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Kurzfassung
Diese Arbeit untersucht die Übertragung polarisationsverschränkter Photonen im O-Band
über ein bereits existierendes Glasfasernetzwerk der Deutschen Telekom AG in Berlin. Im
Folgenden werden die Einflüsse des dynamischen Wechseln der Übertragungsstrecken so-
wie das gleichzeitige Übertragen klassischer optischer Nachrichtensignale im C-Band analy-
siert. Im Gegensatz zu anderen Studien, die unter stabilen Laborbedingungen durchgeführt
wurden, werden hier Experimente in einer realen Umgebung unter Verwendung einer groß-
städtischen Glasfaserinfrastruktur durchgeführt. Solche Glasfaserinfrastrukturen sind zu-
sätzlichen Herausforderungen ausgesetzt. Durch Umwelteinflüsse wie mechanischen Stress
und Temperaturschwankungen wird die Qualität der Übertragung verschränkter Photonen
beeinträchtigt. Das primäre Ziel dieser Arbeit ist es, verschränkungsbasierte Quantenkom-
munikation trotz solch unvorhersehbarer Einflüsse anhand experimenteller Messungen zu
demonstrieren.

Die Experimente wurden in vier Phasen unterteilt, deren Ziel es war, dynamische Routing-
Operationen zu realisieren und die Koexistenz von klassischen optischen Nachrichtensi-
gnalen und Quantensignalen auf derselben Glasfaser zu demonstrieren. Als Erstes wurden
die verfügbaren Übertragungsfasern mittels optischer Zeitbereichsreflektometrie charakteri-
siert. Anschließend wurden polarisationskodierte verschränkte Photonen über das Netzwerk
übertragen und mittels der Bellschen Ungleichung die Verschränkheit nachgewiesen. In der
zweiten Phase wurde mithilfe eines steuerbaren optischen Schalters der Wechsel der Über-
tragungsstrecke analysiert. Eine Langzeitanalyse wurde unter verschiedensten Bedingungen
über mehrere Stunden bzw. Tage durchgeführt. Abschließend wurde die Auswirkung von
optischen Nachrichtensignalen im C-Band auf das Quantensignal im O-Band untersucht.

Die Ergebnisse zeigen, dass eine quantenverschränkte Kommunikation über eine Distanz
von bis zu 100 km in diesem Glasfasernetzwerk möglich ist. Die Experimente ermöglich-
ten auch dynamische Routingprozess, unter der Verwendung von automatisierter Polari-
sationskompensation. Individuelle Streckenabhängige Polarisationsverschiebungen würden
ansonsten manuelle Kalibrierungsroutinen für jeden Streckenwechsel erfordern. Die Lang-
zeitanalyse bestätigt eine zuverlässige Detektion der Verschränkung über einen längeren
Zeitraum. Die Koexistenz von Quantensignalen und klassischen optischen Nachrichtensi-
gnalen ist zwar möglich, jedoch beeinträchtigt dies die Detektion. Verschiedene Parameter
für das klassische Signal, wie die optische Leistung und die spektrale Platzierung, beeinflus-
sen die Messung der Verschränktheit. Die gewonnen Ergebnisse stellen einen bedeutenden
Fortschritt zur Integration von Quantenkommunikationstechnologien in bestehende Tele-
kommunikationsnetzwerke dar und tragen zur Vision eines zukünftigen Quanteninternets
bei.



Abstract
This thesis investigates the feasibility of distributing, routing, and multiplexing O-band
polarization-entangled photons with C-band classical light over an urban field-deployed
optical fiber network owned by Deutsche Telekom AG in Berlin. In contrast to other stud-
ies carried out under stable laboratory conditions, this work is conducted in a real-world
environment using existing metropolitan optical fiber infrastructure. Such field-deployed
optical fibers face additional challenges from environmental factors such as mechanical
stress and temperature fluctuations, which can compromise the quality of the entangle-
ment distribution. Therefore, this work demonstrates with practical measurements that
entanglement-based quantum communication is still feasible in such an unpredictable en-
vironment.
The experiments described along this text were divided into four phases. These aimed at
achieving dynamic routing operations and at demonstrating the co-propagation of classical
light and quantum signals. First, the available transmission distances were characterized
by optical time-domain measurements. Then polarization-entangled photon pairs were dis-
tributed through fibers to obtain a measurable violation of the Bell inequality. Second, the
impact of dynamic routing using a controllable optical switch was analyzed. A long-term
analysis was conducted over several days by measuring the Bell parameter and fidelity
under various path switching conditions. Finally, the influence of co-propagating C-band
classical light on the O-band quantum signal was examined.
The presented results show that robust quantum entanglement can be maintained up to a
distance of 100 km over field-deployed fiber infrastructure. The experiment also validates
a dynamic entanglement routing process with an automated polarization compensation
mechanism. Furthermore, long-term evaluation over hours confirmed stable operation in
an urban network scenario. Finally, the coexistence of quantum and classical light is pos-
sible, but it comes at the cost of reliably detecting entanglement. Various transmission
parameters, such as optical power and spectral allocation, have different influences on en-
tanglement measurements. The outcomes derived from this study represent a meaningful
step toward the integration of quantum communication technologies into existing telecom
networks and contribute to the vision of a future Quantum Internet.
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1 Introduction
This chapter provides an overview of the motivation, research focus, and state of the art
concerning quantum networks. It begins by highlighting the importance of entanglement
distribution for the Quantum Internet. It also addresses the challenges when deploying such
systems in real-world telecommunication network environments. Based on this motivation,
key research questions are formulated to guide the investigation. Finally, this chapter
concludes with a review of related work on quantum networks and discusses how this study
is positioned within that context.

1.1 Motivation
The Quantum Internet [1] marks the next major step in the evolution of telecommunication
networks. However, its realization critically depends on enabling efficient quantum commu-
nication over long distances. For instance, applications such as quantum key distribution
(QKD) [2], quantum repeaters (QR) [3], quantum sensing [4], and time synchronization [5]
rely on the efficient distribution of photonic entanglement. Consequently, quantum entan-
glement distribution has become a foundational capability for quantum networks. While
laboratories have already demonstrated high-fidelity entanglement distribution, real-world
deployments introduce new challenges. Environmental factors such as mechanical stress on
the fiber (e.g. bending, vibrations) and temperature fluctuations induce a change of bire-
fringence, which in turn causes polarization drifts [6]. This unpredictable and unavoidable
behavior of polarization drift becomes relevant as quantum networks grow in complexity,
especially with the routing and switching of entangled photons in multi-path topologies
common in real-world networks .

Telecommunication operators are interested in using their field-deployed optical fiber
network to create additional revenue streams. The integration of quantum communication
technologies, for instance, can improve the security of the network to the quantum level,
which represents an innovation with a strong potential for customer applications in an era,
where quantum computers are no longer a promise but a reality. Therefore, the practical
implementation of quantum technologies into existing infrastructure requires continued
research and technological refinement in order to support a stable entanglement distribution
without compromising classical data transmission. The challenge is to ensure efficient
entanglement distribution with high rates of coincidences per second, stable fidelity over
days, and high network uptime [7].
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1 Introduction

1.2 Research Questions
The intention of this research is to demonstrate the feasibility of efficient entanglement
distribution over various path lengths by dynamically switching across existing optical
telecommunication infrastructure with commercially available state-of-the-art optical de-
vices. Furthermore, the research also considers how C-band (1530–1565 nm) classical light
impacts the transmission of an O-band (1260–1360 nm) quantum signal. Based on these
goals, this study addresses the following questions:

I. What are the practical distance limits for polarization-entangled photon distribution
in the deployed urban optical fiber network?

II. How does dynamic routing/switching affect polarization compensation?

III. How stable is entanglement fidelity and Bell parameter over multiple days in a real-
world fiber optical network, particularly during continuous path switching?

IV. How does the coexistence of classical optical signals affect the entanglement and
stability of polarization-entangled photons in optical fiber networks?

1.3 State of the Art
Significant progress has been made in the experimental distribution of polarization-entangled
photons across optical fiber infrastructures. Table 1 offers an overview of different publi-
cations that have successfully demonstrated quantum entanglement distribution in various
settings.1 In summary, Table 1 provides key parameters of the selected studies results,
highlighting experimental settings (e.g., laboratory or urban setups), fiber length, achieved
fidelity, operating wavelengths, presence of coexisting classical light signals, and duration of
the experiments [8]. The fidelity metric (in %) is an indicator of the entanglement quality
and measures how close the observed quantum state matches the ideal entangled state [9].
Most existing works have been conducted either in controlled laboratory environments or
urban fiber networks, with fiber lengths ranging from about 14 km up to 66 km.

While some experiments operate without classical light signals, others investigate coex-
istence scenarios with classical channels. The duration of stable entanglement distribution
varies widely, from hours in laboratory tests to several days in urban deployments, indicat-
ing progress toward long-term operation.

Reference Location Setting Fiber (km) Fidelity (%) Wavelengths (nm) Classical Light (nm) Duration
[10] Geneva, CH Laboratory 50 ∼ 80 1310 1534 hours
[11] Singapore, SG Laboratory 50 92.5-97 586, 1310 - -
[12] Chicago, US Laboratory 30.2 > 90 1290-1310 1547 -
[13] Shandong, CN Urban 66 - 1310 1490, 1538 -
[14] Stuttgart, DE Urban 35.8 94.5 780, 1515 - days
[15] Brooklyn, US Urban 34 99 795, 1324 - 15 days
[16] Saarbrücken, DE Urban 14 > 98 854, 1550 - -

Table 1: Performance metrics of quantum entanglement distribution deployments.

1To show comparable results to this work, Table 1 focused on bicromatic O-band distribution.
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1 Introduction

Compared to these studies, this work’s contribution aims to explain quantum entangle-
ment distribution by dynamically switching across existing field-deployed fiber infrastruc-
ture. In particular, the impact of dynamic routing on polarization compensation and the
effects of simultaneous classical data transmission.
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2 Theoretical Background
This chapter provides the theoretical background necessary to understand the experimental
results presented later in this work and is divided into four sections. Each addresses a key
concept relevant to the analysis and interpretation of the data and results.

