

Diploma Thesis

MACHINE LEARNING FOR TEST CASE
PRIORITIZATION

In satisfaction of the requirements for the degree of

Master of Science
Under the direction of

Univ. Prof i.R. Dipl.-Ing. Dr. techn. Hermann Kaindl
(Institute for Computer Technology)

Dipl.-Ing. Dr. techn. Benjamin Schwendinger
(Institute for Computer Technology)

Submitted at the TU Wien

Faculty of Electrical Engineering and Information Technology

by

Bernhard Slamanig
01229081

Vienna, June 2025 _________________________
 Bernhard Slamanig

I

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen Quellen
oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet.

Die Arbeit wurde bisher weder im In - noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Vienna, June 2025 _________________________
 Bernhard Slamanig

II

Acknowledgments
I would like to express my sincere gratitude to Professor Kaindl for making this project possible
and for providing the essential information and resources necessary for its successful
completion. His guidance and expertise were instrumental in shaping the direction of this work.
I am also deeply grateful to my supervisor, Benjamin Schwendinger, for his unwavering support
and mentorship throughout this journey. His openness to questions, constructive feedback and
ability to offer practical solutions to the challenges I have encountered have been invaluable
and have contributed significantly to the quality of this project.

I would also like to extend my heartfelt thanks to my mother, whose constant love,
encouragement and sacrifices have been fundamental to my academic and personal growth. Her
unwavering belief in me has been a source of strength during the more challenging moments of
this process.

Finally, I am grateful to my friends and colleagues, especially Ali and Horia, whose constant
encouragement, insightful advice and willingness to share their knowledge have played a
significant role in my success. Their support, both academically and emotionally, has been
indispensable in helping me reach this point, and I truly appreciate their friendship and
guidance.

 III

Abstract
In the context of this thesis, a reinforcement learning system is developed to prioritize test cases
for regression testing. The system reduces the number of test cases that need to be executed,
while maintaining the same level of fault detection. This approach is applicable to any project
involving regression testing across multiple cycles.

A key aspect of this work involves comparing various machine learning techniques used to
prioritize test cases. The thesis provides an analysis of state-of-the-art machine learning systems
that address similar challenges, identifying and selecting the most promising solutions for
further evaluation. Four distinct approaches to test case prioritization are explored in this thesis.
The first solution is a non-machine learning approach that directly utilizes the failure rate to
prioritize test cases. Two additional approaches leverage supervised learning techniques to
address the problem. Finally, the fourth solution is based on reinforcement learning. At each
regression step, these solutions enable the prioritization of all test cases, with only the highest-
ranked ones being executed. In machine learning-based approaches, the outcome of executed
test cases is used to refine the prioritization for the next regression step. The proposed solutions
are compared with each other, as well as with similar approaches from existing research.

 IV

Kurzfassung
Im Rahmen dieser Arbeit wird ein Reinforcement Learning System entwickelt, um Testfälle für
Regressionstests zu priorisieren. Das System reduziert die Anzahl der auszuführenden Testfälle
bei gleichbleibender Fehlererkennung. Dieser Ansatz ist auf jedes Projekt anwendbar, das
Regressionstests über mehrere Zyklen hinweg umfasst.

Ein wichtiger Aspekt dieser Arbeit ist der Vergleich verschiedener maschineller Lernverfahren,
die zur Priorisierung von Testfällen eingesetzt werden. Die Arbeit bietet eine Analyse der
modernsten maschinellen Lernsysteme, die ähnliche Herausforderungen angehen und
identifiziert und wählt die vielversprechendsten Lösungen für eine weitere Evaluierung aus.
Vier verschiedene Ansätze zur Priorisierung von Testfällen werden in dieser Arbeit untersucht.
Bei der ersten Lösung handelt es sich um einen Ansatz ohne maschinelles Lernen, der direkt
die Fehlerrate zur Priorisierung von Testfällen nutzt. Zwei weitere Ansätze nutzen supervised
learning, um das Problem zu lösen. Die vierte Lösung schließlich basiert auf Reinforcement
Learning. Bei jedem Regressionsschritt ermöglichen diese Lösungen die Priorisierung aller
Testfälle, wobei nur die am höchsten eingestuften Fälle ausgeführt werden. Bei Ansätzen, die
auf maschinellem Lernen basieren, wird das Ergebnis der ausgeführten Testfälle verwendet,
um die Priorisierung für den nächsten Regressionsschritt zu verfeinern. Die vorgeschlagenen
Lösungen werden miteinander sowie mit ähnlichen Ansätzen aus der bestehenden Forschung
verglichen.

Machine Learning for Test Prioritization 5

Table of Content
1 Introduction .. 8

1.1 Motivation ... 8

1.2 General Introduction ... 8

1.3 Problem and Aim of the Work .. 9

1.4 Solution Approach and Work Packages ... 9

1.5 Structure of the Work ... 9

2 Background Section ..11

2.1 Testing and Analysis ...11

2.1.1 Regression Testing ..11

2.2 Machine Learning ..11

2.2.1 Machine Learning Models ..13

2.2.2 Supervised Learning ..13

2.2.3 Unsupervised Learning ..15

2.2.4 Reinforcement Learning ...15

2.2.5 Performance Evaluation for Classifiers ..17

2.2.6 Performance Evaluation Metrics ..18

3 Literature Analysis ..19

3.1 Solutions with Reinforcement Learning ...19

3.1.1 RETECS ..19

3.1.2 Extended Diagraphs ...20

3.1.3 Ranking to Learn ..20

3.1.4 Regression Testing based on Q-Learning with Autosys20

3.2 Other Solutions..21

3.2.1 Learning Software Agents ..21

3.2.2 Machine Learning Approaches for Black Box Software Testing22

3.2.3 Ranking SVM ...23

3.2.4 Learning to Rank ..23

3.3 Conclusion of the Literature Analysis ..24

4 Experiments ..26

Machine Learning for Test Prioritization 6

4.1 Concept ...26

4.2 Implementation ..27

4.3 Feature Selection ..27

4.4 Choice of Algorithm ...28

4.4.1 Gaussian Naïve Bayes ...28

4.4.2 Random Forest with Hyperparameter Tuning28

4.4.3 Reinforcement Learning ...29

4.4.4 Model based on Fail Rate ..29

4.5 Hyperparameter Tuning ..30

4.5.1 Random Forest ..30

4.5.2 Reinforcement Learning ...31

4.5.3 Fail Rate ...32

4.6 Training ...32

4.7 Application of the System ..32

5 Evaluation ...33

5.1 Datasets ..33

5.2 Performance Evaluation ..34

5.3 Hyperparameters...34

5.3.2 Calculation of Precision and Recall ..35

5.3.3 APFD Calculation ...35

5.4 Results ..35

5.4.1 Precision and Recall on GSDTSR dataset ...35

5.4.2 Precision and Recall on Bosch dataset ..38

5.4.3 Precision and Recall on paint control dataset40

5.4.4 Precision and Recall on IOF/ROL dataset ...43

5.4.5 APFD on GSDTSR dataset ..44

5.4.6 APFD on Bosch dataset ...45

5.4.7 APFD on paint control dataset ...46

5.4.8 APFD on IOF/ROL dataset...47

5.5 Timing Analysis ...49

6 Conclusion ..50

Machine Learning for Test Prioritization 7

6.1 Results and Insights ..50

6.2 Future Work ..51

7 List of Abbreviations ..52

8 List of figures ...53

9 List of tables ..55

10 References ...56

11 Appendix A – Figures ..59

Machine Learning for Test Prioritization 8

1 Introduction

The following chapter provides a brief overview and understanding of the framework,
conditions and aims of this thesis, as well as outlining the structure of the thesis. Subsequent
chapters will address the problem statement in detail, followed by a comprehensive introduction
to the relevant concepts and background information. In addition, the methodological approach
of this research will be explained together with the rationale behind the choice of methods and
their application to the problem at hand.

1.1 Motivation
Regression testing is the testing of the parts of the system that have already been tested, when
the system changes. The purpose of regression testing is to identify potential changes that might
have had an unexpected impact on another part of the system. In large projects, with increasing
complexity and frequent cycles, this often leads to a great number of test cases all of which
would require a lot of time [1], computing resources and sometimes manual effort to run. As a
result, there is considerable economic and scientific interest in reducing the number of test cases
that need to be executed during regression testing, which could lead to improved efficiency and
lower costs.

Therefore, this thesis addresses this challenge by using and comparing various machine learning
techniques used to prioritize test cases. The techniques should ensure that only the highest
ranked test cases, those most likely to detect defects, are performed by giving a rank to each
test case based on learned patterns. The different machine learning, have one goal in common
and that is to reduce the size of the regression suite, while also maintaining a high fail rate
detection. This approach ensues high probability of discovering defects in the system under
tests, even if new code changes are pushed into the code base.

Furthermore, the results of this thesis could be relevant to researchers working in software
quality and test automation.

1.2 General Introduction
The concept of artificial intelligence (AI) is not new. For the past decades, the idea of endowing
machines with intelligent behaviour has fascinated numerous researchers and scientists. A
significant milestone in this development was reached in 1950 when Alan Turing introduced
the famous "Turing Test" proposed to determine whether a machine can be considered
intelligent [2]. During this test, the machine engages in a conversation with a human and
attempts to behave in a way that mimics human behaviour. The goal was to convince the test
subjects that they are interacting with another person. If the machine successfully creates this
illusion, the Turing Test is considered passed [3]. Although originally conceived as a theoretical
thought experiment, the test continues to hold significant relevance in contemporary research
and is frequently referenced in discussions surrounding AI.

No machine has yet successfully passed the Turing Test. Nevertheless, AI is proving extremely
useful in many aspects of our daily lives. It is used in areas such as object recognition,

Machine Learning for Test Prioritization 9

personalised advertising, email spam filtering, online stock trading and traffic forecasting. It
also plays a crucial role in robotics and the development of self-driving cars [1][2]. More
recently, there have been significant advances in AI capabilities with the advent of ChatGPT, a
language model from OpenAI. ChatGPT is capable of human-like conversations and is a
demonstration of the potential of natural language processing [4]. This development
demonstrates how AI can simulate human communication to a degree that blurs the lines
between machine and human interaction, further stimulating discussions about the relevance of
the Turing Test in modern AI research.

As a subfield of AI, machine learning (ML) allows computers to throw conclusions from data.
It is used, for example, in the prediction of house prices or cancer detection. Also, ML is very
effective in test case classification [5]. In this way, the failure probability of test cases can be
estimated. The probability of failure can then be used for prioritization, which is what is done
in this thesis.

1.3 Problem and Aim of the Work
In practice, it is a common challenge that test cases take a lot of time and effort to run, as every
single test has to be performed in every test cycle. This often leads to inefficiencies as redundant
testing can be time and resource consuming. Hence the goal of this work is to develop a ML
component, which should reduce the testing effort in systems that use regression testing. The
component should use the test results to form an evaluation function that allows test cases to be
prioritized so that only high-priority test cases need to be run [6].The component´s results
should be evaluated and presented graphically. The results should then be compared with other
test case prioritization components to assess the adequacy of the new component. It is not the
aim of this thesis to create a component that runs tests, although this extension is theoretically
possible. Instead, the component should use datasets of tests already run and their output for
evaluation. Another limitation is that the component must not independently create test cases.

1.4 Solution Approach and Work Packages
The first step of this thesis consists of a literature review to gain a deeper understanding of the
key issues. A background section was also created to describe and compare the different
approaches of existing studies. Following the literature review, four very promising approaches
are implemented. The baseline approach works with failure rates and does not involve ML.
Two approaches use supervised learning techniques. One uses Naïve Bayes classification. The
other is a random forest algorithm. The last approach uses reinforcement learning. Various tests
and measurements are carried out for all approaches. The approaches are compared with each
other.

1.5 Structure of the Work
Chapter 2 presents the background section of this thesis, providing a basic overview of key
concepts related to testing and ML. This chapter serves as a basis for understanding the

Machine Learning for Test Prioritization 10

technical and theoretical aspects relevant to the research and gives context to the subsequent
analysis and implementation.

Chapter 3 focuses on a comprehensive review and analysis of existing work in the field.
Different methods and approaches are examined, systematically described and compared to
assess their strengths and weaknesses. The analysis identifies the most promising solutions for
this project, ensuring that the selected approaches are consistent with the research objectives
and requirements.

Chapter 4 delves deeper into the methodologies used in this study. It provides a detailed
explanation of the selected methodologies, including the rationale for their selection and their
application in the specific context of this thesis. The aim of this chapter is to provide
transparency regarding the implementation process and to justify the choices made during the
research.

