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Abstract 
In the context of this thesis, a reinforcement learning system is developed to prioritize test cases 
for regression testing. The system reduces the number of test cases that need to be executed, 
while maintaining the same level of fault detection. This approach is applicable to any project 
involving regression testing across multiple cycles. 

A key aspect of this work involves comparing various machine learning techniques used to 
prioritize test cases. The thesis provides an analysis of state-of-the-art machine learning systems 
that address similar challenges, identifying and selecting the most promising solutions for 
further evaluation. Four distinct approaches to test case prioritization are explored in this thesis. 
The first solution is a non-machine learning approach that directly utilizes the failure rate to 
prioritize test cases. Two additional approaches leverage supervised learning techniques to 
address the problem. Finally, the fourth solution is based on reinforcement learning. At each 
regression step, these solutions enable the prioritization of all test cases, with only the highest-
ranked ones being executed. In machine learning-based approaches, the outcome of executed 
test cases is used to refine the prioritization for the next regression step. The proposed solutions 
are compared with each other, as well as with similar approaches from existing research. 
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Kurzfassung 
Im Rahmen dieser Arbeit wird ein Reinforcement Learning System entwickelt, um Testfälle für 
Regressionstests zu priorisieren. Das System reduziert die Anzahl der auszuführenden Testfälle 
bei gleichbleibender Fehlererkennung. Dieser Ansatz ist auf jedes Projekt anwendbar, das 
Regressionstests über mehrere Zyklen hinweg umfasst. 

Ein wichtiger Aspekt dieser Arbeit ist der Vergleich verschiedener maschineller Lernverfahren, 
die zur Priorisierung von Testfällen eingesetzt werden. Die Arbeit bietet eine Analyse der 
modernsten maschinellen Lernsysteme, die ähnliche Herausforderungen angehen und 
identifiziert und wählt die vielversprechendsten Lösungen für eine weitere Evaluierung aus. 
Vier verschiedene Ansätze zur Priorisierung von Testfällen werden in dieser Arbeit untersucht. 
Bei der ersten Lösung handelt es sich um einen Ansatz ohne maschinelles Lernen, der direkt 
die Fehlerrate zur Priorisierung von Testfällen nutzt. Zwei weitere Ansätze nutzen supervised 
learning, um das Problem zu lösen. Die vierte Lösung schließlich basiert auf Reinforcement 
Learning. Bei jedem Regressionsschritt ermöglichen diese Lösungen die Priorisierung aller 
Testfälle, wobei nur die am höchsten eingestuften Fälle ausgeführt werden. Bei Ansätzen, die 
auf maschinellem Lernen basieren, wird das Ergebnis der ausgeführten Testfälle verwendet, 
um die Priorisierung für den nächsten Regressionsschritt zu verfeinern. Die vorgeschlagenen 
Lösungen werden miteinander sowie mit ähnlichen Ansätzen aus der bestehenden Forschung 
verglichen. 
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1  Introduction 

The following chapter provides a brief overview and understanding of the framework, 
conditions and aims of this thesis, as well as outlining the structure of the thesis. Subsequent 
chapters will address the problem statement in detail, followed by a comprehensive introduction 
to the relevant concepts and background information. In addition, the methodological approach 
of this research will be explained together with the rationale behind the choice of methods and 
their application to the problem at hand. 

1.1 Motivation 
Regression testing is the testing of the parts of the system that have already been tested, when 
the system changes. The purpose of regression testing is to identify potential changes that might 
have had an unexpected impact on another part of the system. In large projects, with increasing 
complexity and frequent cycles, this often leads to a great number of test cases all of which 
would require a lot of time [1], computing resources and sometimes manual effort to run. As a 
result, there is considerable economic and scientific interest in reducing the number of test cases 
that need to be executed during regression testing, which could lead to improved efficiency and 
lower costs. 

Therefore, this thesis addresses this challenge by using and comparing various machine learning 
techniques used to prioritize test cases. The techniques should ensure that only the highest 
ranked test cases, those most likely to detect defects, are performed by giving a rank to each 
test case based on learned patterns. The different machine learning, have one goal in common 
and that is to reduce the size of the regression suite, while also maintaining a high fail rate 
detection. This approach ensues high probability of discovering defects in the system under 
tests, even if new code changes are pushed into the code base. 

Furthermore, the results of this thesis could be relevant to researchers working in software 
quality and test automation. 

1.2 General Introduction 
The concept of artificial intelligence (AI) is not new. For the past decades, the idea of endowing 
machines with intelligent behaviour has fascinated numerous researchers and scientists. A 
significant milestone in this development was reached in 1950 when Alan Turing introduced 
the famous "Turing Test" proposed to determine whether a machine can be considered 
intelligent [2]. During this test, the machine engages in a conversation with a human and 
attempts to behave in a way that mimics human behaviour. The goal was to convince the test 
subjects that they are interacting with another person. If the machine successfully creates this 
illusion, the Turing Test is considered passed [3]. Although originally conceived as a theoretical 
thought experiment, the test continues to hold significant relevance in contemporary research 
and is frequently referenced in discussions surrounding AI. 

No machine has yet successfully passed the Turing Test. Nevertheless, AI is proving extremely 
useful in many aspects of our daily lives. It is used in areas such as object recognition, 
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personalised advertising, email spam filtering, online stock trading and traffic forecasting. It 
also plays a crucial role in robotics and the development of self-driving cars [1][2]. More 
recently, there have been significant advances in AI capabilities with the advent of ChatGPT, a 
language model from OpenAI. ChatGPT is capable of human-like conversations and is a 
demonstration of the potential of natural language processing [4]. This development 
demonstrates how AI can simulate human communication to a degree that blurs the lines 
between machine and human interaction, further stimulating discussions about the relevance of 
the Turing Test in modern AI research. 

As a subfield of AI, machine learning (ML) allows computers to throw conclusions from data. 
It is used, for example, in the prediction of house prices or cancer detection. Also, ML is very 
effective in test case classification [5]. In this way, the failure probability of test cases can be 
estimated. The probability of failure can then be used for prioritization, which is what is done 
in this thesis. 

1.3 Problem and Aim of the Work 
In practice, it is a common challenge that test cases take a lot of time and effort to run, as every 
single test has to be performed in every test cycle. This often leads to inefficiencies as redundant 
testing can be time and resource consuming. Hence the goal of this work is to develop a ML 
component, which should reduce the testing effort in systems that use regression testing. The 
component should use the test results to form an evaluation function that allows test cases to be 
prioritized so that only high-priority test cases need to be run [6].The component´s results 
should be evaluated and presented graphically. The results should then be compared with other 
test case prioritization components to assess the adequacy of the new component. It is not the 
aim of this thesis to create a component that runs tests, although this extension is theoretically 
possible. Instead, the component should use datasets of tests already run and their output for 
evaluation. Another limitation is that the component must not independently create test cases. 

1.4 Solution Approach and Work Packages 
The first step of this thesis consists of a literature review to gain a deeper understanding of the 
key issues. A background section was also created to describe and compare the different 
approaches of existing studies. Following the literature review, four very promising approaches 
are implemented. The baseline approach works with failure rates and does not involve ML. 
Two approaches use supervised learning techniques. One uses Naïve Bayes classification. The 
other is a random forest algorithm. The last approach uses reinforcement learning. Various tests 
and measurements are carried out for all approaches. The approaches are compared with each 
other. 

1.5 Structure of the Work 
Chapter 2 presents the background section of this thesis, providing a basic overview of key 
concepts related to testing and ML. This chapter serves as a basis for understanding the 
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technical and theoretical aspects relevant to the research and gives context to the subsequent 
analysis and implementation. 

Chapter 3 focuses on a comprehensive review and analysis of existing work in the field. 
Different methods and approaches are examined, systematically described and compared to 
assess their strengths and weaknesses. The analysis identifies the most promising solutions for 
this project, ensuring that the selected approaches are consistent with the research objectives 
and requirements. 

Chapter 4 delves deeper into the methodologies used in this study. It provides a detailed 
explanation of the selected methodologies, including the rationale for their selection and their 
application in the specific context of this thesis. The aim of this chapter is to provide 
transparency regarding the implementation process and to justify the choices made during the 
research. 

Chapter 5 deals with the measurement system and data sets used in this thesis. It outlines the 
processes involved in data collection and analysis and provides insight into the evaluation 
framework used to assess the effectiveness of the proposed solutions. In addition, the chapter 
presents a comparative analysis of the results obtained from the different solutions, highlighting 
their relative performance and applicability. 

Chapter 6 provides a summary of the main findings and conclusions of the study. It reflects on 
the results obtained and discusses their implications for the field. The chapter also explores 
potential directions for future research, suggesting further projects that could build on the 
findings of this thesis. 
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2 Background Section 

2.1 Testing and Analysis 
Testing is the process of systematically assessing and validating that the software behaves as 
intended, ensuring that it meets its specified requirements and that it performs its functions 
correctly [7]. Software testing is most effective when it is part of continuous integration, i.e. 
when testing is started at the design stage and is continued throughout the development process 
of the software. Testing is an important part of developing software, because it ensures that all 
components function as intended. On the other hand, analysis involves the process of defining 
test cases by determining what needs to be tested and specifying the methods for doing so. 
Testing and analysis are two distinct processes, yet they are closely interconnected and 
complement each other. However, both involve understanding the software specifications, 
defining test objectives and identifying potential risks. When combined, testing and analysis 
ensure comprehensive coverage and effective faults detection. Ultimately, this contributes to 
higher software quality and reliability. The following subchapter provides an overview of 
regression testing, a key subject of this thesis. 

2.1.1 Regression Testing 

Some systems are incremental, where the built system must be tested after each step, this is 
called regression testing. Regression testing ensures that the changes that have been made do 
not add new errors [5][8][9]. 

However, retesting the whole system would be very cost, resource, and time-consuming [8] 
[10][11][12] that is why are various techniques used to minimise test effort, such as test case 
selection, where a carefully selected subset of test cases is executed and test case prioritization, 
where all test cases are ranked and executed in a predefined order [2][8][10][11] . This process 
continues iteratively, optimising the testing procedure until either the allocated runtime 
is exhausted or a predefined coverage threshold is met [9][11][12]. 

2.2 Machine Learning 
ML focuses on enabling computers and machines to mimic the way humans learn. ML teaches 
a computer how to perform a task without explicitly programming it to do it. Instead, data is 
fed into an algorithm to gradually improve the result with experience. The term was coined in 
1959 by Arthur Samuel at IBM, who was developing various fields within AI. Although ML 
has a wide range of applications today, it performs two main tasks, one is to classify data and 
the other is to make predictions about future outcomes. 

There are six main steps, each of which performs a specific task, in the conventional ML 
approach Figure 1 [2]. 
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Collection and Preparation of Data: It is well known that this data preparation phase can 
greatly improve or deteriorate the ML outcome. It is important to use collected data sets from 
reliable sources. It should be meaningful and there should be a sufficient amount of data. Data 
often needs to be cleaned and pre-processed before it can be used as input to the ML algorithm 
[2]. The preparation phase generally includes three steps: Data cleaning, i.e., handling missing 
data and outliers, data reduction, i.e., reducing the data size by aggregation, elimination 
redundant feature, etc. and data normalization [13]. 

Feature Selection: The next step is the choice of meaningful features. Features must have a 
relevant influence on the output variable. 

Choice of Algorithm: There are several different algorithms in ML. Each algorithm makes 
different assumptions. Depending on its assumptions, an algorithm may be suitable as a solution 
to a problem. Some examples of algorithms are Naïve Bayes, Decision Tree and Support Vector 
Machines. 

Selection of model and Hyperparameters: Most ML algorithms need hyperparameters to be 
set before training [2]. 

Training: The input data is divided into a training set, validation set and a test set. This split is 
implemented because the training data is used to train the model, and a portion of the data is 
held back to assess the model's performance on previously unseen data. 

