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Kurzfassung

Diese Arbeit untersucht das Design, die Herstellung, die Charakterisierung und die Verlust-
analyse von Siliziumnitrid-(SiN)-Wellenleitern im sichtbaren bis nahen UV-Wellenlängenbereich,
mit einem Fokus auf der Charakterisierung von Ausbreitungsverlusten durch eine detail-
lierte Untersuchung der Seitenwandrauheit. Wellenleiter wurden erfolgreich gefertigt und
charakterisiert, sowie die gemessenen Verluste mit Simulationen verglichen.

Die Untersuchung bewertet verschiedene Ätztechniken und -werkzeuge, um den optima-
len Prozess zu ermitteln, der Konuswinkel nahe 90◦ und minimale Seitenwandrauheit für
SiN-Wellenleiter erreicht. Der beste Fertigungsprozess erzielte Seitenwandrauheitswerte im
quadratischen Mittel von 1.05 nm und einer Korrelationslänge von 67 nm entlang der Aus-
breitungsrichtung des geführten Lichts bei einem Konuswinkel von 85◦ im Querschnitt des
Wellenleiters, was mit dem Stand der Technik vergleichbar ist. Die Wellenleiter wurden bei
mehreren Wellenlängen gemessen, mit Ergebnissen von 6.02±0.77 dB/cm bei λ = 532 nm
und bis zu 0.95±0.10 dB/cm bei λ = 730 nm für transversal elektrisch (TE)-polarisiertes
Licht. In Kombination mit einem exponentiellen Materialabsorptionsmodell wurden die
Verluste mithilfe eines bereits etablierten Modells zur Schätzung von Streuverlusten mo-
delliert. Der Vergleich zeigt eine akzeptable Übereinstimmung zwischen Messung und
Simulation, obwohl bei kürzeren Wellenlängen und schmaleren Wellenleiterdimensionen
Abweichungen weitere Untersuchungen erfordern.

Letztlich zeigen die Ergebnisse, dass aktuelle Fertigungstechniken zwar akzeptable
Rauheitswerte erzielen, jedoch zusätzliche Schritte erforderlich sind, um rauheitsbedingte
Streuverluste weiter zu reduzieren und die Skalierbarkeit von photonischen integrierten
Schaltungen (PIC) zu erreichen. Insbesondere für den Einsatz in Quantencomputern mit
gefangenen Ionen, bei denen effiziente Lichtführung und hohe optische Güte entscheidend
sind. Durch die Bewältigung von Fertigungsherausforderungen und die Verfeinerung von
Verlustvorhersagemethoden schafft diese Arbeit die Grundlage für die Realisierung von
ultra-verlustarmen Wellenleitern und vollständig integrierten PIC-Plattformen.
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Abstract

This thesis investigates the design, fabrication, characterisation, and loss analysis of
silicon nitride (SiN) waveguides in the visible to near-UV wavelength range, with a focus
on characterising propagation losses through a detailed study of the sidewall roughness.
Waveguides were successfully fabricated and characterised, while measured losses were
compared to simulations.

The study evaluates various etching techniques and tools to determine the optimal
process to achieve taper angles close to 90◦ and minimal sidewall roughness for SiN
waveguides. The best fabrication process achieved root mean square sidewall roughness
values of of 1.05 nm and correlation lengths along the waveguide’s propagation direction
of 67 nm at a taper angle of 85◦ of the waveguide’s cross section, comparable to state-
of-the-art benchmarks. The waveguides were measured for multiple wavelengths with
results of 6.02±0.77 dB/cm at λ = 532 nm and as low as 0.95±0.10 dB/cm at λ = 730
nm for transverse electric (TE) polarised light. Combined with an exponential material
absorption fit, losses were modelled using an already established model for estimation
of the scattering loss. The comparison shows acceptable agreement of measurement and
simulation, though deviations at shorter wavelengths and narrow waveguide dimensions
require further investigation.

Ultimately, the results indicate that while current fabrication techniques result in
acceptable roughness, further steps need to be taken to reduce roughness-induced scatter-
ing losses to achieve scalability of photonic integrated circuits (PIC). In particular, for
trapped-ion quantum computing, where efficient light delivery and high optical fidelity
are paramount. By addressing fabrication challenges and refining loss prediction method-
ologies, this thesis sets the stage for realising ultra-low-loss waveguides and achieving fully
integrated PIC platforms.
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CHAPTER 1

Introduction

Photonic integrated circuits (PICs) for visible light are a promising technology for med-
ical diagnostics [1], gas sensing [2], photodetectors [3], and the scalability of quantum
computing using neutral atoms [4], photons [5], and trapped ions [6]. For trapped-ion
quantum computing, ions are confined in all three dimensions by an electromagnetic field
forming an effective potential well. This trapping field is caused by a combination of static
and dynamic potentials of the ion traps surface electrodes. Lasers are used to control the
electronic states of the ion. The two-level system of the qubit as a basic unit is formed by
choosing two states of the ion’s manifold of available states. To initialize the qubit, laser
cooling to the motional ground state of the system is utilized, followed by optical pumping
to prepare the state. Afterwards an additional laser pulse is applied to excite the ion to a
chosen qubit state. The qubit state readout is performed via a cycling-transition of one
of the qubit states to an additional short lived state. The fluorescence light is collected
by a microscope and a sensitive camera [7]. To implement the basis for gate operations,
long-lived excited states of the system are selected and qubit rotation is driven with an
additional laser pulse [8]. Instead of using lasers, microwave gates can be realized by
driving the ion’s qubit transition using microwave fields [9].

Scaling the number of qubits while maintaining high fidelity is one of the main chal-
lenges to achieve fault tolerant quantum computers. Here Infineon Technologies AG takes
advantage of the advances made in semiconductor manufacturing to produce microfabri-
cated ion traps [10]. Although the chip-integrated approach scales well, optical access of
the lasers poses a major bottleneck in the scalability as free-space optics are commonly
used for the optical interaction mentioned above, here integrated photonics offers a solution.
Passive components such as waveguides and grating couplers are used to deliver light to
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the ion, while active components such as modulators are used to manipulate properties of
the laser light on chip. A schematic cross-section of a grating coupler delivering light to a
trapped ion is shown in Figure 1.1a. Mehta et al. [6] have shown such a chip-integrated
light delivery to a 88Sr+ ion, a schematic view of their light delivery zone is depicted in
Figure 1.1b.

(a) (b)

Figure 1.1: (a) Schematic cross-section of a SiN waveguide and grating coupler in SiOx
cladding to deliver light to the trapped ion, (b) Schematic top-down view of the site where
the ion is illuminated by laser light, the square windows allow the light to be delivered
from the grating couplers below for different wavelengths, as seen in [6].

Of note is the wide variety of different wavelengths which are required to manipulate
the ion. To effectively carry out the ion-laser interactions mentioned above, the intensity
at the ion must be as required, high waveguide losses would thus require an increased
input power. Therefore, the light delivery to the grating coupler must exhibit low loss for
the needed light wavelengths, as scattering and absorption of the light in the waveguide
reduces the intensity of the outcoupled light at the ion, which is detrimental for scaling.
Additionally, scattered light could unintentionally interact with other ions. Figure 1.1a
shows that a silicon nitride (SiN) waveguide is used, as material absorption losses are
low in the visible wavelength regime compared to commonly used PIC materials such as
silicon (Si) which shows high absorption. For wavelengths in the UV spectrum (< 400 nm)
materials such as aluminium oxide (Al2O3) are commonly preferred over SiN as it exhibits
high material losses. Figure 1.2 shows simplified electronic state diagrams for (a) calcium,
(b) strontium, and (c) barium ions. Other less commonly used ion species in quantum
computing are ytterbium and beryllium, whose state diagrams are not depicted here. The
latter ion species is of interest for this thesis because it exhibits the widest variety of
required wavelengths for quantum computing: From 493.5 nm for Doppler cooling and
readout to 1760 nm for the qubit transition, which waveguides for barium would therefore
be required to guide. Figure 1.2 emphasises the wide variety of wavelengths needed for
trapped ions, which must be guided by waveguides.
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(a) (b) (c)

Figure 1.2: Simplified electronic state diagrams of (a) calcium, (b) strontium and (c)
barium [11].

Material losses are not the only loss mechanism that affects waveguides. For wave-
lengths greater than 400 nm, scattering due to roughness of the sidewalls was shown to
cause most losses [12][13]. The loss due to sidewall roughness is commonly described by
the Payne-Lacey model [14], which is accurate for the slab waveguide, that is, waveguides
showing a large width-to-height ratio. Recently, a model by Hoermann et al. [15] was
proposed aiming to accurately describe the losses of waveguides with width-to-height
ratios closer to unity.

Within this thesis, I fabricated SiN waveguides in the cleanroom of Infineon Technolo-
gies in Villach that are able to guide wavelengths from 493 to 866 nm and measured their
propagation losses under the supervision of Alexander Zesar in the Ion Trap Systems
group at Infineon Technologies. As will be shown in a later chapter, the propagation loss
for IR wavelengths is negligible compared to losses in the visible spectral range, which is
why IR wavelengths were not closely investigated in this thesis. Furthermore, the sidewall
roughness of the fabricated waveguide structures is measured and statistical parameters
of the sidewall topography are extracted that are used to calculate the expected loss of
the waveguides using a Python implementation of the model from [15].

Chapter 2 focusses on the fundamental properties of plane waves for waveguiding and
light-matter interaction. Chapter 3 describes the frequency dependence of the material by
introducing different models to describe the dependence. Chapter 4 presents how light
behaves at a dielectric interface, leading to the equations needed for waveguiding. In the
end of Chapter 4, a short overview of the simulation of waveguides is given. In Chapter
5, the commonly used Payne-Lacey model is introduced together with the Hoermann
model, both of which describe the loss due to scattering of a waveguide. Chapter 6 shows
the current state of the art for waveguide fabrication and measurement. In Chapter
7, measured refractive indices and losses for SiN are fitted using models described in
Chapter 3. Chapter 8 focusses on the design of the PIC used in this thesis, while Chapter
9 describes the fabrication process and shows the results of the different investigated
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methods and processes. The results of the measurement of fabricated waveguides are
shown in Chapter 10 and Chapter 11 compares the measurements with simulations.
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CHAPTER 2

Light as an Electromagnetic Wave

For the purpose of the waveguiding of monochromatic laser light, it can be assumed that
the light propagates as plane waves of the form [16]

E(x, t) = E0e−j(k·x−ωt) (2.1)

with the wavevector k := ke and its magnitude k, which is often called the wavenumber
or propagation constant, while e is the unit vector which defines the vector orientation and
ω denotes the angular frequency. The imaginary part of the argument of the exponential
function, in this case −(k · x − ωt), is called the phase. The wavevector k and the angular
frequency ω are not independent of each other and are connected through the dispersion
relation

k2 = ω2

c2
0

εr (2.2)

where c0 is the speed of light in vacuum and εr the relative permittivity of the material.
The commonly known form is the vacuum dispersion relation

k0 := ω

c0
. (2.3)

As monochromatic waves from Equation 2.1 oscillate with an angular frequency ω,
the period of oscillation in time is 2π/ω. Planes of constant phase k · x − ωt = const.
are normal to the wavevector k. The magnitude of the wavevector k = |k| is the spatial
angular frequency and thus the oscillation period in space. The distance between planes
of equal phase is called the wavelength λ, thus the number of spatial oscillations per unit
of length is 1/λ and the spatial angular frequency
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k := 2π

λ
(2.4)

with the vacuum wavelength, using Equation 2.3 [16]

λ0 = 2π

k0
= 2π

c0

ω
. (2.5)

As can be observed in Equation 2.2 the behaviour of light depends on the medium
in which it propagates. The polarisation density P is the reaction of the medium on an
impinging electric field and is linear in a first order approximation [16]

P = ε0χE (2.6)

with the vacuum permittivity ε0 and the susceptibility χ as a dimensionless parameter
to describe the relationship between the medium and the field. The relative permittivity
from Equation 2.2 is

εr = 1 + χ. (2.7)

The relationship between light and material will be closer inspected in Chapter 3.
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CHAPTER 3

Frequency Dependence of Refractive Index and Absorption

The relationship εr = 1 + χ between permittivity and susceptibility of a material has
been briefly explained in Chapter 2. It is used to describe the reaction of the material to
an external electric field, the polarisation. Generally speaking, the polarisation density is
the vectorial sum over all microscopic dipole moments in a unit volume. As the elementary
charges possess mass, the polarisation does not follow a change in the field instantaneously,
it is instead determined by the pattern of the field experienced before. This implies
the existence of time constants, which in turn depend on the mechanism of polarisation,
and transforming these into the frequency domain shows a frequency dependence of the
susceptibility [16]. First, a relationship of the complex permittivity of a material with its
absorption and refractive index is presented, followed by a selection of different models to
describe the permittivity of a material.

3.1 Absorption and Refractive Index
In general, the permittivity is assumed to be complex ε̃ and is described by the relation

ε̃ = 1 + χ̃ =: ε′ + jε′′. (3.1)

With real numbers ε′ and ε′′ for the real and imaginary part of the complex permittivity,
respectively. This results in a complex wavenumber due to the dispersion relation (Equation
2.2) of

k̃ = ω

c0

�
ε′ + jε′′ =: ñk0 (3.2)

with the complex refractive index

12



ñ =
�

ε′ + jε′′ =: n − jκ. (3.3)

Solving a system of equations to determine n and κ from ε̃ yields

n2 = 1
2

�
(ε′2 + ε′′2)1/2 + ε′
 (3.4)

and

κ2 = 1
2

�
(ε′2 + ε′′2)1/2 − ε′
 . (3.5)

This complex wavenumber modifies the spatially dependent part of the plane wave
propagating in z direction to

E(ω)e−jk̃(ω)z = E0e−κ(ω)k0ze−jn(ω)k0z. (3.6)

The imaginary part of the refractive index κ(ω) acts as a frequency-dependent damp-
ening of the amplitude, the sign is chosen so that the wave decreases exponentially for a
propagation in positive z-direction. The intensity is the square of the absolute value of
the electric field’s amplitude and thus

I(z)
I(0) = e−2κk0z := e−αz (3.7)

with

α = 2κk0. (3.8)

This introduces the commonly used value α called the absorption coefficient, where
1/α denotes the absorption length, meaning the distance after which the intensity dropped
by 1/e [16].

As mentioned in Chapter 2 the current polarisation depends on the current electric
field. Therefore, the real and imaginary parts of the susceptibility are directly connected
which is described by the Kramers-Kronig relations [16].

A widely accepted model to describe polarisation is the Lorentz-Drude model. It
combines a harmonic oscillator that binds an electron of mass me with a force ax to the
atom, with a velocity-dependent damping of the electron’s movement bẋ. The parameters
a and b can be thought of as the spring constant and damping of a spring-mass-system and
x the mechanical deflection of the system [16]. However, the Lorentz-Drude model does
not contain any description of the electronic structure of the material. The Tauc-Lorentz
and Tauc-Lorentz-Uhrbach models do contain a modification of the Lorentz-Drude model
due to the electric density of states (DOS) and energy bands of the materials.
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3.2 Density of States and Energy Bands
The density of states is the number of free electronic states per unit volume and per
unit energy around an energy E. The DOS denoted by N(E) and the number of states
in a unit volume around an energy interval dE around an energy E is N(E)dE. In
three-dimensional systems, such as SiN, the DOS is N(E) ∝ √

E. Between the valence
and conduction bands of a material is the bandgap Eg. An example of the 3D DOS for
the valence and conduction bands is shown in Figure 3.1.

