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Abstract
The energy management strategy of a fuel cell vehicle is responsible for the power allo-
cation between the fuel cell system (FCS) and a battery. The optimal power allocation
strongly depends on the trip, which is why predictive information is highly valuable
for an energy management strategy. In particular, long-term predictions that cover the
entire trip allow for significant improvements in fuel efficiency. However, the accuracy of
such long-term predictions is limited because of numerous influences that are inevitable
in real-world driving, such as traffic, driver behavior, and weather.

This dissertation proposes a predictive energy management concept that is specifi-
cally designed to handle these uncertainties. The results are close-to-optimal fuel effi-
ciency and increased FCS durability. The concept follows a two-stage approach: First,
the long-term prediction is processed in an offline optimization before departure, which
yields predictive control information. Then, a real-time strategy determines the power
allocation considering the predictive control information while driving. The distinctive
feature of the proposed concept is that the predictive control information is provided in
the form of a map that expresses the optimal cost-to-go, i.e., the minimum amount of
fuel required to reach the destination, as a function of the covered distance and the bat-
tery state of charge. Two real-time strategies that follow the cost-to-go-based concept
are proposed.

The first strategy is based on the equivalent consumption minimization strategy
(ECMS). The cost-to-go-based design allows the ECMS to adapt continuously to the
actual conditions, which may considerably deviate from the long-term prediction. In
this way, the ECMS is robust against unpredicted disturbances and achieves close-to-
optimal fuel efficiency. In addition, a predictive fuel cell stack start/stop strategy is
proposed. It is seamlessly integrated into the cost-to-go-based ECMS and exploits the
long-term prediction to robustly minimize the number of stack starts/stops, which cause
harmful operating conditions. As a result, the proposed start/stop strategy mitigates
FCS degradation and increases its durability. The second strategy is based on model
predictive control (MPC) and additionally considers accurate short-term predictions that
are updated in real time. The short-term predictions allow the MPC-based strategy to
reduce the dynamic load on the FCS and the associated degradation while preserving
the efficiency benefits of the cost-to-go-based energy management.

The proposed energy management concept is complemented with an extensive exper-
imental evaluation that validates the effectiveness of long-term predictions for improving
fuel efficiency. The evaluation was conducted with a real fuel cell vehicle and focused on
real-world driving on public roads. It revealed significant reductions in fuel consumption
of more than 6 % compared to a nonpredictive strategy.
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Kurzfassung
Die Energiemanagementstrategie eines Brennstoffzellenfahrzeugs ist für die Lastauftei-
lung zwischen dem Brennstoffzellensystem (FCS) und einer Batterie verantwortlich. Die
optimale Lastaufteilung hängt stark von der Fahrt ab, weshalb Vorhersagen äußerst nütz-
lich für das Energiemanagement sein können. Insbesondere Langzeitvorhersagen, die die
gesamte Fahrt abdecken, ermöglichen eine erhebliche Verbesserung der Kraftstoffeffi-
zienz. Allerdings ist die Genauigkeit solcher Langzeitvorhersagen aufgrund zahlreicher
Einflüsse wie Verkehr, Fahrerverhalten und Wetter, die im realen Fahrbetrieb unver-
meidbar sind, eingeschränkt.

Diese Dissertation führt ein prädiktives Energiemanagementkonzept ein, das speziell
für den Umgang mit diesen Unsicherheiten ausgelegt ist. Dadurch werden eine nahe-
zu optimale Kraftstoffeffizienz und eine Verlängerung der Lebensdauer des FCS erreicht.
Das Konzept baut auf einem zweistufigen Ansatz auf: Zuerst wird die Langzeitvorhersage
in einer Offline-Optimierung vor der Abfahrt verarbeitet. Daraus ergibt sich prädiktive
Information, die dann von der Echtzeit-Strategie während der Fahrt berücksichtigt wird.
Die Besonderheit des vorgestellten Konzepts besteht darin, dass die prädiktive Informa-
tion in Form eines Kennfelds bereitgestellt wird. Das Kennfeld beschreibt die sogenannte
optimale „Cost-to-go“, d. h. die benötigte Menge an Kraftstoff zum Erreichen des Ziels,
in Abhängigkeit von der zurückgelegten Distanz und dem Ladezustand der Batterie.
Zwei Echtzeit-Strategien, die auf dem Cost-to-go-Konzept aufbauen, werden vorgestellt.

Die erste Strategie basiert auf der „Equivalent Consumption Minimization Strategy“
(ECMS). Das Cost-to-go-basierte Design ermöglicht der Strategie eine kontinuierliche
Anpassung an die tatsächlichen Bedingungen, die erheblich von der Langzeitvorhersage
abweichen können. Dadurch ist die Strategie robust gegen unvorhergesehene Störungen
und erreicht nahezu optimale Kraftstoffeffizienz. Darüber hinaus wird eine prädiktive
Start/Stopp-Strategie für das FCS eingeführt. Sie ist nahtlos in die Cost-to-go-basierte
ECMS integriert und nutzt die Langzeitvorhersage aus, um die Anzahl von schädlichen
Start/Stopp-Vorgängen robust zu minimieren. Damit wird die Degradation des FCS
reduziert und dessen Lebensdauer verlängert. Die zweite Strategie basiert auf einem
modellprädiktiven Regler (MPC), der zusätzlich genaue Kurzzeitvorhersagen berück-
sichtigt. Dies erlaubt es dem MPC die dynamische Beanspruchung des FCS und die
damit verbundene Degradation zu reduzieren, wobei die Effizienzvorteile des Cost-to-
go-basierten Energiemanagements erhalten bleiben.

Das Konzept wird durch eine umfassende experimentelle Untersuchung ergänzt, die
die Wirksamkeit von Langzeitvorhersagen zur Steigerung der Kraftstoffeffizienz bestä-
tigt. Die Untersuchung wurde mit einem echten Brennstoffzellenfahrzeug durchgeführt
und fokussierte sich auf den realen Fahrbetrieb im öffentlichen Verkehr. Das Ergebnis
ist eine signifikante Senkung des Kraftstoffverbrauchs um mehr als 6 % im Vergleich zu
einer nicht-prädiktiven Strategie.
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Chapter 1

Overview

Predictions derived from static information along a planned route are highly valuable for
improving the fuel efficiency of fuel cell vehicles. However, such predictions have only
limited accuracy, and deviations from the actual conditions must be expected. This
work proposes a predictive energy management concept that is specifically designed to
deal with these uncertainties. The result is improved robustness, which benefits not only
fuel efficiency but also the durability of the fuel cell system (FCS).

The findings are presented in the form of a cumulative dissertation. This chapter
first provides an overview of the state of the art, specifies the objectives, and outlines
the methodology of the proposed concept. Chapter 2 then consists of four full-length
research articles that elaborate on the methods and an experimental validation in detail.

1.1 Motivation
The electrification of vehicles is one of the keys to the decarbonization of the transport
sector. In this regard, it is encouraging that the market share of battery electric vehicles
has steadily increased in recent years, particularly in the area of passenger vehicles [1].
While battery electric vehicles impress with their high energy efficiency [2], they cannot
cover all areas of transport at this time [3, 4]. Especially when it comes to heavy loads
and long trip distances, which are typical for long-haul freight transportation, hydrogen
fuel cell technology provides a wider range of feasibility because of the high gravimetric
energy density of hydrogen and the capabilities for fast refueling and higher payloads [5,
6, 7, 8]. Moreover, hydrogen is a suitable storage for intermittent renewable energy
sources, which can help to avoid excessive stress on the electrical grid [9, 10]. Therefore,
fuel cell vehicles are an excellent complement to purely battery-powered vehicles.

Fuel cell vehicles are commonly equipped with a hybrid powertrain consisting of
the FCS and a battery. The battery is necessary for covering fast changes in the power
demand, which are characteristic in automotive applications. Additionally, the battery
offers the possibility to increase fuel efficiency by avoiding inefficient operating ranges
of the FCS and recuperating braking energy. However, the actual performance in terms
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of fuel efficiency strongly depends on the energy management strategy (EMS), which
determines the power allocation between the two powertrain components. The optimal
power allocation is driving mission-specific. Therefore, the performance of an EMS can
be improved if predictions of the driving mission are available in advance. To achieve
significant improvements in fuel efficiency, long prediction horizons that allow the EMS
to schedule the use of battery energy throughout the trip are necessary.

1.2 State of the art
Various approaches have been proposed to benefit from long-term predictive information.
At a basic level, predictive EMSs simply consider the length of the planned trip. While
this information is advantageous for evenly discharging the battery in plug-in hybrid
vehicles [11, 12], it does not allow for the specific adaptation of the use of battery energy
to the driving mission. For this purpose, a prediction of the power demand is required.
Simple power demand predictions can be derived from readily available static route
information, such as the altitude profile, speed limits, and average segment speeds, if
the route is determined in advance [13]. While such predictions are typically inaccurate,
they provide the long prediction horizons required to actively involve the battery in the
energy management.

Two-stage energy management schemes have shown to be an effective way for
considering long-term power demand predictions. First, a reference trajectory for the
battery state of charge (SoC) is optimized based on the long-term prediction before
departure. Then, a suitable real-time EMS determines the power allocation such that
the optimized SoC reference is tracked while driving. Computationally simple real-time
methods directly determine the power allocation with control laws [14], logic rules [15],
or fuzzy logic controllers [16] to track the optimized SoC reference. A well-established
alternative for the real-time control is the optimization-based equivalent consumption
minimization strategy (ECMS), which can be adapted to provide SoC reference tracking
capabilities. For this purpose, a proportional-integral controller that considers the SoC
feedback is used to determine the so-called equivalence factor [17, 18], which expresses
a virtual fuel consumption for the use of battery energy and plays a central role in the
ECMS.

Real-time EMSs can also be informed with short-term predictions that are up-
dated in real time. Although their prediction horizon, typically in the range of tens of
seconds, is too short to enable an active use of the battery, short-term predictions are
interesting for preparing the energy management for upcoming transients, provided that
they are accurate. Therefore, emerging prediction technologies that consider vehicle-to-
vehicle and vehicle-to-infrastructure communication are particularly interesting for this
task [19, 20, 21]. Besides current and past states of the own vehicle, the communication
provides access to data of the traffic environment, e.g., the velocities of preceding vehi-
cles, allowing for significant improvements in the prediction accuracy [22]. To include
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short-term predictions in the two-stage energy management scheme, ECMS-based meth-
ods that continuously optimize the equivalence factor to ensure predictive SoC reference
tracking have been proposed [23, 24, 25]. Another common approach is model predictive
control (MPC), where the power allocation is determined such that an objective function,
usually expressing fuel consumption or degradation, is minimized within the short-term
horizon while tracking the SoC reference [26, 27, 28]. A particular advantage of MPC
is that it allows for predictive consideration of powertrain constraints. In either case,
however, the short prediction horizons may be too restrictive to considerably benefit
from the improved accuracy when short-term predictions are combined with optimized
SoC reference trajectories.

Tracking optimized SoC reference trajectories to consider long-term predictive in-
formation, with or without the inclusion of short-term predictions, has another draw-
back: The performance strongly depends on the accuracy of the long-term prediction,
which is limited due to random disturbances that are inevitable in real-world driving,
such as traffic, driver behavior, and weather. Tracking the optimized SoC reference pro-
vokes suboptimal behavior, which affects fuel efficiency in sections where the long-term
prediction deviates from the actual conditions. A possible solution to this issue is an
MPC that extends the prediction horizon until the end of the trip instead of tracking an
optimized SoC reference [29]. However, the long prediction horizon can imply computa-
tional challenges for the real-time capability. An interesting alternative is replacing the
optimized SoC reference trajectory with a map expressing the so-called optimal cost-
to-go as the carrier of predictive information [30, 31, 32]. The optimal cost-to-go map
describes the minimum fuel amount required to reach the destination as a function of
the covered distance and the battery SoC. Thus, it provides information in the entire
distance-SoC space and not just along an optimal path, which facilitates adaptions in
the case of disturbances. However, cost-to-go-based approaches have only been proposed
for conventional hybrid vehicles with internal combustion engines so far.

In addition to the power allocation between the FCS and the battery, an EMS must
also decide on fuel cell stack shutdowns. Stack shutdowns are crucial to avoid overcharg-
ing the battery or wasting precious energy in driving missions with low or negative power
demand, such as in urban areas or when descending. However, each stack start/stop
event causes harmful operating conditions [33, 34, 35], which is why it is desirable to
keep the number of starts/stops low. In the literature, fuel cell stack start/stop control
can basically be divided into two groups: instantaneous methods [36, 37] and methods
based on short-term predictions [38, 39]. Because instantaneous strategies alone cannot
prevent infeasibly frequent start/stop events, they are usually combined with a mini-
mum hold time for the stack state [38, 15] or a hysteresis [40, 41]. Nevertheless, neither
these measures nor short-term predictions can reliably prevent inefficient start/stop ac-
tions, e.g., performing a stack shutdown shortly before entering a high-power section.
Studies that investigated the optimal energy management of driving cycles with known
power demand profiles successfully minimized the number of starts/stops by consider-
ing penalties for start/stop actions [42, 43], indicating that an optimization based on



4 1.3 Objectives

the long-term prediction could be a solution here. However, blindly realizing real-time
start/stop actions at the optimal positions according to the long-term prediction can
provoke severe performance deterioration and infeasible operation in the presence of any
uncertainties. Strategies that robustly exploit long-term predictions to minimize the
number of starts/stops are not available.

Another important aspect due to the limited accuracy of long-term predictions is
the actual performance benefit of predictive EMSs in practice. Considerable improve-
ments thanks to long-term predictions have been demonstrated in simulation studies,
but simulations can never fully replicate reality. More significant experimental evalu-
ations with real vehicles are rare in the literature and focus on nonpredictive strate-
gies [44, 45, 46, 47] and short-term predictive MPC [48]. The performance benefit of
long-term predictions exploited in a two-stage scheme has not yet been validated in
practical tests with real vehicles.

This concise overview of the state of the art reveals open research issues. First, the
fuel efficiency of the established two-stage energy management approach, which is based
on optimized SoC reference trajectories, suffers if the long-term prediction deviates from
the actual conditions. Second, accurate short-term predictions from emerging intelli-
gent transportation systems do not develop their full potential when combined with
SoC reference trajectories. Third, current stack start/stop strategies cannot prevent
inefficient start/stop actions that cause avoidable FCS degradation. Fourth, the perfor-
mance benefit of exploiting long-term predictions remains unanswered in the real-world
application.

1.3 Objectives
The overall objective of this work is to exploit predictive information for the en-
ergy management of fuel cell vehicles to increase their fuel efficiency and
durability. This objective is translated into four research problems (RPs) that address
the identified research gaps and are elaborated in the following:

RP.1 Robust exploitation of long-term predictions

How to exploit route-derived long-term predictions with limited accuracy in
order to maximize fuel efficiency?

Predictions derived from static route information are easily available and cover the entire
planned driving mission. However, their accuracy is limited due to various random
influences, such as traffic, that are inevitable in the application. How can such long-
term predictions be considered in the energy management to robustly maximize fuel
efficiency?
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RP.2 Minimization of the number of fuel cell stack starts/stops

How to use long-term predictions to minimize the number of fuel cell stack
start/stop events while ensuring robustness?

Fuel cell stack start/stop events cause harmful operating conditions. In order to limit
the associated degradation of the fuel cell stack, the number of start/stop events must
be kept low. How can route-derived long-term predictions be exploited for this purpose
while ensuring robustness and feasible operation?

RP.3 Consideration of short-term predictions

How to improve the energy management performance if accurate short-term
predictions are available in addition to the long-term prediction?

Intelligent transportation systems offer the possibility to obtain accurate short-term
predictions that are updated in real time. How can these short-term predictions be
combined with the long-term prediction to improve the performance further?

RP.4 Experimental validation

Can significant improvements in fuel efficiency be achieved in the typical
real-world application by considering long-term predictions?

As mentioned above, route-derived long-term predictions are affected by various random
disturbances in the real-world application. Are significant improvements in fuel efficiency
nevertheless possible?

1.4 Scientific approach and outline
Addressing the research problems specified above, this work proposes a predictive energy
management concept for fuel cell vehicles. The scientific approach of the concept is
outlined through its key elements below:

• Route-derived long-term prediction: Planning the route of a driving mission
before departure gives access to static route information, i.e., legal speed limits
and the altitude profile along the route. Based on this predictive information, a
long-term prediction of the power demand can be derived. Such a prediction is
highly valuable for the predictive energy management because it covers the entire
driving mission and is available before departure.
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• Two-stage energy management: Assuming that the route-derived long-term
prediction is not updated while driving, the predictive energy management can be
divided into two stages (see Fig. 1): (i) The long-term prediction is processed in
an offline optimization before departure, yielding predictive control information for
the real-time control. (ii) While driving, the real-time EMS determines the power
allocation between the FCS and the battery considering the predictive control
information and system measurements.

• Optimal control methods: Optimal control theory plays a crucial role in the
exploitation of the available predictive information with respect to predefined ob-
jectives. Corresponding methods are applied in the offline optimization before
departure as well as in the real-time energy management.

• Control-oriented modeling: The optimization-based methods rely on dynamic
models of the vehicle and its powertrain. Simplified models focusing on the most
relevant system characteristics are used to considerably speed up the optimizations
and facilitate the real-time capabilities of the EMSs without compromising the
overall performance.

• Evaluation focused on real-world driving: The performance of the developed
predictive EMSs is evaluated focusing on real-world driving where unpredictable
disturbances are inevitable. For this purpose, all EMSs were benchmarked against
state-of-the-art methods in simulation studies based on measurements of various
real driving cycles. The expectations from these studies were confirmed in an
extensive experimental validation with a real fuel cell passenger vehicle.

The centerpiece of this dissertation is a predictive energy management concept
that is specifically designed to handle the limited accuracy of route-derived long-term
predictions by continuously adapting to the actual conditions. The distinctive feature
of this concept is that the predictive control information resulting from the offline op-
timization is stored in the form of a 2-D map expressing the optimal cost-to-go, i.e.,
the minimum amount of fuel required to reach the destination, as a function of the cov-
ered distance and the battery SoC. Unlike commonly used SoC reference trajectories,
the cost-to-go map also provides predictive control information if deviations from the
initially optimal path occur due to random influences such as traffic. This allows the
proposed EMSs to continuously adapt to the actual conditions, which improves their
robustness against unpredicted disturbances. The contributions were published in four
scientific publications, which are outlined in the following (see also Fig. 1):

• Publication A proposes a predictive ECMS that derives the equivalence factor,
which expresses a virtual fuel consumption for using energy from the battery, from
the optimal cost-to-go map. The approach allows the equivalence factor to take
the optimal estimate according to the long-term prediction in each instant. In this
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Figure 1: Schematic illustration of two-stage energy management showing alternatives
of predictive control information and three different real-time EMSs. The
outlines indicate the approaches proposed and investigated in this work.

way, the ECMS continuously adapts to the actual conditions, even if considerable
disturbances occur. The method provides a solution to RP.1 and is described in
more detail in Section 1.5.2.

• Publication B extends the predictive ECMS with a predictive stack start/stop
control that robustly minimizes the number of start/stop actions for a planned
driving mission. The start/stop control is based on a map expressing the optimal
number of active stacks, which is determined in the offline optimization. The work
addresses RP.2 and is discussed in Section 1.5.3.

• Publication C proposes a method that combines the long-term prediction with
short-term predictions that are updated while driving. The method is based on an
MPC that considers the short-term predictions within its prediction horizon and
adds the cost-to-go that represents the long-term prediction as a terminal cost.
The cost-to-go-based MPC addresses RP.3 and is outlined in Section 1.5.4.
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• Publication D presents an extensive experimental evaluation of a two-stage EMS
with a real fuel cell passenger vehicle. To validate the effectiveness of long-term
predictions for improving fuel efficiency in general, the evaluation applies a sim-
plified EMS that tracks an optimized SoC reference trajectory. The evaluation
is based on several real driving tests, which were conducted on public roads, and
reproducible chassis dynamometer tests. The study answers RP.4, and the key
results are presented in Section 1.5.5.

1.5 Methodology
This section presents an overview of the methodology proposed in this dissertation.
First, the control-oriented models of the vehicle and its powertrain are described in Sec-
tion 1.5.1. Then, the cost-to-go-based predictive ECMS is outlined in Section 1.5.2, and
the extension for the predictive stack start/stop control is described in Section 1.5.3. Sec-
tion 1.5.4 presents the cost-to-go-based MPC. Finally, Section 1.5.5 summarizes the key
results of the experimental validation with the real fuel cell vehicle. The corresponding
research publications are included in full length in Chapter 2.

1.5.1 Control-oriented modeling
To exploit predictive information for optimizing the energy management, models of the
relevant vehicle components are required. First, a model of the longitudinal vehicle
dynamics is used to derive the long-term power demand prediction from static route
information, i.e., the speed limits and the altitude profile along the route. Then, a model
of the hybrid powertrain is used to conduct the offline optimization. The powertrain
model is also an integral part of the proposed real-time EMSs.

In order to keep the computational complexities of the offline optimization and the
real-time EMSs low, the vehicle dynamics and the powertrain are described with simple
models focusing on the system characteristics that are most significant for optimizing
the energy management. The low computational complexities ensure that the predictive
control information is provided shortly after the route is defined and strongly facilitate
the real-time implementation of the EMSs. Nevertheless, the simplified modeling does
not compromise the overall performance because the accuracy of the long-term prediction
is the most relevant limitation.

In the following, the model of the longitudinal vehicle dynamics is described first
before the model of the hybrid powertrain is introduced.

Longitudinal vehicle dynamics

To derive the long-term power demand prediction from the speed limits and the altitude
profile along the route, a model of the longitudinal vehicle dynamics is used. The model
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Figure 2: Hybrid powertrain consisting of the FCS, battery, traction motor (M), and
auxiliary systems (AS). The arrows indicate the possible directions of the power
flows. The figure is adapted from Publication C.

considers the traction force of the electric motor, aerodynamic drag, rolling friction, and
gravitational force [49]

δm
dv

dt
= ηsgn Pm

m
Pm

v
− ρAfcd

2 v2 − crmg cos θ − mg sin θ (1)

where δ denotes the correction coefficient of rotating mass, m the vehicle mass, v the
vehicle velocity, t the time, ηm the efficiency of the traction motor, Pm the traction
motor power, ρ the air density, Af the frontal area of the vehicle, cd the aerodynamic
drag coefficient, cr the rolling friction coefficient, g the gravitational acceleration, and θ
the road inclination angle, which can be computed from the altitude profile.

With this model, a prediction of the traction motor power is derived from the speed
limit-based prediction of the vehicle velocity and the altitude profile. The prediction of
the overall electric power demand Pel is then computed by adding a prediction of the
auxiliary power demand Paux:

Pel = Pm + Paux. (2)

The auxiliary power demand is challenging to predict over long prediction horizons.
However, since its magnitude is relatively small compared with the traction power, a
constant estimate of Paux serves as a sufficient approximation.

Hybrid powertrain

The hybrid powertrain consists of the FCS and the battery (see Fig. 2). The overall
system power, i.e., the sum of the FCS power PFCS and the battery power Pb, satisfies
the electric power demand of the vehicle

Pel = PFCS + Pb (3)
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ṁst Efficiency
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fuel cell passenger vehicle. The figure is adapted from Publication B.

whereby the power allocation between the FCS and the battery is determined by the
EMS. Both power sources are described with simple quasistatic models that focus on
the most relevant characteristics from an energy management point of view. Besides the
modeling, the specification of constraints plays an important role in preventing infeasible
power requests and mitigating the degradation of the power sources.

In general, the FCS consists of Nst fuel cell stacks in parallel. The individual stacks
are assumed to be identical and modeled with a polynomial curve describing the stack
fuel consumption rate ṁst(Pst) as a strictly convex function of the stack net power Pst
(see Fig. 3). This fuel consumption curve is fitted to measurement data and implicitly
considers the power consumption of fuel cell-related auxiliaries such as the compressor.
To prevent harmful operation, the stacks are only operated within [P idle

st , P max
st ], where

P idle
st denotes the lower idling power limit and P max

st the upper power limit of the stack.
Moreover, constraints on the stack power rate are specified in the form of minimum and
maximum stack power increments per time step, i.e., ΔP min

st and ΔP max
st , respectively.

The FCS power and the FCS consumption rate ṁFCS are the sum of the corre-
sponding stack contributions. Assuming that all stacks contribute equally, the FCS
power and the FCS consumption rate ṁFCS can be computed with

PFCS = nstPst (4)
ṁFCS = nstṁst(Pst) (5)

where nst ∈ {0, 1, . . . , Nst} denotes the number of active stacks, which is also referred
to as the “FCS state” in this work. Note that single-stack FCSs that remain active
throughout the entire driving mission are assumed in the remainder of this work except
for Section 1.5.3, where the predictive start/stop strategy is discussed. In the case of
a constantly active single-stack FCS follows nst = 1, which implies PFCS = Pst and
ṁFCS = ṁst.

The battery is approximated with a steady-state equivalent circuit model [49] where
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the battery voltage Vb varies linearly depending on the battery current Ib:

Vb = VOC − RintIb. (6)

The battery parameters VOC and Rint denote the open-circuit voltage and the ohmic
resistance, respectively, and are determined based on measurement data. Based on this
approximation, the dynamics of the battery SoC ξ is a nonlinear function of the battery
power

ξ̇ = f(Pb) = −VOC −
	

V 2
OC − 4PbRint

2Q0Rint
(7)

where Q0 denotes the battery capacity. The battery can be operated within the feasible
SoC range [ξmin, ξmax], where ξmin denotes the minimum SoC and ξmax the maximum SoC.
Additionally, the continuous battery power, which can be sustained over long periods
of time, is constrained by an upper limit P max

b and a lower limit P min
b . The latter is

negative, i.e., the battery can be charged while driving.

1.5.2 Cost-to-go-based predictive energy management
Covering the entire planned driving mission, the long-term power demand prediction
derived from static route information provides the long prediction horizon necessary
to involve the battery actively in the energy management. However, the accuracy of
the long-term prediction is limited due to various random influences that are hardly
predictable, e.g., traffic, traffic regulation, driver behavior, and weather. Consequently,
deviations from the long-term prediction must be expected in the real-world application.

The main idea of the proposed EMS is to adapt the energy management continu-
ously to these unpredicted disturbances. For this purpose, the real-time EMS considers
the predictive control information from the long-term prediction in a form that ensures
flexibility for continuous adaptation: a 2-D map expressing the optimal cost-to-go. The
optimal cost-to-go refers to the minimum amount of fuel required to reach the destina-
tion and varies depending on the position along the driving mission and the battery SoC.
Unlike an optimized SoC reference trajectory, the cost-to-go map provides predictive con-
trol information within the entire position-SoC space. This gives the cost-to-go-based
EMS the freedom to deviate from the initially optimal path regarding the prediction in
order to respond to disturbances.

The proposed strategy follows a two-stage scheme: (i) Before departure, an opti-
mization is conducted based on the long-term prediction, yielding the optimal cost-to-go
map. (ii) While driving, the real-time EMS determines the optimal power allocation
considering current system measurements and the optimal cost-to-go for the current po-
sition and SoC (see Fig. 1). The real-time strategy is based on the ECMS and considers
the long-term information by deriving estimates of the optimal equivalence factor from
the optimal cost-to-go. In this way, the ECMS continuously adopts the optimal power
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allocation regarding the long-term prediction for the remainder of the driving mission,
even if the system states considerably deviate from the initially optimal path because
of disturbances that occurred in the past. The key advantages of the cost-to-go-based
predictive ECMS can be summarized as follows:

• Robust minimization of fuel consumption

• Exploitation of the long-term prediction while continuously adapting to the actual
conditions

• Harmful operation prevented with constraints

• No recurring offline optimizations after departure

• Low computational complexity and simple implementability

In the remainder of this section, the offline optimization and the cost-to-based
predictive ECMS are described first. Then, the advantages of the predictive ECMS over
a state-of-the-art approach are demonstrated in a numerical study. For more details,
the reader is referred to Publication A.

Offline optimization with dynamic programming

The offline stage starts with the derivation of the long-term power demand prediction
from the static route information based on the model of the longitudinal vehicle dynam-
ics, as described in Section 1.5.1. The long-term power demand prediction is the input
of the subsequent offline optimization, which determines the optimal power allocation
between the FCS and the battery such that the fuel consumption J for the planned trip
is minimized. The objective is formulated in discrete time assuming a single-stack FCS,
i.e., PFCS,l = Pst,l, and considering the relevant powertrain constraints in each time step
l = 1, . . . , L − 1:

min
PFCS

J =
L−1

l=1

ṁFCS(PFCS,l)Δtl

s.t. P idle
st ≤ PFCS,l ≤ P max

st ,

P min
b ≤ Pb,l ≤ P max

b ,

ξmin ≤ ξl ≤ ξmax,

ξ1 = ξinit,

ξL ≥ ξfinal.

(8)

Here, Δtl = tl+1 − tl denotes the time interval of the lth time step, (L − 1) the number
of time steps, ξinit the initial SoC, and ξfinal the minimum SoC at the destination. The
FCS power is chosen as the decision variable, and the battery power takes the residual
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power demand. In order to keep the dimension of the optimization problem low, a
relatively rough sampling is chosen in the magnitude of one time step per kilometer
on average. While the rough sampling reduces the computational complexity, it does
not necessarily compromise the overall performance due to the limited accuracy of the
long-term prediction. Moreover, the FCS power rate constraints can be neglected here
because the time constants of the FCS dynamics are assumed to be much smaller than
the time steps of the offline optimization.