The training set should contain about 70% of the total data [1]. The training set is used to give 
the model examples of which input features lead to which output. The ML algorithm tries to 
model this relationship as a function. 

The validation dataset, which represents approximately 15% of the total data, is used to refine 
the model and obtain performance metrics. The results obtained from the evaluation of the 
model on the validation dataset allow further refinement of the model. 

The test dataset should contain approximately 15% of the data. It is used to test the actual data 
output. Testing requires the use of data not known to the algorithm [1]. The test data is used to 
predict the results of the inputs and compare them with the actual output. This can be used later 
for performance evaluation. The percentages quoted in this work are unique and may depend 
solely on the data and balances. 

Figure 1: Traditional Machine Learning Model (Copy from [2]) 
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Performance Evaluation: Test and validation data is used to evaluate the ML algorithm. 
Important metrics for classification are accuracy, precision and recall [2]. The metrics are 
described in more detail in Section 2.2.5. 

However, there are big changes happening in the field of ML during the last few years. This is 
mainly due to introduction of deep learning and large computing power. Therefore, newer ML 
approaches drift away from the traditional ones, they concentrate more on areas like deep neural 
networks [14]. 

2.2.1 Machine Learning Models 

Machine learning can be divided into models based on how an algorithm is trained and the 
availability of output during training [1]. This thesis describes some of the most important ML 
models, which are: 

• Supervised learning
• Unsupervised learning
• Reinforcement learning

2.2.2 Supervised Learning 

Supervised learning is ML with data with given output (label). The algorithm learns key 
characteristics from examples. After that, the algorithm can predict the output of the test 
data [1][2][15]. The success of supervised learning depends heavily on the quality 
and representativeness of the labelled training data, and the ability of the model to 
generalise to unseen data. It is widely used in areas such as image recognition, speech 
processing and predictive analytics. There are several models of supervised learning, which 
are introduced in the following chapters. 

2.2.2.1 Classification 

Machine learning algorithms can be used for various problems. A well-known problem is the 
classification problem, in which the algorithm attempts to assign a set of input features to a 
given number of output classes [1][2] . As in object recognition, where objects are classified 
into categories such as “cars”, “boats” or “animals”, classification is used to determine specific 
outcomes. For example, it can predict whether a test is likely to result in a “pass” or a “fail”, so 
these categories are used as predefined classes. 

2.2.2.2 Regression 

Regression is another supervised ML task. Regression models are trained to understand the 
relationship between different independent variables and an outcome. The goal of this learning 
task is to estimate unknown dependencies from training data with good predictive ability for 
future data. Based on the number of predictor variables and the nature of the relationship 
between the variables, regression can be classified into several types such as logistic regression 
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(Section 2.2.2.3), linear regression (simple, multivariate, and multiple), polynomial regression, 
non binary regression, ridge and lasso regression, and similar. 

2.2.2.3 Logistic Regression 

Logistic regression is a great solution for ML problems involving binary classification, where 
the probability of each input being in one of two different categories is determined. The 
algorithm models the relationship between the input features and a binary target variable using 
the logistic (sigmoid) function, which maps predicted values to probabilities between 0 and 1. 
A threshold, often set at 0.5, is then used to classify observations into one of two classes. It has 
become a preferred choice in fields as diverse as medical diagnosis, credit scoring, and 
marketing because of its simplicity, interpretability, and solid mathematical foundation [16]. 
This model is explicitly described here because it is applicable to our use case, which has two 
classes, failing test case and not failing test case. It is also used in the paper by Lachmann et al. 
(Section 3.2.2). 

2.2.2.4 K-Nearest-Neighbours 

Another supervised learning model is k-nearest-neighbours (KNN). The algorithm calculates 
the distance between the feature point and its neighbours, typically using metrics such as 
Euclidean distance. The class with the highest number of votes among these neighbours is then 
assigned as the new class of the feature point [10]. An interesting case happens when the two 
major results of a vote result in a tie between two classes. In this case the result needs to be 
determined by applying some additional strategy. For example, choosing k as an odd number 
resolves this issue. Another strategy is random tie breaking where the determined class is 
chosen randomly between the winning classes. 

2.2.2.5 Support Vector Machine 

Support Vector Machine creates an N-dimensional feature vector space and classifies the given 
feature points in such a way that the point-free area between the class boundaries is maximised 
[10]. The goal of SVM is to distinguish data points in an N-dimensional feature space and 
classify them according to this distinction. Herby a hyperplane is used as boundary between 
classes. That’s why they are also called decision boundary. The hyperplane can have different 
dimension depending on the dimension of the feature space. For example, in a 2-dimension 
feature space the hyperplane is a line. 

A specific case is where there are points in the so-called point-free region. These points are then 
classified according to which side of the hyperplane they are on [17]. 

2.2.2.6 Artificial Neural Networks 

Artificial neural networks (ANNs) are inspired by how the neurons work. An ANN is made up 
of interconnected nodes called artificial neurons. Each artificial neuron has several inputs and 
an output. Depending on the inputs, the output can be activated. The artificial neurons can be 
layered so that the output of one artificial neuron is the input of another. The weights of the 
connections in the neural network are adjusted during training. Because of these weights, the 
sensitivity of the outputs to certain inputs can be set [1]. 
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ANNs possess powerful capabilities for handling complex data. They are well suited for 
identifying underlying patterns. But they often need high computational power, another 
downside is the lack of transparency in decision making. Important for ANNs is the universal 
approximation theorem, which states that any continuous function can be approximated 
arbitrarily well by a neural network with at least one hidden layer with a finite number of 
weights [17]. 

2.2.2.7 Naïve Bayes 

Naïve Bayes is a simple learning algorithm that uses Bayes's rule combined with a strong 
assumption that the attributes are conditionally independent of each other.  Naïve Bayes often 
achieves competitive classification accuracy even though this independence assumption is often 
violated in practice.  This, combined with its computational efficiency and many other desirable 
features, leads to the widespread use of Naïve Bayes in practice [18]. 

2.2.2.8 Random Forest 

Decision trees (DTs) are a class of simple predictors. These predictors essentially represent a 
sequence of conditional steps that must be taken to arrive at a decision. Their popularity is 
largely due to their efficiency. However, there are some drawbacks when it comes to DTs. The 
main one is overfitting, i.e. the model performs well on one dataset but generalizes poorly to 
others. To make generalized predictions, Random Forest is used, which is based on collective 
intelligence. As the name suggests, a random forest is a tree-based ensemble where each tree 
depends on a collection of random variables. It performs well on a wide range of data sets and 
is a flexible algorithm with a wide range of applications. 

2.2.3 Unsupervised Learning 

Unsupervised learning is a type of ML that uses training data but does not use the correct label. 
With this input data, the algorithm can find similarities, while the algorithm identifies clusters 
or groups with similar characteristics [2][1][10]. This approach is often used for discovering 
hidden patterns in data, such as customer segmentation or anomaly detection. 

2.2.4 Reinforcement Learning 

In reinforcement learning (RL), an agent that uses the interaction of trial and error and tries to 
maximise the rewards [2][19][20]. The rewards and penalties are given by a reward function. 
RL is often used in changing or partially unknown environments where strategic decisions are 
required, for example in games [19][20]. 

RL also uses an environment with different states. The states depend on the current properties 
of the environment. Depending on the state of the environment, the agent performs an action 
from a predefined set of actions. This results in a transition to a new state [1][21]. 
The result of the action is then rewarded with a reward function. The agent tries to perform the 
actions that lead to the highest rewards [15][19]. This interaction is shown in Figure 2. 
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Figure 2:Interaction between Agent and Environment (copy from [1]) 

2.2.4.1 Model-Based and Model-Free Reinforcement Learning 

Model-based reinforcement learning uses a Markov Decision Process model. A reinforcement 
learning algorithm is called model-free if it operates within the Markov Decision Process 
(MDP) framework but does not use or learn the transition probabilities or reward function 
explicitly. Instead, it learns optimal behavior directly from interaction with the environment to 
learn a policy of value function. [1] An example of a model-free algorithm is Q-learning. 

2.2.4.2 Q-Learning Algorithm 

The Q-learning algorithm is a fundamental method in reinforcement learning for estimating 
rewards. The Q-value represents the expected future reward for taking a particular action in a 
given state. After each step, the Q-value is updated according to a predefined update rule, 
allowing the algorithm to iteratively improve its policy and optimise decisions over time. 

𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼�𝑟𝑟𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛾𝛾 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1, 𝑎𝑎)  − 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)� 
with 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) … old Q − value 𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) … new Q − value 𝛼𝛼 … learning rate between 0 and 1 𝑟𝑟𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) … reward received for transition between state st and st+1 𝛾𝛾 … discount factor between 0 and 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) … estimate of optimal future value 
The learning rate α is a tuning parameter for the learning process. A high learning rate leads to 
big changes in the Q-values, while with a smaller learning rate only small changes are made. 
Typically, algorithms start with a high learning rate which gets continuously reduced in later 
steps [20]. 
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Another tuning parameter is the discount factor γ, which causes rewards received in earlier steps 
to be valued lower than rewards received closer to the current step. 

Depending on a probability value ε, the agent decides between two activities, exploration and 
exploitation. During exploration, the agent chooses the action at random. During exploitation, 
the agent performs the action with the highest Q-value [15]. This helps the agent to explore the 
input state and prevents the agent from getting stuck in a poor strategy [19], ε is reduced in later 
steps. With the formula: 𝜀𝜀𝑡𝑡+1 = 𝜀𝜀𝑡𝑡𝛼𝛼 

2.2.5 Performance Evaluation for Classifiers 
Different metrics are used to evaluate performance. There are four possible outcomes for ML 
systems designed for binary classification tasks. These outcomes are illustrated in the confusion 
matrix shown in Table 1. 

The Element is predicted to 
belong to the class 

The Element is predicted not 
to belong to the class 

The element belongs to the 
class True positive False negative 

The element does not belong 
to the class False positive True negative 

Table 1: Confusion Matrix 
From these outcomes, different metrics can be calculated. 

2.2.5.1 Accuracy 

Gives the ratio between correct predictions and the number of total predictions [11][21]. 

accuracy= correct predictions
total predictions

 [11] 
or 

accuracy= true positives + true negatives
true positives + true negatives + false positives + false negatives

  [11] 
2.2.5.2 Precision 

Gives the ratio between elements that are predicted to belong to a class and do with respect to 
all elements that are predicted to belong to the same class [11][21]. 

precision= true positives
false positives + true positives

 [11] 
2.2.5.3 Recall 

Gives the ratio of elements that are predicted to belong to a class and all elements that belong 
to the same class [11][21]. 

recall= true positives
true positives + false negatives

[11]
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In cases where the classes are not evenly distributed, it is better to use precision and recall for 
evaluation. In these cases, the precision can be high because most elements are predicted to 
belong to the larger class. If the recall of the smaller class is low, the prediction is not very 
useful [21]. 

For example if a classifier is designed to label all test cases as "pass" when distinguishing 
between "fail" and "pass," the accuracy may appear high, as the majority of test cases typically 
fall into the "pass" category. However, the recall for the "fail" class would be low, and the 
precision for the "pass" class would also be poor. Consequently, using recall and precision is 
often a more suitable approach for evaluating classifiers when class distributions are 
imbalanced. 

The ML algorithms are each trained with a training dataset which consists of all tests which are 
executed till the end of the current cycle. The evaluation is always performed on the same test-
set which size is 15% of the whole dataset and contains the tests and results of the last cycles. 

The recall is calculated and displayed graphically. To compensate for the limitations of the 
recall metric, in the graphs of this thesis another curve is added to the graphs which represents 
the percentage of test cases classified positive (failing). 