The first section introduces the concept of qubits, especially photonic qubits, and explains
how polarization encoding is used for quantum communication. The second section explains
the basics for understanding quantum entanglement. The third section combines qubits
and entanglement in the form of Bell states. Finally, the fourth section discusses the
characterization of entanglement using the Clauser–Horne–Shimony–Holt inequality.

Together, these sections form the framework for interpreting the upcoming experimental
results.

2.1 Qubits
A qubit represents the quantum equivalent of the classical bit. While the classical bit is
typically represented as 0 and 1 in digital communication systems, the qubit supports a
much richer information structure. The term qubit was first used in 1995 by Benjamin
Schumacher in his paper on quantum coding [17].

The qubit is the fundamental element of quantum computation and quantum commu-
nication. Its unique properties come from the principles of quantum superposition and
entanglement with other qubits. While the classical bit, encoded in a binary format, can
only represent the information in one of two states at the same time, a qubit can exist in
a superposition of states [18]. This means that it can be in a linear combination of two
computational basis states |0⟩ and |1⟩ simultaneously. The notation |v⟩ refers to Dirac
notation [19], which represents a vector in a complex Hilbert space H. Mathematically, a
pure qubit state is described as a normalized vector |ψ⟩ in a two-dimensional Hilbert space:

|ψ⟩ = α|0⟩+ β|1⟩,
where α,β ∈ C represent the complex amplitudes of the computational basis states |0⟩ and
|1⟩, respectively, such that |α|2 + |β|2 = 1.

Oftentimes, the state of a qubit is geometrically represented on the Bloch sphere [20]. In
this model, any pure qubit state can be expressed as a point on the surface of a unit sphere
in a three-dimensional space. The north and south poles of the Bloch sphere correspond
to the computational basis states |0⟩ and |1⟩, respectively. For a better understanding of
the Bloch sphere, a common representation is performed by using polar coordinates, where
the qubit is described with two spherical angles θ and φ, that is:

|ψθ,φ⟩ = cos

�
θ

2

�
|0⟩+ eiφ sin

�
θ

2

�
|1⟩,
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2 Theoretical Background

where θ ranges from 0 to π (θ ∈ [0, π]) and determines the latitude, while φ ranges from 0
to 2π (φ ∈ [0, 2π]) and determines the longitude of the point. This is illustrated in Figure 1.

φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 1: Bloch sphere representation of a single-qubit pure state |ψ⟩, parameter-
ized by spherical coordinates (θ, φ). x̂, ŷ, and ẑ represent the coordinate axis of
the Bloch sphere.

After exploring the Bloch sphere as a model for qubit representation, attention is now
directed to the specific case of photonic qubits.

Photonic Qubits and Polarization Encoding
Photons follow the rules of quantum mechanics, which makes them suitable for use as
qubits. In that sense, there are various ways to realize photonic qubits, such as time-bin [21],
frequency-bin [22], or polarization-encoding [8]. In this work, the focus is on polarization-
encoded qubits as they are easier to manipulate and to measure using standard optical
components. Additionally, polarization qubits exhibit high compatibility with quantum
memories [23].

To provide a foundational understanding, a revisit of the Jones notation follows [24].
Consider a plane wave propagating in the positive z-direction. The electric field E(z, t) can
be written as:

E(z, t) =

�
E0x cos (ωt− kz)
E0y cos (ωt− kz +Δφ)

�
.

Here, E0x and E0y denote the amplitudes of the electric field components along the orthog-
onal x and y basis vectors, respectively. The parameter Δφ represents the relative phase
between these components. The term (ωt − kz) encodes the oscillation in time and the
propagation in space, where ω is the angular frequency, t is the time, k is the wave number
and z the coordinate along the direction of propagation.

In the Jones formalism, it is assumed that the light is coherent, meaning the relative
phase remains constant in time (Δφ = const.). The electric field can be written as the real
part of a complex vector, factoring out the common space-time dependence:
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E(z, t) = ℜ
�
ei(ωt−kz)

�
E0x
E0yeiΔφ

�

= ℜ

�
ei(ωt−kz)J′

�
,

where J′, the unnormalized Jones vector, is defined as:

J′ :=
�
E0x
E0yeiΔφ

�
.

Normalizing the previous equation with the total field amplitude, the Jones vector J be-
comes:

J =
J′�

E2
0x + E2

0y

.

The electric field then takes the compact form:

E(z, t) = ℜ
��

E2
0x + E2

0y ei(ωt−kz) J
�
.

Finally, the Jones vector can be written as:

J =
1�

E2
0x + E2

0y

�
E0x
E0yeiΔφ

�
=

�
cos(α)
sin(α)eiΔφ

�
,

where α = arctan(E0y/E0x).
The qubit is described in the computational basis |0⟩ and |1⟩, which consists of the two

orthogonal basis vectors. When written in vector notation, these basis states directly re-
semble the familiar Jones vector. In polarization-encoded quantum systems, computational
basis vectors are typically represented by horizontal |H⟩ and vertical |V⟩ polarization states.
The computational basis states can be mapped to the polarization states as follows:

|0⟩ =
�
1
0

�
= |H⟩, |1⟩ =

�
0
1

�
= |V⟩.

For polarization-encoded qubits, there are additional states to explore. These include
diagonal |D⟩, antidiagonal |A⟩, right-circular |R⟩ and left-circular |L⟩ polarization states.
In terms of the horizontal |H⟩ and vertical |V⟩ polarization basis, the above-mentioned
states are defined as follows:

|D⟩ = 1√
2
(|H⟩+ |V⟩) = 1√

2

�
1
1

�
,

|A⟩ = 1√
2
(|H⟩ − |V⟩) = 1√

2

�
1
−1

�
,

|R⟩ = 1√
2
(|H⟩+ i|V⟩) = 1√

2

�
1
i

�
,

|L⟩ = 1√
2
(|H⟩ − i|V⟩) = 1√

2

�
1
−i

�
.
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2 Theoretical Background

The description of photon qubits can be extended using the Stokes-Mueller formalism [25],
which originates from classical optics and provides a complete description of the polarization
state. In this formalism, any polarization state can be described by a four-dimensional, real-
valued Stokes vector:

S =


S0

S1

S2

S3

 ,

��������
S0 = |Ex|2 + |Ey|2
S1 = |Ex|2 − |Ey|2
S2 = 2ℜ�

ExE∗
y
	

S3 = 2ℑ�
ExE∗

y
	 ,

where S0 represents the total power, S1 corresponds to the difference between the magnitude
of the horizontal and vertical polarization components, S2 represents the difference between
the magnitude of the diagonal and antidiagonal components, and S3 captures the difference
between the magnitude of the right and left circular components. These parameters can
be directly measured in classical optics using appropriate polarizers and detectors. If the
Stokes vector is normalized so that S0 = 1, the values S1, S2, S3 describe the polarization
of light and represent a point on the surface of the Poincaré sphere for pure polarization
states. In Figure 2, the Bloch sphere is shown on the left, and the Poincaré sphere, with its
associated Stokes parameters is shown on the right. The main polarization states discussed
so far are illustrated in orange. One can observe that the Stokes-space representation is
essentially a rotated version of the Bloch sphere. This highlights one of the advantages of
using the Bloch sphere to represent qubits. It can be easily converted into the Stokes-space
representation, which is widely used in optics.

x̂ = |D⟩

-x̂ = |A⟩

ŷ = |R⟩
−ŷ = |L⟩

ẑ = |0⟩ = |H⟩

−ẑ = |1⟩ = |V⟩

|V⟩

S1 = |H⟩
S2 = |D⟩

S3 = |R⟩

|A⟩

|L⟩
Figure 2: Left: Bloch sphere representation of qubit pure states. Right: Poincaré
sphere representation of the corresponding polarization state, expressed via the
Stokes vector S = (S1, S2, S3). The two representations are related by a rotation,
highlighting the close connection between qubit states in quantum information
and polarization states in optics.

A complete overview of all polarization states presented in this chapter is provided at
the end of this chapter in Table 2, expressed in Dirac, Jones, and Stokes notation. While
a single qubit already extended the information structure, the real power of quantum
communication lies in the correlation between multiple qubits.
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2.2 Quantum Entanglement
Quantum entanglement is a phenomenon where two or more qubits become deeply inter-
connected despite their physical distance [26]. This connection cannot be described by
the state of each qubit independently, contrary to classical systems, in which the state of a
system can be fully determined by the states of each individual system element. As a result
of this connection, the statistical outcome of a measurement is influenced by other qubits.
This means when a measurement is performed on one qubit, it instantaneously influences
the measurement statistics of the other qubit [27].

Two-Qubit States
The focus of this work is the entanglement between two qubits, each represented by a
polarization-encoded photon. So far, only the polarization of a single photon has been
considered as the implementation of a qubit. The quantum state of a two-qubit system
also exists in a Hilbert space H, defined as the tensor product of the individual qubit
Hilbert spaces H1 and H2:

H = H1 ⊗H2.

As previously introduced, each qubit is represented by a two-dimensional basis, e.g., {|H⟩, |V⟩},
then the combined basis of the two-qubit system is also formed by the tensor products of
the individual basis vectors. For instance:

|HH⟩ = |H⟩ ⊗ |H⟩ =
�
1
0

�
⊗
�
1
0

�
=


1
0
0
0

 , |HV⟩ = |H⟩ ⊗ |V⟩ =
�
1
0

�
⊗
�
0
1

�
=


0
1
0
0

 ,

|VH⟩ = |V⟩ ⊗ |H⟩ =
�
0
1

�
⊗

�
1
0

�
=


0
0
1
0

 , |VV⟩ = |V⟩ ⊗ |V⟩ =
�
0
1

�
⊗
�
0
1

�
=


0
0
0
1

 .

It is important to emphasize that this four-dimensional state vector should not be confused
with the Stokes vector. Although both are four-dimensional vectors, because the tensor
product of two Jones vectors yields a four-dimensional vector, they have fundamentally
different physical meanings.