Figure 3.1: Example of the density of states for a 3D material. The conduction and
valence bands are separated by the bandgap Eg of energy 1.1 eV . The grey dotted lines
represent the energy at the top of valence band Ev as well as the energy at the bottom of
the conduction band Ec.

In crystalline materials, which exhibit periodicity, the band structure describes how the
energy of electrons is affected by their momentum in the k-space. Although amorphous
materials, such as SiN and amorphous Si, do not have band structures in the k-space
sense due to their lack of periodicity, the do possess energy bands and the aforementioned
DOS [17].

Semiconductors as well as dielectric materials can exhibit an exponential decay of the
absorption coefficient below the bandgap energy [18]

α(E) = α0 exp
�

E

E0

�
. (3.9)

This Urbach tail stems from the exponential tail of the density of states in the top
of the valence band or bottom of the conduction band. One possible explanation was
proposed by Bacalis et al. [19] wherein they named fluctuating potentials as the source of
exponential tails. According to them, the tail is caused by independent local potential wells
of atomic scale whose depths exhibit a Gaussian distribution. Figure 3.2 demonstrates
how the bands are extended into the bandgap by the exponential Urbach tail, meaning
that energy states exist in the bandgap which would otherwise be forbidden.
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Figure 3.2: Modified example from Figure 3.1 to show the extension of the bands via the
exponential Urbach tail.

3.3 Tauc-Lorentz Model
The Tauc-Lorentz (TL) model combines the Tauc model of the DOS with the Lorentz-
Drude model. It is commonly used to describe amorphous semiconductors and insulators,
and thus it could also be used to describe silicone nitride. Larruquert and Rodriguez de
Marcos [20] propose an analytical modification, as previous models relied on piecewise
functions which change the functional behaviour at the energy gap. This results in a kink
of the resulting function, which is thus non-analytical and therefore does not fulfil the
Kramers-Kronig relations. They arrive at a formalism which enables an analytical fit over
large photon energies. The energy of photons is calculated by the following commonly
known formula

Eph = hc

λ
= ℏω (3.10)

whereas h is Planck’s constant, c the speed of light, and λ the photon’s wavelength.
Larruquert and Rodriguez de Marcos [20] modify the Tauc-Lorentz model, by using

the imaginary (ε̃′′
r) or the real part (ε̃′

r) of the non-analytic permittivity function ε̃r to
obtain the analytical function ε̃r,an. Integrating ε̃r,an results in

ε̃r,T L−an(E; A, E0, Eg, C, a) = 1 + AE0C

π
[F (b, d, d∗) + F (d, d∗, b) + F (d∗, b, d)] (3.11)

with

F (α, β, γ) = (Eg + α)2 log(Eg + α) − (Eg − α)2 log(Eg − α)
α(α2 − β2)(α2 − γ2) (3.12)

b ≡ b(E) ≡ E + ja (3.13)
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d =
 

E2
0 −

�
C

2

�2
− jC2 (3.14)

with A as a fitting parameter, E0 as the central energy of the oscillator, Eg as the
bandgap energy, C the width of the oscillator, and a a parameter used for a weight
function. The asterisk denotes the conjugate complex. Equation 3.11 is the analyticized
Tauc-Lorentz model (TL-an). Due to the single expression for the permittivity, it can be
fitted with experimental data from the complex refractive index ñ [20].

3.4 Tauc-Lorentz-Urbach Model
Even though the imaginary part of the TL-an model approaches zero for energies below
Eg, the decay does not fit for materials that exhibit a Urbach tail.

The model proposed by Foldyna et al. [21] contains two piecewise functions in the
intervals E < Ec and E > Ec where Ec is the connection energy between the two
functions. This results in their Tauc-Lorentz-Urbach (TLU) model being non-analytic.
It is transformed in the same way as the TL model. The Urbach tail term is integrated
for energies below Ec while the TL term is integrated for energies above Ec. The new
analytic model, called TLU-an is given by the addition of the two terms [20]

ε̃r,T LU−an(E) =ε̃r,U−an(E; A, E0, Eg, C, a, Ec)+
ε̃r,T L−an(E; A, E0, Eg, C, a, Ec).

(3.15)

The permittivites ε̃r,U−an and ε̃r,T L−an are evaluated as follows:

ε̃r,U−an (E; A, E0, Eg, C, a, Ec) = 1 + 1
π

� ∞

−∞

ε′′
r,U (E ′)

E ′ − E − jadE ′

= Au

π

�
b exp

�
b

Eu

� 	
Ei

�
Ec − b

Eu

�
− Ei

�−b

Eu

��

+ b exp
�−b

Eu

� 	
Ei

�
b

Eu

�
− Ei

�
Ec + b

Eu

��

+2 exp
�

Ec

Eu

�
Eu − 2Eu

�
(3.16)

with the addition that the sign of ε′′
r,U was reversed for negative energies to turn it

into an odd function. The function Ei stands for the exponential integral

Ei(z) = −
� ∞

−z

e−t

t
dt (3.17)

which is included in common mathematical packages such as Scipy for Python.
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ε̃r,T L−an (E; A, E0, Eg, C, a, Ec) = 1 + AE0C

π

�
F̄ (b, d, d∗) + F̄ (d, d∗, b) + F̄ (d∗, b, d)



(3.18)

with
F̄ (α, β, γ) = (Eg + α)2 log (Ec + α) − (Eg − α)2 log (Ec − α)

α (α2 − β2) (α2 − γ2) . (3.19)

The comparison between F̄ in Equation 3.19 and F in Equation 3.12 shows that the
only difference is the replacement of Eg with the new parameter Ec in the logarithms.
Therefore, F̄ converges to F for Ec = Eg, while b(E) and d are given by Equations 3.13
and 3.14 respectively [20].

The TLU-an model is analytic, as singularities occurring in the b(E) function coun-
terbalance each other, ε̃r,U−an decays asymptotically for large energies, and it is not a
piecewise function. Unlike a piecewise function, it is made up of two terms, each of which
is defined over the full spectrum and corresponds to the functionality of the TLU model.
Furthermore, the function does not diverge at zero energy. Unlike the TL and TLU
models, the additional parameter ε′

r(∞) for ε′
r is not needed any more. The model can

therefore be fit with either ε′
r, ε′′

r or both. As with the TL-an model, experimental data
from n, κ or both can be used to fit the TLU-an model [20].
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CHAPTER 4

Waveguiding

This chapter introduces the behaviour of monochromatic light at a dielectric interface
that lays the basis for the discussion of the dielectric slab waveguide, which is discussed
subsequently. The chapter closes with a brief overview of the rectangular waveguide and
the simulation of such a waveguide.

4.1 Light at an interface
Assuming that a plane wave impinges on a perfectly flat interface between to media i

and t with the refractive indices ni and nt under a certain angle θi between the wave’s
wavevector ki and the normal of the interface, the impinging wave i is partly refracted
in the medium i, denoted as wave r in medium r where ni = nr and therefore θi = θr,
and partly transmitted into the medium t with an angle θt. The spatial periodicity of
the three waves at the interface must be equal, which results in the condition that the
tangential component, the component parallel to the interface, of the three wavevectors
ni,r,tk0 sin θi,r,t must be equal at the interface . This results in the condition

sin θr = sin θi (4.1)

and Snell’s law

nt sin θt = ni sin θi (4.2)

which holds for optically isotropic media [16].
If the medium i is optically denser than the medium t, which means ni > nt, the

tangential component can be larger than the wavevector’s magnitude for certain θi. This
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results in total internal reflection, where only a reflected wave exists with the critical angle
θc

θi > θc := arcsin nt

ni

. (4.3)

Under total internal reflection, the perpendicular component of the wave vector is
imaginary in the optically thinner medium

kt
z = ±k0

�
n2

t − n2
i sin2 θi =: ±jγt (4.4)

and the wave in the optically thinner medium (for which we assume the area z<0) is
given by

Et = Et
0e

−j(k x−ωt) = Et
0e

γtze−j(ki
xx−ωt). (4.5)

The amplitude of this inhomogeneous wave, called the evanescent wave, decays expo-
nentially with distance from the interface and the sign of Equation 4.4 has to be chosen
in such a way as to ensure an exponential decay, for energetic reasons. The depth of
penetration is 1/γt, which is for incident angles significantly larger than θc in the order of
one wavelength and increases the closer θ is to θc, for θ := θc it is infinite [16].

It can be shown [16] that the light reflected at an interface experiences a phase shift
for total internal reflection depending on the polarisation. For this, the polarisation is
separated into two linear polarisations, one perpendicular to the incident plane called σ-
or s-polarization, and one parallel to the incident plane called π- or p polarisation. This
follows from the fact that the Fresnel coefficients for the polarised light acquire a non-zero
imaginary part, where the magnitude of the reflectivity is 1 and the argument is described
by the arctan, as described in Equations 4.6 and 4.7. The incident wave is subject to a
phase shift φσ,π dependent on the incident angle θi at the dielectric interface

φσ

2 = arctan γt

ki
z

= arctan (n2
i sin2 θi − n2

t )
1/2

ni cos θi (4.6)

and

φπ

2 = arctan n2
i

n2
t

γt

ki
z

= arctan n2
i

n2
t

(n2
i sin2 θi − n2

t )
1/2

ni cos θi . (4.7)

The phase shift is different for σ- and π-polarised light, and the difference depends on
the incident angle θi as well as the ratio of ni/nt.
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4.2 Planar Dielectric Waveguide
Even though rectangular waveguides are used in modern PICs, the fundamental properties
of waveguiding are best explained by using the so-called planar or slab waveguide. It
consists of a substrate, core, and cladding layer with refractive indices of ns, ng, and nc

respectively. The layered structure is depicted in Figure 4.1.

Figure 4.1: Planar waveguide structure. The core material ng of thickness 2a guides
the modes, which bounce under the mode’s angle θ at the interfaces, with the substrate
material ns and the cladding material nc on bottom and top, respectively. The waveguide
is extended infinitely in y-direction. Pictured the right side is the refractive index of the
three materials, where nc must be larger than the others to enable waveguiding [16].

Both interfaces are plane, and thus it can be assumed that a pair of planar waves
which merge into each other as they reflect at the interfaces exist, as shown in Figure 4.2
the wavevectors are therefore [16] [22]

Figure 4.2: Graphical depiction of the two planar waves which superimpose as the
waveguide’s modes inside the waveguide. Shown on the right side are the wavevectors of
the two waves [16].


±k⊥

0
k∥

 =:


±k⊥

0
β

 = ngk0


± cos θ

0
sin θ

 . (4.8)

One condition for a guided wave is the total internal reflection at both interfaces,

20



which means that the tangential component of the wavevector k∥, further labelled as β, is
larger than the wavenumber in the adjacent media

β := ngk0 sin θ > ns,ck0. (4.9)

Thus, the angle θ must be larger than the critical angle (4.3) at the interface. To
simplify and without restriction of generality, it is assumed that ns ≥ nc, which results
in [16]

θ > θcrit := arcsin ng

nc

. (4.10)

The assumption is valid because the smaller refractive index defines the largest critical
angle.

Another important aspect is the incoupling of light, which is most commonly done via
the facet of the waveguide, as seen in Figure 4.1. For efficient incoupling, the field that
would be coupled out of the waveguide into the medium with refractive index n should
have a good overlap with the field coupled from the medium with n into the waveguide.
Therefore, it is of interest to transform Equation 4.10 into a condition for the largest
incident angle θin,max allowed on the facet. Assuming that light is coupled in from a
medium of refractive index n yields

n sin θin,max = ng cos θcrit = ng

�
1 − sin2 θcrit =

�
n2

g − n2
s =: NA. (4.11)

The so-called numerical aperture NA is defined by the difference of refractive indices
in the waveguide’s layers and determines the largest angle of acceptance [16].

The second condition for waveguiding is the self-consistency condition. It requires the
planar waves to reproduce themselves after being reflected twice, so that only two distinct
plane waves, as seen in Figure 4.2, can exist. This is possible if the accumulated phase
of the two reflections is a multiple of 2π. As waves travel through the layer of thickness
2a twice, one part of the phase is −4k⊥a. The second is the phase shift at the dielectric
boundaries φs + φc, as described in Equations 4.6 and 4.7. Therefore, the self-consistency
condition is [16] [22]

−4k⊥a + φs
σ,π + φc

σ,π = −2πm, m = 0, 1, 2, . . . . (4.12)

Depending on the polarisation of the light. Equation 4.12 thus has, for a given set of
parameters a, k0 and ng,s,c a finite number of solutions θ(m), where each is equal to an
eigenmode with the propagation constants

β(m) = ngk0 sin θ(m) =: n
(m)
eff k0 (4.13)
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and the phase velocities

v
(m)
ph = ω

β(m) = c0

n
(m)
eff

. (4.14)

Here, n
(m)
eff is called the effective refractive index

n
(m)
eff = β

k0
= ng sin θ(m) (4.15)

which is in the interval ns,c < n
(m)
eff < ng [16][22].

To facilitate single mode operation of the waveguide, the so-called cut-off condition or
cut-off frequency is

V < Vc := π/2 (4.16)

where

V := ak0
�

n2
g − n2

s,c = ak0NA = 2π
a

k0
NA = a

ω

c0
NA (4.17)

is the normalised frequency, which is proportional to the frequency of the light and
includes all relevant parameters of the waveguide. Equation 4.16 can also be expressed in
terms of the wavelength

λ0 > λ0,c = 4aNA (4.18)

where λ0,c is referred to as the cut-off wavelength for single mode operation [16].

The solutions for the modes were focused on the case of σ-polarised light, where the
electric field possesses no longitudinal components. The modes are referred to as transverse
electrical (TE) modes. The solution for π-polarised light can be obtained similarly [22].

Figure 4.3: Transversal field distribution of the first four TE modes for a symmetrical
waveguide (ns = nc), note that the evanescent field penetrates deeper into the cladding
for a higher mode number [16].
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After determining the propagation constants, the transversal amplitude distributions
of the modes’ fields can be described. Within the core material, the field results from
the superposition of two plane waves, as shown in Figure 4.2. Depending on the mode
number m, the total field inside the core region (|x| < a) can be expressed as:

Eg =

��Eg
0 cos

�
2π sin θm

λ
x

�
e−jβmz, for even modes (m = 0, 2, 4,...)

Eg
0 sin

�
2π sin θm

λ
x

�
e−jβmz, for odd modes (m = 1, 3, 5,...)

. (4.19)

Even modes exhibit symmetrical fields, while odd modes are antisymmetrical, as
illustrated in Figure 4.3. The mode number m corresponds to the number of field zero
crossings, with the fundamental mode (m = 0) having no zero crossing.