2.2.6 Performance Evaluation Metrics 

Test case prioritization techniques that produce a continuous range of values as output, rather 
than discrete classes, require alternative metrics for evaluation. Such techniques typically assign 
a score to each test case which indicates the relative importance of the test case or the likelihood 
of a defect being detected. 

2.2.6.1 Average Percentage of Faults Detected (APFD) 

For determining the APFD value the ranks of failure detecting test cases in the test execution 
order are used [6] [9] [10] The following formula is used for calculating APFD: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇′) = 1 − 𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+⋯+𝑇𝑇𝑇𝑇𝑚𝑚𝑛𝑛∙𝑚𝑚 + 12∙𝑛𝑛  [9][19][20] 
with 𝑇𝑇′ … prioritized test suite 𝑇𝑇… Test suite containing n test cases 𝐹𝐹 … set of m faults revealed by T 𝑚𝑚… number of faults contained in the system under test 𝑛𝑛… total number of test cases 𝑇𝑇𝑇𝑇𝑖𝑖 … the position of the first test in T that exposes fault i 
APFD can be between 0 and 1. A high APFD value indicates that the prioritization of test 
cases is effective and that many defects would be detected even if only the high-priority test 
cases were executed [5][9][10]. 
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3 Literature Analysis 

This chapter will be a review of the current methodology for test case prioritization. Approaches 
are compared with one another according to their strengths and weaknesses. There are many 
different ML solutions for test case prioritization. This thesis describes and compares the 
following characteristics are compared: 

• Used ML technique
• Features used for prioritization
• Used performance evaluation metrics

To improve software safety, it is essential to perform regression testing on every system update. 
In a continuous integration environment, regression testing requires test cases that can provide 
rapid feedback. As a result, it is critical to effectively prioritize test cases within a specific time 
frame to maximize defect detection and increase the defect detection rate of the testing process 
[22]. Regression testing is essential for verifying that changes to code do not alter its intended 
functionality. However, executing all test cases can be time-consuming and resource-intensive, 
especially with the increasing use of Agile development in web applications, which results in 
frequent software builds. To address this challenge, test case selection and prioritization (TCP) 
strategies have been developed to optimize the testing process by selecting and ordering test 
cases in a way that provides timely feedback to developers. Recently, researchers have 
increasingly turned to ML techniques to develop more effective ML-based TCP approaches. In 
regression testing the system changes in each regression step, which might make adaptive 
solutions like reinforcement learning more suitable for this problem [6][12].Therefore, this 
literature analysis focuses on test case prioritization solutions with reinforcement learning. 

Finally, some approaches for test case prioritization with ML will be analyzed to get a good 
overview of currently used techniques and their performance. The interested reader may be 
pointed toward [5] for further information. 

3.1 Solutions with Reinforcement Learning 

3.1.1 RETECS 

“Reinforcement learning, clustering, ranking, and models based on natural language processing 
are the key ML approaches used for TCP” [23]. Spieker et al. [6] describe the reinforced test 
case selection (RETECS) method. This method uses Reinforcement learning (online learning) 
for test case prioritization and selection. Online learning is a ML technique that allows constant 
learning during runtime. This makes RETECS an adaptive method. Adaptive means that the 
method adapts to the environment, which is changing during the regression steps. 

For prioritization, the RETECS method uses the features duration, previous last execution and 
the failure history of test cases. The number of executed test cases is constrained by time, so 
the total duration of execution must stay under a predefined threshold. So only the higher ranked 
test cases are executed and only these results are used in the learning process. To determine the 
reward the paper compares three different reward functions. The Failure Count Reward tries to 
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maximize the number of failed tests of the whole selection, while the Test Case Failure reward 
determines the reward considering the individual test cases. The third reward function (Time-
ranked Reward) takes the previous order of the test cases into account. However, the Test Case 
Failure Reward seems to work best. 

For Evaluation, RETECS uses the Normalized Average Percentage of Faults Detected 
(NAPFD), to make their system, which only orders test cases till the time constraint threshold 
comparable to other systems that use APFD for evaluation. In most cases, the NAPFD of their 
experiments is something about 0,4, which indicates that the RETECS method detects 
approximately 40% of the defects early in the test execution, suggesting a moderate level of 
fault detection within the given time constraints. 

3.1.2 Extended Diagraphs 

According to Emam et al. [20], a model-based testing technique is presented. The technique 
uses Reinforcement learning together with a hidden-Markov model (HMM). 

For graphical user interface (GUI) testing Model-based techniques deliver good results [24]. 
But they can also be used for other applications where HMMs could be built. For the paper 
Auto-Black-Test [15] a tool for the automatic generation of GUI test cases is used to generate 
the test cases. 

The technique prioritizes tests based upon the number of computations (changes) that a test case 
may cause in the system under test. Test cases with a higher number of changes are more likely 
to lead to system failures. The used technique is Q-learning. The test cases are ordered by using 
the Q-values in descending order.  

For the performance Evaluation, the APFD and other metrics are used. We will concentrate on 
the APFD because it is easier to compare. The Mean of APFDs values is for RL-based HMM 
between 0.6865 and 0.9339, depending on the tested application. 

3.1.3 Ranking to Learn 

An alternative approach described in the paper by Bertolino et al. [25] that is well suited for 
dynamic contexts is RL. RL algorithms applied to ranking are referred to as ranking to learn 
(RTL) as opposed to learning to rank (LTR) (described in 3.2.4), because RTL uses ranking 
information at each step to refine the model's predictions. According to Zurek-Mortka et al. 
[23], RTL offers notable advantages for test prioritization in CI environments because it can 
naturally adapt to changes in the test suite - such as the addition or removal of tests in each CI 
cycle - and to adjustments in the CI process itself [25]. The main difference between LTR and 
RTL is how they learn and how they deal with situations that are always changing. 

3.1.4 Regression Testing based on Q-Learning with Autosys 
Q-learning is a reinforcement learning algorithm that has been integrated into regression testing
for test case prioritization. The objective of this approach is to speed up the deployment process
by effectively prioritizing test cases, while ensuring bug-free software updates through
continuous test case prioritization and full automation. By continuously learning from system
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feedback, Q-learning assigns priority levels (high, medium, and low) to test cases based on 
various factors, helping to optimize the order of test execution. In this approach, the Q-learning 
algorithm iteratively adjusts its actions using action values of different states, improving the 
agent's performance over time. As a model-free technique, Q-learning does not require a 
predefined model of the environment and adapts on-the-fly based on observed transitions and 
rewards [26]. At each transition, the learning agent takes an action, receives a reward, and 
moves to the next state until it reaches a final state, completing the process.  

Once the test cases have been prioritized in each cycle, the test execution process is often 
automated through the use of AI integrated with ML-driven test case scheduling. Autosys is a 
cross-platform job management system that handles the scheduling, monitoring, and reporting 
of various tasks called Autosys jobs. It can autonomously perform a wide range of tasks, 
including the execution of multiple test cases, without the need for human intervention. It also 
provides real-time feedback on the results of the tests. An overview of the Autosys workflow 
is shown in Figure 3[26]. 

Figure 3: Approach Architecture as Discussed (Copy from [26]) 

3.2 Other Solutions 

3.2.1 Learning Software Agents 

Abele et al. [8] used learning software agents for the test case fault-proneness prediction. The 
system uses fuzzy logic rules. To create Fuzzy logic rules, rules that apply to testing are 
formulated by experts. These rules are translated into many-valued truth values, which can then 
be interpreted by the machine. In this way, the fuzzy logic rules represent expert knowledge on 
testing like: “Complex modules are more fault-prone than simple ones”.  

The fuzzy logic rules are used together with a genetic algorithm to predict the fault-proneness. 
The genetic algorithm optimizes the fuzzy logic, by adapting the weight factors of single fuzzy 
logic rules. Features used for this optimization are the number of past faults, the number of 
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recent changes, the criticality of the system, the complexity of the system and the number of 
found faults in the previous test. 

Figure 4: Fault-Proneness Prediction with Fuzzy Logic Rules and Genetic Algorithm (Copy from [10]) 

Genetic algorithms are inspired by biological organisms. They adapt to their input and try to fit 
their environment. This model is called evolutionary learning. For the evaluation of this 
approach, the fault-proneness prediction of the system was compared to a classic prediction 
made by a developer. Unfortunately, there were no evaluation metrics used. 

3.2.2 Machine Learning Approaches for Black Box Software Testing 
In his paper [10] Lachmann et al. compares a variety of ML approaches to black box testing of 
software. In testing, access to the source code is not always available, so black-box approaches 
are necessary. Interestingly, the help of a test expert is used as part of this ML system. The test 
expert selects a set of positive and a set of negative test cases (i.e. a set of important and a set 
of less important test cases) from a test case database. These data sets are later used for the ML 
algorithm. The concept is illustrated in Figure 5. 

Figure 5: Concept of Remo Lachmann's Approach (Copy from [10]) 

For ML, the following four algorithms are applied in the paper: 
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1. Ranked support vector machines
2. K-Nearest- Neighbour
3. Logistic regression
4. Artificial neural network

The results of these techniques are also combined and it is called ensemble learning. Features 
used for test case prioritization in the paper are title, number of linked requirements, execution 
duration and the test case description. 

For Performance evaluation, the APFD performance metric was used. Results are shown in 
Table 2. Boost stands for the ensemble learning technique. 

Table 2:APFD Values of the different Techniques used by Remo Lachmann (Copy from [10]) 

3.2.3 Ranking SVM 
In the paper [12], a supervised ML approach is used for test case prioritization. The used ML 
technique is Ranking SVM. 

This model was introduced by Thorsten Joachims who is a well-known researcher in ML and 
information retrieval. Ranking SVM is a pair-based ranking approach used primarily in 
applications such as search engines and recommendation systems. It learns preference 
relationships between pairs of data points rather than classifying individual data points [27]. 

The input features are test case description, requirements coverage, failure count, failure age, 
failure priority and execution costs.  

For evaluation, the APFD value was used. Two datasets have been evaluated. The results are 
APFD=0.92 for the first dataset and APFD=0.81 for the second dataset 

3.2.4 Learning to Rank 
A recent learning strategy in ML is LTR, which primarily involves supervised algorithms. LTR 
has proven valuable in areas such as information retrieval and natural language processing. In 
software engineering, it has been effectively applied to tasks such as defect prediction, where 
modules are ranked according to their likelihood of containing defects [25]. Similarly, in test 
prioritization, LTR can be used to rank test targets (e.g., test cases or test classes) based on 
supervised learning problem, LTR requires prior training. However, if the operational context 
changes from the training environment, the model may no longer be representative and could 
lose its predictive accuracy. This is particularly relevant in CI scenarios where such 
discrepancies can occur. 
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LTR is used to generate ranking functions from training data sets. These ranking functions are 
then used to order the documents retrieved in response to a user query. Figure 6 illustrates the 
typical architecture of LTR approaches that most learning-based methods follow to address the 
IR ranking challenge [16]. 

In paper [25], the Rank Percentile Average (RPA) is defined as a performance evolution 
designed to adapt the RPA to the prioritization problem by calculating how closely a predicted 
ranking matches the actual ranking. This metric can evaluate a ranking independently of the 
specific test criteria (e.g., error detection). 

Whereas in paper [16] Mean Average Precision and Normalized Discounted Cumulative Gain 
were used as performance evaluation metrics. 

Figure 6: Approach Architecture as Discussed (Copy from [16]) 

3.3 Conclusion of the Literature Analysis 
In the literature analysis, we learned that there are many different ML models are used for test 
case prioritization. Like the ML-model, the ML-techniques used in each approach vary. It is 
currently unclear which model and which techniques are best suited for test case prioritization. 

As much as the ML models vary, the features used are similar in many approaches. Commonly 
used features are 

• Failure history
• Amount of changes
• Duration or execution costs
• Test case description

For the performance metrics, the APFD value was used in most of the techniques. 