To determine the optimal cost-to-go map for the real-time control, the optimization
problem is solved with dynamic programming (DP). DP breaks down the problem into a
series of subproblems, which are solved backward in time with discretized control input
(PFCS) and state (ξ). In each time step l = (L−1), . . . , 1, the cost-to-go, i.e., the amount
of fuel to reach the destination, is minimized for each ξl in the discrete SoC space

J∗
l (ξl) = min

PFCS,l


ṁFCS(PFCS,l)Δtl + J∗

l+1(ξl+1)


(9)

considering the constraints specified in Eq. (8). For more details regarding the DP
implementation, the reader is referred to the literate, e.g., [50]. The algorithm yields the
optimal cost-to-go J∗ at each point in the discrete time-SoC space. A time-to-distance
mapping based on the predicted velocity then gives the desired map J∗(s, ξ) describing
the optimal cost-to-go as a function of the covered distance s, i.e., the position along
the trip, and the battery SoC. The description in the distance domain is used here
because it is independent of the elapsed time, which is affected by deviations from the
predicted velocity and vehicle standstills. Therefore, the distance-based description is
advantageous for robust real-time control. An example of the optimal cost-to-go map is
shown in the upper plot of Fig. 4.

The optimal cost-to-go cannot be considered directly in the ECMS. However, the
equivalence factor λ, which expresses a virtual fuel consumption for the use of energy
from the battery, can be derived from the optimal cost-to-go by computing the partial
derivative with respect to the SoC [31, 32]:

λ(s, ξ) = ∂J∗(s, ξ)
∂ξ

. (10)

This computation is performed numerically and finalizes the offline stage. The resulting
2-D map that describes the equivalence factor as a function of the covered distance and
the SoC is stored and represents the predictive control information for the real-time
control. An example of the equivalence factor map is shown in the lower plot of Fig. 4.

Real-time predictive ECMS

The ECMS determines the power allocation by minimizing the equivalent fuel consump-
tion rate H, which does not only include the actual fuel consumption rate of the FCS
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Figure 4: Optimal cost-to-go map (upper plot) and equivalence factor map (lower plot)
resulting from the offline optimization of a long-term prediction. The figure is
adapted from Publication C.

but also a virtual fuel consumption rate for using energy from the battery:

H(PFCS, λ, Pel) = ṁFCS(PFCS) + λf(Pel − PFCS). (11)

The performance of the ECMS is strongly influenced by the choice of the equivalence
factor. In theory, the ECMS can provide candidates for the globally optimal power
allocation if the optimal equivalence factor is known, see [51]. However, the optimal
equivalence factor strongly depends on the power demand profile of the driving mission
and is therefore unknown in advance.

Considering the equivalence factor map resulting from the offline optimization, the
proposed method provides the ECMS with a prediction-based estimate of the optimal
equivalence factor. The estimate is continuously updated by linearly interpolating in
λ(s, ξ) based on the current position along the trip and SoC. In this way, the ECMS
performs the optimal power allocation regarding the long-term prediction for the trip
remainder in each instant and continuously adapts to the actual conditions.

Because the ECMS cannot consider SoC constraints directly, an indirect SoC con-
straint handling mechanism is included. The mechanism adapts the equivalence factor
based on a quadratic formulation such that charging the battery is favored close to ξmin

and discharging the battery is favored close to ξmax:

λ̄ =

������
λ(s, ξ) + λad


ξ−ξmax+ξth

ξth

2
, ξ > ξmax − ξth

λ(s, ξ) − λad
−ξ+ξmin+ξth

ξth

2
, ξ < ξmin + ξth

λ(s, ξ), otherwise.
(12)
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Here, λad and ξth are tuning parameters. With the adapted equivalence factor λ̄, the
ECMS determines the optimal FCS power in real time with

P ∗
FCS = arg min

PFCS∈P
H(PFCS, λ̄, Pel) (13)

where the feasible stack power range P considers the specified constraints:

P =
�
Pst ∈ R : P idle

st ≤ Pst ≤ P max
st ,

ΔP min
st ≤ Pst − P prev

st ≤ ΔP max
st ,

P min
b ≤ Pb ≤ P max

b

�
.

(14)

Here, P prev
st denotes the stack power in the previous control instance. To prevent infea-

sibility, the battery power constraint is implemented as a soft constraint.
Thanks to the strict convexity of the fuel consumption curve, H is also strictly

convex in PFCS. Consequently, the optimization problem in Eq. (13) has a unique solu-
tion, which ensures convergence and facilitates the application of computationally simple
optimization algorithms. For the proof of the convexity of H, the reader is referred to
Publication B.

Selected results

The cost-to-go-based predictive ECMS (P-ECMS) is qualitatively compared with the
so-called adaptive ECMS (A-ECMS) in simulation. In this state-of-the-art approach,
the equivalence factor is determined with a proportional-integral controller that tracks a
SoC reference trajectory [18]. To ensure a fair comparison, the SoC reference trajectory
of the A-ECMS is optimized based on the long-term prediction with the DP algorithm
using the same settings as for the P-ECMS. This means that both methods are based
on the same prediction and the same offline optimization but provide the predictive
information in different forms to the real-time control.

The comparison is based on measurements of a real-world driving mission with a
focus on highway driving (see Fig. 5). The long-term prediction gives a good estimate
of the measured velocity but inevitably shows traffic-induced deviations. In particular,
the highlighted roadworks section (shaded area) represents a considerable disturbance,
where the prediction overestimates the power demand. Similar to the theoretically
optimal solution, which is included in the SoC plot, the P-ECMS takes advantage of the
lower power demand to charge the battery efficiently during the roadworks section. The
energy stored in the battery is subsequently used to reduce the load on the FCS in the
trip remainder, which increases the overall efficiency. In contrast, the A-ECMS reduces
the FCS power during the roadworks section due to the decreasing SoC reference and
only maintains the battery SoC. Consequently, the FCS is operated with higher power
and thus less efficiently in the trip remainder. The last plot in Fig. 5 shows that the
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Figure 5: Comparison of the cost-to-go-based P-ECMS with the A-ECMS based on a
real-world driving mission. The shaded areas highlight unpredicted roadworks.
The figure is adapted from Publication A.

P-ECMS adapts the equivalence factor more smoothly and avoids fluctuations during
disturbances, which also indicates an improvement in the energy management quality.

This comparison demonstrates the superior adaptability of the cost-to-go-based
P-ECMS to unpredicted disturbances. The result is a 0.9 % reduction in fuel con-
sumption compared with the A-ECMS for the investigated driving mission, which is
remarkable considering that both methods are based on the ECMS and informed with
the same long-term prediction. Moreover, the performance of the A-ECMS strongly de-
pends on the tuning of the proportional-integral controller and the choice of the initial
equivalence factor, whereby the optimal configuration is trip-dependent. The P-ECMS
provides robust performance without the need for tuning.
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1.5.3 Minimization of stack start/stop actions
So far, the FCS was assumed to be active throughout the entire driving mission. This
assumption is not restrictive in driving missions with high and steady power demand,
e.g., on highways, as observed in the numerical study above. However, many driving
missions include sections with low or even negative power demand, e.g., when driving
in urban areas or downhill. Here, temporarily shutting down the FCS or individual
stacks benefits the efficiency as well as the durability of both powertrain components:
Regarding the FCS, the fuel consumption and the power consumption of the auxiliaries
are reduced, harmful low-power operation is avoided, and the FCS operation time is
lowered. Regarding the battery, overcharging is prevented and the strain on the battery
is reduced if the power demand is negative. However, each stack start/stop event is
associated with harmful operating conditions, which is why unnecessary starts/stops
must be avoided.

The key idea of the contribution presented in this section is to expand the concept
of the cost-to-go-based energy management to stack start/stop control. Analogously to
the equivalence factor map, the long-term prediction is exploited in the form of a 2-D
map describing the optimal FCS state depending on the covered distance and the SoC.
The real-time control performs start/stop actions based on this map but also considers
system measurements to adapt to the actual conditions. The main advantages of the
proposed stack start/stop control are:

• Coherent integration of start/stop control into the cost-to-go-based predictive en-
ergy management

• Robust minimization of the number of start/stop events

• Further reduction in fuel consumption

• Applicable to single and multi-stack FCSs

In the following, the computation of the optimal FCS state map and the real-time
start/stop control are described. Then, the method is demonstrated in a numerical
study, and the advantages over two benchmark strategies are analyzed. The in-depth
description of the approach can be found in Publication B.

Offline optimization including start/stop actions

The offline optimization is again based on the long-term power demand prediction. Here,
however, not only the individual stack power but also the FCS state, i.e., the number of
active stacks, is included in the set of decision variables. The objective is to minimize
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the fuel consumption for the planned trip considering a penalty p for start/stop actions:

min
nst,Pst

J =
L−1

l=1

nst,l ṁst(Pst,l)Δtl + p|nst,l − nst,l+1|

s.t. nst,l ∈ {0, 1, . . . , Nst},

P idle
st ≤ Pst,l ≤ P max

st ,

P min
b ≤ Pb,l ≤ P max

b ,

ξmin ≤ ξl ≤ ξmax, l = 1, . . . , L − 1,

ξ1 = ξinit, nst,1 = 0,

ξL ≥ ξfinal, nst,L = 0.

(15)

The optimization problem is solved with DP. Due to the start/stop penalty, the DP
algorithm must consider the FCS state as both a state and a decision variable. To
distinguish between them in the following, xst denotes the state, which is the current
FCS state, and ust denotes the decision variable, which is the FCS state in the next
instant, i.e., xst,l+1 = ust,l. The DP algorithm proceeds backward in time minimizing
the cost-to-go at each step l = (L − 1), . . . , 1:

J∗
l (ξl, xst,l) = min

ust,l,Pst,l


ust,l ṁst(Pst,l)Δtl + p|xst,l − ust,l| + J∗

l+1(ξl+1, ust,l)

. (16)

After a time-to-distance mapping, the algorithm yields two 3-D maps that express
the information of interest depending on the position, the SoC, and the current FCS
state: the optimal cost-to-go J∗(s, ξ, xst) and the optimal FCS state u∗

st(s, ξ, xst). The
former serves to derive the equivalence factor map according to Eq. (10). The latter
represents optimal start/stop actions according to the long-term prediction. To have
a more compact and memory-saving representation, u∗

st(s, ξ, xst) is condensed in a 2-D
map

N ∗(s, ξ) ={n ∈ N : ∃m ∈ N u∗
st(s, ξ, m) = n} (17)

with N = {0, 1, . . . , Nst}. The resulting map describes the set of optimal FCS states N ∗

as a function of the position and SoC only.
An example of the FCS state map for a single-stack FCS is included in the SoC

plot of Fig. 6. The map includes three possible cases: N ∗ = {0} indicates to stop the
FCS, N ∗ = {1} to start the FCS, and N ∗ = {0, 1} to remain in the current FCS state.
The latter results from the start/stop penalty. In this case, the potential reduction in
fuel consumption after a switching action would not compensate for the penalty, which
is why maintaining the current FCS state is optimal.

Map-based real-time start/stop control

In each control instant, a nearest-neighbor interpolation in N ∗(s, ξ) is performed to
determine the set of optimal FCS states for the current position and SoC according
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to the long-term prediction. If the current FCS state ncurr
st is included in this set, no

start/stop action is needed. Otherwise, the element of the set that is closest to the
current FCS state is considered as the optimal FCS state indication nind

st . To prevent
SoC constraint violations in the case of considerable deviations of the prediction, the
optimal FCS state indication is overruled if the specified SoC constraints are reached:
If ξ ≤ ξmin, then nind

st ≥ 1. If ξ ≥ ξmax, then nind
st = min N ∗(s, ξ), i.e., the lowest number

in the set of optimal FCS states is chosen.
However, the FCS state indication is not followed directly because the long-term

prediction may deviate from the actual power demand. Instead, an instantaneous condi-
tion taking into account the actual power demand is evaluated based on the equivalent
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fuel consumption rate, which is adapted for the consideration of the FCS state:

H(Pst, nst, λ, Pel) =nstṁst(Pst) + λf(Pel − nstPst). (18)

The indicated start/stop action is only realized if it implies a strict reduction in the
equivalent fuel consumption rate, i.e.,

H ind < Hcurr (19)

where H ind and Hcurr are the minimum equivalent fuel consumption rates for the corre-
sponding FCS states:

H ind = min
Pst∈P

H(Pst, nind
st , λ̄ind, Pel) and (20)

Hcurr = min
Pst∈P

H(Pst, ncurr
st , λ̄curr, Pel). (21)

Here, λ̄ind and λ̄curr denote the equivalence factor estimates corresponding to nind
st and

ncurr
st , respectively, which take into account the SoC constraint handling mechanism de-

fined in Eq. (12). The consideration of this instantaneous start/stop condition suppresses
inefficient start/stop actions in situations where the long-term prediction considerably
deviates. For example, shutting down the FCS is prevented during an overtaking ma-
neuver, and starting the FCS is suppressed while braking. The start/stop condition is
therefore not only important to preserve efficiency but also to ensure smooth operation
and safety. After determining the FCS state, the individual stack power is determined
based on the ECMS as defined in Eq. (13).

Selected results

The map-based start/stop control is demonstrated for a passenger vehicle with a single-
stack FCS in Fig. 6. The investigated real-world driving mission is characterized by
considerable variations in the power demand and several traffic-induced vehicle stand-
stills with varying standstill times. The standstills, which are not considered by the
long-term prediction, make FCS start/stop actions unavoidable to prevent overcharging
the battery.

Thanks to the optimal FCS state map, the start/stop control adapts the number
of active stacks according to the long-term prediction depending on both the position
along the trip and the SoC. For example, the FCS is not activated until the lower
SoC constraint is approached at the beginning of the trip because the power demand
is low and battery-only operation is efficient. After 30 km, however, an FCS start is
executed with an almost fully charged battery because high power demand is predicted
subsequently. Consequently, the predictive start/stop control not only minimizes the
number of start/stop actions but also ensures high fuel efficiency.

To quantify these benefits, the map-based start/stop strategy is benchmarked
against two alternative methods: (i) an instantaneous strategy that does not consider
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Table 1: Comparison of the map-based start/stop control with two benchmark methods.
Map-based Instantaneous Position-based

Number of starts/stops 6 40 2
Fuel consumption† (kg/100km) 0.876 0.884 0.985
Relative difference 0 % +0.9 % +12.5 %
Compliance with SoC constraints Yes No No
†Takes into account deviations in the final SoC

predictions [37] and prevents infeasibly frequent starts/stops with a 60 s hold time [38],
which is a state-of-the-art approach, (ii) a predictive strategy that performs starts/stops
at optimized positions without considering actual system measurements [42]. The lat-
ter is referred to as position-based strategy and informed with the long-term prediction.
The main results of the comparison are presented in Table 1. Compared with the instan-
taneous strategy, the proposed map-based strategy reduces the number of starts/stops
from 40 to 6 for the investigated driving mission, which is a considerable improvement.
Remarkably, the map-based strategy also achieves a 0.9 % reduction in fuel consumption
and ensures feasible operation. In contrast, the instantaneous strategy causes a viola-
tion of the specified SoC constraints due to the hold time. The position-based strategy
performs only two starts/stops. However, the low number of starts/stops comes at the
expense of a significant 12.5 % increase in fuel consumption compared with the map-
based strategy and a severe SoC constraint violation. The results confirm the superior
performance and robustness of the proposed map-based start/stop control, which en-
ables a reduction of FCS degradation while maintaining high fuel efficiency. For more
details on this comparison, the reader is referred to Publication B.

1.5.4 Combination of long-term and short-term predictions
Emerging technologies in the field of intelligent transportation systems enable commu-
nication between individual vehicles and the infrastructure. In this way, information of
the traffic environment is accessible, enabling accurate predictions that are updated in
real time. Even though such predictions have relatively short prediction horizons, typ-
ically in the range of tens of seconds, their high accuracy makes them highly valuable
for further improving the energy management performance.

The contribution presented in this section proposes how these real-time short-term
predictions can be integrated into the cost-to-go-based two-stage energy management
(see scheme in Fig. 1). The proposed EMS is an MPC that considers the short-term
power demand prediction within its prediction horizon and includes the cost-to-go rep-
resenting the long-term prediction as terminal cost at the end of the prediction horizon.
The main benefits of the cost-to-go-based MPC are summarized below:

• Mitigation of FCS degradation through reduced transient operation
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• Predictive consideration of powertrain constraints

• A linear MPC formulation ensuring convergence and low computational complexity

• Facilitation of predictive control at the FCS level
The remainder of this section first elaborates on how the short-term predictions

are integrated into the cost-to-go-based energy management in more detail. Then, the
powertrain and cost-to-go modeling for a linear MPC formulation is described, and the
relation to the cost-to-go-based ECMS is discussed. Finally, selected results are shown.
For further details on the cost-to-go-based MPC, the reader is referred to Publication C.

Real-time cost-to-go-based MPC

The EMS follows the cost-to-go-based two-stage approach. This means that an offline
optimization is conducted based on the long-term prediction before departure, which
yields the optimal cost-to-go map (see Section 1.5.2). The objective of the real-time MPC
is to minimize the fuel consumption for the trip remainder in each control instant. While
the optimal cost-to-go map already provides the minimum fuel consumption depending
on the position and the SoC, its accuracy is limited due to the expected deviations of
the long-term prediction. To improve the energy management performance, the MPC
additionally considers accurate short-term predictions. For this purpose, the objective
function of the MPC is split into two parts

Jk =
k+Np−1


j=k

ˆ̇mFCS(PFCS,j, Pel,j)Ts + Ĵ∗
k+Np(ξk+Np) (22)

where Ts denotes the constant MPC sampling time and Np determines the length of
the short-term prediction horizon, which is NpTs. The first term considers the fuel
consumption within the short-term prediction horizon. The formulation is based on a
fuel consumption model ˆ̇mFCS that suits a linear MPC formulation, which is outlined in
the following section. The second term describes the minimal fuel consumption Ĵ∗

k+Np for
the trip remainder as a function of the SoC ξk+Np at the end of the short-term prediction
horizon. This information is available from the optimal cost-to-go map, which implicitly
represents optimal paths for the trip remainder (see Fig. 7). In each control instant, the
MPC determines the optimal FCS power sequence P ∗

FCS,k of the single-stack FCS with

P ∗
FCS,k = arg min

P FCS,k

Jk

s.t. P idle
st ≤ PFCS,k+n ≤ P max

st ,

ΔP min
st ≤ ΔPFCS,k+n ≤ ΔP max

st ,

P min
b ≤ Pb,k+n ≤ P max

b ,

ξmin ≤ ξk+n ≤ ξmax,

ξmin
k+Np ≤ ξk+Np ≤ ξmax

k+Np

(23)
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Figure 7: MPC combining the short-term prediction with the optimal cost-to-go. The
lower plot illustrates the trade-off between the two terms of Jk, i.e., the fuel
consumption within the short-term prediction horizon (H) and the optimal
cost-to-go at its end (G), as a function of ξk+Np . The optimal cost-to-go
represent optimal paths for the trip remainder. The figure is adapted from
Publication C.

for all n = 0, . . . , (Np − 1), where ΔPFCS,k = PFCS,k − PFCS,k−1. The constraints on the
battery power, the SoC, and the terminal SoC are implemented as soft constraints to
avoid infeasibility. The terminal set constraint determined by [ξmin

k+Np , ξmax
k+Np ] represents

the feasible SoC range at the corresponding position according to the offline optimization.
Following the receding horizon principle, only the first step P ∗

FCS,k is actually applied to
the system. Then, the short-term prediction and the measurements are updated, and
the optimization is repeated.

To lower the computational complexity of the optimization problem and ensure
convergence, a linear MPC formulation is elaborated in the following. The linear MPC
formulation is characterized by a linearized model and a quadratic objective function and
turns the optimization problem into a quadratic programming (QP) problem, which can
be solved efficiently with QP solvers. First, the linearization of the powertrain model is
outlined before the cost-to-go modeling for the quadratic objective function is described.

Powertrain model for the linear MPC

To obtain the discrete-time state-space model for the linear MPC, the nonlinear battery
SoC model of Eq. (7) is first linearized at the operating point Pb = 0 W and then
discretized assuming a zero-order hold for the battery power. Considering Pb = Pel−PFCS
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gives the linearized discrete-time SoC model as a function of the decision variable (PFCS)
and the predicted disturbance (Pel):

ξk+1 = ξk + Ts

Q0VOC
(PFCS,k − Pel,k). (24)

The linearization of the battery model entails that ohmic battery losses are neglected.
Seeking minimum fuel consumption, the linear MPC would therefore put too much load
on the battery without further measures. To avoid this behavior, a physically motivated
penalty for battery losses is included in the objective function. The penalty is based on
a quadratic formulation that expresses a virtual fuel consumption rate ṁΩ for battery
losses

ṁΩ(PFCS, Pel) = Rint

V 2
OC η̄FCS Hi

(Pel − PFCS)2 (25)

where η̄FCS denotes the mean FCS efficiency and Hi the lower heating value of hydrogen.
To consider the FCS model in the linear MPC, the degree of the polynomial fuel

consumption model, i.e., ṁFCS(PFCS), must be limited to two. Then, it can be directly
considered in the quadratic objective function. With that, the overall fuel consumption
model that is used in the objective function of the linear MPC in Eq. (22) is

ˆ̇mFCS(PFCS, Pel) =ṁFCS(PFCS) + ṁΩ(PFCS, Pel) (26)

where the virtual fuel consumption representing the ohmic battery losses is included.

Local cost-to-go modeling

To consider the variation of the optimal cost-to-go depending on ξk+Np in the quadratic
objective function, the optimal cost-to-go is locally approximated with a polynomial
model. Analyzing the optimum of the objective function of the MPC as a function of
ξk+Np reveals that not the absolute value of the cost-to-go but its partial derivative with
respect to the SoC is relevant for the optimization (see lower plot in Fig. 7). Therefore,
the partial derivative of the cost-to-go, and not the cost-to-go itself, is modeled with a
local linear model around the current SoC ξk with

∂Ĵ∗
k+Np

∂ξ

����
ξk

= γ0 + γ1(ξk+Np − ξk) (27)

where ∂Ĵ∗
k+Np/∂ξ denotes the estimate of the partial derivative of the cost-to-go and γ0

and γ1 the model parameters. In this way, identifying irrelevant parameters is avoided.
Typical profiles of the cost-to-go and its partial derivative and a local linear model are
illustrated in Fig. 8. The partial derivative of the cost-to-go equals the equivalence factor
of the ECMS. Consequently, the necessary data for this identification is available through
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a position-based interpolation in the map λ(s, ξ), which is the output of the offline
optimization (see Section 1.5.2). Based on this model, the local quadratic approximation
of the cost-to-go that is used in the objective function can be expressed with

Ĵ∗
k+Np(ξk+Np) = (γ0 − 2γ1ξk) ξk+Np + γ1ξ

2
k+Np (28)

where constant terms, which are irrelevant to the optimization, are intentionally omitted.

Relation to the cost-to-go-based predictive ECMS

If the short-term prediction horizon approaches zero, the cost-to-go-based MPC corre-
sponds to the cost-to-go-based predictive ECMS presented in Section 1.5.2. This relation
can be shown with a single-step MPC

Jk =ṁFCS(PFCS,k)Ts + Ĵ∗
k+1(ξk+1) (29)

where the original powertrain model is considered, as in the predictive ECMS. The bat-
tery SoC model is discretized assuming a zero-order hold, which gives ξk+1 = ξk+Tsf(Pb).
If now the prediction horizon approaches zero Ts → 0, ξk+1 → ξk. Consequently, the
local model of the derivative of the cost-to-go defined in Eq. (27) can be approximated
with a constant λ = γ0, and the linear term can be omitted. Plugging Eq. (28) with
γ1 = 0 and the discretized battery model into Eq. (29), the objective function of the
MPC can be rewritten as:

Jk =ṁFCS(PFCS,k)Ts + λξk + λTsf(Pel,k − PFCS,k). (30)
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Figure 9: Comparison of (a) the equivalent number of FCS load cycles and (b) the fuel
consumption (both normalized) as a function of the short-term prediction hori-
zon length. The figure is adapted from Publication C.

Because the second term and Ts are constants, the arguments of min Jk and min H,
where H is the equivalent fuel consumption rate of the predictive ECMS according to
Eq. (11), are identical.

Selected results

The cost-to-go-based energy management and its advantages were already analyzed in
the results of the cost-to-go-based ECMS in Section 1.5.2. The focus here is the analysis
of additional benefits from the inclusion of short-term predictions, which are assumed to
coincide with the actual power demand. For this purpose, the effect of the length of the
short-term prediction on two performance indices is analyzed based on the simulation
results of a real driving mission. The first performance index is the equivalent number
of FCS load cycles Neq, which quantifies the dynamic load on the FCS. Dynamic load
causes harsh operating conditions that affect the fuel cell lifetime [33]. Therefore, Neq
can be interpreted as a degradation measure. The second performance index is the fuel
consumption for the driving mission. The results are shown in Fig. 9.

The equivalent number of FCS load cycles of the cost-to-go-based MPC signif-
icantly decreases with a growing short-term prediction horizon. For example, a 30 s
short-term prediction horizon reduces Neq by 6 % compared with the performance with
a 1 s short-term prediction. The fuel consumption also decreases with longer short-term
predictions but only to an insignificant extent (< 0.1 %). The results indicate that the
main benefit of the integration of short-term predictions into the cost-to-go-based energy
management is a reduction of the dynamic load on the FCS, which favors its durability.

Additionally, the cost-to-go-based MPC is benchmarked against an MPC that
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Figure 10: Experimental validation of the predictive SoC reference tracking with a fuel
cell demonstrator vehicle of AVL List GmbH. The figure is adapted from
Publication D.

tracks an optimized SoC reference trajectory, which is a state-of-the-art approach for
combining short-term and long-term predictions [26]. The cost-to-go-based MPC per-
forms considerably better regarding the fuel consumption and the equivalent number of
load cycles, particularly with short prediction horizons where the assumed high accu-
racy is realistic. Most notably, the SoC reference tracking MPC stresses the FCS with
significantly more dynamic load, which drastically increases if the short-term prediction
horizon approaches zero. With a 1 s prediction horizon, the SoC reference tracking MPC
causes an equivalent number of load cycles that is 12 times higher than the number of the
cost-to-go MPC, and the fuel consumption is increased by more than 2 %. It can there-
fore be concluded that the cost-to-go-based energy management also brings significant
advantages for the exploitation of short-term predictions.

1.5.5 Experimental validation with a real vehicle
So far, the investigated two-stage EMSs that are informed with a route-derived long-
term prediction have shown remarkable performances in simulation. Even though the
simulation studies in this work put a strong emphasis on real-world driving and in-
clude the most relevant disturbances with respect to the long-term prediction, such as
traffic-induced variations in speed and vehicle standstills, simulations always deviate
from reality because of modeling errors, unconsidered system behavior, and neglected
environmental influences.

The objective of the contribution presented in this section is the experimental
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validation of the effectiveness of route-derived long-term predictions for improving fuel
efficiency. For this purpose, a two-stage EMS that considers long-term predictions of
the power demand is benchmarked against a nonpredictive strategy in real driving tests
with a fuel cell passenger vehicle (see Fig. 10). The power demand prediction is derived
from the speed limits and the altitude profile along the route using the model of the
longitudinal vehicle dynamics, as explained in Section 1.5.1. Both pieces of information
are readily accessible if the route is planned before departure. The characteristics of the
experimental validation are summarized below:

• Investigated EMS: The investigated two-stage EMS is a predictive SoC refer-
ence tracking strategy. The SoC reference trajectory is optimized based on
the long-term prediction before departure and then tracked with a basic control
law while driving (see also Fig. 1). This simpler realization of two-stage energy
management is chosen here to assess the improvement by considering long-term
predictions in more general. Further improvements are expected with the advanced
cost-to-go-based methods presented in the previous sections.

• Nonpredictive benchmark: The benchmark for validating performance improve-
ments is a nonpredictive charge sustaining strategy. To ensure a fair com-
parison, the charge sustaining strategy is based on the tracking controller of the
predictive SoC reference tracking but uses a constant SoC reference instead of an
optimized one.

• Performance criterion: The performance is quantified in the form of an equiva-
lent fuel consumption. It considers the measured hydrogen consumption and
additionally corrects variations in the traction energy and the energy contribution
of the battery. The correction of these variations is crucial for the comparison of
the individual real driving tests.

• Real driving tests: The first part of the validation consists of real driving tests
that were repeatedly conducted for both EMSs on predefined routes on public
roads. The real driving tests were strongly influenced by unpredicted disturbances,
such as dense traffic, traffic control, and varying environmental conditions, and
represent the actual application. The tests confirmed the robustness of the predic-
tive SoC reference tracking and gave first impressions of the expected performance
improvement.

• Dynamometer tests: In the second part of the validation, tests were performed
on a chassis dynamometer testbed. Here, driving cycles can be reproduced, which
allows for a direct performance comparison of the two EMSs and results with high
significance. The dynamometer tests are based on real driving measurements and
thus preserve the focus on the real-world application.
In the following, the main results of the dynamometer tests are presented. For the

other results of the validation, the reader is referred to Publication D.
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Figure 11: Results of the experimental validation on the dynamometer testbed. The
figure is adapted from Publication D.

Selected dynamometer test results

The investigated real driving mission that was reproduced on the dynamometer testbed is
shown in the three upper plots of Fig. 11. The route-derived long-term prediction gives
good estimates of the actual velocity and the traction power demand but inevitably
deviates due to real-world influences, particularly in the urban sections at the beginning
and the end of the trip. The driving mission includes substantial changes in altitude,
which have a strong impact on the traction power demand profile.