In the cladding regions (|x| > a), the tangential component of the wavevector remains
β, but the normal component becomes imaginary due to total internal reflection. The
resulting field has the form:

Es = Es
0e−γ|x|e−jβmz, (4.20)

where γ indicates the decay rate of the evanescent field as obtained by Equation 4.4.
Higher-order modes exhibit smaller β(m) values, implying a deeper penetration of the
mode into the cladding materials. The continuity of the transverse electric field at the
boundaries ensures a transition between the core and the cladding fields [16] [22].

4.3 Rectangular Dielectric Waveguides
Infinite slabs and circular waveguides, such as optical fibre cables, cannot be achieved
with the planar fabrication techniques used in modern semiconductor fabrication, which
is why the most commonly used structure for integrated photonic chips is the rectangular
waveguide.

Unlike optical fibres, which are used to transport optical signals over long distances,
rectangular waveguides involve shorter lengths, typically a few centimetres.

As was the case before for the dielectric slab waveguide, the core material must have
a refractive index higher than that of the surrounding cladding. Assuming the simplest
case, a purely rectangular waveguide, core and cladding material can be separated into
regions as seen in Figure 4.4. Assuming that the frequency of light in the waveguide is
significantly larger than the cut-off frequency, the corner regions in Figure 4.4 can be
disregarded as the mode is tightly confined in the core material, and thus the power is
negligible. For wavelengths closer to the cut-off frequency, perturbation techniques can be
used to improve solutions. These cases can be solved analytically, albeit with significant
effort, as shown in [23].
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Figure 4.4: A rectangular waveguide with a thickness of a, width b, and refractive index
n1 surrounded by materials of lower refractive index, n2,3,4,5. For tight confinement in the
core material, solutions for the four corner regions can be neglected [23].

4.3.1 Effective Index Method

The effective index method transforms a single two-dimensional problem into two one-
dimensional problems. The buried waveguide in Figure 4.5 serves as an example of how
the effective index method functions: First, the waveguide is stretched along its thin
x-axis, turning it into a horizontal slab waveguide. This one-dimensional waveguide can
be analysed in terms of the TE and TM modes, as shown in Chapter 4.2, which results in
the β allowed for the wavelength and mode of interest. The effective index of the slab is
then determined by calculating

neff = β

k0
(4.21)

with the vacuum wavevector k0.

Figure 4.5: Principle of the effective index method. The waveguide is decomposed into
two spatially orthogonal waveguides, one horizontal and one vertical slab waveguide.
The thinner waveguide is analysed using the initial refractive indices, while the thicker
waveguide replaces n1 with the effective refractive index of the first waveguide [23].

The original structure is then analysed along its thicker y-axis, resulting in a slab
waveguide in y-direction. Once again, the modes of this waveguide can be determined,
substituting n1 with the previously determined neff . The β which is now determined
is the actual value for the mode in the rectangular waveguide. One must be cautious

24



in applying the correct characteristic equations for each structure, using Figure 4.5 as
an example again to calculate the field for an electric field polarised in the x-direction:
First, the field will appear as a TE mode for the thin slab waveguide, but in the second
calculation, the field will appear as an TM mode. The effective index method is only
accurate for aspect ratios of width to height of a factor three [23]. The same restrictions
as for the slab waveguide remain, the refractive indices n2-n5 have to be smaller than the
core index n1. It should also be mentioned that even though the structure in Figure 4.5
shows different refractive indices for the cladding material, it is common that n3-n5 are of
the same material and often do not deviate too much from n2.

4.4 Numerical Solutions for Waveguides
The previous chapters provided analytical solutions for waveguides. If the shape of the
waveguide’s cross-section is, for example, trapezoidal, these methods cannot be applied any
more, and numerical methods have to be employed. With ever increasing computational
power, it is an easy task to discretise and solve Maxwell’s equations. The accuracy of the
simulation is limited by the mesh size, and the modes of arbitrary waveguide shapes can
be calculated. Common commercial simulation suits are Ansys Lumerical and Comsol.

For example Ansys Lumerical offers a Finite Difference (FD) solver. The two vector
fields

E(x, y)ej(−ωt+βz)

H(x, y)ej(−ωt+βz)
(4.22)

with the angular frequency ω and the propagation constant β are the desired modefields
for each corresponding β. To find these modes, the waveguide cross section is discretised
into a rectangular mesh and Maxwell’s equations are solved. The algorithm is able to
handle arbitrary waveguide structures. Figure 4.6 depicts the case where the mesh points
are not positioned along an interface. Even though the mesh grid lays on dielectric
discontinuities, all transverse field components are tangential to the unit cell boundaries,
which satisfies the continuity conditions. To approximate the refractive indices at these
points, the refractive indices of adjacent cells are averaged [24]. To obtain the effective
refractive indices and mode profiles of the waveguide modes, Maxwell’s equations are
transformed into a matrix eigenvalue problem and solved using sparse matrix techniques
[25].
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Figure 4.6: Two dimensional mesh at an interface with permittivity εa in the shaded area
and εb in the white area. The z-component of the electric and magnetic fields points into
the plane and is connected to four adjacent points containing the y- and z-components of
the magnetic and electric field [24].
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CHAPTER 5

Scattering Losses in Waveguides

5.1 The Payne-Lacey Model
In Chapter 3 the frequency dependence of the complex permittivity of materials was
explained, this includes refractive index n and extinction coefficient κ. Material losses
in waveguides correspond to the portion of a guided modes’ power in the waveguide,
multiplied by the wavelength-dependent loss coefficient, as described in Chapter 3, which
yields [13]

αW G,material = αmaterial Pconfined . (5.1)

As will be shown in a later chapter, this loss is small for SiN waveguides in wavelengths
>500 nm, yet waveguides still show significant losses in this regime. The cause of this
is scattering losses due to rough surfaces caused by etching processes. One of the first
investigations was done by Dietrich Marcuse in 1969 [26]. He investigated the losses of
slab waveguides, in which he described the scattering losses as mode conversion between
guided and unguided modes due to roughness at the waveguide-cladding interface. The
statistical treatment of these losses was based on the correlation function of the surface
and its corresponding power spectrum. The resulting expression for the waveguide loss is
a complicated integral over the radiation modes, which hides the influence of important
waveguide parameters such as the material’s refractive index or light wavelength. Due to
this and improvements in fabrication techniques, Payne and Lacey formulated a simpler
expression for the scattering loss coefficient, Equation 5.2, of a rough slab waveguide as
depicted in Figure 5.1 [27].

The scattering loss coefficient is calculated by
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Figure 5.1: Geometry of the planar waveguide used for derivation of Equation 5.2. The
slab waveguide exhibits rough top and bottom surfaces, which deviate by the roughness
root mean square (RMS) value from the unperturbed waveguide thickness 2d. As described
in Chapter 4.2, the incident mode has the propagation constant β [14].

α = ϕ2(d)(n2
1 − n2

2)2 k3
0

4πn1

� π

0
R̃(β − n2k0 cos θ)dθ . (5.2)

Where ϕ(d) is the modal field at the interface between waveguide and cladding, n1 and
n2 are the refractive indices of the core and cladding, respectively, k0 is the wavenumber
of the free space, and β is the propagation constant. If only one surface is rough, the
equation above can be multiplied by 1/2. The spectral density function R̃(Ω) describes
the surface roughness and is related to the autocorrelation function (ACF) R(u) via the
Fourier transform

R̃(Ω) =
� ∞

−∞
R(u) exp(jΩu)du . (5.3)

The surface roughness is characterised by the correlation length Lc and the mean
square deviation σ2 from the flat surface. The ACF and σ2 are related via

σ2 = R(0) . (5.4)

The modal field ϕ(y) is normalised so that

� ∞

−∞
ϕ2(y)dy = 1 . (5.5)

To gain insight into how important waveguide parameters such as n1, n2, d, k0, σ, or
Lc influence scattering, Equation 5.2 is solved analytically [14]. To facilitate this, Payne
and Lacey make use of the dimensionless parameters V (Equation 4.17) as well as U and
W with

U = d
�

n2
1k

2
0 − β2 (5.6)

and

W = d
�

β2 − n2
2k

2
0 . (5.7)

Furthermore, the ACF needs to be an explicit function where they used the exponential
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and Gaussian autocorrelation functions, respectively

R(u) = σ2 exp
�

−|u|
Lc

�
(5.8)

and

R(u) = σ2 exp
�

− u2

L2
c

�
. (5.9)

5.1.1 Exponential Autocorrelation Function

To evaluate Equation 5.2 the integral needs to be calculated. Inserting the exponential
ACF from Equation 5.8 into the integral and solving it yields the power spectral density
S. Together with an expression for ϕ2(d), α can be obtained by combining S and ϕ2(d)
and using the dimensionless parameters

Δ = n2
1 − n2

2
2n2

1
x = W

Lc

d
γ = n2V

n1W
√

Δ
(5.10)

where x represents the normalised correlation length, γ describes how weakly the
waveguide guides, and the normalised parameters V (Equation 4.17) and W (Equation
5.7). The final expression for α is therefore [14]

α = σ2
√

2k0d4n1
g(V )fc(x, γ) . (5.11)

The function g(V ) is determined purely by the waveguide geometry

g(V ) = U2V 2

1 + W
(5.12)

with the normalised parameter U (Equation 5.6). While fc(x, γ) describes the integral
over the spectral density function S

fe(x, γ) =
x

�
(1 + x2)2 + 2x2γ2


1/2
+ 1 − x2

�1/2

�
(1 + x2)2 + 2x2γ2


1/2 . (5.13)

Going through the same procedure as above by inserting the Gaussian ACF into the
integral yields an expression for S of the Gaussian ACF and thus α is obtained [14].

5.2 Model for Rectangular Waveguides
While the Payne-Lacey model [14] provided accurate estimations for slab waveguides, it
is imprecise for rectangular waveguides and shows an overestimation of the scattering
loss. There have been attempts to improve the model such as those done by Yap et al.

29



Figure 5.2: Schematic drawing of a rectangular and rough waveguide with the coordinate
system used for the model in [15] to describe scattering.

[28] applying a correction factor or by Barwicz and Haus [29]. Both improved it but
did not provide accurate estimates and cannot describe waveguides consisting of a stack
of different materials such as InPGaAs. Recently, a model by Hoermann et al. [15],
further referred to as the Hoermann model, was proposed which aimed at improving these
drawbacks for rough sidewalls.

Barwicz and Haus [29] proposed the volume current method (VCM) which models
surface roughness as a perturbation in the form of an oscillating volume current, but
the discontinuity at the waveguide interface for high-index-contrast waveguides demands
additional approximation [15]. The Hoermann model utilises the perturbation from
Johnson et al. [30] and therefore allows for arbitrary index profiles, including high-
index-contrast systems, with the added benefit that it can be combined with common
electrodynamics simulation software suites due to the model’s closed form. The model
incorporates the surface roughness as Gaussian processes, which enables analysis of the
whole surface.

The model assumes that the mode propagates as a plane wave along the waveguide in
z-direction, which decays exponentially with α as it travels along the waveguide in the
form of

E(r, t) = E0(x, y)e(jβ−α)z−jωt . (5.14)

5.2.1 Roughness Statistics

The surface roughness can be described as the spatial shift of the material boundary in the
waveguides The shift is often considered to be constant along the waveguide height and
varying along the propagation direction. The shift of the planar interface Δh at x = x0,
the interface between the waveguide material and cladding, and the resulting perturbation
are described by

εp(r) = ∂ε

∂h
(r)Δh(r) = (εw − εs)δ(x − x0)Δh(y, z) . (5.15)

With εw and εs being the permittivity of the waveguide and surrounding material,
respectively. Then, the tangential and perpendicular components of the field with regard
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to the interface are distinguished to conform to the interface boundary conditions. This
results in the following expression for the perturbed permittivity

εp(r)E0(x, y) =

���
Δε

εwεs
ε2(x, y) E0,x(x, y)
Δε E0,y(x, y)
Δε E0,z(x, y)

��� Δh(y, z)δ(x − x0) (5.16)

with the permittivity difference between the waveguide and its surrounding Δε =
εw − εs.

To simplify, only a single surface is calculated at a time, thus the perturbation is a
function of (y, z) at a fixed x0. The shift Δh(y, z) can be statistically described by a
zero-mean Gaussian process which is completely described by its autocorrelation function,
the kernel κ(Δy, Δz).

The sidewall roughness is a stationary Gaussian process, and due to this, the kernel
depends solely on the distance of its arguments. In other words, the kernel defines the
similarity between two neighbouring function values [31]. As the roughness in y and z can
be assumed to be uncorrelated, the Gaussian process is decomposed into its subspaces
and the kernel thus factors into

κ(Δy, Δz) = κy(Δy)κz(Δz) . (5.17)

Melati et al. [12] found that the kernel for the 1D Gaussian process of the sidewall
roughness is best described by the exponential process

κz(Δz) = σ2e− 1
Lc,z

|Δz| (5.18)

with the RMS roughness σ and the correlation length Lc. The kernel in Equation 5.17
is therefore

κ(Δy, Δz) = σ2e− 1
Lc,y

|Δy|e− 1
Lc,z

|Δz| (5.19)

with

κy(Δy) = e− 1
Lc,y

|Δy| (5.20)

where σ2 was moved to κz [15].
As the sidewall roughness along the waveguide height is considered constant, it can be

realised by setting κy(Δy) ≈ 1.

31



5.2.2 Calculation of the Loss Coefficient

The perturbation from the varying sidewall can be described as an imaginary current
which causes the scattered field in a volume. Using this imaginary current, a radiation
field is constructed, with which the radiated intensity per waveguide length is obtained
from the radiation field’s θ- and φ-components. The coupling of the scattered radiation
back into the waveguide is neglected, as the backscattering was found to be negligible
by Melati et al. [12]. Further simplification yields the final expression for the radiation
intensity

u(θ, φ) = µ0ω
4

32π2c0
πSz(β − kz)

� H

0

� H

0

κy(y − y′)o(θ, φ, y, y′)e−jky(y−y′) dy dy′ .

