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Abstract

This thesis investigates the beam dynamics of the final cooling stage in a multi-TeV
muon collider, where ionization cooling reduces the normalized transverse emittance to
its target value. Achieving this enables the collider to reach peak luminosities necessary
for precision studies of the Higgs boson, leptonic parton distribution functions, and other
fundamental phenomena. As a transformative tool for high-energy physics, the muon
collider drives advancements in accelerator technologies.

Ionization cooling is a fast-acting technique that reduces muon beam emittance within
the muons’ short lifetime, primarily through interactions with material combined with
high-field solenoids. This work incorporates a semi-Gaussian scattering model, parame-
terized with the Bethe-Wentzel model, into the RF-Track code. The implementation is
compared to established tracking software, which confirms the suitability of RF-Track
to simulate ionization cooling and allows future studies of collective beam effects.

The Bethe-Wentzel model is further useful for the analytic evolution of the transverse
emittance reduction, showing unprecedented agreement with the simulation. This inno-
vation allows optimizing initial beam parameters in final cooling cells without relying on
time-intensive macro-particle simulations. Furthermore, an analytical calculation for en-
ergy deposition estimates pressure increases in hydrogen absorbers, revealing that earlier
assumptions underestimated the pressure increase within hydrogen. A new design with
density-adjusted liquid and vapor hydrogen is proposed to mitigate excessive pressure
buildup.

A critical contribution of this thesis is the development of an adiabatic ramping method
to match the beam to a 40T solenoid. This ensures smooth beam transport from low-
field to high-field solenoids incorporated with hydrogen. A refined RF-solenoid beamline
layout is introduced, improving compactness and realism over previous designs. The
proposed final cooling lattice comprises nine uniquely configured cells, each with adjusted
hydrogen properties and beam windows, offering a more practical and effective solution
of the final cooling in a muon collider.
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Kurzfassung der Dissertation

In dieser Arbeit wird die Strahldynamik in der letzten Kühlphase einer hoch ener-
getischen Myonen-Kollisionsmaschine untersucht, indem die Ionisationskühlung die nor-
malisierte transversale Emittanz auf den Zielwert reduziert wird. Dadurch kann der
Kollisionsbeschleuniger maximale Luminositäten erreichen, die für Präzisionsstudien
des Higgs-Bosons, leptonischer Partonverteilungsfunktionen und anderer fundamentaler
Phänomene erforderlich sind. Als bahnbrechendes Werkzeug für die Hochenergiephysik
treibt die Kollisionsmaschine mit Myonen die Weiterentwicklung der Beschleunigertech-
nologien voran.

Die Ionisationskühlung ist eine schnell wirkende Technik, die die Emittanz von Myonen-
strahlen innerhalb ihrer kurzen Lebensdauer vor allem durch Wechselwirkungen mit Ma-
terial reduziert. In dieser Arbeit wird ein Semigaußsches Streumodell, parametrisiert mit
dem Bethe-Wentzel-Modell, in das RF-Track Programm integriert. Die Implementierung
wird mit etablierter Software verglichen, was die Eignung von RF-Track zur Simulation
der Ionisationskühlung bestätigt und künftige Studien über kollektive Strahleffekte er-
möglicht.

Das Bethe-Wentzel-Modell wird außerdem für analytische Rechnungen zur transversalen
Emittanzverringerung verwendet, wie eine beispiellose Übereinstimmung mit der Sim-
ulation zeigt. Diese Innovation ermöglicht die Optimierung der anfänglichen Strahlen-
parameter in den Zellen des finalen Kühlens, ohne auf zeitintensive Makroteilchensim-
ulationen angewiesen zu sein. Darüber hinaus schätzt dieses analytische Modell für die
Energiedeposition den Druckanstieg in Wasserstoffabsorbern, wobei sich herausstellt,
dass frühere Annahmen den Druckanstieg im Wasserstoff nicht berücksichtigt haben.
Es wird ein neues Design mit dichteangepasstem Wasserstoff vorgeschlagen, um einen
materialschädigenden Druckanstieg zu vermeiden.

Ein entscheidender Beitrag dieser Arbeit ist die Entwicklung einer adiabatischen Hochfahr-
Methode zur Strahlanpassung an ein 40T starkes Solenoid mit Wasserstoff. Dadurch
wird ein angepasster Strahltransport von Solenoiden mit niedrigen in hohe Felder gewährleis-
tet. Es wird ein verfeinertes Sytem aus RF-Kavitäten und Solenoiden eingeführt, das die
Kompaktheit und Realitätsnähe gegenüber früheren Designs verbessert. Das vorgeschla-
gene Endkühlungsdesign umfasst neun konfigurierte Zellen, jede mit angepassten Dichten
des Wasserstoffes mit inkludierten Strahlfenstern, und bietet eine praktischere und ef-
fektivere Lösung für das final Myonenkühlen.
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Chapter 1.

Introduction

The concept of accelerating muons for collision has been considered since the 1960s and
1970s [1–4]. However, because of the short lifespan of the muon, it is imperative to
explore innovative acceleration technologies and methodologies. One such technology is
a final cooling channel based on muon ionization cooling, i.e. this technology is essential
for sufficient luminosity of collision, and ensures a reasonable beam size for downstream
components. The beam dynamics and technical aspects of this technology constitute
the principal subject of this thesis.

This introduction provides a concise overview of the fundamental questions in physics
that remain unresolved and how a muon collider could contribute to elucidating these
queries. It will further elaborate on the luminosity of a muon collider and compare it to
other prospective collider design concepts. Additionally, a brief overview of the muon
collider’s design components will be presented. A discussion regarding the feasibility of
hosting a muon collider at the CERN site will also be included. Finally, this chapter
outlines the structure of this thesis.

1.1 The Standard Model’s brightness in the dark

Within the field of particle physics, the discovery of the Higgs boson in 2012 [5, 6], at
CERN, marked the identification of the final particle within the Standard Model (SM).
The SM comprehensively predicts all fundamental forces on the micro-scale, with the
notable exception of gravitation. The field associated with the Higgs particle provides
the mechanism through which matter particles acquire their mass.

Physicists aim for an all-encompassing and thorough description of nature. Although
the list of 25 (261) parameters (particle masses, mixing angles, and couplings) within the
SM is seemingly complete, it is far from conclusive. In the SM, a grand unification of

1Within the framework of Quantum Chromodynamics, there exists a 26th parameter that results in
CP violation within the strong interaction; however, its magnitude is exceedingly small [7].

1



Chapter 1. Introduction

all three micro forces is not acknowledged. The SM can be seen as a building block of
a more complete and new theory. This unknown theory has to incorporate the SM or
even reproduce it.

Beyond the scope of the SM, numerous scientific phenomena remain poorly understood,
and scientists continue their explorations in uncertainty. In particular, the matter par-
ticles accounted for by the SM represent a mere 4% of the total composition of the
universe [8]. The subsequent sections address several unresolved physical explanations
regarding the composition of the universe.

• Dark matter has not been directly detected, but its existence is strongly sup-
ported by multiple astrophysical observations. Observations of galaxy clusters by
F. Zwicky [9] showed that the velocity dispersion of galaxies in the Coma cluster
was too high to be explained by visible matter alone. Later, V. Rubin and W. Ford
[10] found that the rotation curves of spiral galaxies remained flat at large radii,
contradicting expectations from Keplerian motion. These anomalies suggested the
presence of an unseen mass component, leading to the hypothesis of dark matter.

• The expansion of the universe has been accelerating since around 5 billion years
ago, as revealed by observations of distant supernovae. This acceleration is at-
tributed to dark energy, a mysterious force that counteracts gravity and drives the
expansion of the universe to accelerate over time [11, 12].

• The visible universe is predominantly composed of matter, such as particles, with
only a minor proportion consisting of antimatter. Upon interaction, matter and
antimatter particles undergo annihilation, releasing energy in the form of radiation.
It is hypothesized that in the initial moments of the universe, there existed a
symmetry between matter and antimatter particles. The reasons behind matter’s
dominance and the disappearance of antimatter remain unresolved questions, and
the mechanism behind that is called Baryogenesis [13].

• Although gravitation is evident on a large scale (explaining why we remain on
Earth’s surface), its microscopic origins remain uncertain [14]. The integration
of general relativity with fundamental particles, known as quantum gravitation,
continues to be an area with untapped experimental discoveries.

The muon collider also provides an optimal environment as an observatory for rare
events, as it can detect features in the high-energy sector and can provide precision
measurements of these events. One potential avenue for addressing these fundamental
questions is in-depth investigation of the Higgs particle. Given that the Higgs boson is
responsible for generating masses, it may have a connection to dark-matter particles [15,
16]. Furthermore, some research indicates that the self-coupling of the Higgs boson could
be involved in baryogenesis [17]. Further investigation of Higgs and the enhancement
of statistical data concerning it form a key strategy in the future of high-energy physics
[18]. Lepton colliders are considered the most suitable Higgs factories for this purpose.

2



Chapter 1. Introduction

The subsequent sections outline various types of lepton colliders, with a special focus on
muon colliders.

1.2 Future collider landscape

The Large Hadron Collider (LHC), situated at CERN near Geneva, Switzerland,
stands as the most powerful particle accelerator to date. It conducts collisions of pro-
ton p+ bunches, classified as hadrons, reaching center-of-mass (cm) energies exceeding√
s = 13TeV, successfully detecting the Higgs boson [5, 6]. Although it primarily col-

lides protons, occasionally, the LHC also facilitates collisions involving ions. Plans are
underway to enhance the LHC’s luminosity (HL-LHC) [19], with operations anticipated
to commence around the mid-2030s. Luminosity is an indicator of beam brightness in a
collider and will be examined in greater detail subsequently.

In principle, the acceleration of hadrons to elevated energy levels can be achieved by ex-
panding the collider-ring infrastructure or through the development of high-field bending
magnets. However, given that hadrons are made up of quarks and gluons, the complete
cm energy

√
s is not fully accessible during collisions. This limitation arises because

√
s

is factorized among the constituents of hadrons.

Replacement of hadrons with leptons, which are elementary particles, is an alternative.
Positron-Electron (e+e−) colliders have had successful operation in the past and still
operate in present. However, a drawback of electron-like particles is their low mass, which
causes them to emit synchrotron radiation when accelerated or bent within ring colliders.
To minimize this bending of electrons, one approach is to expand the circumference of
the collider’s ring structure. Concepts for such e−e+-ring colliders, including the
Future Circular Collider (FCC-ee) and the Circular Electron-Positron collider (CEPC),
are being explored [20, 21]. These designs plan a collider circumference of 90− 100 km,
operating with a maximum cm energy of 365MeV. A proposal has been put forward
for a reduced version within the current LHC tunnel, identified as the third run of the
Large Electron Positron collider (LEP3) [22].

Synchrotron radiation constrains the ability to operate at high energies in e−e+ ring
colliders. To address this, linear e−e+ colliders have been developed as an alternative.
These colliders are capable of achieving energies on the TeV scale, as illustrated by the
proposed designs for the Compact Linear Collider (CLIC) [23] and the International Lin-
ear Collider (ILC) [24]. However, the expense associated with linear colliders increases
with their length. Additionally, once the lepton bunch passes the interaction point, it
cannot be recycled for another collision.

The benefits of employing e+e− colliders are attributed to the small background dur-
ing collision events. Nevertheless, the feasibility of achieving high-energy collisions is

3



Chapter 1. Introduction

constrained in ring configurations by synchrotron radiation, and in linear colliders by
financial considerations.

1.3 What about muons?

Based on the preceding discussion, the optimal collider configuration should encom-
pass:

1. a ring-design collider to facilitate multiple bunch collisions,

2. a high-mass particle to minimize synchrotron radiation,

3. collide fundamental particles, such as leptons.

A muon collider meets these specifications because:

1. The mass of a muon is about 200 times that of an electron. Synchrotron radiation is
proportional to m−4, with m representing the mass of the particle. That electron-
muon mass difference reduces synchrotron radiation by a factor of 1.6×109, making
synchrotron radiation negligible in a muon collider.

2. Therefore, a muon collider ring can be compact and the cm energy can be higher
compared to e−e+ ring machines. The ring size and energy are limited by the field
strengths of the bending magnets.

3. The muon is a fundamental particle and provides a cleaner background at the in-
teraction point compared to hadron machines. However, the primary challenge is
that the muon decays and has a mean lifetime of τ0 = 2.2 µs in its rest frame. Con-
sequently, innovative accelerator technologies and concepts need to be developed,
and this thesis focuses on one such concept.

In the field of high energy physics, the primary objective is the generation of rare events,
the rate of which is quantified in σ · LLum. The cross section, as detailed in σ, serves
as a measure of the probability of the occurrence of a specific particle interaction, being
expressed in units of area. It can be derived through either theoretical or experimental
methods. Within collider operations, the luminosity LLum is predominantly dependent
on the parameters of the collider apparatus. The luminosity is a measure of the rate of
particle collisions per unit of area and time.

The muon collider luminosity for a single collision point can be analytically estimated
by

LLum =
γ2τ0c

2C

N2
0

4π ε⊥,N β∗fr Fh HD (1.1)
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which is more detailed discussed in Appendix A.1 and also in the reference [25]. In case
of two interaction points in the collider design, the luminosity is doubled.

In Eq. (1.1), the variable C represents the circumference of the collider ring, while β∗

refers to the transverse two-dimensional betatron function2 at the interaction point and γ
is the Lorentz factor. The number of muons per bunch at the time of injection is labeled
as N0 in Eq. (1.1), and fr stands for the repetition rate3. The normalized transverse
emittance ε⊥,N in Eq. (1.1) signifies the phase-space area of the particles in the bunch,
which must be minimized to achieve higher luminosities. Mastering ε⊥,N requires a
specialized technique in accelerator physics, which forms the core subject of this work.
Furthermore, Eq. (1.1) includes the hourglass effect Fh, approximately valued at 0.75 for
the muon collider, with more details provided in Appendix A.2. The parameter HD is
an enhancement factor, elaborated in Appendix A.3. Reference [26] provides a summary
of the luminosity in a muon collider in relation to the beam-beam interactions by means
of numerical evaluations.

The proposed design for a muon collider as presented in [25] indicates an initial phase
of operation at

√
s = 3TeV, followed by an upgraded phase at

√
s = 10TeV. Drawing

upon the target parameters outlined in [27] and substitute them into Eq. (1.1), the
estimated luminosity of the muon collider is approximately:

√
s [TeV] LLum × 1034 [cm−2 s−1]

3 2.0
10 21.5

Figure 1.1 presents a comparative analysis of the luminosities of muon colliders versus
those of alternative prospective collider design concepts. Muon colliders at 3TeV achieve
luminosities that are comparable with those of linear colliders. Moreover, the muon
collider at 10TeV achieves luminosities similar to those proposed in emerging designs
for hadron colliders, such as the FCC-hh4 [28] or the SppC5 [29], which are described
as 90− 100 km proton ring colliders operating at

√
s = 100TeV. Additionally, K. Long

et al. [30] examine a muon collider operating at 14TeV, which can attain luminosities
of L14TeV

Lum = 42.2 × 1034 cm−2 s−1, almost double the luminosity at 10TeV. This is
attributed to the quadratic relation of the energy in cm expressed by γ as shown in
Eq. (1.1). According to a survey by earlier carrier US scientists in collider physics, the
muon collider is the preferred future option [31].

2The betatron function is unique to each accelerator and will be explained further in the Chapter 4.
3Denoting the number of bunch injections into the collider ring per second.
4Future Circular Collider, hadron-hadron option
5Super proton-proton Collider
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Figure 1.1.: Comparative analysis of the luminosities of muon colliders against those
of alternative prospective collider design concepts. Muon colliders at 3TeV achieve
luminosities comparable to those of linear colliders. Moreover, the muon collider at
10TeV reaches luminosities similar to those proposed for future hadron colliders, such
as the FCC-hh or the SppC.

1.4 Design overview and possible CERN implementa-
tion

The conceptual design of a muon collider was initially formulated by the Muon Ac-
celerator Program6 (MAP) [32], under the leadership of the United States, and sub-
sequently advanced by the International Muon Collider Collaboration7 (IMCC)
[25]. The schematic representation of the muon collider is shown in Fig. 1.2, comprising
five stages as outlined in

1. the proton driver,

2. the target and pion decay channel,

3. the muon cooling stage,

4. fast acceleration systems, and

5. the collider ring.

6From 2011 to 2015.
7Started in 2022.
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Muon collider design overview

The following paragraphs succinctly characterize each stage accompanied by the respec-
tive citation.

As depicted in Fig. 1.2, the proton complex constitutes the initial component of the
muon collider complex, characterized by a high-power acceleration section. A proton
beam of 5 − 10GeV with 2 − 4MW is delivered to a target in order to produce a high
flux of positively and negatively charged pions [33].

The second box from the left in Fig. 1.2 showcases the target and decay channel.
A proton beam impinges on a graphite target [34], producing charged pions. These
pions are transported through a tapered solenoid channel, where they decay into µ+

and µ−. Each proton pulse produces approximately 4.5 × 1013 positive muons and an
equal number of negative muons. Subsequently, the muons are organized into 21 micro-
bunches per charge using an RF-system composed of a buncher and a phase rotator
[35].

As depicted in the third box of Fig. 1.2, the solenoid chicane system is employed to
segregate the train of micro-bunches according to their charge species in preparation
for the ionization cooling system. The expansive phase space of the micro-bunches
necessitates its reduction or cooling. Each micro bunch undergoes longitudinal and
transverse cooling within a rectilinear cooling channel [36]. At a specific juncture,
from a sequence of 21 micro-bunches, 3 micro-bunches are longitudinally merged. Sub-
sequently, the seven remaining intermediate micro bunches are transversely combined
into a single bunch [37], which proceeds through further cooling within a second rectilin-
ear cooling channel. Subsequently, the muon bunch will experience exclusive transverse
cooling within the final cooling channel. The objective of the final cooling stage is to
minimize the transverse emittance to the greatest extent while simultaneously mitigat-
ing the growth of longitudinal emittance to the fullest extent possible. The final cooling
channel is the main focus of this thesis. It centers on beam dynamics and the selection
of a technical design, which will be elaborated upon in the following chapters.

