi: https://doi.
org/10.1016/j.eneco.2024.107764. url: https://www.sciencedirect.com/
science/article/pii/S0140988324004729.

[2] Susanne Radke and Georgia Pletzer. Umsetzungskonzept KEM Oberpinzgau – En-
ergiereich. Report. Mittersill, Austria: Regionalverband Oberpinzgau; Nationalpark
Hohe Tauern, 2015. url: https://www.klimaundenergiemodellregionen.at/
assets/Uploads/bilder/doku/B370022_konzept.pdf (visited on 08/25/2025).
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für die Wärmewende. https://www.bves.de/wp-content/uploads/2023/09/
2300824_Saisonalspeicher_fuer_die_Waermewende_BVES.pdf. 2023. (Visited
on 05/13/2025).
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