(5.21)

Where the x-integral dissolves due to the δ-distribution of the perturbation from
Equation 5.16. Furthermore, assuming that the waveguide is long with regard to the
correlation length in z-direction, it is possible to collect the z-dependent integrands which
evaluate to the Gaussian process’ z-spectrum Sz via the ergodicity- and Wiener-Kinchin
therorem. As discussed in the previous chapter, the spectrum of an ACF is defined by
the Fourier transform. As the zero-mean Gaussian process is completely described by its
ACF, the spectrum of a Gaussian process is also defined by the Fourier transform

πS(q) := 1
2

� ∞

−∞
κ(Δz)ejqΔzdΔz (5.22)

which yields for the exponential kernel in Equation 5.18

πS(q) = σ2 Lc,z

1 + (qLc,z)2 . (5.23)

Due to this, only the integral over the waveguide height in y-direction remains and
the overlap o(θ, φ, y, y′) is defined as

o(θ, φ, y, y′) =

���
Δε

εwεs
ε2(x0, y) E0,x(x0, y)
Δε E0,y(x0, y)
Δε E0,z(x0, y)

���

· T̂ (θ, φ)

���
Δε

εwεs
ε2(x0, y′) E∗

0,x(x0, y′)
Δε E∗

0,y(x0, y′)
Δε E∗

0,z(x0, y′)

���
(5.24)

with

T̂ (θ, φ) = R̂T (θ, φ)R̂(θ, φ) (5.25)

and
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R̂(θ, φ) =

���
0 0 0

cos θ cos φ cos θ sin φ − sin φ

− sin φ cos φ 0

��� . (5.26)

κ(y − y′) describes the roughness along the waveguide height and can be assumed to
be 1 as a first-order approximation. The vector of the propagation coefficient k has the
components ky = sin(θ) sin(φ)k and kz = cos(θ)k. The integration is over the height of
the waveguide H. To obtain the total radiated power per unit length, Equation 5.21 is
integrated over the solid angle. The loss coefficient is therefore evaluated with

2α = 1
P

� π

0
sin(θ)

� 2π

0
u(θ, φ)dφdθ (5.27)

where P is the input mode power for the corresponding z-component of the integrated
Poynting vector

P = 1
2

� ∞

−∞

� ∞

−∞
ℜ{(R × H∗) · ẑ}dxdy . (5.28)

The factor two in front of α relates the power loss to the attenuation coefficient of the
mode’s fields in Equation 5.14.

The Hoermann model correctly conforms the scattered field to the boundary conditions
of the waveguide’s cross section using the perturbation in Equation 5.16. Additionally,
the only input it requires is the roughness parameters of the Gaussian process’ spectrum,
the RMS roughness σ and correlation length Lc for the autocorrelation function, as well
as the fields of the unperturbed mode. These fields can be calculated using simulation
suits such as Ansys Lumerical and Comsol amongst others. The TE and TM fields at
the interfaces provide the input for E0 in Equation 5.24. Integration can be done using
software packages such as Python′s Scipy. This will be shown in a later chapter to predict
the waveguide loss for the fabricated waveguides.
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CHAPTER 6

State of the Art

Silicon photonics aims to leverage decades of accumulated know-how in CMOS processing
to apply it to integrated photonic applications. Advances in the fabrication of passive
components, such as waveguides, enable low-loss interconnection for more complex com-
ponents such as directional couplers, multiplexers and demultiplexers, as well as active
components such as tunable micro ring resonators and Mach-Zehnder modulators. The
low absorption loss in the infrared band between ∼1.1 µm and ∼1.6 µm positions silicon as
an interesting material for telecom communication applications, with SiGe photodetectors
and in-package lasers in transceivers [32].

There are two commonly used measurement methods to determine the waveguide
losses. One is the cutback method where the light is coupled into the waveguide via
edge coupling and coupled out via edge coupling of the chip facets. The light intensity
is measured at the exit for multiple waveguide lengths to determine the loss in dB/cm
via the slope of a linear regression through the measured transmissions. The offset of the
linear fit can be used to determine the total in- and outcoupling loss. Its advantage is
that it has a relatively simple design as the only requirement is multiple waveguides of
different length. The significant drawback is that variations in the local topography of the
facet around each measured waveguide influences the measurement and results in higher
uncertainty of the linear fit. If the facets are too rough, the coupling loss might be too
high, which may make measurements impossible.

The other method is by using ring resonator structures, a simple example is depicted
in Figure 6.1. The resonator is designed to be in resonance at the desired wavelength, this
resonance depends on factors such as the gap between the waveguide and the ring [33].

To obtain propagation losses, the quality factor Q is estimated by measuring the
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Figure 6.1: Schematic layout of a single ring resonator. The waveguide on top acts as a
bus line to the resonator. At the designed wavelength the coupling into the ring is at a
maximum, the ring is in resonance [33].

transmission spectra of the ring cavity to obtain the linewidth of the resonator (FHWM),
which allows for estimation of Q. Using the quality factor, the loss of the ring can be
calculated using the following Equation [33]

αring = 2πng

Qλ0
= λ0

Q · R · FSR
. (6.1)

Where λ0 is the free space wavelength, FSR the free spectral range, Q the quality
factor, ng the group index, and R the radius of the ring resonator. The main advantage
compared to the cutback method is the independence of the edge surface, as the loss
depends only on Q and FSR that are not influenced by the edge. One drawback of
this measurement method is that the transmission spectra strongly depend on the gap
between the bus line and the ring, the geometry of the structure, and the radius of
the ring. Thus, careful simulation and calculation must be performed in advance if an
accurate determination of the propagation loss is desired. Furthermore, a small-bandwidth
frequency-tunable laser is needed for the characterisation [33][34][35].

An alternative to silicon photonics is silicon nitride, which it the focus of this thesis,
as it exhibits low absorption for a wide spectral range of ∼400 nm to ∼4 µm [36]. This
enables the usage of PICs in areas such as medical diagnostic tools [1], gas sensing
[2][37], broadband, high-efficiency photodetectors [3], and trapped-ion quantum computing
[6][38], among others. Significant advancements have been made to achieve ultra-low-loss
waveguides.

Roeloffzen et al. [39] employed double-core and BOX-shaped structures to achieve
losses as low as 0.1 dB/cm for a wavelength of 1550 nm.
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Single-layer waveguides have reduced thicknesses down to 40 nm to reduce roughness-
induced sidewall scattering to achieve low losses of around 0.1 dB/m for the fundamental
TE mode at telecom wavelengths of 1550 to 1600 nm. The drawback is that the bending
radii are as high as 10 mm to prevent bending and mode mismatch losses as shown by
Puckett et al. [40]. They also mention that increasing the thickness reduces the required
bending radius to achieve minimal bending-induced losses, with the added drawback that
material and scattering-induced losses increase, due to the different shape of the mode.

Bose et al. [41] demonstrated 6 µm wide and 80 nm thick LPCVD SiN waveguides
with TEOS SiOx upper caldding and thermal SiOx lower cladding. The lowest loss was
measured for the TE mode at a wavelength of 8.66 dB/m at 1581 nm.

Roberts et al. [42] proposed a method to measure the roughness of the sidewalls, as
depicted in Figure 6.2. They measured sidewall roughness values between 0.53 and 2.83
nm and correlation lengths between 47.4 and 145.6 nm, depending on the lithography
method used and the etch recipe. They reported losses of 730 nm thick resonator rings of
radius 115 µm for a wavelength of 1560 nm. The largest loss was measured for the 1.2 µm
wide ring at 5.02 ± 0.38 dB/m, with the smallest losses for the 5 and 10 µm rings at 1.29 ±
0.29 and 1.27 ± 0.25 db/m respectively. They proposed a modified Payne-Lacey scattering
loss model to calculate the impact of the shift in waveguide mode due to different bending
radii on the scattering loss, by introducing an additional factor η into the Payne-Lacey
model. This correction factor is the ratio of the mode overlap of the bending mode field
to the mode overlap of the waveguide.

Figure 6.2: Schematic process of the fabrication of a waveguide (WG) pillar for sidewall
measurements. After structuring the waveguide on top of the SiOx cladding, a protective
photoresist (PR) is deposited to protect the waveguide during the subsequent Bosch etch
of the underlaying Si. Afterwards the PR is stripped in using O2 plasma and the pillar is
toppled using a tungsten microelectrode probe. The waveguide can now be easily accessed
using the AFM [42].

Roberts et al. [42] argue that this direct measurement has a higher precision than
inferring the roughness from stitched grey scale SEM images, as was done by Yap et al.
[28], as the resolution of a SEM is normally in the range of tens of nanometres, while the
resolution limit of an AFM is in the range of Angstroms. The measured roughness and
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correlation lengths for three different processes are listed in Table 6.1. Using an electron
beam lithography significantly improves the roughness as a result of the better resolution
of the process. The change in etch recipe resulted in a low-polymer etch for the same
DUV process.

Lithography Etch Recipe Rq [nm] Lc,z [nm]
DUV CHF3/O2 2.83 96.0
DUV CHF3/O2/N2 1.23 145.6

Electron-beam CHF3/O2 0.53 47.4

Table 6.1: RMS roughness Rq and correlation length along the propagation axis Lc,z for
different etch recipes and lithography methods [42].

For quantum computing and information applications [6][38], as well as certain sensing
applications [1][37] the visible spectrum is of interest, as opposed to communication
applications where wavelengths of ∼1.3 to 1.6 µm are used.

Sorace-Agaskar et al. [43] reported losses for LPCVD SiN using cutback measurements
in the near UV to infrared range. The waveguides for this range were 100 nm thick and
250 nm wide for wavelengths of 405-458 nm, 500 nm wide for a wavelength of 634 nm, and
1100 nm wide for a wavelength of 1092 nm. They fabricated a chip with two SiN layers,
one for incoupling via the facet, where the mode is then transferred to the second layer by
evanescent coupling, and measured the losses in both TE and TM polarisation. Their
results are depicted in Figure 6.3, where a lower loss for TM polarisation is visible, which
is likely due to the dominant mode overlap with the smoother top and bottom surfaces,
as opposed to the TE mode, where the field of the mode is concentrated at the sidewalls.
They also measured the sidewall roughness and found a value of 1.54 nm for a correlation
length of 30 nm. Figure 6.3 also shows the predicted scattering loss, which was obtained
using the Payne-Lacey model. The predicted scattering loss for TE is overestimated for
a wavelength range of ∼500-800 nm and underestimated for wavelengths below ∼500
nm. The predicted scattering loss for the TM mode fits well for wavelengths above ∼500
nm and is underestimated for wavelengths below ∼500 nm. Due to the relatively low
thickness of 100 nm and wider waveguides for longer wavelengths, the Payne-Lacey model
exhibits a good fit for wavelengths above 600 nm.

Chauhan et al. [44] demonstrated 20 nm thick LPCVD SiN waveguides on PICs for
integrated atomic, molecular and quantum photonics. They calculated the waveguide loss
by measuring the Q factor of the resonator rings. The widths of the resonator rings for
TE modes are chosen such that quasi-single mode operation is ensured, they are thus
1.3 µm wide for a wavelength of 461 nm and 2.3 µm wide for wavelengths of 674, 698, and
802 nm. The TM is filtered out by choosing the appropriate bending radii. Propagation
losses of 0.09, 0.01, 0.01, and 0.02 dB/cm were measured, with the loss corresponding to
the wavelengths above in order of increasing wavelength.
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Figure 6.3: a) TE and b) TM propagation loss for top layer (orange) and bottom layer
(blue) with exponential fit (blue line) and scattering loss fit using the Payne-Lacey-model
(dashed line) [43].

Zanarella et al. [13] also employed resonator rings to calculate the losses of 275 nm
thick LPCVD SiN waveguides. They measure rings of varying width and radius over a
wavelength range of 461 to 780 nm. The different waveguide widths range between 400 and
4000 nm and the bending radii between 30 and 300 µm. Using ellipsometry, they obtained
refractive indices and absorption coefficients of their thin films. Using the measurements,
they separated absorption losses from scattering losses by calculating the confined power
in the waveguide, as seen in Equation 5.1, and employed the Payne-Lacey model to fit
the sidewall roughness and correlation length. This results in a fitted sidewall roughness
of 1.5 nm with a correlation length of 90 nm. They show that for the fundamental TE
mode, the loss decreases from ∼1 dB/cm for 500 nm wide rings with a radius of 55 µm to
∼0.01 dB/cm for 4000 nm wide rings with a radius of 300 µm, as shown in Figure 6.4.
They attribute this decrease to a lower overlap of the waveguide mode with the sidewall,
thereby minimising the influence of the scattering loss. They further show that, depending
on the wavelength, the losses in the waveguide are either dominated by absorption or by
surface scattering.

Smith et al. [34] fabricated resonator rings with 150 nm thick SiN. They used Q factor
measurements to calculate propagation losses for a width of 500 nm and a radius of 110 µm
in a wavelength range of 400 to 1000 nm for both TE and TM polarisation. They achieved
mean propagation losses for all tested chips of ∼4 dB/cm and ∼2.5 dB/cm at a wavelength
of 400 nm for TE and TM respectively. At a wavelength of 700 nm the mean propagation
losses of all tested chips are ∼1.3 dB/cm and ∼0.7 dB/cm for TE and TM respectively,
while at 1000 nm the mean propagation losses for all chips are ∼1 dB/cm and ∼0.3 dB/cm.

Silicon nitride is not the only candidate for guiding light in the visible spectrum
on chips, the high absorption losses for SiN in the UV range are especially limiting for
wavelengths below 400 nm.
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Figure 6.4: Dependence of the waveguide loss on wavelength; Increasing the width (W)
and radius (R) leads to a decrease in waveguide loss, thereby moving from an absorption-
dominated area into a scattering-dominated area. Using the film absorption measurement
(black squares) the scattering is calculated from the total loss [13].

Single-crystalline aluminium nitride (AlN) is a promising material for UV waveguiding,
as its large bandgap of ∼6.2 eV results in a transparent window starting at wavelengths of
200 nm. Furthermore, AlN exhibits an intrinsic χ(2) susceptibly, which makes it interesting
for non-linear interactions [36][35]. Liu et al. [35] fabricated ring resonators from a 500
nm thick single-crystalline AlN film. For a width of 800 nm and radius of 30 µm, they
achieved losses of ∼8 dB/cm at a wavelength of 390 nm for TE polarised light using ring
resonators of 800 nm width. For TE polarised light at a wavelength of 455 nm, the loss
is reduced to ∼3.5 dB/cm. They argue that the increased loss stems from scattering at
rough sidewalls, as wider waveguides exhibit smaller losses.

Aluminium oxide (Al2O3) has a reported electrical bandgap of 5.1 to 7.6 eV, depending
on the deposition method used, translating into transparent windows starting from 163 to
243 nm [45] [36]. West et al. [45] used Atomic Layer Deposition (ALD) for 100 nm thick
Al2O3 films with high uniformity and low defect densities. Their measurements showed a
refractive index of 1.65-1.72 in the visible to NUV spectrum, which is higher than the
surrounding SiOx (n ∼ 1.45) but significantly lower than that of SiN (n ∼ 2). They
fabricated 600 nm wide waveguide structures for cutback measurements and achieved
losses of 3.12 dB/cm and 2.89 dB/cm for both TE and TM polarised light of 371 nm. For
405 nm light, their measurements showed a propagation loss of 1.77 dB/cm (TE) and 1.35
dB/cm (TM). They argue that the difference in loss is due to the different interaction
with the waveguide sidewalls for different polarisations.

Another promising material stack was recently shown by Jaramillo et al. [46], which
proposed a hafnium oxide (HfO2) aluminium oxide (Al2O3) stack for low absorption losses
in a wavelength range of 400 to 650 nm. They deposited HfO2 and Al2O3 films using
ALD with a layer periodicity P , whereas each period consisted of (1 − x)P layers of Al2O3

followed by xP layers of HfO2. Films between 80 and 100 nm thickness were grown in this
way and ellipsometry measurements showed that a period of 3 yields the lowest film losses.
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They provided a comparison of measured refractive indices n and extinction coefficients k

for Si3N4, HfO2, Al2O3, SiO2 and their HfO2/ Al2O3 film with period 3, shown in Figure
6.5

Figure 6.5: Measured a) refractive index n and b) extinction coefficient k for commonly
used materials in PICs. The ellipsometry does not resolve k-values ≪ 0.002 [46]. Note
that extinction coefficient values as low as 0.002 for λ = 405 nm equate to α ≈6200
dB/cm, see Equation 3.8.