In the penultimate step illustrated in Fig. 1.2, it is imperative that the cooled muon
bunches be accelerated to the TeV scale expeditiously to mitigate muon losses. The
initial channel is a multi-pass recirculating linear accelerator (RLA) wherein each
muon bunch charge is accelerated from 250MeV to 63GeV. Subsequently, the bunches
will be arranged in four rapid cycling synchrotron (RCS) units to achieve accelera-
tion of each beam from 63GeV to 1.55TeV. A hybrid synchrotron design is employed
to realize exceptionally rapid acceleration. This design incorporates interspersed super-
conducting high-field bending magnets [38] and ultra-fast, normal conducting ramped
bending magnets (multiple kT s−1).
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The final segment of Fig. 1.2 illustrates the inclusion of the collider ring. For both 3TeV
and 10TeV muon colliders, two racetrack-type rings with different circumferences have
been proposed. Theoretically, the 3TeV alternative could be accommodated within the
10TeV ring to make the best use of the available resources. However, this strategy leads
to a reduction in luminosity, as demonstrated by Eq. (1.1). The 10TeV collider ring has
a circumference of approximately 10 km, with a lattice design proposed by K. Skoufaris
[39].

Figure 1.2.: A layout of the muon collider accelerator and collider complex. [27]

A muon collider at CERN

An initial choice for the installation of the collider considers the CERN site as a viable
location, using existing tunnels and technical infrastructure. The proposed design for
the muon collider features an elongated circular ring with straight sections housing two
interaction points (IP), as depicted in Fig. 1.3 as the stars at the red solid line8. It should
be emphasized that Fig. 1.3 serves merely as a schematic representation and does not
correspond to any finalized design plans9.

A key consideration in this design is the high flux of neutrinos generated along the long
straight sections, which will create a significant dose at the Earth’s surface [45]. To
optimize safety and efficiency, the collider configuration is designed to direct neutrino
flux from IPs to non-built-up regions. These regions include a Jura mountain range area
on one side and the Mediterranean Sea on the other side [46].

A muon collider option at CERN would reduce the environmental footprint. Importantly,
all surface structures for the complex would be built on CERN-owned land across the
CERN-Meyrin and CERN-Prévessin sites, thereby minimizing territorial and ecologi-
cal disturbances. Furthermore, maximizing reuse of the existing CERN infrastructure
simplifies environmental impact studies, facilitates public acceptance, and reduces costs
and CO2 emissions compared to completely new construction in a greenfield site [47].

8Muon collider ring for the 10TeV option.
9The data points delineating the borders of the Swiss cantons, Geneva and the Lake-Geneva were

sourced from Data [40–42]. Map construction was facilitated through the use of the Python GeoPan-
das package [43].
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Figure 1.3.: A schematic illustration delineates a prospective design option for a muon
collider situated within the Geneva basin. The suggested 10TeV muon collider ring is
depicted by the red solid line. Based on civil engineering analyses [44], a collider ring
along with several transfer and cooling beam lines requiring construction would span a
total length exceeding 10 km. The acceleration arrangement [RCS1, RCS2, RCS3, RCS4]
can be integrated within the existing LHC and SPS tunnel infrastructure, classifying it
as reutilized CERN infrastructure.

The technical framework for reusing the LHC tunnel to accommodate a muon collider
at CERN is contingent upon the maintenance status of the Super Proton Synchrotron
(SPS) at CERN. There is an optics design that fits into the LHC tunnel and will incor-
porate two RCS systems [48].

1.5 Thesis goals

This thesis is centered on muon ionization cooling, with a specific emphasis on the final
cooling channel. Before delving into that subject, an overview of two potential topics
in particle physics is collected in Chapter 2. This chapter examines lepton-parton
distribution functions (LePDF) based on SM principles. Neutrino LePDFs in a muon
collider are detected through partonic muon collsions with neutrinos, analyzing the final-
state photons. The differential cross section amplifies at small forward angles, enhancing
the precision of the event as predicted by SM. In general, Chapter 2 covers essential topics
in particle physics that drive the development and exploration of accelerator technologies
for a muon collider. An brief discourse on the principal mechanism of Higgs boson
production will be presented in Chapter 2.
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In the process of ionization cooling, muon beams traverse low-Z materials, hydrogen
being the preferred choice. Many accelerator design software programs do not incorpo-
rate material-beam interactions in their algorithms. Chapter 3 examines the interac-
tion between charged particles and materials, detailing the integration of these physical
processes into RF-Track software, a LINAC design tool developed at CERN. For the
scattering model, a semi-Gaussian particle deflection model was implemented, using
the Bethe-Wentzel cross section to simulate multiple Coulomb scattering. The
benchmark results of RF-Track against other comparable codes demonstrate excellent
performance. The addition of particle-matter physics to RF-Track is driven by its inte-
gration of an extensive range of collective-effects models. Research into collective effects
within ionization cooling channels is a completely novel area that RF-Track could explore
in future studies.

Chapter 4 will explore the dynamics of charged particles within solenoid and RF ac-
celerating structures. The chapter will cover the beam dynamics involved in ionization
cooling, highlighting a refined analytical cooling equation that aligns accurately with
multi particle simulations. Additionally, an analytical method for determining the op-
timal initial beam energy for final cooling will be introduced. Chapter 4 will dive
further into the often overlooked aspects of beam windows and hydrogen pressures, em-
phasizing their critical importance.

Chapter 5 is the most critical as it incorporates the main efforts of the study. This
chapter details a strategy for matching muon beams in ultra-high field solenoids us-
ing a newly developed optimization algorithm named adiabatic ramping, unique to
this thesis. In Chapter 5, a final cooling cell design is suggested, comprising two high-
field solenoids integrated with hydrogen absorber systems. The reverse polarity of these
solenoids not only enhances the efficiency of ionization cooling but also effectively de-
couples the beam in both transverse planes. The proposed cooling design includes beam
windows and adapted hydrogen pressures. The cooling channel is made up of 9 cells:
the first four use liquid hydrogen, and the remainder utilize hydrogen vapor to maintain
reduced pressures. Additionally, Chapter 5 addresses the longitudinal phase-space ad-
justments made through phase rotating cavities within the final cooling cell. Finally, it
presents an RF re-acceleration pathway between two final cooling cells, which remains
a focal point for further development and refinement. This thesis was an essential step
to ensure an increasingly realistic final cooling system and has made important insights
into the dynamics of the beam throughout the key elements of this system.
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Chapter 2.

Testing the parton nature of leptons in
muon colliders

The muon is an elementary particle. Thus in a muon collider the complete center-of-mass
(cm) energy is available for particle production during collisions. This is in contrast to
hadrons, which are composed of quarks and gluons, resulting in the cm energy being
distributed among these constituents. In comparison to circular electron colliders, the
synchrotron radiation emitted by muons within the collider ring is negligible. This is
attributed to the muon mass, which is approximately 200 times heavier than the electron,
resulting in more than a billion times less synchrotron radiation compared to electron
machines. Consequently, muons can be accelerated in a collider ring to energies much
higher than those of electrons. The primary technical challenge involves promptly cooling
the muon beam and accelerating it swiftly, because of the muon’s decaying properties.
This thesis focuses primarily on muon cooling, which will be elaborated in subsequent
chapters.

Firstly, neutrinos originating from muon decay are included within the muon bunch. At
the collider’s collision point, neutrinos have the potential to interact with particles from
the opposing bunch. These types of interaction can be investigated using the lepton-
parton distribution functions (LePDF), and a few processes will be described in
this chapter. Prior to delving into these studies, a brief overview of the Standard Model
in particle physics will be provided.

An essential component of European strategies in particle physics [18] is the investigation
of the Higgs boson, recognized as the most recent fundamental particle discovered at
CERN. Secondly, in the context of a TeV-scale muon collider, vector boson fusion
(VBF) stands out as the dominant mechanism for generating Higgs bosons. This chapter
aims to provide a comprehensive overview of Higgs production through VBF processes
of leading order. It will serve as the basis for a discussion on applying lepton PDFs on
the Higgs production.
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2.1 Standard Model of particle physics in a nutshell

In quantum mechanics, particles can be described as waves or as point-like objects, a
concept known as wave-particle duality. In the field of high-energy physics, particles are
frequently characterized as excitations within a quantum field. The processes of interac-
tion among particles are described by the so-called quantum field theory (QFT). The
dynamic behavior in QFT is represented using Lagrange densities, commonly referred
to as Lagrangians.

The Lagrangian of the Standard Model (SM) of paticle phyisics can be represented
essentially by

LSM =−1

4
F µνFµν

+iψ /D ψ

+|Dµφ|2 − V (φ)

+iψi yij ψj φ+ h.c.

(2.1)

Eq. (2.1) summarizes the three fundamental microscopic forces of nature, excluding
gravity, named electromagnetic, strong, and weak interactions. The interactions of all
particles are represented by Eq. (2.1) and can be illustrated using Feynman diagrams.
H. Eberl’s lecture notes [49] and the work of J. Romão et al. [50] provide a comprehensive
overview and explanation of these diagrams. Feynman rules and computation methods
are covered in the textbook by M. Thomson [7], with e.g. further detailed treatment in
the literature of M. Peskin and D. Schroeder [51]. Both the Feynman diagram and the
Feynman rules enable the calculation of cross sections for any particle interaction. In
particle physics, the cross section quantifies the transition rate to a specific final state,
typically expressed in units of surface area.

2.1.1 Description of the Standard Model’s Lagrangian

The next paragraphs will briefly outline the meaning of these terms within Eq. (2.1). It
is important to highlight that Eq. (2.1) serves as a compact mathematical representation
of the SM. Each term in Eq. (2.1) is a condensation of several Lagrangians. The term
−1

4
F µνFµν is known as the kinetic term and describes the dynamics of gauge bosons, the

force carriers in the SM. The particles responsible for transmitting forces include gluons
g for the strong force, W± and Z0 bosons for the weak force, and the photon γ for the
electromagnetic force.

The interaction of gauge bosons with fermions (matter fields) is summarized as iψ /D ψ.
The object ψ is a spinor multiplet with four components and is known as the Dirac
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spinor. This Dirac spinor is used for leptons and quarks, including also the fermionic
and anti-fermionic character of the particles.

The term |Dµφ|2 is the interaction between the weak gauge bosons and the Brout-
Englert-Higgs field φ. Due to an infinite set of minima in the potential V (φ) of the
Brout-Englert-Higgs field. Spontaneous symmetry breaking via the Higgs mechanism
gives mass to the W and Z bosons while leaving the photon massless. The term
iψi yij ψj φ describes the interaction between the Brout-Englert-Higgs field φ and fermion
spinors ψ and is the mechanism that causes matter particles to be massive. The Yukawa
matrix, denoted by yij, is crucial in defining the masses of quarks and leptons, exclud-
ing neutrinos. Neutrinos interact with the Brout-Englert-Higgs field by virtue of the
theoretical framework; however, they exhibit no coupling with the Higgs boson itself.
Nevertheless, their masses have been substantiated through the phenomenon of neutrino
oscillations. Various models have been proposed to explain the mechanism of neutrino
mass generation, though none have been experimentally verified so far. The notation
h.c. signifies the Hermitian conjugate of iψi yij ψj φ.

The discovery of the Higgs boson in 2012 at CERN [5, 6] completed the SM. Prospective
muon colliders feature a limited range of discovery potential beyond the SM [52], but
serve as Higgs factories with vector boson fusion as the predominant process. An in-
depth analysis of the Higgs particle may act as a gateway to uncovering phenomena
beyond the SM. The following step involves a discussion on the cross section, which is
an important parameter for analyzing particle events.

2.1.2 Cross section calculations

In high energy physics, the number of a specific interaction event generated during a
particle collision per second can be expressed by

Rate = LLum · σtot. (2.2)

In Eq. (2.2), the luminosity is indicated by LLum, which is based on the technical spec-
ifications of the collider machine. For the muon collider the luminosity was presented
in Eq. (1.1) of Chapter 1.3. The total cross section σtot in Eq. (2.2) is dependent upon
the specific particle process, which may be assessed through theoretical predictions or
empirical observations. The cross section σ quantifies the probability of a scattering
process and its calculation comes from

dσ =
⟨|M |2⟩
flux

dnLips, (2.3)

In Eq. (2.3) the Lorentz invariant components include the averaged squared matrix
element ⟨|M |2⟩, the flux factor, and the n-body phase space dnLips. Lorentz invariance
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ensures that these quantities remain unchanged under Lorentz transformations. The
flux factor depends on the 4-momenta of incoming particles pµ1 and pν2 and is defined
as

flux = 4
u
(p1p2)2 −m2

1m
2
2, (2.4)

with the masses of these particles denoted as m1 and m2. A relativistic 4-momentum vec-
tor encapsulates the total energy E and the spatial momentum p⃗ as pµ = (E, p⃗ )⊤. The
Lorentz invariant phase space dnLips describes the kinematics of n final-state particles
and is generally given by

dnLips =
nr

k=1

d3p⃗k
(2π)32Ek

. (2.5)

The quantity ⟨|M |2⟩ is averaged over the initial states i and sums over all spin states
and is defined as �|M |2� = 1

Spin

�
Spin

Mfi M
†
fi. (2.6)

For a specific particle interaction process, the matrix element Mfi can be evaluated by
constructing a Feynman diagram and applying the Feynman rules. This study will go
through two significant events that can be created and analyzed in a potential muon
collider. The investigation will commence with an analysis of the interaction between
a muon and a muon-neutrino, utilizing lepton parton distribution functions (LePDF).
The LePDF framework is anticipated by SM calculations, and a muon collider possesses
the potential to validate these theoretical predictions. Additionally, an overview of the
vector boson fusion processes, which represent the predominant mechanisms for Higgs
boson production in a muon collider, will be provided. Furthermore, the influence of the
LePDF framework on vector-boson fusion will be examined and evaluated to determine
whether the calculated cross sections exhibit significant deviations from those obtained
without the application of LePDF.

2.2 Exploring the lepton PDF with muon colliders

At high energy levels, quantum corrections enable “valence” leptons to become a neu-
trino by emitting a gauge boson. These resulting particles can be considered as partons,
allowing the application of methodologies established in hadron-hadron collision studies.
At muon energies around the TeV range, the neutrino PDF of the muon increases signif-
icantly with increasing momentum fraction x ≃ 1. This distribution dominates over the
gauge boson PDFs, which makes neutrino collisions with an approaching beam probable
and even measurable.

This section examines a specific candidate for a scattering process capable of probing
the parton distribution function of a neutrino within a muon beam. These precise
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measurements would confirm that LePDF at muon collider energies accurately predict
certain processes and establish that a muon collider can also operate as a neutrino
collider.

2.2.1 Overview of LePDFs

Leptons are foundational constituents within the SM. However, at high energy levels,
collinear initial state radiations appear and cause a reduction in the cm energy [53].
These initial-state radiations can be factorized into PDFs fi(x,Q), akin to proton-like
particles. The function fi(x,Q) delineates the probability density of encountering a
constituent parton i, be it a quark, a boson, or a lepton, in high-energy interactions.
This parton possesses a fraction x of the momentum

√
s/2 of a parent particle on a

specified energy scale Q. At extremely high energies of a lepton, collinear emissions of
W± and Z0 emerge. The PDF relevant to a neutrino is derived from the contribution
of a lepton splitting at elevated energies resulting from initial-state radiation into a W
boson and a neutrino.

In contrast to the PDFs of proton-like particles, the lepton PDFs (LePDF) are derived
from the first principles investigated in the work of F. Garosi et al. [54]. Notably for a
multi-TeV muon collider the neutrino-PDF of the muon increases as with x → 1. This
phenomenon is illustrated in Fig.2.1, where the LePDFs of several other particles are
also depicted on factorization scales of Q = 1.5TeV and Q = 5TeV. Subsequently,
a scattering process will be introduced to facilitate the measurement of fνµ within the
environment of a multi-TeV muon collider.

2.2.2 Observing the neutrino content of muon beams

This discussion focuses on the analysis of SM processes that exhibit significant sensitivity
to the PDF of neutrinos. Specifically, the main focus in the following is µµ̄ → γW , where
µ(µ̄) represents the muon (anti-muon) beam that includes its full parton content. There
exists a second process sensitive to the PDF of neutrinos, as indicated by µµ̄ → eνe. This
particular process is not addressed in the current discussion, but is instead referenced in
[54].

The γ-W− production via a µµ̄ → γW scattering event is predominantly influenced
by the contribution of νµ-PDF, when x ≃ 1. At the parton level, these processes
are µ−ν̄µ → γW− and µ+νµ → γW+. Taking into account, for example, the initial
generation of parton states µ− and ν̄µ, γW− can be facilitated by an s-channel scattering
process, as shown in the Feynman diagram on the left of Fig. 2.2, or by a t-channel
illustrated on the right of Fig. 2.2.
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Figure 2.1.: Lepton parton distribution functions (LePDF) of various particles at
factorization scales Q = 1.5TeV (left) and Q = 5TeV (right). The increase in the
neutrino PDF fνµ of the muon appears as x → 1. The uncertainty bands corresponds to
Q/2 and 2Q in both diagrams. The figures were generated with the interpolation [55]
of data that are publicly accessible from [56].
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Figure 2.2.: Feynman diagrams illustrating the production of a γW− final state from
an initial parton state µ− and ν̄µ. The left diagram represents the s-channel scattering
process, while the right diagram depicts the t-channel scattering. Equivalent diagrams
exist also for the processes of µ+νµ → γW+.

The kinematics are delineated so that the four-momentum, as denoted in p1, refers to
the parton µ− and p2 of the initial-state parton ν̄µ. The four-momentum associated with
the final-state bosons is characterized by p3, corresponding to γ, and p4 corresponding
to W−. The Mandelstam variables for the processes in Fig. 2.2 are defined as

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2. (2.7)

The notation of a hatˆabove the Mandelstam variables signifies the partonic cm energy,
as defined in ŝ = x1x2s. Here, x1 represents the fraction of energy associated with the
parton in µ, while x2 denotes that of the opposing µ̄. To compute the differential cross
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section, it is essential to evaluate the total squared amplitude. The expression for the
squared amplitude of the s-channel is evaluated by applying the Feynman rules to the
corresponding Feynman diagram and is given by

�|M |2�
s
=

e2g2

2 [(ŝ−m2
W )2 +m2

WΓ2
W ]

4
ŝ(ŝ2 + ŝt̂+ t̂ 2)

m2
W

−m2
W (ŝ− 5t̂ )− 4ŝ2 − 6ŝt̂− 5t̂ 2

;
,

(2.8)
where the electrical charge is denoted as e and ΓW represents the W boson’s decay
width. Similarly, the squared amplitude for the t-channel is represented by

�|M |2�
t
=

g2 e2

2 t̂ m2
W

3
2m4

W − 2m2
W (ŝ+ t̂ ) + ŝt̂

:
. (2.9)

The derivation of the t-channel as well of the s-channel can be both verified in Ap-
pendix B.2.1 and Appendix B.2.2. The combined squared amplitude for both the s- and
t-channels is expressed as�|M |2�tot =

�|Mt +Ms|2
�
=

�|M |2�
s
+
�|M |2�

t
+ 2

�
Re

d
Ms M

†
t

k�
. (2.10)

The subsequent task involves deriving the physical differential cross section by incor-
porating the LePDF associated with the muon fµ(x1, Q) and the anti-muon neutrino
f̄ν̄µ(x2, Q). The factorization energies related with the LePDF functions were evaluated
on the basis of the beam energies Q =

√
s/2 outlined in the proposed muon collider con-

cepts, specifically at Q = 1.5TeV and Q = 5TeV, and
√
s/4 and

√
s as uncertainties.