The results of the whole literature analysis are summarized in Table 3. The table gives a good 
overview of the different ML approaches. 



Machine Learning for Test Prioritization 25 

Name Machine learning 
technique 

Features used for prioritization 

RETECS [7] Online learning duration, previous last execution and 
the failure history of test cases 

Extended Diagraphs[19] RL amount of computations (changes) 

Learning Software 
Agents [8] Ranking SVM 

number of past faults, number of recent 
changes, critically of the system, 

complexity of the system, number of 
found faults in the previous test 

Different ML 
approaches for Black 
Box Software Testing 

[10] 

SVM, KNN, Log Reg title, number of linked requirements, 
execution duration, test case description 

Different  ML 
approaches for Black 
Box Software Testing 

[10] 

Layered Neural 
Network 

title, number of linked requirements, 
execution duration, test case description 

Ranking SVM [12] Ranking SVM 
test case description, requirements 
coverage, failure count, failure age, 
failure priority and execution costs 

Learning to Rank [25] KNN,RF,L-MART,… duration, previous last execution and 
the failure history of test cases 

Ranking to Learn [25] RL duration, previous last execution and 
the failure history of test cases 

Regression Testing 
based on Q-Learning 

[26] 
RL - 

Table 3: Machine Learning Approaches for Test Case Prioritization 

The conclusions of the Literature analysis are used in the following Sections to select 
meaningful features and algorithms. 



Machine Learning for Test Prioritization 26 

4 Experiments 

This chapter gives an overview of the concept and explains which procedures were used to 
implement the project. It explains the chosen algorithms and hyperparameters. It is also 
described how the system could be applied in a useful way. Additionally, the approach to 
evaluating and validating the model is discussed to ensure traceability and reproducibility of 
the results. 

4.1 Concept 
Different ML models are used to determine the priorities of test cases. Four different datasets 
are used in this thesis.  

From those datasets, a selected set of features is used to determine the priorities of the test cases 
in the dataset. Priorities are determined in each regression step and then various evaluation 
metrics are applied to evaluate the quality of the used models.  

Figure 7 shows an example of how the concept is applied to the second regression step of a 
dataset.  

The first phase is to split the dataset into a training and a test dataset. 

Second, the data collected during the previous regression steps (one and two) is used to train 
the machine learning model. In the case of the failure rate model, no training takes place, the 
collected data is used here to calculate the failure rates. 

The third phase is performed on the data from the test set and is used to test the trained ML 
model. The ML model outputs the different scoring metrics. The scoring metrics can then be 
compared between our different models and with other models from the literature. This process 

Figure 7: Example of the Concept 
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is repeated for every regression step which gives full insight into how each regression step 
affects the metrics. 

4.2 Implementation 
The ML algorithms used in this project were implemented in Python using the Scikit-Learn 
Reference Library [29]. Scikit-learn is a widely used open-source library for Python that 
provides a comprehensive set of tools for machine learning tasks. It includes algorithms for 
classification, regression, clustering, dimensionality reduction and model selection. The library 
is well documented and widely used in both academic and industrial settings due to its ease of 
use and efficient implementation of machine learning techniques. Additionally, scikit-learn 
offers a wide range of utilities for model evaluation and tuning, making it an invaluable resource 
for developing and optimizing machine learning models. 

4.3 Feature Selection 
For a functioning ML system, the choice of meaningful features is of utmost importance. The 
features are extracted from the datasets under the use of a Matlab script.  

To train and test the ML algorithm, the following four different features are used: 

• last_run_number_of_cycles_ago
• last_fail_number_of_cycles_ago
• fail_rate
• number_of_runs

The following paragraphs explain the various features and the reason why they were selected. 

last_run_number_of_cycles_ago:  

This feature indicates how many cycles have passed since the test was last carried out. It is 
expected that tests that have not been carried out for a long time tend to fail, because the system 
underwent many changes. 

last_fail_number_of_cycles_ago: 

This feature indicates how many cycles have passed since the test was last carried out and failed. 
If a test failed many cycles ago it may be an indication that the problem which triggered the 
failure of the test is solved. Vice versa a test that failed recently may be an indication of an 
unsolved problem. 

fail_rate: 

The fail rate is the proportion between the number of times a test failed and the number of times 
a test was executed. fail rate = number of times a test failednumber of times a test was executed
This feature may be important. As it may be a good indication of the probability that a test fails 
in the future. 

number_of_runs: 
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This feature contains information about how often a test had been executed so far. This may, 
together with the fail rate, indicate the likelihood of a test to fail. 

Along with these features, the test results are also extracted from the datasets. This information 
is then used both to train the model and to evaluate its performance. By incorporating the test 
results into the training process, the model is able to learn patterns and relationships that help 
predict future results, ensuring that its predictions are consistent with real-world scenarios.  

4.4 Choice of Algorithm 
For the implementation, several machine learning algorithms were selected for comparison in 
order to assess their performance on the given task. The chosen algorithms are: 

• Gaussian Naïve Bayes
• Random forest with hyperparameter tuning
• Reinforcement learning

Each algorithm is described in detail in the following sections, with an explanation of the 
reasons for their selection based on the problem's requirements and the desired outcomes. 
Additionally, a fourth algorithm based on the failure rate is utilized. While this approach is not 
a machine learning technique, it serves as a baseline for evaluating test case prioritization and 
is also explained in the following paragraphs. 

4.4.1 Gaussian Naïve Bayes 

The Naïve Bayes algorithm is based on the Bayes’ theorem. We also make the naïve assumption 
that our features are conditional independent [28]. 

For the implementation of the Naïve Bayes algorithm, the machine learning model from the 
scikit-learn library is used. The model is trained on the training data and generates predictions 
for the test set in each cycle, as outlined in Section 4.1. The model's output consists of predicted 
probabilities for each test case in the test set, indicating the likelihood of a test failing. These 
probabilities are used to rank the test cases in descending order, starting with the test case that 
has the highest probability of failure. This ranked list can then be utilized to calculate the APFD 
value, as described in Section 2.2.6.1. 

Another output of the model is a list of predictions, categorizing each test as either a pass or a 
fail. These predictions are used to compute the accuracy, precision, and recall of the model, as 
discussed in Section 2.2.52.2.5. These metrics are crucial for evaluating the performance of the 
model. 

Finally, various plots are generated based on the model’s outputs, which are presented in 
Chapter 4.7. Additionally, the runtime of the model is measured for performance evaluation 
purposes. 

4.4.2 Random Forest with Hyperparameter Tuning 

The random forest classifier combines several decision tree classifiers. Decision trees are 
described in Section 2.2.2.8. 
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For the random forest with hyperparameter tuning, different parameters in a certain range are 
chosen randomly. With these hyperparameters, a part of the dataset is trained and tested. This 
process is repeated a hundred times. The best result determines the hyperparameters used for 
the actual training. More information about the hyperparameters is given in section 4.5.  

For the implementation of this ML model, the Random Forest Classifier from scikit-learn is 
used. The hyperparameters which have been determined by the previous step are set.  

The model is trained with the training data and predicts the outputs for the test data in each 
cycle as described in Section 4.1 .With these outputs, certain metrics are determined, which are 
later used for evaluation.  

For the determination of the APFD value test cases are ordered according to their probability 
of failing. 

Different plots are recorded for recall and APFD values. The runtime is also measured. 

4.4.3 Reinforcement Learning 

As the third ML algorithm, reinforcement learning with Q-learning is used. More detailed 
information on reinforcement learning is given in Section 2.2.4. 

The model gets trained with the training dataset and must determine the output of the test cases 
in the test dataset. Its output is a prediction for the outcome of the test cases in this dataset. This 
information is used for the calculation of various metrics. The process is repeated for each cycle 
as described in Section 4.1.  

For the calculation of the APFD values test cases in the datasets are ordered according to their 
Q-value from the Q-table. With this information, the APFD value can be calculated and used
for evaluation purposes.

Different plots are determined, and the runtime is measured. 

4.4.4 Model based on Fail Rate 

For the model based on fail rate no ML based model is used. The fail rate is used to determine 
if a certain test case is likely to fail. A higher fail rate means that the test failed often in the past 
if it was executed. It is assumed that it is likely that the test will fail again in the future if it has 
a high fail rate. 

Tests which are likely to fail are labeled positive, because these are the test cases which we 
want to execute during our test phase. On the other hand test cases with a low probability to fail 
will be labeled negative as they won’t be executed. 

A threshold needs to be chosen to determine at which fail rate a test in the test dataset is 
predicted to fail. It is essential to balance the value of the threshold. If the threshold is too high 
there will be many test cases predicted false positive (We expect the test to fail but it does not). 
If the threshold is set to low there will be some false negative test cases (We expect the test to 
pass but it does not).  
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In this thesis, a certain recall goal is used as a hyperparameter to tune the threshold. The 
threshold is determined with the training data in a way that the recall of the training set classified 
with this threshold is close to the recall goal.  

The model output is a prediction of which test cases in the test dataset will fail and which ones 
will pass. With this information several metrics for evaluation are determined. 

To calculate the APFD value, the test cases are ranked according to their failure rate. In addition, 
several graphs are generated based on the model's predictions, and runtime is measured for 
performance evaluation. 

4.5 Hyperparameter Tuning 

4.5.1 Random Forest 
The hyperparameters which are tuned in this random forest ML algorithm are 

• Max_depth
• Num_estimators
• Min_samples_leaf
• Min_samples split
• Boot

In the following sections, the hyperparameters are described. Also, the range within the 
hyperparameters are chosen randomly is stated. 

Max_depth 

Defines the maximum depth of the tree. If this value is chosen None, all nodes are expanded 
until all leaves contain less than min_samples_split samples [29]. 

This parameter was chosen randomly in the range from 10 to 100 with the step size 10 additional 
the parameter could also be None. The default value is None. 

Num_estimators 

Defines the number of trees in the forest [29]. This parameter was chosen randomly in the range 
from 100 to 1900 with a step size of 200. The default value is 100 [29]. 

Min_samples_leaf 

Defines the minimal number of samples a node requires to be a leaf node 

This parameter was chosen randomly in the range from 1 to 3 with the step size 2. The default 
value is 1. 

Min_samples_split 

Defines the minimum number of samples required to split an internal node [29]. 
This parameter was chosen randomly in the range from 2 to 10 with the step size 2. The default 
value is 2. 
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Boot 

Defines if bootstrap samples are used in the building of trees. If this parameter is chosen false, 
the whole dataset is used to build each of the trees [29]. 
This parameter was chosen randomly and it can be true or false. The default value is true. 

4.5.2 Reinforcement Learning 
The hyperparameters which could be tuned in the reinforcement learning algorithm are 

• Alpha
• Gamma
• Epsilon
• Rewards

The following sections, describe the hyperparameters and the range within the hyperparameters 
are chosen randomly. 

Alpha 

Alpha is the learning rate. Q-values change much if the learning rate is high and less if the 
learning rate is small [20]. 

For this parameter different values between 0.1 and 0.9 have been tried with a step size of 0.1 
and the value combination which leads to the best results has been selected.  

Gamma 

The discount factor γ affects that rewards that are received in earlier steps are valued lower than 
rewards nearer to the actual step. 

For this parameter different values between 0.1 and 0.9 have been tried with a step size of 0.1 
and the value combination with leads to the best results has been selected.  

Epsilon 

The probability value ε determines the probability if the agent decides between the two 
activities, exploration and exploitation. During exploration, the agent chooses the action 
randomly. During exploitation, the agent runs the action with the highest Q-value [15]. 

For this parameter different values between 0.05 and 0.95 have been tried with a step size of 
0.05 and the value combination which leads to the best results has been selected.  

Rewards 

For each of the possible outputs true positive, true negative, false positive, false negative a 
reward is needed to indicate the system if its decision was good or bad. In the case of the bad 
decision the reward is negative, so the system is punished.  

