Multi-Agent Deep Reinforcement Learning for Cell-free MIMO Systems: From Distributed Power Allocation to Auction-Based RIS Access

11th Annual European Future of Wireless Technology Workshop

Associate Prof. Stefan Schwarz

in collaboration with: Charmae F. Mendoza, Prof. Markus Rupp and Prof. Megumi Kaneko

September 2025, stefan.schwarz@tuwien.ac.at

Contents

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

Cell-free Massive MIMO

 \bullet Main issue of dense heterogeneous 4G/5G networks: inter-cell-interfence

Institute of Telecommunications Slide $4 \ / \ 28$

Cell-free Massive MIMO

- Main issue of dense heterogeneous 4G/5G networks: inter-cell-interfence
- Cell-free: independently operating cells are replaced by joint cloud-processing
 - $\Rightarrow \text{Interfering signals become useful signals}$

Institute of Telecommunications Slide $4 \neq 28$

Cell-free Massive MIMO Uplink System Model

- ullet Consider a canonical cell-free system with M access points (APs) serving K users in uplink
- At a given time t, a subset $\mathcal{K}^{(t)}_{ ext{on}} \subset \{1,\dots,K\}$ of users is active (slowly varying)

Cell-free Massive MIMO Uplink System Model

- ullet Consider a canonical cell-free system with M access points (APs) serving K users in uplink
- At a given time t, a subset $\mathcal{K}^{(t)}_{\mathsf{on}} \subset \{1,\ldots,K\}$ of users is active (slowly varying)
- Depending on its SINR_k, an active user k achieves user utility $u_k = f(SINR_k)$

Cell-free Massive MIMO Uplink System Model

- ullet Consider a canonical cell-free system with M access points (APs) serving K users in uplink
- ullet At a given time t, a subset $\mathcal{K}_{ extsf{on}}^{(t)}\subset\{1,\ldots,K\}$ of users is active (slowly varying)
- Depending on its SINR_k, an active user k achieves user utility $u_k = f(SINR_k)$
- The SINR depends on the users' power allocations
 - \Rightarrow Increasing the power ρ_k of user k will improve its utility, but may decrease other users' utilities
 - ⇒ Goal: learn to allocate power optimally

TU

Enhancing the Uplink of Cell-Free Massive MIMO Through Prioritized Sampling and Personalized Federated Deep Reinforcement Learning, C. F. Mendoza et al., IEEE Transactions on Cognitive Communications and Networking, early access, 2025

- Model-based optimization: user utility is available in analytical form
 - ⇒ Classical optimization methods can be applied
- Model-free optimization: relies on observed data rather than (potentially inaccurate) models
 - ⇒ Data-driven machine learning techniques

Institute of Telecommunications Slide 6 / 28

- Model-based optimization: user utility is available in analytical form
 - ⇒ Classical optimization methods can be applied
- Model-free optimization: relies on observed data rather than (potentially inaccurate) models
 - ⇒ Data-driven machine learning techniques
- Deep reinforcement learning (DRL): often combines both approaches
 - \Rightarrow Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
 - \Rightarrow Keeps real-world training duration reasonable

Institute of Telecommunications Slide $\, 6 \, / \, 28 \,$

- Model-based optimization: user utility is available in analytical form
 - ⇒ Classical optimization methods can be applied
- Model-free optimization: relies on observed data rather than (potentially inaccurate) models
 - ⇒ Data-driven machine learning techniques
- Deep reinforcement learning (DRL): often combines both approaches
 - ⇒ Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
 - ⇒ Keeps real-world training duration reasonable
- In our simulations, we train based on the Shannon rate

$$u_k = B\left(1 - rac{ au_p}{ au_c}
ight)\log_2\left(1 + \mathsf{SINR}_k
ight)$$

SINR under MMSE detection considering pilot contamination and CSI imperfections

Institute of Telecommunications Slide $6 \neq 28$

- Model-based optimization: user utility is available in analytical form
 - ⇒ Classical optimization methods can be applied
- Model-free optimization: relies on observed data rather than (potentially inaccurate) models
 - ⇒ Data-driven machine learning techniques
- Deep reinforcement learning (DRL): often combines both approaches
 - ⇒ Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
 - ⇒ Keeps real-world training duration reasonable
- In our simulations, we train based on the Shannon rate

$$u_k = B\left(1 - rac{ au_p}{ au_c}
ight)\log_2\left(1 + \mathsf{SINR}_k
ight)$$