The physical differential cross section is specified as [51]

dσ(s)

d(cosϑ)
=

\ 1

0

dx1

\ 1

0

dx2 fµ (x1, Q) f̄ν̄µ (x2, Q)
dσ(ŝ)

d(cosϑ)
. (2.11)

The next step involves the evaluation of the differential cross section in a range of the
scattering angle of γ within the laboratory frame 10

◦
< ϑLab < 170

◦ . Angle restrictions
were taken from the nozzle geometry as defined in the muon collider detector proposal,
which was designed specifically for radiation shielding purposes [57]. Consequently,
integrating requires the transformation of the scattering angle from the laboratory frame
to the parton frame. The results of a µµ̄ collision at

√
s = 3TeV and

√
s = 10TeV are

presented in Fig. 2.3.

At low values of ϑLab, the differential cross section is significantly enhanced. Recent
research [54, Fig. 8] examined and compared background processes for

√
s = 3TeV

and
√
s = 10TeV, resulting in promising findings. In particular, it demonstrates that

for a specific transverse momentum threshold pT , the γW production resulting from
neutrino-muon scattering at the parton level exceeds the background at small values of
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ϑLab. These findings indicate that a muon collider possesses the ability to probe the
neutrino content of a muon.
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Figure 2.3.: Differential cross section as a function of the laboratory-frame scattering
angle ϑLab for µµ̄ collisions at 3TeV and 10TeV. The calculation incorporates the
transformation from parton frame to the laboratory frame. A pronounced enhancement
of the differential cross section is observed at low ϑLab.

2.3 Do lepton PDFs influences the Higgs production?

The use of lepton colliders results in reduced background noise in the detectors and
makes the analysis of rare events more straightforward. One of such rare events is
the production of Higgs bosons. In a muon collider, its primary production channel is
through vector-boson fusion. These processes are well understood and will be briefly
described in this section. The primary aim of this analysis is to determine whether
lepton PDFs significantly affect Higgs production, and this will be thoroughly examined
in this section.

2.3.1 Vector boson fusion overview

Vector Boson Fusion (VBF) is a fundamental process in particle physics in which two
weak gauge bosons are emitted from high-energy fermion beams and subsequently fuse
to produce rare final-state particles. Typically, these particles are Higgs bosons, ac-
companied by two additional fermions. The Higgs boson can be generated through the
fusion of a W+ and a W− boson or through two Z0 bosons. The Feynman diagram for
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the fusion W+W− is shown in Fig. 2.4 left, while the fusion Z0Z0 is illustrated as the
diagram on the right.

p1

k2

k1

W−

p2

W+

µ−

µ+

νµ

H

ν̄µ

p1

k2

k1

Z0

p2

Z0

µ−

µ+

µ−

H

µ+

Figure 2.4.: Feynman diagrams illustrating Vector Boson Fusion (VBF) processes at
a muon collider. The left diagram shows a Higgs boson production via W+W− fusion,
while the right diagram depicts the Higgs production through Z0Z0 fusion.

The VBF process is a 1 + 2 → 3 + 4 + 5 scattering event that produces three final-
state particles. The complete derivation of the Lorentz invariant phase space d3Lips is
presented in the Appendix B.3.2 and is given by

d3Lips =
1

(2π)4
1

16
√
s

\ 2π

0

dφ∗
\ π

0

sin θ∗ dθ∗
\ π

0

sin θ dθ

\ √
s−mH

0

m12k dm12. (2.12)

The final-state particles include a Higgs boson with momentum k3, and a pair of neu-
trinos (νµ, ν̄µ) or charged leptons (µ−, µ+) with momenta k1 and k2. These leptonic
momenta are combined into a single effective four-momentum Kµ

12 = (E12, k⃗)⊤ with
energy E12 =

w
m2

12 + k2. This transformation reduces the original 2 → 3 process to
an effective 2 → 2 process, where the final lepton system is represented by a composite
particle with invariant mass m12 and spatial momentum k⃗. The magnitude of k⃗ is

k =
λ1/2(s,m2

12,m
2
H)

2
√
s

, (2.13)

where mH is the mass of the Higgs boson and λ is the Källén function, defined in
Appendix B.1.2. The average squared amplitude of µ−µ+ → W−W+ → νµν̄µH is

WW→νν̄H

⟨|M |2⟩ = m2
W g6

(p1k2)(p2k1)

[2(p1k1) +m2
W ]

2
[2(p2k2) +m2

W ]
2 , (2.14)

where mW is the W boson mass and g is the weak coupling constant. The momenta
p1 and p2 refer to the initial-state muons, while k1 and k2 correspond to the final-state
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leptons. The expressions in brackets in Eq. (2.14) are referred as Lorentz products of two
4-momenta. The full derivation of Eq. (2.14) is outlined in detail in Appendix B.3.3.

The average squared amplitude of the process µ−µ+ → Z0Z0 → µ−µ+H results to

ZZ→µ−µ+H

⟨|M |2⟩ =
m2

Z g′6

8

4C1 (p1k2)(p2k1) + C2 sm12

[2(p1k1) +m2
Z ]

2
[2(p2k2) +m2

Z ]
2 , (2.15)

which includes the mass mZ of the Z0 boson and g′ is its coupling constant. The
expressions C1 and C2 are composed of the vector and axial constants, cV and cA, of the
muon to Z0 which are defined as

C1 = c4V + c4A + 6c2V c
2
A, C2 = (c2V − c2A)

2. (2.16)

The cross sections of the VBF processes is the substitution of the Lorentz invariant phase
space Eq. (2.12), the flux Eq. (2.4) and the average squared amplitudes of Eq. (2.14)
and Eq. (2.15) into the definition Eq. (2.3). The evaluation of the multidimensional
integral in Eq. (2.12) over Eq. (2.14) and Eq. (2.15) necessitates a numerical approach,
e.g. Monte Carlo integrations [58, 59].

The results of the total cross section of VBF are illustrated in Fig. 2.5. In the total
cross section, the contribution from Higgs strahlung processes was also included with
further information provided in the Appendix B.3.4. Within the muon collider operation
energies 3TeV and 10TeV, the difference in the total cross section between the W+W−

and Z0Z0 fusion channels is approximately an order of magnitude. A comparison of the
Higgs production rates in different collider types is summarized in the Appendix B.3.5.
It is identified there that a 10TeV muon collider is capable of producing a Higgs boson
every 6 s only through the W+W− fusion channel, which is an order of magnitude higher
than what e+e− ring colliders achieve.

2.3.2 Influences of LePDF on the Higgs production

Since VBF occurs through processes of the t channel, outgoing leptons, µ−(µ+) or νµ(ν̄µ),
tend to be scattered at small angles relative to the direction of the beam. This means
that they appear in the forward regions of the detector. As a result, the momentum
transfers q1 and q2 associated with the exchanged vector bosons are relatively small.
The involvement of neutrinos of the initial state at the parton level in the context of
Higgs production is negligible. This is due to the fact that the scaling factor Q is minor,
leading to a correspondingly small neutrino LePDF. At low Q, the muon does not divide
into weak bosons. Instead, it emits photons, leaving the muon intact but with a small
reduced cm energy, which effect is more pronounced in e+e− colliders.
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Figure 2.5.: Total cross sections of vector boson fusion (VBF) Higgs production via
W−W+ fusion (green solid line) and Z0Z0 fusion (blue dashed-pointed line). For com-
parison the Higgs strahlung, which is the leading Higgs production porcess in e+e− ring
colliders (orange dashed line).

However, the cross section of the single Higgs productions should not be affected by
LePDFs. To test this, the PDF approach can be applied to muons in the initial state
in VBF as depicted in Fig. 2.6. To maintain simplicity, the unpolarized partonic cross
sections are computed and then convoluted with LePDFs of µ− and µ+ summed over
different helicities. Detailed cross sections are presented in Tables 2.1, illustrating sce-
narios at Muon Colliders with energies of 3TeV and 10TeV. The scaling factors for
Q = [100, 200, 400]GeV were used and compared with the cross sections of VBF cal-
culated. The parton cross sections for the VBF are 1 − 7% smaller relative to the
non-LePDF cross section, making their effect on Higgs production insignificant.

W+W− → νµν̄µH no PDF Q = 100GeV Q = 200GeV Q = 400GeV
σ3TeV [fb] 496.6 486.9 483.4 467.2
σ10TeV [fb] 845.1 833.9 828.6 783.3

Z0Z0 → µ−µ+H
σ3TeV [fb] 51.8 50.8 50.4 50.0
σ10TeV [fb] 89.3 88.1 87.7 86.9

Table 2.1.: Comparison of the total cross section between the two VBF channels at
muon colliders for energies of

√
s = 3TeV and

√
s = 10TeV and compared with the

LePDF cross section. The partonic cross section are within a few percentages smaller.
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Figure 2.6.: Singl Higgs production via VBF in the parton picture. Due to the initial
state radiation, a µ(µ̄) splits into a leptonic parton µ̄(µ+) and X(Y ). The inital state
partons µ− and µ+ further create a Higgs via VBF.

2.4 Conclusion of testing the parton nature of leptons
in muon colliders

A muon collider represents an optimal apparatus for performing precise measurements
of the Standard Model (SM) due to the reduced incidence of background events within
the interaction region. The examination of rare events may lead to the discovery of novel
physics or, more significantly, facilitate the direct observation of new laws in nature.

In this chapter a detailed examination of a specific precision study is presented, em-
phasizing the potential analysis of lepton-parton distribution functions (LePDF). The
theoretical framework of LePDF can be derived from the fundamental principles of
the SM. In the muon collider, the neutrino LePDF can be identified through processes
µ(µ−)µ̄(ν̄µ) → γW− and µ(νµ)µ̄(µ

+) → γW+ by observing and analyzing the final-state
photon γ. The angle-dependent differential cross section was evaluated to be enhanced
at small forward angles. Examining events within this angle interval in a detector can
observe high-precision events caused by the partonic characteristics of leptons, as pre-
dicted by the SM.

A muon collider operates as a Higgs factory, facilitating a comprehensive study of this
scalar boson. Higgs boson production is mainly through vector boson fusion (VBF), with
W−W+-fusion processes being an order of magnitude more dominant than Z0Z0 fusions.
This analysis includes LePDFs in Higgs production via VBF, but scaling factors Q at
low energies keep the cross sections nearly unchanged, regardless of LePDF inclusion.
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Chapter 3.

Charged particles in material

This chapter explores the advancement of models for charged particle interactions with
materials within RF-Track particle tracking software [60]. These models are vital for
simulating ionization cooling in future muon colliders. For an accurate beamline design
simulating muon ionization cooling, computational capabilities must be embedded in a
tracking code. These computational capabilities should include:

• intersecting electromagnetic fields,

• decay processes of particles,

• interactions between charged particles and atomic materials.

This chapter outlines the models concerning the interaction of charged particles with
materials. Previously, RF-Track had integrated models for particle decay and electro-
magnetic fields. In addition, an advanced solenoid field model is included in this thesis
and will be covered in detail in Chapter 4. The primary interactions between particles
and materials that are significant for ionization cooling are as follows:

• energy loss along with its fluctuations,

• scattering events of charged particles within matter.

In implementing the Bethe equation for the model of average energy loss of charged
particles, it demonstrates remarkable consistency with comparable tracking software.
Although the model still requires updates with respect to energy loss fluctuations, this
was beyond the scope of this study.

In the charged particle scattering model, an innovative semi-Gaussian mixture model, pa-
rameterized using the Bethe-Wentzel scattering formula, was integrated into RF-Track.
The significant results emphasize that this is the first application of this kind of model
within a beamline tracking code. This chapter demonstrates that the convolution prop-
erty of the semi-Gaussian mixture model surpasses the scattering models commonly
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employed in other tracking software. Additionally, benchmarking the RF-Track scatter-
ing angles in liquid hydrogen and lithium hydride against other simulation tools reveals
strong agreement.

The RF-Track software provides enhanced functionality for simulating linear accelera-
tors, taking into account collective effects. This motivated the integration of charged
particle interactions with materials into the RF-Track code. This integration is essen-
tial because the study of collective effects in muon ionization cooling channels is an
unexplored area in beam physics that should be investigated in future research.

3.1 Tracking codes for ionization cooling

The movement of charged particles with charge q and mass m0 in any electromagnetic
field is governed by electrodynamic laws. The path followed by a particle through an
electromagnetic field is determined by the Lorentz force, expressed as

dp⃗(r⃗, t)

dt
= q

1
E⃗(r⃗, t) + v⃗(r⃗, t)× B⃗(r⃗, t)

8
. (3.1)

The force presented in Eq. (3.1) encompasses the influence of the electric field E⃗(r⃗, t),
which imparts a force along its field lines on the charge, and the magnetic field B⃗(r⃗, t),
which exerts a force perpendicular to both the velocity v⃗(r⃗, t) of the charged particle
and the magnetic field. Equation (3.1) is time-dependent and varies with the position
vector r⃗ = (x, y, z)⊤.

The velocity v⃗ of a point charge is a vector quantity that indicates how its position
changes over time. The path of the particle is represented as s(t), with its total velocity
given by v = |v⃗(r⃗, t)| at a certain time and location, and specifically as v(t) = ∂s/∂t. In
accelerator physics, velocity is expressed in terms of angles to provide information about
the particle’s direction. The conversion of velocity into angular terms is represented
as:

v⃗(r⃗, t) ≡ ˙⃗r(t) =
∂r⃗(t)

∂t
=

∂r⃗(t)

∂s

∂s

∂t
≡ v r⃗ ′(t). (3.2)

In Eq. (3.2), the angle is given by r⃗ ′ = (x′, y′, z′)⊤ = (∂x/∂s, ∂y/∂s, ∂z/∂s)⊤.

In the field of accelerator physics, the transverse angles x′ and y′ are described in terms
of the relationship between transverse and longitudinal momentum. When these angles
are small (sinϑ ≈ ϑ), they can be approximated by the expressions:

x′ ≈ px
pz

y′ ≈ py
pz
. (3.3)
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The scalar of the total momentum p = m∂r/∂s = mv is determined by multiplying the
relativistic mass by the total velocity of a particle. Here, the relativistic mass is expressed
as m = γm0, with γ representing the relativistic gamma factor and m0 being the mass
of the particle at rest. In this context, Eq. (3.1) can be reformulated in terms of r⃗
together with its first and second derivatives. This formulation results in a second-order
differential equation, expressed as

r⃗ ′′ =
q

pv
E⃗(r⃗ ) +

q

p

d
r⃗ ′ × B⃗(r⃗ )

k
= Γ (s, r⃗, r⃗ ′) , (3.4)

In Eq. (3.4), the function denoted by Γ signifies the second derivative of r⃗ with respect
to s. At this point, it has to be mentioned that the time dependency is of Eq. (3.4) is
covered in r⃗ ′.

In scenarios characterized by inhomogeneous fields, such as optical elements in parti-
cle accelerators, the precise analytical solution of Eq. (3.4) is unfeasible. Consequently,
numerical approaches are necessary to approximate solutions with precision. The Runge-
Kutta-Nyström method is a particularly effective approach to resolving such complexi-
ties, especially with regard to second-order differential equations [61]. For a single inte-
gration step ds along the particle’s trajectory, ranging from s to s+ds, the approximate
solution is modeled by two recursive functions:

r⃗n+1 = r⃗n + r⃗ ′
n ds+

ds2

6
(k1 + k2 + k3) ,

r⃗ ′
n+1 = r⃗ ′

n +
ds

6
(k1 + 2k2 + 2k3 + k4) ,

(3.5)

which update both the position and orientation of the particle at each incremental step.
The quartet of intermediary terms [k1, k2, k3, k4] delineated in Eq. (3.5) is outlined in
the following table.

Integration step intermediate position intermediate angle intermediate term
z1 = sn ϱ⃗1 = r⃗n ϱ⃗ ′

n = r⃗ ′
n k1 = Γ (z1, ϱ⃗1, ϱ⃗

′
1)

z2 = sn + ds/2 ϱ⃗2 = r⃗n + r⃗ ′
n ds/2 + k1ds

2/8 ϱ⃗ ′
2 = r⃗ ′

n + k1ds/2 k2 = Γ (z2, ϱ⃗2, ϱ⃗
′
2)

z3 = sn + ds/2 ϱ⃗3 = r⃗n + r⃗ ′
n ds/2 + k1ds

2/8 ϱ⃗ ′
3 = r⃗ ′

n + k2ds/2 k3 = Γ (z3, ϱ⃗3, ϱ⃗
′
3)

z4 = sn + ds ϱ⃗4 = r⃗n + r⃗ ′
n ds+ k3ds

2/2 ϱ⃗ ′
4 = r⃗ ′

n + k3ds k4 = Γ (z4, ϱ⃗4, ϱ⃗
′
4)

The necessity of evaluating electric and magnetic fields at three different positions per
step is replaced by an innovative strategy suggested by R. Frühwirth’s textbook [62].
These positions are r⃗n, r⃗n + r⃗ ′

n ds/2 + k1ds
2/8, and r⃗n + r⃗ ′

n ds + k3ds
2/2. If the field at

the conclusive position r⃗n+1, which is chosen as the starting position for the subsequent
step, is approximated using the field of k4, only two evaluations per step are required.
This strategy thus accelerates computation.
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In the case of additional perturbation of the particles angles coming from interactions
between the particle and a material in the presence of an electromagnetic field, the
second line of the equation can be modified according to

r⃗ ′
n+1 = r⃗ ′

n +
ds

6
(k1 + 2k2 + 2k3 + k4) + Δr⃗ ′. (3.6)

The transverse components of the perturbation term Δr⃗ ′ characterize angles ϑx and
ϑy. These angles arise because of the deflection of the particle caused by the Coulomb
forces exerted by the nuclei of the material. The longitudinal disturbance Δr ′

z = δp
accounts for the fluctuations in energy loss experienced along the longitudinal path of
the particle.