Chapter 5 deals with the measurement system and data sets used in this thesis. It outlines the
processes involved in data collection and analysis and provides insight into the evaluation
framework used to assess the effectiveness of the proposed solutions. In addition, the chapter
presents a comparative analysis of the results obtained from the different solutions, highlighting
their relative performance and applicability.

Chapter 6 provides a summary of the main findings and conclusions of the study. It reflects on
the results obtained and discusses their implications for the field. The chapter also explores
potential directions for future research, suggesting further projects that could build on the
findings of this thesis.

Machine Learning for Test Prioritization 11

2 Background Section

2.1 Testing and Analysis
Testing is the process of systematically assessing and validating that the software behaves as
intended, ensuring that it meets its specified requirements and that it performs its functions
correctly [7]. Software testing is most effective when it is part of continuous integration, i.e.
when testing is started at the design stage and is continued throughout the development process
of the software. Testing is an important part of developing software, because it ensures that all
components function as intended. On the other hand, analysis involves the process of defining
test cases by determining what needs to be tested and specifying the methods for doing so.
Testing and analysis are two distinct processes, yet they are closely interconnected and
complement each other. However, both involve understanding the software specifications,
defining test objectives and identifying potential risks. When combined, testing and analysis
ensure comprehensive coverage and effective faults detection. Ultimately, this contributes to
higher software quality and reliability. The following subchapter provides an overview of
regression testing, a key subject of this thesis.

2.1.1 Regression Testing

Some systems are incremental, where the built system must be tested after each step, this is
called regression testing. Regression testing ensures that the changes that have been made do
not add new errors [5][8][9].

However, retesting the whole system would be very cost, resource, and time-consuming [8]
[10][11][12] that is why are various techniques used to minimise test effort, such as test case
selection, where a carefully selected subset of test cases is executed and test case prioritization,
where all test cases are ranked and executed in a predefined order [2][8][10][11] . This process
continues iteratively, optimising the testing procedure until either the allocated runtime
is exhausted or a predefined coverage threshold is met [9][11][12].

2.2 Machine Learning
ML focuses on enabling computers and machines to mimic the way humans learn. ML teaches
a computer how to perform a task without explicitly programming it to do it. Instead, data is
fed into an algorithm to gradually improve the result with experience. The term was coined in
1959 by Arthur Samuel at IBM, who was developing various fields within AI. Although ML
has a wide range of applications today, it performs two main tasks, one is to classify data and
the other is to make predictions about future outcomes.

There are six main steps, each of which performs a specific task, in the conventional ML
approach Figure 1 [2].

Machine Learning for Test Prioritization 12

Collection and Preparation of Data: It is well known that this data preparation phase can
greatly improve or deteriorate the ML outcome. It is important to use collected data sets from
reliable sources. It should be meaningful and there should be a sufficient amount of data. Data
often needs to be cleaned and pre-processed before it can be used as input to the ML algorithm
[2]. The preparation phase generally includes three steps: Data cleaning, i.e., handling missing
data and outliers, data reduction, i.e., reducing the data size by aggregation, elimination
redundant feature, etc. and data normalization [13].

Feature Selection: The next step is the choice of meaningful features. Features must have a
relevant influence on the output variable.

Choice of Algorithm: There are several different algorithms in ML. Each algorithm makes
different assumptions. Depending on its assumptions, an algorithm may be suitable as a solution
to a problem. Some examples of algorithms are Naïve Bayes, Decision Tree and Support Vector
Machines.

Selection of model and Hyperparameters: Most ML algorithms need hyperparameters to be
set before training [2].

Training: The input data is divided into a training set, validation set and a test set. This split is
implemented because the training data is used to train the model, and a portion of the data is
held back to assess the model's performance on previously unseen data.

The training set should contain about 70% of the total data [1]. The training set is used to give
the model examples of which input features lead to which output. The ML algorithm tries to
model this relationship as a function.

The validation dataset, which represents approximately 15% of the total data, is used to refine
the model and obtain performance metrics. The results obtained from the evaluation of the
model on the validation dataset allow further refinement of the model.

The test dataset should contain approximately 15% of the data. It is used to test the actual data
output. Testing requires the use of data not known to the algorithm [1]. The test data is used to
predict the results of the inputs and compare them with the actual output. This can be used later
for performance evaluation. The percentages quoted in this work are unique and may depend
solely on the data and balances.

Figure 1: Traditional Machine Learning Model (Copy from [2])

Machine Learning for Test Prioritization 13

Performance Evaluation: Test and validation data is used to evaluate the ML algorithm.
Important metrics for classification are accuracy, precision and recall [2]. The metrics are
described in more detail in Section 2.2.5.

However, there are big changes happening in the field of ML during the last few years. This is
mainly due to introduction of deep learning and large computing power. Therefore, newer ML
approaches drift away from the traditional ones, they concentrate more on areas like deep neural
networks [14].

2.2.1 Machine Learning Models

Machine learning can be divided into models based on how an algorithm is trained and the
availability of output during training [1]. This thesis describes some of the most important ML
models, which are:

• Supervised learning
• Unsupervised learning
• Reinforcement learning

2.2.2 Supervised Learning

Supervised learning is ML with data with given output (label). The algorithm learns key
characteristics from examples. After that, the algorithm can predict the output of the test
data [1][2][15]. The success of supervised learning depends heavily on the quality
and representativeness of the labelled training data, and the ability of the model to
generalise to unseen data. It is widely used in areas such as image recognition, speech
processing and predictive analytics. There are several models of supervised learning, which
are introduced in the following chapters.

2.2.2.1 Classification

Machine learning algorithms can be used for various problems. A well-known problem is the
classification problem, in which the algorithm attempts to assign a set of input features to a
given number of output classes [1][2] . As in object recognition, where objects are classified
into categories such as “cars”, “boats” or “animals”, classification is used to determine specific
outcomes. For example, it can predict whether a test is likely to result in a “pass” or a “fail”, so
these categories are used as predefined classes.

2.2.2.2 Regression

Regression is another supervised ML task. Regression models are trained to understand the
relationship between different independent variables and an outcome. The goal of this learning
task is to estimate unknown dependencies from training data with good predictive ability for
future data. Based on the number of predictor variables and the nature of the relationship
between the variables, regression can be classified into several types such as logistic regression

Machine Learning for Test Prioritization 14

(Section 2.2.2.3), linear regression (simple, multivariate, and multiple), polynomial regression,
non binary regression, ridge and lasso regression, and similar.

2.2.2.3 Logistic Regression

Logistic regression is a great solution for ML problems involving binary classification, where
the probability of each input being in one of two different categories is determined. The
algorithm models the relationship between the input features and a binary target variable using
the logistic (sigmoid) function, which maps predicted values to probabilities between 0 and 1.
A threshold, often set at 0.5, is then used to classify observations into one of two classes. It has
become a preferred choice in fields as diverse as medical diagnosis, credit scoring, and
marketing because of its simplicity, interpretability, and solid mathematical foundation [16].
This model is explicitly described here because it is applicable to our use case, which has two
classes, failing test case and not failing test case. It is also used in the paper by Lachmann et al.
(Section 3.2.2).

2.2.2.4 K-Nearest-Neighbours

Another supervised learning model is k-nearest-neighbours (KNN). The algorithm calculates
the distance between the feature point and its neighbours, typically using metrics such as
Euclidean distance. The class with the highest number of votes among these neighbours is then
assigned as the new class of the feature point [10]. An interesting case happens when the two
major results of a vote result in a tie between two classes. In this case the result needs to be
determined by applying some additional strategy. For example, choosing k as an odd number
resolves this issue. Another strategy is random tie breaking where the determined class is
chosen randomly between the winning classes.

2.2.2.5 Support Vector Machine

Support Vector Machine creates an N-dimensional feature vector space and classifies the given
feature points in such a way that the point-free area between the class boundaries is maximised
[10]. The goal of SVM is to distinguish data points in an N-dimensional feature space and
classify them according to this distinction. Herby a hyperplane is used as boundary between
classes. That’s why they are also called decision boundary. The hyperplane can have different
dimension depending on the dimension of the feature space. For example, in a 2-dimension
feature space the hyperplane is a line.

A specific case is where there are points in the so-called point-free region. These points are then
classified according to which side of the hyperplane they are on [17].

2.2.2.6 Artificial Neural Networks

Artificial neural networks (ANNs) are inspired by how the neurons work. An ANN is made up
of interconnected nodes called artificial neurons. Each artificial neuron has several inputs and
an output. Depending on the inputs, the output can be activated. The artificial neurons can be
layered so that the output of one artificial neuron is the input of another. The weights of the
connections in the neural network are adjusted during training. Because of these weights, the
sensitivity of the outputs to certain inputs can be set [1].

Machine Learning for Test Prioritization 15

ANNs possess powerful capabilities for handling complex data. They are well suited for
identifying underlying patterns. But they often need high computational power, another
downside is the lack of transparency in decision making. Important for ANNs is the universal
approximation theorem, which states that any continuous function can be approximated
arbitrarily well by a neural network with at least one hidden layer with a finite number of
weights [17].

2.2.2.7 Naïve Bayes

Naïve Bayes is a simple learning algorithm that uses Bayes's rule combined with a strong
assumption that the attributes are conditionally independent of each other. Naïve Bayes often
achieves competitive classification accuracy even though this independence assumption is often
violated in practice. This, combined with its computational efficiency and many other desirable
features, leads to the widespread use of Naïve Bayes in practice [18].

2.2.2.8 Random Forest

Decision trees (DTs) are a class of simple predictors. These predictors essentially represent a
sequence of conditional steps that must be taken to arrive at a decision. Their popularity is
largely due to their efficiency. However, there are some drawbacks when it comes to DTs. The
main one is overfitting, i.e. the model performs well on one dataset but generalizes poorly to
others. To make generalized predictions, Random Forest is used, which is based on collective
intelligence. As the name suggests, a random forest is a tree-based ensemble where each tree
depends on a collection of random variables. It performs well on a wide range of data sets and
is a flexible algorithm with a wide range of applications.

2.2.3 Unsupervised Learning

Unsupervised learning is a type of ML that uses training data but does not use the correct label.
With this input data, the algorithm can find similarities, while the algorithm identifies clusters
or groups with similar characteristics [2][1][10]. This approach is often used for discovering
hidden patterns in data, such as customer segmentation or anomaly detection.

2.2.4 Reinforcement Learning

In reinforcement learning (RL), an agent that uses the interaction of trial and error and tries to
maximise the rewards [2][19][20]. The rewards and penalties are given by a reward function.
RL is often used in changing or partially unknown environments where strategic decisions are
required, for example in games [19][20].

RL also uses an environment with different states. The states depend on the current properties
of the environment. Depending on the state of the environment, the agent performs an action
from a predefined set of actions. This results in a transition to a new state [1][21].
The result of the action is then rewarded with a reward function. The agent tries to perform the
actions that lead to the highest rewards [15][19]. This interaction is shown in Figure 2.

Machine Learning for Test Prioritization 16

Figure 2:Interaction between Agent and Environment (copy from [1])

2.2.4.1 Model-Based and Model-Free Reinforcement Learning

Model-based reinforcement learning uses a Markov Decision Process model. A reinforcement
learning algorithm is called model-free if it operates within the Markov Decision Process
(MDP) framework but does not use or learn the transition probabilities or reward function
explicitly. Instead, it learns optimal behavior directly from interaction with the environment to
learn a policy of value function. [1] An example of a model-free algorithm is Q-learning.

2.2.4.2 Q-Learning Algorithm

The Q-learning algorithm is a fundamental method in reinforcement learning for estimating
rewards. The Q-value represents the expected future reward for taking a particular action in a
given state. After each step, the Q-value is updated according to a predefined update rule,
allowing the algorithm to iteratively improve its policy and optimise decisions over time.

𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼�𝑟𝑟𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛾𝛾 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) − 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)�
with 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) … old Q − value 𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) … new Q − value 𝛼𝛼 … learning rate between 0 and 1 𝑟𝑟𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) … reward received for transition between state st and st+1 𝛾𝛾 … discount factor between 0 and 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) … estimate of optimal future value
The learning rate α is a tuning parameter for the learning process. A high learning rate leads to
big changes in the Q-values, while with a smaller learning rate only small changes are made.
Typically, algorithms start with a high learning rate which gets continuously reduced in later
steps [20].