The three lower plots of Fig. 11 compare the predictive SoC reference tracking with
the nonpredictive charge sustaining qualitatively. It is worth mentioning that both EMSs
are implemented with a stopmode that allows the FCS to drop the power to 0 W while
the FCS-related auxiliaries including the compressor remain active. Therefore, frequent
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switching between active operation and the stopmode is possible, and the FCS is never
completely shut down. Tracking a constant SoC reference of 0.6, the charge sustaining
strategy shows a clear power following behavior, i.e., the FCS power strongly varies with
the power demand. Under low power demand, the FCS enters the stopmode frequently.
In contrast, the predictive SoC reference tracking strategy actively uses the battery as an
energy buffer by following the optimized reference. In this way, inefficient FCS operation
at high power is avoided, and FCS operation at low power, where the FCS efficiency
peaks, is extended. The predictive SoC reference tracking also reduces the time spent
in the stopmode. Consequently, the mean FCS efficiency is considerably increased from
50.1 % for the charge sustaining to 54.2 % for the predictive SoC reference tracking. The
result is a significant reduction of 6.4 % in the equivalent fuel consumption compared
with the charge sustaining strategy. This remarkable performance improvement validates
the effectiveness of route-derived long-term predictions in combination with a two-stage
EMS.

1.6 Scientific contributions
This dissertation presents several scientific contributions in the field of predictive energy
management of fuel cell vehicles. The contributions successfully provide solutions to the
research problems defined in Section 1.3, as summarized below.

RP.1 Robust exploitation of long-term predictions

• A two-stage energy management concept that robustly exploits long-term predic-
tions with limited accuracy is proposed.

• The concept is based on the optimal cost-to-go, which provides predictive control
information within the entire distance-SoC space.

• The proposed cost-to-go-based ECMS continuously adapts to the actual conditions,
which ensures robustness against unpredicted disturbances and enables close-to-
optimal fuel efficiency.

• Simplified, control-oriented modeling ensures low computational requirements and
real-time capability.

• The concept is applicable to different vehicle categories, such as passenger vehicles,
heavy-duty trucks, buses, and railway vehicles.

RP.2 Minimization of the number of fuel cell stack starts/stops

• Predictive fuel cell stack start/stop control is integrated into the cost-to-go-based
energy management concept.
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• The start/stop strategy is based on a map that indicates the optimal FCS states
depending on the position and the SoC. The map is optimized based on the long-
term prediction.

• A start/stop condition considering actual system measurements prevents inefficient
start/stop actions and ensures smooth operation.

• The method robustly minimizes the number of harmful start/stop actions while
preserving high fuel efficiency.

• A generic formulation makes the method applicable to single-stack and multi-stack
FCSs.

RP.3 Consideration of short-term predictions

• A real-time EMS based on MPC is proposed to include short-term predictions that
are updated in real time in the cost-to-go-based energy management concept.

• The additional consideration of short-term predictions allows for a reduction of
dynamic load on the FCS, which mitigates the associated degradation.

• A linear MPC formulation ensures convergence and real-time capability.

• The equivalence between the cost-to-go-based ECMS and the cost-to-go-based
MPC with a short-term prediction horizon approaching zero is shown.

RP.4 Experimental validation

• The effectiveness of route-derived long-term predictions in combination with two-
stage energy management was experimentally validated with a real fuel cell pas-
senger vehicle.

• The application-oriented validation was conducted based on real driving missions
on public roads, where random influences such as traffic cause considerable distur-
bances with respect to the long-term prediction.

• A selected real driving mission was reproduced on a dynamometer testbed to
directly compare the investigated predictive EMS with a nonpredictive benchmark.

• The dynamometer test revealed a considerable 6.4 % reduction in fuel consumption.

To conclude, this dissertation proposed an energy management concept for fuel
cell vehicles that robustly exploits long-term predictions available from static route in-
formation. Continuously adapting to the actual conditions, the EMSs based on this
concept achieve close-to-optimal fuel efficiency. Additionally, the number of fuel cell
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stack start/stop events can be minimized, or transient operation of the FCS can be
reduced by including real-time short-term predictions. Both are measures to mitigate
FCS degradation. The proposed energy management concept therefore contributes to
increasing the efficiency, durability, and competitiveness of fuel cell vehicles. Thanks to
the model-based approach, the concept is applicable to different vehicle categories, such
as passenger vehicles, heavy-duty trucks, and rail vehicles. Moreover, real-world experi-
ments with a fuel cell vehicle validated the significant benefit of exploiting route-derived
long-term predictions for increasing fuel efficiency.
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Cost-To-Go-Based Predictive Equivalent Consumption Minimization
Strategy for Fuel Cell Vehicles Considering Route Information

Sandro Kofler1, Stefan Jakubek1, and Christoph Hametner2

Abstract— The equivalent consumption minimization strat-
egy (ECMS) is a well-established energy management strategy
for hybrid vehicles, which is easily real-time implementable and
can provide optimal energy management. However, optimality
requires knowledge of the optimal equivalence factor, which
highly depends on the driving cycle and is therefore unknown
in advance. This work proposes a predictive ECMS for fuel
cell hybrid vehicles, which derives a map describing the
optimal equivalence factor for any vehicle position and battery
state of charge from the optimal cost-to-go provided from an
offline optimization. The offline optimization is conducted with
dynamic programming before departure and considers a long-
term driving cycle prediction derived from static route infor-
mation such as speed limits and altitude. Based on the optimal
equivalence factor map, the ECMS implicitly considers the long-
term prediction in each instant allowing for continuous adaption
to the current situation while driving. The performance of the
predictive ECMS is demonstrated in a numerical study based
on real-world driving cycles highlighting its robustness against
unpredicted changes in traffic conditions.

Index Terms— Dynamic programming, equivalent consump-
tion minimization strategy, fuel cell vehicles, optimal energy
management, predictive energy management.

I. INTRODUCTION

Fuel cell electric vehicles are commonly equipped with
a battery as secondary power source besides the fuel cell
system (FCS). The battery can be used for recuperating
energy, avoiding inefficient operation ranges of the FCS,
and covering dynamic loads that are harmful for the FCS’s
lifetime. Thus, the hybridization allows for improving the
fuel economy. However, the actual improvement in the
fuel efficiency strongly depends on the energy management
strategy (EMS), which determines the power split between
the FCS and the battery. Besides fuel efficiency, battery state
of charge (SoC) control is another important objective for
an EMS to prevent overcharging or completely draining the
battery. The optimal energy management depends on the
power demand profile of the driving mission, which is a
priori unknown, and, therefore, serves only as a theoretical
benchmark.

A variety of EMSs aiming for approaching the optimal
power split in a real-time implementation have been devel-
oped, including rule-based, optimization-based, and learning-
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based methods [1]. A well-established optimization-based
method is the equivalent consumption minimization strategy
(ECMS), which associates the battery usage with a virtual
fuel consumption by means of an equivalence factor. The
ECMS is particularly interesting because it is easily real-
time implementable and, under certain assumptions, it can
be analytically proven to be optimal [2]. However, optimality
requires to use the optimal equivalence factor, which again
depends on the driving mission and is unknown in advance.

Various works have been focusing on developing algo-
rithms to obtain a performant equivalence factor [3]. A
fundamental approach adapts the equivalence factor using
a proportional-integral (PI) controller in combination with a
constant SoC reference [4]. The SoC reference can also be
optimized if a prediction of the driving mission, e.g., from
route data, is available, which is known as a high-performing
method [5], [6]. However, the performance strongly depends
on the tuning of the PI controller [7]. An effective alterna-
tive to optimized SoC references for considering predictive
information of the upcoming trip is the optimal cost-to-
go, which describes the minimum amount of fuel to reach
the destination depending on the vehicle position and the
SoC. The optimal cost-to-go can be computed with dynamic
programming (DP) and allows for deriving the optimal
equivalence factor according to the prediction for any SoC
and position [8], [9]. However, existing literature on the latter
approach focuses mainly on hybrid vehicles with internal
combustion engines. Other DP-based approaches derive the
equivalence factor in alternative ways [10], [11].

The main contribution of this work is a cost-to-go-based
predictive ECMS (P-ECMS) for fuel cell vehicles consider-
ing a long-term prediction derived from static route data, i.e.,
speed limits and elevation. Although the accuracy of such a
prediction is limited, it is effective because it is available for
the entire driving mission in advance, allowing for an offline
optimization before departure. The optimization is conducted
with DP based on a simplified powertrain model and yields
the optimal cost-to-go. The execution of the DP algorithm is
fast because the model includes only one state and a rough
discretization is sufficient due to the limited accuracy of the
prediction. The optimal cost-to-go implicitly provides the
optimal equivalence factor according to the prediction for any
situation, even if the actual SoC completely deviates from the
originally optimal path due to unpredicted changes in traffic
conditions. Consequently, a single offline optimization before
departure is sufficient, and no recurrent optimization of the
equivalence factor is required while driving. The approach
takes into account SoC constraints in the offline optimization
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and the real-time ECMS.
The remainder of this article is structured as follows. First,

the simplified, control-oriented vehicle model is given in
Section II before the energy management problem is stated
and treated analytically in Section III to motivate the pre-
dictive EMS. Then, the proposed cost-to-go-based P-ECMS
is described in Section IV. In Section V, an adaptive ECMS
(A-ECMS) that adjusts the equivalence factor based on an
optimized SoC reference is introduced as a high-performing
benchmark for the subsequent numerical study. Finally, the
numerical study demonstrates the performance of the P-
ECMS using data of real-world driving cycles including
considerable changes in traffic conditions in Section VI. The
study underlines the robustness of the P-ECMS and shows
its ability to satisfy SoC constraints.

II. SYSTEM MODELING

Optimizing the energy management for a given driving
mission requires a power demand prediction for the entire
mission and a powertrain model. A simple power demand
prediction can be derived from static route information,
such as the elevation profile and speed limits, if the driving
mission is planned in advance. This section first introduces
a model of the longitudinal vehicle dynamics used to derive
the power demand prediction from route information and,
then, describes the hybrid powertrain model for optimizing
the energy management.

A. Vehicle Dynamics for Power Demand Prediction

The dynamics of the vehicle velocity v considers the
traction force of the electric motor, aerodynamic drag, rolling
friction, and gravitational forces and can be written as

m
dv

dt
= ηsgn Pm

m
Pm

v
− ρAfcd

2
v2 − crmg cos θ −mg sin θ

(1)

where m denotes the vehicle mass, t the time, Pm the power
of the electric motor, ρ the air density, Af the frontal area
of the vehicle, cd the aerodynamic drag coefficient, cr the
rolling friction coefficient, g the acceleration due to gravity,
and θ the road inclination angle [12]. The traction term takes
into account the motor efficiency ηm. The overall electric
power demand Pel considers the motor power and the power
demand of the auxiliaries Paux:

Pel = Pm + Paux. (2)

With (1), the required motor power along the driving
mission can be computed if the road inclination and the
vehicle velocity are known. The elevation profile and, thus,
the road inclination are determined by the topography of the
planned route and directly available from terrain maps. In
contrast, estimating the vehicle velocity is more challenging
due to numerous stochastic influences, such as driver behav-
ior, traffic, or weather conditions. A simple estimate for the
velocity can be derived from speed limits, which are available
along the planned route. Even though the accuracy of such a
prediction is limited, it is effective for the given task because

PFCS (kW)

ṁ
H

2
(g

/s
)

Fig. 1. The FCS model describes the fuel consumption rate as a function
of the FCS power.

it is a priori available for the entire driving mission. Having
the estimated motor power, a prediction of the overall electric
power demand can be computed by adding an estimate of
the auxiliary power demand.

B. Hybrid Powertrain

The powertrain consists of two power sources: the FCS
and the battery. The sum of the FCS power PFCS and the
battery power Pb satisfies the overall electric power demand:

Pel = PFCS + Pb. (3)

The powertrain therefore has one degree of freedom, i.e.,
the power split between the FCS and the battery, which is
determined by the EMS. Whereas the FCS can only provide
a positive power output, the battery can also store energy
coming from recuperative braking or the FCS.

The two powertrain components are modeled in a simpli-
fied, control-oriented way, building the basis for the ECMS
formulation and a computationally efficient offline optimiza-
tion by DP, the computational complexity of which grows
exponentially with the number of states [13]. The goal is
to optimize the fuel economy. Therefore, the fundamental
quantity regarding the FCS is the fuel consumption rate
ṁH2

, which is modeled as a function of the FCS power
(see Fig. 1). This fuel consumption curve can either be fitted
to stationary measurement data or derived analytically [12].
The FCS model implicitly considers the power demand of
FCS-related auxiliaries such as the compressor.

The battery is considered as an equivalent circuit model
taking into account ohmic losses [12]. With that, the dynam-
ics of the battery SoC ξ is expressed as a nonlinear function
of the battery power

ξ̇ = f(Pb) = −VOC −�
V 2

OC − 4PbRint

2Q0Rint
(4)

depending on the battery parameters VOC, Rint, and Q0

denoting the open-circuit voltage, internal ohmic resistance,
and nominal capacity, respectively.

Based on that, the overall powertrain model includes only
one state, which is the battery SoC, and one control input
defining the power split, which is chosen to be the FCS
power. The battery power is determined by the residual of
the electric load according to (3) subject to the corresponding
constraints.
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III. ENERGY MANAGEMENT PROBLEM

The objective is to determine the optimal power split
for the driving mission such that the fuel consumption is
minimized:

min
PFCS

J =

� t1

t0

ṁH2
(PFCS(t))dt

s.t. PFCS(t) ∈ U
Pb(t) ∈ B
ξ(t) ∈ X
ξ(t0) = ξ0

ξ(t1) ∈ X1.

(5)

Here, the sets U , B, X , and X1 describe the feasible ranges
of the FCS power, the battery power, the battery SoC, and the
battery SoC at the end of the driving mission, respectively.
The initial SoC is denoted by ξ0.

This optimal control problem can be treated analytically
with Pontryagin’s minimum principle (PMP) [14]. Based on
the Hamiltonian

H(PFCS, λ, t) =ṁH2
(PFCS) + λf(Pel(t)− PFCS) (6)

a set of necessary conditions for the optimality of a solution
can be formulated. If the control input P ∗

FCS is optimal, then
a costate λ∗ exists such that

ξ̇∗(t) =
∂H(P ∗

FCS, λ
∗, t)

∂λ
(7a)

λ̇∗(t) = −∂H(P ∗
FCS, λ

∗, t)
∂ξ

(7b)

ξ∗(t0) = ξ0 (7c)
ξ∗(t1) ∈ X1 (7d)

and the Hamiltonian is minimized with respect to the control
input within its feasible range at each point in time:

H(P ∗
FCS, λ

∗, t) ≤ H(PFCS, λ
∗, t). (7d)

Note that the right-hand side of (7b) equals zero because the
specified battery SoC dynamics do not depend on the SoC
itself and, therefore, λ∗ is constant along the optimal path.

Based on these conditions, candidates for the optimal
power split can be determined in each instant by solving
a simple static minimization problem. This motivates the
formulation of the ECMS, a real-time EMS determining the
power split by minimizing an equivalent fuel consumption
rate linking battery usage to the actual fuel consumption of
the FCS via an equivalence factor. Indeed, this equivalent
fuel consumption rate can be related to PMP’s Hamiltonian
with the equivalence factor corresponding to λ [2].

However, the optimal equivalence factor minimizing the
overall fuel consumption and satisfying the terminal SoC
constraint is a priori unknown and strongly depends on the
initial SoC and the driving cycle. Here, the power demand
prediction comes into play, allowing to determine prediction-
based estimates of the equivalence factor for the planned
driving mission. Even though this optimization could be
conducted with PMP-based approaches, e.g., the variation of

extremals [15], it is avoided here for two reasons: (i) The
costate loses its optimality as soon as the SoC deviates
from the originally optimal path. This deviation is inevitable
since an ideal power demand prediction is impossible, and a
recurrent optimization of the equivalence factor would be
necessary throughout the driving mission. (ii) The PMP-
based solution of the problem does not allow for considering
state constraints directly. Instead, this work proposes to deter-
mine prediction-based estimates of the optimal equivalence
factor based on DP, which is elaborated in the following.

IV. PREDICTIVE ENERGY MANAGEMENT

The proposed predictive EMS consists of two stages.
Before departure, the energy management for the planned
driving mission is optimized based on the long-term power
demand prediction, which is derived from static route in-
formation considering the vehicle dynamics (see Section II-
A). This offline optimization is conducted with DP, which
allows to consider constraints on states and inputs, and yields
the optimal cost-to-go, i.e., the amount of fuel required to
reach the intended destination along the optimal path, for any
position and SoC. Therefore, the optimal cost-to-go provides
optimal feedforward information for any situation.

While driving, the real-time energy management is based
on an ECMS, whereby the equivalence factor is derived
from the optimal cost-to-go from the DP. Consequently, the
equivalence factor adapts independently of what happened
in the past to the current position along the route and the
current SoC and takes the optimal value according to the
long-term prediction for the trip remainder.

The major benefit of this cost-to-go-based P-ECMS is that
a reoptimization of the equivalence factor during the driving
mission is not required. Even if the long-term prediction has
deviated completely from the actual power demand in the
past, the optimal cost-to-go provides the optimal equivalence
factor according to the prediction for the remainder of the
driving mission. In the following, the prediction-based offline
optimization with DP and the cost-to-go-based real-time P-
ECMS are described.

A. Offline Optimization With Dynamic Programming

To solve the optimal control problem (5) with DP, the
power demand prediction is segmented with a relatively
rough step size to reduce the computational complexity.
This segmentation does not necessarily affect the overall
performance because of the limited accuracy of the long-
term prediction. Here, a distance-based segmentation is cho-
sen, which neglects vehicle standstills and directly yields a
distance-based cost-to-go [16]. In contrast to its time-based
counterpart, the distance-based formulation is beneficial for
the real-time energy management because it is not affected
by a deviating velocity prediction. The segmentation can
be equidistant or adaptive depending on the power demand
signal, which can further reduce the computational complex-
ity [13].
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Moreover, the battery model (4) is discretized assuming a
zero-order hold for the battery power

ξl+1 = ξl − VOC −�
V 2

OC − 4(Pel,l − PFCS,l)Rint

2Q0Rint
Δtl (8)

where Pel,l and PFCS,l denote the mean power demand
and the mean FCS power of the l-th segment, respectively.
The time to cover the l-th segment Δtl varies depending
on the velocity due to the distance-based segmentation.
Furthermore, the state (ξ) and the control input (PFCS) are
quantized within their feasible ranges yielding the finite sets
X q and Uq.

The DP algorithm operates backwards starting at the final
position of the driving mission and proceeding segment by
segment until the initial position is reached. At the l-th
position sl, the minimum amount of fuel required to reach
the destination, i.e., the optimal cost-to-go, is determined for
all states in X q by minimizing the sum of the transition
cost and the cost-to-go at the (l+1)-th position, which was
computed previously:

Jo
l (ξl) =min

PFCS,l

�
ṁH2

(PFCS,l)Δtl + Jo
l+1(ξl+1)

�
s.t. PFCS,l ∈ Uq

Pb,l ∈ B
ξl+1 ∈ Xl+1

∀ξl ∈ X q.

(9)

The set Xl+1 ⊆ X denotes the feasible SoC range at the (l+
1)-th position, and (N − 1) is the number of segments. The
algorithm yields the optimal cost-to-go Jo(s, ξ) for all nodes
in the discrete distance-SoC grid, i.e., the cost-to-go results
in the form of a 2-D map depending on the position and the
SoC. Note that the superscript o denotes optimality regarding
the power demand prediction, whereas the superscript ∗ used
above denotes optimality regarding the actual power demand.

Comparing the necessary conditions of PMP on the one
side and the Hamilton-Jacobi-Bellman equation, interpretable
as the continuous-time counterpart of DP, on the other side
reveals that the optimal costate corresponds to the partial
derivative of the optimal cost-to-go with respect to the
state [15]. Consequently, estimates of the optimal equiva-
lence factor can be determined by numerically differentiating
the cost-to-go:

λ̄o(s, ξ) =
∂Jo(s, ξ)

∂ξ
. (10)

Based on linear interpolation, the resulting 2-D map provides
estimates of the optimal equivalence factor for any feasible
SoC and position along the driving mission, allowing for
continuously adapting the energy management to the actual
situation.

B. Real-Time Predictive ECMS

Provided with the estimate of the optimal equivalence fac-
tor for the current position and SoC, the ECMS determines

the optimal FCS power depending on the current power
demand with

P o
FCS = argmin

PFCS
H(PFCS, λ

o, t) (11)

subject to the specified FCS and battery power constraints.
Since the ECMS does not consider SoC constraints directly,
the equivalence factor is adapted in the neighborhood of the
constraints favoring charging the battery close to ξmin and
discharging close to ξmax [17]. Here, a quadratic adaption is
formulated involving two parameters:

λo =

������
λ̄o + λad



ξ−ξmax+ξth

ξth

�2

, ξ > ξmax − ξth

λ̄o − λad



−ξ+ξmin+ξth

ξth

�2

, ξ < ξmin + ξth

λ̄o, otherwise.

(12)

The adaption gets active within a certain threshold ξth to
the constraints and increases quadratically with decreasing
gap to the constraints. At the constraints, the adaption takes
±λad. In this work, ξth = 0.05 and λad = 0.3 are chosen.

V. ADAPTIVE ECMS

In the following numerical study, the proposed P-ECMS is
compared to an A-ECMS that adjusts the equivalence factor
based on the deviation from a distance-based SoC reference
trajectory ξref with a PI controller [4]:

λ̄a = λ0 + kP(ξ
ref − ξ) + kI

� t

0

(ξref − ξ)dτ. (13)

Here, λ0 denotes the initial equivalence factor, and kP and
kI are the PI controller gains. For a fair comparison with
the P-EMCS, the SoC reference trajectory is optimized with
the DP algorithm (9). For this purpose, the optimal control
inputs P o

FCS are stored during the backward procedure for all
nodes in the distance-SoC grid. The optimal trajectory is then
computed in forward direction starting at ξ0 and interpolating
in the optimal control inputs. With that, the A-ECMS is based
on exactly the same prediction and offline optimization as the
P-ECMS.

The A-ECMS combined with an optimized SoC reference
is a powerful method, but its performance strongly depends
on the tuning of the PI controller and the choice of λ0 [7].
For the study, the PI controller was tuned based on several
real-world driving cycles resulting in kP = −0.7 kg and kI =
−6 ·10−5 kg s−1. The value of kP increases in the last 5% of
the driving cycle to ensure a comparable SoC at the end. The
optimal choice of λ0 depends on the driving mission and is
unknown in advance. As for the P-ECMS, the equivalence
factor is adjusted according to (12) in the neighborhood of
the SoC constraints giving λa, and the real-time power split
is determined with (11).

VI. NUMERICAL STUDY

The proposed P-ECMS is analyzed and compared to the
A-ECMS, which represents a high-performing benchmark, in
simulation. The numerical study is based on two independent
real-world driving cycles including substantial changes in
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Fig. 2. Driving cycle A: Upper plots: Actual data and predictions of the velocity and the power demand. Lower plots: Trajectories of the SoC, the
FCS power, and the equivalence factor resulting from the P-ECMS, the A-ECMS (λ0 = −0.41) and the optimal power split. The shaded areas mark a
roadworks section.
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FCS power, and the equivalence factor resulting from the P-ECMS, the A-ECMS (λ0 = −0.29) and the optimal power split. The shaded areas mark a
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prediction for driving cycle A: optimal cost-to-go (first plot), optimal
equivalence factor (second plot), and trajectory of the optimal equivalence
factor along the optimal path (idealized, third plot).

altitude, which are called “A” and “B” in the following.
The actual velocity signals were measured during test drives
and show considerable deviations with respect to the long-
term prediction based on speed limits due to the influences
of traffic and temporary roadworks. In this study, the legal
speed limits and the elevation along the route, on which the
offline optimization is based, were extracted from map data
with AVL Route Studio, which is a test cycle preparation
tool. The velocity prediction takes into account vehicle
dynamics at points where the speed limits change. With the
velocity prediction and the altitude data, the power demand
was predicted based on the longitudinal vehicle model. The
velocity, altitude, and power demand profiles of the driving
cycles A and B are presented in the upper parts of Figs. 2
and 3, respectively.

The study considers a passenger vehicle with a mass of
1950 kg, which is equipped with a FCS with a maximum
power of 50 kW and a battery with a nominal capacity
of 4.95 kWh. The polynomial fuel consumption model of
the FCS was fitted to measurement data and is shown in
Fig. 1. The battery was also modeled based on measurement
data resulting in the following parameters: VOC = 175V,
Rint = 0.075Ω, and Q0 = 28.28Ah. The efficiency of the
motor is approximated with ηm = 0.87. The control-relevant
constraints are specified with 5 kW ≤ PFCS ≤ 50 kW,
−20 kW ≤ Pb ≤ 30 kW, 0.3 ≤ ξ ≤ 0.8, and ξ(t1) ≥ 0.6.
The initial SoC is 0.6.

A. Offline Optimization

For the offline optimization based on the route-based
power demand prediction, the feasible ranges of the SoC and
the FCS power are quantized with 150 and 60 grid points,
respectively, and an equidistant distance grid with a step
size of 1 km is chosen. The DP algorithm yields optimized

information for both compared methods, i.e., the optimal
cost-to-go depending on the position and the SoC for the P-
ECMS and the optimal path minimizing the amount of fuel
for the A-ECMS. The resulting optimal cost-to-go map and
the optimal SoC trajectory of driving cycle A are illustrated
in the first plot of Fig. 4.

Intuitively, the cost-to-go decreases as the position along
the driving mission progresses and equals zero at the desti-
nation. The relationship between the cost-to-go and the SoC
is also negative; increasing the SoC means that more energy
is stored in the battery and, thus, less fuel is required to
reach the destination. White areas in the cost-to-go plot mark
infeasibility with respect to the predicted power demand.

The map defining the optimal equivalence factor for the P-
ECMS is derived from the optimal cost-to-go with (10) and
is shown in second plot of Fig. 4. Due to the aforementioned
inverse relationship between the cost-to-go and the SoC,
the equivalence factor is always negative. An increase in
the SoC entails a decrease in the absolute value of the
optimal equivalence factor, which can be interpreted as a
reduction in the “cost” for battery usage. Since the optimal
equivalence factor does not change over time as long as the
state constraints are not relevant (see Section III), the contour
lines of the equivalence factor map describe optimal paths for
any point within the feasible distance-SoC space. At points
where state constraints become active, in particular, shortly
before kilometer 100, a subset of the optimal paths unite
making it evident that the optimal equivalence factor changes
at these points. The third plot of Fig. 4 illustrates these
changes along the overall optimal path for the prediction.

B. Qualitative Evaluation

The trajectories of the SoC, the FCS power, and the
equivalence factor resulting from the P-ECMS and the A-
ECMS are illustrated in the lower parts of Figs. 2 and 3. Also,
the optimal solution regarding the actual power demand is
shown as a benchmark. In the following, the general behavior
of the ECMSs is compared based on driving cycle A. Then,
the SoC constraint satisfaction is studied based on driving
cycle B.

As shown in Fig. 2, the A-ECMS adapts the equivalence
factor depending on the deviation from the optimized SoC
reference. The FCS power remains relatively close to the
optimum as long as the power demand prediction is ac-
curate. However, within the highlighted roadworks section,
the prediction overestimates the power demand significantly,
affecting the quality of the SoC reference. Consequently, the
equivalence factor increases rapidly due to the SoC feedback
and the power split deviates from the optimum.

In contrast to the A-ECMS, the P-ECMS is provided with
optimized information, i.e., the optimized equivalence factor,
within the entire feasible SoC range. Therefore, the strategy
has more freedom to move away from the optimal path
according to the prediction in case of unpredicted events,
which can be seen in the roadworks section. Similar to
the optimal power split, the P-ECMS takes advantage of
the lower power demand to charge the battery. The FCS
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TABLE I
COMPARISON OF FUEL CONSUMPTION

Driving cycle A
EMS λ0 (kg) mH2 (kg) Rel. difference

P-ECMS - 1.465 0%

Optimal - 1.454 −0.8%

A-ECMS −0.25 1.484 1.3%

A-ECMS −0.29 1.476 0.8%

A-ECMS −0.33 1.474 0.6%

A-ECMS −0.37 1.474 0.6%

A-ECMS −0.41 1.478 0.9%

A-ECMS −0.45 1.483 1.2%

Driving cycle B
EMS λ0 (kg) mH2 (kg) Rel. difference

P-ECMS - 2.273 0%

Optimal - 2.248 −1.1%

A-ECMS −0.25 2.288 0.7%

A-ECMS −0.29 2.278 0.2%

A-ECMS −0.33 2.276 0.1%

A-ECMS −0.37 2.280 0.3%

A-ECMS −0.41 2.286 0.6%

A-ECMS −0.45 2.297 1.1%

power initially remains almost unchanged and decreases
only gradually as the SoC increases and, consequently, the
equivalence factor adapts. Compared to the A-ECMS, the
behavior of the equivalence factor is much smoother and,
therefore, closer to the optimum.

Unlike in driving cycle A, SoC constraint handling is vital
in driving cycle B (see Fig. 3). Because of the comparably
low power demand at the beginning of the driving mission,
both methods approach the upper SoC constraint triggering
the adaption of the equivalence factor (12). Consequently, the
FCS power is decreased and constraint violation is avoided.
Driving cycle B also includes a roadworks section with
considerable deviation from the velocity prediction. Again,
the P-ECMS charges the battery similarly to the optimal
solution until the upper SoC constraint is approached. In
contrast, the A-ECMS keeps discharging the battery and,
therefore, behaves less optimally.