Within this thesis, Eqs. (3.5) with its perturbative modification in Eq. (3.6) were utilized
to assess the particle-material interaction models prior to their adaptation and incorpo-
ration into the existing RF-Track code. The particularities of the particle-material in-
teraction models, encompassing both implementation and evaluation, will be elaborated
upon in subsequent sections. However, this section first provides a concise historical
overview of ionization cooling codes and the contemporary computational tools used to
design ionization cooling beamlines.

3.1.1 Overview of ionization cooling software

Software designed to track charged particles during ionization cooling must address
several critical issues. As already mentioned in the introduction of the chapter, these
include the overlap of magnetic fields, the decay of particles, and the interactions between
charged particles and materials. The following overview gives a brief history of the
development of tracking codes in ionizatin cooling base on [63].

In the late twentieth century, laboratories in the United States began to explore the idea
of a high-luminosity muon collider [64]. Although they had a conceptual framework, they
lacked detailed simulations at the time. Initial simulations were carried out using the
MARS program [65], and later the ICOOL [66] software was developed to enhance these
efforts.

In the early 2000s, CERN initiated efforts toward building a neutrino factory based on a
muon storage ring [67, 68]. To simulate beam dynamics related to pion decay and muon
cooling, they utilized the PATH [69] and MARS programs.

Although simulation tools for ionization cooling were already available, the detailed
description of its beam dynamics was provided a few years later. G. Penn introduced
the angular momentum depending beam envelope equation for a solenoid system that
included energy-absorbing material [70]. B. Holzer proposed an alternative approach by
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developing a particle count technique based on 4D and 6D hyperellipsoids to analyze
the beam dynamics in a cooling channel [71].

3.1.2 ICOOL

ICOOL [72] is a Fortran-based code specifically designed to simulate muon ionization
cooling. Initially, it used the physics model for charged particle interactions in materials
from GEANT-3 [73]. However, discrepancies between the ICOOL simulations and the
experimental data from the MuScat experiment [74], particularly those involving liquid
hydrogen, required updates and improvements to the model.

ICOOL performs integration through an electromagnetic field. This field can either be
read from a pre-defined field map or generated by various accelerator components in-
cluded within the code. The tracking of particle integration is performed in longitudinal
space, and the phase space coordinates of each particle are saved in a data. The beam
parameter analysis can be performed using integrated analysis techniques in ICOOL or,
as recommended, with the ECALC9 Fortran program developed by G. Penn [75].

3.1.3 G4Beamline

G4Beamline is a single-particle tracking code developed by T. Roberts [76], based on
the Geant4 toolkit [77]. It simulates arbitrary particles as they traverse electromag-
netic fields and materials. The software is designed to be user-friendly and does not
require C++ programming skills [78], although installing it from the source may present
some challenges. MacBook Pro users who have an Intel processor can also choose the
G4Beamline-App software, which offers a simpler installation process.

G4Beamline includes a variety of beamline elements that can be arranged within the
G4Beamline environment, allowing for the creation of custom electromagnetic fields
through which particles are tracked. One of its key advantages is the graphical user
interface, which enables users to visualize the beamline elements and particle trajectories,
facilitating easy validation and error correction.

Additionally, G4Beamline can determine the beam parameters using integrated analysis
tools. Similarly to ICOOL, G4Beamline generates a data file that can be analyzed with
external programs such as ECALC9.
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3.1.4 RF-Track

RF-Track [60], coded by A. Latina, was initially developed to support the design of a
high-gradient proton LINAC known as TULIP [79]. Since then, it has been continuously
refined and expanded for use in various advanced applications. One of its current func-
tions includes helping to design DEFT [80], a new medical therapy system based on the
FLASH effect [81].

In the field of future particle colliders, RF-Track plays a key role in the design and
optimization processes for projects such as CLIC [82] and the FCC-ee, specifically for
the FCC-ee injector and positron source [83]. For this thesis, particle interactions with
matter were implemented for the study of ionization cooling in muon colliders.

For interfacing with RF-Track, users can select Python3 [84] (Python3.10 used in this
thesis) or Octave [85], offering adaptability based on their chosen computing environ-
ment. Beyond collider applications, RF-Track is a versatile tool used for particle dynam-
ics studies to simulate processes such as inverse Compton scattering [86], time-dependent
electromagnetic 3D field maps and simulating particle behavior independent of mass,
charge lifetime, or relativistic limit. To ensure accuracy and efficiency, RF-Track employs
advanced, higher-order algorithms for the numerical integration of particle equations of
motion. The software tool incorporates both collective and single-particle effects into its
simulations. Collective effects include space-charge forces, short- and long-range wake-
fields, and beam loading phenomena. RF-Track accounts for incoherent synchrotron
radiation and magnetic multipole kicks.

In this study, multiple Coulomb scattering was implemented and tested for single-particle
interactions and energy losses. The subsequent sections provide a detailed physical
overview of particle-matter interactions, accompanied by a comprehensive benchmarking
analysis. The discussion begins with an exploration of energy loss, followed by an in-
depth examination of multiple Coulomb scattering.

3.2 Energy loss of charged particles in materials

The primary mechanism in ionization cooling is the loss of energy of the particles during
their passage through the material. The main particle-stopping process is the interac-
tion of the electrons of the materials with the charged particles when they are heavier
than the electrons. This chapter provides a discussion of the quantum electrodynamical
(QED) principles that underlie energy dissipation in matter. It also demonstrates how
the RF-Track energy-loss model is consistent with simulations from both ICOOL and
G4Beamline.
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3.2.1 Main quantum electrodynamics scatter process

The QED scattering process in the t-channel delineates the elastic deflection of two
charged particles, ℓ1 and ℓ2. This deflection results from their interaction through
Coulomb forces by photon exchanges, as shown in Fig. 3.1. The Coulomb force is asso-
ciated with a charge e, which can be positive or negative, and is quantified by an integer
Z. Let the charges of the particles involved in the process be Z1e and Z2e. The cross
section for the QED t-channel scattering process can be derived using various methods.
Within this context, the trace technique for Feynman diagrams is utilized, as introduced
and applied in the preceding physics chapter.

p2

p1

p3

γ

p4

ℓ2

ℓ1

ℓ2

ℓ1

µ

ν

Figure 3.1.: The QED t-channel interaction involves two charged particles, ℓ1 and ℓ2.
These particles carry charges Z1e and Z2e, respectively. The interaction is facilitated by
the exchange of a photon γ at the vertices µ and ν via the electromagnetic force.

To evaluate the cross section of the process in Fig. 3.1, the initial task is to calculate
the matrix element. As per the Feynman rules, the expression for the matrix element is
given by

Mfi = ξ · u(p3)γµu(p1)u(p4)γµu(p2), where ξ =
Z1Z2e

2

t
. (3.7)

The Lorentz-invariant Mandelstam variable t in Eq. (3.7) is defined as t = (p1 − p3)
2 =

(p4 − p2)
2. To evaluate the squared amplitude, the initial step involves finding the com-

plex conjugate of the matrix element mentioned in Eq. (3.7). The subsequent procedure
involves averaging the spins of the two initial particles, thereby considering all possible
spin states. For situations with spin-half initial particles, the spin-averaged squared
amplitude is expressed as

�|M |2� = ξ2

4

e�
Spin

u(p1)u(p1)

l
γν

e�
Spin

u(p3)u(p3)

l
γµ

e�
Spin

u(p2)u(p2)

l
γν

e�
Spin

u(p4)u(p4)

l
γµ.

(3.8)
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By employing the Feynman trace method to simplify Eq. (3.8), the squared amplitude
refines to�|M |2� = ξ2

4
Tr

#
(/p1 +m1c)γ

ν(/p3 +m1c)γ
µ
*
Tr

#
(/p2 +m2c)γν(/p4 +m2c)γµ

*
, (3.9)

where the mass of particle ℓ1 is represented as m1. The mass m2 corresponds to that of
ℓ2. The left trace in Eq. (3.9) can be represented as

pα1p
β
3

3
Tr

%
γαγνγβγµ

,
+m1cTr

%
γαγνγµ

,
+m1cTr

%
γνγβγµ

,
+m2

1c
2 Tr

%
γνγβ

,:
=

4
3
pµ1p

ν
3 + pν1p

µ
3 − (p1p3)g

νµ +m2
1c

2gνµ
:
.

Traces that include an odd count of gamma matrices evaluate to zero, thus the second
and third terms in the mentioned equation are eliminated. The second trace term in
Eq. (3.9) is treated in a manner similar to the first, resulting in the final expression for
the squared amplitude given by�|M |2� = 8ξ2

3
(p1p2)(p3p4) + (p1p4)(p2p3)−m2

1(p2p4)−m2
2(p1p3) + 2m2

1m
2
2

:
. (3.10)

Equation (3.10) serves as the cornerstone for the following investigation of energy dissi-
pation and multi-particle scattering, elaborated in further detail in this chapter.

3.2.2 Quantitative description of the energy loss of charged par-
ticles in matter

When a charged particle, like a muon, penetrates and travels through matter, it engages
in interactions with the electrons of the atoms contained within the material. First, con-
sider the elastic interaction between the muon and an individual electron. Considering
that the muon has a mass significantly larger than that of the electron, it is rational to
expect that the muon has negligible deflection, though it does experience a slight loss
of energy. Furthermore, because the binding energy of the electron I within the atom
is significantly lower than the muon energy, the electron can be approximated as free
within the material.

Using the notation of Fig. 3.1, the following quantities are defined: ℓ1 → e−, ℓ2 → µ,
m1 → me and m2 → mµ. For the calculations that follow, the sign of the muon charge
is irrelevant due to the presence of the square in the term ξ2 in Eq. (3.10). The number
of charges of both particles is Z1 = Z2 = 1. Under the next assumption, the calculation
is conducted in the rest frame of the muon and their initial 4-momenta are

p1 =
f
p 0 0 p

m⊤
, p2 =

f
mµ 0 0 0

m⊤
,

p3 =
f
p p sinϑ 0 p cosϑ

m⊤
, p4 =

f
mµ 0 0 0

m⊤
.

(3.11)
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The momentum of the electron in Eq. (3.11) is denoted as p. Due to the low electron
mass, the electron’s total energy is approximated its momentum E ≈ p. Now that the
momenta have been established and inserted into Eq. (3.10), the differential cross section
(Mott scattering [87]) is observed in the charged muon’s rest frame. It is given by

dσ

dΩ
=

α2

p2β2 sin4 ϑ/2
(1− β2 sin2 ϑ/2), (3.12)

where β is the velocity of the electron relative to c, and α = e2/4π ≈ 1/137 stands for
the Sommerfeld fine-structure constant. From these variables, the spin correction term,
−β2 sin2 ϑ/2, reduces the value of Eq. (3.12) as the scattering angle becomes smaller.
The energy transfer is defined as q2 = 4p2 sin2 ϑ/2 and Eq. (3.12) can be reformulated
as the cross section per transferred energy

dσ

dq2
=

8πα2

β2q4

d
1− β2 q2

4p2

k
. (3.13)

H. Bethe [88, 89] assumed that (1−β2 sin2 ϑ/2) = (1−β2T/Tmax), where the maximum
possible energy transfer from the muon to electron is

Tmax =
2meβ

2γ2

1 + 2γme/mµ + (me/mµ)2
. (3.14)

In the rest frame of the electron, the squared transferred momentum can likewise be
expressed as q2 = 2meT , where T represents the kinetic energy imparted to the elec-
tron following the interaction with the muon. Therefore, the cross section per energy
reduction scales to

dσ

dT
=

4πα2

β2meT 2

d
1− β2 T

Tmax

k
. (3.15)

Taking into account the interactions of the muon with multiple electrons in a unit volume
dV = ds · dA, the average energy loss of the muon is

−⟨dE⟩ = ne ds

\ Tmax

Tmin

T
dσ

dT
dT. (3.16)

In Eq. (3.16), the number of electrons per unit volume is characterized by ne = ρNAZ/A,
which incorporates Z as the atomic number of the material, the Avogadro number NA,
the density of the material ρ and the atomic weight A. The integration limits are
specified by the lower limit Tmin = I2/2meγ

2β2 and the upper limit Tmax, which was
already defined in Eq. (3.14). The average energy loss per unit of distance ds traversed
in the material, described by the Bethe formula without additional correction terms, is
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represented by the expression

−
�
dE

ds

�
= 4πNA

α2

me

ρZ

A

1

β2

11
2
ln

2meγ
2β2Tmax

I2
− β2

8
. (3.17)

An additional factor of 1/2 was incorporated in front of the logarithmic term in Eq. (3.17).
This adjustment comes from the approach considering the impact parameter, described
through N. Bohr’s semi-classical framework [90, 91]. Eq. (3.17), known as the Bethe
formula, has been confirmed to be accurate within a few percent for the range 0.1 <
βγ < 1000 [92]. For the purpose of ionization cooling, Eq. (3.17) is adequate and does
not require additional correction terms. A density correction, mentioned in reference
[92], is unnecessary because it becomes relevant only at energy levels that exceed those
utilized in ionization cooling.

3.2.3 Energy loss results in RF-Track and benchmarking

The best candidates for ionization cooling are liquid hydrogen (LH) and lithium hydride
(LiH). Initially, LH in its liquid state serves as the preferred ionization cooling medium,
necessitating the use of containment windows. LiH is considered a viable option for these
windows. As mentioned in the beginning of this chapter, the first scattering experiments
using these materials were conducted at the MuScat facility at the TRIUMF laboratory
[86]. Simulations of the Geant4 version 6.7 scattering model, using LH, showed signif-
icant discrepancies compared to experimental data [74]. Only the ELMS model form
W. Allison et al. [93], implemented in ICOOL [94], demonstrated a close alignment with
the scattering angles observed in the MuScat experiment. Later scattering experiments
with MICE [95] showed much closer agreement with simulated scattering data from
Geant4 version 9.4. ICOOL and G4Beamline later updated their scattering models in
their codes.

This subsection presents the benchmarking performance of RF-Track compared to ICOOL
and G4Beamline. Comparisons with experimental data sets were not included, as
ICOOL and G4Beamline have already been benchmarked against these experimental
results.

The selection of momentum values, absorber materials, and thicknesses was based on
experimental parameters from the MICE study. The test parameters specific to LH were
drawn from M. Bogomilov et al. [96], while the data for the reference of solid LiH were
referenced from a separate study of M. Bogomilov et al. [97]. A comprehensive summary
of the beam and material parameters used in these studies is provided in Table 3.1.
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Material Liquid hydrogen
Parameter Magnitude
Thickness [mm] 349.6
Density [g cm−3] 0.07053
EKin [MeV] 90.2, 119.7, 153.9
Thickness [mm] 10
Density [g cm−3] 0.07053
EKin [MeV] 4.2

Material Lithium hydride
Parameter Magnitude
Thickness [mm] 65.37
Density [g cm−3] 0.69
Li6 mass fraction 0.814
Li7 mass fraction 0.043
H mass fraction 0.143
EKin [MeV] 95.9, 120.5, 156.4

Table 3.1.: For benchmarking RF-Track against ICOOL and G4Beamline, the initial
beam and material parameters were chosen to match those used in the MICE experiment.

Energy loss benchmarking in LH

To benchmark the energy loss of LH in RF-Track compared to ICOOL, the data of
Table 3.1 are taken into account. For higher muon energies, an LH absorber length of
364.9mm was used. For the lower energy case, an absorber length of 10mm was chosen.
The muon energies under 4MeV in LH are typically regarded as stopped.

Each simulation begins at the entrance of the absorber element, using a monoenergetic
pencil beam consisting of 105 muons. The six-dimensional muon coordinates are evalu-
ated in 50 integration steps, identical in both RF-Track and ICOOL.

Considering the six-dimensional particle coordinates, the energy loss of the muons was
analyzed in detail. Fig. 3.2 summarizes the mean energy loss of all muons simulated
using RF-Track and ICOOL in LH. For higher energy simulations, the relative error is
below 0.10%, demonstrating strong agreement between the RF-Track results and the
calculations of the ICOOL data. The relative error between the a set of evaluated data
from RF-Track XRF and G4Beamline/ICOOL are XG4BL/ICOOL for is defined as

Err =
����XRF −XG4BL/ICOOL

XG4BL/ICOOL

����. (3.18)

The lower right plot in Fig. 3.2 shows a comparison of RF-Track and ICOOL simulations
for low-energy scattering analysis. As the absorber length increases, the error grows
exponentially as a result of muon losses within the absorber. This loss leads to an
increase in relative error as the data points are reduced. For this particular absorber
and beam configuration, muon transmission is approximately 10% in both the RF-Track
and ICOOL simulations.
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Figure 3.2.: The energy loss of muons in LH was compared using RF-Track and ICOOL
simulations. These simulations were initiated with a monoenergetic pencil beam con-
taining 105 muons, each traversing a 349.6mm LH element at initial kinetic energies of
EKin = [90.2, 119.7, 153.9] MeV, and a 10mm LH sample with EKin = 4.2 MeV. For the
higher energy scenario, the relative error, depicted as the gray lines, falls within a range
below 0.10%, while for the lower energy case, the relative error increases exponentially
with absorber length due to muon losses.

Energy loss benchmarking in LiH

LiH has a solid structure and is composed of Li and H atoms. Naturally occurring Li
consists of approximately 90% Li-7, with the remaining 10% being Li-6. ICOOL uses
data based on natural Li to define LiH in its absorber list. In contrast, the MICE
composition of Table 3.1 uses a configuration enriched with Li-6 and Li-7 in LiH [97].
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This particular LiH configuration is enriched with Li-6, which is the standard material
used at the US nuclear materials facility [98].

The ICOOL reference manual [72] does not provide a straightforward method for manu-
ally mixing a specific absorber configuration. To address this limitation, the LiH bench-
mark study of RF-Track was conducted using G4Beamline. It should be noted that
energy loss benchmarking between ICOOL and G4Beamline was not carried out in this
study, as both are well-established and extensively benchmarked codes. The following
paragraph will present a code example for mixing materials in G4Beamline, using the
LiH configured with MICE as an illustrative case.

In G4Beamline, the material Li defaults to natural lithium but can be redefined with
specific isotopes by specifying their atomic number, mass, and density. For compounds
like LiH, fractional compositions must sum up to one and the total density must be
specified. Hydrogen is predefined as H, so no redefinition is needed. Below is an example
of G4Beamline code for setting up a LiH sample similar to MICE:
material Li6 Z=3 A=6 density=0.539
material Li7 Z=3 A=7 density=0.534
material LiH Li6,0.814 Li7,0.043 H,0.143 density=0.69

In RF-Track, specific materials mix differently. For example, with LiH, the RF-Track
generates volumes for each of the lithium isotopes and an equivalent volume for hydrogen,
overlapping these volumes at the same position. For defining a material in the RF-Track
composed of molecules, the volumes of each constituent element are overlapped, and their
densities are scaled according to their respective contributions to the total density of the
compound.
rho_LiH = 0.69 #density of MICE LiH in g/cm^3
len = 0.06537 #absorber length in mm
Li6 = RF_Track.Absorber(len, RadLen_Li6, Z=3, A=6, rho_LiH*0.814, I=40.)
Li7 = RF_Track.Absorber(len, RadLen_Li7, Z=3, A=7, rho_LiH * 0.043, I=40.)
H = RF_Track.Absorber(len, RadLen_H, Z=1, A=1, rho_LiH * 0.143, I=21.)