In the case of a true positive classification, e.g. the agent classifies the test failing and it fails. 
The model gets a big positive reward. 

In the case of a true negative classification, e.g. the agent classifies the test passing and it passes. 
The model gets a small positive reward. 
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In the case of a false positive classification, e.g. the agent classifies the test failing and it passes. 
The model gets a small negative reward. 

In the case of a false negative classification, e.g. the agent classifies the test passing and it fails. 
The model gets a big negative reward. 

For each parameter different values between 1 and 100 (respectively -1 and -100) have been 
tried with a step size of 20 and the value combination with leads to the best results has been 
selected. 

4.5.3 Fail Rate 
The only hyperparameters which could be tuned using the fail rate algorithm is the recall goal. 

Recall goal 

The recall goal is used to determine the threshold of the fail rate model. Therefore, the training 
data is used, and the threshold is set in a way that the recall of the trainings data fits the recall 
goal. 

4.6 Training 
For the training/evaluation/test split a 70/15/15 split is used. This means that 70% of the dataset 
is used for training, 15% for evaluation and 15% for testing. For the split the split function is 
imported from the scikit learn software library.  

The training data set grows with each regression step as the graphs are plotted. The metrics 
should also get better at each regression step, as the training dataset gets bigger [22]. 

4.7 Application of the System 
The goal of the system is to reduce the number of executed test cases through prioritization. 
This means that only those test cases with a high probability of failure need to be executed. This 
saves processing time and hardware capacity. Various ML algorithms are used to prioritize test 
cases. Low priority test cases don't need to be executed. High priority test cases should be 
executed. That means the ML algorithms are used to split all test cases into test cases that should 
be executed (which have high priority) and rejected test cases (with low priority). 
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5 Evaluation 

In the first section of this chapter the datasets used for the training and evaluation are described 
in detail. The second section describes the used parameters for the performance evaluation. In 
the third section the actual measurement is described. The fourth section contains the 
interpretation of the measurement results. The timing analysis of the different models is 
described in section five of this chapter. 

5.1 Datasets 
For training and evaluation, four different datasets were used. Two of them are industrial 
datasets from ABB Robotics Norway, called Paint Control and IOF/ROL. Another dataset, 
named Bosch, originates from an industrial project by Bosch, and the last dataset is the Google 
Shared Dataset of Test Suite Results (GSDTSR). Three datasets are frequently used in various 
research studies referenced in this master's thesis [6][22], making them well-established and 
reliable sources for training machine learning models.. 

These datasets are valuable for machine learning tasks because they contain detailed 
information about the executed tests, such as the test ID, the time of the last execution, and the 
result (pass or fail). The datasets are organized into cycles, where each cycle represents a 
regression step. Within each cycle, multiple tests are run and each test is assigned to the cycle 
in which it was run. This structure allows test performance to be analyzed and trends to be 
identified over time, which is essential for building predictive models. The GSDTSR dataset is 
the largest of the four and provides a wide range of test results, making it ideal for training 
robust machine learning models. The Bosch dataset, on the other hand, is smaller but of 
particular importance due to its proprietary nature. It was collected as part of an industrial 
research project within Bosch, making it a valuable source of data for understanding test results 
in real industrial contexts. 

In summary, the combination of these datasets provides a rich and diverse structure for training 
and evaluating machine learning models, with the Bosch dataset providing proprietary insights 
from a real-world industrial project. 

Table 4 contains details about the number of executed tests, number of cycles and number of 
failed tests from the different test sets. The GSDTSR dataset is by far the largest dataset while 
the Bosch dataset is the smallest. 
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Table 4: Information about the Data Sets 

5.2 Performance Evaluation 
For the performance evaluation of the classifiers different metrics were used these are: 

• Recall
• Precision
• APDF

These metrics are explained in Section 2.2. 

This thesis does not broach the issue of performance evaluation with accuracy. Because the 
datasets contain many tests which did not fail so the accuracy may be high even if none or few 
failed test are found by the model. 

5.3 Hyperparameters 

5.3.1.1 Random Forest hyperparameter 

For the random forest model, the following hyperparameter are found. 

Hyperparameter Value 

Max_depth None 

Num_estimators 100 

Min_samples_leaf 2 

Min_samples split 4 

Boot true 

Table 5: Selected Hyperparameters for Random Forest 

5.3.1.2 Reinforcement learning hyperparameter 

For the reinforcement model, the following hyperparameter are set. 

Name of the test 
set 

Number of 
executed tests 

Number of 
failed tests 

Number of 
tests which did 
not find 
failures 

Number of 
cycles 

GSDTSR 1048575 2859 1045716 266 

Bosch 530 130 400 48 

Paint control 25594 4956 20638 352 

IOF/ROL 32260 9289 22971 320 
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Hyperparameter Value 

Alpha 0.8 

Gamma 0.6 

Epsilon 0.05 

True positive reward 100 

True negative reward 1 

False negative reward -100 

False positive reward -1 
Table 6: Selected Hyperparameters for Reinforcement Learning 

5.3.2 Calculation of Precision and Recall 
Precision and recall and their calculations are described in Section 2.2. 

The ML algorithms are each trained with a training dataset which consists of all tests which are 
executed till the end of the current cycle. The tests are always performed on the same test-set 
which size is 15% of the whole dataset and contains the tests and results of the last cycles. 

5.3.3 APFD Calculation 
For the APFD analysis the new Test cases need to be ranked before each cycle and then the 
APFD value needs to be calculated. Calculation of the APFD value is described in Section 
2.2.6.1. The calculated values are then used to retrain the model. Calculation of the APFD value 
therefore needs a different approach in terms of software than the calculation of recall and 
precision. 

First the model is trained with the test cases of the first cycle. It then predicts the probability of 
failure for each test case of the second cycle. Note that in case of the fail rate, it is used as 
probability of failure also for later cycles. The test cases are then ranked by the probability of 
failure ranking values tests a higher probability to fail on top as it is more crucial to execute 
them. 

After the ranking the APFD value is calculated taking the results of the ranked tests into 
account, note that the APFD value is higher if a failing test case is ranked high up. 

In this manner it is iterated over all cycles and the APFD value is calculated for each cycle. 

5.4 Results 

5.4.1 Precision and Recall on GSDTSR dataset  
The following figures, Figure 8 and Figure 9 are showing the recall for different models over 
different regression cycles. The recall is shown in Figure 8.  Figure 9 shows which percentage 
of test cases are classified as failing (true positives plus false positives), note that a method that 
classifies a lower number of test cases as failing will increase the performance in terms of 
runtime but also will it make harder to get better performance values. Figure 10 shows a 
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comparison between the different precisions of the models. The GSDTSR is the biggest dataset 
analyzed in this thesis and contains 1.048.575 test cases in 266 test cycles. Out of all these cases 
0.27% have the verdict fail. 

5.4.1.1 Fail Rate Model 

The blue curve in Figure 8 and Figure 9 shows how the fail rate model performs on the GSDTSR 
dataset. The recall turns out to be values around 0.7 while the percentage of the test cases 
classified as failing is very low, close to zero. At the first few circles the recall is a bit higher 
than in the later cycles. This is because the percentage of test cases classified as failing is much 
higher at approximately 0.35%. At later cycles we see learning effects and the recall is rising, 
since more training cycles are completed. If we look at the blue curve in Figure 10 we see that 
in the first few cycles the precision is lower than in the later cycles were less test cases are 
classified as failing. The lower precision value is at around 0.025 the higher value fluctuates 
between 0.2 and 0.4.  

5.4.1.2 Naïve Bayes Model 

At the yellow curve in Figure 8 we see the recall of the naïve bayes model performing on the 
GSDTSR dataset. We see that the recall and the percentage of test cases classified as failing 
(yellow curve in Figure 9) start with very low values at the first few cycles. Then it increases 
rapidly. But the test cases classified as failing also increase rapidly, this might be a reaction on 
the low recall of the first few cycles. The system tries to compensate by selecting a larger 
number of test cases as failing. This peaks approximately at the 8 cycle where nearly all test 
cases are classified failing. After this peak learning results can be perceived, because the 
percentage of test cases selected as failing decreases continuously while the recall stays high 
only decreasing slightly. The recall in this stage is about 0.9 or higher. The percentage of test 
cases classified as failing drops from nearly 100% to about 10%. At Figure 10 we see that the 
precision of the naïve bayes model is generally low on this dataset. 

5.4.1.3 Random Forest Model 

The green graph at Figure 8 shows the results of the random forest model applied on the 
GSDTSR dataset. The figure shows that the recall is varying around 0.4. The percentage of test 
cases classified as failing is very low close to zero. There are strong variations in the recall it 
varies between 0.2 and 0.55. Figure 10 shows that the precision is very high with the random 
forest model. Most of the time it varies between 0.4 and 0.9. 

5.4.1.4 Reinforcement Learning Model 

In Figure 8 the red curve shows the performance of the reinforcement learning model on the 
GSDTDSR dataset. The percentage of test cases classified as failing is very low close to zero 
while the recall varies around 0.58. Because of the axis resolution in Figure 8 we don’t see a 
learning effect. But Figure 28 where only the recall is displayed clearly shows that the recall is 
getting higher in later test cycles. In Figure 10 the precision of the reinforcement learning model 
is displayed, it is quite low at 0.025. 
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5.4.1.5 Comparison 

Comparing the recalls in Figure 8 we notice that the naïve bayes model leads to the highest 
recall but is also classifying large chunks of the test cases as failing. In practice this means many 
test cases would have to be executed. The second-best performance concerning the recall is 
done by the fail rate model. With a recall around 0.7. But the recall varies at this model. The 
least fluctuating recall we recorded with the reinforcement learning model. But it is not as high 
as the recall of the other models. The worst performance in terms of both magnitude and 
stability of the recall is done by the random forest model. 

As it is displayed in Figure 10 the direct comparison between the different precisions shows 
that the random forest model performs best on the GSDTSR model in terms of precision. Its 
precision is way higher than the precision of other models. The fail rate model also has a quite 
good performance at this parameter. The naïve Bayes and the reinforcement learning model 
both underperform in this category. 

 

 

Figure 8: Recall on GSDTSR Dataset 

 

Figure 9: Percentage from whole on GSDTSR Dataset 
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Figure 10: Precision on GSDTSR Dataset 

5.4.2 Precision and Recall on Bosch dataset 
In the figures Figure 11 to Figure 13 the recall and the precision of different models on the 
Bosch dataset is shown. The Bosch dataset is the smallest dataset analyzed in this thesis. The 
dataset contains 530 test cases and has 48 regression cycles. 24.52 % of the test cases in the 
Bosch dataset fail. Figure 11 shows the recall of different models. Figure 12 shows which 
percentage of test cases are classified as failing. In Figure 13 we see a comparison of the 
precisions of the different models used on the Bosch dataset. 

5.4.2.1 Fail Rate Model 

The blue curve in Figure 11 shows the recall of the fail rate model on the Bosch dataset. In the 
first twelve cycles the recall is about 0.35 but there is also just a small number of test cases 
selected as failing. The test cases selected as failing are kept constant by the model. The recall 
follows this trend. At the cycles 13 to 30 the percentage of test cases classified as failing is 
increased again. It varies around 0.4. The recall at this phase varies around 0.8. An interesting 
phenomenon which can be recognized is that the recall follows the changes of the percentage 
of test cases classified as failing. There is no relevant learning success visible. The reason could 
be that the dataset might be too small. Figure 13 displays that the precision of the fail rate model 
is pretty high when only a few test cases are classified as failing. At the moment where more 
test cases are classified as failing the precision drops from almost a 100% to about 60%. 