C. Quantitative Evaluation

Tab. I compares the hydrogen consumption mH2
of the P-

ECMS, the optimal energy management, and the A-ECMS
with different initial equivalence factors for both driving
cycles. The comparison of the A-ECMS results indicates the
effect of λ0 on the fuel economy; an excellent performance
can be achieved but requires an appropriate choice of λ0,
which is unknown in advance. Moreover, the A-ECMS
performance depends on the choice of the PI controller gains,
which is not further discussed here for the sake of brevity.
In contrast, a particular advantage of the P-ECMS is that
its performance does not rely on any tuning. The P-ECMS
performs consistently better than the A-ECMS regarding
the investigated driving cycles, where improvements of up
to 1.3% could be achieved in the fuel economy. This is
remarkable considering that the optimal energy management
is only approximately 1% better than the P-ECMS. Note that
marginal differences in the final SoC are taken into account
in mH2

.
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A B S T R A C T
Energy management strategies (EMSs) for fuel cell vehicles aim at high fuel efficiency but must also consider
the lifetimes of the fuel cell system (FCS) and the battery. Regarding both objectives, fuel cell stack shutdowns
play a decisive role in real-world driving situations with low or negative power demand. However, each stack
start/stop event is associated with degradation, which is why it is important to keep the number of starts/stops
low. This work proposes a predictive EMS with optimal stack start/stop control that takes advantage of a
route-based prediction of the entire driving mission to minimize both the fuel consumption and the number
of start/stop events. Before departure, the prediction of the entire driving mission is processed in a single
offline optimization with dynamic programming. This optimization yields maps providing the real-time EMS
with optimal control information that continuously adapts depending on the position along the driving mission
and the battery state of charge. Considering this predictive information, the real-time EMS optimizes start/stop
actions and the stack power such that the cost-to-go, i.e., the fuel consumption for the trip remainder including
start/stop penalties, is implicitly minimized in each instant. In this way, the EMS continuously adapts to
the actual conditions, making it robust against unpredicted disturbances, e.g., due to traffic. The superior
performance of the proposed strategy compared to state-of-the-art start/stop methods is demonstrated in
numerical studies based on real-world driving missions for different vehicle classes with single and multi-stack
FCSs.

1. Introduction

The energy management strategy (EMS) of a fuel cell vehicle is
responsible for the power allocation between the fuel cell system (FCS),
which can consist of multiple fuel cell stacks in parallel [1], and
the battery. The primary objective of an EMS is to maximize fuel
efficiency. However, the energy management also has a strong impact
on the lifetimes of the two powertrain components, which can be
increased by avoiding harmful operating conditions [2–5]. For fuel
cell stacks, these conditions include low idle power operation, high
power operation, dynamic power requests, and, in particular, frequent
start/stop events [6–10]. Regarding the battery, high charging and
discharging currents as well as extreme states of charge (SoC) favor
degradation [11]. This work proposes an optimization-based predictive
EMS with stack start/stop control that

• minimizes the fuel consumption while keeping the number of
stack starts/stops low,

• prevents other harmful operating conditions with constraints,
• considers a long-term prediction of the driving mission,

∗ Corresponding author.
E-mail addresses: sandro.kofler@tuwien.ac.at (S. Kofler), stefan.jakubek@tuwien.ac.at (S. Jakubek), christoph.hametner@tuwien.ac.at (C. Hametner).

• optimally adapts to the actual conditions,
• and is computationally fast and easily implementable.
The proposed concept is based on the equivalent consumption min-

imization strategy (ECMS), a well-established optimization-based EMS
that is easily real-time implementable and yet offers strong energy
management performances if the so-called equivalence factor, which
expresses a virtual fuel consumption for the use of battery energy,
is chosen appropriately. Numerous methods have been proposed for
determining performant equivalence factors [12]. Because the optimal
equivalence factor strongly depends on the driving mission, predictive
ECMS approaches are particularly interesting if a suitable prediction
of the planned trip is available. Commonly, an SoC reference trajec-
tory is optimized based on the prediction before departure, and the
equivalence factor is then adapted by tracking the SoC reference while
driving [13–16]. An effective alternative to optimized SoC reference
trajectories are maps expressing the optimal equivalence factor depend-
ing on the position along the route and the SoC [17,18], which enables
performance improvements as demonstrated in [19]. However, these
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Nomenclature

Acronyms
DP Dynamic programming
ECMS Equivalent consumption minimization

strategy
EMS Energy management strategy
FCS Fuel cell system
PMP Pontryagin’s minimum principle
SoC State of charge
Subscripts
curr Current
final Final
idle Idle limit
ind Indication of map
init Initial
max Maximum
min Minimum
Greek letters
𝛥𝑡 DP sampling interval (s)
𝛿 Correction coefficient of rotating mass
𝜂m Traction motor efficiency
𝜃 Road inclination angle (rad)
𝜆̄∗𝑛st Adapted equivalence factor for 𝑛st (kg)
𝜆 Equivalence factor (kg)
𝜆ad Adaption parameter (kg)
𝜆SoC Equivalence factor adaption close to SoC

constraints (kg)
𝜆∗𝑛st Optimal equivalence factor for 𝑛st (kg)
𝜉 Battery SoC
𝜉th SoC constraint threshold
𝜌 Air density (kg∕m3)
Latin letters
𝐴f Vehicle frontal area (m2)
𝑐d Aerodynamic drag coefficient
𝑐r Rolling friction coefficient
𝑓 Battery SoC dynamics (1∕s)
𝑔 Gravitational acceleration (m∕s2)
𝐻 Equivalent fuel consumption rate (kg∕s)
𝐻∗

𝑛st Optimal equivalent fuel consumption rate
for 𝑛st (kg∕s)

predictive ECMS approaches do not include fuel cell stack start/stop
control.

Stack start/stop control is particularly relevant in real-world driving
situations with low electric power demand, such as in urban areas,
or negative power demand, for example, when descending on roads
with steep gradients. Shutting down the FCS or individual stacks in
these situations can be advantageous in several ways: First, the overall
operation time of the FCS is reduced, and harmful low-power operation
is avoided. Next, the stack fuel consumption is zero, and the related
auxiliary load can be reduced. Last, overcharging the battery, i.e., ex-
ceeding a specified upper boundary on the SoC, can be prevented, and
the battery charging current is decreased when the power demand is
negative, mitigating the strain on the battery. However, unnecessary
start/stop actions must be avoided to limit the corresponding impact
on the stack lifetime.

𝐽 Objective function of offline optimization
(kg)

𝐽 ∗ Optimal cost-to-go (kg)
𝐿 Number of grid points in time
𝑙 Step index
𝑚̇FCS FCS fuel consumption rate (kg∕s)
𝑚̇st Stack fuel consumption rate (kg∕s)
𝑚 Vehicle mass (kg)
 Set of possible FCS states
 ∗ Set of optimal FCS states
𝑁st Number of stacks
𝑛st FCS state (number of active stacks)
 Feasible stack power range (W)
𝑝 Start/stop penalty (kg)
𝑃b Battery power (W)
𝑃el Electric power demand (W)
𝑃FCS FCS power (W)
𝑃st Stack power (W)
𝑃 ∗
st Optimal stack power (W)

𝑃aux Auxiliary power demand (W)
𝑃m Traction motor power (W)
𝑄0 Battery capacity (A s)
𝑅int Internal ohmic resistance (Ω)
𝑠 Position (m)
𝑡 Time (s)
𝑢st FCS state in next instant
𝑢∗st Optimal FCS state
𝑣 Vehicle velocity (m∕s)
𝑣lim Speed limits considering cornering speeds

(m∕s)
𝑉OC Open-circuit voltage (V)
𝑣pred Predicted vehicle velocity (m∕s)
𝑥st Current FCS state

In the literature, a common approach for making fuel cell stack
start/stop decisions are instantaneous rule-based strategies, which per-
form start/stop actions depending on the battery SoC [20], the power
demand [21,22], the SoC and the power demand [23–28], the re-
quested stack power [29,30], or specified constraints, e.g., on the stack
voltage and temperature [31]. More sophisticated methods determine
the optimal stack state, i.e., on or off, for the present power demand
based on an instantaneous optimization of an equivalent fuel consump-
tion [32]. All strategies mentioned so far are instantaneous, meaning
that certain conditions might provoke infeasibly frequent start/stop
events. To tackle this issue, instantaneous strategies often include a
minimum hold time for the stack state [24,30,33] or a hysteresis [20,
25]. Alternatively, optimization-based methods considering short-term
predictions [33,34] or neural network-based concepts [35] have been
proposed to keep the number of starts/stops low. However, even though
these measures are able to reduce the number of start/stop actions,
unnecessary and inefficient starts/stops cannot be fully avoided. For
example, the FCS might be shut down due to low power demand just
before entering a high-power section. Here, taking advantage of a long-
term driving mission prediction can be interesting. In [36], such a
prediction was considered to optimally plan positions for starts/stops
along the route before departure, which allows for a considerable
reduction of starts/stops. However, unpredicted disturbances might
lead to considerable performance deterioration because the method
does not adapt to the actual conditions.

To sum up, the state of the art of fuel cell stack start/stop control
can be divided into two main approaches: The more common one is
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Fig. 1. Proposed energy management concept: The offline optimization based on a
route-informed long-term prediction of the power demand yields optimized maps,
which are considered in the real-time control. The map outputs and the real-time EMS
continuously adapt depending on the actual measurements.

based on instantaneous decisions that cannot fully prevent inefficient
start/stop actions. Addressing this problem, the other approach consid-
ers a long-term prediction to optimally plan start/stop positions before
departure. However, if the actual conditions considerably deviate from
the prediction, which must be expected due to hardly predictable influ-
ences such as traffic, the performance of this position-based predictive
approach might suffer severely. The current literature lacks methods
that exploit the long-term prediction more robustly.

Addressing the research gap, this work proposes a predictive EMS
with fuel cell stack start/stop control that maximizes fuel efficiency
while minimizing start/stop events. The key contributions are summa-
rized as follows:

1. The proposed concept coherently integrates optimal stack start/
stop control into an optimization-based predictive EMS based on
the ECMS.

2. A long-term prediction for the entire driving mission is consid-
ered to optimize 2-D maps before departure. These maps provide
optimal control information that continuously adapts to actual
system measurements.

3. Considering the predictive information from the maps, the EMS
optimally adapts to the actual conditions, i.e., power demand
and system states, in each instant. This continuous adaption
ensures robustness against unpredicted disturbances.

4. Thanks to the map-based design, computationally complex op-
timizations over receding horizons are avoided. Therefore, the
EMS has low computational requirements and is easily real-time
implementable.

5. The predictive concept is benchmarked against the two state-
of-the-art start/stop approaches in numerical studies based on
real-world driving missions.

The concept extends the predictive ECMS proposed in [19], which
uses a similar, map-based approach for robustness against disturbances
but does not include start/stop control. This means the FCS remains
active during the entire driving mission, which is inefficient or even
infeasible in many situations as discussed above. The proposed energy
management concept is illustrated in Fig. 1. Before departure, a power
demand prediction for the entire driving mission is derived from easily

accessible static route information, i.e., the elevation profile and speed
limits, based on the vehicle longitudinal dynamics. The prediction
enables the optimization of the energy management before departure,
where the fuel consumption including penalties on start/stop actions
is minimized. This offline optimization is conducted with dynamic
programming (DP) [37]. DP breaks the optimization problem into a
series of subproblems, where the so-called cost-to-go, i.e., the fuel con-
sumption including start/stop penalties, is minimized for each point in
the discrete state space. Consequently, maps providing optimal control
information within the entire distance–SoC space and not just along the
globally optimal path can be extracted. These 2-D maps are the output
of the offline optimization and highly valuable for the real-time control,
where deviations from the globally optimal path are expected due to
unpredicted disturbances. While driving, the real-time control contin-
uously reads out the optimal control information, i.e., an FCS state
indication and the equivalence factor, for the current vehicle position
and SoC from the 2-D maps. Considering this predictive information
and current state measurements, the real-time control then optimizes
the FCS state, i.e., the number of active stacks, and the stack power such
that the cost-to-go for the trip remainder is implicitly minimized in each
instant. In this way, the real-time EMS continuously adapts to the ac-
tual conditions, which makes it inherently robust against disturbances
where the actual power demand deviates from the prediction. The
predictive EMS achieves an excellent fuel efficiency, keeps the number
of start/stop events low, and provides reliable SoC control. Moreover,
the proposed concept has low computational requirements. The offline
DP is fast and the resulting 2-D maps have a compact size because
the offline optimization can be performed with a rough discretization
due to the limited accuracy of the long-term prediction. Therefore,
departure is possible shortly after the route was planned. Because the
prediction is already processed in the offline optimization, the real-time
control can be based on a simple, one-dimensional optimization. Thus,
it is computationally fast and easily implementable because explicit
optimizations over receding prediction horizons are unnecessary.

The remainder of this article is structured as follows. First, the
control-oriented vehicle modeling for the predictive EMS is introduced
in Section 2. Then, the proposed predictive EMS with optimal stack
start/stop control is elaborated in Section 3. In Section 4, two alter-
native start/stop strategies from the literature, i.e., an instantaneous
strategy and a position-based predictive strategy, are described as
benchmarks for the subsequent numerical studies. The results of the
numerical studies based on real-world driving missions are presented
in Section 5, demonstrating the performance and robustness of the
method. Finally, Section 6 concludes this article. In the Appendix, the
analytically optimal power allocation for a multi-stack FCS is derived,
and the convexity of the equivalent fuel consumption function used in
the real-time control is shown.

2. Vehicle modeling

To optimize the energy management for a planned driving mission
before departure, suitable models of the vehicle are required. First, a
model of the vehicle dynamics is used to derive a prediction of the
power demand for the entire driving mission from static route informa-
tion, i.e., speed limits and the elevation profile along the planned route.
Subsequently, a model of the hybrid powertrain is used to optimize the
energy management based on the prediction. This powertrain model is
also relevant for the ECMS-based real-time energy management. The
two models are described in the following.

2.1. Vehicle dynamics

To derive the power demand from the speed limits and altitude
profile along the route, a model of the longitudinal vehicle dynamics
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Fig. 2. Fuel consumption curve and corresponding efficiency curve of a fuel cell stack.

is used. The model considers the traction force of the electric motor,
aerodynamic drag, rolling friction, and gravitational force [37]:

𝛿𝑚 d𝑣
d𝑡

= 𝜂sgn𝑃mm
𝑃m
𝑣

−
𝜌𝐴f𝑐d
2

𝑣2 − 𝑐r𝑚𝑔 cos 𝜃 − 𝑚𝑔 sin 𝜃. (1)
Here, 𝛿 denotes the correction coefficient of rotating mass, 𝑚 the vehicle
mass, 𝑣 the vehicle velocity, 𝑡 the time, 𝜂m the efficiency of the traction
motor, 𝑃m the power of the traction motor, 𝜌 the air density, 𝐴f the
frontal area of the vehicle, 𝑐d the aerodynamic drag coefficient, 𝑐r the
rolling friction coefficient, 𝑔 the gravitational acceleration, and 𝜃 the
road inclination angle. The inclination angle can be derived from the
altitude profile.

2.2. Hybrid powertrain

The hybrid powertrain consists of the FCS and the battery. The
overall system power, i.e., the sum of the FCS power 𝑃FCS and the
battery power 𝑃b, satisfies the electric power demand of the vehicle:

𝑃el = 𝑃FCS + 𝑃b. (2)
The objective of the EMS is to determine the power split between the
FCS and the battery such that the fuel efficiency is maximized while
avoiding harmful operation of the two components. The two powertrain
components are described with simplified, control-oriented models,
which build the basis for the ECMS and allow for a computationally
efficient offline optimization with DP. Regarding the latter, an excessive
number of states might even impede the optimization in reasonable
time [38].

The FCS consists of a single stack or 𝑁st equal stacks in a parallel
configuration. The fuel consumption rate 𝑚̇st of an individual stack is
modeled as a function of the corresponding stack net power 𝑃st (see
Fig. 2). This fuel consumption curve is assumed to be strictly convex
within the operational stack power range and implicitly considers the
power demand of stack-related auxiliaries, such as the compressor.
It can either be fitted to measurement data or derived analytically,
see [37]. The stacks can be started and stopped individually, which
is described by the number of active stacks 𝑛st ∈  , where the set of
integers  = {0,… , 𝑁st} covers the possible numbers of active stacks.
When shut down, the stacks are assumed to consume no fuel. When
operating, all active stacks provide the same power output, which rep-
resents the optimal power allocation regarding fuel efficiency assuming
that the fuel consumption curves of all stacks are identical and convex
(see Appendix A). With this predefined power allocation between the
stacks, the FCS net power 𝑃FCS and the overall fuel consumption rate
𝑚̇FCS are determined by only two control inputs (𝑛st and 𝑃st), which
considerably simplifies the optimization problem of the EMS:
𝑃FCS = 𝑛st𝑃st (3)
𝑚̇FCS = 𝑛st𝑚̇st(𝑃st). (4)

To avoid harmful power requests from the stacks, constraints on the
absolute stack power and the stack power rate are specified.

The battery is modeled with an equivalent circuit model considering
ohmic losses, see [37]. With that, the dynamics of the battery SoC 𝜉 is
a nonlinear function of the battery power

𝜉̇ = 𝑓 (𝑃b) = −
𝑉OC −

√
𝑉 2
OC − 4𝑃b𝑅int

2𝑄0𝑅int
(5)

where the battery parameters 𝑉OC, 𝑅int, and 𝑄0 denote the open-circuit
voltage, internal ohmic resistance, and battery capacity, respectively.
For the offline optimization with DP, the battery model is discretized
assuming a zero-order hold for the battery power and a constant
sampling interval 𝛥𝑡 = 𝑡𝑙+1 − 𝑡𝑙 yielding

𝜉𝑙+1 = 𝜉𝑙 −
𝑉OC −

√
𝑉 2
OC − 4𝑃b,𝑙𝑅int

2𝑄0𝑅int
𝛥𝑡. (6)

Health-aware constraints for the battery are specified for the battery
power and the SoC.

To sum up, the overall powertrain model has only one state (𝜉)
and two inputs (𝑛st and 𝑃st), which define the FCS power. The battery
takes the residual of the power demand subject to the corresponding
constraints. This simple model is highly beneficial for keeping the
computational complexity of the offline optimization low. Note that the
term ‘‘FCS state’’ is used synonymously for the number of active stacks
in this article.

3. Predictive energy management

The predictive EMS comprises two stages:
1. The offline optimization of the energy management before de-

parture (see Section 3.1).
2. The real-time energy management with optimal stack start/stop

control (see Section 3.2).
The offline optimization determines the optimal energy manage-

ment for the planned driving mission such that the fuel consumption
and the number of stack start/stop actions are minimized. It is based
on a long-term power demand prediction covering the entire driving
mission and conducted with DP, which facilitates the consideration of
constraints on states and inputs. The outcome of the offline optimiza-
tion are two maps providing optimal control information depending on
the position along the route, the SoC, and the current FCS state: One
map indicates the optimal FCS state and the other one describes the
optimal cost-to-go, i.e., the minimum cost for reaching the destination.
In the subsequent postprocessing step, the information of these maps
is brought into a memory-saving 2-D representation that depends on
the position and SoC only and can directly be handled by the real-time
control.

The real-time part of the EMS is based on the ECMS, which deter-
mines the FCS power such that the equivalent fuel consumption rate
𝐻 is minimized in each instant. The equivalent fuel consumption rate
does not only include the actual fuel consumption rate of the FCS but
also considers the use of battery energy through the equivalence factor
𝜆:
𝐻(𝑃st, 𝑛st, 𝜆, 𝑃el) = 𝑛st𝑚̇st(𝑃st) + 𝜆𝑓 (𝑃el − 𝑛st𝑃st). (7)
As shown in [39], the equivalent fuel consumption rate can be related
to the Hamiltonian of Pontryagin’s minimum principle (PMP). Because
of this analogy, the ECMS could theoretically provide candidates for
the overall optimal solution if the optimal equivalence factor, which
strongly depends on the driving mission, was known. Based on these
findings, the idea of the presented concept is to determine estimates of
the optimal equivalence factor based on the driving mission prediction.
More precisely, prediction-based estimates of the optimal equivalence

Applied Energy 377 (2025) 124513 

4 

53



S. Kofler et al.

Fig. 3. Schematic illustration of the procedure for obtaining the long-term power
demand prediction.

factor are derived from the optimal cost-to-go map of the offline opti-
mization, which is part of the postprocessing step. The map implicitly
considers the prediction for the trip remainder for any position and SoC,
allowing for continuous adaption of the equivalence factor to the actual
conditions. The resulting predictive ECMS implicitly optimizes the
predicted cost-to-go in each instant in real time and provides a close-
to-optimal energy management performance, which was demonstrated
without start/stop control for higher-power driving missions in [19].

Building on this concept, this works extends the predictive ECMS
with an optimal fuel cell stack start/stop control. For this purpose, the
map indicating the optimal FCS states, i.e., the optimal numbers of
active stacks according to the offline optimization, is used as a ‘‘sugges-
tion’’, which also adapts depending on the position and SoC. However,
the FCS state indication from the map is not followed directly; addi-
tionally a real-time start/stop condition is evaluated. Similarly to the
ECMS, this start/stop condition considers the actual power demand
and system states and, therefore, avoids inefficient and unnecessary
start/stop actions when the actual power demand deviates from the
prediction. Besides the resulting robustness against unpredicted distur-
bances, one of the key benefits of the map-based concept is that the
real-time control implicitly considers the long-term prediction in each
instant without requiring computationally expensive optimizations over
receding prediction horizons, which strongly facilitates its implemen-
tation. In the remainder of this section, the offline optimization and
the real-time energy management are described in detail first. Then,
the computational complexity of the method and its limitation are
addressed.

3.1. Offline optimization before departure

The offline optimization of the energy management is conducted
before departure and includes three steps: long-term power demand
prediction for the entire driving mission, optimization with DP, and
postprocessing of the optimized maps. The three steps are described in
the following.

3.1.1. Long-term power demand prediction
To effectively avoid unnecessary start/stop actions and minimize

the fuel consumption through active involvement of the battery, a
long-term prediction of the power demand is necessary. The long-term

prediction is derived based on the vehicle dynamics model and covers
the entire trip. For this purpose, suitable predictions of the vehicle
velocity and road inclination angle along the planned route are re-
quired. Both can be derived from static route information that is easily
accessible through navigation systems or map services, i.e., speed limits
and the altitude profile, as illustrated in Fig. 3. To avoid infeasible pre-
dictions in curves, the speed is limited depending on the road curvature,
which is particularly relevant in urban and mountainous areas, yielding
𝑣lim. This speed prediction intentionally excludes vehicle standstills,
e.g., at intersections, because the position and the duration of these
standstills are assumed to be almost unpredictable. Having the speed
prediction and inclination angle, the traction motor power prediction
can be derived with a simple forward simulation based on the model
of the longitudinal vehicle dynamics of Eq. (1). In this simulation, the
traction motor power is determined by tracking 𝑣lim considering system
and motor power constraints. This approach prevents the prediction of
infeasible motor power during velocity transients and uphill driving.
The simulation also yields the corresponding feasible speed prediction
𝑣pred. The prediction of the overall power demand for the planned trip
is then obtained after adding an estimate of the power demand of the
auxiliary systems 𝑃aux:
𝑃el = 𝑃m + 𝑃aux. (8)
To keep the computational complexity of the subsequent optimization
of the energy management with DP low, it is performed with a rela-
tively rough discretization, which is defined by 𝛥𝑡. Therefore, the power
demand prediction is segmented with

𝑃el,𝑙 =
∫ 𝑡𝑙+1
𝑡𝑙

𝑃el d𝑡

𝛥𝑡
(9)

for all 𝑙 = 1…(𝐿 − 1), where 𝑡1 = 0 and 𝑡𝐿 denotes the elapsed time at
the destination. The segmented power demand prediction is the input
for the offline optimization. Finally, a time-to-distance mapping based
on the speed prediction is performed, which defines the positions 𝑠𝑙 for
all 𝑙 = 1…(𝐿 − 1):

𝑠𝑙 = ∫
𝑡𝑙

0
𝑣pred(𝑡) d𝑡. (10)

The description in the distance domain is used for defining the 2-D
maps resulting from the offline optimization because, unlike the time-
based description, it is not affected if the actual velocity deviates from
the prediction. Therefore, it is advantageous for the real-time control,
where deviations are expected. Note that the time-to-distance mapping
is bijective because the velocity prediction excludes vehicle standstills.

The quality of the power demand prediction is dominated by the
accuracy of the speed limit-based velocity prediction. Unlike the road
inclination angle, which is determined by the topography of the route,
the vehicle velocity is influenced by a number of stochastic factors,
e.g., traffic, vehicle standstills, and driver behavior, which are almost
unpredictable within long prediction horizons. Due to the limited ac-
curacy of the long-term prediction, the rough discretization for the
DP does not necessarily affect the prediction quality further. How-
ever, despite its limited accuracy, the long-term prediction is highly
effective for the predictive energy management. It enables the of-
fline optimization of the energy management before departure and
provides the long prediction horizon necessary to effectively avoid
unnecessary start/stop actions and actively involve the battery in the
energy management. Moreover, the proposed EMS is designed to han-
dle unpredicted disturbances as it continuously adapts to the actual
conditions.

3.1.2. Offline optimization with dynamic programming
The offline optimization of the energy management is based on the

long-term power demand prediction for the entire driving mission (see
Fig. 4). The objective is to determine the optimal energy management
such that the fuel consumption and the number of start/stop actions are
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Fig. 4. Schematic illustration of the predictive EMS with optimal stack start/stop
control.

minimized. The optimal control problem is formulated in discrete-time

min 𝐽 =
𝐿−1∑
𝑙=1

𝑚̇FCS(𝑛st,𝑙 , 𝑃st,𝑙)𝛥𝑡 + 𝑝|𝑛st,𝑙+1 − 𝑛st,𝑙|
s.t. 𝑛st,𝑙 ∈  ,

𝑃st,idle ≤ 𝑃st,𝑙 ≤ 𝑃st,max,
𝑃b,min ≤ 𝑃b,𝑙 ≤ 𝑃b,max,
𝜉min ≤ 𝜉𝑙 ≤ 𝜉max, ∀𝑙 ∈ {1,… , 𝐿 − 1},
𝜉1 = 𝜉init, 𝑛st,1 = 0,
𝜉𝐿 ≥ 𝜉final, 𝑛st,𝐿 = 0

(11)

where 𝑝 denotes a penalty on start/stop actions, 𝑃st,idle the minimum
stack power when switched on, and 𝑃st,max the maximum stack power.
The minimum and maximum constraint for the battery power are
denoted by 𝑃b,min and 𝑃b,max, respectively, and the minimum and
maximum constraint for the battery SoC by 𝜉min and 𝜉max, respectively.
The initial SoC is denoted by 𝜉init and the minimum final SoC by
𝜉final. To keep the computational complexity of the optimization low, a
relatively rough sampling interval is chosen. Therefore, the constraints
on the FCS power rate can be neglected here because the corresponding
dynamics are much faster.

To obtain the two maps indicating the optimal FCS states and
describing the optimal cost-to-go, i.e., the cost to reach the destination
along the optimal path, the optimal control problem is solved with
DP, which operates with discretized states and inputs. Note that the
consideration of the start/stop penalty in the objective function intro-
duces a second, discrete state to the problem besides the SoC, which
is the current number of active stacks, i.e., the current FCS state. In
the following, the current FCS state is denoted by 𝑥st to have a clear
distinction from the decision variable 𝑢st, which defines the number of
active stacks in the next instant, i.e., 𝑥st,𝑙+1 = 𝑢st,𝑙. The DP algorithm
proceeds backward in time, minimizing the cost-to-go 𝐽𝑙 for all 𝜉𝑙 and

𝑥st,𝑙 in the discrete state space at each time step 𝑙 = (𝐿 − 1)…1

𝐽 ∗
𝑙 (𝜉𝑙 , 𝑥st,𝑙) = min

𝑢st,𝑙 ,𝑃st,𝑙

(
𝑚̇FCS(𝑢st,𝑙 , 𝑃st,𝑙)𝛥𝑡 + 𝑝|𝑢st,𝑙 − 𝑥st,𝑙|

+ 𝐽 ∗
𝑙+1(𝜉𝑙+1, 𝑢st,𝑙)

) (12)

subject to the specified constraints. More details regarding the DP
implementation can be found in the literature, e.g., [40].

The outcome of the DP algorithm are discrete 3-D maps describing
the optimal number of active stacks 𝑢∗st(𝑠, 𝜉, 𝑥st) and the optimal cost-
to-go 𝐽 ∗(𝑠, 𝜉, 𝑥st) depending on the position, SoC, and current number
of active stacks. Note that the description in the distance domain is
based on the time-to-distance mapping specified in Eq. (10) and is
advantageous for the real-time control.

3.1.3. Postprocessing of the optimal control information
The maps resulting from the DP represent the optimal energy man-

agement regarding the prediction within the entire 3-D distance-state
space. To use this optimized information efficiently in the real-time
control, a postprocessing step is necessary, which yields 2-D maps
depending only on the position and SoC (see Fig. 4). This section first
elaborates how the map indicating the optimal number of active stacks
can be transformed into the 2-D representation. Then, it describes how
2-D maps providing estimates of the optimal equivalence factor for the
ECMS are derived from the optimal cost-to-go map.