To benchmark the energy loss of LiH in RF-Track compared to G4Beamline, key material
parameters are presented on the right side of Table 3.1. In the simulations, a LiH
absorber of length 65.37mm was used.

Fig. 3.3 shows the mean energy loss of all simulated muons in RF-Track. It also presents
the results of G4Beamline, using LiH as the absorber material. For all three energy
scenarios used, the relative error between the RF-Track and G4Beamline results does
not exceed 0.2%. This is still below the statistical error of 1/

√
N = 1/

√
105 ≈ 0.3%,

indicates strong agreement between the two approaches.
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Figure 3.3.: The muon energy loss in LiH was examined by comparing simulations from
RF-Track and G4Beamline. These simulations began with a monoenergetic pencil beam
of 105 muons, each passing through a 65.37mm LiH element at initial kinetic energies
of EKin = [95.9, 120.5, 156.4] MeV. The relative error, in gray lines, in these comparisons
is below 0.2%.

3.2.4 Energy loss fluctuations

As muons or other charged particles traverse a material, their energy loss undergoes
stochastic fluctuations, via a phenomenon called energy straggling. The fluctuation
is asymmetric around the most probable value of the energy loss distribution. These
fluctuations arise mostly from electronic scattering interactions in the material and rarely
from the nuclei. The Bethe formula in Eq. (3.17) represents merely an averaged value
of the energy loss induced by electronic scattering. Fundamentally, the energy transfer
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from a charged particle to matter is small.

However, on occasion, there can be transfers of higher energy, resulting in high-energy
recoil electrons. These recoil electrons, termed delta rays [92], introduce tails into the
energy loss distribution of a charged particle beam in a material. In the theoretical
treatment of energy loss fluctuations [99], a straggling parameter is introduced.

κ =
ξ

Tmax
, ξ =

kρ

β2me

Z

A
ds, (3.19)

k = 2πNAr
2
eme ≈ 0.157MeV cm2 mol−1. The characteristic energy loss ξ simplifies from

Eq. (3.17) by omitting the term on the right within the brackets and considering that
the logarithm equals one. The maximum energy transfer is indicated by Tmax and was
defined already in Eq. (3.14).

Upon examining the ICOOL source code [100], it is evident that several energy-loss
distributions are utilized depending on the value of κ, as outlined in the associated
table:

Ranges κ ≤ 0.01 0.01 < κ ≤ 10 κ > 10
Distribution Landau [101] Vavilov [102] Gauss [103]

In the existing version 2.3 of RF-Track, the Gaussian distribution is the only probabilistic
representation implemented within the code. The standard deviation of a Gaussian
energy loss distribution per unit path length is described in

dσ2
E

ds
= k

Z

A
ργ2

g
1− β2

2

n
. (3.20)

A comparative analysis of the energy loss distribution patterns is illustrated in Fig. 3.4,
comparing ICOOL and RF-Track. Both simulations used an identical material thickness
and a 100MeV monoenergetic pencil muon beam. The energy distribution after the
thickness of the material in the RF-Track shows a symmetric Gaussian profile, whereas
the distribution of ICOOL is asymmetric. The implementation of this distribution in
RF-Track is beyond the scope of this thesis, but has been identified as a necessary update
for the developers.

3.3 Scattering of charged particles in matter

The deflection of charged particles in matter, known as multiple Coulomb scattering
(MCS), plays a crucial role in various areas of physics. Direct simulation of parti-
cles that undergo repeated interactions with atomic nuclei is computationally intensive.
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Figure 3.4.: The longitudinal distribution of muons from an initial 100MeV mono-
energetic muon pencil beam is presented in the form of a histogram after passing through
164mm of LH material. The energy straggling distribution within RF-Track exhibits a
symmetric Gaussian profile. To facilitate a benchmark against ICOOL simulations, it is
necessary to incorporate an implementation of both the Landau and Vavilov distributions
into the code.

Therefore, probabilistic scattering models, such as G. Molière’s framework [104] and
subsequent refinements by H. Bethe [105] and W. Scott [106], provide practical approx-
imations. Although MCS has a fundamentally non-Gaussian character, it is commonly
approximated with a Gaussian core and non-Gaussian tails generated by single scatter-
ing events. This approximation is especially relevant for the advancement of cooling
simulations in this thesis.

Precise modeling of ionization cooling is based on an accurate representation of MCS
events. This section describes the enhancements of RF-Track through the integration of
a swift and novel MCS model. These enhancements extend the utility of RF-Track in
the design of the cooling channels for muon colliders. The new model employs a semi-
Gaussian mixture approach, parameterized with the Bethe-Wentzel deflection width.
This section begins with a compact theoretical and historical review of single-scattering
models and then presents the semi-Gaussian algorithm. In the end, this section bench-
marks the RF-Track results against those of comparable ICOOL and G4Beamline sim-
ulations and interprets the findings in the concluding remarks.
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3.3.1 Motivation for scattering analysis in low-Z materials

The mathematical model of ionization cooling for low-Z materials significantly diverges
from the measurements, which will be demonstrated in this section and in the following
chapter. The discrepancy arises because the theoretical framework for ionization cooling
is based on the Lynch-Dahl modification [107] of the Highland formula [108]. This
framework was popularized by the Particle Data Group [92].

Such a scattering formula encounters two primary issues when applied to light-atomic
materials. First, it accounts for the atomic number Z indirectly through the radiation
length, which is based on an approximation that lacks precision for light materials. High-
land introduced an additional logarithmic term to the Rossi-Greisen formalism [109].
This was done to adjust the dependence on Z, factoring in the length of the absorber.
However, this modification presents another significant problem. When Highland’s equa-
tion is applied for particle tracking algorithms, the results become significantly sensitive
to the step size due to the non-convoluting nature of a logarithmic term. This depen-
dency creates inconsistencies that compromise the accuracy of the modeling process.

3.3.2 Rutherford scattering

If a muon passes close enough to the Coulomb field of a nucleus, both exchange virtual
QED force carriers, photons, which is the actual scattering process. The Coulomb force
is assumed to originate between the muon charge ±e and the nucleus charge Ze. To
determine the elastic deflection angle of the muon in the nucleus, the analytical approach
described in Section 3.2.1 can be used. Referring to Fig. 3.1, ℓ1 represents the muon
possessing mass m1 = mµ, while ℓ2 denotes the nucleus with mass m2 = mN.

Within the laboratory frame-of-reference, the muon is moving towards a stationary nu-
cleus. By employing the Rutherford approximation, the recoil of the nucleus is treated
as negligible, thus enabling a compact representation of the momenta as follows:

p1 =
f
E 0 0 p

m⊤
, p2 =

f
mN 0 0 0

m⊤
,

p3 =
f
E p sinϑ 0 p cosϑ

m⊤
, p4 =

f
mN 0 0 0

m⊤
.

(3.21)

The variables p and E denote the momentum and energy of the muon in Eq. (3.21), while
ϑ corresponds to its scattering angle. Substituting the four-momenta from Eq. (3.21)
into Eq. (3.8) results in an squared average amplitude denoted by

�|M |2� = ξ2m2
µm

2
N

f
1 + β2γ2 cos2 ϑ/2

m
, ξ2 =

Z2e4

p4 sin4 ϑ/2
. (3.22)

39



Chapter 3. Charged particles in material

In Eq. (3.22) the terms β and γ refer to the Lorentz factors of the muon. The cross section
within the laboratory frame, as derived from [7], is articulated under the Rutherford
approximation, under the premise that the nuclear mass significantly exceeds the muon
energy E, allowing the differential cross section to be approximated as

dσ

dΩ
=

1

64π2

1

(mN + E − E cosϑ)2
�|M |2� ≈ 1

64π2

1

m2
N

�|M |2� . (3.23)

In the context of Rutherford scattering, it is assumed that the muon is non-relativistic
(βγ < 1), and the bracket in Eq. (3.22) is considered to be one. Furthermore, applying
the small angle approximation sinϑ/2 ≈ ϑ/2, the Rutherford differential cross section
consequently scales to

dσ

dΩ
≈ Z2Ξ

ϑ4
, with Ξ =

g
2α

βp

n2

. (3.24)

3.3.3 Rossi and Greisen formula

This section begins with the Rossi and Greisen formula to derive the scattering angle,
which will be integrated into the RF-Track. B. Rossi and K. Greisen presented a first
characterization of the MCS [109]. In their analysis, they considered an MCS probability
density function derived from Eq. (3.24) and the concentration of atoms per unit area
NAρds/A within a thickness layer of material ds. They represented the variance of MCS
per unit path length as

⟨ϑ2⟩
ds

=

\ ϑmax

ϑmin

ϑ2 dσ

dΩ

NA

A
ρdΩ. (3.25)

The angular boundaries ϑmin and ϑmax in Eq. (3.25) are given by

ϑmin =
2.66 · 10−6 Z1/3

p[GeV]
, and ϑmax =

0.14

A1/3 p[GeV]
. (3.26)

The definition of the minimum scattering angle, ϑmin, presented in Eq. (3.26) is derived
from a semi-classical scattering theory [99]. This theory considers the impact parameter
to be equivalent to the atomic radius of the Thomas-Fermi potential and incorporates the
uncertainty principle. The Rutherford cross section becomes invalid when the wavelength
of the charged particle reaches the nuclear radius rn. This invalidation is analogous to the
first minimum observed in the diffraction pattern for an object of size rn, the scattering
angles are confined such that ϑ ≤ ϑmax [110]. For angles ϑ > ϑmax, the inelastic scattering
theory is more appropriate, characterized by smaller cross sections and thus insignificant
for low-energy muons.

In Eq. (3.25), the small angle approximation can be applied to the differential solid angle
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as dΩ ≈ ϑdϑdϕ. The resolution of the integral in Eq. (3.25) results in a scaling expressed
by

d⟨ϑ2⟩
ds

= 2πΞ
ρNA

A
Z2 ln

4
ϑmax

ϑmin

;
. (3.27)

Assuming A ≈ 2Z, the logarithmic component in Eq. (3.27) is reduced to

ln

4
ϑmax

ϑmin

;
= ln

2
229.252 Z−2/3

g
Z1/6

A1/6

n2
9
≈ 2 ln

4
204.24

Z1/3

;
. (3.28)

Using the definition of the electron radius as given in re = α/me, Eq. (3.24) transforms
to

d⟨ϑ2⟩
ds

= 4π

g
me

pβ

n2

4r2eNA
ρZ2

A
ln

4
204.24

Z1/3

;
. (3.29)

Rossi and Greisen [109] observed that certain parameters and the logarithmic term in
Eq. (3.29) exhibit similarities to the radiation length formula

L−1
R = 4αNA

Z2

A
ρ r2e ln

f
183Z−1/3

m
. (3.30)

The root mean square of the Rossi-Greisen scattering angle within a transverse plane,
as specified in ϑ0 =

w⟨ϑ2⟩/2, culminates in

ϑ0 =
Es

βp

x
s

LR
, with Es =

x
4πm2

e

2α
≈ 15MeV. (3.31)

Later, V. Highland [108] compared in his work Eq. (3.31) the Molière-Bethe theory [105]
and found inconsistencies for lower Z materials. He adjusted Eq. (3.31) with a fitting
parameter and an additional logarithmic term. G. Lynch and O. Dahl [107] fine-tuned
Highland’s idea and found the final analytical expression

ϑ0 =
13.6[MeV]

βp

x
s

LR

4
1 + 0.038 ln

g
s

LR

n;
, (3.32)

with an accuracy of 11% for 10−3 < s/LR < 102. Eq. (3.32) gives a quick analytical
estimate of 98% of the central distribution and is also quoted in [92].

Despite this, Eq. (3.32) is unsuitable for tracking simulations due to the non-additive
nature of the logarithmic term. If the integration step of a generic tracking is set to
10% of the radiation length, the fitting parameter would be adjusted to 12.4MeV. In
contrast, when 1% of the radiation length is used, it changes to 11.22MeV, which clearly
violates the convolution property. The initial integration of a scattering model into the
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RF-Track code involved omitting the logarithmic component of Eq. (3.32) to

ϑ0 =
13.6[MeV]

βp

x
s

LR
. (3.33)
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Figure 3.5.: The scattering angles of muons were compared using the simulation codes
ICOOL, RF-Track, and G4Beamline, with Be, Li, and LH as test materials due to their
low atomic numbers. For LH, RF-Track simulations show significant discrepancies in
scattering angles compared to the results from ICOOL and G4Beamline. The relative
differences are shown below the scattering angle graphs. The dashed line represents the
relative error between RF-Track and G4Beamline, while the solid line shows the relative
difference between RF-Track and ICOOL. For Be and Li, the deviation remains around
the 5% line, whereas for LH, the discrepancy stabilizes at approximately 20%.

For comparison, a muon pencil beam was generated with RF-Track, ICOOL, and G4Beamline
and guided through a slab of Be, Li, and LH, using the following beam and material pa-
rameters as listed in Table 3.2. The initial kinetic energy of the pencil beam is 100MeV
consisting of 105 positively charged muons.
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[MeV] L [cm] LR [cm] ρ [g cm−3]
Be 18 35.28 1.848
Li 50 155 0.534
LH 60 890.5 0.0708

Table 3.2.: Parameters of the beam and material for the comparative scattering study
involving RF-Track, G4Beamline, and ICOOL. The absorber’s thickness is noted as L,
its radiation length is indicated by LR and the absorber’s density by ρ

The standard deviations of the scattered muons for Li and Be were compared, revealing a
agreement with the results of ICOOL and G4Beamline, as shown in Fig. 3.5. The relative
error for these material tests is approximately 5%. However, Fig. 3.5 demonstrates a
significant overestimation for LH, which is the main material of interest for ionization
cooling simulations. The relative error between RF-Track and G4Beamline / ICOOL is
for LH around 20%.

It is not surprising that the error increases as Z decreases. This trend arises from
the approximation of the scattering length used in the Eq. (3.32). The assumption
that A is roughly twice Z holds well for heavier elements, but not e.g. LH with Z ≈ A.
Consequently, it is necessary to identify an improved analytical approximation compared
to Eq. (3.32), leading to the result outlined below.

3.3.4 Bethe-Wentzel scattering

J. Cobb and T. Carlisle [111, 112] put forward a scattering model in low-Z materi-
als derived from Bethe and Wentzel, incorporating electron- and nucleus interactions
[105, 113]. The Rutherford differential cross section in Eq. (3.24) can be adjusted by
implementing the minimum cut-off angle ϑ−4 → (ϑ2+ϑ2

min)
−2 from Eq. (3.26) to prevent

singularities. Additionally, it can be modified with contributions from electron screening
by replacing Z2 with Z(Z + 1). The variance of multiple Coulomb scattering per unit
length can be divided into nuclear and electronic components, with the aforementioned
adjustments, leading to

d⟨ϑ2⟩
ds

=
Ξ ρNA

A

2\ ϑmax

ϑmin

ϑ2 Z2 dΩ

(ϑ2 + ϑ2
min)

2
+

\ ϑe
max

ϑe
min

ϑ2 Z dΩ

(ϑ2 + ϑ2
min)

2

9
. (3.34)

The bounds for the integration of the second component, the screening contribution, in
Eq. (3.34) are determined in [110, 112]. These are given by

ϑe
min = arccos

p2 − I(me + E)

p
u
(E − I)2 −m2

µ

, ϑe
max ≈ me

mµ

. (3.35)
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The resulting expression for the scattering variance per unit length in a single dimension
can be written as

d⟨ϑ2⟩
ds

= ρ
me k

2A

g
Z

βp

n2 4
F

g
ϑmax

ϑmin

n
+

1

Z
F

g
ϑe

max

ϑe
min

n
− 1.19

g
1 +

1

Z

n;
. (3.36)

The auxiliary function, the solution of the integral in Eq. (3.34), is defined as

F (x) =
1

1 + x2
+ ln

f
1 + x2

m
. (3.37)

3.3.5 The Semi-Gaussian mixture model

The semi-Gaussian mixture model, introduced by R. Frühwirth [114], offers an effective
approach to track particles in materials that include MCS. Its main component adopts
a Gaussian shape within the MCS, complemented by supplementary non-Gaussian tail
distributions. These tails account for single scattered particles, as detailed in Eq. (3.24)
and remain applicable in thicker materials. The marginal mixture density function is
expressed as

f(ϑ) ∝ (1− ϵ)
ϑe

−ϑ2

2σ2

σ2
+ ϵ

2a2ϑ

(ϑ2 + a2)2
(3.38)

where the initial term represents the Gaussian core, while the latter term accounts
for the extended tails. The variable ϵ in Eq. (3.38) describes the amount of particles
participating in the core and in the tails of the distribution.

In the literature, a Gaussian tail approximation is also observed [115]. However, this
method is recommended for layer thicknesses greater than the radiation length of the
material. In an ionization cooling channel, the absorber length is usually an order of
magnitude smaller than their radiation length.

Random scattering angles are determined via two inverse cumulative distribution func-
tions, represented as:

ϑ =

��
σ
√−2 ln u, if v > ϵ,

ab

x
1− u

ub2 + a2
, if v < ϵ.

(3.39)

The initial term in Eq. (3.39) is used for creating the Gaussian core. The second term is
relevant to long-range tails. In Eq. (3.39), u and v represent uniform random variables
within the interval [0,1]. The coefficients (σ, a, b, ϵ) in Eq. (3.39) are calculated following
the procedures described in [116]. The values of these coefficients are influenced by the
type of particle and the properties of the material used. Given the material thickness
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ds and the particle velocity β, two critical functions are introduced:

n = Z0.1 lnN, with N ≈ 2.215 · 104 · Z 4
3

β2A
ds. (3.40)

The variance for the Gaussian component in Eq. (3.39) is expressed as

σ2 = 0.1827 + 0.01803n+ 0.0005782n2. (3.41)

The tail parameter is determined using

a = 0.2822 + 0.09828n− 0.01355n2 + 0.001330n3 − 4.590× 10−5 n4. (3.42)

The third parameter of the single scattering distribution is expressed as

b =
ϑmax

ϑmin

�v
N

g
ln

ϑmax

ϑmin
− 0.5

n
. (3.43)

After calculating a, b and σ, the tail weight factor can calculated according to

ϵ =
1− σ2

a2 (ln (a/b)− 0.5)− σ2
, (3.44)

that controls whether the scattered particle contributes to the core or to the tail of the
distribution. The projected angles in the x and y directions are perpendicular to the
longitudinal particle propagation s. They are connected via the azimuth angle ϕ,

ϑx = ϑ cosϕ, ϑy = ϑ sinϕ, (3.45)

where ϕ follows a uniform distribution in the range [0, 2π). These two angles are not
correlated, but are not independent. The total variance of the generated angles from
Eq. (3.39) is equal to one and must be parameterized with Eq. (3.34).