The individual basis states for the two-qubit system are defined, allowing the general
pure two-qubit state in this basis to be written as:

|ψ⟩ = aHH|HH⟩+ aHV|HV⟩+ aVH|VH⟩+ aVV|VV⟩,

with |aHH|2+ |aHV|2+ |aVH|2+ |aVV|2 = 1, where aij ∈ C represent the complex amplitudes
of the computational two-qubit basis states, respectively.
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2 Theoretical Background

If the state |ψ⟩ can be factorized into a product of single-photon states, the system is
non-entangled. For example:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩.
If no such decomposition exists, the state is entangled. An example of a polarization-
entangled state is:

|ψ⟩ = 1√
2
(|HV⟩+ |VH⟩).

This state cannot be written as a product of individual qubit states. Physically, this means
that if one photon is measured in the horizontal state, the second one must be in the vertical
state. This correlation property holds regardless of the spatial separation between them.
Nor can this correlation be explained by any local hidden variable model [28]. This concept
will be discussed further in section 2.4. An important class of entangled two-qubit states
is the set of Bell states, which represent maximally entangled states and form a complete
orthonormal basis for the two-qubit Hilbert space.

Nonlinear Polarization and Photon Pair Generation
Polarization-entangled photon pairs can be generated through nonlinear optical processes
that conserve both energy and momentum [29]. Spontaneous parametric down-conversion
(SPDC) [30] and spontaneous four-wave mixing (SFWM) [31] are two prominent nonlinear
processes used to generate entangled photon pairs. Quantum dots [32] can also serve as
sources of entangled photons, but they are not explored further in this work.

Nonlinear optical processes arise from the modification of the properties of a material
due to the presence of light. In this context, the polarization of a material depends on the
strength of the applied optical field. For linear interactions, the polarization is related to
the electric field E through the linear susceptibility χ(1), as described by the relation:

Plinear = ϵ0χ
(1)E.

Here, ϵ0 denotes the permittivity of free space. In nonlinear optics, this relation is extended
by including higher-order nonlinear susceptibilities such as χ(2) and χ(3). Therefore, the
susceptibility becomes a function of the electric field, expressed as:

χ(E) = χ(1) + χ(2)E+ χ(3)EE+ ...

As a result, the total polarization is given by the sum of contributions from different orders:

P =
�
i

P(i) = ϵ0χ
(1)E+ ϵ0χ

(2)EE+ ϵ0χ
(3)EEE+ ...

This allows for a distinction between the linear and nonlinear components of the polariza-
tion:

P = Plinear +Pnonlinear.

Nonlinear polarization is the core concept, which enables SPDC and SFWM. Both pro-
cesses exploit the nonlinear polarization response of a medium but differ in the order of
nonlinearity involved.

9



2 Theoretical Background

SPDC is a second-order nonlinear optical process, which typically occurs in a birefringent
crystal. A high-energy pump photon spontaneously splits into two photons on a lower
energy level by propagating through a nonlinear crystal, illustrated in Figure 3. These two
photons are called signal and idler photons. Depending on the configuration of the crystal,
the generated photons can have either orthogonal or the same polarization state. The
birefringent crystal is necessary because it enables the phase matching conditions required
for this nonlinear conversion.

SFWM is a third-order nonlinear optical process. It involves a pump and a coupling
laser and emits a correlated signal idler photon pair, displayed in Figure 3. This process
allows the generation of photon pairs with either different frequencies (non-degenerate) or
identical frequencies (degenerate), depending on the phase-matching conditions and the
experimental setup. An example of non-degenerated SFWM can be found in section 3.1,
which discusses the entanglement source used for the experiments carried out in this work.

ωpump

ωidler

ωsignal
χ(2)

ωpump

ωidler

ωsignal
χ(3)

ωcoupling

ℏωpump
ℏωidlerℏωsignal

ℏωpump

ℏωcoupling ℏωidlerℏωsignal

Figure 3: Simplified representation of the energy conservation diagram in SPDC
(top) and SFWM (bottom).

2.3 Bell States
The Bell states, named after the physicist John Stewart Bell, are a set of four maximally
entangled quantum states of two qubits. They are defined as:

|Φ+⟩ = 1√
2
(|HH⟩+ |VV⟩) ,

|Φ−⟩ = 1√
2
(|HH⟩ − |VV⟩) ,

|Ψ+⟩ = 1√
2
(|HV⟩+ |VH⟩) ,

|Ψ−⟩ = 1√
2
(|HV⟩ − |VH⟩) .
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2 Theoretical Background

These states are typically used in applications involving quantum entanglement distri-
butions. They represent the simplest examples of entanglement between two particles and
serve as the basis for quantum communication protocols, for example, the E91 protocol
[33]. Additionally, they are used to verify and quantify the entanglement by violating the
bell inequality.

2.4 CHSH Inequality
The Gedankenexperiment of Einstein Podolsky and Rosen, better known as the EPR para-
dox published in the paper ”Can Quantum-Mechanical Description of Physical Reality be
Considered Complete?” [34], started a lively debate. According to the EPR argument,
quantum mechanics appears to violate the principle of locality. Einstein called this phe-
nomenon ”spooky action at a distance” [35]. This contradiction raised questions about
the existence of a hidden-variable theory that could restore a deterministic framework to
quantum physics. In 1964 John Bell formulated the Bell inequality, challenging the idea of
hidden variables [28]. Building on Bell’s inequality, Bell’s theorem later demonstrated that
no local hidden variable theory could reproduce all the predictions of quantum mechanics.
Building upon this foundation, Clauser, Horne, Shimony, and Holt introduced the CHSH
inequality in 1969 [36]. This inequality provides a practical experimental test to verify the
violation of the locality principle and definitively rules out hidden-variable theories.

The CHSH inequality is expressed as:

S = E(a1, b1)− E(a1, b2) + E(a2, b1) + E(a2, b2) ≤ 2,

where E(a, b) represents the quantum correlations of a pair of photons with angles a and b.
Each E(a, b) term is given as:

E(a, b) =
C(a, b)− C(a, b⊥)− C(a⊥, b) + C(a⊥, b⊥)
C(a, b) + C(a, b⊥) + C(a⊥, b) + C(a⊥, b⊥)

,

where a⊥ and b⊥ denote directions orthogonal (rotated by 90°) to a and b, respectively.
Local hidden theories require that this inequality set an upper bound of 2 on the absolute

value of the sum of certain correlations. Quantum mechanics predicts that this inequality
can be violated, allowing values of S to be greater than 2. Exceeding this classical limit of
S ≤ 2 is an important result in the experimental demonstration of quantum entanglement.
A maximum violation, known as the Tsirelson bound [37], takes place when S = 2

√
2 and

can be achieved with a maximally entangled Bell state.
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2 Theoretical Background

Polarization State Dirac Jones Stokes

Horizontal |H⟩
�
1
0

� 
1
1
0
0


Vertical |V⟩

�
0
1

� 
1
−1
0
0


Diagonal |D⟩ 1√

2

�
1
1

� 
1
0
1
0


Anti-Diagonal |A⟩ 1√

2

�
1
−1

� 
1
0
−1
0


Right Circular |R⟩ 1√

2

�
1
i

� 
1
0
0
1


Left Circular |L⟩ 1√

2

�
1
−i

� 
1
0
0
−1


Table 2: Overview of Polarization States in Dirac notation [19], Jones notation
[24], and Stokes notation [25].
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3 Experimental Setup Elements
This chapter provides an overview of the devices included in the experimental setup. Struc-
tured into seven sections, each section offers a detailed explanation of a specific part of the
setup to understand the overall system of the experimental framework. An initial setup is
shown in chapter 5, in Figure 17.

The first section introduces the entangled photon source and the generation of photon
pairs. The second section describes all components within the Bell Box. The third sec-
tion focuses on the single-photon detection and timing system. The characterization of
the field-deployed fiber network is done in the fourth section, highlighting the distinctions
between laboratory conditions and the field-deployed infrastructure. The fifth section pro-
vides an overview of the automated polarization compensation system and its operational
principles. The sixth section explains the switching system and the dynamic routing of
photon paths. The final section offers an overview of the classical light channels deployed
for co-propagation.

Each section is designed to provide an understanding of the respective component, en-
suring an overview of the experimental setup as a whole.

3.1 Entangled Photon Source
The entanglement source is a key building block of every setup for quantum networking.
Specifically in this study, i.e., for distributing polarization-encoded qubits, the setup needs
a source which provides the polarization-entangled photon pairs. The source has to satisfy a
number of criteria simultaneously, such as high-rate generation, narrow line-width photons,
high fidelity, and heralding efficiency. In this work, a commercially available bichromatic
entanglement source was used [31].

The source generates entangled photon pairs via SFWM in a process where a warm
rubidium (87Rb) vapor cell is pumped by a 780 nm pump laser and a 1367 nm coupling
laser. These lasers excite the rubidium atoms from the ground state to a doubly-excited
state. The subsequent decay from this state back to the ground state occurs in a phase-
matched direction, where the wavevectors k⃗ satisfy the condition:

k⃗pump + k⃗coupling − k⃗signal − k⃗idler = 0 .

This process, illustrated in Figure 4, generates strongly correlated signal and idler photon
pairs with wavelengths of 1324 nm (signal) and 795 nm (idler). The pump and coupling
beams are overlapped by using a dichroic mirror to ensure copropagation, and a polarizing
beam splitter guarantees identical polarization before entering the rubidium vapor cell. The
beams are coupled into and out of the vapor cell using lenses to ensure phase matching.
The cell is heated by a pair of metal-ceramic heaters placed directly on its faces. After
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3 Experimental Setup Elements

exiting the cell, a dichroic mirror separates the signal and idler beams. Since both the
signal and idler photons are emitted with identical polarization, the resulting two-photon
state corresponds to the well-known Bell state |Φ+⟩, which takes the form:

|Φ+⟩ = 1√
2
(|HH⟩+ eiφ|VV⟩) .

A liquid crystal retarder is used to overcome phase shifts induced by the internal compo-
nents of the device.

Figure 4: Rubidium level diagram for the four-wave mixing process [31].
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3.2 Bell Box
The Bell box represents the initial stage of the measurement process. It performs the first
step in characterizing the entangled photon signal. In this section, the individual optical
components within the Bell box are described separately to provide a clear understanding
of their functions and roles. A detailed characterization of the complete measurement
procedure, including the complete mathematical derivation, is provided in chapter 4.