Waveguides of varying width were measured using the cutback method to determine
waveguide losses. For TE polarised light of λ = 375 nm, a loss of ∼8 dB/cm was measured
for a 300 nm wide waveguide. The same waveguide shows a loss of ∼5 dB/cm for TE
polarised light of λ = 405 nm [46].

In summary, SiN waveguides show low losses, ∼0.1-0.01 dB/cm, in both infrared and
visible spectra for low-confinement structures, where most of the mode’s power is guided
in the cladding material. Multiple publications identify scattering at the sidewalls as
the main contribution to total propagation loss. Wide and thin waveguides have the
advantage of low loss, around 0.1-0.01 dB/cm, because the waveguide mode exhibits
a reduced overlap with the sidewall but has the significant drawback of large bending
radii of >300 µm to efficiently guide light in the PIC, resulting in increased chips sizes.
Furthermore, estimations of the sidewall roughness statistics were made by fitting the
loss to the Payne-Lacey model, which displays bad agreement for waveguides of <1000
nm as well as wavelengths below ∼500 nm for waveguides above 500 nm width. Sidewall
measurements involve either elaborate sample preparation to access the sidewall directly
for AFM measurements or were done by inferring the sidewall roughness via SEM images,
which has a lower precision for smaller roughnesses.
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CHAPTER 7

Material Losses

In Chapter 3 the frequency dependence of the refractive index and the absorption coeffi-
cient was explained. Measurements, as seen in [13] and [46], show that for SiN material
losses for wavelengths toward the UV regime start to become increasingly larger, thus
it cannot be disregarded for the efficient guiding of light in PICs. Ansys Lumerical uses
the refractive indices of SiN from the Handbook of Optical Constants of Solids [36] but
does not include the absorption coefficient for SiN. To obtain profiles for the SiN used in
this thesis and compare it with the SiN data from [36], my colleague Arie McOnie and I
measured the refractive index and loss using the Metricon 2010/M prism coupler for the
optical characterisation of thin films at multiple wavelengths. To facilitate this, 400 nm of
LPCVD SiN was deposited on 2.3 µm of thermal SiOx to enable guided modes in the SiN
thin film, the need for this is described below.

7.1 Optical Characterization of SiN
The Metricon 2010/M prism coupler uses the optical tunnel effect to couple coherent
light into the thin film using a prism. For measurements of the refractive index and
film thickness, part of the light couples into the thin film at certain angles between thin
film and prism, which cause dips in the measured intensity at the photodetector on the
outcoupling side of the prism, shown in Figure 7.1a. To measure the loss of the film, the
propagating mode is then measured using a fibre, which travels along the slab waveguide
capturing the out-scattered light at the surface as a function of length, as seen in Figure
7.1b [47].

The results of these measurements are depicted in Table 7.1. It is apparent that both
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(a)

(b)

Figure 7.1: Principle of a) Refractive index measurement and b) Loss measurement in a
Metricon prism coupler [47].

the refractive index and the loss increase exponentially for shorter wavelengths. This is
the Urbach tail as explained in Chapter 3.4.

Wavelength [nm] RI [1] Loss [dB/cm]
375 2.073±0.001 9.83±5%
405 2.059±0.001 5.17±5%
457 2.038±0.001 1.53±5%
488 2.028±0.001 0.36±5%
515 2.022±0.001 0.16±5%
633 2.003±0.001 0.12±5%

Table 7.1: Measured refractive index (RI) and bulk loss at different wavelengths with the
Metricon 2010/M prism coupler.

7.2 Modelling of the Optical Properties in SiN
As seen in the previous section, both refractive index and loss increase exponentially with
decreasing wavelength, where our data matches well with the data given in [36], but there
a much broader energy range was covered, providing measurement points down to the

42



XUV wavelength of 50 nm, which is not possible with the prism coupler. Thus, it is of
interest to extend the range of the measured data points by fitting and comparing the
Tauc-Lorentz and Tauc-Lorentz-Urbach model from Chapters 3.3 and 3.4 respectively, as
well as a simple exponential fit of the data to see which model fits best. The exponential
fit describes the behaviour of the dielectric functions in the region of the Urbach tail, as
explained in Chapter 3.2, but is certainly inaccurate for wavelengths below this region. It
is also of interest to compare our data to that of Palik’s Handbook of Optical Constants
of Solids [36], to see if the refractive indices used for the simulation of waveguides in
Lumerical’s MODE fit the fabricated waveguides and if the extinction coefficient of the
materials are similar.

All three fits under consideration were implemented using the Python scipy optimze
library. To accurately fit the models, the measured loss, which is provided in dB/cm, was
converted into the extinction coefficient κ using the following equation:

κ(λ) = α(λ)λ
4π

. (7.1)

With the absorption coefficient α and the wavelength λ. The refractive index and
the extinction coefficient can now be used to obtain the complex permittivity ε̃ using
the rewritten system of Equations 3.4 and 3.5. For the exponential fit, the function
a exp(−(xb) + c) is used to model the decreasing refractive index and extinction coefficient
for increasing wavelengths.

Using the complex permittivity, a fit of the TL-an and TLU-an functions is performed,
with the parameters obtained as follows

Model A [eV] E0 [eV] Eg [eV] C [eV] a [eV] Ec [eV]
TL-an 200.02 9.01 5.72 1.11 0.00025 -

TLU-an 256.41 8.10 5.26 5.94 0.00014 5.69

Table 7.2: Resulting parameters from fit for TL-an and TLU-an models.

The refractive index is fitted using the exponential function described above and yields
the following parameters

Function a b c
n 0.91 6232909 1.99
κ 1.386 · 104 2.323 · 107 0

Table 7.3: Resulting parameters from the exponential fit.

Using these fit values to calculate the fits for refractive index and extinction coefficient
yields the following results:

Figure 7.2 shows the functions of the fits obtained over a large wavelength range from
50 to 1000 nm. The exponential fit is restricted to a wavelength range of 375 to 730
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nm, as it is likely to deviate strongly for wavelengths below the measured 375 nm data
point. The TL-an fit deviates significantly for both n and κ while the TLU-an fit is closer
to the measured n data, while deviating significantly for κ, which is clearly visible on
the logarithmic scale. Even though the validity of the exponential fit is restricted to the
above-mentioned spectrum, it provides the most accurate fit.

The measured data points for SiN from Palik’s Handbook of Optical Constants of
Solids [36] are also fitted using the TLU model and compared to the fit of our SiN, as
shown in Figure 7.3.

Although fewer points are available from the prism coupler measurement, good agree-
ment with the refractive index data from the Handbook of Optical Constants of Solids
[36] is observable, indicating that the simulated waveguide in Ansys Lumerical should be
similar to the fabricated waveguides in terms of mode shape. Furthermore, our measure-
ments provide values for the extinction coefficient κ in the visible to near-IR wavelength
region, which was not available in [36].

Lastly, the obtained extinction coefficients are used to calculate the bulk loss expected
by the fits. This is done with the assumption that the whole mode is contained in the
film. If the mode is not contained exclusively in the film, the loss caused by the film can
be calculated with the Equation 5.1. The results for the bulk loss are shown in Figure 7.4.

Figure 7.4 emphasises the point stated above that the extinction coefficient is over-
estimated in the TL-an and TLU-an fits. With the current fit parameters, significant
loss should be observed even for infrared wavelengths. Even an increased number of data
points, as in the case for the fit with Palik’s data, does not result in a better fit. A possible
explanation for this is that the fits for n and κ are done by first fitting the imaginary part
of the permittivity ε′′

r and calculating the fit functions for n and κ from the fit function
for the complex permittivity ε̃r,an. Small deviations from the data caused by the fit of the
permittivity function might not be significant for the refractive index but, due to the large
difference in scale, have a large impact on the extinction coefficient. A better fit might
be achieved by rewriting the Equations 3.11 and 3.15 for n and κ to fit each function
separately. The exponential fit on the other hand models the real loss well, with some
deviation around 500 nm, thus it is justified to use the values from the exponential fit to
estimate the material loss in the waveguide simulations, as will be shown in Chapter 11.

In conclusion, it was shown that a fit of the SiN used in this thesis with the TL-an
and TLU-an models, as detailed in Chapter 3 is possible with the measured data using
a prism coupler. The resulting refractive index fit is best for the exponential model,
although the TLU-an yields sufficient results, while the TL-an model shows a significant
deviation. Both models overestimate the extinction coefficient, and even more data points
for the fit do not provide sufficient accuracy. Furthermore, the data from SiN in this
thesis closely match the data from Palik [36] which is used for the refractive index in
waveguide simulations, which means that there are no expected differences in terms of the
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modal behaviour in the waveguide. The bulk losses are best described by the exponential
fit, especially in the wavelength region of interest.
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(a)

(b) (c)

Figure 7.2: (a) Refractive index (blue) and extinction coefficient (orange) for the TL-an
(dotted) and TLU-an (solid) models over a wavelength range of 50 to 1000 nm. The
exponential fit (dotted) of the refractive index (red) and extinction coefficient (green) is
in the wavelength range of 375 to 730 nm. Magnified view of (b) the refractive index and
(c) the extinction coefficient on a logarithmic scale in the visible to near-IR wavelength
spectrum.
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(a)

(b) (c)

Figure 7.3: (a) Refractive index (blue) and extinction coefficient (orange) for the TLU-an
models of the SiN used in this thesis (solid) and from Palik’s collection [36] (dotted) over
a wavelength range of 50 to 1000 nm. Magnified view of (b) the refractive index and
(c) the extinction coefficient on a logarithmic scale in the visible to near-IR wavelength
spectrum, note that Palik’s data is not shown in this plot as no data for the extinction
coefficient is available, hence they are assumed to be zero for fitting purposes. The data
points for the fit from the Metricon measurement are shown as crosses, while the data
points from Palik are dots.
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(a) (b)

Figure 7.4: (a) Comparison of the bulk loss of TL-an (orange, solid), TLU-an (orange,
dotted), and exponential (green, dotted) models with data measured using the Metricon
and bulk loss from TLU-an fit of Palik’s [36] data (red, dotted) over a wavelength range
of 200 to 1000 nm. (b) Magnified view of (a) for the loss over the visible spectrum of 300
to 800 nm, closer to the wavelengths of interest in this thesis.
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CHAPTER 8

PIC Design

As both the propagation loss of the waveguides due to material and scattering losses, as
well as a direct measurement of the sidewall roughness are of interest, the design of the
PIC must incorporate both. The full PIC is shown in Figure 8.1 and the design of the
structures will be explained for the remainder of this chapter.

Figure 8.1: Design of the PIC used in this thesis.
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8.1 Waveguides
The waveguides were designed to operate in single mode for a wavelength range of 493
to 729 nm with an additional waveguide for 1763 nm, which was not used in this thesis.
All waveguides were simulated using Ansys Lumerical MODE and resulted in a set of
three waveguides of widths 250, 300 and 500 nm with a thickness of 170 nm. In FDTD
simulations, crosstalk above 10−5 dB between any two waveguides with a distance of
15 µm between each other and over a length of 50 µm was excluded for the chosen
wavelength range. To obtain a longer propagation distance over the limited chip area, the
waveguides must incorporate multiple bends, which were simulated using Ansys Lumerical
MODE and showed a large mode overlap between the straight and bent mode of 99.9%
at the wavelengths for single mode operation, which equals a loss of 0.0043 dB, for a
bending radius of 150 µm. This overlap shows that the mode inside the bent portion of
the waveguide closely resembles that of the straight waveguide, which results in negligible
losses due to conversion of the mismatched modes and additional scattering in the bends.
A large mode mismatch, resulting from small bending radii, means that the mode in the
bend is strongly shifted, as can be seen in Roberts et al. [42]. The worst case radiative
loss from this bend radius occurs for the 250 nm wide waveguide with 729 nm light and
is 4.78 · 10−5 dB/cm according to the Lumerical simulation. Figure 8.2 shows a closer
view of the waveguide structures, with the inset showing the evenly spaced set of three
waveguide widths, with a gap of 15 µm. The chosen lengths of the waveguides are 30, 40,
60, 80 and 100 mm to enable the measurement of the waveguide loss via the cut-back
method, which was explained in Chapter 6. Structures on the left and right sides are
duplicates, and the chip can be separated into two along the middle to measure waveguide
lengths of only half length.

8.2 Sidewall Roughness Measurement Structures
As the direct measurement of the sidewall roughness is also of interest, additional test
structures were designed to facilitate AFM measurements as much as possible. Roberts et
al. [42] showed a possible approach, but it is coupled with an additional fabrication effort.
To keep preparation simple, the idea is to simply cleave the chip as close as possible to a
waveguide, flip the chip with the cleaved facet facing the AFM needle and measure over
the sidewall using the AFM, as depicted in Figure 8.3.

To increase the probability of finding a portion of a measurable sidewall, an array of
curved structures was designed such that a possible misalignment between lithography
and substrate crystal axis, which would result in straight structures being at an angle of
the cleave line which follows the crystal orientation of Si, would still result in a measurable
area. The total width of the arrays is 2 mm and the length is 10 mm with the distance
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Figure 8.2: One half of the cut-back waveguide structures, with the inset showing the
three waveguide widths each separated by a 15 µm gap.

between each single test structure being 5 µm. The structures are shown in Figure 8.4.
The complete test structure array is visible in Figure 8.1, while 8.4 shows the alignment
structure for cleaving on the left as well as three arrays of the bent structures. The width
is repeatedly varied between the three waveguide widths used for the cut-back waveguides.
Although this does not add any benefit to sidewall measurements, because the roughness is
expected to be independent of the waveguide width, it allows easier detection of significant
overetching during the fabrication process of the different waveguide widths.

8.3 Crosstalk Structures
The crosstalk of the waveguides for the cut-back measurements must be avoided to ensure
accurate measurements, but the simulation of the waveguides in Ansys Lumerical FDTD
is limited due to the large computational task of simulating long distances. Because of
this, 250 nm wide waveguides were placed at decreasing gap sizes beside each other. The
gaps are 10, 7, 5, 3, 1, and 0.5 µm. For longer wavelengths, crosstalk will be observable
for larger gaps than for shorter wavelengths.

However, crosstalk can be exploited for directional coupling where the power of one
waveguide can be deliberately coupled into another. The power coupling ratio in the
second waveguide can be calculated using the following equation

P2(L) = P0 sin2
�

πLΔn

λ0

�
(8.1)
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Figure 8.3: Schematic process description of the sidewall AFM measurement. First the
chip is cleaved along the middle of the test structures, then flipped such that the facet is
facing upwards. Then the sidewalls can be measured using an AFM.

where P0 is the initial power in waveguide 1, Δn is the difference between the effective
refractive index of the mode in waveguide 1 without the coupling structure and the
mode in the coupling structure. λ0 is the vacuum wavelength, and L is the length of the
coupler [48]. The effective refractive index difference implies that the coupling is strongly
dependent on width, distance, and wavelength.