3.3.6 Convolution property of the MCS distribution

The statistical properties of MCS should adhere to the convolution property. The con-
volution principle defines that the same scattering is provided, regardless of the number
of steps in the simulation. That means, a slab of material with thickness d should be
equivalent to the scattering distribution resulting from slabs of n of the same material,
each with a thickness of d/n.

The Central Limit theorem states that the sum of a large number of independent ran-
dom variables converges towards a normal distribution. As shown in Fig. 3.6, the semi-
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Figure 3.6.: The scattering distributions of muons in beryllium (1% radiation length)
were compared between RF-Track and ICOOL simulations using a 1GeV pencil beam
of 106 muons with tracking steps of 101 and 103. RF-Track results show consistent
scattering distribution tails regardless of step size, while ICOOL exhibits slight changes
in the core distribution shape for 10 steps compared to 1000 steps, highlighting a lack
of step-size convolution in its current model.

Gaussian mixture model retains its elongated tail. Despite executing a substantial num-
ber of integration steps, it does not achieve convergence to a normal distribution. It
is crucial to highlight that the scattering distributions’ tails persist even after multiple
tracking steps.

To analyze muon deflections, the size of the computational step in RF-Track and ICOOL
was varied. Beryllium was used in the first test simulation, with a thickness of 1% of its
radiation length. In Fig. 3.6, the resulting RF-Track distributions were compared with
those obtained from ICOOL. Both programs used a 1GeV pencil beam of 106 muons to
penetrate the samples, with simulations repeated for the 101 and 103 tracking steps.
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In Fig. 3.6, modifying the integration step size does not affect the tail sections of the
scattering distribution. In the current ICOOL model, the convolution property is lacking
at different step sizes. For the 101 steps, the shape of the core distribution pattern in
ICOOL changes slightly compared to the case with the 103 steps.

A distribution based on a semi-Gaussian mixture parameterized with Bethe-
Wentzel scattering is a novel charged-particle deflection solution in material. The
semi-Gaussian mixture model demonstrates that the accuracy of the scattering
distribution is maintained even with reduced integration step sizes. Consequently,
RF-Track can employ smaller integration steps in the simulation of an ionization
cooling channel, thereby optimizing computational efficiency.

The following analysis concentrates on materials relevant to ionization cooling, specifi-
cally LH and LiH. The lengths of these materials and the initial energies of the muons
are enumerated in Table 3.1 related to the MICE test samples. For comparison of muon
scattering distribution patterns, a pencil beam of positively charged muons 106 is gen-
erated at the entrance of each material slab in the simulations. At the end of each
absorber sample, the angle of each muon was recorded and compared with other sim-
ulations. Throughout every simulation, the number of integration step sizes is kept at
102 to ensure that ICOOL and G4Beamline produce precise distribution patterns. The
analysis of scattering distributions for the 4MeV scenario in Table 3.1 was excluded from
the comparison. The exclusion was attributed to the significant muon losses detected in
that specific simulation.

The benchmarking of LH was conducted using ICOOL and evaluated against RF-track’s
novel semi-Gaussian mixture model. The comparison involving LiH was made using
G4Beamline. This was initiated by the distinct composition of Li-6 and Li-7 from the
MICE experiment, which is not included in the standard ICOOL material database.

The results are depicted in Fig. 3.7, with LH histograms presented in the left column
and LiH plots positioned on the right. In each histogram, the core distributions exhibit
substantial agreement between all simulation codes. It is apparent that both ICOOL and
G4Beamline accommodate particles exhibiting extensive scattering distances, whereas
the RF-Track’s semi-Gaussian model demonstrates a truncation in its tail distribution.
The occurrence of extensively scattered particles in ICOOL and G4Beamline ranges
from 50 to 100. In contrast, compared to 106 macro particles, the incidence of such
long-range particles is markedly lower. Nevertheless, in the context of ionization cooling
simulations, the presence of these particles is likely to introduce distortions in the beam
parameter results, and thus they should be excluded from the analysis.
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Figure 3.7.: The results show that the core distributions are consistent across all sim-
ulation codes. ICOOL and G4Beamline capture particles with significant scattering
distances, while RF-Track’s semi-Gaussian model truncates the tail distribution. The
occurrence of very high scattered particles in ICOOL and G4Beamline ranges in the
order of 100, compared to a total particle number of 106. These long-range particles can
distort beam parameter results in ionization cooling simulations and should be excluded
from the analysis.

3.3.7 Deflection angle comparisons

The scattering angles were evaluated and compared at different material thicknesses.
The conditions for the beam and the material were consistent with those in the previous
analysis of the scattering pattern. However, a particle muon count of 105 was selected
to accelerate the simulation speed. The number of integration steps for all simulations
was established at 30. The scattering angles were investigated after each step. The LH
scattering angle benchmark was performed using both ICOOL and RF-Track, as shown
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in Fig. 3.8. This figure also presents the analytical solution of Eq. (3.36).
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Figure 3.8.: In energy scenarios of [90.2, 119.7, 153.9]MeV, the benchmarks demon-
strate strong agreement, with relative errors consistently below 5%. These errors fol-
low a systematic pattern due to differences in the scattering models of RF-Track and
ICOOL: they increase with the path length through the material. This behavior high-
lights compatibility between RF-Track’s semi-Gaussian mixture approach and ICOOL’s
MCS model. In the lower-energy scenario of 4MeV, relative errors are higher. This is
primarily due to significant particle losses as muons stop and decay within the material,
resulting in increased simulation error from information loss.

In the context of higher-energy scenarios, the benchmarks exhibit a high degree of con-
sistency, as illustrated in Fig. 3.8. Relative errors consistently remain below 5%, similar
to the results for Be and Li in Fig. 3.5. However, the relative errors reveal a system-
atic pattern attributable to the distinct scattering models employed by RF-Track and
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ICOOL. Specifically, as the material lengths of the tracked particles increase, the relative
error increases slightly. This earlier observation suggests that RF-Track’s semi-Gaussian
mixture method is well-matched with the MCS model used by ICOOL.

In the low-energy analysis shown in the bottom right graph of Fig. 3.8, the relative error
is greater compared to that observed at higher energy levels. This can be explained, as
mentioned earlier, by substantial particle losses occurring when muons are completely
stopped and decay within the material. From a statistical perspective, this loss of
particles translates to a loss of information in the simulation, resulting in an increased
error.

Finally, the analysis was performed using the beam kinetic energies referenced in 96MeV
and 156MeV, on a LiH material of thickness 65.37mm. The benchmark results, obtained
through RF-Track and G4Beamline, are illustrated in Fig. 3.9. These results demon-
strate a relative error behavior analogous to that in Fig. 3.8. The marginally higher
relative error can be attributed to the disparate materials mixture methodologies em-
ployed by RF-Track and G4Beamline, as previously elucidated in Section 3.2.3.
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Figure 3.9.: The benchmark study was conducted on LiH material. The results demon-
strate a trend of relative error similar to prior observations in LH, albeit with slightly
higher errors. This variance can be attributed to the differing material combination
methods used by RF-Track and G4Beamline, as discussed earlier.
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3.4 Summary of charged particle interaction in RF-
Track

The key interactions between charged particles and matter relevant to ionization cooling
involve electronic energy losses and their related fluctuations. In addition, these inter-
actions include nuclear multiple Coulomb scattering (MCS). The theoretical framework
for representing energy losses is founded on the Mott differential cross section, with the
inclusion of spin corrections. For MCS, the fundamental element is the Rutherford cross
section, serving as the foundation for developing statistical models of charged particle
deflection. An enhanced formula conceived by Cobb and Carlisle [111, 112] has been de-
veloped, which describes the Wentzel-Bethe deflection approach. It is embedded within
RF-Track to more accurately represent the statistical variability of scattering. This ad-
dresses the issue that existing approximations for deflection angles of charged particles
in liquid hydrogen (LH) either do not preserve the convolution property or are overly
accurate.

A semi-Gaussian mixture model for MCS in RF-Track was developed and implemented.
This model consists of a Gaussian core distribution and non-Gaussian tails, and it is
parameterized using the Bethe-Wentzel scattering angle approach. The model maintains
long-range scattering tails over a number of integration steps. It shows strong agreement
with comparable ICOOL and G4Beamline simulations.

Comparisons of the mean energy loss in RF-Track with both ICOOL and G4Beamline
show remarkable consistency. Similarly, benchmarking of the MCS standard deviation
angles in RF-Track against ICOOL and G4Beamline yields impressive results. The new
scattering model introduced in RF-Track is suitable for particles that are heavier than
electrons and positrons.

The motivation for beginning simulation studies of ionization cooling using RF-Track
lies in its sophisticated implementation of collective effects. Compared to ICOOL and
G4Beamline, RF-Track offers a wider range of collective effect models in its software.
The exploration of these collective effects within ionization cooling channels is still rela-
tively unexplored territory in muon collider research. RF-Track offers a strong platform
for expanding this knowledge, but could greatly improve by fine-tuning certain elements,
particularly by enhancing the energy-straggling model. Presently, the energy loss fluc-
tuations are based on a Gaussian approximation, which does not entirely capture the
real physics of the phenomenon.
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Beam dynamics in ionization cooling

In accelerator physics, beam dynamics involves particles traveling through structures
consisting of magnets and RF cavities. In the final cooling channel, the reference tra-
jectory is a straight line as it incorporates only solenoids and RF systems. Additionally,
the solenoids are filled with energy-absorbing material, which always manipulates the
normalized phase space in each degree of freedom.

In this chapter, a practical current sheet model for solenoids was implemented in RF-
Track and benchmarked against G4Beamline, providing an accurate and efficient method
for evaluating 3D magnetic fields. The transverse beam dynamics in solenoidal fields
was explored using a modified Courant-Snyder formalism that incorporates canonical
angular momentum to account for coupling effects.

Analytical models that describe the evolution of the emittance in solenoids with ab-
sorbers were developed, enhancing Neuffer’s cooling equation1 and showing excellent
agreement with simulations. These models enable efficient optimization of the initial
beam energies. Finally, the chapter examines the deposition of energy in absorbers and
windows, providing key insights into the critical thermal behavior of cooling channel
design.

4.1 How to cool muon beams

A muon beam, generated from pion decays, occupies a large volume in phase space.
The emittance characterizes the volume the beam occupies in phase space and has to
be reduced to reach high luminosities for future µ−µ+ -collisions. The target emittances
are achieved within the final cooling channel of the muon collider accelerator complex
[25]. To push minimal transverse emittance, it is essential to employ solenoid fields at
their maximum capacity for very strong focusing.

1This is presented in Chapter 4.5 in Eq. (4.51).
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Each segment of this channel contains a solenoid that features an extremely strong field
(40T). Inside the solenoid, an energy absorbing material is placed, followed by an
RF acceleration cavity located next to the solenoid. While muons penetrate the
absorber, they lose momentum in all three spatial directions. Muons gain longitudinal
momenta through the re-acceleration in an RF cavity, as illustrated in Fig. 4.1, while
the transverse velocities remain unchanged.

Coulomb scattering of muons by the absorber’s nuclei reduces the cooling effect because it
increases the transverse momenta of the muons within the bunch. The strong magnetic
fields of the solenoid diminish the absorber-induced divergence increase of the muon
beam. Low atomic number materials have more energy loss per scatter and counteract
the transverse momentum increases. The muon beam traverses through multiple final
cooling cells, analogous to Fig. 4.1, until the target emittance values are attained.

High field

solenoid

Cavities

p⃗
pz

p⊥ Absorber

Figure 4.1.: A final cooling cell initially reduces the momenta of muons in all spatial
directions. A longitudinal re-acceleration results to a decrease the divergence of the
momenta. The strong fields of the solenoid counteracts divergence growth induced by
scattering effects of the absorber.

This chapter provides a summary of a comprehensive theoretical framework, the tools
of which will be utilized for the final cooling design in Chapter 5. Furthermore, this
chapter expands on the theoretical ionization cooling framework, contributing not only
to the design of the final cooling cells but also potentially aiding future research in this
area.

4.2 Analytical field model for solenoids

An electric current passing through a wire creates a circular magnetic field around it, as
described by the Biot-Savart law. A solenoid, composed of wire coiled in a spiral form,
produces a magnetic field along its length when current flows. The magnetic field can
theoretically be determined by adding the fields of each individual coil, although this
method is inefficient.

There is an analytic solution for the magnetic field produced by a cylindrically symmetri-
cal current sheet. A solenoid can be represented as a series of coaxially arranged current
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sheets. This model, referred to as the finite current sheet model, offers an analytic
solution for a practical solenoid.

This section provides a mathematical summary of the finite current sheet model. The
implementation of this model into the RF-Track code facilitates the execution of ion-
ization cooling simulations. A comparative tracking study was conducted that involved
muons within equivalent solenoids using both RF-Track and G4Beamline. The bench-
marking results demonstrate a high degree of consistency, thereby establishing RF-Track
as a sophisticated tool for muon cooling investigations.

4.2.1 Current sheet model

A solenoid is assembled by integrating the contributions of a multitude of identical
coaxial loops. In an initial approximation, the thickness of these wires is considered to
be infinitesimally small. The loops are uniformly distributed along their longitudinal
axis for finite length L. For the sake of simplification, these loops may be represented
as an infinitesimally thin conductive and cylinder symmetric current sheet. Within
cylindrical coordinates (ϱ ϕ z)⊤, the vector potential at a position (ϱ, z) of a current
sheet is articulated as

Aϕ(ϱ, z) =
µ0I

2πL

x
r

ϱ

4
ζ k

g
K(k2)

h2 + k2 − h2k2

h2k2
−E(k2)

1

k2
+
h2 − 1

h2
Π(h2, k2)

n;ζ+
ζ−
, (4.1)

with the comprehensive derivation provided in Appendix C.1.2. In Eq. (4.1), r refers to
the radius of the sheet with a current I. The variables in Eq. (4.1) are defined as

ζ± = z ± L

2
, k2 =

4ϱ r

(ϱ+ r)2
, h2 =

4ϱ r

(ϱ+ r)2 + ζ2
. (4.2)

The functions K,E and Π are specified as complete elliptic integrals of the first, second,
and third kinds, and are detailed in Eq. (C.15). To ensure completeness in Eq. (4.1),
the constant µ0 is specified as the vacuum permeability.

From the vector potential in Eq. (4.1), the radial field component of the current sheet
at

Bϱ(ϱ, z) =
µ0I

2πL

x
r

ϱ

4
k2 − 2

k
K(k2) +

2

k
E(k2)

;ζ+
ζ−
, (4.3)

while the longitudinal component yields to

Bz(ϱ, z) =
µ0I

4πL

1√
rϱ

4
ζ k

g
K(k2) +

ϱ− r

r + ϱ
Π(h2, k2)

n;ζ+
ζ−
. (4.4)
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The radial field on-axis (ϱ = 0) is Bz(ϱ = 0, z) = 0, while the longitudinal component
scales to

Bz(ϱ = 0, z) =
µ0I

2L

g
z + L/2w

r2 + (z + L/2)2
− z − L/2w

r2 + (z − L/2)2

n
. (4.5)

4.2.2 Multiple current sheets

In practice, a solenoid possesses a limited thickness t, and to utilize a sheet model on
an actual solenoid, one can assume the following. The solenoid may be divided into
an arbitrary number of coaxial rings with thickness dt, as depicted in the left sketch of
Fig. 4.2. In the model, each ring is floated with the same current density, dJ = J/NSheets,
while the total current density of the solenoid is described by Eq. (4.6).

J =
I

(rout − rin)L
. (4.6)

In Eq. (4.6), the inner radius of the solenoid is denoted by rin, while the outer radius
is represented by rout. Consequently, the solenoid thickness is defined as t = rout − rin.
The total magnetic field of the solenoid is the superposition of NSheets sheets within the
thickness t. The plot on the right in Fig. 4.2 illustrates an example of a solenoid field
composed of NSheets = 10 sheets. This model aligns with realistic solenoid fields as the
number of sheets increases.

4.2.3 RF-Track solenoid model benchmarks

To carry out ionization cooling simulations within RF-Track, it is essential to have
a precise representation of the field map of a solenoid. Accordingly, Eq. (4.3) and
Eq. (4.4) from the finite current sheet model were integrated into the RF-Track code.
For benchmarking purposes, G4Beamline was employed, and the ensuing results will be
detailed below.

Due to the computationally intensive nature of the elliptic integrals in Eq. (4.3) and
Eq. (4.4), RF-Track follows the specific strategy. In an RF-Track simulation, when a
solenoid is being defined, RF-Track initially generates a 3D mesh-grid that encompasses
a volume centered around the solenoid. The magnetic field at these data points will
be calculated first by Eq. (4.3) and Eq. (4.4) and will be further used as an input of
a 3D interpolation function. The trajectory of the particle is subsequently computed
by solving the equations of motion, utilizing the field information returned from the
interpolation function. This approach markedly improves computational efficiency by
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Figure 4.2.: Left figure: a solenoid with finite thickness t can be modeled using a sheet
approximation by dividing it into an arbitrary number of coaxial rings with thickness
dt. Right figure: An example of a solenoid field composed of 10 finite current sheets
with a length of 1m centered at the origin.

employing interpolation. By doing so, it avoids the need to compute a set of elliptic
integrals for each particle at every spatial position.

For the purpose of benchmarking the RF-Track solenoid model using G4Beamline, the
solenoid shall be represented by a single cylindrically symmetric block composed of 20
current sheets. The optical parameters of the solenoid are summarized in Table. 4.1.
A group of µ+ test particles will begin tracking from a position 0.5m upstream of
the solenoid’s center. The final position of the particle at 0.5m downstream in both
simulations, RF-Track and G4Beamline, will be analyzed and compared for comparative
analysis. Initially, 41 µ+ will have a momentum of 200MeV/c in the z direction and
will be distributed radially at intervals of 10mm. Fig. 4.2 provides a detailed overview
of the particle specifications.