Since the polarization manipulation is performed more precisely in free space, the photons
have to leave the guided fibers. For this reason, the Bell box includes a fiber-to-free space
coupler and a free-space to fiber interface. This enables free-space transmission to perform
measurements with rotating waveplates and a polarized beam splitter.

Waveplates
A waveplate, also known as a retarder, introduces a phase shift between the orthogonal
polarization components of an electromagnetic wave. In optical systems, waveplates are
essential components for manipulating and analyzing the polarization state of light. Their
operation can be accurately described using the Jones notation. Although waveplates
can be designed to introduce arbitrary phase delays between polarization components, the
half-waveplate (HWP) and the quarter-waveplate (QWP) are the most commonly used in
practice. The half-waveplate is also known as the λ/2-waveplate and the quarter-waveplate
is also known as the λ/4-waveplate. These elements rely on birefringent materials that
exhibit different refractive indices. As a result, the waveplate modifies the polarization state
of the transmitted light in a predictable and controllable way. Since the Bell box operates
with the λ/2-waveplate, we explore its function in more detail. An HWP introduces a phase
shift of π (or 180°) between the fast and slow axes. If the fast axis is aligned horizontally,
the Jones matrix of the HWP is given by:

Jλ/2 =

�
1 0
0 −1

�
.

Polarized Beam Splitter
A polarized beam splitter (PBS) is an optical element that separates incoming light on
the basis of its polarization. The PBS transmits one polarization state while reflecting the
orthogonal component. This results in one part of the light having horizontal polarization
and the other part having vertical polarization. The action of a PBS can be represented
by using Jones notation. The Jones matrices for the two output paths are written for the
transmitted path (T), corresponding to horizontal polarization, and the reflected path (R)
corresponding to vertical polarization.

JT
PBS =

�
1 0
0 0

�
,

JR
PBS =

�
0 0
0 1

�
.
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3 Experimental Setup Elements

If a light beam enters the PBS with an arbitrary polarization state, the PBS will direct the
vertical component along the transmitted path and the vertical state along the reflected
path.

While a light beam can be described as a continuous wave, when a photon enters the
PBS, its individual polarization state is measured, leading to a collapse of the superposition.
For example, when a photon in the superposition state, such as |D⟩ = 1√

2
(|H⟩+ |V⟩), enters

the PBS, the device performs a measurement in the vertical and horizontal basis. When
detected in one of the output ports, the state of the photon collapses into the corresponding
eigenstate. For instance, if the photon is detected in the transmitted path, the state
collapses to |H⟩. This projection is fundamental in quantum optics. The PBS acts as a
measurement device that extracts polarization information from single photon by collapsing
the superposition states.

ȁ ۧV ȁ ۧHȁ ۧV ȁ ۧHλ/2 Wave plate Polarizing beam splitter

ȁ ۧV ȁ ۧH
ȁ ۧV ȁ ۧHȁ ۧV ȁ ۧH

Figure 5: Left: Polarization modification via half-waveplate. Right: Polarization
dependent output of a PBS.

3.3 Single Photon Detection
The second and final stage of the measurement process consists of a superconducting
nanowire single photon detector [38] and a timing system. This process allows to create
time-stamped photons counting within temporal resolution down to picoseconds.

Superconducting Nanowire Single Photon Detector
Single-photon detection relies on converting the energy of an incident photon into a mea-
surable electrical signal. When a photon hits the detector, it is absorbed by the detector
material, creating an electrical pulse that can be registered. This process depends on the
properties and geometry of the detection material as well as the operating conditions. Super-
conducting nanowire single-photon detectors (SNSPDs) have excellent detection efficiency,
low dark count rates, and fast recovery times.

The basic operation of an SNSPD, from incident photon to electrical pulse, is illustrated
in Figure 6. A nanowire is cooled below its superconducting critical temperature, and a
direct current is applied. When an incident photon enters the active area of the detector,
it is absorbed and breaks Cooper pairs, thereby forming a hotspot. The hotspot region
forces the current to flow around the resistive area, causing an increase in current density
in the sidewalk regions until it reaches a critical level. This forms a resistive barrier across
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the nanowire and generates a measurable voltage pulse as the resistance rises from zero to
a finite value. While most of the current does not flow over the nanowire, it cools down
and returns to the superconducting state.

The system detection efficiency (SDE) ηSDE is defined as:

ηSDE = ηcoupling ηabsorption ηregister ,

where the coupling efficiency ηcoupling addresses factors such as imperfect optics, fiber cou-
pling, and reflections. It describes the losses before the photon reaches the detection ma-
terial. The absorption efficiency ηabsorption depends on the material and geometry of the
detector. Also changes with the wavelength of the photon. ηregister defines the registration
probability, which characterizes how likely an absorption event triggers a measurable elec-
trical pulse. Sometimes, intrinsic device detection efficiency (DDE) is used ηDDE, which
excludes the coupling efficiency, ηDDE = ηabsorption ηregister.

Further performance parameters are the dark count rate, jitter, and recovery time, which
define the practical usability of the detector. The dark count rate refers to counts without
incident photons. Jitter is the difference between the actual arrival time of the photon and
the generated electrical pulse. It is essential for high temporal resolution and should be as
low as possible. Recovery time is the period in which the detector cannot register the next
incoming photon after a detection event. The cooling system is a minor drawback, which
is typically achieved using liquid helium or cryogenic probes to maintain superconductivity.
To deliver photons into the low-temperature environment, an optical coupling window is
installed. In contrast, single-photon avalanche photo diodes (SPADs) operate at or near
room temperature, but they have higher dark-count rates and jitter.

ℏω

Figure 6: Basic operation principle of SNSPD. Top Left: In the steady state, the
nanowire is fully superconducting, and electric current flows through it. Top Right:
An incoming photon strikes the nanowire, its energy is absorbed, disrupting the
local superconducting state. Bottom Right: The absorbed energy creates a small
hotspot, which heats up as the current is forced to divert around it. Bottom Left:
The hotspot acts as a barrier, temporarily breaking the superconducting path and
generating a measurable voltage pulse.
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Time Tagger
A time tagger is a device that generates precise timestamps for the arrival of incoming
pulses, such as those created by an SNSPD. The signal and idler photons are detected on
different channels, each producing its own time series tCH1[n] and tCH2[m], respectively. A
histogram of the time differences Δt between events on the two channels is constructed by
performing a cross-correlation to generate coincidence peaks.

Since entangled photon pairs are created at the same time and the path delay remains
constant, a coincidence peak appears at a specific time offset in the histogram. The co-
incidence peak marks the relative travel time between the two optical paths. If the idler
photons remain local and the signal photons travel a longer path, the peak appears at a
non-zero time delay corresponding to the path difference. For improving the visibility of
the coincidence peak, it is possible to increase the integration times, to detect more incom-
ing photons. This is important for longer or more lossy optical paths, although it comes
with the drawback of extended data acquisition periods.

In addition to the coincidence peak, a noise floor arises due to accidental coincidence,
which are random detection events that fall within the coincidence window but do not
originate from entangled pairs. Factors such as detector jitter, time tagger jitter, and bin
width affect the sharpness of the peak.

3.4 Field Deployed Fiber
To address key differences between field-deployed fiber and controlled laboratory condi-
tions, optical time-domain measurements were conducted on the field-deployed dark fiber
network at T-Labs in Berlin, shown in Figure 7. Unlike laboratory setups, deployed fiber
introduces several challenges, particularly for polarization-entangled photons, which are
highly sensitive to environmental disturbances [39]. Stochastic fluctuations in polarization

DottiHHI

T-Labs

STBG

HUB

Figure 7: Geographical distribution of studied fiber loops terminated at T-Labs
in Berlin (HHI: Heinrich-Hertz-Institut, Dotti: Dottistraße, STBG: Strausberg,
HUB: Humboldt University - Department of Physics).
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arise from changes in the refractive index and physical length. These changes are caused
by factors such as temperature variations, mechanical stress, pressure, and bending. As
a result, the polarization state of optical signals shifts in an unpredictable way over time
[40].

OTDR Measurements
An optical time domain measurement works on the same principle as electrical time domain
reflectometry. A laser pulse is sent through an optical fiber. As the pulse travels along
the fiber, imperfections, such as connectors, splices, and other forms of attenuation, cause
parts of the pulse to reflect back. The measurement creates a signal profile, known as the
trace, based on two main aspects. First, the time of flight determines how long the pulse
has traveled, allowing the distance to each reflecting point to be calculated. Second, the
back scattered light provides information about the overall attenuation along the fiber.
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Figure 8: OTDR measurements of field-deployed fibers used individually or
stitched together. For reference, the attenuation of standard SMF-28 single-mode
fiber at 1310 nm. 2xDotti represent two distinct fiber loops connected locally in
the lab, both run via Dottistraße.

Measurements were carried out and the results for ∼ 15 km Heinrich-Hertz-Institut
(HHI), ∼ 30 km Dottistraße (Dotti), ∼ 50 km Humboldt University (HUB), ∼ 60 km two
fiber loops via Dottistraße (2× Dotti), or ∼ 100 km Strausberg (STBG) (specifically: 13.6,
30.5, 51.8 61.0 and 97.9 km) are shown in Figure 8. A reference trace of an ideal single
mode fiber at 1310 nm is also included, showing a best-case scenario for comparison.
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3.5 Automated Polarization Compensation
Transmission of polarization-encoded photons is very complex due to polarization shifts and
drifts caused by environmental factors, as discovered in previous sections. These changes in
the polarization state can impair the distribution of entanglement. Therefore, an automatic
polarization control system (APC) is essential to counteract these stochastic effects [15].

The APC system, illustrated in Figure 9, consists of two parts, an injector and a com-
pensator. Inside the injector, an optical switch selects between the quantum signal input
and a classical laser light input. This classical probe light is generated within the device
and serves as a reference frame for the compensation. Six distinct points on the Poincaré
sphere are used as a reference. After transmission through the fiber, the probe is affected
by the channel and appears at different positions on the Poincaré sphere. The second part
of the system, the compensator, tries to return these points to their original positions using
a polarization controller. Within a feedback loop, the compensator evaluates a classical
fidelity based on the reference frame and tries to reach a predefined target threshold. Once
this threshold is achieved, the quantum signal transmission is resumed.