5.4.2.2 Naïve Bayes Model 

In Figure 11 the yellow curve shows the recall of the naïve bayes algorithm applied to the Bosch 
dataset. At the first few cycles about 80 % of the test cases are classified as failing the recall is 
1. At cycle 8 the test cases classified as failing drop to around 20 % and varies around this value 
for the rest of the cycles. At cycle 8 the recall also drops. The recall increases over the next 
cycles, so a small learning success can be recognized. In Figure 13 the precision of the naïve 
bayes algorithm is shown. We see the precision start low and then increases with each cycle 
due to the learning progress. It starts at almost 0 and increases up to 80%. 
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5.4.2.3 Random Forest Model 

The green graph at Figure 11 shows the performance in terms of recall of the random forest 
model on the Bosch dataset. The percentage of test cases classified as failing is about 10 % at 
the first 15 cycles of the graph. Sometimes there are some peaks in this part of the graph the 
biggest one at cycle 7 where 60 % of the test cases are classified failing. The recall follows the 
course of the test cases classified failing. It is about 0.35 with some peaks. In the later cycles 
the percentage of test cases classified failing is increased slightly at each new cycle. The recall 
also increases but with a slightly higher rate. A small learning success is visible. Figure 13 
displays that the precision of the random forest algorithm is very high, most of the time it is 
over 70%. 

5.4.2.4 Reinforcement Learning Model 

In Figure 11 the red curve shows the course of the recall produced by the reinforcement learning 
model applied to the Bosch dataset. The percentage of test cases classified as failing starts at 
about 15 % and is then increased slightly on the following test cycles. The recall follows the 
course of the test cases classified failing and increases at each test cycle. Displayed in Figure 
13 we see that the precision is generally medium and only drops slightly from 0.6 to 0.4 when 
more test cases are classified as failing. 

5.4.2.5 Comparison 

Comparing the recall of the different models we notice that the fail rate model has the highest 
recall, but the recall varies strongly at about 0.8. The second-best recall is produced by the naïve 
bayes model, but it also varies strongly. Random forest and reinforcement learning model are 
performing similar in terms of recall. In both the recall varies at about 0.4. In the experiment 
with the random forest model the fewest test cases are classified failing.  

In all four graphs the recall follows the course of the percentage of test cases classified as 
failing. Only with the naïve bayes and the random forest model, small learning success can be 
spotted. The reason is that the dataset is not big enough to result in higher learning success. 

Comparing the precisions in Figure 13 it is visible that all models perform good in terms of 
precision. Concerning this parameter the best model is the random forest model, also the 
naïve bayes and the fail rate model perform very good. The reinforcement model is not as 
good but only slightly weaker than the others.  
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Figure 11: Recall on Bosch Dataset 

 

Figure 12: Percentage from whole on Bosch Dataset 

 

Figure 13: Precision on Bosch Dataset 

5.4.3 Precision and Recall on paint control dataset 
The figures Figure 14 to Figure 16 show how the different models used perform, in terms of 
recall, on the paint control dataset. With 25594 test cases the paint control dataset is a medium 
size dataset. 19.36 % of its test cases fail. Figure 16 displays the performance in terms of 
precision for all the different models. 
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5.4.3.1 Fail Rate Model 

In Figure 14 the recall of the fail rate model used on the paint control dataset is displayed in 
blue. At the first test cycle a high number of test cases is classified as failing. The recall is also 
high at about 0.8. In the next few cycles, the percentage of test cases classified as failing is 
reduced to about 5 %. The recall drops significantly to about 0.3. Then at about cycle 10 till the 
last cycle, the number of test cases classified increases to about 95% of the whole dataset. The 
recall also increases to about 0.95. As one can see in Figure 16 the precision of the failrate 
model is low but also very constant at about 10%.  

5.4.3.2 Naïve Bayes Model 

The yellow curve in Figure 14 shows the recall of the naïve bayes model on the paint control 
dataset. The percentage of test cases classified as failing in this graph varies in a huge range. 
The recall follows this trend. In the later cycles a learning effect is visible as the recall compared 
to the number of test cases selected as failing is increasing. In Figure 16 the precision of the 
naïve bayes model is displayed it fluctuates highly between 10 and 80% but in generall its 
values are pretty high. 

5.4.3.3 Random Forest Model 

At Figure 14 the green curve displays the recall of the random forest model used on the paint 
control dataset. In Figure 15 the percentage of test cases classified as failing stays pretty low, 
under 10 %, most of the time but there are also many peaks. The highest at about 80%. The 
recall follows this trend in the early cycles till about cycle 100. After about cycle 100 a small 
learning effect is visible as the recall compared to the number of test cases selected as failing is 
increasing. Figure 16 shows that the precision fluctuates highly between 10 and 80%. 

5.4.3.4 Reinforcement Learning Model 

The red curve in Figure 14 displays the recall of the reinforcement model on the paint control 
dataset is shown. It shows that the recall is relatively constant at about 0.6. The percentage of 
test cases classified as failing is also relatively constant at about 20%. In Figure 37 only the 
recall is displayed because of the different axis resolution a small learning effect is visible. The 
recall increases from about 0.6 to 0.63. For the reinforcement learning model Figure 16 shows 
a constant precision of about 25%.  

5.4.3.5 Comparison 

Comparing the recall of the different models the fail rate model produces the highest recall at 
nearly 1. The recall is also relatively constant. The recall of the naïve bayes model is the second 
highest but it varies strongly. The third best recall is provided by the random forest model, but 
it varies strongly. The lowest but also the most constant recall is produced by the reinforcement 
learning model. The lowest number of test cases selected as failing is provided by the 
reinforcement learning model and it is also pretty low. 

An interesting observation is that the recall often follows the trends of the percentage of test 
cases selected as failing. A learning effect is visible for most of the models. 
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In terms of precision three models perform very good. Naïve bayes and random forest have 
generally high accuracy values but high variation. The reinforcement model has a precision of 
about 25% percent but stays consistent over all cycles. The fail rate model performs worst in 
terms of precision with a constant precision of about 10%. 

 

 

Figure 14: Recall on Paint Control Dataset 

 

Figure 15: Percentage from whole on Paint Control Dataset 

 

Figure 16: Precision on Paint Control Dataset 
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5.4.4 Precision and Recall on IOF/ROL dataset 
In the figures Figure 17 to Figure 18 the recall of the different models used on the IOF/ROL 
dataset is displayed. Figure 19 shows the precision of the different models on the IOF/ROL 
dataset. The IOF/ROL dataset contains 32260 test cases so its of medium size compared to the 
other datasets. 28.79 % of its test cases fail. 

5.4.4.1 Fail Rate Model 

The fail rate model does not work for this dataset. The reason is that test cases are not repeated 
in this dataset so no fail rate can be calculated. 

5.4.4.2 Naïve Bayes Model 

The yellow curve in Figure 17 displays the performance of the naïve bayes algorithm in terms 
of recall. At the first cycles, till about cycle 100 the recall adapts to the percentage of test cases 
classified as failing. Both fluctuate up and down. In the later Cycles the gap between does two 
starts to increase. This indicates that a learning effect happened. For the precision displayed in 
Figure 16, the naïve bayes model has a pretty high precision fluctuating between 0.3 and 0.7. 

5.4.4.3 Random Forest Model 

In Figure 17 the green curve shows the recall of the random forest algorithm. It shows that for 
the first 120 cycles the recall behaves similar to the percentage of test cases classified as failing. 
Both fluctuate strongly. After the 150 cycle a learning effect is strongly visible as the two values 
drift apart. In Figure 16 the precision of the random forest is displayed, it is pretty constant only 
fluctuating slightly around 40%. 

5.4.4.4 Reinforcement Learning Model 

The recall of the reinforcement algorithm is displayed by the red curve in Figure 17. It is 
relatively constant at about 0.95. Also, the percentage of test cases selected as failing is constant 
at about 80%. We see a small learning affect as the recall is increasing slightly over time from 
0.94 to 0.95. Displayed in Figure 16 we see the precision of the reinforcement learning, it is 
constant at 40%. 

5.4.4.5 Comparison 

Comparing the different recalls with each other the reinforcement algorithm performs best at 
about 95%. Its recall is also very constant. The second-best performance in terms of recall is 
shown by the naïve bayes algorithm, which recall is a bit lower and not as stable. A similar only 
slightly worse performance is shown by the Random Forest algorithm. 

Precision wise the tree different models perform similar. The reinforcement learning algorithm 
has the most constant results. While the naïve Bayes algorithm gives slightly better values but 
also fluctuates more. 
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Figure 17: Recall on IOF/ROL Dataset 

 
Figure 18: Percentage from whole on IOF/ROL Dataset 

 
Figure 19: Precision on IOF/ROL Dataset 

5.4.5 APFD on GSDTSR dataset 
Figure 20 presents a comparison of the APFD values across different models on the GSDTSR 
dataset. These values are calculated as described in Section 5.3.3. It is important to note that 
some values are missing from the diagram, as APFD values cannot always be calculated for 
every test case. 

The failure rate model generally achieves very high APFD values, ranging between 0.8 and 1, 
with most values equal to 1, indicating strong performance in ranking the test cases. Similarly, 
the Naïve Bayes model also shows high APFD values, suggesting performance close to that of 
the failure rate model. 
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In contrast, the Random Forest model exhibits somewhat lower values compared to both the 
failure rate and Naïve Bayes models, indicating relatively weaker performance.  

The Reinforcement Learning model demonstrates the weakest performance in terms of APFD 
on this dataset. This suggests that, in terms of ranking test cases, the Reinforcement Learning 
model is less effective compared to the other models on the GSDTSR dataset. 

 

 
Figure 20: Comparison of APFD values on GSDTSR Dataset 

5.4.6 APFD on Bosch dataset 
This section presents a comparison of the APFD values across different models, evaluated on a 
dataset provided by Bosch. The APFD metric is used to assess the effectiveness of test case 
prioritization, with higher values indicating better performance in detecting faults early in the 
testing process. The Bosch dataset contains a series of test cases with known outcomes, enabling 
a thorough evaluation of each model’s ability to prioritize test cases based on their likelihood 
of failure. 

In this analysis, several models are compared, including failure rate-based models and machine 
learning algorithms. The APFD values are computed for each model to assess their relative 
performance in ranking test cases. The results are visually represented in Figure 21, where the 
APFD values for each model are plotted, revealing distinct performance characteristics. 
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The failure rate model fluctuates between 0.9 and 0.6, showing high instability, likely due to 
the small size of the dataset. The Naïve Bayes model also fluctuates but to a lesser extent than 
the failure rate model, with values ranging from 0.6 to 0.8. The Reinforcement Learning model 
demonstrates even more fluctuation than the other two, with values ranging from 0.4 to 0.95, 
indicating lower stability. 

In contrast, the Random Forest model exhibits higher and more consistent APFD values, 
ranging between 0.65 and 0.95, and performs better than the other models. 

These fluctuations highlight the varying degrees of stability and performance across the 
different models on the Bosch dataset. 

 

 
Figure 21: Comparison of APFD values on Bosch Dataset 

5.4.7 APFD on paint control dataset 
This section presents a comparison of the APFD values on the Paint Control dataset (Figure 
22).  

The APFD values for all models in the Paint Control dataset exhibit significant fluctuation. 

The failure rate model fluctuates substantially, ranging between 0.3 and 0.95, with APFD values 
generally lower than those of the other models. The Naïve Bayes model also fluctuates 
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significantly, ranging between 0.1 and 0.95, yet it demonstrates relatively strong performance 
overall. 

The Random Forest model performs the best, with values fluctuating between 0.25 and 0.95, 
indicating more consistent and effective test case prioritization. In contrast, the Reinforcement 
Learning model shows the weakest performance, with values ranging from 0.1 to 0.95, 
suggesting that this model is less stable and less effective in ranking test cases compared to the 
others.  