The final positions of the particles as computed by the RF-Track and G4Beamline sim-
ulations are illustrated to the left in Fig. 4.3. As depicted in the right-hand graph of
Fig. 4.3, the benchmark analysis indicates that the relative error increases with greater
radial offset. This suggests that the magnetic fields between G4Beamline and RF-Track
are not perfectly aligned, leading to discrepancies in particle trajectories. The source of
this misalignment is the mesh-grid interpolation. Despite these differences, both simula-
tions exhibit high accuracy, indicating that RF-Track is capable of effectively modeling
complex ionization cooling lattices.
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Coil parameter Unit Value
Inner radius mm 250.0
Radial thickness mm 169.3
Outer radius mm 419.3
Length mm 140.0
Current density A/mm2 500.0

Table 4.1.: Solenoid parameters used
for the benchmarking between RF-
Track and G4Beamline.

µ+ parameter Unit Value
Momentum MeV/c 200.0
z start mm -500.0
z end mm 500.0
Radial spacing mm 10.0
Maximum radius mm 200.0

Table 4.2.: In the context of bench-
marking, 41 µ+ will be monitored as
they traverses the solenoid. The de-
tailed parameters of the particle are
provided above.
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Figure 4.3.: Final particle positions from RF-Track and G4Beamline simulations (left).
The benchmark analysis (right) shows increasing relative error with radial offset, sug-
gesting magnetic field misalignment due to mesh-grid interpolation. Despite this, both
simulations demonstrate high accuracy.

4.3 Linear and transverse beam dynamics in solenoids

Particles in a beam propagating along an accelerator lattice2 exhibit position and mo-
mentum deviations, resulting in oscillations around a reference orbit. These movements
are known as betatron oscillations. The dynamics within the transverse plane will be
analyzed on the basis of the referenced literature [117–119]. In the transverse plane,

2In accelerator physics, the term lattice refers to a beamline comprising designated optical elements.
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each particle within a bunch will be represented by its spatial coordinates (x, y) and
momentum components (px, py) relative to a reference particle. The transverse motion
is described relative to a reference particle traveling along the beam axis s, using a
Frenet-Serret coordinate system (Fig. 4.4).

y

z

x

pz

py
px

sps

Figure 4.4.: A Frenet-Serret system is a type of coordinate system that travels along
with a reference particle, which has momentum p0, on its path designated as the reference
orbit s. In this Frenet-Serret system, the phase space coordinates of every particle in a
bunch are defined.

In an accelerator design, curvatures in s occur within lattice elements with non-zero
transverse fields, such as dipoles. The present design for the final cooling channel
currently excludes dipole components. The set of spatial and momentum coordinates
(x, px, y, py) defines the transverse phase space, with (x, px) and (y, py) representing the
horizontal and vertical components, respectively.

The transverse momenta are often normalized with respect to the reference momentum,
which, under the paraxial approximation, corresponds to the angles

x′ ≈ px
ps
, y′ ≈ py

ps
. (4.7)

The collection of spatial and angle coordinates (x, x′, y, y′) is alternatively referred to
as the trace space coordinates. In accelerator physics, beam dynamics is commonly
described using Hamiltonian mechanics. In this framework the momenta are expressed
as canonical variables which are defined as

p̃x = px + qAx, p̃y = py + qAy, (4.8)

where q is the charge of the particle and Ax and Ay are the transverse components of
the vector potential. The spatial canonical variables are congruent to their mechanical
counterparts within the transverse plane, thus denoted by x = x̃ and y = ỹ.

In linear beam dynamics, the propagation of a particle from position s0 to s1 along
a beamline is described using a transfer matrix R typically computed by solving the
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equation of motion derived from the Hamiltonian or Hill’s equation. The following dis-
cussion focuses on the linear transverse beam dynamics in the single-particle, decoupled
regime (Chapter 4.3.1). This frame work is also extended to statistical ensembles of
particles with given distributions, characterized by beam parameters consistent with the
Courant-Snyder theory.

Since the final cooling channel employs only solenoids for transverse focusing, an analysis
of the transfer map of a solenoid will be presented in Chapter 4.3.2. Solenoids inher-
ently couple the horizontal and vertical motion of the charged particle beam. Thus, a
description of beam evolution within a coupled dynamics framework that introduces the
concept of canonical angular momentum will be provided. Understanding the evolution
of beam parameters is crucial to accurately design the final cooling lattice. This topic
will be elaborated on in Chapter 5. The theory of linear and uncoupled beam dynamics
serves as the foundation for describing beam parameters in the coupled motion from
solenoids, as will be detailed in the following.

4.3.1 Linear and uncoupled beam dynamics

The beam parameters are determined by the field characteristics of the accelerator lat-
tice. These parameters can describe the behavior of individual particles inside this
lattice. In particular, the beam parameters are intrinsic properties of the lattice rather
than the beam itself; however, when the beam is appropriately matched to the lattice,
these parameters can equivalently characterize the beam. Including couplings, collective
effects, and other unrelated factors, one can calculate beam parameters within a beam-
line using two methods. Applying a linear transfer map to the beam parameter at s0, it
is possible to determine them at s1. An alternative approach involves solving the beam
envelope equation, which is derived from Hill’s equation, and propagating the beam pa-
rameters from s0 to s1. The beam parameters are described using the Courant-Snyder
formalism, which will be elaborated upon in the subsequent discussion.

Courant-Snyder formalism

The characterization of the uncoupled two-dimensional beam is derived from the linear
transfer matrix R. A transfer map of this kind may describe the tracking of particles
through a specific optical element or a segment of a beamline. A stable beamline segment
may either comprise solely focusing elements, such as solenoids within a final cooling
channel, or a combination of focusing and defocusing optics, which are quadrupole optics
in LINACs and rings.
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Transfer maps, derived from Hamiltonian mechanics, are inherently symplectic. Sym-
plecticity is characterized by transformations that maintain the phase space’s volume3 of
a particle distribution in an accelerator. As R is derived from the Hamiltonian equations,
the symplectic condition for a transfer map satisfies

R⊤ S R = S. (4.9)

Since this section discusses only the transverse planes, the 4-dimensional symplectic
matrix is defined as

S =

ii
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

pp =

g
S2 0
0 S2

n
. (4.10)

When examining a 2-dimensional and uncoupled transfer matrix Rx within the horizontal
plane, the horizontal transfer map can be generalized as

Rx = 𝕀2 cosµx + S2 Ax sinµx. (4.11)

The symbol 𝕀2 in Eq. (4.11) represents the 2-dimensional identity, accompanied by a
symplectic matrix Ax and a parameter µx. The relationship expressed in Eq. (4.11) is
applicable to both the vertical and longitudinal planes. The paramters of αx, βx, and
γx are known as the horizontal Courant-Snyder [120] or Twiss parameters [121] and are
elements of the matrix

Ax =

g
γx αx

αx βx

n
. (4.12)

The parameter βx is often referred to as the betatron function or simply the beta function
[122]. The Courant-Snyder parameters αx and βx are independent of each other, while
γx depends on both αx and βx. Inserting Eq. (4.11) into Eq. (4.9) results in

βxγx − α2
x = 1, (4.13)

indicating that the horizontal Twiss-gamma is given by γx = (1 + α2
x)/βx. Initially, a

particle’s position was depicted using phase- or trace-space coordinates.

In the preceding discussion, the particle motion was described by using phase-space (or
trace-space) coordinates. An alternative approach is to characterize it using action and
angle variables, which will be introduced in the following.

3The Liouville theorem states that when particle propagation adheres to Hamiltonian equations, the
density of particles within a beamline remains conserved.
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Action-angle variables

The action Jx alongside angle ϕx can be described by a synthesis of Courant-Snyder
parameters in conjunction with x and x′. In the uncoupled case, the definition of the
horizontal action is

Jx =
1

2

f
x x′mAx

g
x
x′

n
. (4.14)

The invariant variable Jx is also often known as the single-particle emittance. In a stable
and periodic beamline structure of length L, plotting x and x′ of a single particle over
multiple periods of that structure forms an ellipse in the trace space frame. The shape
of this ellipse is determined by the Courant-Snyder parameters (αx, βx, γx). Although
the form of an ellipse may vary with the observation point s0 within the beamline, its
area remains constant and is precisely 2πJx.

By monitoring the individual particle after each segment of the periodic beamline, the
trajectory on the ellipse aligns to a particular phase. This phase is characterized as the
angle variable expressed as

tanϕx = −βx
x′

x
− αx. (4.15)

The conversion from action-angle variables to trace-space coordinates is dictated by the
Courant-Snyder parameters, resulting in the expressions:

x =
w

2βxJx cosϕx, (4.16)

x′ =−
v

2Jx
βx

(sinϕx + αx cosϕx) . (4.17)

To obtain Eq. (4.17) from Eq. (4.16), the following conditions must be met:

dϕx

ds
=

1

βx

,

αx = −1

2

dβx

ds
.

(4.18)

The derivation of the beam envelope equation starts by utilizing Eq. (4.16) alongside
Eq. (4.17), in combination with Hill’s equation. In linear beam dynamics, beyond the
transfer maps, the beam envelope equation serves as an alternative method to compute
the Courant-Snyder variables in a beamline.
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Hill’s equation

Within the context of uncoupled beam dynamics, the Hamiltonian for each degree of
freedom aligns with an equation of motion given by

x′′ = −k(s) x, (4.19)

which is widely known as Hill’s equation. It resembles the motion of a harmonic oscilla-
tor, although the key difference is that k(s) changes with position. Here, k(s) represents
the focusing strength of the linear optical component at position s. For a solenoid, the
strength takes the form k(s) = κ2(s), which is defined in Eq. (4.31).

To address Eq. (4.19), the approach involves using the expressions given in Eq. (4.16)
and Eq. (4.17) as the starting point. By separating and setting the resulting sine and
cosine terms to zero, the uncoupled envelope equation yields to

2β′′
xβx − (β′

x)
2 + 4β2

xκ
2 − 4 = 0. (4.20)

In Section 4.3.2, the envelope equation will be presented specifically for a solenoid under
coupled conditions. Eq. (4.20) serves as a crucial analytical tool to design the beamline
in a final cooling channel, which will be detailed in Chapter 5. Before exploring the
methodology of coupled beam dynamics in solenoids, this subsection concludes with the
Courant-Snyder parameterization of particle distributions in a bunch. It also introduces
the geometrical and normalized emittance, which is an important figure of merit in
ionization cooling.

Description of particle distributions with Courant-Snyder parameter

In previous discussions, the focus was on the dynamics of an individual charged particle
in a stable and periodic lattice. The action Jx remains constant the beamline while the
angle ϕx and the Courant-Snyder parameter vary in position s. The Courant-Snyder
parameters describe not only the single-particle motions but also the particle distribution
in a beam. A collection of particles arranged according to a particular distribution
is called a bunch. When multiple such bunches are spaced at regular intervals, they
collectively form a beam.

Taking into account the statistical variance of a distribution of particles, the average of
the square of Eq. (4.16) at a certain point in the beamline is�

x2
�
= 2βx

�
Jx cos

2 ϕx

�
. (4.21)
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Assuming the angles of the particles ϕx are uniformly distributed from 0 to 2π. The
average of the squared cosine4 is 1/2 leading to�

x2
�
= βx ⟨Jx⟩ = βx εx. (4.22)

The average value of the action is called the geometric emittance εx = ⟨Jx⟩ of the beam.
In Eq. (4.22), the beta function βx is related to the beam, as opposed to an individual
particle. In general, the distribution of a beam is Gaussian, with the size of the root
mean square (rms) σx defined as

w⟨x2⟩5. It should be noted that the definitions provided
are applicable to both the vertical and longitudinal planes.

The geometrical emittance is a statistical quantity in beam dynamics that defines the rms
area occupied by the particles in the 2-dimensional trace/phase space. If the beam gets
accelerated εx is no longer conserved. To maintain this conservation, the emittance that
remains unchanged under Lorentz transformation is referred to as normalized emittance,
defined by

εx,N = βγ εx. (4.23)

The factors β and γ are Lorentz factors and not Couraunt-Snyder parameters. To differ-
entiate them, this thesis consistently uses subscripts on the Courant-Snyder parameters.
In contrast, unindexed β and γ symbols refer to the relativistic Lorentz factors associated
with the beam’s longitudinal motion.

The correlational between x and x′ is defined as

⟨xx′⟩ = −αx εx (4.24)

and the variance of the beam’s divergence is

�
x′ 2� = 1 + α2

x

βx

εx = γx εx. (4.25)

In terms of the beam distributions, the geometrical emittance can be expressed when
inserting Eq. (4.22), Eq. (4.24) and Eq. (4.25) into the identity Eq. (4.13) which leads
to

εx =

u
⟨x2⟩ ⟨x′ 2⟩ − ⟨xx′⟩2. (4.26)

An useful method in beam dynamics is to extract the covariance matrix of a beam
distribution, which is often referred to as a sigma matrix Σx. The sigma matrix is
characterized as

Σx =
�
x⃗x⃗⊤� = g ⟨x2⟩ ⟨xx′⟩

⟨x′x⟩ ⟨x′ 2⟩
n

=

g
βx −αx

−αx γx

n
εx. (4.27)

4Calculation:
�
cos2 ϕx

�
= 1

2π

] 2π

0
dϕx cos2 ϕx = 1

2
5When the beam is centered: ⟨x⟩ = 0
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The components of covariance matrix are the second momenta of the beam distribu-
tion.

4.3.2 Coupled beam dynamics in solenoids

In the Courant-Snyder framework, which characterizes both individual particle motion
and multi-particle distributions, the horizontal and vertical motions are treated as inde-
pendent of each other. Nevertheless, a solenoid simultaneously focuses charged particles
in both the vertical and horizontal planes, coupling their motion across these dimen-
sions. The Courant-Snyder parametrization is no longer applicable to coupled beam
distributions. This summary characterizes the Courant-Snyder parameter in coupled
solenoid motions through the invariant property of canonical angular momentum. The
beam envelope equation for solenoid beam dynamics will be shown, which is a practical
tool for designing lattices for the final cooling channel.

Canonical angular momentum

The solenoid field is cylinder symmetric, hence the Hamiltonian is invariant under rota-
tion about the axis of symmetry . The generator of rotation about the axis of symmetry,
the canonical angular momentum, is invariant. The canonical angular momentum for a
beam is given by

⟨Lcan⟩ = ⟨x̃ỹ′ − ỹx̃′⟩, (4.28)

which utilizes the canonical variables described in Eq. (4.8). By examining a field that
is both static and homogeneous within a solenoid, it is assumed that the fringe fields
occupy an infinitesimally small region. This region is located precisely at the solenoid
boundary. To effectively define the canonical momenta of a particle within a solenoid,
it is imperative to evaluate the vector potential, defined as

B⃗ =
f
0, 0, B0

m⊤ → A⃗ =
f
1
2
B0y, −1

2
B0x, 0

m⊤
. (4.29)

According to Eq. (4.8), the canonical variables in the linear approximation of the vector
potential can be defined as x̃ = x, ỹ = y, and

x̃′ = x′ +
qB0

2p0
y, ỹ′ = y′ − qB0

2p0
x. (4.30)

It is evident from Eq. (4.30) that as particles enter the solenoid, they acquire a transverse
momentum kick of ∓qB0x/2p0 and ±qB0y/2p0, depending on both their charge and the
direction of the magnetic field. The expression qB0/2p0 represents the solenoid’s focusing
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strength. The focusing strength has the units of inverse length and is typically expressed
as

κ =
cB[T]

2p0[eV]
. (4.31)

The canonical angular momentum in terms of kinetic variables can be get by inserting
Eq. (4.30) into Eq. (4.28) and yields to

⟨Lcan⟩ = ⟨xy′ − yx′⟩+ κ(⟨x2⟩+ ⟨y2⟩). (4.32)

The term ⟨xy′ − yx′⟩ is called the kinetic angular momentum. The term in parentheses
in Eq. (4.32) is geometrically the interpretation of a radius, and as defined in [70], it is
related to the betatron function in a solenoid as follows

β⊥ =
⟨x2⟩+ ⟨y2⟩

2ε⊥
(4.33)

For a beam that is cylinder symmetric, the solenoid’s beta function reduces to ⟨x2⟩/ε⊥,
although it does not match the two-dimensional beta function stated in Eq. (4.22). The
distinction lies in the application of the four-dimensional emittance, defined as

ε⊥ = 4
w
det(Σ4D), (4.34)

where Σ4D represents the four-dimensional covariance matrix. In the context of the
Courant-Snyder evolution within a solenoid lattice, the normalized canonical angular
momentum is defined as

L =
⟨Lcan⟩
2ε⊥

. (4.35)

Envelope equation in solenoids

Beam coupling arises in elements such as dipoles, skew quadrupoles, solenoids or due
to misalignments. D. Edwards and L. Tang [123] proposed a decoupling method by
block diagonalizing the sigma matrix to extract Courant-Snyder parameters, though the
transformation is not uniquely defined. The coupled motion in solenoids can be analyzed
in the rotating Larmor frame [119], where the transfer matrix becomes block-diagonal if
and only if Lcan = 0. For Lcan ̸= 0, the Larmor frame is offset from the beam axis and
full decoupling is not possible [124].

In beam dynamics of solenoids, the baseline approach of G. Penn introduced a modified
transverse action, J⊥ =

√
1 + L2(Jx+Jy)−2LLcan, leading to the second order differen-

tial equation of β⊥, although with less clarity on its derivation [70, 125, 126]. In Penn’s
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finding, the betatron function in solenoids for a matched beam is defined as

β⊥ = βp
√
1 + L2, (4.36)

with βp = 1/κ. The beta-function in Eq. (4.36) interpreted as a kind of effective value,
which grows with additional normalized canonical angular momentum L of the beam.
Substituting βp from Eq. (4.36) into Eq. (4.20) gives the envelope equation in a
solenoid:

2β⊥β′′
⊥ − (β′

⊥)
2 + 4β2

⊥κ
2 − 4(1 + L2) = 0. (4.37)

When designing the lattice for a final cooling channel, Eq. (4.37) is the primary guide to
follow a matched beam through a solenoid system, which includes both absorbers and
RF components. Chapter 5 will dive deeper into the analysis of beam dynamics within
the final cooling optics. Subsequently, the second moments for a matched beam within
a solenoid will be discussed using Cartesian coordinates.