Optical switch 

PM

Driver

O-band 
laser

Ref. 
sequence

VOA Pol. controller

Output: 
Quantum Signal

Polarimeter

Controller

INJ CMP

Input: 
Quantum Signal

Poincaré representation

Figure 9: Relevant representation of the APC System, including the injector (INJ)
and compensator (CMP). The Poincaré representation illustrates the polarization
states at different stages of the transmission. Green: Reference (left) and re-
constructed (right) points. Red (middle): Polarization drift caused by the fiber.
(VOA: variable optical attenuator, PM: polarization modulator)

The system operates in a time-multiplexed scheme to compensate for polarization drift
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at a specific wavelength. Since polarization drift is wavelength dependent [39], the sys-
tem performs best when the classical probe light and the quantum signal share the same
wavelength.

3.6 Optical Switching System
A mechanical optical cross switch 2x2 is used to change the direction of the distributed
quantum signal, across different paths. The switch operates in two modes, cross and bypass
mode and is triggered via a serial connection. In bypass mode, the switch directs the input
signal from port 1 to port 2 and the input signal from port 4 to port 3, while in cross mode,
the input signal from port 1 is routed to port 3, and from port 4 to port 2.

In the experiments, the switch was used to create distribution over different paths. By
using port 1 as the input port for the quantum signal and port 2 as the output, back to the
measurement station, a local path is created in bypass mode. When switched to cross mode,
the input from port 1 is redirected to port 3, which is connected to the field-deployed fiber,
then returns to input port 4, which is connected with port 2. These variants are exactly
illustrated in Figure 10.

Port 1

Port 4

Port 2

Port 3

Field-deployed optical fiber

Input Output

Port 1

Port 4

Port 2

Port 3

Field-deployed optical fiber

Input Output

Bypass 
Mode

Cross 
Mode

Figure 10: Left: The optical switch in bypass mode establishes a local path within
the lab. Right: Cross mode uses the field-deployed fiber path.

For distribution via two different field-deployed paths, the switch is used with three
ports. Input port 1 switches between port 2 or port 3, which are connected to two different
field-deployed fibers. The paths are then combined after transmission using a beam splitter.

Port 1 Port 2

Port 3

Input

Field-deployed fiber paths

Output

Figure 11: An optical switch selects between two different fiber paths, which are
then combined in the lab using a beam splitter.
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3.7 Classical Light Channel
To emulate a classical light signal, two different generation approaches were implemented.
In the first method, noise shaping was carried out using a C-band erbium-doped fiber am-
plifier (EDFA) setup. Without an input signal, the EDFA generates amplified spontaneous
emission (ASE) noise, which was shaped into a 50 GHz wide channel using a programmable
optical filter. The filtered noise was then amplified again using a second EDFA to increase
the optical power and flexibility, shown in the spectra plots of Figure 12.

In the second approach, a 50 GHz dense wavelength division multiplexing (DWDM) chan-
nel was employed. The optical signal was amplified with an EDFA, and a programmable
optical filter was used to suppress the ASE noise floor produced by the EDFA. This method
allows more precise control over the spectral properties of the classical signal.

In both cases, the resulting classical light was then multiplexed into the same fiber as the
quantum signal using an optical add-drop multiplexer (OADM). This configuration enables
the simultaneous transmission of classical and quantum signal over a shared fiber. Prior
to detection, the quantum signal was separated from the classical channel using a second
OADM. The quantum path was additionally filtered within the Bell box to reduce noise
inference at the SNSPD.

These approaches enable controlled emulation of the copropagation from classical and
quantum signals to evaluate the performance of distributing entangled photons under real-
istic network conditions.

Waveshaper EDFA

C-band spectrum

EDFA

[a
.u

.]

Figure 12: Left: Spectrum of the ASE. Middle: Shaped noise spectrum. Right:
Amplified shaped noise spectrum.
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4 Methodology
This chapter provides the basis for the analysis carried out in the experiments. In the
first section, a detailed derivation of the CHSH test is done, including the experimental
components. The second section explains how data processing generates reliable results.
To proceed with both sections, it is important to be aware of the exact measurement setup,
see Figure 13.

𝜆/2 Wave plate Fiber (795/1324 nm)

Free space (795/1324 nm)Polarizing beam splitter

Fiber to free space Shortpass filterLocal network

&

& Time tagger

Bell box SNSPD

Signal

Idler

Figure 13: A detailed view of the measurement station, showing incoming signal
and idler photons.

4.1 Derivation for CHSH Test
Since the CHSH test is not intuitive to understand, a detailed mathematical derivation is
provided, using the components introduced in chapter 3. The preparation for the measure-
ment is done in the Bell box. The Bell box includes an experimental configuration with a
motorized rotating λ/2-waveplate and a polarized beam splitter.

Modeling Polarization Rotation
The Jones matrix representation for a rotating λ/2-waveplate depends on how the plate is
oriented within the optical system and affects the polarization state of light during rotation.
As already shown, the Jones transfer matrix for a λ/2-waveplate is:

Jλ/2 =

�
1 0
0 −1

�
.
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This matrix applies a phase shift between the two orthogonal polarization components.
When the plate rotates, the Jones notation must take into account the orientation of the
plate relative to the polarization direction of the light. The rotation of the plate changes
the effect of the waveplate. This change is mathematically formulated using a rotation
matrix, which shifts the coordinate system of the Jones matrix. The rotation matrix is
defined as:

R(θ) =

�
cos θ sin θ
− sin θ cos θ

�
.

The complete transmission matrix for a rotated λ/2-waveplate is obtained by combining
the rotation matrix and the λ/2-waveplate as follows:

Jλ/2(θ) = R−1(θ)Jλ/2R(θ) .

Since the rotation matrix is orthogonal, it follows that R−1(θ) = R(−θ) and results in:

Jλ/2(θ) =

�
cos θ − sin θ
sin θ cos θ

� �
1 0
0 −1

� �
cos θ sin θ
− sin θ cos θ

�

=

�
cos θ − sin θ
sin θ cos θ

� �
cos θ sin θ
sin θ − cos θ

�
=

�
cos2 θ − sin2 θ cos θ sin θ + sin θ cos θ

sin θ cos θ + cos θ sin θ sin2 θ − cos2 θ

�
.

Using the double angle identity cos(2θ) = cos2(θ) − sin2(θ) and sin(2θ) = 2 sin(θ) cos(θ),
the Jones transfer matrix is simplified to:

Jλ/2(θ) =

�
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

�
.

In the next step, a polarizing beam splitter is introduced. When horizontally polarized
photons |H⟩ pass through the rotating half-waveplate, following result is obtained at the
transmitting output of the PBS:

|ψout⟩ = JT
PBSJλ/2(θ)|H⟩

=

�
1 0
0 0

� �
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

� �
1
0

�
=

�
1 0
0 0

� �
cos(2θ)
sin(2θ)

�

|ψout⟩ =
�
cos(2θ)

0

�
.

To detect a single photon, the detection probability of the output state |ψout⟩ is given by
the square of the qubit’s amplitude:

P = ||ψout⟩|2 = | cos(2θ)|2 = cos2(2θ) .

This result shows that the detection probability depends on the angle 2θ, where θ is the an-
gle between the input polarization direction and the optical axis of the half-waveplate. The
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PBS then transmits only the horizontal component of the modified polarization, resulting
in a cosine-squared dependence. Note that this setup, where a rotating half-waveplate is
in front of a fixed PBS, is functionally different from rotating the PBS itself.

Correlation Functions in Two-Qubit Systems
A general observable σ̂θ,φ can be expressed as a linear combination of the Pauli operators:

σ̂θ,φ = sin(θ) cos(φ)σ̂x + sin(θ) sin(φ)σ̂y + cos(θ)σ̂z .

The corresponding Pauli spin matrices are given by:

σ̂x =

�
0 1
1 0

�
, σ̂y =

�
0 −i
i 0

�
, σ̂z =

�
1 0
0 −1

�
.

Assuming the rotation of the linearly polarized state is restricted to the x-z plane, this
implies that φ = 0. With this condition, the observable is given by:

σ̂θ,0 = cos(θ)σ̂z + sin(θ)σ̂x =

�
cos(θ) sin(θ)
sin(θ) − cos(θ)

�
.

The quantum mechanical correlation function of the measurement outcomes for two qubits,
as a function of the angles α and β, is given by:

EQM (α, β) = ⟨Φ+| σ̂α,0 ⊗ σ̂β,0 |Φ+⟩ .

The Bell state |Φ+⟩ is given in Jones vector notation as:

|Φ+⟩ = 1√
2
(|HH⟩+ |VV⟩) = 1√

2


1
0
0
1

 .

Definition of the measurement operator for a two-qubit system, based on two different
measurement angles α and β, is written as:

Â := σ̂α,0 ⊗ σ̂β,0

=

�
cos(α) sin(α)
sin(α) − cos(α)

�
⊗
�
cos(β) sin(β)
sin(β) − cos(β)

�

=


cos(α) cos(β) cos(α) sin(β) sin(α) cos(β) sin(α) sin(β)
cos(α) sin(β) − cos(α) cos(β) sin(α) sin(β) − sin(α) cos(β)
sin(α) cos(β) sin(α) sin(β) − cos(α) cos(β) − cos(α) sin(β)
sin(α) sin(β) − sin(α) cos(β) − cos(α) sin(β) cos(α) cos(β)

 .

All the components can be substituted into the quantum mechanical correlation function:
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EQM (α, β) = ⟨Φ+| Â |Φ+⟩

=
1√
2

�
1 0 0 1

� 
cos(α) cos(β) cos(α) sin(β) sin(α) cos(β) sin(α) sin(β)
cos(α) sin(β) − cos(α) cos(β) sin(α) sin(β) − sin(α) cos(β)
sin(α) cos(β) sin(α) sin(β) − cos(α) cos(β) − cos(α) sin(β)
sin(α) sin(β) − sin(α) cos(β) − cos(α) sin(β) cos(α) cos(β)

 1√
2


1
0
0
1



=
1

2
(cos(α) cos(β) + sin(α) sin(β) + sin(α) sin(β) + cos(α) cos(β)) .