These directional couplers have been realised to transfer ratios of 30/70, 50/50 and
0/100 for a wavelength of 729. 532, and 493 nm. One such directional coupler for a 50/50
split at 493 nm is shown in Figure 8.5.

8.4 Bent Waveguides
As mentioned above, small bending radii can result in radiative losses. To characterise
the loss due to bends, waveguides were designed which have equal total length and equal
bending radius but differing amounts of bends. If the loss due to bends is large, a higher
amount of bends should result in a measurable reduction of the transmitted light. Instead
of measuring the loss over different waveguide lengths in the cut-back method, the loss for
different amounts of bends can be fitted to estimate the bending loss. For infrared light,
separate bending loss structures have been placed in the bottom right section in Figure
8.1. The bending radii are 50, 75, and 100 µm where each radius has structures with 10,
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Figure 8.4: Close up of the bent sidewall roughness measurement structures. On the left
are the alignment structures for cleaving, with three arrays of the three waveguide widths
on the right of the alignment structures.

Figure 8.5: Close up of the directional coupling structure for 50/50 coupling of 493 nm
laser light. The coupling length was calculated to be 8.1 µm.

20, 30, and 40 bends. The 50 µm radius bending loss structures are depicted in Figure 8.6.

Figure 8.6: Structures for estimation of the bending losses with different amount of bends
but total length.

Although the crosstalk and bending structures are included in the reticle, they were
not characterised due to time constraints.
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CHAPTER 9

Fabrication and Sidewall Measurements of Waveguides

This Chapter contains the discussion of the fabrication process. The etching process has
the largest impact on the shape and roughness of the fabricated waveguides, and the
results from different etching tools and methods will be presented.

9.1 Fabrication Process
As a first step, 2300 nm of thermal SiOx was grown on the Si substrate, after which
the SiOx was polished using chemical-mechanical polishing (CMP) to reduce the surface
roughness. As the next step 170 nm of SiN was deposited in an oven process, which
showed low roughness, of Rq ≈ 0.15 nm, and did not need an additional CMP step.
Afterwards, the backside antireflection coating (BARC) and photoresist were deposited
on the wafer using spin coating. The reticle, presented in Chapter 8, was transferred
to the photoresist using a KrF DUV process and the resist was developed. The critical
dimension (CD) of the patterned resist was measured in a SEM, where the target width
was the widths discussed in Chapter 8 increased by 15 nm due to a known overetch which
will be explained later in this chapter. In the next step, first the BARC was etched in the
etching chamber and then the SiN was etched. The remaining photoresist and BARC
were removed with an O2 plasma. After that, the CD was measured again using a SEM.
The wafers dedicated to sidewall roughness measurement were mechanically diced. For
wafers with waveguides for loss measurements, ∼6 µm of PECVD SiOx was deposited on
top of the etched waveguides after resist removal, after which they were stealth diced, a
process which will be explained in the following paragraph.
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Wafers which are fabricated to yield chips for loss measurements are diced using the
stealth dicing method as opposed to mechanical dicing using a saw, as the latter creates
rough facets, which negatively impacts the incoupling of the laser light. The rough facets
can be polished, but this involves extra effort, as both facets for every chip need first a
rough polish step followed by a fine polish. This procedure yields optically smooth chip
facets. The method of stealth dicing involves the following procedure: First, a laser is
used to induce multiple defects in the silicon lattice along the dicing lines and at different
depths in the substrate. This is followed by expanding the foil on which the wafer is
mounted to separate the chips from each other along the dicing lines.

The facets of chips without further preparation are shown in Figure 9.1a and b and
show that the quality of the facet varies, this could stem from the dicing process itself or
it is possible that the facets of neighbouring chips are ground against each other while
picking the chips from the foil. A single fine polish step was conducted on the facet in
Figure 9.1c and shows a clear improvement. The facet quality of stealth diced chips
warrants further investigation but these results indicate that a combination of stealth
dicing and a fine polish produce high quality facets for edge coupling of photonic chips.

(a) (b) (c)

Figure 9.1: (a) and (b) Facets of stealth diced chips under microscope view, the white
dots are the waveguides where the waveguide in the middle is in the yellow circle, (c)
SEM image of the polished facet, the waveguide is in the middle of the picture but not
visible in SEM.

9.2 Investigation of Etching Tools and Methods
The etching process is the main impact on waveguide shape and sidewall roughness, as
seen in multiple publications in Chapter 6. Therefore, an investigation of different etching
tools and methods was conducted.

9.2.1 Variation of RIE Etch Tools

Reactive ion etching (RIE) is the main etching process used to fabricate waveguides. To
see if the employed tools have an impact on the shape and sidewall roughness, four different
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etchers were used to structure the waveguides. Etchers 1 and 2 employ an inductively
coupled plasma, while etchers 3 and 4 use a capacitively coupled plasma. Figure 9.2 shows
top-down SEM images of the etched structures. To evaluate which etcher is the best, it is
important to see if the waveguide is properly etched. That is, if the top surface is etched,
if the taper angle is close to 90◦, schematically shown in Figure 9.3, and if the resulting
width of the waveguide deviates from the target width due to an overetch, this difference
is called the etch bias.

(a) (b)

(c) (d)

Figure 9.2: Top-down SEM images of waveguides etched with (a) etcher 1, (b) etcher 2,
(c) etcher 3, and (d) etcher 4.

Etcher Taper Angle α [◦]
1 85
2 87
3 60
4 80

Table 9.1: Measured taper angles α for the different etchers. The calculation of the angle
depends on the resolution of the cross-section and is accurate up to ±2◦.

As can be seen in Figure 9.2, the etched waveguides have a tapered geometry because
the sidewalls of the waveguides are visible in the top-down image. The taper angles α for
the different etchers are listed in Table 9.1. Figure 9.2a shows the results from etching
with etcher 1. The sidewalls are steep and the top surface is not etched during the process,
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Figure 9.3: Schematic depiction of a tapered waveguide cross-section of the SiN waveguide
on SiOx bottom cladding. The taper angle is α.

the angle of the sidewalls is 85◦. The etch bias is close to zero, as this etcher was used for
previous structuring of SiN waveguides before this thesis and thus the reticle was adjusted
for the expected etch bias, as mentioned in Chapter 9.1. The result of etcher 2 is depicted
in Figure 9.2b, although the sidewall angle is close to ideal at 87◦, the top surface is
strongly etched, which is clearly visible in the top-down SEM image. Additionally, the
waveguide overetch is significant with a bottom width of ∼140 nm instead of the target
250 nm. Figure 9.2c shows the waveguide etched with etcher 3. The top surface is not
etched, but a small taper angle of 60◦ is visible in addition to redeposited material on
the sidewalls. The source of this could be either redeposited oxide, from an overetch
into SiOx, or repolymerisation from the etched photoresist. Additionally, the waveguide
shows a large etch bias of 100 nm. The result with etcher 4 is shown in Figure 9.2d, with
an acceptable sidewall angle of 80◦ but strong etching of the top surface reduced the
waveguide thickness to ∼80 nm. Additionally, the width is reduced to ∼130 nm instead
of 250 nm. An overetch into the SiOx below was visible for each etcher, where etchers 1
and 2 showed a stronger etch close to the sidewall commonly due to the physical etch
component.

By judging each etcher’s performance with the above-mentioned criteria, together with
initial AFM measurements, I could determine that etcher 1 is the best available etcher
for the purpose of producing SiN waveguides. Even disregarding the advantage of the
etch-bias-adjusted reticle, it resulted in good taper angles without etching the top surface.
Furthermore, for each etcher, the etch recipes were adjusted but showed no significant
improvement, with etcher 1 showing the best overall performance.

Thus, all further RIE steps in the following trails were conducted using it. A first test
wafer using etcher 1 was diced after etching as described in Chapter 9.1, and the separated
chips were used to measure the roughness of the sidewalls of the test structures according
to the scheme proposed in Chapter 8.2. Multiple measurements were performed with the
resulting RMS roughness values Rq and correlation length values along the waveguide Lc,z

shown in Table 9.2. The information on whether the chip was taken from the centre or
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the half-radius of the wafer is also listed. Figure 9.4 shows an example of the sidewall
AFM measurement. The lower part of Figure 9.4 shows the oxide layer, with a clear jump
due to the cleave edge followed by the SiN waveguide sidewall. The vertical striations,
often referred to as curtaining, is clearly visible. The slight angle of the striations comes
solely from an offset during measurement. This was checked by repeated measurements
of the same sidewall, where the striations were perfectly vertical on another try, while a
measurement in the other direction showed the striations angled in the opposite direction
as before. The varying roughness along the waveguide’s propagation axis is also visible.
Above the waveguide, the AFM tip is in the air, and thus only noise is measured. CD
measurements of the etched waveguides showed a worst-case deviation of the target
width of ±15 nm, due to the sum of variations from lithography and etching. The AFM
measurements in Table 9.2 indicate a slightly higher roughness of waveguides further
away from the waveguide centre, while there is no clear connection between correlation
length and position of the measured chip on the wafer. No measurements of the sidewall
roughness were made at the outermost edge of the wafer. Table 9.3 shows mean values
and standard deviation of the Rq and Lc,z data, which will be important for the simulation
of the waveguide loss in Chapter 11.

Figure 9.4: AFM measurement of the sidewall of a SiN waveguide on a cleaved chip. The
transition from bottom SiOx to SiN is clearly visible by the edge produced curing the
cleaving of the chip.

Location Rq [nm] Lc,z [nm]
Centre 0.86 72
Centre 1.04 54
Centre 0.95 99
Centre 0.97 61

R/2 1.07 52
R/2 1.08 47
R/2 1.17 77
R/2 1.26 70

Table 9.2: Measured Rq and Lc,z for different chips of the wafer etched by etcher 1. Chips
were either taken from the centre or the half radius (R/2) of the wafer.
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Rq

Mean [nm]
Rq

±σ [nm]
Lc,z

Mean [nm]
Lc,z

±σ [nm]
1.05 0.12 67 16

Table 9.3: Mean values and standard deviation of Rq and Lc,z for the etching process
using etcher 1.

9.2.2 Variation of Etching Methods

Although RIE is most commonly used to etch waveguides, other methods such as wet-
chemical etching and ion beam etching (IBE) were explored to see how the different
etching processes impact the resulting waveguides. Figure 9.5 shows top down SEM
images of the etched structures. The wet-chemical process uses a polycrystalline Si hard
mask and a subsequent etch in hot phosphoric acid to selectively etch the SiN to the Si.

(a) (b)

(c) (d)

Figure 9.5: SEM images captured (a) top-down and (b) 45◦ angled of IBE process as well
as (c) top-down and (d) 45◦ angled capture of wet etch process. In both processes, the
pictured waveguide has a target width of 500 nm.

Figure 9.5a and b show the ion beam etched waveguide. A high roughness is clearly
visible, as well as a strong decrease in the target CD. The top surface was also etched,
creating the waviness visible in Figure 9.5b. The wet-chemically etched waveguide is
depicted in Figure 9.5c and d. The sidewalls are smooth compared to the IBE process.
The SEM images indicate a nearly rectangular cross-section, with an estimated taper
angle of ∼85◦, as no significant taper is visible in neither top-down nor angled image,
similar to the RIE etched waveguide in Figure 9.2a.
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Although the IBE process did not produce an accurately measurable sidewall, a single
AFM measurement of the wet-etched waveguide showed a Rq value of 1.51 nm and a Lc,z

value of 107 nm. The roughness higher by ∼50% while the correlation length is slightly
larger compared to the results of the RIE process with etcher 1 in Table 9.2.

Although the wet-chemical process results in waveguides of acceptable shape and
roughness, it is not viable for fabrication of usable PICs because of the significant overetch
resulting from the isotropic nature of the process. The significant reduction of the target
width prohibits the fabrication of structures with large height-to-width ratios, such as
grating couplers. The IBE process showed etching of the surface and increased sidewall
roughness. Tuning of the etching parameters and the possible inclusion of a hard mask to
protect the SiN during etching could improve the process but warrants further engineering.

9.3 Investigation of BARC Etch and SiN Etch on
Photoresist

Top-down SEM measurements of the resist after lithography, BARC etch, and SiN etch
are shown in Figure 9.6. After lithography (Figure 9.6a), the resist is smooth and does
not exhibit clearly visible roughness. Etching the BARC (Figure 9.6b) results in a lumpy
and rough resist topography. The SiN etch (Figure 9.6c) consumes the resist during the
process, but local deviations of the width are observable. Figure 9.7 shows a SEM image
at a 45◦ angle where unknown material is clearly visible on the sidewall and the bottom
of the waveguide. A possible explanation is the polymerisation of the resist during the
BARC etch, which could lead to increased non-uniformity in the pattern transfer step of
the SiN etch, as explained by Marchack et al. [49] in the case of Si waveguides.

(a) (b) (c)

Figure 9.6: Top-down SEM images of the same 250 nm wide waveguide after (a) lithography,
(b) BARC etch and (c) SiN etching. For each step the CD is measured which shows the
etch bias for the SiN etch.
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Figure 9.7: 45◦ angled SEM image of the resist after opening the BARC. The etched top
surface of the resist is clearly visible as well as the redeposition along the sidewall and at
the bottom interface between SiN and BARC.

To mitigate this, the lithography process was tested without BARC but because of
the low surface adhesion of the photoresist on SiN, even with the addition of the adhesion
promoter hexamethyldisilazane (HMDS), the resist structures were removed during the
development step.

Comparison of these results with the measurements from Roberts et al. [42] in Table
6.1 show that our DUV process performs better in terms of RMS roughness while a
deviation in the correlation length is observable. How the correlation length impacts
the scattering loss will be explained in a later chapter. In contrast, the electron-beam
process yields better roughness while yielding comparable correlation lengths. The most
significant drawback of electron-beam lithography is low throughput.
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CHAPTER 10

Waveguide Characterisation

This chapter contains a description of the measurement setup for waveguide character-
isation. An overview of which waveguide width was measured with the corresponding
wavelength is given in Table 10.1, as the waveguides should only be single mode. As
explained in Chapter 8, the waveguides were originally designed for single mode operation
in a wavelength range of 497-786 nm, but due to the availability of wavelengths 450 and
866 nm the single mode operation was checked with Ansys Lumerical MODE and is
discussed in the corresponding section of the measurement results.

Input Laser
Wavelength [nm] 250 [nm] 300 [nm] 500 [nm]

450 x
532 x
639 x x
730 x x x
866 x

Table 10.1: Measured waveguide widths (rows) for available wavelengths (columns). The
waveguide widths was chosen such that the waveguides were expected to operate in single
mode.