- SINR under MMSE detection considering pilot contamination and CSI imperfections
- In practice, u_k could, for example, also be obtained from user feedback (CQI)

Institute of Telecommunications Slide $6 \neq 28$

• We want to maximize a global utility:

$$\max_{\rho_1,\ldots,\rho_K} \ U(u_1,\ldots,u_K)$$

subject to:
$$0 \le \rho_k \le \rho_{\max}, \ \forall k$$

• We want to maximize a global utility:

$$\max_{
ho_1,\ldots,
ho_K} \ U\left(u_1,\ldots,u_K
ight)$$
 subject to: $0<
ho_k<
ho_{ ext{max}},\ orall k$

⇒ Solving this problem centrally is not scalable as the network size grows

• We want to maximize a global utility:

$$\max_{
ho_1,\dots,
ho_K} \ U\left(u_1,\dots,u_K
ight)$$
 subject to: $0 \le
ho_k \le
ho_{ ext{max}}, \ orall k$

- ⇒ Solving this problem centrally is not scalable as the network size grows
- We need a decentralized approach ⇒ multi-agent DRL
- ullet Scalability could be achieved via AP-clustering \Rightarrow each cluster handled by a DRL agent
- Here, we consider the extreme case: one agent per user

Institute of Telecommunications Slide 7 $\,/\,$ 28

• We want to maximize a global utility:

$$\max_{\rho_1, \dots, \rho_K} \ U(u_1, \dots, u_K)$$
 subject to: $0 \le \rho_k \le \rho_{\max}, \ \forall k$

- ⇒ Solving this problem centrally is not scalable as the network size grows
- We need a decentralized approach ⇒ multi-agent DRL
- ullet Scalability could be achieved via AP-clustering \Rightarrow each cluster handled by a DRL agent
- Here, we consider the extreme case: one agent per user
- As an example, we consider the guaranteed user rate as the utility function

$$U(u_1,\ldots,u_K)=\min_{k\in\mathcal{K}_{\mathsf{on}}^{(t)}}u_k$$

Institute of Telecommunications Slide 7 $\,/\,$ 28

Three DRL Frameworks

• Single-agent RL (SARL): CPU handles power allocation for all users

Institute of Telecommunications Slide 8 / 28

Three DRL Frameworks

- Single-agent RL (SARL): CPU handles power allocation for all users
- Multi-agent RL (MARL): users make power allocation decisions
 - Centralized training, decentralized execution (CTDE): same agent model shared across users

Institute of Telecommunications Slide 8 / 28

Three DRL Frameworks

- Single-agent RL (SARL): CPU handles power allocation for all users
- Multi-agent RL (MARL): users make power allocation decisions
 - Centralized training, decentralized execution (CTDE): same agent model shared across users
 - Personalized federated learning (FPer): model parameters partially federated

TU

Institute of Telecommunications Slide 8 $\,/\,28\,$

SARL - Details

• States of the single-agent environment

$$\mathbf{s}^{(t)} = \left[d_1^{(t)}, \dots, d_K^{(t)}, v_1^{(t-1)}, \dots, v_K^{(t-1)}, u_1^{(t-1)}, \dots, u_K^{(t-1)} \right]$$

$$v_k^{(t-1)} = \begin{cases} 1, & \text{if } \rho_k^{(t-1)} > 0 \text{ and } d_k^{(t-1)} = 0 \\ 0, & \text{else} \end{cases}$$

Institute of Telecommunications Slide $9 \ / \ 28$

SARL - Details

States of the single-agent environment

$$\mathbf{s}^{(t)} = \left[d_1^{(t)}, \dots, d_K^{(t)}, v_1^{(t-1)}, \dots, v_K^{(t-1)}, u_1^{(t-1)}, \dots, u_K^{(t-1)} \right]$$

$$v_k^{(t-1)} = \begin{cases} 1, & \text{if } \rho_k^{(t-1)} > 0 \text{ and } d_k^{(t-1)} = 0 \\ 0, & \text{else} \end{cases}$$