Using the cosine addition formula cos(α) cos(β)+sin(α) sin(β) = cos(α−β) the final result
assumes the following expression:

EQM (α, β) = cos(α− β) .

Maximal Quantum Violation of CHSH Inequality

To demonstrate the maximal violation of the inequality, the following angles are used:

α1 = 0, α2 =
π

4
, β1 =

π

8
, β2 =

3π

8
.

Since photons repeat their polarization with a period of π, the correlations depend on twice
the angle difference, resulting in the correlation function:

E(α, β) = cos
�
2(α− β)

�
.

Correlation values, respectively:

E(α1, β1) = cos
�
2(0− π

8
)
�
= cos

�
−π

4

�
=

√
2

2
,

E(α1, β2) = cos
�
2(0− 3π

8
)
�
= cos

�
−3π

4

�
= −

√
2

2
,

E(α2, β1) = cos
�
2(
π

4
− π

8
)
�
= cos

�π
4

�
=

√
2

2
,

E(α2, β2) = cos
�
2(
π

4
− 3π

8
)
�
= cos

�
−π

4

�
=

√
2

2
.

The Bell parameter S was then calculated as:

S = E(α1, β1)− E(α1, β2) + E(α2, β1) + E(α2, β2)

=

√
2

2
+

√
2

2
+

√
2

2
+

√
2

2
= 2

√
2 ≈ 2.828 .

This represents the maximum quantum violation of the Bell inequality, reaching the Tsirelson
bound [37] of S = 2

√
2.
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4.2 Data Processing
This section gives a detailed description of the processing steps applied to the raw mea-
surement data. This procedure is used for all experiments and evaluations. All results
presented later in this work are based on this approach. The detailed analysis outlines the
extraction of the coincidence peak, construction of the Bell parameter and fidelity, and
statistical error estimation. The Bell parameter (S-value) quantifies nonlocal correlations,
while the fidelity serves as a measure of the closeness between the measured and transmitted
quantum states.

Bell Parameter
The raw measurement data consist of time-tagged photon detection events, with varying
angle settings prepared within the Bell box. The total estimation set includes 4 distinct
angles for the idler waveplate, each paired with 17 unique angles for the signal waveplate.
A total of 68 unique angle measurement combinations. Each subplot represents the corre-
sponding coincidence counts, according to an individual angle combination. The subplots
are organized into four columns in different colors, with the same idler waveplate setting.
The rows always have the same signal waveplate setting. To acquire a complete data set,
the idler waveplate is set to 0◦, 22.5◦, 45◦, and 67.5◦ and the signal waveplate is adjusted
in 11.5◦ steps covering the range from 0◦ to 180◦.

For each pair of angles, the maximal coincidence count is extracted, representing the
number of detection events registered simultaneously on two detectors. This peak corre-
sponds to photons from the same entangled pair. The coincidence peak is identified within
a specific time window, determined by the path length traveled by the photons.
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These 68 individual maximum coincidence counts are then used to construct the CHSH
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curve. The maximum coincidence peak values for a full dataset appear consistently at the
same time delay. As shown in the figure on the last three pages, the coincidence peak is
detected at 403.7 ns. The coincidence peaks for each waveplate combination are extracted
and plotted, resulting in four distinct curves with the same idler angle setting. In Figure 14,
the coincidence peaks are plotted as a function of the signal waveplate angle, with the idler
angle fixed. As predicted by theory, a cosine-squared curve is expected.
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Figure 14: Coincidence counts for all waveplate settings combinations, with points
directly connected, exhibiting a cosine-squared pattern.

Consequently, the data points are fitted with a cosine-squared function. This fitting ap-
proach facilitates a more reliable extraction result. Since the S-value estimation is based
only on 16 points, a single deviation can strongly influence the result. However, fitting the
data using 68 data points produces more reliable results and offers a smoother visualization
without requiring additional intermediate angle settings.

To calculate the S-value, additional steps are required. Since the polarization rotation is
doubled due to the rotating waveplates, all angles must be divided by 2. These angles are
then given in degrees as:

S = E(0◦, 11.25◦)− E(0◦, 33.75◦) + E(22.5◦, 11.25◦) + E(22.5◦, 33.75◦).

Each expectation value for the S-value is computed from coincidence counts. The general
formula for the expectation is given by:

E(a, b) =
C(a, b)− C(a, b⊥)− C(a⊥, b) + C(a⊥, b⊥)
C(a, b) + C(a, b⊥) + C(a⊥, b) + C(a⊥, b⊥)

,
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Figure 15: Coincidence counts for all waveplate combinations, including a cosine-
squared fit and error bars.

where a⊥ = a+ 45◦, and similarly for b⊥.

E(0◦, 11.25◦) =
C(0◦, 11.25◦)− C(0◦, 56.25◦)− C(45◦, 11.25◦) + C(45◦, 56.25◦)
C(0◦, 11.25◦) + C(0◦, 56.25◦) + C(45◦, 11.25◦) + C(45◦, 56.25◦)

,

E(0◦, 33.75◦) =
C(0◦, 33.75◦)− C(0◦, 78.75◦)− C(45◦, 33.75◦) + C(45◦, 78.75◦)
C(0◦, 33.75◦) + C(0◦, 78.75◦) + C(45◦, 33.75◦) + C(45◦, 78.75◦)

,

E(22.5◦, 11.25◦) =
C(22.5◦, 11.25◦)− C(22.5◦, 56.25◦)− C(67.5◦, 11.25◦) + C(67.5◦, 56.25◦)
C(22.5◦, 11.25◦) + C(22.5◦, 56.25◦) + C(67.5◦, 11.25◦) + C(67.5◦, 56.25◦)

,

E(22.5◦, 33.75◦) =
C(22.5◦, 33.75◦)− C(22.5◦, 78.75◦)− C(67.5◦, 33.75◦) + C(67.5◦, 78.75◦)
C(22.5◦, 33.75◦) + C(22.5◦, 78.75◦) + C(67.5◦, 33.75◦) + C(67.5◦, 78.75◦)

.

Based on the fitted curve, 16 points corresponding to the angle combinations with the
potential for maximal violation are extracted. Using the fitted points shown in Figure 16,
the calculated S-value, as the final result of this Bell parameter analysis, is given by:

S = 2.7757± 0.0209 .

where ± 0.0209 represents the error estimation. This result clearly violates the classical
bound of S ≤ 2, which confirms quantum entanglement.
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Figure 16: Data points at the 16 angle combinations with the potential for maximal
violation, estimated from the fitted curves.

Fidelity
Since there is no full quantum state tomography performed, approximate quantum fidelity
bounds are estimated. The source produces a |Φ+⟩ Bell state, which is the target state.
Therefore, the density matrix ρ is reconstructed from the measurements.

F = Tr[|Φ+⟩ ⟨Φ+| ρ |Φ+⟩ ⟨Φ+|]

= Tr

 1√
2


1
0
0
1

 1√
2

�
1 0 0 1

� 
ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 1√
2


1
0
0
1

 1√
2

�
1 0 0 1

�

=
1

4
Tr



1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44



1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




=
1

4
Tr



ρ11 + ρ14 + ρ41 + ρ44 0 0 ρ11 + ρ14 + ρ41 + ρ44

0 0 0 0
0 0 0 0

ρ11 + ρ14 + ρ41 + ρ44 0 0 ρ11 + ρ14 + ρ41 + ρ44




=
1

2
(ρ11 + ρ44 + ρ41 + ρ14) .
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The terms ρ11 and ρ44 correspond directly to the probabilities of measuring in the |HH⟩
and |VV⟩ states, respectively. Specifically,

ρ11 = ⟨HH|ρ|HH⟩, ρ44 = ⟨VV|ρ|VV⟩.

To estimate these probabilities from the experimental data, coincidence counts are normal-
ized as follows:

ρij =
Cij

N
,

where Cij is the number of coincidence counts corresponding to the outcome measured in
the basis ij, and the normalization constant N is:

N = CHH + CVV + CDD + CAA .

For off-diagonal elements ρ14 and ρ41, measurements in the diagonal and anti-diagonal
bases are required. A brief recap of the combined two-qubit basis states in these bases:

|DD⟩ = |D⟩ ⊗ |D⟩ = 1√
2

�
1
1

�
⊗ 1√

2

�
1
1

�
=

1

2


1
1
1
1

 ,

|AA⟩ = |A⟩ ⊗ |A⟩ = 1√
2

�
1
−1

�
⊗ 1√

2

�
1
−1

�
=

1

2


1
−1
−1
1

 .

A detailed analysis of the diagonal coincidence values requires examining the probability of
coincidence in the diagonal basis. The probability of finding the system in the state |DD⟩
is given by:

⟨DD|ρ|DD⟩ = 1

2

�
1 1 1 1

� 
ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 1

2


1
1
1
1



=
1

4

�
1 1 1 1

� 
ρ11 + ρ12 + ρ13 + ρ14
ρ21 + ρ22 + ρ23 + ρ24
ρ31 + ρ32 + ρ33 + ρ34
ρ41 + ρ42 + ρ43 + ρ44


=

1

4
(ρ11 + ρ12 + ρ13 + ρ14 + ρ21 + ρ22 + ρ23 + ρ24 + ρ31 + ρ32 + ρ33 + ρ34 + ρ41 + ρ42 + ρ43 + ρ44) .

Similarly, for the antidiagonal basis, the probability of coincidence is:

⟨AA|ρ|AA⟩ = 1

2

�
1 −1 −1 1
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ρ11 ρ12 ρ13 ρ14
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=
1

4

�
1 −1 −1 1

� 
ρ11 − ρ12 − ρ13 + ρ14
ρ21 − ρ22 − ρ23 + ρ24
ρ31 − ρ32 − ρ33 + ρ34
ρ41 − ρ42 − ρ43 + ρ44


=

1

4
(ρ11 − ρ12 − ρ13 + ρ14 − ρ21 + ρ22 + ρ23 − ρ24 − ρ31 + ρ32 + ρ33 − ρ34 + ρ41 − ρ42 − ρ43 + ρ44) .