 

 
Figure 22: APFD on paint control Dataset 

5.4.8 APFD on IOF/ROL dataset 
Figure 23 illustrates the distribution of APFD values across different models on the IOF/ROL 
dataset. A notable trend is that most of the values tend to cluster around an APFD value of 
approximately 0.5, reflecting a moderate level of performance for all models. 

Note that the failure rate model again cannot be calculated for this dataset, as the tests in the 
IOF/ROL dataset do not repeat, making it impossible to compute a failure rate. The Naïve Bayes 
model, while also showing some fluctuation, performs slightly better overall. Its APFD values 
range between 0.4 and 0.8, indicating that this model is more effective at ranking test cases 
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compared to the failure rate model, with an ability to detect faults more consistently across 
different test cases. 

The Random Forest model shows the most pronounced fluctuation, with APFD values spanning 
from 0.1 to 0.95. Despite the higher level of fluctuation, this model demonstrates the highest 
overall APFD values, signalling that it is the most effective at prioritizing tests in a way that 
maximizes fault detection early in the testing process. The wide range of values suggests that 
the model is capable of adapting to a variety of test cases and contexts, achieving high 
performance in certain instances. 

The Reinforcement Learning model, like the Random Forest model, exhibits considerable 
fluctuation, with values ranging from 0.2 to 0.8. Although the APFD value is similar to that of 
the other models, the Reinforcement Learning model shows more variability, which could 
indicate a less consistent performance across different test cycles. 

The overall performance differences across these models indicate that while there is some 
fluctuation in all the models, the Random Forest model stands out due to its consistently high 
APFD values, despite its greater variability. In contrast, the failure rate and Naïve Bayes models 
offer more stable but slightly less effective performance, and the Reinforcement Learning 
model tends to be more volatile, suggesting potential issues with stability and fault detection 
across different test cases. The Random Forest model offers the best trade-off between high 
fault detection and adaptability to dataset characteristics, highlighting the importance of 
balancing stability and performance when selecting a model for test case prioritization. 

 

 
 Figure 23: APFD on IOF/ROL Dataset 
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5.5 Timing Analysis 
In this paragraph our four different models are compared in terms of runtime. As the goal of 
ranking test cases is to reduce test time this parameter is crucial to compare the different 
algorithms. 

The training and test are done on a Windows PC with AMD Ryzen 9 5900X processor and 
NVIDIA GEFORCE GTX 1050 graphic card. The measured times include preprocessing of 
data and training of the model, for the APFD calculation it also includes the ranking of the test 
cases at each cycle. 

The results are shown in two different tables  
Table 7 shows the timing for the calculation of recall and precision.  

Table 8 shows the average timing results for the calculation of the APFD value for 50 runs. 
Note that these take longer as a ranking of the test cases is required at each cycle. 

Larger dataset like the GSDTSR dataset generally take more time compared to the smaller ones 
like the Bosch dataset. But overall the time for the calculation is reasonable considering that 
machine learning is included in the calculation process and each model needs to be trained after 
each cycle. 

The naïve bayes model is the fastest model, for the largest dataset it only takes about 178 
seconds. The fail rate analysis is also very fast, it takes only about 604 seconds for the largest 
dataset. Reinforcement learning is a bit slower (1260 sec) and random forest is the slowest 
model (4119 sec). The other datasets show similar results. 
 

 Fail rate Naïve Bayes Random forest Reinforcement 
learning 

GSDTSR 604 sec 178 sec 4119 sec 1260 sec 

Bosch 4 sec 1 sec 1 sec 2 sec 

Paint control 23 sec 7 sec 142 sec 38 sec 

IOF/ROL - 7 sec 104 sec 51 sec 

 
Table 7: Timing analysis for Recall and Precision Calculation 

 
 Fail rate Naïve Bayes Random forest Reinforcement 

learning 

GSDTSR 152 sec 264 sec 6329 sec 1291 sec 

Bosch 1 sec 1 sec 7 sec 1 sec 

Paint control 5 sec 9 sec 249 sec 47 sec 

IOF/ROL - 11 sec 127 sec 56 sec 

 
Table 8: Timing Analysis for APFD Calculation 
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6 Conclusion 

The final chapter summarises the key findings that have emerged from the research and analysis 
undertaken within the thesis. It includes a thorough discussion of the findings, their implications 
and their relevance within the broader context of the field. In addition, this chapter aims to 
outline potential follow-up projects that could extend or deepen the scope of the current work. 

6.1 Results and Insights 
In this thesis four different models for test prioritization are executed and compared to each 
other. The used metrics are recall, precision and the APFD value. The different models are also 
compared in a timing analysis as the runtime is a crucial factor in the field of test case 
prioritization. 

The first model is not based on machine learning, instead, it prioritizes test cases based on their 
failure rate. It serves as a baseline for comparison with the other models. This approach 
performs well across most datasets in terms of recall, precision, and the APFD value. The recall 
remains relatively stable across the datasets. However, for datasets where test cases appear only 
once, the failure rate model cannot be applied. In terms of APFD, the failure rate model also 
delivers strong performance. Furthermore, the calculation of this model is very fast. 

The second model, the Naïve Bayes machine learning model, is relatively simple and requires 
minimal training time. It is the fastest among the four models compared. In terms of recall, it 
yields good results, for instance, on the GSDTSR dataset, it performs best with recall values 
reaching up to 95%. However, the APFD values for the Naïve Bayes model show significant 
fluctuations, although they remain generally good overall. 

The third model, the Random Forest model, excels in the precision category, achieving the 
highest precision across many datasets. In terms of recall, it lags behind some of the other 
models on several datasets. The Random Forest model requires more computational time and 
needs more time to build the model. However, in terms of APFD, it outperforms most other 
models, with the best APFD values on the Paint Control dataset, for example. 

Lastly, the reinforcement learning model produces the most stable outcomes in terms of both 
recall and precision. While its values are slightly lower compared to other models, it maintains 
consistent recall and precision across all datasets. In terms of APFD, it performs slightly worse 
than the other models, exhibiting lower and more unstable APFD values. Additionally, this 
model requires significantly more time to train. 

Numerous machine learning models have been explored for test case prioritization, and while 
some models perform better on specific datasets, no universally optimal model has yet been 
identified. Further analysis, including datasets with more test cases and more standardized 
datasets, is needed to achieve a more comprehensive solution. 

Nevertheless, this work provides a valuable overview and comparison of the main machine 
learning techniques used for test case prioritization.  
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6.2 Future Work 
New developments in test case prioritization using reinforcement learning are highly 
anticipated. This approach has high potential to significantly reduce the testing time by 
optimizing the order in which test cases are performed. To get clearer and more general results, 
it would be very useful to have larger and more consistent sets of data. The collection and 
analysis of such datasets should be the focus of future research in order to allow for more in-
depth exploration and more robust findings. 

In terms of future work, hyperparameter tuning is another area worth exploring in more depth. 
By trying out different settings for hyperparameters across different models, researchers could 
compare how well they worked and find the best settings for specific data sets or testing 
situations. This method could improve ML models, helping them to be more efficient and 
adaptable. Also, using Natural Language Processing (NLP) techniques to decide which test 
cases to prioritize is a new area to research. Test case descriptions often contain important 
information that could help to decide which cases to focus on first, based on how likely they 
are to find problems. NLP can help us find and use this information to make test case 
prioritization better.  
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7 List of Abbreviations 
 

AI    Artificial Intelligence 

ANN   Artificial Neural Networks 

APFD    Average Percentage of Faults Detected 

CI    Continuous Integration 

DTs    Decision Trees 

e.g.   Example 

GUI    Graphical User Interface 

GSDTSR   Google Shared Data Set of Testing Suite Results 

HMM   Hidden-Markov Model 

KNN    K-Nearest Neighbors 

LTR    Learning to Rank 

ML    Machine Learning 

NAPFD  Normalized Average Percentage of Faults Detected 

NLP    Natural Language Processing 

RPA   Rank Prevention Average 

RETECS  Reinforced Test Case Selection 

RL   Reinforcement Learning 

RTL   Ranking to Learn 

SVM   Support Vector Machine 

TCP   Test Case Selection and Prioritization 

i.e.    id est (that is) 

at.al.    et al. (and others) 

 



 
Machine Learning for Test Prioritization  53 
 

8 List of figures 
Figure 1: Traditional Machine Learning Model (Copy from [2]) ..................................12 
Figure 2:Interaction between Agent and Environment (copy from [1]) .......................16 
Figure 3: Approach Architecture as Discussed (Copy from [26]) ...............................21 
Figure 4: Fault-Proneness Prediction with Fuzzy Logic Rules and Genetic Algorithm 
(Copy from [10]) .........................................................................................................22 
Figure 5: Concept of Remo Lachmann's Approach (Copy from [10]) ........................22 
Figure 6: Approach Architecture as Discussed (Copy from [16]) ...............................24 
Figure 7: Example of the Concept .............................................................................26 
Figure 8: Recall on GSDTSR Dataset .......................................................................37 
Figure 9: Percentage from whole on GSDTSR Dataset ............................................37 
Figure 10: Precision on GSDTSR Dataset ................................................................38 
Figure 11: Recall on Bosch Dataset ..........................................................................40 
Figure 12: Percentage from whole on Bosch Dataset ...............................................40 
Figure 13: Precision on Bosch Dataset .....................................................................40 
Figure 14: Recall on Paint Control Dataset................................................................42 
Figure 15: Percentage from whole on Paint Control Dataset .....................................42 
Figure 16: Precision on Paint Control Dataset ...........................................................42 
Figure 17: Recall on IOF/ROL Dataset ......................................................................44 
Figure 18: Percentage from whole on IOF/ROL Dataset ...........................................44 
Figure 19: Precision on IOF/ROL Dataset .................................................................44 
Figure 20: Comparison of APFD values on GSDTSR Dataset ..................................45 
Figure 21: Comparison of APFD values on Bosch Dataset .......................................46 
Figure 22: APFD on paint control Dataset .................................................................47 
Figure 23: APFD on IOF/ROL Dataset ......................................................................48 
Figure 24: Fail Rate on GSDTSR ..............................................................................59 
Figure 25: Naïve Bayes on GSDTSR ........................................................................59 
Figure 26: Random Forest on GSDTSR ....................................................................59 
Figure 27: Reinforcement Learning on GSDTSR ......................................................59 
Figure 28:Recall of Reinforcement Learning on GSDTSR ........................................60 
Figure 24: Fail Rate on Bosch ...................................................................................60 
Figure 25: Naïve Bayes on Bosch .............................................................................60 
Figure 26: Random Forest on Bosch .........................................................................60 
Figure 27: Reinforcement Learning on Bosch ...........................................................60 
Figure 24: Fail Rate on Paint Control ........................................................................61 
Figure 25: Naïve Bayes on Paint Control ..................................................................61 
Figure 26: Random Forest on Paint Control ..............................................................61 
Figure 27: Reinforcement Learning on Paint Control .................................................61 
Figure 37:Recall of Reinforcement Learning on Paint Control ...................................61 



 
Machine Learning for Test Prioritization  54 
 

Figure 25: Naïve Bayes on IOF/ROL .........................................................................62 
Figure 26: Random Forest on IOF/ROL ....................................................................62 
Figure 27: Reinforcement Learning on IOF/ROL .......................................................62 
Figure 41:Recall of Reinforcement Learning on IOF/ROL .........................................62 
Figure 24: APFD Fail Rate on GSDTR ......................................................................63 
Figure 25: APFD Naïve Bayes on GSDTR ................................................................63 
Figure 26: APFD Random Forest on GSDTR ............................................................63 
Figure 27: APFD Reinforcement Learning on GSDTR ..............................................63 
Figure 24: APFD Fail Rate on Bosch .........................................................................64 
Figure 25: APFD Naïve Bayes on Bosch ...................................................................64 
Figure 26: APFD Random Forest on Bosch ..............................................................64 
Figure 27: APFD Reinforcement Learning on Bosch .................................................64 
Figure 24: APFD Fail Rate on Paint Control ..............................................................65 
Figure 25: APFD Naïve Bayes on Paint Control ........................................................65 
Figure 26: APFD Random Forest on Paint Control ....................................................65 
Figure 27: APFD Reinforcement Learning on Paint Control ......................................65 
Figure 24: APFD Fail Rate on IOF/ROL ....................................................................66 
Figure 25: APFD Naïve Bayes on IOF/ROL ..............................................................66 
Figure 26: APFD Random Forest on IOF/ROL ..........................................................66 
Figure 27: APFD Reinforcement Learning on IOF/ROL ............................................66 
 



