
1 INTRODUCTION 

Rheology of asphalt binders is the study of their flow 
and deformation behavior under various temperature 
and loading conditions (Zhang et al., 2024). It is a cru-
cial aspect of understanding the performance charac-
teristics of asphalt materials used in pavements. As-
phalt binders exhibit viscoelastic properties, meaning 
they show both viscous (liquid-like) and elastic 
(solid-like) responses depending on the temperature 
and rate of loading. At high temperatures, they be-
have more like viscous fluids, while at low tempera-
tures, they act more like elastic solids. The rheologi-
cal properties of asphalt binders directly influence the 
durability and performance of road pavements, im-
pacting resistance to deformation (rutting), cracking, 
and fatigue. Accurate rheological analysis helps in se-
lecting and modifying binders to meet specific cli-
matic and traffic demands, ensuring better long-term 
performance of asphalt pavements. 

Measuring the rheology of asphalt binders can be 
a time-consuming process due to the complex and de-
tailed analyses required to fully characterize their vis-
coelastic behavior. Rheological testing often involves 
conducting multiple assessments, such as dynamic 
shear rheometer (DSR) tests and bending beam rhe-
ometer (BBR) tests, across a range of temperatures 
and loading frequencies. These tests are designed to 
simulate the real-world performance of asphalt bind-
ers under different traffic and climatic conditions, 
which requires precise sample preparation, condition-
ing, and repeated measurements to ensure reliability. 

Additionally, each test can take significant time due 
to the need for temperature equilibration, application 
of controlled stress or strain, and data collection. The 
time investment is necessary to capture the binder’s 
behavior over short-term (high traffic speed) and 
long-term (slow-moving or stationary loads) perfor-
mance. While these processes provide invaluable in-
sights into the binder’s potential durability and suita-
bility for specific applications, they require a 
considerable commitment of time and resources 
(Wang et al., 2022). 

The chemical properties of asphalt binders play a 
fundamental role in determining their rheological be-
havior and overall performance (Shan et al., 2023). 
Asphalt binders are composed of complex mixtures 
of hydrocarbons, including asphaltenes, resins, satu-
rates, and aromatics (Salehfard et al., 2024), each 
contributing differently to their physical characteris-
tics. The balance between these chemical constituents 
influences the binder's response to temperature 
changes and mechanical stress. For instance, asphal-
tenes contribute to the stiffness and elasticity of the 
binder (Ilyin and Yadykova, 2024), while lighter frac-
tions, such as saturates and aromatics, provide fluidity 
and flexibility (Shan et al., 2024). The interactions be-
tween these components affect the viscoelastic nature 
of the binder, dictating how it responds to high tem-
peratures (resisting rutting) and low temperatures (re-
sisting cracking). Understanding the chemical com-
position and interactions within asphalt binders is 
essential for modifying their properties to achieve 

Machine learning-aided rheological prediction models of asphalt binders 
based on chemical properties 

F. Zhang1, D. Wang1,2, Y. Sun1, A.C. Falchetto1,3 
1Department of Civil Engineering, Aalto University, Finland 
2Department of Civil Engineering, University of Ottawa, Canada 
3Department of Civil Environmental and Architectural Engineering, University of Padova, Italy 

ABSTRACT: This work aims to provide rapid rheological characterization of asphalt binders through their 
chemical properties based on advanced machine learning tools. With this objective, Fourier transform infrared 
spectroscopy (FTIR) and dynamic shear rheometer (DSR) are adopted to measure the chemical and rheological 
properties. Results indicate that the raw six FTIR features can be reduced to two principal components (PC 1 
and PC 2), and the variance and role of PC 1 are more significant than PC 2. Multiple linear regression models 
can predict the phase angle accurately but not for modulus. Gaussian process regression model with higher R2 
and lower RMSE values can accurately predict both modulus and phase angle. 
 
Keywords: asphalt binders; rheological properties; chemical composition; machine learning 



desired performance characteristics, especially under 
varying traffic loads and environmental conditions. 