Summing ⟨AA|ρ|AA⟩+ ⟨DD|ρ|DD⟩ and normalizing it allows extraction of the off-diagonal
elements ρ14 and ρ41 of the density matrix. This leads to the following expression:

CDD + CAA
N

=
1

2
(ρ11 + ρ14 + ρ22 + ρ23 + ρ32 + ρ33 + ρ41 + ρ44)

It is known that the normalized diagonal elements satisfy the trace condition:

Tr(ρ) = ρ11 + ρ22 + ρ33 + ρ44 = 1 .

By applying the trace condition, the expression simplifies to:

CDD + CAA
N

=
1 + ρ14 + ρ23 + ρ32 + ρ41

2
.

By rearranging the terms, the missing off-diagonal elements can be expressed as:

ρ14 + ρ41 =
2CDD + 2CAA

N
− 1− ρ23 − ρ32 .

Then substituting this into the Fidelity, results in:

F =
1

2

�
CHH
N

+
CVV
N

+
2CDD + 2CAA

N
− 1− ρ23 − ρ32

�

=
CHH + CVV + 2CDD + 2CAA

2N
− 1 + ρ23 + ρ32

2
.

Finally, by applying the Cauchy–Schwarz inequality in a finite-dimensional complex Hilbert
space, the off-diagonal elements of a density matrix satisfy |ρij |2 ≤ ρiiρjj , or equivalently,
|ρij | ≤ √

ρiiρjj . By substituting the diagonal elements ρ22 and ρ33 with the appropriately
normalized coincidence counts CHV and CVH, respectively, the fidelity bounds are obtained
as:

CHH + CVV + 2CDD + 2CAA − 2
√
CHVCVH

2N
− 1

2

≤ F ≤
CHH + CVV + 2CDD + 2CAA + 2

√
CHVCVH

2N
− 1

2
.

A similar result is obtained for the second inequality. The fidelity bounds are determined
by taking the lower minimum and the upper maximum values.
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Error estimation
A closer look at the error estimation for each point is presented. In the upcoming CHSH
curve plots, there are error bars, which provide the uncertainty of the measurement. Two
imprecision factors are taken into account in the derivation. First, the statistical fluctuation
for counting photon coincidences and second the mechanical uncertainties of the rotating
waveplates.

For counting photon coincidences, the poisson standard deviation [27] must be taken into
account, which is defined as:

σpoisson =
√
C ,

where C are the coincidence counts. This captures the fluctuations of the discrete single-
photon detection. The rotators have a specified manufacturing uncertainty 1 of σangle =
0.14◦. The angular uncertainty propagates through the fitting function. The differential
error propagation is calculated as follows:

σangle(θ) =

����∂ffitting(θ)∂θ

����σangle .
The first step is to differentiate the cosine-squared fitting function. The function ffitting,
is defined as:

ffitting(θ) = a cos2
�
(2θ − φ)

π

180

�
+ b,

where θ is the angle, φ is the phase shift in degrees, a the amplitude, and b an offset. As
already discovered, 2θ is used in the fitting function because the polarization direction of
the photon rotates twice the angle.
Differentiating with respect to θ, applying the chain rule and using the double angle identity
sin(2x) = 2 sin(x) cos(x):

d

dθ
ffitting(θ) = 2a cos

�
(2θ − φ)

π

180

� d

dθ

�
cos

�
(2θ − φ)

π

180

��
= −2a cos

�
(2θ − φ)

π

180

�
sin

�
(2θ − φ)

π

180

� 2π

180

= −a
2π

180
sin

�
2 (2θ − φ)

π

180

�
.

The total error propagation becomes:

σtotal(θ) =

�
σ2
poission +

����� ddθf(θ)
����σangle�2

.

This error propagation is also done for the expectation values in the same way.

1Motorized Cage Rotator Manual. Accessed on 20.08.2025.
Link: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8750
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5 Results
This chapter presents the individual experimental setups and results for the conducted
experiments. The first section provides results for different field-deployed paths. The second
section introduces the APC system and the impact of path switching. The third section
presents a long-term evaluation with and without APC for single paths and path switching.
The final section offers an overview of the impact of classical channels co-propagating with
a quantum signal on the same fiber.

Initial Experimental Setup Structure
The initial setup, shown in Figure 17, serves as the starting point of all different experiments
conducted in this work. This setup also serves as a reference point for calibration, as the
signal path is local within the lab and is unaffected by field-deployed fiber.

Pump laser

𝜆/4 Wave plate𝜆/2 Wave plate

Fiber (795/1324 nm)

Free space (795/1324 nm)

Polarizing beam splitter Fiber to free space Shortpass filter

Local network

&

& Time tagger

Entangled-
photon source

Signal

Coupling laser Bell box SNSPD

Idler

Figure 17: Initial experimental setup structure.

This setup was also used to generate the measurement data in section 4.2. For system
calibration, a polarization controller is employed for each path. The polarization con-
troller consists of two quarter-waveplates and one half-waveplate, enabling polarization
manipulation to any arbitrary point on the Poincaré sphere. This process ensures that the
polarization state received at the Bell box is maximally entangled. Without the use of a
polarization-maintaining fiber, this is crucial to overcome any polarization drifts induced
by the short setup fibers. However, the fact that this procedure must be done by hand
with every setup change is a minor limitation.

36



5 Results

5.1 Distance Limits
In this section, research question I. is addressed. For the characterization of the entangled
photon distributed over different paths, an APC system is added to the experimental setup,
illustrated in Figure 18. This extension eliminates the need for recalibration of the polar-
ization controller every time the field-deployed fiber is changed. Only after the installation
of the APC system is a manual calibration required. After that, any polarization changes
between the APC injector and the APC compensator can be disregarded. This means that
polarization changes induced by another fiber are automatically compensated by triggering
the APC. For measurement simplification, the end nodes are looped, and the distributed
signal photons return to the laboratory. Although this contradicts the network structure
for a future quantum network, it offers other advantages at this stage of research. The most
noticeable advantage is that only one photon detection system is needed, i.e., it requires
a single cooling scheme, and the distributed path length is doubled. The characterization

APC compensator

Pump laser

APC injector

𝜆/4 Wave plate𝜆/2 Wave plate

Fiber (795/1324 nm)

Free space (795/1324 nm)

Polarizing beam splitter Fiber to free space Shortpass filter

Local network

&

& Time tagger

Entangled-
photon source

Signal

Coupling laser Bell box SNSPD

Idler

Field-deployed optical fiber

Figure 18: Experimental structure with an APC system designed for distributing
polarization-entangled photons along a field-deployed path.

of the fiber network is already explained in section 3.4, illustrated in Figure 8. Since the
entire entanglement characterization procedure depends on the single-photon count, it can
be predicted that fiber attenuation plays a major role, especially with very low quantum
signal power. CHSH measurements were conducted for different paths and confirmed the
quantum entanglement distribution. The results for 15 km, 30 km and 100 km are shown
in Figure 19, 20, and 21, respectively. It yields a measured S-value of S = 2.69 and a
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fidelity between 96.71% ≤ F ≤ 99.28% for the 15 km field-deployed fiber path.
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Figure 19: Coincidence counts as a function of the signal waveplate angle, over a
15 km path.
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Figure 20: Coincidence counts as a function of the signal waveplate angle, over a
30 km path.
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For these two paths, the measurement was performed with the same configuration settings.
With an integration time of 1 second, a clear coincidence peak is generated from more
than 300 single-photon counts. Longer paths, such as 100 km, required a longer integration
time of 30 seconds and maximal pump laser power. This shows a result of S = 2.49 and
a fidelity between 89.82% ≤ F ≤ 98.55%. Shown in Figure 21, the maximal coincidence
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Figure 21: Coincidence counts as a function of the signal waveplate angle, with
each waveplate configuration having a 30 second integration time, over a 100 km
path.

peaks reach only 140 single-photon counts. This is due to the high attenuation of the path,
resulting in very low single-photon detection. Without sufficiently long integration time,
coincidence peaks either do not appear or are hidden by noise. Without coincidence peaks,
it is impossible to estimate or confirm a violation of the Bell inequality.

5.2 Dynamic Switching
To address research question II., the experimental setup has been expanded. A mechanical
optical switch and a beam splitter were gradually integrated, in between the APC system.
Manual calibration is not required, as the components are positioned after the APC injector
and before the APC compensator. The mechanical optical switch, controlled by the data
acquisition procedure, directs the quantum signal along two different field-deployed paths
for the signal photon. The beam splitter then recombines the two paths, resulting in a loss
of photons. The extended setup is shown in Figure 22.

New challenges arise because these two paths have entirely different effects, such as
attenuation and polarization shift. If a calibration is performed manually for one path, the
polarization changes completely after switching paths. Consequently, entangled photons
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Figure 22: Experimental structure designed for distributing polarization-entangled
photons and switching between two field-deployed paths.

can be distributed and confirmed only along the calibrated path. Individual paths influence
the polarization of the photons differently, leading to a loss of observable entanglement by
the CHSH measurement after uncompensated path changes. To overcome individual shifts
on each path, compensation from the APC system is necessary for every path switching
event. To illustrate the impact of a path switch, the classical fidelity, measured by the
APC is shown in Figure 23. The periodic path switching events clearly show a drop in the
classical fidelity under 50%.

In the initial state of these experiments, one path is local (using the optical switch
operation mode explained in section 3.6), while the other follows a deployed fiber path.
This setup already demonstrates how the APC system can handle two completely different
polarization shifts. After completing a full CHSH measurement on the local path, the path
is switched to the field-deployed one, and the measurement continues there. The S-value
and fidelity for the two different path impacts can then be shown without requiring any
manual adjustments. After demonstrating path switching with one path still local, the
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next step, as shown in Figure 22, involves switching between two field-deployed paths. The
figure presents an example with paths of 15 km and 30 km, though this can be applied to
any field-deployed path. To provide a clearer visualization of the experimental results, the
S-value and fidelity are presented over time in the following section.
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Figure 23: Classical fidelity over time for periodic path switching events measured
by the APC system.

5.3 Long Time Evaluation
This section is divided into three phases. The characterization of the entanglement distri-
bution is shown under different setups, over long time periods of hours or days. Therefore,
the S-value and fidelity, including error bounds, are plotted over time. In the first phase,
the entanglement distribution is shown over a single path. The second phase demonstrates
switching between a local path and a field-deployed fiber. Finally, the switching is demon-
strated over two different paths.