Machine Learning for Test Prioritization 17

Another tuning parameter is the discount factor γ, which causes rewards received in earlier steps
to be valued lower than rewards received closer to the current step.

Depending on a probability value ε, the agent decides between two activities, exploration and
exploitation. During exploration, the agent chooses the action at random. During exploitation,
the agent performs the action with the highest Q-value [15]. This helps the agent to explore the
input state and prevents the agent from getting stuck in a poor strategy [19], ε is reduced in later
steps. With the formula: 𝜀𝜀𝑡𝑡+1 = 𝜀𝜀𝑡𝑡𝛼𝛼

2.2.5 Performance Evaluation for Classifiers
Different metrics are used to evaluate performance. There are four possible outcomes for ML
systems designed for binary classification tasks. These outcomes are illustrated in the confusion
matrix shown in Table 1.

The Element is predicted to
belong to the class

The Element is predicted not
to belong to the class

The element belongs to the
class True positive False negative

The element does not belong
to the class False positive True negative

Table 1: Confusion Matrix
From these outcomes, different metrics can be calculated.

2.2.5.1 Accuracy

Gives the ratio between correct predictions and the number of total predictions [11][21].

accuracy= correct predictions
total predictions

 [11]
or

accuracy= true positives + true negatives
true positives + true negatives + false positives + false negatives

 [11]
2.2.5.2 Precision

Gives the ratio between elements that are predicted to belong to a class and do with respect to
all elements that are predicted to belong to the same class [11][21].

precision= true positives
false positives + true positives

 [11]
2.2.5.3 Recall

Gives the ratio of elements that are predicted to belong to a class and all elements that belong
to the same class [11][21].

recall= true positives
true positives + false negatives

[11]

Machine Learning for Test Prioritization 18

In cases where the classes are not evenly distributed, it is better to use precision and recall for
evaluation. In these cases, the precision can be high because most elements are predicted to
belong to the larger class. If the recall of the smaller class is low, the prediction is not very
useful [21].

For example if a classifier is designed to label all test cases as "pass" when distinguishing
between "fail" and "pass," the accuracy may appear high, as the majority of test cases typically
fall into the "pass" category. However, the recall for the "fail" class would be low, and the
precision for the "pass" class would also be poor. Consequently, using recall and precision is
often a more suitable approach for evaluating classifiers when class distributions are
imbalanced.

The ML algorithms are each trained with a training dataset which consists of all tests which are
executed till the end of the current cycle. The evaluation is always performed on the same test-
set which size is 15% of the whole dataset and contains the tests and results of the last cycles.

The recall is calculated and displayed graphically. To compensate for the limitations of the
recall metric, in the graphs of this thesis another curve is added to the graphs which represents
the percentage of test cases classified positive (failing).

2.2.6 Performance Evaluation Metrics

Test case prioritization techniques that produce a continuous range of values as output, rather
than discrete classes, require alternative metrics for evaluation. Such techniques typically assign
a score to each test case which indicates the relative importance of the test case or the likelihood
of a defect being detected.

2.2.6.1 Average Percentage of Faults Detected (APFD)

For determining the APFD value the ranks of failure detecting test cases in the test execution
order are used [6] [9] [10] The following formula is used for calculating APFD: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇′) = 1 − 𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+⋯+𝑇𝑇𝑇𝑇𝑚𝑚𝑛𝑛∙𝑚𝑚 + 12∙𝑛𝑛 [9][19][20]
with 𝑇𝑇′ … prioritized test suite 𝑇𝑇… Test suite containing n test cases 𝐹𝐹 … set of m faults revealed by T 𝑚𝑚… number of faults contained in the system under test 𝑛𝑛… total number of test cases 𝑇𝑇𝑇𝑇𝑖𝑖 … the position of the first test in T that exposes fault i
APFD can be between 0 and 1. A high APFD value indicates that the prioritization of test
cases is effective and that many defects would be detected even if only the high-priority test
cases were executed [5][9][10].

Machine Learning for Test Prioritization 19

3 Literature Analysis

This chapter will be a review of the current methodology for test case prioritization. Approaches
are compared with one another according to their strengths and weaknesses. There are many
different ML solutions for test case prioritization. This thesis describes and compares the
following characteristics are compared:

• Used ML technique
• Features used for prioritization
• Used performance evaluation metrics

To improve software safety, it is essential to perform regression testing on every system update.
In a continuous integration environment, regression testing requires test cases that can provide
rapid feedback. As a result, it is critical to effectively prioritize test cases within a specific time
frame to maximize defect detection and increase the defect detection rate of the testing process
[22]. Regression testing is essential for verifying that changes to code do not alter its intended
functionality. However, executing all test cases can be time-consuming and resource-intensive,
especially with the increasing use of Agile development in web applications, which results in
frequent software builds. To address this challenge, test case selection and prioritization (TCP)
strategies have been developed to optimize the testing process by selecting and ordering test
cases in a way that provides timely feedback to developers. Recently, researchers have
increasingly turned to ML techniques to develop more effective ML-based TCP approaches. In
regression testing the system changes in each regression step, which might make adaptive
solutions like reinforcement learning more suitable for this problem [6][12].Therefore, this
literature analysis focuses on test case prioritization solutions with reinforcement learning.

Finally, some approaches for test case prioritization with ML will be analyzed to get a good
overview of currently used techniques and their performance. The interested reader may be
pointed toward [5] for further information.

3.1 Solutions with Reinforcement Learning

3.1.1 RETECS

“Reinforcement learning, clustering, ranking, and models based on natural language processing
are the key ML approaches used for TCP” [23]. Spieker et al. [6] describe the reinforced test
case selection (RETECS) method. This method uses Reinforcement learning (online learning)
for test case prioritization and selection. Online learning is a ML technique that allows constant
learning during runtime. This makes RETECS an adaptive method. Adaptive means that the
method adapts to the environment, which is changing during the regression steps.

For prioritization, the RETECS method uses the features duration, previous last execution and
the failure history of test cases. The number of executed test cases is constrained by time, so
the total duration of execution must stay under a predefined threshold. So only the higher ranked
test cases are executed and only these results are used in the learning process. To determine the
reward the paper compares three different reward functions. The Failure Count Reward tries to

Machine Learning for Test Prioritization 20

maximize the number of failed tests of the whole selection, while the Test Case Failure reward
determines the reward considering the individual test cases. The third reward function (Time-
ranked Reward) takes the previous order of the test cases into account. However, the Test Case
Failure Reward seems to work best.

For Evaluation, RETECS uses the Normalized Average Percentage of Faults Detected
(NAPFD), to make their system, which only orders test cases till the time constraint threshold
comparable to other systems that use APFD for evaluation. In most cases, the NAPFD of their
experiments is something about 0,4, which indicates that the RETECS method detects
approximately 40% of the defects early in the test execution, suggesting a moderate level of
fault detection within the given time constraints.

3.1.2 Extended Diagraphs

According to Emam et al. [20], a model-based testing technique is presented. The technique
uses Reinforcement learning together with a hidden-Markov model (HMM).

For graphical user interface (GUI) testing Model-based techniques deliver good results [24].
But they can also be used for other applications where HMMs could be built. For the paper
Auto-Black-Test [15] a tool for the automatic generation of GUI test cases is used to generate
the test cases.

The technique prioritizes tests based upon the number of computations (changes) that a test case
may cause in the system under test. Test cases with a higher number of changes are more likely
to lead to system failures. The used technique is Q-learning. The test cases are ordered by using
the Q-values in descending order.

For the performance Evaluation, the APFD and other metrics are used. We will concentrate on
the APFD because it is easier to compare. The Mean of APFDs values is for RL-based HMM
between 0.6865 and 0.9339, depending on the tested application.

3.1.3 Ranking to Learn

An alternative approach described in the paper by Bertolino et al. [25] that is well suited for
dynamic contexts is RL. RL algorithms applied to ranking are referred to as ranking to learn
(RTL) as opposed to learning to rank (LTR) (described in 3.2.4), because RTL uses ranking
information at each step to refine the model's predictions. According to Zurek-Mortka et al.
[23], RTL offers notable advantages for test prioritization in CI environments because it can
naturally adapt to changes in the test suite - such as the addition or removal of tests in each CI
cycle - and to adjustments in the CI process itself [25]. The main difference between LTR and
RTL is how they learn and how they deal with situations that are always changing.

3.1.4 Regression Testing based on Q-Learning with Autosys
Q-learning is a reinforcement learning algorithm that has been integrated into regression testing
for test case prioritization. The objective of this approach is to speed up the deployment process
by effectively prioritizing test cases, while ensuring bug-free software updates through
continuous test case prioritization and full automation. By continuously learning from system

Machine Learning for Test Prioritization 21

feedback, Q-learning assigns priority levels (high, medium, and low) to test cases based on
various factors, helping to optimize the order of test execution. In this approach, the Q-learning
algorithm iteratively adjusts its actions using action values of different states, improving the
agent's performance over time. As a model-free technique, Q-learning does not require a
predefined model of the environment and adapts on-the-fly based on observed transitions and
rewards [26]. At each transition, the learning agent takes an action, receives a reward, and
moves to the next state until it reaches a final state, completing the process.

Once the test cases have been prioritized in each cycle, the test execution process is often
automated through the use of AI integrated with ML-driven test case scheduling. Autosys is a
cross-platform job management system that handles the scheduling, monitoring, and reporting
of various tasks called Autosys jobs. It can autonomously perform a wide range of tasks,
including the execution of multiple test cases, without the need for human intervention. It also
provides real-time feedback on the results of the tests. An overview of the Autosys workflow
is shown in Figure 3[26].

Figure 3: Approach Architecture as Discussed (Copy from [26])

3.2 Other Solutions

3.2.1 Learning Software Agents

Abele et al. [8] used learning software agents for the test case fault-proneness prediction. The
system uses fuzzy logic rules. To create Fuzzy logic rules, rules that apply to testing are
formulated by experts. These rules are translated into many-valued truth values, which can then
be interpreted by the machine. In this way, the fuzzy logic rules represent expert knowledge on
testing like: “Complex modules are more fault-prone than simple ones”.

The fuzzy logic rules are used together with a genetic algorithm to predict the fault-proneness.
The genetic algorithm optimizes the fuzzy logic, by adapting the weight factors of single fuzzy
logic rules. Features used for this optimization are the number of past faults, the number of

Machine Learning for Test Prioritization 22

recent changes, the criticality of the system, the complexity of the system and the number of
found faults in the previous test.

Figure 4: Fault-Proneness Prediction with Fuzzy Logic Rules and Genetic Algorithm (Copy from [10])

Genetic algorithms are inspired by biological organisms. They adapt to their input and try to fit
their environment. This model is called evolutionary learning. For the evaluation of this
approach, the fault-proneness prediction of the system was compared to a classic prediction
made by a developer. Unfortunately, there were no evaluation metrics used.

3.2.2 Machine Learning Approaches for Black Box Software Testing
In his paper [10] Lachmann et al. compares a variety of ML approaches to black box testing of
software. In testing, access to the source code is not always available, so black-box approaches
are necessary. Interestingly, the help of a test expert is used as part of this ML system. The test
expert selects a set of positive and a set of negative test cases (i.e. a set of important and a set
of less important test cases) from a test case database. These data sets are later used for the ML
algorithm. The concept is illustrated in Figure 5.

Figure 5: Concept of Remo Lachmann's Approach (Copy from [10])

For ML, the following four algorithms are applied in the paper:

Machine Learning for Test Prioritization 23

1. Ranked support vector machines
2. K-Nearest- Neighbour
3. Logistic regression
4. Artificial neural network

The results of these techniques are also combined and it is called ensemble learning. Features
used for test case prioritization in the paper are title, number of linked requirements, execution
duration and the test case description.

For Performance evaluation, the APFD performance metric was used. Results are shown in
Table 2. Boost stands for the ensemble learning technique.

Table 2:APFD Values of the different Techniques used by Remo Lachmann (Copy from [10])

3.2.3 Ranking SVM
In the paper [12], a supervised ML approach is used for test case prioritization. The used ML
technique is Ranking SVM.

This model was introduced by Thorsten Joachims who is a well-known researcher in ML and
information retrieval. Ranking SVM is a pair-based ranking approach used primarily in
applications such as search engines and recommendation systems. It learns preference
relationships between pairs of data points rather than classifying individual data points [27].

The input features are test case description, requirements coverage, failure count, failure age,
failure priority and execution costs.