Machine learning (ML) offers superior predictive 
accuracy over traditional statistical models like re-
gression, which struggle with nonlinear interactions 
in asphalt characterization. ML techniques, including 
decision trees and neural networks, identify key 
chemical parameters influencing rheology, enhancing 
model interpretability and efficiency. The integration 
of ML with Fourier-transform infrared (FTIR) spec-
troscopy marks a significant advancement in asphalt 
binder analysis. FTIR identifies chemical composi-
tions, while ML algorithms establish correlations be-
tween these compositions and rheological behavior, 
enabling predictive models that reduce reliance on ex-
tensive physical testing. This approach improves ef-
ficiency in predicting critical properties like stiffness 
and temperature susceptibility, facilitating optimized 
binder formulation and material selection. Despite 
prior reliance on empirical models, limited studies 
have systematically applied ML to predict asphalt 
rheology using chemical composition data. This study 
benchmarks ML against conventional models, 
demonstrating its advantages in data-driven pave-
ment design. 

2 MATERIALS AND METHODS 

2.1 Materials 

The materials used in this research include 18 fresh 
asphalt binders. In order to improve the applicability 
of the model, these binders are provided by different 
suppliers with different penetrations.  

2.2 DSR tests 

In this research, the frequency sweep of asphalt bind-
ers is performed via a DSR machine. The frequency 
is selected from 0.1 Hz to 20 Hz. The tests are carried 
out at three different temperature ranges: low-temper-
ature ranges (-30 ° C to 6 °C), mid-temperature 
ranges (-4 °C to 40 °C), and high-temperature ranges 
(28 °C to 76 °C). The corresponding sample plate is 
25 mm in diameter for high temperatures, 8 mm in 
diameter for medium temperatures, and 4 mm in di-
ameter for low temperatures. 

2.3 FTIR tests 

The FTIR test was employed to measure the chemical 
composition of different asphalt binders. The measur-
ing wave numbers are from 400 cm-1 to 4000 cm-1. 
FTIR can identify chemical composition by determin-
ing absorbance from input and transmitted light. It 
also can quickly and non-destructively characterize 
the chemical composition of materials. 

2.4 Machine learning models 

Principal component analysis (PCA) is a method to 
reduce the dimensionality of the data. PCA can avoid 
the limitations of over-counting by finding a new co-
ordinate system and reducing the dimensionality from 
n to k (k < n). 

Since the multiple linear regression (MLR) model 
has the advantage of simplicity and practicality, it is 
used in this paper to predict the rheological properties 
of asphalt binders. In this model, the number of inde-
pendent variables is greater than or equal to two; 
hence, it is called multiple regression. In fact, the 
combination of numerous independent variables is 
more accurate and realistic than single variable pre-
diction (Hu et al., 2015). 

Gaussian Process Regression (GPR) model is a 
more complex and powerful machine learning model 
that can be used to represent the distribution of the 
function. GPR can establish the model with infinite 
dimensions (Schulz et al., 2018). Each input point is 
associated with a random variable, and their joint dis-
tribution can be modeled as multiple Gaussian distri-
butions. This model is a non-parametric, Bayesian, 
supervised learning method (Schulz et al., 2018). 

3 RESULTS AND DISCUSSION 

3.1 Principal component analysis 

The difference in chemical bond areas can distinguish 
different binders in this research. Considering the 
contribution of all of these as input variables would 
make the calculation much more complex. PCA 
method is applied to reduce the dimensionality. It can 
be found that the dimensionality of binders from 
FTIR results is six, so the extracted original principal 
component number is six. The eigenvalues and cumu-
lative variance, as shown in Figure 1, can be gener-
ated after PCA analysis. A larger eigenvalue indicates 
that the principal component it represents has the 
largest contribution among all principal components. 
It can be observed that the first two principal compo-
nents have the largest eigenvalues of 3.03 and 1.24. 
The results of PCA can be considered acceptable 
when the cumulative variance of the principal com-
ponents is greater than 60% (Margaritis et al., 2020, 
Paranhos and Petter, 2013). The cumulative variance 
of the first two principal components in Figure 2 is 
71.0% (above 60%); therefore, PC 1 and PC 2 can 
represent all original features of binders. The descrip-
tion of PCs is shown in Equations 1 and 2. It can be 
found that all original features are positively corre-
lated with the distribution of PC 1, with the vibration 
of C-H and CH2 having the highest correlation and 
the vibration of S=O having the lowest correlation. 
However, for PC 2, the vibration of S=O has the high-
est correlation, while C-H has the lowest value. The 
vibrations of S=O, CH3, and CH2 positively correlate 



with PC 2, and vibrations of C-H, CH2/CH3, and 
C=C/C=O have a negative correlation. 