 
Machine Learning for Test Prioritization  55 
 

9 List of tables 
Table 1: Confusion Matrix ..........................................................................................17 
Table 2:APFD Values of the different Techniques used by Remo Lachmann (Copy 
from [10]) ...................................................................................................................23 
Table 3: Machine Learning Approaches for Test Case Prioritization .........................25 
Table 4: Information about the Data Sets ..................................................................34 
Table 5: Selected Hyperparameters for Random Forest ...........................................34 
Table 6: Selected Hyperparameters for Reinforcement Learning ..............................35 
Table 7: Timing analysis for Recall and Precision Calculation...................................49 
Table 8: Timing Analysis for APFD Calculation .........................................................49 
 

  



 
Machine Learning for Test Prioritization  56 
 

10 References 
[1] R. Gopinath, R. ·Ajay, and C. Sanjay, An introduction to machine learning. New York 

NY: Springer Science+Business Media, 2019. 
[2] J. Alzubi, A. Nayyar, and A. Kumar, "Machine Learning from Theory to Algorithms: An 

Overview," J. Phys.: Conf. Ser., vol. 1142, p. 12012, 2018, doi: 10.1088/1742-
6596/1142/1/012012. 

[3] V. Wittpahl, Ed., Künstliche Intelligenz: Technologie, Anwendung, Gesellschaft. Berlin, 
Heidelberg: Springer Berlin Heidelberg, 2019. 

[4] C. Atkinson, ChatGPT and computational-based research: benefits, drawbacks, and 
machine learning applications. [Online]. Available: https://www.researchgate.net/
publication/376219446_ChatGPT_and_computational-based_research_benefits_
drawbacks_and_machine_learning_applications (accessed: Nov. 19 2024). 

[5] E. K. Mece, H. Paci, and K. Binjaku, "The Application Of Machine Learning In Test 
Case Prioritization - A Review," EJECE, vol. 4, no. 1, 2020, doi: 
10.24018/ejece.2020.4.1.128. 

[6] H. Spieker, A. Gotlieb, D. Marijan, and and M. Mossige, Reinforcement Learning for 
Automatic Test Case Prioritization and Selection in Continuous Integration: Conference: 
ISSTA 2017: Proceedings of the 26th ACM SIGSOFT International Symposium on 
Software Testing and Analysis. [Online]. Available: https://hspieker.de/files/Spieker_et_
al._-_2017_-_Reinforcement_Learning_for_Automatic_Test_Case_Prioritization_and_
Selection_in_Continuous_Integration.pdf (accessed: Feb. 10 2024). 

[7] P. Ammann and J. Offutt, Eds., Introduction to Software Testing: Cambrige University 
Press, 2017. Accessed: Mar. 12 2025. 

[8] S. Abele and P. Göhner, Improving Proceeding Test Case Prioritization with Learning 
Software Agents: Conference :ICAART2014-
InternationalConferenceonAgentsandArtificialIntelligence. [Online]. Available: https://
www.scitepress.org/papers/2014/49200/49200.pdf (accessed: Feb. 10 2024). 

[9] R. Lachmann, S. Schulze, and C. Seidl, System-Level Test Case Prioritization Using 
Machine Learning | Request PDF: Conference: 2016 15th IEEE International 
Conference on Machine Learning and Applications (ICMLA). [Online]. Available: 
https://www.researchgate.net/publication/313469509_System-Level_Test_Case_
Prioritization_Using_Machine_Learning (accessed: Nov. 19 2024). 

[10] R. Lachmann, Machine Learning-Driven Test Case Prioritization Approaches for Black-
Box Software Testing: Conference: ettc2018 - European Test and Telemetry Conference. 
[Online]. Available: https://www.researchgate.net/publication/347743375_124_-_
Machine_Learning-Driven_Test_Case_Prioritization_Approaches_for_Black-Box_
Software_Testing (accessed: Feb. 10 2024). 

[11] D. Marijan, A. Gotlieb, and M. Liaaen, "A learning algorithm for optimizing continuous 
integration development and testing practice," Softw Pract Exp, vol. 49, no. 2, pp. 192–
213, 2019, doi: 10.1002/spe.2661. 



 
Machine Learning for Test Prioritization  57 
 

[12] A. Lawanna, "An effective test case selection for software testing improvement," in 
Computer Science and Engineering Conference (ICSEC), 2015 International, Chiang 
Mai, Thailand, 2015, pp. 1–6. 

[13] O. Masmoudi, M. Jaoua, A. Jaoua, and S. Yacout, "Data Preparation in Machine 
Learning for Condition-based Maintenance," Journal of Computer Science, vol. 17, no. 
6, pp. 525–538, 2021, doi: 10.3844/jcssp.2021.525.538. 

[14] I. Goodfellow, Y. Bengio, and A Courville, "Deep learning," (in En;en), Genet Program 
Evolvable Mach, vol. 19, 1-2, 2018, doi: 10.1007/s10710-017-9314-z. 

[15] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, "AutoBlackTest," in 2011 33rd 
international conference on software engineering (ICSE 2011): Honolulu, Hawaii, USA 
21-28 May 2011, Waikiki, Honolulu HI USA, 2011, pp. 1013–1015. 

[16] O. Ali Sadek Ibrahim and D. Landa-Silva, ES-Rank: Evolution Strategy Learning to 
Rank Approach. [Online]. Available: https://www.researchgate.net/publication/
385985292_Study_of_Supervised_Logistic_Regression_Algorithm (accessed: Dec. 10 
2024). 

[17] A. Kurani, P. Doshi, A. Vakharia, and M. Shah, A Comprehensive Comparative Study of 
Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock 
Forecasting. [Online]. Available: https://link.springer.com/article/10.1007/s40745-021-
00344-x (accessed: Mar. 12 2025). 

[18] G. Webb, Naïve Bayes. [Online]. Available: https://www.researchgate.net/publication/
306313918_Naive_Bayes (accessed: Oct. 19 2024). 

[19] T. Ahmad, A. Ashraf, D. Truscan, and I. Porres, Exploratory Performance Testing Using 
Reinforcement Learning: 2019 – 45th Euromicro Conference on Software. 

[20] S. S. Emam and J. Miller, "Test Case Prioritization Using Extended Digraphs," ACM 
Trans. Softw. Eng. Methodol., vol. 25, 2015, doi: 10.1145/2789209. 

[21] J. Jordan, "Evaluating a machine learning model," Jeremy Jordan, 2017, 2017. https://
www.jeremyjordan.me/evaluating-a-machine-learning-model/ (accessed: Feb. 10 2024). 

[22] T. Shi, L. Xiao, and K. Wu, Reinforcement Learning Based Test Case Prioritization for 
Enhancing the Security of Software: Conference: 2020 IEEE 7th International 
Conference on Data Science and Advanced Analytics (DSAA). [Online]. Available: 
https://www.researchgate.net/publication/347086385_Reinforcement_Learning_Based_
Test_Case_Prioritization_for_Enhancing_the_Security_of_Software (accessed: Dec. 19 
2024). 

[23] M. Zurek-Mortka, C. K. Chanda, and P. K. Mondal, Advances in Energy and Control 
System: Estimation of Prioritization of Test Cases Using Machine Learning Algorithms. 
[Online]. Available: https://link.springer.com/book/10.1007/978-981-97-0154-4 
(accessed: Jan. 5 2025). 

[24] K. Antti, M. Mika, P. Tuula, and K. Mika, Model-Based Testing Through a GUI: 
Conference: Formal Approaches to Software Testing, 5th International Workshop, 
FATES. [Online]. Available: https://www.researchgate.net/publication/221366262_
Model-based_testing_through_a_GUI (accessed: Feb. 20 2025). 

[25] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo, "Learning-to-rank 
vs ranking-to-learn: Corference: ICSE '20: Proceedings of the ACM/IEEE 42nd 
International Conference on Software Engineering," in Seoul, South Korea, pp. 1–12. 



 
Machine Learning for Test Prioritization  58 
 

[26] A. Swain, K. Swain, and S. K. Swain, Eds., Meta Heuristic Techniques in Software 
Engineering and Its Applications: Automated Test Case Prioritization Using Machine 
Learning; International Conference on Metaheuristics in Software Engineering and its 
Application: Springer, Cham, 2022. 

[27] J. Thorsten, Learning to Classify Text Using Support Vector Machines. [Online]. 
Available: https://link.springer.com/book/10.1007/978-1-4615-0907-3 (accessed: Mar. 
23 2025). 

[28] T. Zhu, "Analysis on the Applicability of the Random Forest," J. Phys.: Conf. Ser., vol. 
1607, no. 1, p. 12123, 2020, doi: 10.1088/1742-6596/1607/1/012123. 

[29] SciKit learn, User Guide. [Online]. Available: https://scikit-learn.org/stable/user_
guide.html (accessed: Feb. 10 2024). 

 



Machine Learning for Test Prioritization 59 

11 Appendix A – Figures 
In this appendix different figures are displayed showing the recall and APFD values of 
the different models performing on the different datasets in more detail. Figure 24 to 
Figure 41 showing the recall and the percentage of test classified as failing. Figure 42 to 
Figure 57 are showing the APFD values.   

Figure 24: Fail Rate on GSDTSR Figure 25: Naïve Bayes on GSDTSR 

Figure 26: Random Forest on GSDTSR Figure 27: Reinforcement Learning on GSDTSR 
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Figure 28:Recall of Reinforcement Learning on GSDTSR 

 

  
Figure 29: Fail Rate on Bosch Figure 30: Naïve Bayes on Bosch 

  

  

Figure 31: Random Forest on Bosch Figure 32: Reinforcement Learning on Bosch 
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Figure 33: Fail Rate on Paint Control Figure 34: Naïve Bayes on Paint Control 

  

 
 

Figure 35: Random Forest on Paint Control Figure 36: Reinforcement Learning on Paint Control 

  

 

Figure 37:Recall of Reinforcement Learning on Paint Control 
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 Figure 38: Naïve Bayes on IOF/ROL 

  

  
Figure 39: Random Forest on IOF/ROL Figure 40: Reinforcement Learning on IOF/ROL 

 

Figure 41:Recall of Reinforcement Learning on IOF/ROL 
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Figure 42: APFD Fail Rate on GSDTR Figure 43: APFD Naïve Bayes on GSDTR 

  

  
Figure 44: APFD Random Forest on GSDTR Figure 45: APFD Reinforcement Learning on 

GSDTR 
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Figure 46: APFD Fail Rate on Bosch Figure 47: APFD Naïve Bayes on Bosch 

  

  
Figure 48: APFD Random Forest on Bosch Figure 49: APFD Reinforcement Learning on Bosch 
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Figure 50: APFD Fail Rate on Paint Control Figure 51: APFD Naïve Bayes on Paint Control 

  

 
 

Figure 52: APFD Random Forest on Paint Control Figure 53: APFD Reinforcement Learning on Paint 
Control 
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Figure 54: APFD Fail Rate on IOF/ROL Figure 55: APFD Naïve Bayes on IOF/ROL 

  

  

Figure 56: APFD Random Forest on IOF/ROL Figure 57: APFD Reinforcement Learning on 
IOF/ROL 
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