10.1 Measurement Setup and Method
Figure 10.1 shows the measurement setup used for waveguide characterisation, as well
as a schematic overview of the setup. The incoupling setup is fixed on a high-precision
hexapod positioning system from PI, which allows the input to be positioned and aligned
in six degrees of freedom, three translation axes and three rotational axes. The laser
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light is coupled in via a polarisation-maintaining fibre and the beam collimated with an
aspheric lens. The subsequent half- and quarter-plates are used to adjust the polarisation
of the light. Afterwards a 66/33 splitter is used to direct a part of the light to an opening
where collimation, polarisation, or power of the beam can be measured. Fixed to the same
splitter is a light source to visualise the input facet and a Thorlabs CS165MU/M camera
to find the waveguides. A Nikon LU Plan 100x BD microscope objective is used to focus
the beam. The PIC is placed on a vacuum chip holder in the middle of the setup, which
can move vertically to place the output facet in the output camera’s field of view. The
output stage of the setup is placed on two GMT servo motors which allow the camera to
be moved along the remaining two translation axes. The outgoing light of the waveguide
is collected by a Nikon LU Plan x50 BD microscope objective. A cage for a Thorlabs filter
holder is placed after the objective to optionally dampen the light to prevent damage to
the camera. Similarly to the input side, a light source and Lucid camera are attached
to find the waveguides at the output facet and record the outgoing light. An additional
Lucid camera is placed facing the surface of the chip to assist in finding the waveguide
structures and optionally record top-side scattered light

Figure 10.1: Setup used for waveguide loss characterization. Light is coupled in from the
left side and focused at the sample mounted on the sample holder. The transmitted light
is collected by an objective and measured with a camera mounted on the rightmost part
of the cage. Additional cameras on the input side and front facing support in finding
waveguide structures.

All waveguides were measured using the cut-back method, explained in Chapter 6.
For each waveguide measurement, the following procedure is carried out:

1. The waveguide to be measured is roughly approached such that the incident laser
light beam is overlapping with the waveguide at the input side. The output side is
adjusted such that the waveguide is visible in the output camera.

2. The microscope illumination at input and output are turned off and the laser light
is switched on.
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3. The polarisation is checked to ensure that the incoupled light is TE or TM polarised,
depending on the current measurement.

4. The powermeter is connected at the splitter output on the input side to monitor the
power of the laser light during measurement.

5. The input and output stages are positioned such that the recorded light spot at the
output is as bright as possible.

6. The image of the output is saved together with the exposure time of the camera to
enable accurate post-processing.

10.2 Measurement Results
The measurement results are presented for each waveguide geometry. For each measured
wavelength, an example of the linear fit for one chip is shown, and the weighted mean of
the measurements with error bars of one standard deviation are presented at the end. In
total, five chips were measured that are labelled chips 1-4 with the additional chip whose
facets were polished, labelled chip B1. Unfortunately, after the first measurement with 639
nm laser light chip 4 was damaged which is why, besides for 639 nm, only four chips were
available for measurement. As explained in Chapter 8, the full chip has waveguides of
lengths 30, 40, 60, 80 and 100 mm, with the possibility of halving the waveguide lengths.
Due to an error in the dicing plan, only chips with halved waveguide lengths were available
to measure.

10.2.1 170x250 nm

Simulation of the tapered waveguide, which is closer to the actual waveguide shape as seen
in Chapter 9, has shown that the waveguide possesses a strongly dampened second-order
TE mode for a wavelength of 450 nm, which disappears if the waveguide base width
is slightly narrower than the target of 250 nm. Higher wavelengths always resulted in
single-mode operation, even for rectangular waveguides wider than the target width.
Therefore, the measurements for 450 nm light were included, with the result for chip 5
shown in in Figure 10.2a for the TE mode and 10.2b for the TM mode. Although a linear
fit is possible, a slight curvature in the distribution of the points is observable, which is
present for each chip measurement. A possible explanation for this behaviour could be
mode conversion into the higher TE mode or conversion from TE to TM modes and vice
versa over long distances and in bends, which might be the cause for the reduced loss.
Similarly, the initial TM mode might leak into the TE modes, which increases the loss.
This could explain the similar loss for TE and TM polarised light.
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(a) (b)

Figure 10.2: Linear fit of the measured loss for 250 nm wide waveguides at a wavelength
of 450 nm for (a) TE and (b) TM modes of chip 5.

The linear fit of the measurement with 532 nm wavelength of chip 5 is shown in Figure
10.3a for the TE mode and 10.3b for the TM mode. Some variation in the power of the
measured output was observed, which is likely due to power fluctuations in the laser. Each
fit of the measured chips is of similar quality to the example given.

(a) (b)

Figure 10.3: Linear fit of the measured loss for 250 nm wide waveguides at a wavelength
of 532 nm for (a) TE and (b) TM modes of chip 5.

Measurements with 639 nm laser light exhibited higher fluctuations in power resulting
in greater uncertainties of the linear fits. The best fit from chip 5 is depicted in Figure
10.4a for the TE mode and 10.4b for the TM mode. The measurements for other chips
show a greater variance, likely because of the greater fluctuation of the laser’s power or
local inhomogeneities in the facet roughness, which was observed during measurement,
because no clear trend in the distribution of the measured powers was observed.

The longest wavelength measured for the 250 nm wide waveguides was 730 nm. The
linear fits show good results, with the best fit depicted for chip B1 in Figure 10.5a for the
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(a) (b)

Figure 10.4: Linear fit of the measured loss for 250 nm wide waveguides at a wavelength
of 639 nm for (a) TE and (b) TM modes of chip 5.

TE mode and 10.5b for the TM mode.

(a) (b)

Figure 10.5: Linear fit of the measured loss for 250 nm wide waveguides at a wavelength
of 730 nm for (a) TE and (b) TM modes of chip B1.

Figure 10.6 shows the measured losses of TE and TM modes with the corresponding
mean values and standard deviations listed in Table 10.2. The loss for a wavelength of 450
nm was measured to be higher for TE than for TM mode, which is, as explained above,
likely due to multimode conversion in the waveguide. For the remaining wavelengths, the
loss of the TE mode remains larger than the loss of the TM mode, but the difference
decreases as the wavelength increases. The next highest available wavelength, 866 nm,
was not measured as simulations showed that no mode could propagate in the waveguide.
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Figure 10.6: Collected mean loss with one standard deviation of TE (blue) and TM
(orange) modes over the measured wavelengths for 250 nm wide waveguides.

Input Laser
Wavelength [nm]

TE Mean
Loss [dB/cm]

TE
±σ [dB/cm]

TM Mean
Loss[dB/cm]

TM
±σ [dB/cm]

450 7.66 0.33 8.05 0.23
532 6.02 0.77 4.62 0.26
639 2.88 0.24 1.75 0.23
730 1.55 0.19 1.30 0.12

Table 10.2: Mean loss and standard deviation for TE and TM polarised laser light of the
measured wavelengths for 250 nm wide and 170 nm thick waveguides.

10.2.2 170x300 nm

The best linear fits of the measurements with 639 nm were observed for chip 5 and are
depicted in Figure 10.7a for the TE mode and 10.7b for the TM mode. Similarly to the
250 nm wide waveguides, an increased variation in the measured power was observed for
some chips with rough facets.

The measurements for 730 nm showed little variation, as seen in the examples in
Figure 10.8, with the fit of chip 5 yielding the best results.

Simulations predicted both TE and TM propagating modes for 866 nm but the mea-
surement showed significant crosstalk from the 300 to the 500 nm waveguides. Because
during chip design the crosstalk simulations for this wavelength was not conducted and
the gap distance between waveguides is too small.

The collected measurements are depicted in Figure 10.9 with the means and standard
deviations in Table 10.3, as expected the loss for TE is higher than TM and decreases
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(a) (b)

Figure 10.7: Linear fit of the measured loss for 300 nm wide waveguides at a wavelength
of 639 nm for (a) TE and (b) TM modes of chip 5.

(a) (b)

Figure 10.8: Linear fit of the measured loss for 300 nm wide waveguides at a wavelength
of 730 nm for (a) TE and (b) TM modes of chip 5.

with longer wavelengths. Due to only two measurement wavelengths, it is not possible to
qualitatively describe the behaviour of the loss over other wavelengths. Furthermore, a
decrease in the loss for the wider waveguide is observable when comparing the results for
the 250 and 300 nm wide waveguides.

This is concurrent with the theory that an increased width reduces the electric field
strength at the sidewall and thus the scattering losses.

10.2.3 170x500 nm

Similarly to the measurements of 250 and 300 nm wide waveguides, some output power
variation was observed for the 500 nm wide waveguides for 730 nm laser light. Also,
similarly to the other measurements, better facets yielded less variation in the output
powers. The best fit from the measured chips was for chip 5 and is shown in Figure 10.7a
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Figure 10.9: Collected mean loss with one standard deviation of TE (blue) and TM
(orange) modes over the measured wavelengths for 300 nm wide waveguides.

Input Laser
Wavelength [nm]

TE Mean
Loss [dB/cm]

TE
±σ [dB/cm]

TM Mean
Loss[dB/cm]

TM
±σ [dB/cm]

639 2.05 0.26 1.55 0.17
730 1.27 0.11 0.80 0.06

Table 10.3: Mean loss and standard deviation for TE and TM polarised laser light of the
measured wavelengths for 300 nm wide and 170 nm thick waveguides.

for the TE mode and 10.7b for the TM mode.
The measurements with 866 nm wavelength only yielded results for both TE and TM

mode in chip 1, depicted in Figure 10.11, while it was possible for chip B1 to conduct a
linear fit of the TE mode, this was not possible for the TM mode. In the case of chip 2 this
was the other way around with the TM yielding an acceptable fit. A possible explanation
could be that the loss is so low that the fluctuations in the observed spot brightness at
the waveguide outputs are larger than the loss itself. Therefore, a good fit can only be
extracted when the error due to the fluctuations is equal over the measured wavelengths.
Crosstalk between waveguides is unlikely, as overexposed measurements of the waveguide
outputs yielded no observable crosstalk. Measurements of the full chip, which contains
waveguide lengths of 60, 80 and 100 mm, could result in better loss measurements, as the
loss of the individual waveguides is larger due to the longer propagation distance.

The measurements of the two wavelengths are collected in Figure 10.12 with the
calculated means and standard deviations listed in Table 10.4. The results of 730 nm
wavelength show the expected decrease in loss for the wider waveguide, as well as a smaller
TM loss than TE loss. The larger loss of the TM mode at 866 nm is due to the unreliable
measurements.
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(a) (b)

Figure 10.10: Linear fit of the measured loss for 500 nm wide waveguides at a wavelength
of 730 nm for (a) TE and (b) TM modes of chip 5.

(a) (b)

Figure 10.11: Linear fit of the measured loss for 500 nm wide waveguides at a wavelength
of 866 nm for (a) TE and (b) TM modes of chip 1.

The measurements generally yielded good linear fits. An increased fit quality was
observed in chips with smooth facets over all waveguide lengths, such as chip 5 and chip B1,
compared to visibly rougher facets, which was observed for chip 1 and chip 2. Although
chip 5 was not polished after dicing, better facet quality was observed compared to chips
1 and 2. This warrants further investigation in the stealth dicing process and confirms
the discussion in Chapter 9.1. Furthermore, for wavelengths in near-IR, measurements
over longer waveguide lengths are expected to increase the accuracy of the measurements.
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Figure 10.12: Collected mean loss with one standard deviation of TE (blue) and TM
(orange) modes over the measured wavelengths for 500 nm wide waveguides.

Input Laser
Wavelength [nm]

TE Mean
Loss [dB/cm]

TE
±σ [dB/cm]

TM Mean
Loss[dB/cm]

TM
±σ [dB/cm]

730 0.95 0.10 0.45 0.07
866 0.38 0.16 0.70 0.18

Table 10.4: Mean loss and standard deviation for TE and TM polarised laser light of the
measured wavelengths for 500 nm wide and 170 nm thick waveguides.
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CHAPTER 11

Simulation of Waveguide Loss

While measurements give loss values for fabricated waveguide geometries at certain
wavelengths, a robust waveguide loss estimation is desired to predict the loss for arbitrary
waveguide geometries and wavelengths. The loss from material absorption can be calculated
by fitting the measured thin film losses, as seen in Chapter 7, and applying Equation 5.1
with the percentage of power contained in the waveguide for the chosen mode. This is
calculated as follows

P = 1
2

� t

0

� w

0
ℜ{E × H∗}dxdy (11.1)

where t is the thickness of the waveguide, and w the waveguide width. The cross
product of electric field E and magnetic field H is the Poynting vector, which can be
used instead to calculate the power in the waveguide. The 1/2 factor comes from the
fact that either input or output power is calculated, which are equal for the cross-section.
The power of the whole mode, including the portion of the mode in the cladding, can be
calculated by setting the integration limits to ±∞, as seen in Equation 5.28.

All loss values presented include the waveguide material loss, unless it is explicitly
stated that only the scattering loss is discussed. Furthermore, unless stated otherwise, all
calculations of the waveguide modes were done using the Ansys Lumerical MODE simula-
tion suite. Only rectangular waveguides are simulated, as the simulation of the tapered
waveguide results in inaccurate fields extracted from the sidewall due to the rectangular
mesh of the finite difference method. A finite element method (FEM) simulation can be
used for more accurate fields at the tapered sidewalls which will be discussed at the end
of this chapter.
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11.1 Implementation of the Scattering Simulation
To enable calculation of the scattering loss, the Hoermann model, as presented in Chapter
5.2, was implemented using Python. The calculation depends on the extracted electric
field values at the waveguide interfaces, which was done by a function written in Python
that searches the 2D mode field and extracts an 1D array of the electric field in the three
spatial coordinates at the surfaces. The process of obtaining the waveguide loss is as
follows:

1. The desired waveguide geometries and wavelengths are simulated, and the resulting
TE and TM fields are saved using Python’s Pickle module.

2. The simulation result file is loaded in the Python script for loss calculation.

3. The script extracts the necessary information for calculation from the simulation
results, such as wavelength, waveguide width and height, effective refractive index
of the modes, and electric fields.

4. The script finds the electric fields at the inside of the waveguide surfaces and saves
them in an array, as well as calculating the power in the waveguide from the field of
the Poynting vector.

5. The scattering at the interface is calculated using the Hoermann model using the
measured Rq, Lc,y, and Lc,z values.

6. The scattering for each interface and the total loss, including the waveguide material
loss, are saved for further visualization.

11.2 Simulation of the Measured Waveguides
To compare the simulation with the fabricated and measured waveguides, combinations
of wavelength and waveguide, as seen in Table 10.1, were simulated and the loss was
estimated using the roughness parameters extracted from the AFM measurements listed
in Table 9.2. Hoermann et al. [15] use a variation of the correlation length to match the
theory results with experimental values. As the goal of this thesis is to find a suitable
simulation model to estimate the waveguide loss without directly comparing it with
measured values, and not to adjust the simulation to obtain the best fit, Lc,y is measured
by extracting the ACF from the sidewall AFM measurement. As mentioned in Chapter 5,
the correlation length is commonly understood to be the distance after which the ACF
has decayed to 1/e. The normalised ACF from a sidewall measurement, which is nearly
identical for all sidewall measurements, is shown in Figure 11.1a. Clearly, the ACF does
not drop to 1/e in the measured region because the waveguide height is too small. The
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correlation length of the exponential kernel is therefore found by fitting the kernel over
an extended distance, the result is shown in Figure 11.1b and estimates a correlation
length of 2.8 µm. Although this method is not the most accurate, it is the best guess
unbiased by the experimental loss results and is therefore used for the calculation of the
propagation losses. Compared to the thickness of the waveguide of 170 nm the correlation
length of 2.8 µm is effectively infinite and, as will be shown in Chapter 11.3, the difference
in simulated loss for Lc,y=2.8 µm and Lc,y=∞ is very small. To check if the correlation
length along the waveguide’s propagation direction Lc,z is accurate, the kernel is compared
to the extracted ACF in Figure 11.2, where the measured correlation length was 47 nm
and shows good agreement with the AFM data.