• Actions taken by the CPU

$$\mathbf{a}^{(t)} = \left[
ho_1^{(t)}, \dots,
ho_K^{(t)}
ight], \quad
ho_k \in \left\{ 0, \Delta_
ho, 2\Delta_
ho, \dots,
ho_{\mathsf{max}}
ight\}$$

 N_{pow} possible power levels \Rightarrow action space of size N_{pow}^K

Institute of Telecommunications Slide 9 $\,/\,$ 28

SARL - Details

• States of the single-agent environment

$$\begin{split} \mathbf{s}^{(t)} &= \left[d_1^{(t)}, \dots, d_K^{(t)}, v_1^{(t-1)}, \dots, v_K^{(t-1)}, u_1^{(t-1)}, \dots, u_K^{(t-1)} \right] \\ v_k^{(t-1)} &= \begin{cases} 1, & \text{if } \rho_k^{(t-1)} > 0 \text{ and } d_k^{(t-1)} = 0 \\ 0, & \text{else} \end{cases} \end{split}$$

• Actions taken by the CPU

$$\mathbf{a}^{(t)} = \left[
ho_1^{(t)}, \dots,
ho_K^{(t)}
ight], \quad
ho_k \in \{0, \Delta_
ho, 2\Delta_
ho, \dots,
ho_{\mathsf{max}} \}$$

 N_{pow} possible power levels \Rightarrow action space of size N_{pow}^K

• Rewards: $r^{(t+1)} = \min_{k \in K^{(t)}} u_k^{(t)} - \gamma \sum_{k=1}^K v_k^{(t)}$

Institute of Telecommunications Slide 9 / 28

SARL – Details (II)

• Double deep-Q networks (DDQN)

- Stabilizes training and reduces overestimation bias
- More robust in non-stationary environments

Prioritized sampling

- Prioritizes experiences with high temporal-difference (TD) error for replay
- Speeds up learning and improves sample efficiency
- Can introduce bias; requires importance-sampling correction

Institute of Telecommunications Slide 10 / 28 WI

MARL CTDE - Details

• User-specific states and actions

$$\mathbf{s}_k^{(t)} = \left[u_k^{(t-1)}, u_{j \in \mathcal{N}_k}^{(t-1)}\right], \quad a_k^{(t)} = \rho_k^{(t)}$$

- Sharing of utilities at least in a neighborhood $\mathcal{N}_k \subseteq \mathcal{K}$
- No violation variables; only active users allocate power

Institute of Telecommunications

Slide 11 / 28 WI

MARL CTDE - Details

User-specific states and actions

$$\mathbf{s}_k^{(t)} = \left[u_k^{(t-1)}, u_{j \in \mathcal{N}_k}^{(t-1)}\right], \quad a_k^{(t)} = \rho_k^{(t)}$$

- Sharing of utilities at least in a neighborhood $\mathcal{N}_k \subseteq \mathcal{K}$
- No violation variables; only active users allocate power
- Global reward can be calculated by CPU

$$r^{(t+1)} = \min_{k \in \mathcal{K}_{\text{on}}^{(t)}} u_k^{(t)}$$

No need at users since training happens on CPU

Institute of Telecommunications Slide 11 / 28 WI

MARL CTDE - Details

• User-specific states and actions

$$\mathbf{s}_k^{(t)} = \left[u_k^{(t-1)}, u_{j \in \mathcal{N}_k}^{(t-1)}\right], \quad a_k^{(t)} = \rho_k^{(t)}$$

- Sharing of utilities at least in a neighborhood $\mathcal{N}_k \subseteq \mathcal{K}$
- No violation variables; only active users allocate power
- Global reward can be calculated by CPU

$$r^{(t+1)} = \min_{k \in \mathcal{K}_{on}^{(t)}} u_k^{(t)}$$

- No need at users since training happens on CPU
- Training at CPU based on users' experiences

$$\left(\mathsf{s}_{k}^{(t)}, a_{k}^{(t)}, r^{(t+1)}, \mathsf{s}_{k}^{(t+1)} \right)$$