For evaluation, the APFD value was used. Two datasets have been evaluated. The results are
APFD=0.92 for the first dataset and APFD=0.81 for the second dataset

3.2.4 Learning to Rank
A recent learning strategy in ML is LTR, which primarily involves supervised algorithms. LTR
has proven valuable in areas such as information retrieval and natural language processing. In
software engineering, it has been effectively applied to tasks such as defect prediction, where
modules are ranked according to their likelihood of containing defects [25]. Similarly, in test
prioritization, LTR can be used to rank test targets (e.g., test cases or test classes) based on
supervised learning problem, LTR requires prior training. However, if the operational context
changes from the training environment, the model may no longer be representative and could
lose its predictive accuracy. This is particularly relevant in CI scenarios where such
discrepancies can occur.

Machine Learning for Test Prioritization 24

LTR is used to generate ranking functions from training data sets. These ranking functions are
then used to order the documents retrieved in response to a user query. Figure 6 illustrates the
typical architecture of LTR approaches that most learning-based methods follow to address the
IR ranking challenge [16].

In paper [25], the Rank Percentile Average (RPA) is defined as a performance evolution
designed to adapt the RPA to the prioritization problem by calculating how closely a predicted
ranking matches the actual ranking. This metric can evaluate a ranking independently of the
specific test criteria (e.g., error detection).

Whereas in paper [16] Mean Average Precision and Normalized Discounted Cumulative Gain
were used as performance evaluation metrics.

Figure 6: Approach Architecture as Discussed (Copy from [16])

3.3 Conclusion of the Literature Analysis
In the literature analysis, we learned that there are many different ML models are used for test
case prioritization. Like the ML-model, the ML-techniques used in each approach vary. It is
currently unclear which model and which techniques are best suited for test case prioritization.

As much as the ML models vary, the features used are similar in many approaches. Commonly
used features are

• Failure history
• Amount of changes
• Duration or execution costs
• Test case description

For the performance metrics, the APFD value was used in most of the techniques.

The results of the whole literature analysis are summarized in Table 3. The table gives a good
overview of the different ML approaches.

Machine Learning for Test Prioritization 25

Name Machine learning
technique

Features used for prioritization

RETECS [7] Online learning duration, previous last execution and
the failure history of test cases

Extended Diagraphs[19] RL amount of computations (changes)

Learning Software
Agents [8] Ranking SVM

number of past faults, number of recent
changes, critically of the system,

complexity of the system, number of
found faults in the previous test

Different ML
approaches for Black
Box Software Testing

[10]

SVM, KNN, Log Reg title, number of linked requirements,
execution duration, test case description

Different ML
approaches for Black
Box Software Testing

[10]

Layered Neural
Network

title, number of linked requirements,
execution duration, test case description

Ranking SVM [12] Ranking SVM
test case description, requirements
coverage, failure count, failure age,
failure priority and execution costs

Learning to Rank [25] KNN,RF,L-MART,… duration, previous last execution and
the failure history of test cases

Ranking to Learn [25] RL duration, previous last execution and
the failure history of test cases

Regression Testing
based on Q-Learning

[26]
RL -

Table 3: Machine Learning Approaches for Test Case Prioritization

The conclusions of the Literature analysis are used in the following Sections to select
meaningful features and algorithms.

Machine Learning for Test Prioritization 26

4 Experiments

This chapter gives an overview of the concept and explains which procedures were used to
implement the project. It explains the chosen algorithms and hyperparameters. It is also
described how the system could be applied in a useful way. Additionally, the approach to
evaluating and validating the model is discussed to ensure traceability and reproducibility of
the results.

4.1 Concept
Different ML models are used to determine the priorities of test cases. Four different datasets
are used in this thesis.

From those datasets, a selected set of features is used to determine the priorities of the test cases
in the dataset. Priorities are determined in each regression step and then various evaluation
metrics are applied to evaluate the quality of the used models.

Figure 7 shows an example of how the concept is applied to the second regression step of a
dataset.

The first phase is to split the dataset into a training and a test dataset.

Second, the data collected during the previous regression steps (one and two) is used to train
the machine learning model. In the case of the failure rate model, no training takes place, the
collected data is used here to calculate the failure rates.

The third phase is performed on the data from the test set and is used to test the trained ML
model. The ML model outputs the different scoring metrics. The scoring metrics can then be
compared between our different models and with other models from the literature. This process

Figure 7: Example of the Concept

Machine Learning for Test Prioritization 27

is repeated for every regression step which gives full insight into how each regression step
affects the metrics.

4.2 Implementation
The ML algorithms used in this project were implemented in Python using the Scikit-Learn
Reference Library [29]. Scikit-learn is a widely used open-source library for Python that
provides a comprehensive set of tools for machine learning tasks. It includes algorithms for
classification, regression, clustering, dimensionality reduction and model selection. The library
is well documented and widely used in both academic and industrial settings due to its ease of
use and efficient implementation of machine learning techniques. Additionally, scikit-learn
offers a wide range of utilities for model evaluation and tuning, making it an invaluable resource
for developing and optimizing machine learning models.

4.3 Feature Selection
For a functioning ML system, the choice of meaningful features is of utmost importance. The
features are extracted from the datasets under the use of a Matlab script.

To train and test the ML algorithm, the following four different features are used:

• last_run_number_of_cycles_ago
• last_fail_number_of_cycles_ago
• fail_rate
• number_of_runs

The following paragraphs explain the various features and the reason why they were selected.

last_run_number_of_cycles_ago:

This feature indicates how many cycles have passed since the test was last carried out. It is
expected that tests that have not been carried out for a long time tend to fail, because the system
underwent many changes.

last_fail_number_of_cycles_ago:

This feature indicates how many cycles have passed since the test was last carried out and failed.
If a test failed many cycles ago it may be an indication that the problem which triggered the
failure of the test is solved. Vice versa a test that failed recently may be an indication of an
unsolved problem.

fail_rate:

The fail rate is the proportion between the number of times a test failed and the number of times
a test was executed. fail rate = number of times a test failednumber of times a test was executed
This feature may be important. As it may be a good indication of the probability that a test fails
in the future.

number_of_runs:

Machine Learning for Test Prioritization 28

This feature contains information about how often a test had been executed so far. This may,
together with the fail rate, indicate the likelihood of a test to fail.

Along with these features, the test results are also extracted from the datasets. This information
is then used both to train the model and to evaluate its performance. By incorporating the test
results into the training process, the model is able to learn patterns and relationships that help
predict future results, ensuring that its predictions are consistent with real-world scenarios.

4.4 Choice of Algorithm
For the implementation, several machine learning algorithms were selected for comparison in
order to assess their performance on the given task. The chosen algorithms are:

• Gaussian Naïve Bayes
• Random forest with hyperparameter tuning
• Reinforcement learning

Each algorithm is described in detail in the following sections, with an explanation of the
reasons for their selection based on the problem's requirements and the desired outcomes.
Additionally, a fourth algorithm based on the failure rate is utilized. While this approach is not
a machine learning technique, it serves as a baseline for evaluating test case prioritization and
is also explained in the following paragraphs.

4.4.1 Gaussian Naïve Bayes

The Naïve Bayes algorithm is based on the Bayes’ theorem. We also make the naïve assumption
that our features are conditional independent [28].

For the implementation of the Naïve Bayes algorithm, the machine learning model from the
scikit-learn library is used. The model is trained on the training data and generates predictions
for the test set in each cycle, as outlined in Section 4.1. The model's output consists of predicted
probabilities for each test case in the test set, indicating the likelihood of a test failing. These
probabilities are used to rank the test cases in descending order, starting with the test case that
has the highest probability of failure. This ranked list can then be utilized to calculate the APFD
value, as described in Section 2.2.6.1.

Another output of the model is a list of predictions, categorizing each test as either a pass or a
fail. These predictions are used to compute the accuracy, precision, and recall of the model, as
discussed in Section 2.2.52.2.5. These metrics are crucial for evaluating the performance of the
model.

Finally, various plots are generated based on the model’s outputs, which are presented in
Chapter 4.7. Additionally, the runtime of the model is measured for performance evaluation
purposes.

4.4.2 Random Forest with Hyperparameter Tuning

The random forest classifier combines several decision tree classifiers. Decision trees are
described in Section 2.2.2.8.

Machine Learning for Test Prioritization 29

For the random forest with hyperparameter tuning, different parameters in a certain range are
chosen randomly. With these hyperparameters, a part of the dataset is trained and tested. This
process is repeated a hundred times. The best result determines the hyperparameters used for
the actual training. More information about the hyperparameters is given in section 4.5.

For the implementation of this ML model, the Random Forest Classifier from scikit-learn is
used. The hyperparameters which have been determined by the previous step are set.

The model is trained with the training data and predicts the outputs for the test data in each
cycle as described in Section 4.1 .With these outputs, certain metrics are determined, which are
later used for evaluation.

For the determination of the APFD value test cases are ordered according to their probability
of failing.

Different plots are recorded for recall and APFD values. The runtime is also measured.

4.4.3 Reinforcement Learning

As the third ML algorithm, reinforcement learning with Q-learning is used. More detailed
information on reinforcement learning is given in Section 2.2.4.

The model gets trained with the training dataset and must determine the output of the test cases
in the test dataset. Its output is a prediction for the outcome of the test cases in this dataset. This
information is used for the calculation of various metrics. The process is repeated for each cycle
as described in Section 4.1.

For the calculation of the APFD values test cases in the datasets are ordered according to their
Q-value from the Q-table. With this information, the APFD value can be calculated and used
for evaluation purposes.

Different plots are determined, and the runtime is measured.

4.4.4 Model based on Fail Rate

For the model based on fail rate no ML based model is used. The fail rate is used to determine
if a certain test case is likely to fail. A higher fail rate means that the test failed often in the past
if it was executed. It is assumed that it is likely that the test will fail again in the future if it has
a high fail rate.

Tests which are likely to fail are labeled positive, because these are the test cases which we
want to execute during our test phase. On the other hand test cases with a low probability to fail
will be labeled negative as they won’t be executed.

A threshold needs to be chosen to determine at which fail rate a test in the test dataset is
predicted to fail. It is essential to balance the value of the threshold. If the threshold is too high
there will be many test cases predicted false positive (We expect the test to fail but it does not).
If the threshold is set to low there will be some false negative test cases (We expect the test to
pass but it does not).

Machine Learning for Test Prioritization 30

In this thesis, a certain recall goal is used as a hyperparameter to tune the threshold. The
threshold is determined with the training data in a way that the recall of the training set classified
with this threshold is close to the recall goal.

The model output is a prediction of which test cases in the test dataset will fail and which ones
will pass. With this information several metrics for evaluation are determined.

To calculate the APFD value, the test cases are ranked according to their failure rate. In addition,
several graphs are generated based on the model's predictions, and runtime is measured for
performance evaluation.

4.5 Hyperparameter Tuning

4.5.1 Random Forest
The hyperparameters which are tuned in this random forest ML algorithm are

• Max_depth
• Num_estimators
• Min_samples_leaf
• Min_samples split
• Boot

In the following sections, the hyperparameters are described. Also, the range within the
hyperparameters are chosen randomly is stated.

Max_depth

Defines the maximum depth of the tree. If this value is chosen None, all nodes are expanded
until all leaves contain less than min_samples_split samples [29].

This parameter was chosen randomly in the range from 10 to 100 with the step size 10 additional
the parameter could also be None. The default value is None.

Num_estimators

Defines the number of trees in the forest [29]. This parameter was chosen randomly in the range
from 100 to 1900 with a step size of 200. The default value is 100 [29].

Min_samples_leaf

Defines the minimal number of samples a node requires to be a leaf node

This parameter was chosen randomly in the range from 1 to 3 with the step size 2. The default
value is 1.

Min_samples_split

Defines the minimum number of samples required to split an internal node [29].
This parameter was chosen randomly in the range from 2 to 10 with the step size 2. The default
value is 2.

Machine Learning for Test Prioritization 31

Boot

Defines if bootstrap samples are used in the building of trees. If this parameter is chosen false,
the whole dataset is used to build each of the trees [29].
This parameter was chosen randomly and it can be true or false. The default value is true.

4.5.2 Reinforcement Learning
The hyperparameters which could be tuned in the reinforcement learning algorithm are

• Alpha
• Gamma
• Epsilon
• Rewards

The following sections, describe the hyperparameters and the range within the hyperparameters
are chosen randomly.

Alpha

Alpha is the learning rate. Q-values change much if the learning rate is high and less if the
learning rate is small [20].

For this parameter different values between 0.1 and 0.9 have been tried with a step size of 0.1
and the value combination which leads to the best results has been selected.