 
Figure 1. Variance and eigenvalue of each component. 

 
Figure 2. Projection of the original features onto the system. 

 
PC 1 = 0.491(C − H) + 0.157(S = O) +
0.316(CH3) + 0.498(CH2) + 0.473(C = C or C =
O) + 0.402(CH2 or CH3)                   (1) 
 
PC 2 = −0.181(C − H) + 0.635(S = O) +
0.534(CH3) + 0.222(CH2) − 0.421(C = C or C =
O) − 0.227(CH2 or CH3)                   (2) 

3.2 Development of prediction model 

In this section, PC1, PC2, temperature, and frequency 
were selected as input variables, ensuring that both 
compositional and environmental factors were con-
sidered in the prediction. The dataset was split into 
training (70%) and validation (30%) sets. Perfor-
mance Evaluation: The predictive accuracy of the 
model was assessed using R² and RMSE, demonstrat-
ing the effectiveness of GPR in capturing complex re-
lationships between chemical composition, tempera-
ture, and rheological behavior. 

3.2.1 Multiple linear regression 

MLR, as the simplest regression model, has the ad-
vantage of fast computation speed with low computer 
configurations. Figure 3 is the predicted modulus of 
binders through the MLR model. A total of 7200 data 
by simultaneously considering temperature and fre-
quency. However, the model is unsatisfactory for 
modulus prediction, with the R2 of 0.5488 and 0.5447 
and RMSE of 11.12. Hence, it is necessary to apply a 

more advanced and powerful model to predict modu-
lus. Figure 4 is the δ results of the binders through the 
MLR model. The δ prediction is more accurate than 
the modulus. The R2 of the training and testing set is 
above 0.9, and small RMSE values in Figure 4 reveal 
that the prediction of δ is reliable. 

 
Figure 3. MLR model of |G*|. 

 

 
Figure 4. MLR model of δ. 

3.2.2 Gaussian Process Regression 

Since MLR cannot provide sufficiently accurate pre-
diction |G*|, a more advanced GPR model was intro-
duced to achieve this purpose. Figure 5 shows the 
GPR predictions of binders affected by temperature 
and frequency. It showed a promising correlation in 
Fig. 5. The R2 values are above 0.98, and the RMSE 
is 1.9370 in this model. Regarding δ, the GPR model 
also exhibited desirable results in Figure 6. The pre-
dicted values in Figure 6 are almost equal to the actual 
values; its R2 is above 0.98, and the RMSE value is 
3.1672. This indicates that the GPR model can 
achieve the purpose of predicting δ. 
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Figure 5. GPR model of |G*|. 

 
Figure 6. GPR model of δ. 

3.3 Discussion 

The sample type and dataset are not enough. Thus, in 
the next phase of this research, it is recommended that 
the analysis and the prediction models be extended to 
modified asphalt binders with a big dataset, especially 
those with chemical modification. In addition, test of 
additional regression models, such as Ridge Regres-
sion, Support Vector Regression, or Random Forest 
Regression, are needed to ensure the best model. 

4 CONCLUSIONS 

⚫ The original chemical features of binders can be 
reduced to two principal components.  

⚫ The multiple linear regression (MLR) model can 
predict the phase angle of binders but not the 
modulus.  

⚫ On the other hand, the Gaussian process regres-
sion (GPR) model enables the prediction of both 
modulus and phase angle. 

The neat asphalt binders in this work have the same 
type of chemical composition; only the concentration 
is different. Thus, in the next phase of this research, it 
is recommended that the analysis and the prediction 
models be extended to modified asphalt binders 
(more chemical composition types), especially those 
with chemical modification. 
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