• Reporting of action $a_{k}^{(t)}$ is sufficient (could be estimated)

• Users train local models based on their local experiences

$$\left(\mathbf{s}_{k}^{(t)}, a_{k}^{(t)}, r_{k}^{(t+1)}, \mathbf{s}_{k}^{(t+1)}\right),$$
$$r_{k}^{(t+1)} = \min_{j \in \mathcal{N}_{k}} u_{j}^{(t)}$$

- States/rewards are determined over the neighborhood \mathcal{N}_k
- Interference is negligible if users are sufficiently separated

 Users train local models based on their local experiences

$$\left(\mathbf{s}_{k}^{(t)}, a_{k}^{(t)}, r_{k}^{(t+1)}, \mathbf{s}_{k}^{(t+1)}\right),$$
$$r_{k}^{(t+1)} = \min_{j \in \mathcal{N}_{k}} u_{j}^{(t)}$$

- States/rewards are determined over the neighborhood \mathcal{N}_k
- Interference is negligible if users are sufficiently separated
- Early DDQN layers are periodically shared with the CPU
- CPU aggregates users' layers and returns a federated model

- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Institute of Telecommunications Slide $13 \ / \ 28$

- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Institute of Telecommunications Slide $13 \ / \ 28$

- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Institute of Telecommunications

Slide 13 / 28

- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Institute of Telecommunications Slide 13 $\,/\,28\,$

- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Institute of Telecommunications Slide 13 $\,/\,28\,$

- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate
- Considering a neighborhood of only 40% of closest users is here not sufficient (small scenario)

TU

Institute of Telecommunications Slide 13 / 28

Comparison of DRL Frameworks - Transient Scenario

- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

TU

Institute of Telecommunications

Slide 14 / 28

Comparison of DRL Frameworks - Transient Scenario

- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Institute of Telecommunications Slide 14 $\,/\,28\,$

Comparison of DRL Frameworks - Transient Scenario

- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Institute of Telecommunications Slide 14 $\,/\,28\,$

Comparison of DRL Frameworks - Transient Scenario

- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Institute of Telecommunications Slide 14 $\,/\,28\,$

Impact of Number of Power Levels

· Performance close to continuous power allocation with modest number of discrete power levels

Institute of Telecommunications

Slide 15 / 28 W

Remarks and Future Work

- The interference landscape is currently inferred from rate observations
 - ⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies
 - \Rightarrow Acceptable when training in a DT, but too slow to adapt in direct real-world deployment

Institute of Telecommunications Slide 16 / 28 WI

Remarks and Future Work

- The interference landscape is currently inferred from rate observations
 - ⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies
 - \Rightarrow Acceptable when training in a DT, but too slow to adapt in direct real-world deployment
- Extend the state-space to provide additional information about mutual interference (path gains)
- Incorporate network structure into the DQN graph neural networks (GNNs)

Institute of Telecommunications

Slide 16 / 28 WI

Remarks and Future Work

- The interference landscape is currently inferred from rate observations
 - ⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies
 - ⇒ Acceptable when training in a DT, but too slow to adapt in direct real-world deployment
- Extend the state-space to provide additional information about mutual interference (path gains)
- Incorporate network structure into the DQN graph neural networks (GNNs)
- Generalization and transferability across environments, user numbers, ...

Institute of Telecommunications

Slide 16 / 28 WI

Contents

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

RIS in Multi-Operator Environments

- RIS may be integrated into various objects
 - ⇒ Network operators are unlikely to have a monopoly on their deployment
- RIS technology can potentially support multiple frequency bands
 - ⇒ Not restricted to a single operator
- Who should be allowed to control the RIS response configuration?
- ⇒ We propose a **competitive free-market** setup

RIS Broking in Cell-free MIMO Setups

- RIS control is dynamically assigned to operators by a RIS broker
- RIS-to-operator assignment is achieved through an auction
- The auction is repeated whenever there are significant changes in demand or user positions