Gamma

The discount factor γ affects that rewards that are received in earlier steps are valued lower than
rewards nearer to the actual step.

For this parameter different values between 0.1 and 0.9 have been tried with a step size of 0.1
and the value combination with leads to the best results has been selected.

Epsilon

The probability value ε determines the probability if the agent decides between the two
activities, exploration and exploitation. During exploration, the agent chooses the action
randomly. During exploitation, the agent runs the action with the highest Q-value [15].

For this parameter different values between 0.05 and 0.95 have been tried with a step size of
0.05 and the value combination which leads to the best results has been selected.

Rewards

For each of the possible outputs true positive, true negative, false positive, false negative a
reward is needed to indicate the system if its decision was good or bad. In the case of the bad
decision the reward is negative, so the system is punished.

In the case of a true positive classification, e.g. the agent classifies the test failing and it fails.
The model gets a big positive reward.

In the case of a true negative classification, e.g. the agent classifies the test passing and it passes.
The model gets a small positive reward.

Machine Learning for Test Prioritization 32

In the case of a false positive classification, e.g. the agent classifies the test failing and it passes.
The model gets a small negative reward.

In the case of a false negative classification, e.g. the agent classifies the test passing and it fails.
The model gets a big negative reward.

For each parameter different values between 1 and 100 (respectively -1 and -100) have been
tried with a step size of 20 and the value combination with leads to the best results has been
selected.

4.5.3 Fail Rate
The only hyperparameters which could be tuned using the fail rate algorithm is the recall goal.

Recall goal

The recall goal is used to determine the threshold of the fail rate model. Therefore, the training
data is used, and the threshold is set in a way that the recall of the trainings data fits the recall
goal.

4.6 Training
For the training/evaluation/test split a 70/15/15 split is used. This means that 70% of the dataset
is used for training, 15% for evaluation and 15% for testing. For the split the split function is
imported from the scikit learn software library.

The training data set grows with each regression step as the graphs are plotted. The metrics
should also get better at each regression step, as the training dataset gets bigger [22].

4.7 Application of the System
The goal of the system is to reduce the number of executed test cases through prioritization.
This means that only those test cases with a high probability of failure need to be executed. This
saves processing time and hardware capacity. Various ML algorithms are used to prioritize test
cases. Low priority test cases don't need to be executed. High priority test cases should be
executed. That means the ML algorithms are used to split all test cases into test cases that should
be executed (which have high priority) and rejected test cases (with low priority).

Machine Learning for Test Prioritization 33

5 Evaluation

In the first section of this chapter the datasets used for the training and evaluation are described
in detail. The second section describes the used parameters for the performance evaluation. In
the third section the actual measurement is described. The fourth section contains the
interpretation of the measurement results. The timing analysis of the different models is
described in section five of this chapter.

5.1 Datasets
For training and evaluation, four different datasets were used. Two of them are industrial
datasets from ABB Robotics Norway, called Paint Control and IOF/ROL. Another dataset,
named Bosch, originates from an industrial project by Bosch, and the last dataset is the Google
Shared Dataset of Test Suite Results (GSDTSR). Three datasets are frequently used in various
research studies referenced in this master's thesis [6][22], making them well-established and
reliable sources for training machine learning models..

These datasets are valuable for machine learning tasks because they contain detailed
information about the executed tests, such as the test ID, the time of the last execution, and the
result (pass or fail). The datasets are organized into cycles, where each cycle represents a
regression step. Within each cycle, multiple tests are run and each test is assigned to the cycle
in which it was run. This structure allows test performance to be analyzed and trends to be
identified over time, which is essential for building predictive models. The GSDTSR dataset is
the largest of the four and provides a wide range of test results, making it ideal for training
robust machine learning models. The Bosch dataset, on the other hand, is smaller but of
particular importance due to its proprietary nature. It was collected as part of an industrial
research project within Bosch, making it a valuable source of data for understanding test results
in real industrial contexts.

In summary, the combination of these datasets provides a rich and diverse structure for training
and evaluating machine learning models, with the Bosch dataset providing proprietary insights
from a real-world industrial project.

Table 4 contains details about the number of executed tests, number of cycles and number of
failed tests from the different test sets. The GSDTSR dataset is by far the largest dataset while
the Bosch dataset is the smallest.

Machine Learning for Test Prioritization 34

Table 4: Information about the Data Sets

5.2 Performance Evaluation
For the performance evaluation of the classifiers different metrics were used these are:

• Recall
• Precision
• APDF

These metrics are explained in Section 2.2.

This thesis does not broach the issue of performance evaluation with accuracy. Because the
datasets contain many tests which did not fail so the accuracy may be high even if none or few
failed test are found by the model.

5.3 Hyperparameters

5.3.1.1 Random Forest hyperparameter

For the random forest model, the following hyperparameter are found.

Hyperparameter Value

Max_depth None

Num_estimators 100

Min_samples_leaf 2

Min_samples split 4

Boot true

Table 5: Selected Hyperparameters for Random Forest

5.3.1.2 Reinforcement learning hyperparameter

For the reinforcement model, the following hyperparameter are set.

Name of the test
set

Number of
executed tests

Number of
failed tests

Number of
tests which did
not find
failures

Number of
cycles

GSDTSR 1048575 2859 1045716 266

Bosch 530 130 400 48

Paint control 25594 4956 20638 352

IOF/ROL 32260 9289 22971 320

Machine Learning for Test Prioritization 35

Hyperparameter Value

Alpha 0.8

Gamma 0.6

Epsilon 0.05

True positive reward 100

True negative reward 1

False negative reward -100

False positive reward -1
Table 6: Selected Hyperparameters for Reinforcement Learning

5.3.2 Calculation of Precision and Recall
Precision and recall and their calculations are described in Section 2.2.

The ML algorithms are each trained with a training dataset which consists of all tests which are
executed till the end of the current cycle. The tests are always performed on the same test-set
which size is 15% of the whole dataset and contains the tests and results of the last cycles.

5.3.3 APFD Calculation
For the APFD analysis the new Test cases need to be ranked before each cycle and then the
APFD value needs to be calculated. Calculation of the APFD value is described in Section
2.2.6.1. The calculated values are then used to retrain the model. Calculation of the APFD value
therefore needs a different approach in terms of software than the calculation of recall and
precision.

First the model is trained with the test cases of the first cycle. It then predicts the probability of
failure for each test case of the second cycle. Note that in case of the fail rate, it is used as
probability of failure also for later cycles. The test cases are then ranked by the probability of
failure ranking values tests a higher probability to fail on top as it is more crucial to execute
them.

After the ranking the APFD value is calculated taking the results of the ranked tests into
account, note that the APFD value is higher if a failing test case is ranked high up.

In this manner it is iterated over all cycles and the APFD value is calculated for each cycle.

5.4 Results

5.4.1 Precision and Recall on GSDTSR dataset
The following figures, Figure 8 and Figure 9 are showing the recall for different models over
different regression cycles. The recall is shown in Figure 8. Figure 9 shows which percentage
of test cases are classified as failing (true positives plus false positives), note that a method that
classifies a lower number of test cases as failing will increase the performance in terms of
runtime but also will it make harder to get better performance values. Figure 10 shows a

Machine Learning for Test Prioritization 36

comparison between the different precisions of the models. The GSDTSR is the biggest dataset
analyzed in this thesis and contains 1.048.575 test cases in 266 test cycles. Out of all these cases
0.27% have the verdict fail.

5.4.1.1 Fail Rate Model

The blue curve in Figure 8 and Figure 9 shows how the fail rate model performs on the GSDTSR
dataset. The recall turns out to be values around 0.7 while the percentage of the test cases
classified as failing is very low, close to zero. At the first few circles the recall is a bit higher
than in the later cycles. This is because the percentage of test cases classified as failing is much
higher at approximately 0.35%. At later cycles we see learning effects and the recall is rising,
since more training cycles are completed. If we look at the blue curve in Figure 10 we see that
in the first few cycles the precision is lower than in the later cycles were less test cases are
classified as failing. The lower precision value is at around 0.025 the higher value fluctuates
between 0.2 and 0.4.

5.4.1.2 Naïve Bayes Model

At the yellow curve in Figure 8 we see the recall of the naïve bayes model performing on the
GSDTSR dataset. We see that the recall and the percentage of test cases classified as failing
(yellow curve in Figure 9) start with very low values at the first few cycles. Then it increases
rapidly. But the test cases classified as failing also increase rapidly, this might be a reaction on
the low recall of the first few cycles. The system tries to compensate by selecting a larger
number of test cases as failing. This peaks approximately at the 8 cycle where nearly all test
cases are classified failing. After this peak learning results can be perceived, because the
percentage of test cases selected as failing decreases continuously while the recall stays high
only decreasing slightly. The recall in this stage is about 0.9 or higher. The percentage of test
cases classified as failing drops from nearly 100% to about 10%. At Figure 10 we see that the
precision of the naïve bayes model is generally low on this dataset.

5.4.1.3 Random Forest Model

The green graph at Figure 8 shows the results of the random forest model applied on the
GSDTSR dataset. The figure shows that the recall is varying around 0.4. The percentage of test
cases classified as failing is very low close to zero. There are strong variations in the recall it
varies between 0.2 and 0.55. Figure 10 shows that the precision is very high with the random
forest model. Most of the time it varies between 0.4 and 0.9.

5.4.1.4 Reinforcement Learning Model

In Figure 8 the red curve shows the performance of the reinforcement learning model on the
GSDTDSR dataset. The percentage of test cases classified as failing is very low close to zero
while the recall varies around 0.58. Because of the axis resolution in Figure 8 we don’t see a
learning effect. But Figure 28 where only the recall is displayed clearly shows that the recall is
getting higher in later test cycles. In Figure 10 the precision of the reinforcement learning model
is displayed, it is quite low at 0.025.

Machine Learning for Test Prioritization 37

5.4.1.5 Comparison

Comparing the recalls in Figure 8 we notice that the naïve bayes model leads to the highest
recall but is also classifying large chunks of the test cases as failing. In practice this means many
test cases would have to be executed. The second-best performance concerning the recall is
done by the fail rate model. With a recall around 0.7. But the recall varies at this model. The
least fluctuating recall we recorded with the reinforcement learning model. But it is not as high
as the recall of the other models. The worst performance in terms of both magnitude and
stability of the recall is done by the random forest model.

As it is displayed in Figure 10 the direct comparison between the different precisions shows
that the random forest model performs best on the GSDTSR model in terms of precision. Its
precision is way higher than the precision of other models. The fail rate model also has a quite
good performance at this parameter. The naïve Bayes and the reinforcement learning model
both underperform in this category.

Figure 8: Recall on GSDTSR Dataset

Figure 9: Percentage from whole on GSDTSR Dataset

Machine Learning for Test Prioritization 38

Figure 10: Precision on GSDTSR Dataset

5.4.2 Precision and Recall on Bosch dataset
In the figures Figure 11 to Figure 13 the recall and the precision of different models on the
Bosch dataset is shown. The Bosch dataset is the smallest dataset analyzed in this thesis. The
dataset contains 530 test cases and has 48 regression cycles. 24.52 % of the test cases in the
Bosch dataset fail. Figure 11 shows the recall of different models. Figure 12 shows which
percentage of test cases are classified as failing. In Figure 13 we see a comparison of the
precisions of the different models used on the Bosch dataset.

5.4.2.1 Fail Rate Model

The blue curve in Figure 11 shows the recall of the fail rate model on the Bosch dataset. In the
first twelve cycles the recall is about 0.35 but there is also just a small number of test cases
selected as failing. The test cases selected as failing are kept constant by the model. The recall
follows this trend. At the cycles 13 to 30 the percentage of test cases classified as failing is
increased again. It varies around 0.4. The recall at this phase varies around 0.8. An interesting
phenomenon which can be recognized is that the recall follows the changes of the percentage
of test cases classified as failing. There is no relevant learning success visible. The reason could
be that the dataset might be too small. Figure 13 displays that the precision of the fail rate model
is pretty high when only a few test cases are classified as failing. At the moment where more
test cases are classified as failing the precision drops from almost a 100% to about 60%.

5.4.2.2 Naïve Bayes Model

In Figure 11 the yellow curve shows the recall of the naïve bayes algorithm applied to the Bosch
dataset. At the first few cycles about 80 % of the test cases are classified as failing the recall is
1. At cycle 8 the test cases classified as failing drop to around 20 % and varies around this value
for the rest of the cycles. At cycle 8 the recall also drops. The recall increases over the next
cycles, so a small learning success can be recognized. In Figure 13 the precision of the naïve
bayes algorithm is shown. We see the precision start low and then increases with each cycle
due to the learning progress. It starts at almost 0 and increases up to 80%.