The map 𝑢∗st(𝑠, 𝜉, 𝑥st) provides the optimal number of active stacks
depending on the current number of active stacks for each evaluated
position and SoC. For example, 𝑥st = 0 → 𝑢∗st = 0 and 𝑥st = 1 →

𝑢∗st = 1 indicates that remaining in the current FCS state is optimal
according to the prediction. Because of the start/stop penalty, changing
the number of active stacks is avoided unless an alternative is so much
more fuel-efficient that the penalty is overcompensated. Considering
this behavior, the explicit dependency of the optimal number of active
stacks (𝑢∗st) from the current number (𝑥st) becomes irrelevant, and the
information of 𝑢∗st(𝑠, 𝜉, 𝑥st) can be condensed in a memory-efficient 2-D
map  ∗(𝑠, 𝜉) indicating the set of the optimal FCS states depending on
the position and SoC only:
 ∗(𝑠, 𝜉) = {𝑛 ∈  ∶ ∃𝑚 ∈  𝑢∗st(𝑠, 𝜉, 𝑚) = 𝑛}. (13)
An example of this FCS state indication map for a single-stack FCS on
a driving mission with strongly varying power demand is illustrated
in Fig. 5. The black areas indicate situations where activating the
stack is beneficial, whereas the gray areas indicate situations where
shutting down the stack is better. For the hatched areas, the optimal
FCS state is not unique because the improvement through a potential
start/stop action does not compensate for the penalty. The indication
for these areas can be interpreted as ‘‘remain in the current FCS state’’,
i.e., maintaining the current number of active stacks. The optimal FCS
states clearly depend on both the position and the SoC.

The FCS state indication map only provides information for the
start/stop control. To determine the stack power based on the ECMS,
an appropriate estimate of the optimal equivalence factor is necessary.
Such an estimate can be derived by partially differentiating the optimal
cost-to-go with respect to the SoC

𝜆∗𝑛st (𝑠, 𝜉) =
𝜕𝐽 ∗(𝑠, 𝜉, 𝑛st)

𝜕𝜉
(14)

which is performed numerically. This link between the optimal equiv-
alence factor, which corresponds to the optimal costate of PMP, and
the optimal cost-to-go can be derived by comparing the necessary
conditions of PMP and the Hamilton–Jacobi-Bellman equation, which
can be interpreted as continuous-time counterpart of DP, see [41].
The resulting equivalence factor estimates are stored in 𝑁st 2-D maps
𝜆∗𝑛st (𝑠, 𝜉), one for each possible FCS state apart from 0, where all
stacks are shut down. The maps allow for continuous adaption of the
equivalence factor to the current position and SoC in the real-time
control, which is a strong benefit over alternative approaches.
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Fig. 5. Map indicating the optimal FCS states depending on the position and SoC
(lower plot) for a single-stack FCS on a driving mission with varying power demand
(upper plot).

Fig. 6. Profiles of the optimal cost-to-go and optimal equivalence factor over the SoC
corresponding to the position 13.5 km of the driving mission shown in Fig. 5. The bar
at the top indicates the optimal FCS state indications of  ∗ for the single-stack FCS.

Fig. 6 illustrates the behavior of the optimal cost-to-go and equiva-
lence factor over the SoC. It shows that the difference in the cost-to-go
between the two FCS states is saturated in the value of the start/stop
penalty in SoC ranges with a clear optimum regarding the FCS state,
i.e., ‘‘start’’ and ‘‘stop’’. The reason for this behavior is that accepting
the penalty to immediately switch from the FCS state with the higher
cost-to-go to the one with the lower cost-to-go is optimal. Consequently,
the optimal equivalence factors are identical for these two FCS state
indications. In the SoC range where ‘‘remain’’ is indicated, the absolute
difference in the cost-to-go between the two FCS states is smaller
than the start/stop penalty and varies. Therefore, the corresponding
optimal equivalence factors are also different. The fluctuations of the
equivalence factors in this range are caused by the discrete nature of the
FCS state. Note that 𝜆∗𝑛st ≤ 0 because an increase in the SoC means that
more energy is stored in the battery, and thus, the cost-to-go decreases
since less fuel is required to reach the destination. Only if the energy
stored in the battery exceeds the energy demand of the trip remainder,
the fuel amount required to reach the destination is zero and 𝜆∗𝑛st = 0
(see Fig. 6).

3.2. Real-time energy management with optimal stack start/stop control

To optimize the number of active stacks and the stack power, the
real-time EMS considers the actual power demand and system states

and reads out the optimal control information, i.e., the optimal FCS
state indication and the equivalence factor, from the maps  ∗(𝑠, 𝜉)
and 𝜆∗𝑛st (𝑠, 𝜉) (see Fig. 4). The optimal control information from the
maps continuously adapts to the current position and SoC and implic-
itly considers SoC constraints. However, situations where the actual
power demand considerably deviates from the prediction might still
provoke SoC constraint violations in the real-time control because these
situations are not covered in the offline optimization. Therefore, a
mechanism for avoiding SoC constraint violation is included in the real-
time strategy, which adapts the equivalence factor in the neighborhood
of the SoC constraints, similar as in [42]. The equivalence factor must
be decreased close to 𝜉min to favor charging the battery and increased
close to 𝜉max to favor discharging. Here, the adaption 𝜆SoC is based on
a quadratically formulated offset

𝜆SoC =

⎧⎪⎪⎨⎪⎪⎩
𝜆ad

(
𝜉−𝜉max+𝜉th

𝜉th

)2
, 𝜉 > 𝜉max − 𝜉th

−𝜆ad
(
−𝜉+𝜉min+𝜉th

𝜉th

)2
, 𝜉 < 𝜉min + 𝜉th

0, otherwise
(15)

where 𝜉th and 𝜆ad are tuning parameters. The offset gets active at
the threshold 𝜉th to the constraints and takes the value ±𝜆ad at the
constraints. The adaption is added to the estimate of the optimal equiv-
alence factor for the current position and SoC considering a saturation
at zero:
𝜆̄∗𝑛st = min

(
𝜆∗𝑛st + 𝜆SoC, 0

)
. (16)

In the following, the two steps of the real-time strategy are elabo-
rated: first, the decision on the number of active stacks and then the
optimization of the stack power based on the ECMS.

3.2.1. Predictive stack start/stop control
A nearest neighbor interpolation in  ∗(𝑠, 𝜉) yields the set of optimal

FCS states for the current position and SoC. If the current FCS state
𝑛st,curr is included in the set, no start/stop action is required. Otherwise,
the FCS state of the set that is closest to the current one is considered as
the indicated FCS state 𝑛st,ind according to  ∗. To further prevent SoC
constraint violation if the power demand considerably deviates from
the prediction, this FCS state indication is overruled if the specified
SoC boundaries are reached: If 𝜉 ≤ 𝜉min, then 𝑛st,ind ≥ 1. If 𝜉 ≥ 𝜉max,
then 𝑛st,ind = min ∗, i.e., the lowest number in the set of optimal FCS
states is chosen. This means the FCS might keep operating if a high
power demand was predicted ahead.

The optimal FCS state indication is not followed directly because
it does not take into account the actual power demand, which might
considerably deviate from the prediction. Additionally, the optimal
equivalent fuel consumption rates of the current and the indicated FCS
state are compared, which consider the actual power demand. The
indicated start/stop action is only realized if the following condition
is satisfied:
𝐻∗

𝑛st,ind < 𝐻∗
𝑛st,curr (17)

with
𝐻∗

𝑛st,ind = min
𝑃st∈ 𝐻(𝑃st, 𝑛st,ind, 𝜆̄∗𝑛st,ind , 𝑃el) and (18)

𝐻∗
𝑛st,curr = min

𝑃st∈ 𝐻(𝑃st, 𝑛st,curr, 𝜆̄∗𝑛st,curr , 𝑃el). (19)

Here, the set  denotes the feasible stack power range, which is defined
in more detail in Section 3.2.2. The equivalence factors are extracted
from the corresponding maps by linear interpolation based on the
current position and SoC, and the SoC constraint offset according to
Eq. (16) is considered. This real-time start/stop condition suppresses
the map-indicated start/stop action as long as the current FCS state is
more efficient under the current power demand. For example, shutting
down a stack is avoided when an unpredicted acceleration occurs.
Note that considering the start/stop penalty in the real-time start/stop
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condition is physically infeasible because the penalty expresses an
absolute fuel amount while the condition is based on fuel consumption
rates.

To compute the equivalent fuel consumption rate for 𝑛st,ind = 0
or 𝑛st,curr = 0, the equivalence factor 𝜆∗1 is taken without discrepancy
because 𝜆∗0 = 𝜆∗1 whenever a start/stop action is indicated by the
optimal FCS state map (see Section 3.1.3). Note that no minimization
is required in this case.

3.2.2. Predictive ECMS
A linear interpolation in 𝜆∗𝑛st (𝑠, 𝜉) for the chosen FCS state gives the

estimate of the optimal equivalence factor for the current position and
SoC, which implicitly considers the prediction of the trip remainder. To
ensure SoC constraint satisfaction, the offset is added to the equivalence
factor according to Eq. (16). With that, the ECMS determines the
individual stack power such that the equivalent fuel consumption rate
of the FCS according to Eq. (7) is minimized for the current power
demand, i.e.,
𝑃 ∗
st = arg min

𝑃st∈ 𝐻(𝑃st, 𝑛st, 𝜆̄∗𝑛st , 𝑃el). (20)

Here, the feasible stack power range described by  reflects the speci-
fied stack power constraints and stack power rate constraints, which are
approximated by maximum power increments per sample. If relevant
and feasible,  is restricted to additionally consider the battery power
constraints.

The optimization in Eq. (20) is one-dimensional. Moreover, the
function to be minimized, i.e., 𝐻 , has a unique minimum because it
is strictly convex (see Appendix B), which ensures convergence. There-
fore, the optimization can be solved with simple methods, e.g., the
golden-section search [43], and low computational requirements.

3.3. Computational complexity and limitation

One of the key benefits of the proposed concept is the low computa-
tional complexity of both stages, i.e., offline optimization and real-time
control. The complexity of the DP algorithm used for the offline op-
timization depends on the discretization intervals of time, states, and
control inputs, see [37]. Due to the limited accuracy of the long-
term prediction, rough discretization intervals can be chosen in the DP
without affecting the real-time performance because certain deviations
from the prediction are expected. Consequently, the DP computation
time is kept low, and the optimized maps can be provided shortly after
the route was planned. Exemplary numbers regarding discretization
intervals and computation time are given in the numerical results in
Section 5.1.

In the real-time control, computationally expensive optimizations
over receding prediction horizons are unnecessary because the maps re-
sulting from the offline optimization provide the predictive information
in a form that can be directly used in the real-time EMS. Therefore, the
real-time control is based on a simple, one-dimensional optimization,
which can be solved with low computational complexity. This strongly
facilitates the real-time implementation of the method.

The most important limitation regarding control performance is the
quality of the long-term prediction. However, a sufficient prediction
quality to benefit from the predictive concept is easily achievable based
on static route information. Even though the accuracy of the route-
derived prediction is limited because of random influences, such as
traffic, it allows for significant performance improvements over nonpre-
dictive approaches. Moreover, the method’s design ensures continuous
adaption to the actual power demand and system measurements, which
considerably reduces the sensitivity with respect to the prediction qual-
ity compared to nonadaptive predictive approaches. The advantages
over the mentioned alternatives are demonstrated in the numerical
studies in Section 5.

4. Alternative start/stop strategies for benchmarking

In the numerical studies in Section 5, the proposed predictive EMS
with map-based start/stop control is compared with two alternative
start/stop strategies from the literature. Both benchmark strategies de-
termine the individual stack power with the predictive ECMS according
to Eq. (20) using exactly the same optimal equivalence factor map as
the proposed map-based strategy, which ensures a fair comparison that
focuses on the start/stop control. The first strategy is a nonpredictive
strategy that instantaneously decides on start/stop actions considering
the current power demand. The second one is an advanced strategy that
considers the long-term prediction to plan optimal start/stop positions
before departure. The two benchmark strategies are outlined in the
following.

4.1. Instantaneous start/stop strategy

The instantaneous start/stop strategy is optimization-based. It con-
tinuously evaluates the equivalent fuel consumption rates of the possi-
ble FCS states considering the current power demand and equivalence
factor and selects the most efficient FCS state analogously to Eq. (17),
see also [44–46]. However, without further restrictions, the instan-
taneous decision would entail infeasibly frequent start/stop actions,
which is why a minimum hold time of 60 s is specified after each change
in the FCS state, see [24,30,33].

4.2. Position-based predictive start/stop strategy

The position-based predictive strategy uses the offline optimization
of the energy management (see Section 3.1.2) to plan optimal positions
for starts/stops based on the long-term prediction before departure. In
the real-time control, start/stop actions are performed according to the
position-based plan, as proposed in [36].

5. Numerical results

The proposed predictive EMS with map-based stack start/stop con-
trol is evaluated for two vehicle classes in simulation. First, a qualitative
and quantitative evaluation where the map-based strategy is bench-
marked against two start/stop strategies from the literature (see Sec-
tion 4) is presented for a passenger vehicle equipped with a single-stack
FCS. Then, the performance of the proposed method is demonstrated
for a heavy-duty truck with a dual-stack FCS. To ensure a realistic
performance validation, both numerical studies are based on real-world
driving missions that were recorded on public roads. Therefore, the
numerical studies cover random influences on the power demand that
are relevant in real-world driving, such as dense traffic, standstills with
varying standstill times, other vehicles, and driver behavior. These real
driving influences cause significant deviations from the long-term pre-
diction as in the real application and guarantee an application-oriented
evaluation.

The vehicle and powertrain parameters of the two vehicles and
the chosen EMS preferences are summarized in Table 1. The stack
idle power, i.e., the minimum stack power during active operation, is
chosen relatively high to prevent harmful operation caused by low idle
powers. The fuel cell stack of the passenger vehicle is modeled with a
polynomial fuel consumption curve fitted to stationary measurements,
which is shown together with the corresponding efficiency curve in
Fig. 2. For the truck stacks, this fuel consumption curve was scaled
linearly such that the fuel efficiency behavior within the stack power
range is preserved.

The remainder of this section is structured into four parts:
1. Description of the driving mission prediction and the offline

optimization (see Section 5.1).
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Table 1
Parameters of the passenger vehicle and the heavy-duty truck.
Model parameters Passenger vehicle Truck
Total vehicle mass, 𝑚 (kg) 1950 33000
Auxiliary power, 𝑃aux (kW) 1 10
Number of stacks, 𝑁st 1 2
Stack idle power, 𝑃st,idle (kW) 8 9.5
Max. stack power, 𝑃st,max (kW) 50 155
Max. stack power rate (kW s−1) ±25 ±50

Battery energy capacity (kWh) 4.95 84.8
Battery capacity, 𝑄0 (A h) 28.28 121.5
Open-circuit voltage, 𝑉OC (V) 175 698
Internal ohmic resistance, 𝑅int (Ω) 0.075 0.112
Min. battery power, 𝑃b,min (kW) −15 −210
Max. battery power, 𝑃b,max (kW) 50 420
Energy management parameters Passenger vehicle Truck
Min. SoC, 𝜉min 0.3 0.3
Max. SoC, 𝜉max 0.7 0.7
Initial SoC, 𝜉init 0.5 0.5
Final SoC, 𝜉final 0.5 0.5
SoC constraint threshold, 𝜉th 0.05 0.05
Adaption parameter, 𝜆ad (kg) 0.3 1
DP sampling interval, 𝛥𝑡 (s) 35 51
No. of state (𝜉) grid points in DP 100 80
No. of input (𝑃st) grid points in DP 80 60
Start/stop penalty, 𝑝 (kg) 0.01 0.01

2. Qualitative and quantitative comparison of the predictive EMS
with map-based start/stop control with the two benchmark
strategies based on the passenger vehicle (see Section 5.2).

3. Analysis of the real-time start/stop condition (see Section 5.3).
4. Demonstration of the predictive EMS with map-based start/stop

control for the heavy-duty truck with dual-stack FCS (see Sec-
tion 5.4).

5.1. Driving mission prediction and offline optimization

The power demand prediction for the entire driving mission is
based on the altitude profile and the speed limits along the planned
route, which are easily accessible. For the numerical studies, both
route information was obtained from AVL Route Studio, which is a
tool for generating and simulating driving cycles. The tool takes into
account vehicle dynamics during velocity transients and limits the
maximum velocity depending on the road curvature. In this way, a
decent long-term velocity prediction can conveniently be obtained for
testing purposes.

The discretization intervals for the DP were selected by analyzing
the trade-off between the overall EMS performance and computation
time and are shown in Table 1. 120 time segments were chosen for
the investigated 60 km driving mission of the passenger vehicle and 360
time segments for the 360 km driving mission of the truck study. The lat-
ter was segmented more roughly because it is a highway mission where
fewer transients are expected. In either case, the rough discretization
ensures a fast computation of the offline DP and compact sizes of the
optimized maps used in the real-time energy management, i.e.,  ∗(𝑠, 𝜉)
and 𝜆∗𝑛st (𝑠, 𝜉). To give an idea, the computation time of the DP algorithm
was in the magnitude of 10−1 s using MATLAB on a computer equipped
with an AMD Ryzen 7 PRO 5850U.

5.2. Comparative study based on passenger vehicle

The map-based predictive start/stop strategy is compared with the
two alternatives based on measurements of a real-world driving mission
covering 60 km, which is depicted in Fig. 7(a). The driving mission has
a high urban share characterized by a fluctuating but on average low
electric power demand and random standstills. The second half of the

Fig. 7. Comparison of the map-based start/stop strategy with the two benchmark
strategies based on a real-world driving mission.

driving mission shows rural and highway sections including changes in
altitude and, therefore, higher power demands. Nevertheless, the mean
power demand of the driving mission is significantly lower than the
stack idle power, making stack shutdowns highly relevant in order to
save fuel and satisfy the SoC constraints. The route-based prediction
of the driving mission, which is also shown in Fig. 7(a), gives a good
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estimate of the velocity and power demand, particularly outside urban
areas, but inevitably lacks the random fluctuations and standstills due
to traffic.

The trajectories representing the energy management of the bench-
mark strategies are depicted in Fig. 7(b). Not considering predictive
information, the instantaneous start/stop strategy determines the FCS
state only depending on the current power demand and equivalence
factor. The result is a high number of start/stop actions affecting the
FCS lifetime. The number of starts/stops would be even higher without
the specified 60 s hold time, during which the FCS state cannot be
changed. However, the hold time also brings drawbacks: Around 43 km,
the power demand is negative causing the nonpredictive strategy to
shut down the stack. Within the subsequent 60 s time span, where the
FCS cannot be started, an acceleration on an uphill section causes high
power demand, which cannot be fully provided because it exceeds the
maximum battery power. In addition to the unsatisfied power demand,
the minimum SoC constraint is violated.

In contrast to the instantaneous strategy, the position-based predic-
tive start/stop strategy optimizes positions for start/stop actions based
on the power demand prediction considering the start/stop penalty (see
second plot of Fig. 7(b)). As a result, the number of starts/stops is
considerably reduced to 2, and the stack is active when high power
demand is expected, including the aforementioned load spike after
43 km. However, the prediction does not reflect the influences due
to traffic, particularly standstills, and thus underestimates the actual
energy demand in the initial urban part of the driving mission. Conse-
quently, the predicted optimal stack starting position is too late, and the
minimum SoC constraint is severely violated around 10 km. Likewise,
the charging of the battery by the idling FCS during standstills is not
reflected by the prediction, causing a saturation of the SoC in its upper
boundary. A violation of the upper SoC constraint is only prevented
because the excess energy is wasted in a breaking resistor, considerably
affecting the fuel efficiency.

The proposed map-based strategy makes start/stop decisions based
on the optimal FCS state indication map, which is illustrated besides the
resulting trajectories of the FCS power and SoC in Fig. 7(c). Having a
single-stack FCS, the map includes three optimal FCS state indications,
namely ‘‘stop’’ ( ∗ = {0}), ‘‘start’’ ( ∗ = {1}), and ‘‘remain’’ ( ∗ =
{0, 1}). Note that starting the stack is more relevant under higher
power demands, whereas stopping is more relevant under lower power
demands. The optimal FCS state indication map allows the proposed
strategy to consider not only the position but also the actual SoC in the
start/stop decision. The relevance of both position and SoC for optimal
start/stop decisions is demonstrated in the start action shortly after
20 km. In contrast to further depleting the battery, the FCS is started
right before a high-power section, which is beneficial for the overall
fuel efficiency. However, if the actual battery SoC was sufficiently high
at this position, the FCS start would have been delayed to the next
high-power phase. Likewise, the last shutdown after 55 km is performed
before the final decent with negative power demand so that energy
can be recuperated efficiently. However, if the SoC was lower at this
position, the FCS shutdown would have been delayed until the battery
is sufficiently charged to satisfy the final SoC constraint. This illustrates
that the map-based strategy benefits from the long-term prediction
while optimally responding to the actual conditions. Also, the map-
based strategy provides reliable SoC control and keeps the number of
start/stop actions low.

The resulting performance benefits over the benchmark strategies
are quantified in Table 2. Following the optimized start/stop posi-
tions, the position-based strategy starts and stops the stack only once,
respectively. However, the low number of starts/stops comes at the
expense of a SoC constraint violation and a fuel consumption, which is
more than 11% higher than the one of the instantaneous strategy. The
instantaneous method achieves a decent fuel efficiency but performs 40
start/stop events, which is clearly too high. In contrast, the proposed
map-based strategy reduces the number of start/stop events to only

Table 2
Quantitative comparison of the three start/stop strategies for the passenger vehicle
driving mission.

Map-based Instant. Position-based
Equivalent fuel consumptiona (kg∕100km) 𝟎.𝟖𝟕𝟔 𝟎.𝟖𝟖𝟒 𝟎.𝟗𝟖𝟓
Relative difference 𝟎% +𝟎.𝟗% +𝟏𝟐.𝟓%

Number of starts/stops 𝟔 𝟒𝟎 𝟐

𝐽 (kg) 0.588 0.932 0.613
Relative difference 0% +58.7% +4.4%

Stack operation time (h) 0.99 0.82 1.17
Relative difference 0% −17.5% +18.3%

Battery throughput (A h) 72.9 71.8 70
Relative difference 0% −1.6% −4%

a Takes into account deviations in the final SoC.

6 while even outperforming the instantaneous strategy regarding the
fuel consumption, which is further decreased by 0.9%. Consequently,
the map-based method also achieves the best result regarding the
objective function of the offline optimization according to Eq. (11)
with reductions of 58.7% and 4.4% with respect to the instantaneous
and the position-based strategy, respectively. Note that the objective
function was evaluated with the simulation sampling interval here to
be more precise. To estimate the effects of the investigated strategies on
the lifetimes of the powertrain components, Table 2 also includes the
stack operation time of the FCS and the battery throughput. For the
investigated driving mission, the map-based strategy reduces the stack
operation time by 18.3% compared to the position-based strategy at the
cost of a comparably small increase of 4% in the battery throughput.
The instantaneous strategy shows a further decrease in the stack oper-
ation time, but the impact of the extensive number of starts/stops must
be taken into account here.

5.3. Analysis of the real-time start/stop condition

To adapt to the actual power demand, the map-based strategy does
not follow the optimal FCS state indications of  ∗ directly but addi-
tionally considers the real-time start/stop condition of Eq. (17) before
performing any start/stop action. The optimal FCS state according to
this condition is a function of the power demand and the equivalence
factor. This relation can be illustrated with a threshold for the power
demand, which separates the area where active stack operation is
optimal from the one where a shutdown is optimal depending on the
equivalence factor (see Fig. 8).

The benefit of considering the real-time start/stop condition is
demonstrated in Fig. 9, which zooms into the passenger vehicle driv-
ing mission. When the optimal FCS state indication according to  ∗

turns 1, the power demand is negative and keeps further decreasing.
Activating the stack in this situation would strain the battery and lead
to a loss of energy as the battery charging power limit is reached. The
real-time start/stop condition ensures that the stack is not started until
the power demand increases and, therefore, ensures that the strategy
adapts to the actual driving conditions. Analogously, stack stops are
prevented as long as the power demand is too high, ensuring efficient
and smooth operation.

5.4. Demonstration for heavy-duty truck with dual-stack FCS

The capabilities of the predictive ECMS with the map-based start/
stop strategy are demonstrated for a 33 t truck with dual-stack FCS
based on measurements of a real-world driving mission. The investi-
gated final part of the mission crosses the Brenner Pass, one of the
most important corridors for road freight transport in Europe [47],
and is particularly challenging due to substantial changes in altitude
(see upper two plots of Fig. 10). The prediction matches the measured
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Fig. 8. Illustration of the real-time start/stop condition for the single-stack FCS: The
optimal FCS state depends on the power demand and equivalence factor.

Fig. 9. Fuel-efficient delay of the stack start due to low power demand.

velocity well for most of the driving mission but considerably deviates
in certain sections due to traffic.

The trajectories of the FCS power, FCS state, and SoC and the
optimal FCS state indication map are shown in the lower three plots
of Fig. 10. The map expresses six FCS state indications depending on
the position and SoC corresponding to the three available FCS states
of the dual-stack FCS. During the uphill section, the map indicates that
both stacks should operate independently of the SoC, which is necessary
as the power demand exceeds the individual maximum stack power of
155 kW. In the subsequent initial part of the descent, there is a clear
indication that both stacks should be stopped as the power demand
reaches the minimum battery power due to the steep slopes. Then,
however, the optimal FCS state indications also depend on the SoC. For
the investigated mission, starting only one stack is sufficient to satisfy
the energy demand of the final part of the trip and reduces the number
of start/stop actions. However, if any significant disturbances occurred,
the strategy would adapt optimally according to the map, providing
SoC control and high fuel efficiency while keeping the number of
start/stop events low.

6. Conclusions

This article proposed a predictive EMS with optimal stack start/stop
control for single and multi-stack FCSs that minimizes fuel consumption
while keeping the number of harmful stack start/stop events low.
Before departure, static route information is used to derive a power de-
mand prediction for the entire driving mission. Based on this long-term
prediction, the energy management for the planned trip is optimized,
which yields 2-D maps storing optimal control information for the real-
time control. While driving, the real-time EMS optimizes start/stop
decisions and the stack power considering the predictive information
from the maps. Thanks to the map-based design, the predictive EMS

Fig. 10. Proposed predictive ECMS with the map-based start/stop strategy analyzed
for a dual-stack FCS based on a real-world driving mission. The colors in the SoC plot
indicate the optimal FCS states according to  ∗.

continuously adapts to the actual power demand and system states,
ensuring robustness against unpredicted disturbances. Moreover, the
design strongly facilitates the real-time implementation because of its
low computational requirements. The predictive concept was bench-
marked against two state-of-the-art start/stop methods in numerical
studies of a single-stack passenger vehicle on a real-world driving
mission. Compared to the first benchmark, an instantaneous strategy,
the proposed strategy considerably reduced the number of start/stop
events from 40 to 6 and, at the same time, decreased the fuel consump-
tion by 0.9%. Whereas the second benchmark, an advanced predictive
strategy optimizing start/stop positions before departure, performed
only 2 start/stop events, it consumed considerable 12.5% more fuel than
the proposed strategy. Both benchmark methods caused SoC constraint
violations, whereas the proposed strategy provided reliable SoC control
thanks to its adaptability. Finally, the capabilities of the predictive
concept were also demonstrated for a truck with a dual-stack FCS.
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Appendix A. Optimal power allocation with identical stacks

The sum of the individual stack powers 𝑃𝑖 of the FCS consisting of
𝑁st identical stacks must satisfy the requested FCS power

𝑃FCS =
𝑁st∑
𝑖=1

𝑃𝑖 (A.1)

and the total fuel consumption rate of the FCS is

𝑚̇FCS =
𝑁st∑
𝑖=1

𝑚̇st(𝑃𝑖) (A.2)

where 𝑚̇st(𝑃st) is assumed to be a strictly convex function of 𝑃st for
𝑃st,idle ≤ 𝑃st ≤ 𝑃st,max. After plugging Eq. (A.1) into Eq. (A.2), the total
fuel consumption rate can be expressed as a function of the first (𝑁st−1)
stack powers:

𝑚̇FCS =
𝑁st−1∑
𝑖=1

𝑚̇st(𝑃𝑖) + 𝑚̇st(𝑃FCS −
𝑁st−1∑
𝑖=1

𝑃𝑖). (A.3)

Optimizing Eq. (A.3) analytically, i.e., setting the partial derivatives
with respect to the stack powers zero, gives a set of (𝑁st −1) equations

𝜕𝑚̇FCS
𝜕𝑃𝑖

=
d𝑚̇st
d𝑃st

(𝑃𝑖) −
d𝑚̇st
d𝑃st

(𝑃𝑁st ) = 0 (A.4)

which, under the assumption of identical and strictly convex stack fuel
consumption curves, only holds true if all individual stack powers are
identical:
𝑃𝑖 = 𝑃𝑗 ∀𝑖, 𝑗 ∈ {1,… , 𝑁st}, 𝑗 ≠ 𝑖. (A.5)

Appendix B. Convexity of equivalent fuel consumption function

The equivalent fuel consumption function 𝐻 , which is defined in
Eq. (7), consists of two terms. The first term 𝑛st𝑚̇st(𝑃st) is based on the
fuel consumption curve, which is strictly convex in 𝑃st by assumption.
Considering that 𝑉 2

OC∕(4𝑅int) is the theoretical maximum of 𝑃b and
𝜆 = −|𝜆| ≤ 0, the analysis of the second term 𝜆𝑓 (𝑃el − 𝑛st𝑃st) shows
that it is convex in 𝑃st:
𝜕2 (𝜆𝑓 )
𝜕𝑃 2

st
=

2|𝜆|𝑛2st𝑅int
𝑄0

(
𝑉 2
OC − 4𝑅int𝑃b

)− 3
2 ≥ 0. (B.1)

Consequently, 𝐻 is strictly convex in 𝑃st.
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Predictive Energy Management Strategy for Fuel Cell
Vehicles Combining Long-Term and

Short-Term Forecasts
Sandro Kofler , Graduate Student Member, IEEE, Zhang Peng Du , Stefan Jakubek , and Christoph Hametner

Abstract—Fuel cell electric vehicles are usually hybrid vehicles
requiring an energy management strategy (EMS) to determine the
power split between the fuel cell system and a battery. The perfor-
mance of an EMS can be improved by taking into account forecasts
of the vehicle velocity. Simple estimates derived from static route
information, e.g., speed limits, can already provide a significant
performance increase because they are available before departure
and for the entire driving mission. However, such long-term pre-
dictions can deviate considerably from the actual velocity because
of dynamic influences, such as traffic, roadworks, or weather. Here,
short-term predictions from vehicular communication systems pro-
vide more accurate real-time information and allow the EMS to
react better to the actual driving conditions. This article proposes
a predictive EMS that optimally combines the information of long-
term and short-term forecasts. Before departure, a dynamic pro-
gramming algorithm optimizes the energy management based on
static route information yielding a distance-based map describing
the optimal cost-to-go. While driving, a model predictive controller
(MPC) optimizes the energy management in real time considering
the short-term prediction and including the optimal cost-to-go
representing the long-term information as terminal cost. A com-
putationally efficient linear MPC implementation is proposed, and
the significant performance benefit over an MPC that tracks an
optimized battery state of charge reference is demonstrated in a
numerical study.