TU 8 WIEN

Institute of Telecommunications Slide 19 / 28

RIS Auction

- Simple auction format: simultaneously ascending forward auction
 - In auction-round t, RIS broker sets a uniform price $p_t > p_{t-1}$ for available RISs
 - Operators bid on RISs for which they are willing to pay the current price p_t
 - If only one operator bids on an RIS, it is assigned to this operator for payment p_t
 - $-\,$ If RISs are remaining, proceed to next round t+1

Institute of Telecommunications Slide 20/28 W

RIS Auction

- Simple auction format: simultaneously ascending forward auction
 - In auction-round t, RIS broker sets a uniform price $p_t > p_{t-1}$ for available RISs
 - Operators bid on RISs for which they are willing to pay the current price p_t
 - If only one operator bids on an RIS, it is assigned to this operator for payment p_t
 - If RISs are remaining, proceed to next round t+1
 - Auctioneer enforces an activity rule bidders cannot enter late

Institute of Telecommunications Slide 20 / 28

RIS Auction

- Simple auction format: simultaneously ascending forward auction
 - In auction-round t, RIS broker sets a uniform price $p_t > p_{t-1}$ for available RISs
 - Operators bid on RISs for which they are willing to pay the current price p_t
 - If only one operator bids on an RIS, it is assigned to this operator for payment p_t
 - If RISs are remaining, proceed to next round t+1
 - Auctioneer enforces an activity rule bidders cannot enter late
- Challenges for operators:
 - How to estimate the value of a RIS and decide whether or not to pay price p_t ?
 - ⇒ The value of a RIS depends on which other RISs can be secured (combinatorial)
 - How to design an efficient bidding strategy?

Institute of Telecommunications Slide 20 / 28 V

RIS Allocation - Utility and Value Estimation

• We employ the α -fair function family to quantify the utility of a RIS allocation $\mathcal R$

$$U^{(o)}(\mathcal{R}) = rac{\sum_{u=1}^{\mathcal{N}_{U}^{(o)}} \left(ar{r}_{u}^{(o)}(\mathcal{R})
ight)^{1/lpha}}{\sum_{u=1}^{\mathcal{N}_{U}^{(o)}} \left(ar{r}_{u}^{(o)}(\emptyset)
ight)^{1/lpha}} - 1$$

 $\dots \bar{r}_u^{(o)}(\mathcal{R})$ estimate of achievable rate of user u

RIS Allocation - Utility and Value Estimation

• We employ the α -fair function family to quantify the utility of a RIS allocation $\mathcal R$

$$U^{(o)}(\mathcal{R}) = rac{\sum_{u=1}^{\mathcal{N}_{U}^{(o)}} \left(ar{r}_{u}^{(o)}(\mathcal{R})
ight)^{1/lpha}}{\sum_{u=1}^{\mathcal{N}_{U}^{(o)}} \left(ar{r}_{u}^{(o)}(\emptyset)
ight)^{1/lpha}} - 1$$

 $\dots \bar{r}_{u}^{(o)}(\mathcal{R})$ estimate of achievable rate of user u

Calculated from macroscopic channel parameters (path gains, number of antennas and RIS elements), because microscopic fading channel is not known prior to RIS assignment

Institute of Telecommunications

Slide 21 / 28 WI

RIS Allocation - Utility and Value Estimation

• We employ the α -fair function family to quantify the utility of a RIS allocation \mathcal{R}

$$U^{(o)}(\mathcal{R}) = rac{\sum_{u=1}^{\mathcal{N}_{0}^{(o)}} \left(ar{r}_{u}^{(o)}(\mathcal{R})
ight)^{1/lpha}}{\sum_{u=1}^{\mathcal{N}_{0}^{(o)}} \left(ar{r}_{u}^{(o)}(\emptyset)
ight)^{1/lpha}} - 1$$

 $\dots \bar{r}_u^{(o)}(\mathcal{R})$ estimate of achievable rate of user u

Calculated from macroscopic channel parameters (path gains, number of antennas and RIS elements), because microscopic fading channel is not known prior to RIS assignment

• Value of acquiring RIS r in auction-round t

$$V_t^{(o)}(r) = U^{(o)}\left(\mathcal{R}_{t-1}^{(o)} \cup r\right) - U^{(o)}\left(\mathcal{R}_{t-1}^{(o)}\right)$$