Machine Learning for Test Prioritization 39

5.4.2.3 Random Forest Model

The green graph at Figure 11 shows the performance in terms of recall of the random forest
model on the Bosch dataset. The percentage of test cases classified as failing is about 10 % at
the first 15 cycles of the graph. Sometimes there are some peaks in this part of the graph the
biggest one at cycle 7 where 60 % of the test cases are classified failing. The recall follows the
course of the test cases classified failing. It is about 0.35 with some peaks. In the later cycles
the percentage of test cases classified failing is increased slightly at each new cycle. The recall
also increases but with a slightly higher rate. A small learning success is visible. Figure 13
displays that the precision of the random forest algorithm is very high, most of the time it is
over 70%.

5.4.2.4 Reinforcement Learning Model

In Figure 11 the red curve shows the course of the recall produced by the reinforcement learning
model applied to the Bosch dataset. The percentage of test cases classified as failing starts at
about 15 % and is then increased slightly on the following test cycles. The recall follows the
course of the test cases classified failing and increases at each test cycle. Displayed in Figure
13 we see that the precision is generally medium and only drops slightly from 0.6 to 0.4 when
more test cases are classified as failing.

5.4.2.5 Comparison

Comparing the recall of the different models we notice that the fail rate model has the highest
recall, but the recall varies strongly at about 0.8. The second-best recall is produced by the naïve
bayes model, but it also varies strongly. Random forest and reinforcement learning model are
performing similar in terms of recall. In both the recall varies at about 0.4. In the experiment
with the random forest model the fewest test cases are classified failing.

In all four graphs the recall follows the course of the percentage of test cases classified as
failing. Only with the naïve bayes and the random forest model, small learning success can be
spotted. The reason is that the dataset is not big enough to result in higher learning success.

Comparing the precisions in Figure 13 it is visible that all models perform good in terms of
precision. Concerning this parameter the best model is the random forest model, also the
naïve bayes and the fail rate model perform very good. The reinforcement model is not as
good but only slightly weaker than the others.

Machine Learning for Test Prioritization 40

Figure 11: Recall on Bosch Dataset

Figure 12: Percentage from whole on Bosch Dataset

Figure 13: Precision on Bosch Dataset

5.4.3 Precision and Recall on paint control dataset
The figures Figure 14 to Figure 16 show how the different models used perform, in terms of
recall, on the paint control dataset. With 25594 test cases the paint control dataset is a medium
size dataset. 19.36 % of its test cases fail. Figure 16 displays the performance in terms of
precision for all the different models.

Machine Learning for Test Prioritization 41

5.4.3.1 Fail Rate Model

In Figure 14 the recall of the fail rate model used on the paint control dataset is displayed in
blue. At the first test cycle a high number of test cases is classified as failing. The recall is also
high at about 0.8. In the next few cycles, the percentage of test cases classified as failing is
reduced to about 5 %. The recall drops significantly to about 0.3. Then at about cycle 10 till the
last cycle, the number of test cases classified increases to about 95% of the whole dataset. The
recall also increases to about 0.95. As one can see in Figure 16 the precision of the failrate
model is low but also very constant at about 10%.

5.4.3.2 Naïve Bayes Model

The yellow curve in Figure 14 shows the recall of the naïve bayes model on the paint control
dataset. The percentage of test cases classified as failing in this graph varies in a huge range.
The recall follows this trend. In the later cycles a learning effect is visible as the recall compared
to the number of test cases selected as failing is increasing. In Figure 16 the precision of the
naïve bayes model is displayed it fluctuates highly between 10 and 80% but in generall its
values are pretty high.

5.4.3.3 Random Forest Model

At Figure 14 the green curve displays the recall of the random forest model used on the paint
control dataset. In Figure 15 the percentage of test cases classified as failing stays pretty low,
under 10 %, most of the time but there are also many peaks. The highest at about 80%. The
recall follows this trend in the early cycles till about cycle 100. After about cycle 100 a small
learning effect is visible as the recall compared to the number of test cases selected as failing is
increasing. Figure 16 shows that the precision fluctuates highly between 10 and 80%.

5.4.3.4 Reinforcement Learning Model

The red curve in Figure 14 displays the recall of the reinforcement model on the paint control
dataset is shown. It shows that the recall is relatively constant at about 0.6. The percentage of
test cases classified as failing is also relatively constant at about 20%. In Figure 37 only the
recall is displayed because of the different axis resolution a small learning effect is visible. The
recall increases from about 0.6 to 0.63. For the reinforcement learning model Figure 16 shows
a constant precision of about 25%.

5.4.3.5 Comparison

Comparing the recall of the different models the fail rate model produces the highest recall at
nearly 1. The recall is also relatively constant. The recall of the naïve bayes model is the second
highest but it varies strongly. The third best recall is provided by the random forest model, but
it varies strongly. The lowest but also the most constant recall is produced by the reinforcement
learning model. The lowest number of test cases selected as failing is provided by the
reinforcement learning model and it is also pretty low.

An interesting observation is that the recall often follows the trends of the percentage of test
cases selected as failing. A learning effect is visible for most of the models.

Machine Learning for Test Prioritization 42

In terms of precision three models perform very good. Naïve bayes and random forest have
generally high accuracy values but high variation. The reinforcement model has a precision of
about 25% percent but stays consistent over all cycles. The fail rate model performs worst in
terms of precision with a constant precision of about 10%.

Figure 14: Recall on Paint Control Dataset

Figure 15: Percentage from whole on Paint Control Dataset

Figure 16: Precision on Paint Control Dataset

Machine Learning for Test Prioritization 43

5.4.4 Precision and Recall on IOF/ROL dataset
In the figures Figure 17 to Figure 18 the recall of the different models used on the IOF/ROL
dataset is displayed. Figure 19 shows the precision of the different models on the IOF/ROL
dataset. The IOF/ROL dataset contains 32260 test cases so its of medium size compared to the
other datasets. 28.79 % of its test cases fail.

5.4.4.1 Fail Rate Model

The fail rate model does not work for this dataset. The reason is that test cases are not repeated
in this dataset so no fail rate can be calculated.

5.4.4.2 Naïve Bayes Model

The yellow curve in Figure 17 displays the performance of the naïve bayes algorithm in terms
of recall. At the first cycles, till about cycle 100 the recall adapts to the percentage of test cases
classified as failing. Both fluctuate up and down. In the later Cycles the gap between does two
starts to increase. This indicates that a learning effect happened. For the precision displayed in
Figure 16, the naïve bayes model has a pretty high precision fluctuating between 0.3 and 0.7.

5.4.4.3 Random Forest Model

In Figure 17 the green curve shows the recall of the random forest algorithm. It shows that for
the first 120 cycles the recall behaves similar to the percentage of test cases classified as failing.
Both fluctuate strongly. After the 150 cycle a learning effect is strongly visible as the two values
drift apart. In Figure 16 the precision of the random forest is displayed, it is pretty constant only
fluctuating slightly around 40%.

5.4.4.4 Reinforcement Learning Model

The recall of the reinforcement algorithm is displayed by the red curve in Figure 17. It is
relatively constant at about 0.95. Also, the percentage of test cases selected as failing is constant
at about 80%. We see a small learning affect as the recall is increasing slightly over time from
0.94 to 0.95. Displayed in Figure 16 we see the precision of the reinforcement learning, it is
constant at 40%.

5.4.4.5 Comparison

Comparing the different recalls with each other the reinforcement algorithm performs best at
about 95%. Its recall is also very constant. The second-best performance in terms of recall is
shown by the naïve bayes algorithm, which recall is a bit lower and not as stable. A similar only
slightly worse performance is shown by the Random Forest algorithm.

Precision wise the tree different models perform similar. The reinforcement learning algorithm
has the most constant results. While the naïve Bayes algorithm gives slightly better values but
also fluctuates more.

Machine Learning for Test Prioritization 44

Figure 17: Recall on IOF/ROL Dataset

Figure 18: Percentage from whole on IOF/ROL Dataset

Figure 19: Precision on IOF/ROL Dataset

5.4.5 APFD on GSDTSR dataset
Figure 20 presents a comparison of the APFD values across different models on the GSDTSR
dataset. These values are calculated as described in Section 5.3.3. It is important to note that
some values are missing from the diagram, as APFD values cannot always be calculated for
every test case.

The failure rate model generally achieves very high APFD values, ranging between 0.8 and 1,
with most values equal to 1, indicating strong performance in ranking the test cases. Similarly,
the Naïve Bayes model also shows high APFD values, suggesting performance close to that of
the failure rate model.

Machine Learning for Test Prioritization 45

In contrast, the Random Forest model exhibits somewhat lower values compared to both the
failure rate and Naïve Bayes models, indicating relatively weaker performance.

The Reinforcement Learning model demonstrates the weakest performance in terms of APFD
on this dataset. This suggests that, in terms of ranking test cases, the Reinforcement Learning
model is less effective compared to the other models on the GSDTSR dataset.

Figure 20: Comparison of APFD values on GSDTSR Dataset

5.4.6 APFD on Bosch dataset
This section presents a comparison of the APFD values across different models, evaluated on a
dataset provided by Bosch. The APFD metric is used to assess the effectiveness of test case
prioritization, with higher values indicating better performance in detecting faults early in the
testing process. The Bosch dataset contains a series of test cases with known outcomes, enabling
a thorough evaluation of each model’s ability to prioritize test cases based on their likelihood
of failure.

In this analysis, several models are compared, including failure rate-based models and machine
learning algorithms. The APFD values are computed for each model to assess their relative
performance in ranking test cases. The results are visually represented in Figure 21, where the
APFD values for each model are plotted, revealing distinct performance characteristics.

Machine Learning for Test Prioritization 46

The failure rate model fluctuates between 0.9 and 0.6, showing high instability, likely due to
the small size of the dataset. The Naïve Bayes model also fluctuates but to a lesser extent than
the failure rate model, with values ranging from 0.6 to 0.8. The Reinforcement Learning model
demonstrates even more fluctuation than the other two, with values ranging from 0.4 to 0.95,
indicating lower stability.

In contrast, the Random Forest model exhibits higher and more consistent APFD values,
ranging between 0.65 and 0.95, and performs better than the other models.

These fluctuations highlight the varying degrees of stability and performance across the
different models on the Bosch dataset.

Figure 21: Comparison of APFD values on Bosch Dataset

5.4.7 APFD on paint control dataset
This section presents a comparison of the APFD values on the Paint Control dataset (Figure
22).

The APFD values for all models in the Paint Control dataset exhibit significant fluctuation.

The failure rate model fluctuates substantially, ranging between 0.3 and 0.95, with APFD values
generally lower than those of the other models. The Naïve Bayes model also fluctuates

Machine Learning for Test Prioritization 47

significantly, ranging between 0.1 and 0.95, yet it demonstrates relatively strong performance
overall.

The Random Forest model performs the best, with values fluctuating between 0.25 and 0.95,
indicating more consistent and effective test case prioritization. In contrast, the Reinforcement
Learning model shows the weakest performance, with values ranging from 0.1 to 0.95,
suggesting that this model is less stable and less effective in ranking test cases compared to the
others.

Figure 22: APFD on paint control Dataset

5.4.8 APFD on IOF/ROL dataset
Figure 23 illustrates the distribution of APFD values across different models on the IOF/ROL
dataset. A notable trend is that most of the values tend to cluster around an APFD value of
approximately 0.5, reflecting a moderate level of performance for all models.

Note that the failure rate model again cannot be calculated for this dataset, as the tests in the
IOF/ROL dataset do not repeat, making it impossible to compute a failure rate. The Naïve Bayes
model, while also showing some fluctuation, performs slightly better overall. Its APFD values
range between 0.4 and 0.8, indicating that this model is more effective at ranking test cases

Machine Learning for Test Prioritization 48

compared to the failure rate model, with an ability to detect faults more consistently across
different test cases.

The Random Forest model shows the most pronounced fluctuation, with APFD values spanning
from 0.1 to 0.95. Despite the higher level of fluctuation, this model demonstrates the highest
overall APFD values, signalling that it is the most effective at prioritizing tests in a way that
maximizes fault detection early in the testing process. The wide range of values suggests that
the model is capable of adapting to a variety of test cases and contexts, achieving high
performance in certain instances.