Index Terms—Cost-to-go, dynamic programming, energy
management, fuel cell vehicle, fuel optimal control, model
predictive control, velocity prediction.

I. INTRODUCTION

FUEL cell electric vehicles (FCEVs) are commonly de-
signed as hybrid vehicles, i.e., their powertrain includes a

battery as an auxiliary power source besides the fuel cell system
(FCS). The battery allows for recuperating kinetic energy and
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avoiding low-efficient operation ranges of the FCS [1]. In this
way, the hybrid configuration of the powertrain offers benefits
in terms of fuel economy, which, however, strongly rely on
the energy management, i.e., the power split between the FCS
and the battery. Besides fuel economy, other important aspects
are associated with the energy management, such as battery
charge control and the lifetimes of the power sources: Extremely
charging or discharging the battery provokes degradation and
might even cause infeasible operation, particularly in the case
of heavy-duty vehicles. Therefore, the battery’s state of charge
(SoC) should remain within a predefined range during operation.
To mitigate the degradation of the FCS, dynamic transients and
high peaks in the FCS power demand should be avoided [2],
[3]. The globally optimal power split considering the aforemen-
tioned criteria could only be realized if the power demand of
the entire driving mission would be known in advance, which
is noncausal [4]. Here, predictive energy management strategies
(EMSs) come into play. With an appropriate vehicle model, the
future power demand can be estimated based on predictions
of the altitude and velocity profiles of the upcoming driving
mission. Whereas the altitude can directly be derived from
topographical data if the route is planned in advance, estimating
the velocity is more difficult.

Vehicle velocity prediction is a challenging task due to nu-
merous stochastic influences such as driver behavior, traffic flow,
traffic signals, and environmental influences [5], [6], [7]. The un-
certainty grows with the length of the prediction horizon, which
is why it is impossible to predict the velocity of a human-driven
vehicle for an entire driving mission with a high accuracy. A
simple long-term estimate of the velocity along a planned route
can be based on static route information such as speed limits [8],
[9], [10]. Even though such a long-term prediction is not very
accurate, it can considerably improve the energy management
performance because it is available for the entire driving mission
in advance. In contrast, more accurate velocity predictions can
be provided by onboard, short-term prediction methods based
on intelligent transportation systems (ITSs). In addition to static
route information, these methods are provided with real-time
information regarding the actual driving conditions, such as
traffic, roadworks, or weather, through vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication [11], [12],
[13].

In the literature, two-stage EMS approaches are often found
to consider long-term predictions of the entire driving mission.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Commonly, a reference trajectory for the battery SoC is op-
timized based on the long-term prediction in the first stage.
This offline optimization is often performed with dynamic pro-
gramming (DP) [14], [15], which is a numerical method for
solving dynamic optimization problems. The strengths of DP
are the capabilities to deal with nonlinear problems and consider
constraints on inputs and states. In the second stage, an online
strategy determines the power split between the primary power
source and the battery while driving such that the SoC reference
profile is tracked. To improve the performance and react to
the actual driving conditions, online strategies can additionally
take into account the more accurate short-term predictions, e.g.,
based on model predictive control (MPC), an optimal control
framework allowing to consider constraints and predictions
within a certain prediction horizon [14], [16], [17].

However, using SoC reference trajectories to consider feed-
forward information has a drawback. Optimized long-term in-
formation of the trip is only available along the SoC refer-
ence trajectory. If the actual power demand deviates from the
underlying long-term prediction, which is likely because the
prediction is only based on static route information, the actual
SoC is expected to deviate from its reference. Tracking the SoC
reference trajectory, i.e., forcing the SoC back to the reference,
is a suboptimal behavior [18]. Of course, the reference trajectory
could be re-optimized, but this requires additional computational
resources.

An effective alternative for providing optimized long-term in-
formation is the optimal cost-to-go [19], which can be computed
with DP [18], [20], [21]. The optimal cost-to-go describes the
minimum amount of fuel needed to reach the intended destina-
tion as a function of the position along the trip and the SoC. This
means that the long-term information is available within the en-
tire SoC range in contrast to an SoC reference trajectory. Again,
MPC is a suitable basis for additionally considering short-term
predictions to react to the actual driving conditions. Here, the
optimal cost-to-go can be included as terminal cost in the ob-
jective function [20], [22], [23]. Even though cost-to-go-based
MPC methods are available in the literature, they focus on hybrid
electric vehicles powered by internal combustion engines but not
FCEVs. Moreover, the majority of the cost-to-go-based MPCs
are based on nonlinear formulations, which might complicate
their real-time onboard implementation [24].

The main contribution of this work is a predictive EMS for
FCEVs using DP to compute the optimal cost-to-go based on
static route information before departure and a linear, cost-to-
go-based MPC taking into account short-term predictions to
react to the actual driving conditions. The distinctive feature
of the proposed EMS is that optimized long-term information
is considered in the form of the optimal cost-to-go, which,
unlike an SoC reference trajectory, provides information within
the entire SoC range. Consequently, optimized information is
available even if the actual SoC completely deviates from the
originally optimal path. The DP algorithm used to conduct the
offline optimization allows to consider state and input constraints
and can handle nonlinearities. The computational complexity of
the DP, which is often reported to be a limiting factor [21],
[23], is kept low because only one state is involved and a rather

rough discretization is sufficient for the optimization based on
the long-term prediction derived from static route information.
The offline DP yields the optimal cost-to-go in the form of a
2-D map depending on the position along the trip and the SoC.
Here, a distance-based rather than a time-based description of
the cost-to-go is chosen to be independent of the actual velocity,
which is initially unknown. The online energy management
is conducted with an MPC considering real-time, short-term
predictions within the prediction horizon and an approximation
of the optimal cost-to-go as terminal cost. In this way, the MPC
optimally combines the short-term prediction with the optimized
long-term information and minimizes the amount of fuel for the
trip remainder in each instant. The proposed MPC is based on
a computationally efficient, linear formulation, which is highly
beneficial for the onboard implementation.

The remainder of this article is structured as follows. First, a
control-oriented model of the FCEV is presented in Section II.
Then, the proposed EMS is described in Section III, followed by
the linear formulation of the MPC in Section IV. In Section V,
the proposed MPC is compared to an MPC that tracks an
optimized SoC reference trajectory. The comparison is based
on the simulation of a real-world driving cycle. A conclusion in
Section VI finalizes this article.

II. SYSTEM MODELING

Optimizing the energy management of an upcoming driving
mission requires knowledge of the future vehicle power demand
and the powertrain characteristics. A prediction of the power
demand is not directly available but can be derived from a
prediction of the vehicle velocity considering the longitudinal
vehicle dynamics. In the following, control-oriented models of
the vehicle dynamics and the hybrid powertrain are described.

A. Vehicle Dynamics

The longitudinal model of the vehicle considers the traction
force, aerodynamic drag, rolling resistance, and gravitational
force and is expressed by

δm
dv

dt
=

Ptr

v
− ρAfcd

2
v2 − crmg cos θ −mg sin θ (1)

where v denotes the vehicle velocity, t the time, m the vehicle
mass, δ the correction coefficient of rotating mass, ρ the air
density, Af the vehicle frontal area, cd the drag coefficient, cr the
rolling resistance coefficient, g the gravitational acceleration,
and θ the inclination angle of the road. The traction power Ptr is
provided by an electric motor. The input power of the motor

Pm = Ptr η
−sgnPtr
m (2)

considers power losses in the inverter and the motor approxi-
mated with the efficiency ηm. The overall electric power demand
Pel of the vehicle is the sum of the motor input power and the
power consumption of the auxiliary systems Paux:

Pel = Pm + Paux. (3)
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Fig. 1. Hybrid vehicle configuration consisting of the FCS, battery, traction
motor, and auxiliary systems (AS). The arrows indicate the possible directions
of the power flows.

With that, a prediction of the electric power demand can be
derived from predictions of the vehicle velocity and the inclina-
tion angle of the road, which can be derived from the elevation
profile.

B. Hybrid Powertrain

The vehicle is equipped with a hybrid powertrain with two
power sources: the FCS and a battery (see Fig. 1). Whereas the
FCS can only provide power, the battery can also store energy
coming from the FCS or the electric motor during regenerative
braking. The sum of the FCS power PFCS and the battery power
Pb satisfies the overall electric load:

Pel = PFCS + Pb. (4)

The hybrid configuration of the powertrain implies one degree
of freedom, i.e., the power split between the FCS and the battery.
The EMS determines the FCS power, which is assumed to be
provided within reasonable time. The residual of the power
demand is provided by the battery, subject to the corresponding
constraints.

The FCS is considered in the form of a simplified, quasistatic
model determined by measurements, where the fuel consump-
tion rate ṁH2 of the FCS is a monotonically increasing function
of the FCS power. The FCS model implicitly considers the losses
in the converter and the power demand of the corresponding
auxiliaries, such as the compressor.

The battery is modeled in the form of an equivalent circuit
with three parameters: the open-circuit voltage VOC, the internal
battery resistanceRint, and the nominal battery capacityQ0 [25].
The dynamics of the battery SoC ξ is described by a nonlinear
function depending on the battery power:

dξ

dt
= f(Pb) = −VOC −

�
V 2

OC − 4PbRint

2Q0Rint
. (5)

With this control-oriented description, the dynamic model of the
powertrain has only one state, which is the battery SoC.

III. PREDICTIVE ENERGY MANAGEMENT

The proposed predictive EMS comprises two stages. Before
departure, the energy management of the hybrid powertrain

Fig. 2. The MPC optimizes the power split such that the total fuel amount (T),
which is the sum of the fuel consumed within the prediction horizon (H) and
the optimal cost-to-go (G), is minimized. The optimal cost-to-go represents the
fuel amount of optimal paths for the trip remainder.

is optimized based on a long-term prediction of the power
demand, which is available for the entire driving mission. This
offline optimization is conducted with DP and yields a 2-D map
describing the optimal cost-to-go, i.e., the minimum amount of
fuel required to reach the intended destination, as a function of
the position along the trip and the SoC.

While driving, the online MPC successively optimizes the
power split considering a more accurate short-term prediction
and the optimal cost-to-go at the end of the prediction horizon.
Here, the cost-to-go provides optimized long-term information
for the entire SoC range. As illustrated in Fig. 2, the cost-to-go
decreases with an increasing SoC at the end of the prediction
horizon since more energy is available from the battery for
the remaining trip. However, a higher SoC at the end of the
prediction horizon implies a higher fuel consumption within the
horizon because the battery needs to be charged. The optimal
power split minimizes the sum of the fuel consumed within the
prediction horizon and the cost-to-go.

In the following, the two EMS stages and the corresponding
predictions are described in detail.

A. Offline Optimization With Dynamic Programming

The offline optimization of the energy management requires
a long-term prediction of the power demand. Planning the route
before departure gives access to static route information such as
the elevation profile and speed limits. Based on the speed limits,
an estimate of the vehicle velocity can be derived considering
simplified vehicle dynamics during transients and maximum
cornering speeds. With the known elevation profile and the
estimated velocity profile, an estimate of the vehicle power
demand for the entire driving mission can be derived based on
the model of the vehicle dynamics (see Section II-A).

The optimization aims at minimizing the fuel consumption
for the planned trip under the consideration of the battery SoC
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dynamics

min J =

� t1

t0

ṁH2(PFCS(t))dt

s.t. PFCS(t) ∈ U
Pb(t) ∈ B
ξ(t) ∈ X
ξ(t0) = ξ0

ξ(t1) ∈ X1 (6)

where the sets U , B, X , and X1 cover the feasible ranges
according to the specified constraints on the FCS power, the
battery power, the SoC, and the terminal SoC, respectively, and
ξ0 denotes the initial SoC. The set X1 is commonly specified
by a minimum boundary for the final SoC. Based on Bellman’s
principle of optimality, the discrete counterpart of the dynamic
optimization problem can be solved by a recursive backward al-
gorithm known as dynamic programming [26]. For this purpose,
the battery model (5) is discretized assuming a zero-order hold
for the power demand and the FCS power giving

ξl+1 = ξl − VOC −�
V 2

OC − 4(Pel,l − PFCS,l)Rint

2Q0Rint
Δtl (7)

where Δtl = tl+1 − tl. The problem is solved in the distance
domain meaning that the trip is divided into N − 1 distance
segments. Consequently, Δtl varies depending on the velocity
and the length of the segment, and sections where the vehicle
velocity is zero are ignored. The mean power demand of the l-th
segment is derived from the prediction with

Pel,l =

� tl+1

tl
Pel dt

Δtl
. (8)

The DP algorithm optimizes a sequence of subproblems starting
at the position N − 1 and successively stepping backwards until
the beginning of the trip:

J∗
l (ξl) = min

PFCS,l

�
ṁH2(PFCS,l)Δtl + J∗

l+1(ξl+1)



s.t. PFCS,l ∈ Uq

Pb,l ∈ B
ξl+1 ∈ Xl+1

∀ξl ∈ X q. (9)

The finite sets Uq and X q result from the quantization of U and
X , respectively. The set Xl+1 ⊆ X covers the feasible states at
the position l + 1 subject to the constraints. The resulting opti-
mal cost-to-go function J∗

l (ξl) describes the minimum amount
of fuel needed to reach the intended destination from the position
l as a function of the SoC. The optimal cost-to-go is stored as
a discrete map for each position of the distance grid. Moreover,
the boundaries ξmin

l and ξmax
l of Xl are stored for all positions.

The computational complexity of the DP algorithm grows
linearly with the number of segments and, thus, linearly with
the length of the long-term prediction if an equidistant seg-
mentation is chosen. However, the complexity can be kept

low because a rather rough segmentation is sufficient for the
offline optimization due to the limited accuracy of the long-term
prediction. To save further computational time, the step size can
also be determined adaptively depending on the power demand
signal [27].

B. Online Model Predictive Control

Since the long-term prediction is only based on static route
information, a deviation from the actual power demand because
of dynamic influences, such as traffic, roadworks, or weather,
is inevitable. To improve the performance and better react to
the actual driving conditions, the online MPC additionally con-
siders short-term predictions. Such predictions can be provided
by forecasting systems considering V2V and V2I communica-
tion [11] and are expected to be more accurate than the long-term
prediction because, in addition to static route data, they consider
real-time information.

The objective function of the MPC consists of two terms
representing the fuel consumption within the prediction horizon
and a terminal cost

Jk =

k+Np−1�
j=k

ṁH2(PFCS,j)Ts + J∗
k+Np

(ξk+Np(P FCS,k)) (10)

where Ts denotes the constant sampling time and P FCS,k =
[PFCS,k, . . . , PFCS,k+Np−1]

T denotes the sequence of the FCS
power within the prediction horizon of Np samples. The index k
denotes quantities at the current instant. Note that the indexing
based on k is independent of the indexing based on l used in
the DP. The terminal cost represents the cost-to-go at the end
of the prediction horizon, which is obtained by distance-based
interpolation in the cost-to-go map resulting from the offline
optimization. It is a function of the terminal SoC and, therefore,
the sequence of control inputs.

The optimal sequence of control inputs at the instant k is
determined by minimizing the objective function

P ∗
FCS,k = arg min

P FCS,k

Jk

s.t. PFCS,k+n ∈ U
ΔPFCS,k+n ∈ R
Pb,k+n ∈ B
ξk+n ∈ X
ξk+Np ∈ Xk+Np (11)

with

ΔPFCS,k = PFCS,k − PFCS,k−1 (12)

and n = 0, 1, . . . , Np − 1, whereby the short-term power de-
mand prediction is considered as disturbance. The set R de-
scribes constraints on the increments of the FCS power, which
are necessary to avoid requesting infeasible transients from the
FCS. The consideration of these constraints is only relevant in
the MPC because the offline DP is based on a considerably
rougher discretization, where the FCS dynamics are negligible.
The boundaries ξmin

k+Np
and ξmax

k+Np
defining the set of feasible
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states Xk+Np at the end of the prediction horizon are determined
by distance-based linear interpolation. The constraints on the
battery power, the SoC, and the SoC at the end of the prediction
horizon are implemented as soft constraints to prevent infeasi-
bility. According to the receding horizon principle, only the first
stepP ∗

FCS,k is actually applied to the system. In the next sampling
instant, the measurements and the short-term prediction are
updated, and the procedure is repeated [28].

The two terms of the objective function have counteracting
effects on the optimization. The minimization of the fuel con-
sumption within the prediction horizon is favored by a low FCS
power. However, a lower FCS power implies a lower SoC at
the end of the prediction horizon and, consequently, a higher
cost-to-go because less energy is stored in the battery. The opti-
mal power split is a trade-off and minimizes the amount of fuel
needed to reach the intended destination based on the available
information, which consists of the short-term prediction and the
optimized long-term information.

IV. LINEAR MPC FORMULATION

The optimal control problem of the online MPC must be
solved onboard and in real time. Therefore, reducing the compu-
tational complexity for solving the problem is highly beneficial
for the implementation. In this section, a computationally effi-
cient linear MPC formulation is derived. First, the battery SoC
model is linearized. Then, a local quadratic approximation of the
cost-to-go is formulated, and a physically motivated quadratic
objective function taking into account ohmic battery losses is
derived. The formulation allows to constrain increments of the
FCS power to prevent the FCS from infeasible power rates.

A. Model Linearization

The battery SoC model (5) is linearized at the operating point
Pb,op = 0W yielding

dξ

dt
= − Pb

Q0VOC
+R(Pb) (13)

where R denotes the remainder. The linearized model is then
discretized with Ts assuming a zero-order hold for the battery
power. An incremental formulation of the control input, i.e., the
FCS power, is chosen to allow constraining the control moves.
Therefore, the state vector includes two states, which are the
SoC and the FCS power: xk = [ξk , PFCS,k−1]

T. Considering
Pb = Pel − PFCS, the linear discrete-time state-space model can
be written as

xk+1 =

�
1 −c

0 1

	
xk +

�
−c

1

	
Δuk +

�
c

0

	
wk (14a)

yk = xk (14b)

where

Δuk = ΔPFCS,k, wk = Pel,k, c = − Ts

Q0VOC
.

Based on the linear model, the future trajectories of the SoC, the
FCS power, and the battery power within the prediction horizon

Fig. 3. Relative linearization error of the battery model as a function of the
normalized battery power with respect to the nominal battery energy Eb.

can be expressed as

Sk = F S xk +ΦS ΔUk +ΘSW k (15)

P FCS,k = F F xk +ΦF ΔUk (16)

P b,k = − F F xk −ΦF ΔUk +W k (17)

and the SoC at the end of the prediction horizon can be expressed
as

ξk+Np = F̄ Sxk + Φ̄SΔUk + Θ̄SW k (18)

where

Sk =
�
ξk+1 . . . ξk+Np

�T

P FCS,k =
�
PFCS,k . . . PFCS,k+Np−1

�T

P b,k =
�
Pb,k . . . Pb,k+Np−1

�T

ΔUk =
�
ΔPFCS,k . . . ΔPFCS,k+Np−1

�T

W k =
�
Pel,k . . . Pel,k+Np−1

�T
.

These linear expressions are the basis for the formulation of
the quadratic objective function. The time-invariant matrices
F S, ΦS, ΘS, etc., are derived from the discrete-time model as
described in [29].

The linearization of the battery model implies a lineariza-
tion error, which is linked to the neglected ohmic losses and,
therefore, depends on the battery parameters. The relative lin-
earization error can be computed with

Rrel(Pb) =
R(Pb)

f(Pb)
=

VOC −
�

V 2
OC − 4RintPb

2VOC
. (19)

Fig. 3 illustrates the relative linearization errors of the battery
used in the numerical study of this work and batteries from the
literature [18], [30]. The approximation is good, in particular, if
the battery is operated with low absolute values of the battery
power. Moreover, the impact of the linearization on the SoC
prediction is limited because the prediction horizon wherein an
accurate short-term prediction is feasible is relatively short.
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Fig. 4. The optimal cost-to-go resulting from the offline optimization and
the partial derivative of the cost-to-go with respect to the SoC at two different
positions of a driving cycle. The shaded areas in the lower plots indicate
exemplary ranges where local linear models are fitted to. Note the differently
scaled ordinates.

B. Approximation of the Cost-to-Go

The optimal cost-to-go resulting from the offline optimization
is available as a discrete map J∗

l (ξl) at each position of the
distance grid and can be approximated for any position by
distance-based linear interpolation. The upper plots in Fig. 4
show typical cost-to-go profiles at two different positions of
a driving cycle. The cost-to-go generally decreases with an in-
creasing SoC because more energy is stored in the battery. Under
certain conditions, however, the cost-to-go remains constant if a
certain threshold ξth

l is exceeded. This behavior is illustrated in
the plots of position 2, which is almost at the end of the cycle, and
can be explained as follows: Suppose that the minimum final SoC
specified by X1 can be reached from the l-th position running
the FCS only with the minimum feasible power according to U
if ξl = ξth

l . Then, the minimum final SoC is exceeded if ξl > ξth
l

likewise operating the FCS with the minimum feasible power.
The amount of fuel to reach the destination, i.e., the cost-to-go,
is the same in either case because the fuel consumption rate is
only a function of the FCS power. Consequently, the cost-to-go
profile remains constant for all ξl ≥ ξth

l .
The absolute value of the cost-to-go is irrelevant for the online

optimization with the MPC; relevant is the partial derivative of
the cost-to-go with respect to the SoC, which can be derived by
numerical differentiation. Therefore, the approximation of the
cost-to-go is based on a model of the derivative of the cost-to-go.
Describing the derivative of the cost-to-go by a uniform function
of the SoC is not possible because of the sharp changes in
its slope, as the lower plots of Fig. 4 indicate (more details
regarding this behavior are given in Section V-C). Consequently,
the derivative of the cost-to-go at the end of the prediction
horizon is described with a local linear model

∂Ĵ∗
k+Np

∂ξ

���
ξk

= β0 + β1ξk+Np (20)

where the two parameters β0 and β1 are estimated with the least-
squares method within a predefined range around ξk (note that
ξk+Np is unknown). The range the local linear model is fitted
to lies within [ξmin

l ; ξth
l ] if the threshold is relevant, otherwise

within [ξmin
l ; ξmax

l ].
The cost-to-go at the end of the prediction horizon can then be

approximated with a truncated Taylor series, where ξk is chosen
as operating point:

Ĵ∗
k+Np

= J∗
k+Np

���
ξk

+
∂Ĵ∗

k+Np

∂ξ

���
ξk

�
ξk+Np − ξk

�
. (21)

The first term in (21) is irrelevant for the optimization as it does
not depend on the decision variable and, therefore, omitted.
Inserting (20) gives the local quadratic approximation of the
optimal cost-to-go at the end of the prediction horizon

Ĵ∗
k+Np

= (β0 − β1ξk) ξk+Np + β1ξ
2
k+Np

(22)

where another constant term has been omitted likewise.

C. Quadratic Objective Function

The objective function of the linear MPC considers the fuel
consumption within the prediction horizon and the cost-go-to
at the end of the prediction horizon. The components of the
objective function are elaborated in the following.

1) Fuel Consumption Within Prediction Horizon: The qua-
sistatic FCS model is approximated with a second-degree poly-
nomial model:

ˆ̇mH2 = γ0 + γ1 · PFCS + γ2 · P 2
FCS. (23)

This allows to express the fuel consumption within the prediction
horizon with a quadratic formulation based on the FCS power
sequence

m̂H2,k = γ0TsNp + qT
1P FCS,k + P T

FCS,kQ2P FCS,k (24)

with

q1 = γ1Ts

�
1 1 . . . 1

�T
, q1 ∈ RNp×1 (25)

Q2 = γ2Ts I, Q2 ∈ RNp×Np (26)

where I denotes the identity matrix.
Since the battery model is linearized at Pb,op = 0W, ohmic

battery losses

PΩ = R intI
2
b (27)

are not considered in the linear model of the MPC. Therefore, a
physically motivated equivalent fuel consumption representing
the ohmic battery losses is included in the objective function,
which is based on a quadratic approximation. With Ib = −Q0ξ̇
and the nonlinear battery model (5) follows

I2
b =

�
VOC −

�
V 2

OC − 4PbRint

2Rint

�2

. (28)
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Truncating the Taylor series of (28) at Pb,op = 0W after the
quadratic term yields

I2
b =

P 2
b

V 2
OC

. (29)

An approximation of the ohmic battery losses can then be written
after inserting (29) into (27) and assuming a mean FCS efficiency
η̄FCS

ṁeq =
Rint

V 2
OC η̄FCS Hi

P 2
b (30)

where Hi denotes the lower heating value of hydrogen. With
that, the equivalent fuel consumption representing ohmic losses
within the prediction horizon can be formulated as

m̂eq,k = P T
b,kQΩP b,k (31)

where the matrix QΩ is determined by

QΩ =
Rint Ts

V 2
OC η̄FCS Hi

I, QΩ ∈ RNp×Np . (32)

2) Cost-to-Go: The cost-to-go at the end of the prediction
horizon is considered in the form of the quadratic approximation
in (22).

3) Overall Objective Function: The overall quadratic objec-
tive function is the sum of (22), (24), and (31)

Ĵk = m̂H2,k + m̂eq,k + Ĵ∗
k+Np

(33)

and represents the amount of fuel required to go from the current
position to the intended destination.

In each instant, the linear MPC solves the optimal control
problem specified in (11) whereby Jk is replaced by Ĵk, which
turns the problem into a quadratic programming problem and
reduces the computational complexity significantly. Quadratic
programming problems can be solved in polynomial time, i.e.,
the computational time is polynomial in the length of the pre-
diction horizon [31]. In the application, the prediction horizon
is relatively short because it is limited by the accuracy of the
short-term prediction, which worsens with a growing horizon.

V. NUMERICAL STUDY

In this section, the performance of the proposed EMS is
analyzed and compared with an SoC reference tracking MPC
based on the simulation of a real-world driving cycle. The
study considers a passenger vehicle equipped with a FCS with
a nominal power of 55 kW and a battery with a capacity of
9.9 kWh. The steady-state measurement data of the FCS’s fuel
consumption rate and the approximation with the quadratic
polynomial model are shown in Fig. 5. The actual fuel con-
sumption for the driving mission is computed by interpolating
in the map of measurements, whereas the offline optimization
and the online MPC operate with the polynomial model. The
battery parameters were identified based on measurement data
resulting in VOC = 350V, Rint = 0.15Ω, and Q0 = 28.28Ah.
The vehicle mass is 1950 kg.

The control-relevant system constraints are 5 kW ≤ PFCS ≤
55 kW, −30 kW ≤ Pb ≤ 50 kW, 0.3 ≤ ξ ≤ 0.9, and the FCS
power rate is constrained with ±25 kW/s. The initial SoC is 0.7

Fig. 5. Fuel consumption rate of the FCS as a function of the FCS power:
steady-state measurements vs. polynomial model.

and the final SoC ≥ 0.7. The MPCs operate with a sampling
time of 1 s and a prediction horizon of 30 s.

The remainder of this section is structured as follows: First,
the SoC reference tracking MPC is introduced in Section V-A,
followed by the description of the driving cycle and the predic-
tions in Section V-B. The optimization based on the long-term
prediction and the corresponding results are discussed in Sec-
tion V-C. Finally, the performances of the MPCs are compared
and evaluated in Section V-D, and the effect of the prediction
horizon length is discussed in Section V-E.

A. SoC Reference Tracking MPC

The proposed cost-to-go MPC is compared with an MPC that
tracks an SoC reference trajectory at the end of the prediction
horizon. The linear formulation of the SoC reference tracking
MPC is analogous to the formulation of the cost-to-go MPC
presented in Section IV, but instead of considering the cost-to-
go, the deviation from the SoC reference is penalized at the end
of the prediction horizon:

pξ,k+Np = qtrack



ξref
k+Np

− ξk+Np

�2
. (34)

Thus, the overall objective function to be minimized according
to (11) is

J track
k = m̂H2,k + m̂eq,k + pξ,k+Np . (35)

The tracking weighting qtrack is 103 kg in this study, which
ensures that the SoC reference at the end of the prediction
horizon is tracked sufficiently close. The remaining parameters
are chosen identically as for the cost-to-go MPC.