(a) (b)

Figure 11.1: (a) Measured ACF along y-axis (b) Fit of exponential kernel with Lc,y=2.8 µm
over a distance of 2 µm as the measured ACF does not drop to 1/e in the measurement.

Figure 11.2: Measured ACF along z-axis (blue) with measured Lc,z=47 nm and fit of the
exponential kernel (orange) for the measured correlation length.

The propagation losses are estimated with two methods: One in which each tuple of the
Rq and Lc,z values is used to calculate the loss and another in which a combination of the
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Rq and Lc,z values is used. The results are presented in Figure 11.3 where the simulated
losses are compared to the measured losses for 250, 300 and 500 nm wide waveguides,
where each width is one row. The left column contains the results for the loss calculations
using the measured Rq and Lc,z tuples, while the right column shows the calculated losses
for the combinations for the mean values with one standard deviation for Rq and Lc,z.
In both cases, the measured losses are identical. The large difference in measured and
simulated losses for 450 nm in Figures 11.3a and b is likely due to the possible multimode
operation or TE ↔ TM mode conversion in the waveguide, as discussed in Chapter 10.2.
Although the results for the TE mode at 532 nm in Figures 11.3a and b show good
agreement, the TM mode is underestimated. For longer wavelengths, both modes show a
closer match of the simulated and measured values. The TM modes for the 300 nm wide
waveguides in Figures 11.3c and d show good fits between simulation and measurement,
while the means of the TE mode for 639 nm deviate by ∼1 dB/cm and ∼0.5 dB/cm
for 730 nm. The TE modes at 730 nm for the 500 nm waveguides in Figures 11.3e and
f show good overlap, while the TM modes are almost coincident. Unfortunately, the
simulation and measurement are poor fits for 866 nm due to inaccurate measurement.
Furthermore, the losses for the Rq and Lc,z tuples show a better agreement than the Rq

and Lc,z combinations.

The differences between measured and simulated losses could be influenced by two
factors. On the one hand, the width was assumed to be exactly the target width of
the design, variations in the actual width have been observed during fabrication, as
mentioned in Chapter 9.2, with a worst-case deviation of ±15 nm from the target width.
Changes in the waveguide width lead to changes in the electric fields at the sidewalls.
Therefore, simulations have been conducted where the wavelength was kept constant
and the waveguide width varied. The other influence on the scattering loss could be the
taper of the waveguide sidewalls. In cases where the difference of measured to simulated
loss could not be reasonably explained by width variation, a simulation of the tapered
waveguide could provide answers. For the calculation of the width sweep losses, the
mean values of Rq and Lc,z, with deviations of ±σ, were used to obtain upper and lower
bound of a band for the simulation results. The error bars for the measured points denote
the calculated standard deviation of the measured propagation loss and the deviation
from target width. The correlation length in y-direction was kept constant at 2.8 µm
Figure 11.4 shows the width sweep for the 250 nm wide waveguide at a wavelength of
450 nm. Although the TE loss could be explained by the deviation of the target width,
the TM mode loss is significantly greater than the simulated loss. This supports the the-
ory that other mechanisms, in addition to scattering and material losses, have an influence.

The width sweep for a 250 nm wide waveguide at a wavelength of 532 nm is depicted
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(a) (b)

(c) (d)

(e) (f)

Figure 11.3: Left columns shows the result for measured Rq and Lc,z tuples, right column
shows the results for the combination of means ± one standard deviation of measured Rq

and Lc,z values. The measured TE (blue) and TM (orange) mode losses are plotted for
the simulated TE (green) and TM (red) mode losses. (a) & (b) 250 nm wide waveguides,
(c) & (d) 300 nm waveguides, and (e) & (f) 500 nm waveguides. The dotted lines between
the measurement points are used to guide the eye and are not measured data.
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Figure 11.4: Propagation loss for the width sweep of a 250 nm waveguide at a wavelength
of 450 nm.

in Figure 11.5. The loss of the TE mode fits within the lower bound for the target width,
while the loss of the TM mode is outside the upper bound. TE ↔ TM mode mixing could
is unlikely to occur here, because the curvature in measured power as seen in the case for
450 nm in Figure 10.2 was not observed for 532 nm in Figure 10.3.

The waveguide width sweep of the 300 nm wide waveguide at a wavelength of 639
nm is shown in Figure 11.6. The difference in TM mode loss is explained by assuming a
smaller width of the measured waveguides and the TE mode loss is overestimated.

Carrying out the width sweep for a target width of 500 nm at 730 nm wavelength
yields the result shown in Figure 11.7. As seen in Figures 11.3e and f, the simulation of
the intended width is already a good fit, while a reduced waveguide width provides results
closer to the measured loss.

By sweeping the waveguide width, the deviation of the simulation from the measurement
for 730 nm can be explained by assuming that the measured waveguides were more narrow
than assumed. For the lower wavelengths 450 and 532 nm for 250 nm width and 639 nm
for 300 nm width, the sweep did not provide sufficient explanation. Whilst the loss of the
TE mode for 532 nm can be explained by the sweep but shows a small overestimation,
the loss of the TM mode is significantly underestimated. Likewise, the sweep of the 300
nm wide waveguide for 639 nm shows an overestimation of the TE mode loss while the
TM mode loss is slightly overestimated. This leads to the conclusion that the differences
are caused by the comparatively low wavelength in regards to the waveguide width. This
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Figure 11.5: Propagation loss for the width sweep of a 250 nm waveguide at a wavelength
of 532 nm.

Figure 11.6: Propagation loss for the width sweep of a 300 nm waveguide at a wavelength
of 639 nm.
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Figure 11.7: Propagation loss for the width sweep of a 500 nm waveguide at a wavelength
of 730 nm.

could also be the case for the 250 nm width sweep at 450 nm wavelength, but because
of the curvature observed in the losses of the different waveguide widths in Figure 10.2,
another mechanism could cause the increased divergence from the measured losses.

Therefore, a simulation of the tapered waveguides with the measured 85◦ taper angle
could provide better results, but as the correct extraction of these fields at the interfaces
is not trivial for tapered waveguides, this is outside of the scope of this thesis.

As the position of the extracted field is vital to estimate the scattering loss, Table
11.1 shows the comparison of the calculated loss with the measured loss for the 250 nm
wide waveguide with 532 nm laser light when using the electric field values inside and
outside of the waveguide at a distance of 1 nm from the interface. It is therefore essential
to extract the electric fields as close as possible on the inside of the interface between
waveguide and cladding to get the best results.

Loss Mean [dB/cm] Loss σ [dB/cm]
Measurement TE 6.02 0.77
Sim TE outside 2.45 0.54
Sim TE inside 7.18 1.65

Table 11.1: Comparison of measured and calculated loss for 532 nm light in 250x170 nm
waveguides for fields outside and inside the waveguide.
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11.3 Influence of Roughness and Correlation Length
on Scattering Loss

The previous chapter focused on comparing the measurement with the simulation. To
estimate how changes in roughness parameters Rq, Lc,y, and Lc,z influence the scattering
loss, a simulation of a single sidewall of a 250 nm wide and 170 nm thick waveguide at
a wavelength of 532 nm was performed. Figure 11.8a-c shows contour plots of the loss
resulting from the sweep, where Lc,y is 170 nm, 2.8 µm and ∞ for a-c respectively. The
change in Lc,y causes only an evenly distributed shift of the loss, but no change in the
contour plot. The loss values from 170 nm to 2.8 µm change significantly, while the change
from 2.8 µm to ∞ is marginal, it is therefore justified to assume a Lc,y value of ∞ as was
done in [15] for waveguides that exhibit curtaining. A decrease in Rq results in a smaller
scattering loss, due to the dependence of the scattering loss on the square of the RMS
roughness in Equation 5.23. Very short or very long correlation lengths in z-direction
result in a reduction of the loss which is caused by the fraction in Equation 5.23.

(a) (b) (c)

Figure 11.8: Calculated scattering loss of a single sidewall of a 250 nm wide and 170 nm
thick waveguide for a wavelength of 532 nm for a sweep of Rq and Lc,z. The loss is shifted
dependent on the values chosen for Lc,y with (a) 170 nm, (b) 2.8 µm, and (c) ∞.

The shape of the Lc,z dependence changes with the wavelength because the variable q

in Equation 5.23 of the spectrum S(q) is (β − kz), with kz = cos(θ)k where θ is a spatial
angle, as seen in Equation 5.21. This results in peak broadening of the Lc,z dependence
for 730 nm light compared to 532 nm.

Physically, the correlation length Lc describes the distance over which the sidewall
roughness profile remains similar. A short Lc corresponds to rapidly varying and high
spatial-frequency roughness, while a long Lc means slowly varying and low spatial-frequency
roughness. When Lc is much smaller than the wavelength, roughly by a factor of 10,
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the roughness mostly contains very high spatial frequencies, which means guided modes
cannot efficiently couple to radiation modes. In this limit, the mode experiences the
surface as effectively smooth, analogous to the effective medium theory in metamaterials.
However, when Lc is much larger, the roughness varies slowly and its spectrum becomes
too narrow to provide the momentum for scattering, reducing the loss. According to
Hoermann et al. [15] the peak position is the length at which the surface roughness follows
the mode oscillation and maximum coherence of the scattered radiation occurs so the peak
position shifts with wavelength through the λ-dependence of β and kz. This λ-dependence
could also be the reason for the peak broadening, as β and kz do not necessarily change
at the same rate, which can cause smaller q for longer wavelengths, and in turn the Lc,z

dependence is wider as the denominator in 5.23 varies slowly. This is the case for Lc,z = λ
2π

which matches the peaks in Figure 11.9.

(a) (b)

Figure 11.9: Calculated scattering loss of a single sidewall of a 250 nm wide and 170 nm
thick waveguide for a wavelength of (a) 532 nm and (b) 730 nm for a sweep of Rq and
Lc,z. For both a Lc,z value of 2.8 µm was used.
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CHAPTER 12

Conclusion

In conclusion, waveguides were successfully fabricated and measured using our integrated
optics setup and different models for the absorption loss were implemented. The SiN
used for the fabrication was characterised to ensure a close match with the simulated
waveguides in Ansys Lumerical. Furthermore, the simulation does not provide built-in loss
estimation as the absorption is not included for SiN. The measured refractive index shows
a close match with the index values used for simulation, as well as providing a good fit.
However, a significant deviation from the physical model to the measured material losses
was observed, which requires further investigation and measurements with wavelengths
especially below 400 nm. An exponential fit was found which best describes both the
refractive index and the measured loss as functions of the wavelength in the spectral
range of 375 to 730 nm. This was used to calculate the material absorption loss for the
simulated waveguides.

Variations of etchers and different etching methods were investigated to find the best
suitable process to structure SiN waveguides with taper angles close to 90◦ and low
roughness. Sidewall roughness measurements were performed for different fabrication
processes, with the best process yielding a Rq value of 1.05±0.12 nm and a Lc,z value of
67±16 nm at a taper angle of 85◦. As shown in Figure 11.9 the scattering loss scales with
R2

q , while either a very short or very long Lc,z with respect to λ/2π is beneficial.
Simulations of the waveguide loss using the Hoermann model and an exponential mate-

rial loss fit showed an overall acceptable agreement with the measured values. For 450 nm
laser light, large deviations from the simulated results were observed, which warrant further
investigation. The best fit was observed for the 500 nm wide waveguides at 730 nm light,
where the differences in mean loss between simulation and measurement are 0.098 and 0.019
dB/cm, at losses close to 1 and 0.5 dB/cm for TE and TM respectively. The 250 nm wide
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Figure 12.1: Comparison of waveguide losses modified from [13]. The best achieved losses
in this thesis for the corresponding wavelength are added with ocean green eight-pointed
stars with the dotted line to guide the eye.

waveguides for 532 and 639 nm light showed unaccounted for differences of ∼1-2 dB/cm.
Changes in the width of the assumed perfectly rectangular waveguides were simulated to
investigate if the differences stem from the smaller waveguide widths of the fabricated
waveguides but could not fully explain the contrast between simulation and measurement.

Lastly, Figure 12.1 shows previously published waveguide losses taken directly from
Zanarella et al. [13] with the addition of the losses from this thesis in ocean blue
eight-pointed stars. It shows that the measured losses are comparable. Although other
publications achieve lower values, this is due to multimode operation of the waveguides as
well as low confinement, which reduces the losses incurred by material absorption and
scattering.

The investigation of roughness-induced scattering losses in waveguides, combined with
the exploration of fabrication approaches, has yielded significant insights into optimising
PIC fabrication. Through analysis of sidewall roughness resulting from different etch-
ing techniques, the best etcher has been determined and compared to literature values.
Furthermore, with the measured and simulated waveguide propagation losses, this thesis
contributes to the development of low-loss optical waveguides. However, there are oppor-
tunities for further improvement.
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Although current fabrication techniques have demonstrated sidewall roughness values
comparable to reported benchmarks, further optimisation of etching methods, such as re-
fining etch parameters and utilising advanced etch chemistries, could push the boundaries
of achievable smoothness. Another possibility is the use of further layer deposition after
etching to smooth the surface. Even if the sidewall roughness can be reduced, this thesis
has shown that the SiN used is highly absorbent for wavelengths <400 nm. Therefore,
advancements in material-dependent loss such as ultra-low-loss dielectrics or hybrid III-V
platforms could offer a solution for the high loss of UV wavelengths. The implemented
scattering loss model could be extended to account for the tapered waveguide cross-section
to improve the accuracy of the simulations, while further measurements of the material
loss could lead to more accurate fits thereof.

Reducing waveguide losses, especially in the visible to UV wavelength range, could
enable dramatic performance improvements across various applications. Suppressing
losses opens pathways for denser, larger-scale PICs with complex functionalities, such as
integrated multiplexers, filters, modulators, and detectors. This could accelerate adoption
in telecommunications, sensing, and LiDAR systems. For photonic integrated circuits
designed for trapped ion quantum computing, ultra-low-loss waveguides are critical to
achieving efficient light delivery and maintaining high fidelity in optical interactions
with ions. The results achieved lay a strong foundation for future work in fabrication
techniques to meet the loss requirements, supporting scalable ion trapping architectures.
The predictive loss modelling combined with experimental validation guides design choices,
further improving light delivery performance and integration density of PICs for trapped ion
quantum computing. In conclusion, the ultimate goal of realising fully integrated quantum
computing platforms with PICs remains within sight, supported by the foundational
insights from studies such as this thesis.
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