The Reinforcement Learning model, like the Random Forest model, exhibits considerable
fluctuation, with values ranging from 0.2 to 0.8. Although the APFD value is similar to that of
the other models, the Reinforcement Learning model shows more variability, which could
indicate a less consistent performance across different test cycles.

The overall performance differences across these models indicate that while there is some
fluctuation in all the models, the Random Forest model stands out due to its consistently high
APFD values, despite its greater variability. In contrast, the failure rate and Naïve Bayes models
offer more stable but slightly less effective performance, and the Reinforcement Learning
model tends to be more volatile, suggesting potential issues with stability and fault detection
across different test cases. The Random Forest model offers the best trade-off between high
fault detection and adaptability to dataset characteristics, highlighting the importance of
balancing stability and performance when selecting a model for test case prioritization.

 Figure 23: APFD on IOF/ROL Dataset

Machine Learning for Test Prioritization 49

5.5 Timing Analysis
In this paragraph our four different models are compared in terms of runtime. As the goal of
ranking test cases is to reduce test time this parameter is crucial to compare the different
algorithms.

The training and test are done on a Windows PC with AMD Ryzen 9 5900X processor and
NVIDIA GEFORCE GTX 1050 graphic card. The measured times include preprocessing of
data and training of the model, for the APFD calculation it also includes the ranking of the test
cases at each cycle.

The results are shown in two different tables
Table 7 shows the timing for the calculation of recall and precision.

Table 8 shows the average timing results for the calculation of the APFD value for 50 runs.
Note that these take longer as a ranking of the test cases is required at each cycle.

Larger dataset like the GSDTSR dataset generally take more time compared to the smaller ones
like the Bosch dataset. But overall the time for the calculation is reasonable considering that
machine learning is included in the calculation process and each model needs to be trained after
each cycle.

The naïve bayes model is the fastest model, for the largest dataset it only takes about 178
seconds. The fail rate analysis is also very fast, it takes only about 604 seconds for the largest
dataset. Reinforcement learning is a bit slower (1260 sec) and random forest is the slowest
model (4119 sec). The other datasets show similar results.

 Fail rate Naïve Bayes Random forest Reinforcement
learning

GSDTSR 604 sec 178 sec 4119 sec 1260 sec

Bosch 4 sec 1 sec 1 sec 2 sec

Paint control 23 sec 7 sec 142 sec 38 sec

IOF/ROL - 7 sec 104 sec 51 sec

Table 7: Timing analysis for Recall and Precision Calculation

 Fail rate Naïve Bayes Random forest Reinforcement

learning

GSDTSR 152 sec 264 sec 6329 sec 1291 sec

Bosch 1 sec 1 sec 7 sec 1 sec

Paint control 5 sec 9 sec 249 sec 47 sec

IOF/ROL - 11 sec 127 sec 56 sec

Table 8: Timing Analysis for APFD Calculation

Machine Learning for Test Prioritization 50

6 Conclusion

The final chapter summarises the key findings that have emerged from the research and analysis
undertaken within the thesis. It includes a thorough discussion of the findings, their implications
and their relevance within the broader context of the field. In addition, this chapter aims to
outline potential follow-up projects that could extend or deepen the scope of the current work.

6.1 Results and Insights
In this thesis four different models for test prioritization are executed and compared to each
other. The used metrics are recall, precision and the APFD value. The different models are also
compared in a timing analysis as the runtime is a crucial factor in the field of test case
prioritization.

The first model is not based on machine learning, instead, it prioritizes test cases based on their
failure rate. It serves as a baseline for comparison with the other models. This approach
performs well across most datasets in terms of recall, precision, and the APFD value. The recall
remains relatively stable across the datasets. However, for datasets where test cases appear only
once, the failure rate model cannot be applied. In terms of APFD, the failure rate model also
delivers strong performance. Furthermore, the calculation of this model is very fast.

The second model, the Naïve Bayes machine learning model, is relatively simple and requires
minimal training time. It is the fastest among the four models compared. In terms of recall, it
yields good results, for instance, on the GSDTSR dataset, it performs best with recall values
reaching up to 95%. However, the APFD values for the Naïve Bayes model show significant
fluctuations, although they remain generally good overall.

The third model, the Random Forest model, excels in the precision category, achieving the
highest precision across many datasets. In terms of recall, it lags behind some of the other
models on several datasets. The Random Forest model requires more computational time and
needs more time to build the model. However, in terms of APFD, it outperforms most other
models, with the best APFD values on the Paint Control dataset, for example.

Lastly, the reinforcement learning model produces the most stable outcomes in terms of both
recall and precision. While its values are slightly lower compared to other models, it maintains
consistent recall and precision across all datasets. In terms of APFD, it performs slightly worse
than the other models, exhibiting lower and more unstable APFD values. Additionally, this
model requires significantly more time to train.

Numerous machine learning models have been explored for test case prioritization, and while
some models perform better on specific datasets, no universally optimal model has yet been
identified. Further analysis, including datasets with more test cases and more standardized
datasets, is needed to achieve a more comprehensive solution.

Nevertheless, this work provides a valuable overview and comparison of the main machine
learning techniques used for test case prioritization.

Machine Learning for Test Prioritization 51

6.2 Future Work
New developments in test case prioritization using reinforcement learning are highly
anticipated. This approach has high potential to significantly reduce the testing time by
optimizing the order in which test cases are performed. To get clearer and more general results,
it would be very useful to have larger and more consistent sets of data. The collection and
analysis of such datasets should be the focus of future research in order to allow for more in-
depth exploration and more robust findings.

In terms of future work, hyperparameter tuning is another area worth exploring in more depth.
By trying out different settings for hyperparameters across different models, researchers could
compare how well they worked and find the best settings for specific data sets or testing
situations. This method could improve ML models, helping them to be more efficient and
adaptable. Also, using Natural Language Processing (NLP) techniques to decide which test
cases to prioritize is a new area to research. Test case descriptions often contain important
information that could help to decide which cases to focus on first, based on how likely they
are to find problems. NLP can help us find and use this information to make test case
prioritization better.

Machine Learning for Test Prioritization 52

7 List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Networks

APFD Average Percentage of Faults Detected

CI Continuous Integration

DTs Decision Trees

e.g. Example

GUI Graphical User Interface

GSDTSR Google Shared Data Set of Testing Suite Results

HMM Hidden-Markov Model

KNN K-Nearest Neighbors

LTR Learning to Rank

ML Machine Learning

NAPFD Normalized Average Percentage of Faults Detected

NLP Natural Language Processing

RPA Rank Prevention Average

RETECS Reinforced Test Case Selection

RL Reinforcement Learning

RTL Ranking to Learn

SVM Support Vector Machine

TCP Test Case Selection and Prioritization

i.e. id est (that is)

at.al. et al. (and others)

Machine Learning for Test Prioritization 53

8 List of figures
Figure 1: Traditional Machine Learning Model (Copy from [2])12
Figure 2:Interaction between Agent and Environment (copy from [1])16
Figure 3: Approach Architecture as Discussed (Copy from [26])21
Figure 4: Fault-Proneness Prediction with Fuzzy Logic Rules and Genetic Algorithm
(Copy from [10]) ...22
Figure 5: Concept of Remo Lachmann's Approach (Copy from [10])22
Figure 6: Approach Architecture as Discussed (Copy from [16])24
Figure 7: Example of the Concept ...26
Figure 8: Recall on GSDTSR Dataset ...37
Figure 9: Percentage from whole on GSDTSR Dataset ..37
Figure 10: Precision on GSDTSR Dataset ..38
Figure 11: Recall on Bosch Dataset ..40
Figure 12: Percentage from whole on Bosch Dataset ...40
Figure 13: Precision on Bosch Dataset ...40
Figure 14: Recall on Paint Control Dataset..42
Figure 15: Percentage from whole on Paint Control Dataset42
Figure 16: Precision on Paint Control Dataset ...42
Figure 17: Recall on IOF/ROL Dataset ..44
Figure 18: Percentage from whole on IOF/ROL Dataset ...44
Figure 19: Precision on IOF/ROL Dataset ...44
Figure 20: Comparison of APFD values on GSDTSR Dataset45
Figure 21: Comparison of APFD values on Bosch Dataset46
Figure 22: APFD on paint control Dataset ...47
Figure 23: APFD on IOF/ROL Dataset ..48
Figure 24: Fail Rate on GSDTSR ..59
Figure 25: Naïve Bayes on GSDTSR ..59
Figure 26: Random Forest on GSDTSR ..59
Figure 27: Reinforcement Learning on GSDTSR ..59
Figure 28:Recall of Reinforcement Learning on GSDTSR ..60
Figure 24: Fail Rate on Bosch ...60
Figure 25: Naïve Bayes on Bosch ...60
Figure 26: Random Forest on Bosch ...60
Figure 27: Reinforcement Learning on Bosch ...60
Figure 24: Fail Rate on Paint Control ..61
Figure 25: Naïve Bayes on Paint Control ..61
Figure 26: Random Forest on Paint Control ..61
Figure 27: Reinforcement Learning on Paint Control ...61
Figure 37:Recall of Reinforcement Learning on Paint Control61

Machine Learning for Test Prioritization 54

Figure 25: Naïve Bayes on IOF/ROL ...62
Figure 26: Random Forest on IOF/ROL ..62
Figure 27: Reinforcement Learning on IOF/ROL ...62
Figure 41:Recall of Reinforcement Learning on IOF/ROL ...62
Figure 24: APFD Fail Rate on GSDTR ..63
Figure 25: APFD Naïve Bayes on GSDTR ..63
Figure 26: APFD Random Forest on GSDTR ..63
Figure 27: APFD Reinforcement Learning on GSDTR ..63
Figure 24: APFD Fail Rate on Bosch ...64
Figure 25: APFD Naïve Bayes on Bosch ...64
Figure 26: APFD Random Forest on Bosch ..64
Figure 27: APFD Reinforcement Learning on Bosch ...64
Figure 24: APFD Fail Rate on Paint Control ..65
Figure 25: APFD Naïve Bayes on Paint Control ..65
Figure 26: APFD Random Forest on Paint Control ..65
Figure 27: APFD Reinforcement Learning on Paint Control65
Figure 24: APFD Fail Rate on IOF/ROL ..66
Figure 25: APFD Naïve Bayes on IOF/ROL ..66
Figure 26: APFD Random Forest on IOF/ROL ..66
Figure 27: APFD Reinforcement Learning on IOF/ROL ..66

Machine Learning for Test Prioritization 55

9 List of tables
Table 1: Confusion Matrix ..17
Table 2:APFD Values of the different Techniques used by Remo Lachmann (Copy
from [10]) ...23
Table 3: Machine Learning Approaches for Test Case Prioritization25
Table 4: Information about the Data Sets ..34
Table 5: Selected Hyperparameters for Random Forest ...34
Table 6: Selected Hyperparameters for Reinforcement Learning35
Table 7: Timing analysis for Recall and Precision Calculation...................................49
Table 8: Timing Analysis for APFD Calculation ...49

Machine Learning for Test Prioritization 56

10 References
[1] R. Gopinath, R. ·Ajay, and C. Sanjay, An introduction to machine learning. New York

NY: Springer Science+Business Media, 2019.
[2] J. Alzubi, A. Nayyar, and A. Kumar, "Machine Learning from Theory to Algorithms: An

Overview," J. Phys.: Conf. Ser., vol. 1142, p. 12012, 2018, doi: 10.1088/1742-
6596/1142/1/012012.

[3] V. Wittpahl, Ed., Künstliche Intelligenz: Technologie, Anwendung, Gesellschaft. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2019.

[4] C. Atkinson, ChatGPT and computational-based research: benefits, drawbacks, and
machine learning applications. [Online]. Available: https://www.researchgate.net/
publication/376219446_ChatGPT_and_computational-based_research_benefits_
drawbacks_and_machine_learning_applications (accessed: Nov. 19 2024).

[5] E. K. Mece, H. Paci, and K. Binjaku, "The Application Of Machine Learning In Test
Case Prioritization - A Review," EJECE, vol. 4, no. 1, 2020, doi:
10.24018/ejece.2020.4.1.128.

[6] H. Spieker, A. Gotlieb, D. Marijan, and and M. Mossige, Reinforcement Learning for
Automatic Test Case Prioritization and Selection in Continuous Integration: Conference:
ISSTA 2017: Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. [Online]. Available: https://hspieker.de/files/Spieker_et_
al._-_2017_-_Reinforcement_Learning_for_Automatic_Test_Case_Prioritization_and_
Selection_in_Continuous_Integration.pdf (accessed: Feb. 10 2024).