The SoC reference is the optimal trajectory regarding the
long-term prediction of the driving mission. The optimization
is conducted with the DP algorithm (9), whereby the optimal
control inputs P ∗

FCS,l(ξl) are stored for each position of the
distance grid. After the optimization, the optimal SoC trajectory
can be computed in forward direction starting at ξ0 and linearly
interpolating in the map of optimal control inputs.

B. Driving Cycle and Predictions

The velocity and altitude data of the driving cycle were
recorded during a real-world drive covering 210 km, and the
electric power demand was derived based on the vehicle model
assuming a constant auxiliary power of 2 kW (see upper two
plots of Fig. 6). The driving cycle starts and ends in urban areas
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Fig. 6. Upper plots: Actual data and long-term predictions for the investigated real-world driving cycle. Lower plots: SoC and FCS power resulting from the two
MPCs.

and includes rural road and highway sections. The first half of the
cycle goes uphill overcoming an altitude gain of approximately
730m. Therefore, the highway section between kilometers 30
and 100 shows a comparably high power demand.

In this study, the long-term prediction of the velocity (see
Fig. 6) was retrieved from legal speed limits using AVL Route
Studio, which is a test cycle preparation tool. The tool considers
vehicle dynamics during acceleration phases and limits the
cornering speed depending on the road curvature. The compar-
ison with the actual velocity profile shows that the long-term
prediction provides a good estimate of the actual velocity for
a significant fraction of the driving cycle. In some sections,
however, the long-term prediction deviates considerably from
the actual velocity. The most obvious deviation is between
kilometers 126 and 141 and was caused by roadworks on the
highway.

The focus of this study is to analyze the potential of the
proposed EMS and the extent to which an accurate online
velocity prediction can be useful for the energy management.
For this purpose, the short-term prediction is assumed to be
ideal, i.e., coinciding with the actual velocity.

C. Offline Optimization

For the offline optimization, the feasible ranges of the SoC
and the FCS power are quantized with 120 and 40 grid seg-
ments, respectively, and the step size of the distance grid is
chosen to be 1 km. The resulting 2-D optimal cost-to-go map
depending on the position and the SoC is depicted in the upper
plot of Fig. 7. It can be seen that the cost-to-go decreases with
the covered distance and with an increasing SoC. White areas

Fig. 7. Optimal cost-to-go (upper plot) and partial derivative of the optimal
cost-to-go with respect to the SoC (lower plot) as a function of the position
and the SoC. Both plots include the optimal SoC trajectory according to the
long-term prediction. Note that extreme values are excluded in the lower plot
for a better visualization.

indicate infeasible ranges regarding the long-term prediction and
the specified constraints. The plot includes the globally optimal
SoC trajectory for the long-term prediction, which is used as
reference trajectory for the SoC reference tracking MPC. The
optimal SoC trajectory uses the whole feasible SoC range, which
indicates the importance of considering state constraints in the
DP.
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TABLE I
COMPARISON OF SPECIFIC FUEL CONSUMPTION AND EQUIVALENT NUMBER OF

FCS LOAD CYCLES REGARDING THE INVESTIGATED DRIVING CYCLE

The lower plot of Fig. 7 depicts the partial derivative of
the cost-to-go with respect to the SoC. It can be shown that
the derivative of the cost-to-go corresponds to the SoC-related
costate in Pontryagin’s minimum principle (PMP) [23]. The
Hamiltonian of PMP is independent of the SoC with the chosen
battery model. Consequently, the costate is constant along opti-
mal paths within sections where no constraints are active [32].
This means that the level lines in the lower plot of Fig. 7 illustrate
optimal paths for reaching the destination from any position and
feasible SoC. A subset of the optimal paths meet at points where
the SoC constraints are active, i.e., at the kilometers 28 and 106,
causing a discontinuous change of the costate. The influence of
the SoC constraints also causes the sharp changes in the slope
of the ∂J∗/∂ξ profile (see lower plots of Fig. 4).

D. Performance Evaluation

The SoC and FCS power trajectories resulting from the two
MPCs are depicted in the lower two plots of Fig. 6. Besides
analyzing their behavior, the two MPCs are compared quanti-
tatively based on two performance measures: the specific fuel
consumption and an equivalent number of FCS load cycles [33],
which is defined by

Neq =
1

2Pmax
FCS

� t1

t0

����dPFCS

dt

���� dt (36)

and can be interpreted as a measure for degradation [34].
The SoC reference tracking MPC tracks the SoC reference

at the end of the prediction horizon but can deviate from the
reference within the horizon to adapt the power split according to
the short-term prediction. However, the 30 s prediction horizon
does not provide much freedom, and the MPC tracks the SoC
reference, which is based on the long-term prediction, rather
strictly. Consequently, the FCS power signal shows fluctuations
depending on the deviation of the predicted power demand from
the actual power demand. The fluctuating behavior stresses the
FCS and affects the fuel efficiency.

Unlike the SoC tracking MPC, the proposed cost-to-go MPC
is provided with optimized long-term information available for
the entire SoC range and does not rely on a single reference tra-
jectory. Thus, the cost-to-go MPC has more freedom to compen-
sate for deviations of the long-term power demand prediction.
The resulting FCS power trajectory is smoother, which improves
the fuel performance and mitigates FCS degradation.

Table I compares the specific fuel consumption and the equiv-
alent number of load cycles of the two MPCs and the overall
optimal energy management minimizing the fuel consumption.
For the investigated driving cycle, the cost-to-go MPC achieves

Fig. 8. Study of the two MPCs during the roadworks section, where the initial
SoC is set identical for both cases. The bar chart compares the corresponding
optimal costs-to-go at the end of the section (lower, dark parts), costs within the
section (upper, light parts), and total costs.

a 0.4% lower fuel consumption than the SoC tracking MPC,
even though the predictions are identical for both MPCs. This
improvement is remarkable considering that the theoretical op-
timum is only 0.3% better than the result of the cost-to-go MPC.
The performance advantage of the cost-to-go MPC over the SoC
tracking MPC is even more impressive regarding the equivalent
number of FCS load cycles, where an improvement of 38% is
achieved. To sum up, the cost-to-go MPC does not only improve
the fuel efficiency but also stresses the FCS considerably less,
which potentially mitigates degradation. Both methods satisfy
all specified constraints.

The operation of the two MPCs is compared in more de-
tail during the roadworks section between kilometers 126 and
141, where the power demand prediction based on static route
data deviates considerably from the actual power demand. The
comparison is shown in Fig. 8, whereby the SoC at the begin-
ning of the section is set identical in both cases for a better
illustration. The long-term prediction estimated a high power
demand for the section. Therefore, the optimized SoC reference
decreases meaning that the battery is expected to support the
FCS. However, the actual power demand is significantly lower.
The SoC tracking MPC drastically reduces the FCS power to
follow the reference trajectory hitting the lower boundary on the
FCS power. On the contrary, the cost-to-go MPC maintains the
FCS power at a high level and even charges the battery. As the
SoC rises, the cost-to-go MPC only gradually lowers the FCS
power according to the optimum with the cost-to-go. Operating
the FCS with a higher power implies a higher amount of fuel
consumed within the section compared to the SoC tracking

72 2.3 Publication C



KOFLER et al.: PREDICTIVE ENERGY MANAGEMENT STRATEGY FOR FUEL CELL VEHICLES COMBINING LONG-TERM 16373

Fig. 9. Comparison of the fuel consumption and the equivalent number of FCS
load cycles (both normalized) as a function of the prediction horizon length.

MPC (see upper parts of bar chart in Fig. 8). However, the
cost-to-go MPC achieves a lower cost-to-go at the end of the
section, which overcompensates for the higher cost within the
section. Consequently, the total cost mfuel, i.e., the sum of the
fuel consumed within the section and the cost-to-go at the end
of the section, is 7 g lower than for the SoC tracking MPC. Note
that this improvement only refers to the investigated section with
a length of 15 km.

E. Effect of the Prediction Horizon Length

Fig. 9 shows the comparison of the two MPCs regarding the
fuel consumption and the equivalent number of FCS load cycles
as a function of the prediction horizon length. The cost-to-go
MPC significantly outperforms the SoC tracking MPC regarding
both measures, in particular if the prediction horizon is short.
For an 1-step prediction horizon, the tracking MPC has a 2.3%
higher fuel consumption than the cost-to-go MPC, and the
equivalent number of load cycles is even 12-fold. The tracking
MPC approaches the performance of the cost-to-go MPC with
an increasing prediction horizon but achieves a comparable
performance only for rather long prediction horizons, where
short-term predictions are expected to be less accurate.

The fuel performance of the cost-to-go MPC is already decent
with an 1-step prediction horizon and improves further with
growing prediction horizon. Also, the equivalent number of load
cycles decreases; a 30 s prediction horizon reduces the number
of load cycles by approximately 6%. The investigation indicates
that the cost-to-go MPC also performs well if the prediction hori-
zon varies throughout the driving mission, e.g., short horizons
in urban areas and longer horizons on the highway.

VI. CONCLUSION

A predictive EMS was proposed that optimally combines a
long-term prediction derived from static route information and
real-time short-term predictions from vehicular communication
systems. Before departure, a DP algorithm optimizes the power

split between the FCS and the battery based on the long-term
prediction yielding the optimal cost-to-go as a function of the po-
sition and the SoC. The online energy management is determined
by an MPC that minimizes the fuel consumption considering
the short-term predictions within the prediction horizon and
the optimal cost-to-go as terminal cost. A linear formulation
of the MPC with a physically motivated objective function was
developed, which is highly beneficial for the real-time, onboard
execution of the EMS.

The proposed EMS was compared with an SoC reference
tracking MPC in simulation. Tracking the optimized SoC refer-
ence trajectory showed to be too restrictive to actually benefit
from the short-term predictions. On the contrary, the cost-to-
go MPC optimized the power split independently from the
SoC based on the optimum regarding the combined long-term
and short-term information. The cost-to-go MPC clearly out-
performed the SoC reference tracking MPC in terms of fuel
efficiency and the equivalent number of load cycles, which
can be interpreted as a degradation measure, particularly if the
short-term prediction horizon is short.
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H I G H L I G H T S

• Long-term predictions are used to optimize a battery SoC reference trajectory.
• Application-oriented experimental validation with a real fuel cell vehicle.
• Real driving tests on public roads affected by real-world influences such as traffic.
• Direct comparison with a nonpredictive method in reproducible dynamometer tests.
• Significant reduction in fuel consumption by 6.4%.

A R T I C L E I N F O
Keywords:
Experimental validation
Fuel cell vehicle
Optimized SoC reference
Predictive energy management
Real driving test

A B S T R A C T
Predictive information is highly valuable for energy management strategies (EMSs) of fuel cell vehicles.
In particular, long-term predictions can significantly improve the fuel efficiency because they allow for an
optimization of the energy management before departure. This potential has been demonstrated in numerous
simulation studies. This work extends the literature with an extensive experimental validation of a predictive
EMS that exploits route-based long-term predictions in the form of optimized reference trajectories for the
battery state of charge. The experimental validation is performed with a real passenger fuel cell vehicle and
strongly focuses on the real-world application where random influences such as traffic cause considerable
disturbances with respect to the long-term prediction. The validation comprises two stages: First, real driving
tests are repeatedly conducted on public roads, analyzing the robustness of the predictive EMS and assessing
fuel efficiency gains over a nonpredictive EMS. Second, chassis dynamometer tests are performed where a
selected real driving cycle is reproduced to compare the two EMSs directly. The chassis dynamometer tests
confirm a significant reduction in the fuel consumption by 6.4% compared to the nonpredictive EMS. The
experimental results are analyzed quantitatively and qualitatively in detail.

1. Introduction

Fuel cell vehicles commonly have a hybrid powertrain consisting
of the fuel cell system (FCS) and a battery (see Fig. 1), and the
power allocation between the two power sources is determined with
an energy management strategy (EMS). The EMS has a direct impact
on the operating ranges of the two powertrain components and can
strongly influence the fuel efficiency by avoiding inefficient operation.
In addition to fuel efficiency, ensuring feasible operation is important:
The requested system power must be satisfied within reasonable time,
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and powertrain constraints, such as constraints on the battery state of
charge (SoC), must not be violated.

The optimal energy management in view of these aspects is highly
specific to the power demand profile of the driving mission. Conse-
quently, the performance of an EMS can be enhanced by considering
appropriate predictive information of the driving mission. To improve
the fuel efficiency by actively involving the battery in the energy
management, long prediction horizons are necessary. For example, the
optimal energy management for a trip including an ascent could require
charging the battery already several kilometers before reaching the
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uphill section. Long-term predictive information can be retrieved from
different sources. At a basic level, long-term information can just con-
sist of the trip length, which is often considered in predictive EMSs for
plug-in hybrids to achieve an even use of battery energy throughout the
driving mission [1–3]. However, the knowledge of the trip length alone
does not provide information regarding the power demand profile,
which is needed to optimally adapt the energy management to the
driving mission. More advanced and yet simply applicable approaches
consider static route information, such as the altitude profile, legal
speed limits, or average segment speeds, to get long-term estimates
of the power demand [4]. Even though such long-term predictions
have limited accuracy, they can be highly effective for the energy
management because they are available for the entire driving mission in
advance. Consequently, the energy management for a planned trip can
be optimized before departure, yielding predictive control information
that can then be considered in the real-time EMS while driving. In
the literature, optimized reference trajectories for the battery SoC have
shown to be an effective way to inform the real-time EMS with the
long-term prediction. Simple and yet robust strategies directly track
the optimized SoC reference with basic control laws to determine the
real-time power allocation between the FCS and the battery while
considering powertrain constraints [5,6]. An optimization-based alter-
native is the adaptive equivalent consumption minimization strategy
(ECMS). Here, a proportional-integral (PI) controller that tracks the
SoC reference trajectory is used to determine the so-called equivalence
factor, which expresses a virtual fuel consumption for using energy
from the battery [7–9]. The indirect consideration of the SoC feed-
back combined with the continuous optimization of the equivalent
fuel consumption allows for a more gradual adaption of the power
allocation, which can benefit the fuel efficiency. Also, ECMS-based
methods that additionally consider real-time short-term predictions
while tracking the SoC reference trajectory have been developed [10–
14]. Similarly, model predictive control (MPC) approaches combine
short-term predictions with the long-term prediction in the form of the
SoC reference while also taking into account powertrain constraints [2,
15–19]. Besides SoC reference trajectories, optimized maps expressing
the optimal equivalence factor or the optimal cost-to-go depending
on the covered distance and SoC can be used to inform the real-
time EMS with the long-term prediction. Such map-based approaches
are advantageous when the long-term prediction considerably deviates
because they allow the real-time EMS to continuously adapt to the
actual conditions and preserve close-to-optimal fuel efficiency. EMSs
based on the ECMS [20–22] and MPC [23] have been proposed to
consider predictive control information in the form of optimized maps.
Regardless of the approach, considering long-term power demand pre-
dictions has shown significant fuel efficiency gains over nonpredictive
alternatives in simulation-based studies. However, experimental vali-
dations with real vehicles on real-world driving missions that confirm
these performance benefits are not available in the literature so far.

In general, the early development and performance evaluation of
EMSs, predictive and nonpredictive, happens in simulation. Simulation
studies are cost and time efficient, but their outcomes deviate from
reality because of modeling errors, unconsidered system behavior, and
other influences. Validation with hardware-in-the-loop (HIL) testing is
more realistic but found less frequently in the literature. The signifi-
cance of HIL tests grows with their complexity. Simple HIL experiments
only consider controller hardware to validate the real-time capability
of the EMS and emulate the powertrain behavior, such as in [24–26],
whereas more complex HIL setups also include small-scale powertrain
components, as for example in [27–30]. Particularly HIL testing with
full-scale powertrain components such as in [31–34] comes close to re-
ality but still does not entirely cover the vehicle behavior in real-world
driving.

Real driving tests with fully functional vehicles are the ultimate
level of validation, but they are rare in the literature due to high
cost and effort. For example, small experimental vehicles are used in

Fig. 1. Hybrid powertrain of the investigated fuel cell vehicle consisting of the FCS,
battery, traction motor (M), and auxiliary systems (AS). The arrows indicate the possible
directions of the power flows.
Source: The scheme is taken from [23].

real driving tests to validate nonpredictive EMSs in [35–37] and a
model predictive controller considering short-term predictions in [38].
In [39–41], nonpredictive fuzzy logic strategies are demonstrated and
investigated with real fuel cell trucks and buses on public roads.
Similarly, extensive road tests with fuel cell buses are conducted in [42–
44] to validate further nonpredictive EMSs. Whereas the real vehicle-
validated strategies mentioned so far do not take into account long-term
predictions, the EMS for plug-in hybrid fuel cell vehicles that was
experimentally validated in [45] considers a prediction of the expected
energy demand to determine the time when the FCS is turned on.
To sum up, real-vehicle validations of EMSs for fuel cell vehicles in
the literature were mainly conducted with buses, trucks, and small
experimental vehicles and for nonpredictive strategies. In particular,
EMSs exploiting long-term power demand predictions to optimize an
SoC reference trajectory before departure have not been validated in
real-world driving tests with real vehicles so far.

The main contribution of this work is an extensive experimental
validation of an EMS for fuel cell vehicles that considers a long-term
prediction of the power demand to optimize SoC reference trajectories.
The experimental validation is conducted with a real fuel cell vehicle
and strongly focuses on real-world driving. It comprises two stages,
where the performance of the predictive EMS is compared with a
nonpredictive charge sustaining strategy (see Fig. 2(a)):

1. Various real driving tests are conducted on two routes on pub-
lic roads. The real driving tests involve all random influences
relevant in the actual application, such as dense traffic, traf-
fic regulation, vehicle standstills, and varying driver behavior,
which are hardly predictable over a long-term prediction hori-
zon. In addition, the behavior of the real vehicle deviates from
the prediction due to model errors. Therefore, the real driving
tests evaluate the robustness of the predictive EMS against these
unpredicted real-world disturbances and its feasibility regarding
specified powertrain constraints. Because the power demand
profile varies between individual tests due to the random influ-
ences, the performance advantage of the predictive EMS cannot
be quantized directly. However, comparisons based on the equiv-
alent fuel consumption, which takes into account differences in
the battery energy and energy demand between tests, enable an
indirect assessment of the fuel efficiency gains.

2. Chassis dynamometer tests based on measurements of a selected
real driving cycle are conducted. Here, power demand profiles
can be reproduced for multiple tests, which allows for a direct
performance comparison between the predictive EMS and the
nonpredictive EMS. Since the dynamometer tests are based on
a real driving cycle and include the entire vehicle, the tests still
cover the unpredicted real-world influences and appropriately
replicate the actual application.
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Fig. 2. Experimental validation of predictive SoC reference tracking.

Table 1
Model parameters of the demonstrator vehicle.

Vehicle dynamics model
Vehicle mass, 𝑚 (k g) 1950
Frontal area, 𝐴f (m2) 2.12
Air density, 𝜌 (k g m−3) 1.204
Aerodynamic drag coefficient, 𝑐d 0.346
Rolling friction coefficient, 𝑐r 0.0055
Traction motor efficiency, 𝜂m 0.87
Auxiliary power demand (estimate), 𝑃aux (k W) 1
Powertrain model
FCS idle power, 𝑃 idle

FCS (k W) 8
Max. FCS power, 𝑃max

FCS (k W) 50
Battery energy capacity (k Wh) 9.9
Battery capacity, 𝑄nom (A h) 28.28
Internal resistance, 𝑅int (Ω) 0.15
Min. battery power (continuous), 𝑃min

b (k W) −20

Max. battery power (continuous), 𝑃max
b (k W) 30

Min. SoC, 𝜉min 0.2
Max. SoC, 𝜉max 0.8

The investigated predictive EMS derives a long-term power demand
prediction for a planned driving mission from easily available static
route information, i.e., the altitude profile and legal speed limits. Based
on the long-term prediction and a control-oriented vehicle model, a
distance-based reference trajectory for the battery SoC is optimized
before departure (see Fig. 2(b)). While driving, a simple real-time
controller tracks the optimized SoC reference trajectory to determine
the real-time power split between the FCS and the battery. The simple
real-time EMS is chosen for the validation to assess the baseline for
performance improvements by considering route-based power demand
predictions, which might even be exceeded with more advanced meth-
ods. Moreover, the low computational complexity and robustness of the
investigated EMS make it an interesting candidate for an immediate
industrial application. To ensure a fair comparison, the nonpredictive
charge sustaining strategy used as a benchmark is based on the same
tracking controller as the proposed predictive SoC reference tracking
but considers a constant SoC reference.

The remainder of this article is structured as follows. First, the fuel
cell vehicle used for the validation and the control-oriented vehicle
modeling are described in Section 2. Then, the predictive SoC reference
tracking strategy is introduced in Section 3. In Section 4, the computa-
tion of the equivalent fuel consumption is described, which is the basis
for the quantitative evaluation of the fuel efficiency. The experimental
validation of the predictive SoC reference tracking based on real driving
tests and dynamometer tests is presented in Section 5. A conclusion in
Section 6 finalizes this article.

2. Fuel cell vehicle and control-oriented modeling

The predictive EMS investigated in this work is evaluated and
compared with the nonpredictive strategy in experiments with a fuel
cell demonstrator vehicle of AVL List GmbH. The demonstrator vehicle,
which is shown in Fig. 2(a), is based on a Volkswagen Passat GTE and
equipped with an FCS with a nominal power of 50 k W and a battery
with a nominal energy capacity of 9.9 k Wh.

To conduct the offline optimization of the SoC reference trajectory
before departure, appropriate models of the vehicle components are
required. First, a model of the vehicle longitudinal dynamics is used to
derive a prediction of the power demand for the entire driving mission
from static route information, i.e., the altitude profile and legal speed
limits. Second, a model of the hybrid powertrain is used to optimize the
energy management for the predicted power demand. To keep the com-
putational complexity of the offline optimization low, simplified and
control-oriented models are used. Nevertheless, the simplified modeling
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does not affect the performance of the predictive concept because the
accuracy of the long-term power demand prediction is limited in any
case. In the following, the vehicle dynamics model is described first
before the powertrain model is introduced.

2.1. Vehicle dynamics for power demand prediction
To estimate the power demand for the entire driving mission based

on the speed limits and the altitude profile along the route, a model of
the longitudinal vehicle dynamics is used. The model considers the trac-
tion force, aerodynamic drag, rolling resistance, and the gravitational
force
𝑚 d𝑣
d𝑡

= 𝜂sgn𝑃trm
𝑃tr
𝑣

−
𝜌𝐴f𝑐d
2

𝑣2 − 𝑐r𝑚𝑔 cos 𝜃 − 𝑚𝑔 sin 𝜃 (1)
where 𝑚 denotes the vehicle mass, 𝑣 the velocity, 𝑡 the time, 𝜂m the trac-
tion motor efficiency, 𝑃tr the traction motor power, 𝜌 the air density,
𝐴f the frontal area of the vehicle, 𝑐d the aerodynamic drag coefficient,
𝑐r the rolling friction coefficient, 𝑔 the gravitational acceleration, and
𝜃 the road inclination angle, which can be derived from the altitude
profile. The parameters are assumed to be known and summarized in
the upper part of Table 1. Based on the model of the longitudinal vehi-
cle dynamics, a prediction of the traction motor power can be derived
from the speed limits and the inclination angle along the route. Here,
system power constraints are considered to prevent infeasible power
demands during velocity transients and uphill sections. Additionally,
the vehicle velocity is saturated depending on the road curvature to
prevent infeasible cornering speeds, which improves the prediction
quality particularly in urban and mountainous areas.

The prediction of the overall electric power demand 𝑃el can then be
computed with
𝑃el = 𝑃tr + 𝑃aux (2)
where 𝑃aux denotes the power demand of the auxiliary systems. The
variation of the auxiliary power demand is hardly predictable over
long-term prediction horizons, and its magnitude is relatively small
compared to the traction power demand. Therefore, a constant estimate
of the auxiliary power demand serves as a sufficient approximation
for the prediction. The prediction of the overall power demand is the
input for the offline optimization of the energy management before
departure.

2.2. Powertrain model for offline optimization
The offline optimization of the SoC reference trajectory before

departure is based on a model of the powertrain, which consists of the
FCS and the battery (see Fig. 1). The sum of the FCS power 𝑃FCS and
battery power 𝑃b satisfies the overall electric power demand
𝑃el = 𝑃FCS + 𝑃b (3)
whereby the power split between the two power sources is determined
by the EMS and, therefore, the variable to be optimized. To provide the
optimized SoC reference trajectory for the real-time energy manage-
ment shortly after the route was determined, the offline optimization
must be fast, i.e., its computational complexity must be low. Therefore,
the two power sources are described with simplified, quasistatic models
focusing on the characteristics relevant for the long-term optimization.
Note that a consideration of more detailed power source dynamics
would not necessarily improve the overall performance because the
accuracy of the long-term prediction is limited and certain deviations
due to real-world influences are expected.

The FCS is considered with a quadratic polynomial model describing
the fuel consumption rate 𝑚̇FCS(𝑃FCS) as a function of the FCS power,
where the compressor power demand is implicitly taken into account.
In this study, the fuel consumption curve was identified based on
tank measurements, which include purging losses, considering mea-
surements of several real-world driving missions. The fuel consumption

Fig. 3. Identified FCS model and battery model compared to sets of measurements.

curve is compared to a set of measurements in Fig. 3(a). The mea-
surements deviate from the model within a certain range due to the
neglected system dynamics and other influences. However, the model
sufficiently describes the characteristic of the fuel consumption rate for
the offline optimization based on the long-term prediction. To mitigate
FCS degradation, the FCS is only operated between the idle power limit
𝑃 idle

FCS and the maximum power limit 𝑃max
FCS when active. If the power

request is low, the EMS can put the FCS into a stopmode where the
fuel consumption rate is zero but FCS-related auxiliaries including the
compressor remain active. Because the auxiliaries are not shut down,
frequent switching between active operation and stopmode is possible
without restrictions. The FCS power in stopmode is assumed to be zero,
i.e., the electric load of the auxiliaries is neglected.

The battery behavior is approximated with an equivalent circuit
model considering ohmic losses where the battery voltage 𝑉b linearly
depends on the battery current 𝐼b:
𝑉b = 𝑉OC(𝜉) − 𝑅int𝐼b. (4)
Here, the open-circuit voltage 𝑉OC varies depending on the battery SoC
𝜉, which is described with a quadratic polynomial, whereas the ohmic
resistance 𝑅int is assumed constant. In this study, the battery model
was identified based on battery voltage and current measurements
of several real-world driving missions. Despite the simplification, the
battery fits the measurements well, as shown in Fig. 3(b). With the
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equivalent circuit model, the dynamics of the battery SoC can be
described as a nonlinear function of the battery power 𝑃b with

𝜉̇ = −𝑉OC −
√

𝑉 2
OC − 4𝑃b𝑅int

2𝑄nom𝑅int
(5)

where the battery capacity 𝑄nom is assumed to be known. The power-
train model parameters of the demonstrator vehicle are summarized in
the lower part of Table 1.

3. Predictive SoC reference tracking

The goal of the predictive EMS is to improve the fuel efficiency
and ensure feasible operation by considering a long-term prediction
of the driving mission that is based on easily available static route
information, i.e., the altitude profile and legal speed limits. Therefore,
the basic assumptions of the predictive approach are that the route is
determined before departure and the mentioned static route informa-
tion is accessible, e.g., through map services or the onboard navigation
system. Although this kind of prediction has limited accuracy, it has
shown to be highly effective for optimizing the energy management
because it covers the entire driving mission and, thus, provides the
long prediction horizon necessary to actively involve the battery in the
energy management. Moreover, the route-based prediction is available
before departure so that the predictive EMS can be divided into two
stages (see Fig. 2(b)):

1. In the offline optimization before departure, the energy man-
agement is optimized based on the long-term power demand
prediction, yielding an optimized, distance-based SoC reference
trajectory. The optimization can be conducted either onboard,
if the required computational resources are available, or on a
cloud computing server.

2. The onboard real-time energy management determines the set-
point for the FCS power by tracking the optimized SoC reference
trajectory considering the actual power demand and system
constraints.

The significant advantage of the two-stage approach is that the real-
time control can be realized with a computationally simple tracking
controller because the predictive information is already processed be-
fore departure. In the following, the two stages are described in more
detail.

3.1. Offline optimization before departure

To optimize the SoC reference trajectory for the planned driving
mission before departure, a long-term power demand prediction is
needed. The power demand prediction is derived from the altitude
profile and speed limits along the route based on the vehicle dynamics
model as described in Section 2.1. Due to the limited accuracy of the
long-term prediction, a relatively rough discretization interval can be
chosen for the offline optimization, which allows for a considerable
acceleration of the optimization without affecting the overall perfor-
mance of the predictive EMS. For this purpose, the power demand
prediction is segmented with

𝑃el,𝑙 =
∫ 𝑡𝑙+1
𝑡𝑙

𝑃el d𝑡

𝛥𝑡𝑙
(6)

for all 𝑙 = 1 … (𝐿− 1) before the offline optimization, where 𝛥𝑡𝑙 denotes
the time spent in the 𝑙th segment and (𝐿− 1) is the number of segments.