 \dots assuming r is the sole secured RIS in round t – breaking combinatorial complexity

TU

Institute of Telecommunications

Slide 21 / 28

DRL-based Bidding

• Observations available to operators/agents

$$\mathcal{O}_t^{(o)} = \left(p_t, \mathcal{B}_t^{(o)}, \left\{V_t^{(o)}(r)\middle| \forall r
ight\}\right)$$

 \ldots only partial information; not the full state of the environment

DRL-based Bidding

• Observations available to operators/agents

$$\mathcal{O}_t^{(o)} = \left(p_t, B_t^{(o)}, \left\{ V_t^{(o)}(r) \middle| \forall r \right\} \right)$$

... only partial information; not the full state of the environment

• Reward achieved when winning RISs $w_t^{(o)}$

$$r^{(o)} = c_V^{(o)} V_t^{(o)} \left(w_t^{(o)} \right) - p_t \left| w_t^{(o)} \right|.$$

Institute of Telecommunications Slide 22 / 28 WI

DRL-based Bidding

• Observations available to operators/agents

$$\mathcal{O}_t^{(o)} = \left(p_t, B_t^{(o)}, \left\{V_t^{(o)}(r)\middle| orall r
ight\}
ight)$$

... only partial information; not the full state of the environment

• Reward achieved when winning RISs $w_t^{(o)}$

$$r^{(o)} = c_V^{(o)} V_t^{(o)} \left(w_t^{(o)} \right) - p_t \left| w_t^{(o)} \right|.$$

Penalty terms when bidding on already assigned RISs and when overshooting the budget

Institute of Telecommunications Slide 22/28 W

Investigation of Utility, Costs and Reward

• Simple greedy bidding is a dominant strategy in terms of utility for each operator

Institute of Telecommunications

Slide 23 / 28

Investigation of Utility, Costs and Reward

- Simple greedy bidding is a dominant strategy in terms of utility for each operator
- However, it is much more costly than DRL-based bidding

Institute of Telecommunications

Slide 23 / 28

Investigation of Utility, Costs and Reward

- Simple greedy bidding is a dominant strategy in terms of utility for each operator
- However, it is much more costly than DRL-based bidding
- Thus, DRL-based bidding achieves higher reward than greedy bidding

Institute of Telecommunications

Slide 23 / 28 W

Investigation of Operators' Budgets

· With equal budgets both operators achieve the same performance for reasons of symmetry

Institute of Telecommunications

Slide 24 / 28 WI

Investigation of Operators' Budgets

- With equal budgets both operators achieve the same performance for reasons of symmetry
- · If one operator is willing to spend more, it can secure more RISs and therefore boost its performance

Institute of Telecommunications Slide $\, 24 \, / \, 28 \,$

Investigation of Users' SINRs

· Single snapshot of positions of network elements; distribution over users and microscopic fading

Institute of Telecommunications Slide 25 / 28 WI

Investigation of Users' SINRs

- Single snapshot of positions of network elements; distribution over users and microscopic fading
- Sharing RISs can significantly improve the performance of both operators
- · If all RISs are assigned to one operator, the performance of the other remains virtually unaffected

Institute of Telecommunications

Slide 25 / 28 WIEN

Contents

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

Conclusions

- Multi-agent RL enables efficient decentralized, model-free optimization
- Real-world deployment can be improved through model-based pre-training or training within a digital twin
- Approaches to coordinating multiple agents include:
 - CTDE or FPer in cooperative scenarios with common goals
 - Game-theoretic mechanisms such as auctions in competitive scenarios

Institute of Telecommunications Slide 27 / 28 WI

Multi-Agent Deep Reinforcement Learning for Cell-free MIMO Systems: From Distributed Power Allocation to Auction-Based RIS Access

11th Annual European Future of Wireless Technology Workshop

Associate Prof. Stefan Schwarz

in collaboration with: Charmae F. Mendoza, Prof. Markus Rupp and Prof. Megumi Kaneko

September 2025, stefan.schwarz@tuwien.ac.at