[7] P. Ammann and J. Offutt, Eds., Introduction to Software Testing: Cambrige University
Press, 2017. Accessed: Mar. 12 2025.

[8] S. Abele and P. Göhner, Improving Proceeding Test Case Prioritization with Learning
Software Agents: Conference :ICAART2014-
InternationalConferenceonAgentsandArtificialIntelligence. [Online]. Available: https://
www.scitepress.org/papers/2014/49200/49200.pdf (accessed: Feb. 10 2024).

[9] R. Lachmann, S. Schulze, and C. Seidl, System-Level Test Case Prioritization Using
Machine Learning | Request PDF: Conference: 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA). [Online]. Available:
https://www.researchgate.net/publication/313469509_System-Level_Test_Case_
Prioritization_Using_Machine_Learning (accessed: Nov. 19 2024).

[10] R. Lachmann, Machine Learning-Driven Test Case Prioritization Approaches for Black-
Box Software Testing: Conference: ettc2018 - European Test and Telemetry Conference.
[Online]. Available: https://www.researchgate.net/publication/347743375_124_-_
Machine_Learning-Driven_Test_Case_Prioritization_Approaches_for_Black-Box_
Software_Testing (accessed: Feb. 10 2024).

[11] D. Marijan, A. Gotlieb, and M. Liaaen, "A learning algorithm for optimizing continuous
integration development and testing practice," Softw Pract Exp, vol. 49, no. 2, pp. 192–
213, 2019, doi: 10.1002/spe.2661.

Machine Learning for Test Prioritization 57

[12] A. Lawanna, "An effective test case selection for software testing improvement," in
Computer Science and Engineering Conference (ICSEC), 2015 International, Chiang
Mai, Thailand, 2015, pp. 1–6.

[13] O. Masmoudi, M. Jaoua, A. Jaoua, and S. Yacout, "Data Preparation in Machine
Learning for Condition-based Maintenance," Journal of Computer Science, vol. 17, no.
6, pp. 525–538, 2021, doi: 10.3844/jcssp.2021.525.538.

[14] I. Goodfellow, Y. Bengio, and A Courville, "Deep learning," (in En;en), Genet Program
Evolvable Mach, vol. 19, 1-2, 2018, doi: 10.1007/s10710-017-9314-z.

[15] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, "AutoBlackTest," in 2011 33rd
international conference on software engineering (ICSE 2011): Honolulu, Hawaii, USA
21-28 May 2011, Waikiki, Honolulu HI USA, 2011, pp. 1013–1015.

[16] O. Ali Sadek Ibrahim and D. Landa-Silva, ES-Rank: Evolution Strategy Learning to
Rank Approach. [Online]. Available: https://www.researchgate.net/publication/
385985292_Study_of_Supervised_Logistic_Regression_Algorithm (accessed: Dec. 10
2024).

[17] A. Kurani, P. Doshi, A. Vakharia, and M. Shah, A Comprehensive Comparative Study of
Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock
Forecasting. [Online]. Available: https://link.springer.com/article/10.1007/s40745-021-
00344-x (accessed: Mar. 12 2025).

[18] G. Webb, Naïve Bayes. [Online]. Available: https://www.researchgate.net/publication/
306313918_Naive_Bayes (accessed: Oct. 19 2024).

[19] T. Ahmad, A. Ashraf, D. Truscan, and I. Porres, Exploratory Performance Testing Using
Reinforcement Learning: 2019 – 45th Euromicro Conference on Software.

[20] S. S. Emam and J. Miller, "Test Case Prioritization Using Extended Digraphs," ACM
Trans. Softw. Eng. Methodol., vol. 25, 2015, doi: 10.1145/2789209.

[21] J. Jordan, "Evaluating a machine learning model," Jeremy Jordan, 2017, 2017. https://
www.jeremyjordan.me/evaluating-a-machine-learning-model/ (accessed: Feb. 10 2024).

[22] T. Shi, L. Xiao, and K. Wu, Reinforcement Learning Based Test Case Prioritization for
Enhancing the Security of Software: Conference: 2020 IEEE 7th International
Conference on Data Science and Advanced Analytics (DSAA). [Online]. Available:
https://www.researchgate.net/publication/347086385_Reinforcement_Learning_Based_
Test_Case_Prioritization_for_Enhancing_the_Security_of_Software (accessed: Dec. 19
2024).

[23] M. Zurek-Mortka, C. K. Chanda, and P. K. Mondal, Advances in Energy and Control
System: Estimation of Prioritization of Test Cases Using Machine Learning Algorithms.
[Online]. Available: https://link.springer.com/book/10.1007/978-981-97-0154-4
(accessed: Jan. 5 2025).

[24] K. Antti, M. Mika, P. Tuula, and K. Mika, Model-Based Testing Through a GUI:
Conference: Formal Approaches to Software Testing, 5th International Workshop,
FATES. [Online]. Available: https://www.researchgate.net/publication/221366262_
Model-based_testing_through_a_GUI (accessed: Feb. 20 2025).

[25] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo, "Learning-to-rank
vs ranking-to-learn: Corference: ICSE '20: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering," in Seoul, South Korea, pp. 1–12.

Machine Learning for Test Prioritization 58

[26] A. Swain, K. Swain, and S. K. Swain, Eds., Meta Heuristic Techniques in Software
Engineering and Its Applications: Automated Test Case Prioritization Using Machine
Learning; International Conference on Metaheuristics in Software Engineering and its
Application: Springer, Cham, 2022.

[27] J. Thorsten, Learning to Classify Text Using Support Vector Machines. [Online].
Available: https://link.springer.com/book/10.1007/978-1-4615-0907-3 (accessed: Mar.
23 2025).

[28] T. Zhu, "Analysis on the Applicability of the Random Forest," J. Phys.: Conf. Ser., vol.
1607, no. 1, p. 12123, 2020, doi: 10.1088/1742-6596/1607/1/012123.

[29] SciKit learn, User Guide. [Online]. Available: https://scikit-learn.org/stable/user_
guide.html (accessed: Feb. 10 2024).

Machine Learning for Test Prioritization 59

11 Appendix A – Figures
In this appendix different figures are displayed showing the recall and APFD values of
the different models performing on the different datasets in more detail. Figure 24 to
Figure 41 showing the recall and the percentage of test classified as failing. Figure 42 to
Figure 57 are showing the APFD values.

Figure 24: Fail Rate on GSDTSR Figure 25: Naïve Bayes on GSDTSR

Figure 26: Random Forest on GSDTSR Figure 27: Reinforcement Learning on GSDTSR

Machine Learning for Test Prioritization 60

Figure 28:Recall of Reinforcement Learning on GSDTSR

Figure 29: Fail Rate on Bosch Figure 30: Naïve Bayes on Bosch

Figure 31: Random Forest on Bosch Figure 32: Reinforcement Learning on Bosch

Machine Learning for Test Prioritization 61

Figure 33: Fail Rate on Paint Control Figure 34: Naïve Bayes on Paint Control

Figure 35: Random Forest on Paint Control Figure 36: Reinforcement Learning on Paint Control

Figure 37:Recall of Reinforcement Learning on Paint Control

Machine Learning for Test Prioritization 62

 Figure 38: Naïve Bayes on IOF/ROL

Figure 39: Random Forest on IOF/ROL Figure 40: Reinforcement Learning on IOF/ROL

Figure 41:Recall of Reinforcement Learning on IOF/ROL

Machine Learning for Test Prioritization 63

Figure 42: APFD Fail Rate on GSDTR Figure 43: APFD Naïve Bayes on GSDTR

Figure 44: APFD Random Forest on GSDTR Figure 45: APFD Reinforcement Learning on

GSDTR

Machine Learning for Test Prioritization 64

Figure 46: APFD Fail Rate on Bosch Figure 47: APFD Naïve Bayes on Bosch

Figure 48: APFD Random Forest on Bosch Figure 49: APFD Reinforcement Learning on Bosch

Machine Learning for Test Prioritization 65

Figure 50: APFD Fail Rate on Paint Control Figure 51: APFD Naïve Bayes on Paint Control

Figure 52: APFD Random Forest on Paint Control Figure 53: APFD Reinforcement Learning on Paint
Control

Machine Learning for Test Prioritization 66

Figure 54: APFD Fail Rate on IOF/ROL Figure 55: APFD Naïve Bayes on IOF/ROL

Figure 56: APFD Random Forest on IOF/ROL Figure 57: APFD Reinforcement Learning on
IOF/ROL

	1 Introduction
	1.1 Motivation
	1.2 General Introduction
	1.3 Problem and Aim of the Work
	1.4 Solution Approach and Work Packages
	1.5 Structure of the Work

	2 Background Section
	2.1 Testing and Analysis
	2.1.1 Regression Testing

	2.2 Machine Learning
	2.2.1 Machine Learning Models
	2.2.2 Supervised Learning
	2.2.2.1 Classification
	2.2.2.2 Regression
	2.2.2.3 Logistic Regression
	2.2.2.4 K-Nearest-Neighbours
	2.2.2.5 Support Vector Machine
	2.2.2.6 Artificial Neural Networks
	2.2.2.7 Naïve Bayes
	2.2.2.8 Random Forest

	2.2.3 Unsupervised Learning
	2.2.4 Reinforcement Learning
	2.2.4.1 Model-Based and Model-Free Reinforcement Learning
	2.2.4.2 Q-Learning Algorithm

	2.2.5 Performance Evaluation for Classifiers
	2.2.5.1 Accuracy
	2.2.5.2 Precision
	2.2.5.3 Recall

	2.2.6 Performance Evaluation Metrics
	2.2.6.1 Average Percentage of Faults Detected (APFD)

	3 Literature Analysis
	3.1 Solutions with Reinforcement Learning
	3.1.1 RETECS
	3.1.2 Extended Diagraphs
	3.1.3 Ranking to Learn
	3.1.4 Regression Testing based on Q-Learning with Autosys

	3.2 Other Solutions
	3.2.1 Learning Software Agents
	3.2.2 Machine Learning Approaches for Black Box Software Testing
	3.2.3 Ranking SVM
	3.2.4 Learning to Rank

	3.3 Conclusion of the Literature Analysis

	4 Experiments
	4.1 Concept
	4.2 Implementation
	4.3 Feature Selection
	4.4 Choice of Algorithm
	4.4.1 Gaussian Naïve Bayes
	4.4.2 Random Forest with Hyperparameter Tuning
	4.4.3 Reinforcement Learning
	4.4.4 Model based on Fail Rate

	4.5 Hyperparameter Tuning
	4.5.1 Random Forest
	4.5.2 Reinforcement Learning
	4.5.3 Fail Rate

	4.6 Training
	4.7 Application of the System

	5 Evaluation
	5.1 Datasets
	5.2 Performance Evaluation
	5.3 Hyperparameters
	5.3.1.1 Random Forest hyperparameter
	5.3.1.2 Reinforcement learning hyperparameter
	5.3.2 Calculation of Precision and Recall
	5.3.3 APFD Calculation

	5.4 Results
	5.4.1 Precision and Recall on GSDTSR dataset
	5.4.1.1 Fail Rate Model
	5.4.1.2 Naïve Bayes Model
	5.4.1.3 Random Forest Model
	5.4.1.4 Reinforcement Learning Model
	5.4.1.5 Comparison

	5.4.2 Precision and Recall on Bosch dataset
	5.4.2.1 Fail Rate Model
	5.4.2.2 Naïve Bayes Model
	5.4.2.3 Random Forest Model
	5.4.2.4 Reinforcement Learning Model
	5.4.2.5 Comparison

	5.4.3 Precision and Recall on paint control dataset
	5.4.3.1 Fail Rate Model
	5.4.3.2 Naïve Bayes Model
	5.4.3.3 Random Forest Model
	5.4.3.4 Reinforcement Learning Model
	5.4.3.5 Comparison

	5.4.4 Precision and Recall on IOF/ROL dataset
	5.4.4.1 Fail Rate Model
	5.4.4.2 Naïve Bayes Model
	5.4.4.3 Random Forest Model
	5.4.4.4 Reinforcement Learning Model
	5.4.4.5 Comparison

	5.4.5 APFD on GSDTSR dataset
	5.4.6 APFD on Bosch dataset
	5.4.7 APFD on paint control dataset
	5.4.8 APFD on IOF/ROL dataset

	5.5 Timing Analysis

	6 Conclusion
	6.1 Results and Insights
	6.2 Future Work

	7 List of Abbreviations
	8 List of figures
	9 List of tables
	10 References
	11 Appendix A – Figures