In the first phase, the importance of the APC over time is highlighted, especially for
field-deployed fibers.

Single field-deployed path evaluation
To address the main differences between lab conditions and urban setups two experiments
are conducted based on the setups shown in Figure 17 and 18 (with the APC switched off).
In the experiment with the local path, the S-value remains stable for a period of 8 days,
as shown in Figure 24. In contrast, the distribution over the field-deployed path, with the
APC switched off, shows a drift in both the S-value and fidelity, illustrated in Figure 25.
This drift in characterization of the entanglement is a consequence of the polarization drift.
With the APC turned on and triggered after every complete measurement, the polarization
remains stable. Due to the slight drift over time, polarization compensation requires only
milliseconds and does not significantly increase downtime in the network.
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Figure 24: S-value evaluation over 8 days without the APC under local lab condi-
tions.
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Figure 25: S-value drift caused by polarization changes in a 30 km field-deployed
fiber over a period of 10 days.
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Switching between local and field paths
Moving into the second phase, switching between the local path and the field-deployed fiber
was performed. These path switching experiments are conducted over a local path and 15,
30, and 60 km respectively. The results for the 30 km path, illustrated in Figure 26, are
divided into two plots.

4 3 1 0 . , & $ # 47 44 43 41 40 4.

5)G8 %+E

4<&.

3<77

3<3.

3<.7

3<&.

1<77

9
?:

A
'=

8

"D>A'    SAVG B 3<,#! FAVG B #&<7,*

9?2A'=8

4 3 1 0 . , & $ # 47 44 43 41 40 4. 4,

5)G8 %+E

4<&.

3<77

3<3.

3<.7

3<&.

1<77

9
?:

A
'=

8

17 (G 68C')F     SAVG B 3<,7! FAVG B #1<4$*

9?2A'=8

7

37

07

,7

$7

477

/
);

8
')@

-
 %

*
E

/);8')@-

7

37

07

,7

$7

477

/
);

8
')@

-
 %

*
E
/);8')@-

Figure 26: Long-term S-value and fidelity evaluation with switching between local
(top) and 30 km field deployed fiber (bottom) path.

The upper plot shows an average S-value of SAV G = 2.69 and fidelity FAV G = 97.06% for
the local path, while the lower plot displays those for the 30 km field-deployed fiber path,
resulting in an average S-value of SAV G = 2.60 and fidelity of FAV G = 93.18%. As seen
in Figure 26, the exact time, where a measurement was performed, alternates between the
paths. The results for the 15 and 60 km distances show similar outcomes and are therefore
not explicitly plotted.
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Switching between two different field paths
For the final step, which is the closest stage to a real quantum network reached in this work,
the entanglement distribution was performed over two different paths. With a more cus-
tomizable optical switching system, the entanglement distribution can be easily confirmed
over a range of different paths simply by selecting the desired switch position.
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Figure 27: Long-term S-value and fidelity evaluation with switching between 15
km (top) and 30 km field deplyed fiber (bottom) path.

The upper plot shows an average S-value of SAV G = 2.66 and fidelity FAV G = 93.21% for
the 15 km path, while the lower plot shows those for the 30 km field-deployed fiber path,
results in an average S-value of SAV G = 2.64 and fidelity of FAV G = 95.15%.
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5.4 Impact of Classical Light
To characterize the operation of a hybrid quantum-classical network as proposed in research
question IV., experiments were carried out to show the crosstalk between the signals. In
the first phase the setup was expanded with an OADM and noise shaped 50-GHz wide
channels (explained in section 3.7 to emulate classical light). The setup shown in Figure 28,
investigates the impact of different single channels, as well as the impact of path switching
and coexistence of classical light together [41], setup illustrated in Figure 33. In the second
phase, a real 50-GHz dense wavelength-division multiplexing (DWDM) channel and an
optical filter were used to suppress the noise floor. Each illustrated S-value consists of an
average of five complete CHSH measurements with the same settings.
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Figure 28: Experimental structure designed for multiplexing classical and quantum
signals over a single field deployed path.

In the first experiment, CHSH measurements were carried out, with co-propagating am-
plified spontaneous emission (ASE) noise shaped into 50-GHz wide channels. Measurements
were conducted through the 30 km fiber loop while varying the launch power of the single
50-GHz ITU-T channel CH31 (1552.5 nm, 193.1 THz) from -6 dBm to -1.5 dBm (total
spectrum power of 0 dBm to 6 dBm). The resulting spectrograms, shown in Figure 29, are
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Figure 29: Transmitted optical spectra for varying classical channel power. Mea-
surement performed with a resolution bandwidth (RBW) of 0.1nm.

measured before the classical signal is routed to the OADM.
The measured S-value decreases with increasing classical signal power, as shown in Fig-

ure 30. It is a trade-off between the total power of the classical signal and the perceived
entanglement quality. This is due to increased noise levels that prevent the precise mea-
surement of entangled photons. In the operational range ≤ −1.5 dBm classical light power,
the classical limit of S = 2 is never crossed, where quantum entanglement can no longer
be verified (without adding additional filtering).
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local for the classical channel.
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The second aspect investigated is the impact of the spectral allocation of the classical
channel. This is determined by a second experiment using the same setup as in the previous
analysis but in which the total C-band power (signal and noise pedestal) is kept at a
constant level of 6 dBm. The central wavelength of the classical channel is varied from
CH59 (1530.3 nm, 195.9 THz) to CH24 (1558.1 nm, 192.4 THz) as shown in Figure 31.
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Figure 31: Transmitted optical spectra for with constant C-band power of 6 dBm.
Measurement performed with a resolution bandwidth (RBW) of 0.1nm.
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Figure 32: Measured average S-values for constant C-band power with different
spectral allocation of classical channel.

No relevant change in the measured quality of the entanglement is observed, as plotted in
Figure 32. To explain this behavior, it is important to note the relatively similar separations
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between the quantum channel and both the nearest CH59 (206 nm) and farthest CH24
(238 nm) classical channels. Additionally, the spectral power over the whole C-Band is
very broadly distributed.

In addition to quantum-classical coexistence, a hybrid network needs to operate in a
stable fashion under dynamic conditions. To demonstrate robustness, dynamic routing via
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Figure 33: Experimental structure designed for multiplexing classical and quantum
signals over and dynamic switching over two field deployed path.

two different deployed paths over 14 hours was performed. The optical switch periodically
changes between the 15 km and 30 km fiber paths, and for each switching event a CHSH
measurement is conducted. After every path switching, a compensation from the APC
system is necessary. The switching experiment is repeated, with multiplexing the classical
channel CH52 (1535.8 nm, 195.2 THz) into the fiber. The launch power of the classical
signal to -3 dBm to guarantee its coexistence with the quantum signal while ensuring an
OSNR > 22 dB. For the 15 km path, an average S-value of SAV G = 2.42 and FAV G =
86.49%, as for the 30 km path SAV G = 2.47 and FAV G = 90.12% as shown in Figure 34.
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Figure 34: Path switching between 15 and 30 km path, while coexisting of classical
light.

In the final phase of this work, the impact of a classical channel is investigated using a
standard 50-GHz DWDM channel. An optical filter was employed to suppress the noise
floor of the amplification. Illustrated in Figure 35, the 50-GHz ITU-T channel CH39
(1546.12 nm, 193.9 THz) varies in signal power from 0 dBm to 6 dBm. The total C-band
power is approximately equal to the signal power, as the noise floor is effectively suppressed
by the waveshaper. At the 6 dBm level, only minor rises in the noise floor are visible on each
side of the signal. Intermediate signal power steps are not shown to avoid overcrowding
the plot, as the noise remains similar across steps and the peak differences are minimal.

The resulting S-values as a function of signal power, illustrated in Figure 36, exhibit
a trend similar to previous observations. A trade-off is evident with increasing classical
signal power. In this case, entanglement verification can be demonstrated at very high
signal powers.
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6 Conclusion
This thesis has explored the feasibility of distributing, routing, and multiplexing polarization-
entangled photons through an urban field-deployed fiber infrastructure owned by Deutsche
Telekom AG in Berlin. The central goal was to evaluate the distribution of entanglement
under real-world conditions. The experiments successfully demonstrated the distribution of
O-Band polarization-encoded entangled photons. Furthermore, the impact of path switch-
ing and the coexistence of classical optical signals in the same fiber was demonstrated. The
experiments were conducted in a field-deployed environment, exposing the quantum signals
to environmental influences.

In the first phase, optical time-domain measurements were performed to characterize the
available fiber infrastructure. Entangled photon pairs were transmitted through distances of
up to 100 km, resulting in an S-value of S = 2.49 and fidelity between 89.82% ≤ F ≤ 98.55%.
The second phase demonstrated the impact of dynamic path switching. A controllable
optical switch distributed the photons between two different paths. The importance of
employing automated polarization compensation has been shown to overcome individual
polarization drifts. Long-term evaluations conducted in the third phase show unpredictable
polarization drifts. Without a proper polarization-maintaining mechanism, these events
would mark preliminary limits. By using an automated polarization control system, it
was smoothly possible to conduct experiments up to 20 hours, including path-switching
events. Finally, the coexistence of O-band quantum signals with C-band classical channels
was investigated. The coexistence is possible, but different effects depending on optical
power and spectral allocation were observed. Classical signals tend to increase the noise
and reduce the accuracy of quantum signal characterization.

In summary, this thesis confirms that field-deployed optical fiber networks can reliably
support entanglement-based quantum communication, even under challenging environmen-
tal conditions.

Outlook
For the future Quantum Internet, there is great potential for further research and techno-
logical development. In particular, technologies must be improved to enable scalability and
more complex network structures. For example, an automatic compensation system needs
to be developed in order to make the user side (end node) as efficient as possible. This
means that the device on the user side must be simple and easy to manufacture. Meanwhile,
the central distribution point can host a more complex system, synchronized with the end
nodes via a traditional network, or through copropagation with classical signals. Precise
clock synchronization is essential, as it is a key factor in characterizing entangled photons
using two different time taggers.
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