The objective is to minimize the fuel consumption, which is spec-
ified in discrete-time form assuming a zero-order hold for the power

demand, the FCS power, and the battery power

min 𝐽 =
𝐿−1∑
𝑙=1

𝑚̇FCS(𝑃FCS,𝑙)𝛥𝑡𝑙

s.t. 𝜉1 = 𝜉init
𝜉𝐿 ≥ 𝜉end
𝜉min ≤ 𝜉𝑙 ≤ 𝜉max

𝑃min
b ≤ 𝑃b,𝑙 ≤ 𝑃max

b
𝑃FCS,𝑙 ∈ 

(7)

where the feasible FCS power range  includes the stopmode
 =

{
𝑃 ∈ R ∶ 𝑃 idle

FCS ≤ 𝑃 ≤ 𝑃max
FCS ∨ 𝑃 = 0 W} (8)

and 𝜉init denotes the initial SoC, 𝜉end the minimum SoC at the end of the
driving mission, 𝜉min the minimum SoC, and 𝜉max the maximum SoC.
The minimum battery power 𝑃min

b and maximum battery power 𝑃max
bare chosen conservatively according to the continuous charging and

discharging current specifications of the battery to ensure feasibility of
the SoC reference.

In this study, the optimal control problem is solved with dynamic
programming (DP), which is a dynamic optimization method [46].
The significant advantage of DP over methods based on Pontryagin’s
minimum principle, a common alternative for solving optimal energy
management problems, is that all specified constraints including the
SoC constraints can be considered directly. Thanks to the simplified
powertrain modeling, the problem includes only one state (𝜉) and one
control input (𝑃FCS). Together with the rough discretization intervals,
the low dimension of the problem results in a low computational
complexity, which ensures that the optimization results can be provided
shortly after the route was determined. More details regarding the DP
implementation for the present problem can be found in the literature,
e.g., [20,23].

The output of the offline optimization is the optimized SoC refer-
ence trajectory. To limit the effects of unpredicted velocity deviations
and vehicle standstills on the predictive energy management, the SoC
reference trajectory 𝜉ref(𝑠) is specified in the distance-domain, i.e., as
function of the position 𝑠 along the route and not as a function of time.
Consequently, unpredicted variations in the driving time that have
occurred in the past do not affect the optimality of the SoC reference
trajectory for the trip remainder.

3.2. Real-time SoC reference tracking
The real-time EMS determines the FCS power setpoint based on a

computationally simple controller that tracks the optimized reference
trajectory while driving. The position along the driving mission, which
is required to access the current SoC reference value, is determined
by measuring the covered distance. In this study, the real-time SoC
reference tracking strategy extends an already implemented nonpredic-
tive charge sustaining controller with a PI controller considering the
deviation from the optimized SoC reference 𝛥𝜉 = (𝜉ref(𝑠) − 𝜉) at the
current position:
𝑃 track

FCS = 𝑘P𝛥𝜉 + 𝑘I ∫
𝑡

0
𝛥𝜉 d𝜏 + 𝑃NP

FCS(𝑃el, 𝜉). (9)

Here, 𝑃 track
FCS denotes the FCS power according to the tracking controller

and 𝑃NP
FCS(𝑃el, 𝜉) the nonpredictive component, which is described by

a 2-D map depending on the measured power demand and SoC. The
nonpredictive component, which was tuned and tested based on expert
knowledge, is included to ensure reliable operation where the power
demand is robustly satisfied within reasonable time in any situation.
Because the SoC reference is optimized based on the power demand
prediction, which is expected to deviate from the actual power demand
to some extent, the PI controller gains 𝑘P and 𝑘I are chosen such that
certain freedom for deviation from the SoC reference is provided to
adapt to the unpredicted disturbances.
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To prevent infeasible power requests from the FCS, the FCS power

resulting from the tracking controller is saturated within the feasible
power range determined by the constraints on the FCS power, FCS
power increments, and battery power, which yields the FCS power
setpoint 𝑃 setp

FCS :
𝑃 setp

FCS = min
𝑃FCS

|||𝑃 track
FCS − 𝑃FCS

||| + 𝑞s𝑠

s.t. 0 W ≤ 𝑃FCS ≤ 𝑃max
FCS

𝛥𝑃min
FCS ≤ 𝑃FCS − 𝑃 prev

FCS ≤ 𝛥𝑃max
FCS

𝑃min
b − 𝑠 ≤ 𝑃el − 𝑃FCS ≤ 𝑃max

b + 𝑠.

(10)

Here, 𝑃 prev
FCS denotes the FCS power in the previous instance, and 𝛥𝑃min

FCS
and 𝛥𝑃max

FCS are the minimum and maximum FCS power increments
per time step, respectively. The battery power constraints 𝑃min

b and
𝑃max

b adapt according to the battery management system in real time
and are considered as soft constraints to avoid infeasibility. For this
purpose, a slack variable 𝑠 ≥ 0 and a weighting coefficient 𝑞s > 1 are
used. Note that the problem in Eq. (10) can be solved efficiently with
a series of logical operations, see [3]. The constraints on the battery
SoC are implicitly considered by tracking the optimized SoC reference
trajectory.

If the resulting FCS power setpoint is considerably lower than the
idle power limit, the real-time EMS puts the FCS into the stopmode
where the fuel supply is stopped:

𝑃FCS =

{
min(𝑃 setp

FCS , 𝑃 idle
FCS ), if 𝑃 setp

FCS ≥ 𝑃 thr
FCS

0 W, otherwise. (11)

Here, the power threshold 𝑃 thr
FCS is a tuning parameter. Because FCS-

related auxiliaries such as the compressor remain active in stopmode,
a fast switch to active operation is possible at any time.

4. Evaluation of fuel consumption

The predictive SoC reference tracking is compared with a nonpredic-
tive method in experiments with the real fuel cell vehicle in Section 5.
The experiments include real driving tests on public roads, where vari-
ations in the power demand are inevitable due to numerous real-world
influences, such as traffic, driver behavior, and weather. But also in the
subsequently conducted dynamometer tests, the power demand varies
within certain tolerances. Moreover, the final battery SoC generally
differs from the initial SoC depending on the power demand profile
because both EMSs must ensure freedom for deviation from the SoC
reference to adapt to unpredicted disturbances. Consequently, the net
energy contribution of the battery varies between different tests.

To allow for a performance comparison despite these variations,
the experimental results are evaluated based on the equivalent fuel
consumption 𝑚eq that takes into account corrections for variations in
the battery energy contribution 𝛥𝑚b and the traction motor energy
𝛥𝑚tr:
𝑚eq(𝑡) = 𝑚H2

(𝑡) + 𝛥𝑚b(𝑡) + 𝛥𝑚tr(𝑡). (12)
Here, the actual fuel consumption 𝑚H2

is computed based on tank
measurements and, thus, includes purging losses.

The correction for the battery energy is based on the deviation of
the SoC from the initial SoC considering the open-circuit voltage model

𝛥𝑚b(𝑡) = − 𝑄nom
𝐻i𝜂̄FCS ∫

𝜉(𝑡)

𝜉init
𝑉OC(𝜉) d𝜉 (13)

where 𝐻i = 120 MJ k g−1 denotes the lower heating value of hydrogen.
The mean FCS efficiency

𝜂̄FCS =
∫ 𝑡end
0 𝑃FCS d𝑡
𝐻i𝑚H2

(14)

is computed individually for each test because it strongly varies de-
pending on the EMS.

The power demand correction takes into account variations in the
traction motor power with respect to a reference test. Variations in
the power demand of the auxiliaries are not considered because they
depend on the EMS. This means that, for example, an increased fuel
consumption due to higher cooling power demands is not corrected.
For the dynamometer tests, where the driving times are identical, the
power demand correction can be evaluated continuously over time with

𝛥𝑚tr(𝑡) = ∫ 𝑡
0 𝑃tr(𝜏) − 𝑃tr,ref(𝜏) d𝜏

𝐻i𝜂̄FCS
(15)

where 𝑃tr,ref denotes the traction motor power of the reference test.
For the real driving tests, the driving time varies depending on traffic.
Therefore, the correction is only computed for the entire test with

𝛥𝑚tr =
𝐸tr − 𝐸tr,ref
𝐻i𝜂̄FCS

(16)

where 𝐸tr and 𝐸tr,ref denote the traction energies of the entire test and
reference test, respectively.

5. Experimental results

The predictive SoC reference tracking is evaluated and compared
with a nonpredictive EMS in experiments with the real fuel cell pas-
senger vehicle. The nonpredictive EMS is a charge sustaining strategy
that maintains the SoC around a constant reference value of 0.6. The
nonpredictive charge sustaining is based on the same real-time tracking
controller as the predictive SoC reference tracking, which allows for a
fair evaluation of the fuel efficiency gains by considering route-based
long-term predictions.

To ensure an application-oriented validation of the predictive EMS,
the experimental evaluation puts a strong emphasis on real-world
driving. Unlike synthetic driving cycles, real-world driving is affected
by various random influences, such as traffic, traffic regulation, driver
behavior, and weather, which cause considerable deviations from the
long-term velocity prediction including vehicle standstills with varying
standstill times. The experimental validation is based on two types of
tests:

• Real driving tests were conducted on predetermined routes on
public roads including urban, rural, and freeway driving. These
tests are influenced by varying traffic conditions and vehicle
standstills, which have an impact on the total driving time. The
tests are therefore particularly interesting for analyzing the ro-
bustness of the predictive EMS against unpredicted disturbances
in the real-world application.

• Dynamometer tests were carried out based on a selected real driving
cycle on a chassis dynamometer testbed. In contrast to the real
driving tests conducted on public roads, traction power demand
profiles can be reproduced multiple times on the dynamometer
testbed, which enables a direct comparison between the two
EMSs and drawing more significant conclusions regarding the
benefit of the predictive EMS on the fuel efficiency. Also in the
dynamometer tests, the real driving cycle covers real-world dis-
turbances including vehicle standstills, which are not considered
in the speed limit-based prediction. In addition, dynamometer
tests based on the ‘‘Worldwide Harmonized Light-Duty Vehi-
cles Test Cycle’’ (WLTC), a standard cycle widely used in the
literature, were conducted.

All tests started and ended with an SoC close to 0.6, and the small
differences between the initial and the final SoC are considered in the
quantitative evaluation based on the equivalent fuel consumption as
described in Section 4.

The predictive strategy considers route-based predictive informa-
tion, i.e., the altitude profile along the route and a speed limit-based
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prediction of the velocity, to conduct the offline optimization before
departure. In this work, both pieces of information were obtained from
AVL Route Studio, a test cycle preparation tool. The tool considers
longitudinal vehicle dynamics during transients and limits the veloc-
ity depending on the road curvature. In this way, feasible long-term
velocity predictions can be generated conveniently for testing purposes.

In the following, the real driving tests are presented first, focusing
on quantitative results. Then, the dynamometer tests are discussed,
where the qualitative differences in the energy management of the two
EMSs are analyzed in addition to a quantitative evaluation.

5.1. Real driving tests
The real driving tests were conducted on two different routes on

public roads, which are labeled ‘‘route A’’ and ‘‘route B’’ in the fol-
lowing. The two routes represent day-to-day driving missions such as
commuting and include shares of urban, rural, and freeway driving.
On both predetermined routes, tests were repeated several times with
the predictive SoC reference tracking and the nonpredictive charge
sustaining. The covered distance, the altitude profile, the speed limits,
and the speed limit-based prediction of the individual tests on a route
are identical, whereas the velocity profile and, thus, the power demand
profile and the total driving time vary because of real-world influences,
such as traffic, traffic regulation, driver behavior, and weather. These
influences also cause vehicle standstills with varying standstill times.
The primary objective of the real driving tests is the experimental
validation of the robustness of the predictive SoC reference tracking
in the actual application, where unpredicted disturbances caused by
the real-world influences are inevitable. For this purpose, the perfor-
mance advantage over the nonpredictive EMS is assessed based on
the equivalent fuel consumption. Moreover, the quality of the long-
term velocity predictions is assessed with plots comparing the measured
and predicted velocity profiles over distance. The distance-based plots
do not reflect the effects of velocity deviations on the driving time,
which is meaningful for the assessment because the predictive EMS
compensates for these effects by using a distance-based SoC reference
trajectory.

5.1.1. Real driving tests on route A
Route A has a length of 26 k m and includes rural and urban roads.

The altitude profile and the speed limit-based velocity prediction of
route A are shown in Figs. 4(a) and 4(b), respectively. Based on this
information, the long-term power demand prediction for the driving
mission was derived, and the energy management was optimized (also
see Fig. 4(a)). The optimized SoC trajectory, which is used as reference
for the predictive SoC reference tracking, plans that the battery sup-
ports the FCS in the high-power uphill section and is recharged in the
subsequent downhill section. In this way, the FCS is operated close to
the idle power limit, where the FCS efficiency peaks, unless the power
demand significantly exceeds the maximum continuous battery power
limit of 30 k W.

Seven real driving tests, which are labeled A1 to A7, were performed
on route A. Their measured velocity signals are compared to the long-
term velocity prediction in Fig. 4(b). The speed limit-based prediction
provides a good estimate but inevitably deviates because of traffic
influences, particularly in the final urban part, where several stops were
required.

To evaluate the potential of the predictive EMS under these varying
disturbances, the route was driven twice with the nonpredictive charge
sustaining (tests A1 and A2) and five times with the predictive SoC ref-
erence tracking (tests A3 to A7). The quantitative results are presented
in Table 2a and 2b. The strong influence of traffic is reflected in the
cumulated standstill time, which varies between 3.7 and 12.2 min and
affects the total driving time. The fuel efficiency of the individual tests
is evaluated based on the equivalent fuel consumption, which takes into
account corrections for deviations in the traction energy and the final

Fig. 4. Real driving tests on route A.

SoC. The two tests that applied the nonpredictive charge sustaining
strategy (tests A1 and A2) showed an identical performance with an
equivalent fuel consumption of 0.242 k g. Compared to this result, all
tests using the predictive SoC reference tracking showed a reduced
equivalent fuel consumption with improvements ranging from 0.4 %
to 7.4 %. On average, the predictive SoC reference tracking yielded a
considerable improvement of 4.6 %. The measurements indicate that
this improvement results from an increase in the mean FCS efficiency
thanks to the predictive information. Regarding the effect of the EMS on
ohmic battery losses, no clear statement is possible. Feasible operation
was ensured, i.e., the power demand was satisfied without violating
powertrain constraints, in all tests.

Remarkably, the considerable improvements in the fuel efficiency
were achieved with a rather small amplitude in the SoC reference
trajectory for this route. This indicates that the results could also be
achieved with a considerably smaller battery capacity.
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Fig. 5. Real driving tests on route B.

5.1.2. Real driving tests on route B
Three tests were conducted on route B, which has a length of 96 k m

and covers urban, rural, and freeway driving. The route-based long-
term prediction, the results of the prediction-based offline optimization,
and the comparison between the predicted and the measured velocities
of the three tests are shown in Fig. 5. Again, the long-term velocity
prediction gives a good estimate but shows traffic-induced deviations,
particularly in the urban parts of the route. Similar to the optimization
outcome for route A, the optimal energy management for the predicted
power demand plans a rather steady operation of the FCS in the low-
power range, where the FCS efficiency is high. Consequently, most of
the dynamic share of the predicted power demand is covered by the
battery, which can be seen in optimized SoC profile. Due to the longer
distance and the higher changes in altitude compared to route A, the
optimized SoC profile shows a considerably higher amplitude here.

The first test (B1) was performed with the nonpredictive charge sus-
taining, and the other two tests (B2 and B3) applied the predictive SoC
reference tracking. The results are presented in Table 2c. Both B2 and
B3 show a considerable reduction in the equivalent fuel consumption

Table 2
Results of the real driving tests comparing the two EMSs: nonpredictive charge
sustaining (CS) vs. predictive SoC reference tracking (SoC RT).

(a) Real driving tests on route A.
A1 A2 A3 A4

EMS CS CS SoC RT SoC RT
Traction energy (k Wh) 3.44 3.42 3.28 3.32
Total driving time (min) 36.7 43.5 35.8 35.3
Standstill time (min) 4.7 12.2 3.7 4.4
𝒎𝐞𝐪 (kg) 𝟎.𝟐𝟒𝟐 𝟎.𝟐𝟒𝟐 𝟎.𝟐𝟐𝟖 𝟎.𝟐𝟑
Relative difference 𝟎% 𝟎% −𝟓.𝟖% −𝟓%

Mean FCS efficiency 49.1% 49.5% 51.7% 50.8%
Battery losses (kWh) 0.061 0.088 0.069 0.046

(b) Real driving tests on route A (continuation).
A5 A6 A7

EMS SoC RT SoC RT SoC RT
Traction energy (k Wh) 3.2 3.31 3.38
Total driving time (min) 38.7 39.8 39.1
Standstill time (min) 4.7 5.3 6.7
𝒎𝐞𝐪 (kg) 𝟎.𝟐𝟐𝟒 𝟎.𝟐𝟑𝟏 𝟎.𝟐𝟒𝟏
Relative difference −𝟕.𝟒% −𝟒.𝟓% −𝟎.𝟒%

Mean FCS efficiency 52.4% 51.4% 50.4%
Battery losses (kWh) 0.057 0.044 0.057

(c) Real driving tests on route B.
B1 B2 B3

EMS CS SoC RT SoC RT
Traction energy (k Wh) 12.09 13.88 11.96
Total driving time (min) 120.7 120.8 112.4
Standstill time (min) 13.8 13.7 8.5
𝒎𝐞𝐪 (kg) 𝟎.𝟖𝟏𝟏 𝟎.𝟕𝟔𝟕 𝟎.𝟕𝟖𝟐
Relative difference 𝟎% −𝟓.𝟒% −𝟑.𝟔%

Mean FCS efficiency 51.4% 55% 55%
Battery losses (kWh) 0.163 0.262 0.25

with respect to the test applying the nonpredictive EMS with improve-
ments of 5.4 % and 3.6 %, respectively. On average, the equivalent fuel
consumption was reduced by 4.5 %. The predictive strategy caused an
increase in the ohmic battery losses due to the enhanced battery use.
However, the mean FCS efficiency was improved significantly from
51.4 % for the nonpredictive EMS to 55 % for the predictive strategy,
which overcompensated for the increased battery losses and resulted
in the significantly higher fuel efficiency. Also, feasible operation was
ensured in all tests.

5.1.3. Summary of real driving tests
The evaluation based on the equivalent fuel consumption validated

the robustness of the predictive SoC reference tracking for the real-
world application. Even though the tests were affected by considerable
disturbances with respect to the speed limit-based long-term prediction,
the results of the real driving tests indicate that the predictive SoC
reference tracking performs significantly better than the nonpredictive
charge sustaining with average reductions in the equivalent fuel con-
sumption of 4.6 % on route A and 4.5 % on route B. The analysis of the
results also indicates that the improved fuel economy is achieved by
an increase in the mean FCS efficiency, whereas influences of ohmic
battery losses are less relevant.

However, the variances in the velocity and power demand profiles
and the standstill times of the real driving tests do not allow for a direct
comparison between the predictive SoC reference tracking and the
nonpredictive charge sustaining. Therefore, dynamometer tests were
conducted based on a selected real driving cycle, which are presented
in the following.
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5.2. Dynamometer tests

To draw more significant conclusions regarding improvements in
the fuel efficiency and compare the two EMSs also qualitatively, tests
were performed on the chassis dynamometer testbed, where velocity
and traction power profiles can be reproduced within certain toler-
ances. The dynamometer tests are based on the velocity measurements
of a selected real driving cycle, namely B3. Therefore, the dynamome-
ter tests cover the significant disturbances with respect to the speed
limit-based prediction that were experienced in the corresponding real
driving test including vehicle standstills. Moreover, the chassis dy-
namometer tests involve the entire vehicle, and thus, influences of the
auxiliary systems and the drivetrain are also included. In addition to
the dynamometer tests based on the real driving cycle, tests based on
the standard WLTC were conducted. The results are described below.

5.2.1. Dynamometer tests based on the real driving cycle
The altitude profile, velocity profile, and traction power profile of

the real driving cycle B3 are shown in Fig. 6(a). The driving cycle cov-
ers urban, rural, and freeway driving and includes substantial changes
in altitude, which dominate the traction power profile. The influence
of the altitude profile on the traction power is particularly evident on
the freeway section between 55 k m and 85 k m. Besides measurements,
Fig. 6(a) also includes the speed limit-based velocity prediction, which
considers the vehicle dynamics during transients and limits the velocity
depending on the road curvature. As already discussed for the real
driving tests, the long-term velocity prediction gives a good estimate of
the actual velocity but inevitably deviates due to real-world influences.
Particularly in the urban parts at the beginning and the end of the
driving cycle, the actual velocity is affected by numerous unpredicted
vehicle stops and dense traffic. Nevertheless, the long-term traction
power prediction, which is derived from the predicted velocity and
the altitude profile, provides a good estimate of the measured power
demand except for fast dynamics, i.e., spikes in the measured traction
power, which are strongly influenced by the unpredicted disturbances.
Based on the power demand prediction, the energy management was
optimized.

The result of the offline optimization and the comparison of the pre-
dictive SoC reference tracking and the nonpredictive charge sustaining
are shown in Fig. 6(b). The optimal energy management regarding the
prediction aims at operating the FCS closely to the idle power limit,
where the FCS efficiency peaks, but also shows a slight power-following
behavior, which reduces ohmic battery losses. Consequently, the opti-
mized SoC reference is clearly influenced by the changes in altitude
and the implicated variations in the traction power. The optimized
SoC reference basically plans to charge the battery in the low-power
sections of the driving cycle, e.g., during descents, and discharge the
battery in the high-power sections, e.g., in the uphill freeway section
starting at 55 k m.

Not considering this predictive information, the charge sustaining
strategy maintains the SoC around a constant reference of 0.6. Although
the controller provides certain freedom for deviation from the constant
reference, the charge sustaining strategy shows a clear power-following
behavior, i.e., the FCS power follows the power demand. Thus, the FCS
is operated in the low-power range frequently entering the stopmode
in the low-power sections of the cycle and must satisfy high power
requests during the high-power sections, particularly in the uphill
freeway section starting at 55 k m.

Unlike the charge sustaining strategy, the predictive SoC refer-
ence tracking strategy tracks the optimized SoC reference trajectory.
Even though the measured FCS power of the predictive SoC reference
tracking deviates from the offline solution due to the unpredicted real-
world influences, the SoC follows the reference trajectory adequately.
Compared to the nonpredictive strategy, the predictive SoC reference
tracking requests more power from the FCS in the low-power sections
of the cycle and charges the battery in this way. In return, the battery

Fig. 6. Dynamometer tests based on the real driving cycle B3.

actively supports the FCS in the high-power sections of the cycle, which
avoids operating the FCS in its inefficient high-power range.

The effects of the two EMSs on the fuel efficiency are visually
compared based on the equivalent fuel consumption, which takes into
account the energy stored in the battery and is also shown in Fig. 6(b).
Remarkably, the time courses of the equivalent fuel consumption of the
two EMSs are almost identical in the initial 55 k m of the driving cycle,
indicating that potentially higher battery losses due to the increased
battery use of the predictive SoC reference tracking are inconsiderable.
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Table 3
Results of the dynamometer tests comparing the nonpredictive charge sustaining with
the predictive SoC reference tracking.

(a) Real driving cycle B3.
Charge sustaining SoC tracking

Traction energy (k Wh) 12.93 12.8
𝒎𝐞𝐪 (kg) 𝟎.𝟖𝟕𝟒 𝟎.𝟖𝟏𝟖
Relative difference 𝟎% −𝟔.𝟒%

Mean FCS efficiency 50.1% 54.2%
Battery losses (kWh) 0.217 0.234

(b) WLTC.
Charge sustaining SoC tracking

Traction energy (k Wh) 3.46 3.45
𝒎𝐞𝐪 (kg) 𝟎.𝟐𝟐𝟓 𝟎.𝟐𝟏𝟖
Relative difference 𝟎% −𝟑.𝟏%

Mean FCS efficiency 51.8% 53.1%
Battery losses (kWh) 0.057 0.062

However, a significant gap between the equivalent consumption tra-
jectories of the two strategies opens up during the high-power uphill
sections on the freeway starting around 55 k m, where the predictive
SoC reference tracking successfully avoids the inefficient high-power
FCS range.

The quantitative results are summarized in Table 3a and confirm
these findings. The predictive SoC reference tracking reduces the equiv-
alent fuel consumption by remarkable 6.4 % with respect to the non-
predictive charge sustaining. The dynamometer tests confirm that the
reduction in the fuel consumption is based on an improvement in
the mean FCS efficiency, which is significantly increased from 50.1 %
for the charge sustaining strategy to 54.2 % for the predictive SoC
reference tracking strategy. Compared to the nonpredictive strategy,
the predictive SoC reference tracking produces higher ohmic battery
losses because of the enhanced battery use, but this increase is of
minor significance regarding the overall fuel efficiency, as already
observed in the real driving tests. The outcomes confirm that long-
term predictions derived from easily available static route information
are highly effective for improving the fuel efficiency although their
prediction quality is limited due to real-world disturbances. Also, the
effectiveness of the simple and easily implementable real-time SoC
reference tracking controller is confirmed.

5.2.2. Dynamometer tests based on the WLTC
The WLTC is a standard cycle for determining fuel consumption and

emission levels. As such, the WLTC is a widely used test cycle in the
literature, which is why it is interesting to evaluate the performance
benefit of the predictive SoC reference tracking for the WLTC. However,
one must keep in mind that the official test procedure does not consider
the use of predictions, and thus, the WLTC tests are hypothetical
tests here. Since speed limits are also not specified for the WLTC, the
actual velocity reference for the dynamometer testbed is considered
as theoretical velocity prediction (see Fig. 7(a)). However, vehicle
standstills are considered unpredictable and therefore not represented
in the prediction. Because the WLTC does not consider changes in
altitude, this dynamometer test also investigates the potential of the
predictive EMS for driving missions where the traction power profile is
dominated by the velocity.

The close-to-ideal prediction offers the possibility to evaluate the
accuracy of the long-term power demand prediction based on the
vehicle dynamics. The predicted traction motor power estimates the
measured traction motor power well (see Fig. 7(a)), confirming the
suitability of the vehicle model. Only fast dynamics, i.e., the spikes
in the measured traction motor power, are not represented due to the
segmentation of the prediction for the offline optimization. However,

Fig. 7. Dynamometer tests based on the WLTC.

this segmentation error does not limit the performance of the pre-
dictive concept because the real-time SoC tracking controller ensures
enough freedom to deviate from the SoC reference optimized based on
the prediction. Also, power demand spikes are assumed to be almost
unpredictable in the real-world application.

The result of the offline optimization and the comparison of the
two EMSs are shown in Fig. 7(b). Because of the relatively low mean
power demand of the WLTC, the solution of the optimization indicates
to operate the FCS mainly at the idle power limit. The corresponding
SoC profile, which is used as reference for the predictive SoC reference
tracking, basically plans to charge the battery in the initial low-power
part of the cycle and discharge the battery in the final high-power part.
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Fig. 8. Effects of the EMSs on the FCS operation: relative shares of the FCS operation
modes (left plots) and the energy-weighted FCS power distribution (right plots).

The qualitative differences between the nonpredictive charge sus-
taining and the predictive SoC reference tracking are similar to the
differences observed in the test based on the real driving cycle. Track-
ing the optimized SoC reference, the predictive SoC reference tracking
considerably reduces high-power FCS operation compared to the charge
sustaining strategy thanks to the active use of the battery, particularly
in the final high-power section starting around 18 k m. This is also where
a significant difference in the equivalent fuel consumption graphs
arises. Note that the equivalent fuel consumption decreases at the end
of the test cycles because the battery is charged through regenerative
breaking.

The quantitative results are summarized in Table 3b. The predictive
SoC reference tracking strategy decreases the equivalent fuel consump-
tion by 3.1 % with respect to the nonpredictive strategy. This result is
notable and indicates that the predictive EMS can also bring significant
improvements for driving missions without changes in altitude. The
improvement again results from an increase in the mean FCS efficiency.

5.2.3. Analysis of the FCS power distribution
The effect of the predictive EMS on the FCS operation is analyzed

in Fig. 8 for the two dynamometer tests. The histograms illustrate
the energy-weighed FCS power distribution and confirm the afore-
mentioned findings. Compared to the charge sustaining strategy, the
predictive SoC reference tracking strategy shifts energy provided by
high-power operation to low-power operation in both tests. Particularly
the operation in the FCS power range just above the idle power limit,
where the efficiency peaks, is significantly increased with the predictive
EMS. For the dynamometer test based on the real driving cycle, the
predictive SoC reference tracking also considerably reduces the time
spent in the stopmode, which is beneficial because the mean FCS power
in active operation is decreased in this way.

6. Conclusions

This work experimentally validated an easily implementable predic-
tive EMS considering a long-term prediction derived from static route

information to optimize a distance-based SoC reference trajectory be-
fore departure. Extensive experiments were conducted with a real fuel
cell passenger vehicle on public roads and on a chassis dynamometer
testbed. The real driving tests on public roads proofed the robustness of
the predictive SoC reference tracking strategy in real driving situations
affected by unpredicted disturbances such as varying traffic. Moreover,
the real driving tests indicated a considerable reduction in the fuel con-
sumption compared to a nonpredictive charge sustaining strategy with
an average reduction of around 4.5 %. Reproducible dynamometer tests
based on a selected real driving cycle, which included real-world traffic
influences and vehicle standstills, confirmed these findings: Although
these disturbances were not considered in the prediction, the predictive
SoC reference tracking reduced the fuel consumption by remarkable
6.4 % compared to the nonpredictive charge sustaining. This result
confirmed that simple, route-based long-term predictions are highly
effective for improving the fuel efficiency in the real-world application,
even though their accuracy is limited due to unpredictable random
influences. Additionally, dynamometer tests based on the WLTC re-
vealed a reduction in the fuel consumption by 3.1 % compared to the
nonpredictive EMS. This result indicated that the predictive EMS can
also improve the fuel efficiency for driving missions without changes
in altitude. Finally, a detailed qualitative evaluation showed that the
significant improvements arose by avoiding high FCS power ranges,
which considerably increased the mean FCS efficiency.
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