Courant-Snyder parameters in solenoids

The parameter β⊥ in a solenoid was expressed already in Eq. (4.33). In an analogous
manner, the transverse cylindrically symmetric alpha function is defined by Penn [70],
which is

α⊥ = − 1

2ε⊥
(⟨xpx⟩+ ⟨ypy⟩) . (4.38)

In the final cooling channel, the muon beam is assumed to be round and cylinder-
symmetric. Consequently, the second-order moments are given by ⟨xpx⟩ = ⟨ypy⟩ and
⟨xpy⟩ = −⟨ypx⟩. This results in the formation of a symmetric covariance matrix ex-
pressed as

Σ =

ii
⟨x2⟩ ⟨xpx⟩ 0 −⟨ypx⟩
⟨xpx⟩ ⟨p2x⟩ ⟨ypx⟩ 0
0 ⟨ypx⟩ ⟨x2⟩ ⟨xpx⟩

−⟨ypx⟩ 0 ⟨xpx⟩ ⟨p2x⟩

pp (4.39)

The square root of the second moments matrix determinant is given by

ε2⊥ = ⟨x2⟩⟨p2x⟩ − ⟨xpx⟩2 − ⟨ypx⟩2 = ε2⊥
f
β⊥γ⊥ − α2

⊥ − (κ β⊥ − L)2m (4.40)

which leads to the cylinder symmetric gamma function

γ⊥ =
1 + α2

⊥ + (κ β⊥ − L)2
β⊥

. (4.41)

The beam characteristics in solenoids can be explained similarly using the Courant-
Snyder parameterization, with the inclusion of the canonical angular momentum. The
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solenoid transfer map was transformed into a straightforward rotation matrix. By doing
so, one can obtain the envelope equation for cylindrically symmetric Courant-Snyder
parameters. This forms the foundation for designing the final cooling channel in the
transverse plane elaborated in Chapter 5.

This section provided an overview of the basic transverse beam dynamics in solenoids.
For the final cooling channel, adjustments to the particles must occur within the longi-
tudinal phase space. To achieve this, RF cavities are employed as optical elements. The
subsequent section will dive into specific topics related to longitudinal beam dynamics,
applicable to the final cooling design.

4.4 Longitudinal beam dynamics in LINACs

Despite of solenoids, RF cavities are the second optical elements in the final cooling
channel of muon colliders. This segment provides a concise summary of the longitudinal
beam dynamics of low-energy beams in LINACs, drawing on the textbook by S.Y. Lee
[118] in this section. The impact on the transverse beam dynamics within the cavities was
not considered. RF cavities in a final cooling channel serve several purposes. They phase
focus the muon beam and accelerate it. Moreover, they refine the energy distribution
by employing particular methodologies discussed in Chapter 5.3 and 5.5.2.

The canonical phase-space variables, time t and energy E, are selected as coordinates
for the individual particles. Phase-focusing and the acceleration of a charged particle
bunch occur through the action of a sinusoidal electromagnetic RF wave in a cavity gap.
The reference time ts is indicative of a distinct phase ψs = ωts of the RF at the moment
when the particle reaches the center of the cavity. The RF frequency is expressed as
f = 2πω, while the reference particle’s energy is represented by Es.

Non-reference particles are described using variables t, ψ, and E, where the phase space
variables respective to the reference particle are

Δψ = ψ − ψs, ΔE = E − Es. (4.42)

The electric field experienced by an arbitrary particle within the cavity gap is expressed
as

E = E0 sin(ψs +Δψ), (4.43)

where E0 is the electric peak field. The rate of change of Δψ along the beam axis s is
described by

dΔψ

ds
= ω

g
dt

ds
− dts

ds

n
≈ −ω

Δv

v2s
, (4.44)
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where vs is the reference velocity. Employing the relationship dβ = dγ/βγ3, the initial
first energy-phase motion equation can be formulated as:

dΔψ

ds
= − ωΔE

cβ3 γ2Es

. (4.45)

The Lorentz factors β and γ are identical to those of the reference particle. The amount
of energy acquired by a particle carrying a charge q as it traverses a cavity gap of length
g is described by the second energy-phase relation:

δE = qE g = qE0
\ g

0

sin

g
ω

s

βc

n
ds = qE0Tg. (4.46)

The time transition factor
T =

sin(πg/βλ)

πg/βλ
. (4.47)

in an RF cavity accounts for the reduction in accelerating efficiency. This is due to the
finite length g of the cavity, as charged particles experience a varying electric field while
traversing it. The parameter λ corresponds to the wave length of the RF. The dynamics
of particle motion within an RF cavity can be expressed through the mapping equations
as follows:

ψn+1 = ψn − ωΔEn

cβ3
s γ

2
s Es

g,

ΔEn+1 = ΔEn + qE0Tg [sin(ψn+1)− sin(ψs)] .

(4.48)

The equations presented in Eq. (4.48) are interlinked to maintain symplecticity, and can
be unified through the Hamiltonian

H(Δψ,ΔW ) = − ω(ΔW )2

2γ2
s β

3
s cW

+ qE0Tg [cos(Δψ)−Δψ sin(ψs)] . (4.49)

The equipotential lines from the Hamiltonian Eq. (4.49) indicate constant energy paths
within the (Δψ,ΔE)-space. In the context of longitudinal beam dynamics, these lines
trace the motion of particles in the longitudinal phase space. As shown in Fig. 4.5, the
contours can form closed or open trajectories. The area enclosed by closed trajectories is
considered stable and is separated from the unstable region by the separatrix, shown as
the thick red line in the plots of Fig. 4.5. The diagram on the left in Fig. 4.5 illustrates
the scenario for ψs = 0, where the separatrix is known as the stationary bucket. In the
acceleration phase, where 0 < ψs < π/2, the separatrix takes the shape of an asymmetric
running bucket, as shown in the right plot of Fig. 4.5.

Particle distributions should always remain within the stable regions of an RF bucket.
Inside this bucket, particles undergo rotational motion, known as phase-focusing or
synchrotron motion. Particles outside the separatrix drift away from the bunch and are
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Figure 4.5.: The equipotential lines illustrate particle motions in the longitudinal phase
space. Closed contours correspond to stable regions, while the separatrix, shown as
a thick red line, marks the boundary between stable and unstable motion. The left
plot depicts the case for ψ0, where the separatrix forms a stationary bucket. In the
accelerating phase 0 < ψ0 < π/2, the separatrix deforms into a running bucket, as
shown in the right plot.

eventually lost. To prevent bunch filamentation, the equipotential lines should closely
match the shape of the bunch distribution. If they do not, the longitudinal emittance
increases.

Given the relationship Δt = Δψ/ω, the normalized longitudinal emittance is expressed
as

εL,N[eV s] =
w

det (Cov[Δt,ΔE]) (4.50)

This expression represents the square-root determinant of the covariance matrix for
particles in the (Δt,ΔE) phase space, when coupling in both horizontal and vertical
planes are excluded. It is in units of eV s or in m for particles with mass m, that can be
evaluated when multiplying c/m on Eq. (4.50).

4.5 Emittance changes in ionization cooling

This section performs an analysis of the transverse cooling equation of a muon beam
undergoing ionization cooling. The innovation herein lies in the incorporation of the
Bethe-Wentzel scattering model within this cooling equation. Previous research em-
ployed the simplified Lynch-Dahl model, which resulted in discrepancies when com-
pared with simulations to analyze the beam’s transverse emittance. A comparison of
the transverse equilibrium emittance between the ICOOL simulations and the analytical

70



Chapter 4. Beam dynamics in ionization cooling

model, enhanced through the Bethe-Wentzel approach, demonstrates a high degree of
concordance.

Furthermore, the evolution of the longitudinal emittance within an ionization cooling cell
was compared with results from ICOOL simulations, using beam parameters comparable
to those in a final cooling channel. The comparison shows a good agreement between the
analytical approach and the simulation results. Combined with the improved analytical
expression for the transverse emittance rate, this provides a framework for determining
optimal beam parameters for a final cooling cell analytically. As a result, the design
of ionization cooling channels can be significantly accelerated, reducing the reliance on
time-consuming multiparticle simulations.

4.5.1 Ionization cooling

Muons originate from the decays of charged pions, which are produced when protons
collide with a fixed target, classifying muons as second-generation particles. Once pro-
duced, muons, both positively and negatively charged, occupy a large phase space. To
achieve smaller emittances and subsequently increase luminosities, per Eq. (1.1), this
phase space must be contracted. The term “cooling” in accelerator physics refers to
the reduction of the normalized emittance in one or multiple degrees of freedom. As
explained in Chapter 4.3.1, Liouville’s theorem indicates that the normalized emittance
stays unchanged as the beam passes through optical elements. However, during beam
cooling, non-Hamiltonian effects are introduced that break the conservation of the phase-
space density.

Various cooling methods are available, such as laser cooling, stochastic cooling, and
electron cooling. However, these techniques are too time-consuming for muons due
to their short lifetime of 2.2 µs in their rest frame, causing the muon to decay before
sufficient cooling can occur. The only method capable of reducing the emittance within
a relatively short duration is ionization cooling.

During the ionization cooling process, as the muon traverses an absorber, its total mo-
mentum decreases, and then longitudinal acceleration follows within an RF cavity con-
figuration. A secondary consequence is that the interaction of muons with atomic nuclei
and electrons within the absorber results in an unwanted increase of the longitudinal
and transverse emittances. To counteract these effects, the absorber is situated inside
a solenoid. This solenoid needs a very high magnetic field, which helps to reduce the
spread of the transverse momentum due to multiple scattering. The arrangement of an
ionization cooling cell was previously outlined in Fig. 4.1.

The final cooling channel of the muon collider complex is dedicated to decreasing the
normalized emittance in both transverse planes. Key challenges include minimizing the
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increase in longitudinal normalized emittance, selecting optimal absorber and window
configurations, and designing an accurate beamline with the help of numerical tracking
simulations. To simplify the beamline design process, an analytic depiction of the beam
dynamics within an ionization cooling cell is crucial. The forthcoming analysis will
examine the rate at which the normalized transverse emittance cools within an absorber
when subjected to a solenoid field. It uses an updated analytical model that shows
remarkable results compared to previous studies.

4.5.2 Transverse cooling equation

As previously discussed in Chapter 4.3.2, the transverse emittance is characterized as the
4-dimensional emittance ε⊥ = ε4D in accordance with Eq. (4.34). The evolution of ε⊥,N

in an ionization cooling cell can be analytically expressed in detail in the Appendix C.3.
D. Neuffer [127] firstly described the behavior of transverse emittance during ionization
cooling along the beam path s by

dε⊥,N

ds
= −ε⊥,N

β2E

�
∂E

∂s

�
+

β⊥ psc

2mµc2
d⟨ϑ2⟩
ds

. (4.51)

In Eq. (4.51), the left term accounts for the reduction in ε⊥,N and is referred to as the
cooling term. This reduction is influenced by the beam energy E, the relativistic factor
β and the average muon stopping power ⟨∂E/∂s⟩, equivalent to the Bethe formula in
Eq. (3.17). In the final cooling channel, it is essential to select a beam energy within the
range of 5 to 200MeV to achieve high values of ⟨∂E/∂s⟩.
The heating term in the right part of Eq. (4.51) is driven by the variance of the scattering
per unit length d⟨ϑ2⟩/ds suppressed by the betatron function β⊥. This term can be
reduced by focusing the beam strongly with a solenoid, leading to a smaller beta function
β⊥ = 2ps

√
1 + L2/cB. Achieving low β⊥ values requires high magnetic fields, low particle

momenta, and the absence of canonical angular momentum.

An alternative approach to reduce the influence of heating is by carefully selecting the
absorptive material to decrease the squared scattering rate d⟨ϑ2⟩/ds. Low-Z materials
are effective in reducing muon scattering, with liquid hydrogen being the optimal option
for ionization cooling. Among all materials, hydrogen provides the best balance with
minimal scattering effects, delivering the highest energy deposition by muons, compared
to the amount of induced scattering angle per unit length.
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4.5.3 Modification of the cooling equation by the Bethe-Wentzel
scattering model

The analytical description of d⟨ϑ2⟩/ds in the cooling equation originally incorporated
the scattering model by G. Lynch and O. Dahl [107], which was extensively discussed
in Chapter 3.3.3. A drawback of this scattering model is the presence of an additional
logarithmic term in Eq. (3.32). Neuffer excluded this logarithmic term which modifies
the mean squared scattering rate to

d⟨ϑ2⟩
ds

=

g
13.6[MeV]

βpc

n2
1

LR
, (4.52)

and substituted it into Eq. (4.51). In the research outlined in Chapter 3.3.3, it is
demonstrated that the scattering model from Eq. (4.52) exhibits an error margin of
approximately 20% in liquid hydrogen, as shown in Fig. 3.5. Consequently, the Lynch-
Dahl formula without the logarithmic term is unsuitable for precise analytical emittance
calculations in the context of ionization cooling, when liquid hydrogen serves as the
absorber.

A different method involves identifying a scattering model that better represents the
scattering of charged particles in liquid hydrogen. This can be achieved using the ap-
proach developed by G. Wentzel and H. Bethe [105, 113], which has been elaborated
for the scattering algorithm in RF-Track as detailed in Chapter 3.3.4. To recapitulate,
the Bethe-Wentzel model modifies the Rutherford cross section by introducing a mini-
mum cutoff angle ϑmin and considering the scattering from constituent electrons within
the material’s atoms. The variance in scattering per unit length of the Bethe-Wentzel
model is presented in Eq. (3.36). By substitution Eq. (3.36) into Eq. (4.51), the modified
transverse cooling equation yields

dε⊥,N

ds
= −ε⊥,N

β2E

�����∂E

∂s

�����+ β⊥ pc

2mµc2
d⟨ϑ2⟩
ds

, (4.53)

d⟨ϑ2⟩
ds

=
kρ

2A

g
Z

βpc

n2 4
F

g
ϑmax

ϑmin

n
+

1

Z
F

g
ϑe

max

ϑe
min

n
− 1.19

g
1 +

1

Z

n;
, (4.54)

F (x) =
1

1 + x2
+ ln

f
1 + x2

m
. (4.55)

In Eq. (4.54), the variable A represents the atomic mass, ρ stands for the material’s
density, and k is approximately 0.157MeV2cm2mol−1. The smallest and largest nuclear
scattering angles are ϑmin and ϑmax, as indicated in Eq. (3.26). For electron scattering,
these angles are denoted by ϑe

min and ϑe
max, as defined in Eq. (3.35).
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The forthcoming discussion is dedicated to a comparative analysis of the analytical mod-
els pertaining to both the traditional Lynch-Dahl and novel Bethe-Wentzel transverse
cooling equations, in conjunction with ICOOL simulation results. A viable approach to
this effort involves conducting a benchmarking study of the equilibrium emittance, an
undertaking that has yet to be realized.

4.5.4 Equilibrium emittance comparisons

To evaluate the Lynch-Dahl and Bethe-Wentzel scattering models using particle tracking
simulations, the transverse equilibrium emittance is taken into consideration. Given the
parameters of particle energy, choice of material, and the strength of the solenoid field,
the equilibrium emittance, where the rates of heating and cooling balance each other, is
calculated according to Eq. (4.51) as:

εeq
⊥,N = β2E

d⟨ϑ2⟩/ds
|⟨∂E/∂s⟩|

β⊥pc
2mµc2

. (4.56)

To facilitate cooling, it is imperative that the initial value of ε⊥,N in a cooling celle
consistently exceeds that of εeq

⊥,N. In contrast, under the condition ε⊥,N < εeq
⊥,N, the

heating term prevails, leading to an increase in the emittance, which must be avoided.
Eq. (4.56) is analyzed using the scattering models expressed in terms of d⟨ϑ2⟩/ds, where
Equations (4.52) and (4.54) are substituted with the data generated by ICOOL.

To determine εeq
⊥,N using ICOOL, the following approach was used: Simulations were

performed with a constant solenoid field strength B and kinetic beam energy EKin,
while varying the initial normalized transverse emittance εi

⊥,N. The muons were tracked
in liquid hydrogen and the final emittance values εf

⊥,N, were recorded. The equilibrium
emittance was obtained by interpolating the curve of εi

⊥,N versus Δε⊥ = εi
⊥,N−εf

⊥,N. The
equilibrium point corresponds to the intersection of this curve with the horizontal zero
line. The ICOOL analysis was further extended by varying the EKin at field strengths
of 30, 40 and 50T. The density of liquid hydrogen employed was 0.0708 g cm−3.

Fig. 4.6 illustrates that the ICOOL data align well with the Bethe-Wentzel model
as described in Eq. (4.54), whereas the Lynch-Dahl scattering approximation evi-
dently overestimates the results. It is the first agreement of the transverse cooling
equation with tracking simulations.
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Figure 4.6.: The equilibrium emittance of liquid hydrogen subjected to a longitudinal
static field of 30, 40, and 50T is assessed using ICOOL. The results shows remarkable
consistency with the analytical model when the Bethe-Wentzel scattering assumption is
considered.

4.5.5 Canonical angular momentum in ionization cooling

The consideration of canonical angular momentum in the context of ionization cooling
is crucial, as it directly influences the envelope equation as indicated in Eq. (4.37). The
subsequent discourse will concisely examine the perspective of angular momentum from
a single-particle perspective. It will then succinctly explore the evolution of canoni-
cal angular momentum for a collection of particles in ionization cooling, which has a
significant influence in a final cooling cell.

Examine the depiction of an individual charged particle, defined by its longitudinal
momentum pz and transverse position x, as it progresses from free space into a solenoid.
Assume that the canonical angular momentum L is zero. After entering the solenoid,
the particle follows a helical path that intersects the central solenoid axis at regular
intervals. The gyration of the particle is caused by the azimuthal kick at the entrance of
the solenoid and causes non-zero kinetic angular momentum LKin = (xpy − ypx). This
gain of LKin is exactly −qBr2/2. This is necessary to preserve the canonical angular
momentum according to Eq. (4.32). Here, r is the radial displacement relative to the
beam axis.

In an ionization cooling cell, the solenoid is filled with energy-absorbing material. As a
consequence of the particle’s momentum reduction within the solenoid-absorber configu-
ration, there is a contraction of the helical radius. This phenomenon is illustrated as the
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dashed line in Fig. 4.7, where the magnetic field initially goes from left to right. Should
the single particle remain in its current configuration, it will move closer to the Larmor
center of its spiral trajectory. Considering multiple particles, the transverse dimensions
of the beam cannot be effectively minimized, making emittance reduction less efficient.

0.0 0.2 0.4 0.6 0.8 1.0
s [m]

−0.1

0.0

0.1

x
[m

]

B⃗ −B⃗

Figure 4.7.: The blue dashed line represents the contraction of the helical radius due
to momentum reduction in the solenoid-absorber configuration. To enhance emittance
reduction, the solenoid’s magnetic field polarity is reversed, leading to shift the Larmor
center toward the optical axis. The resulting particle trajectory is shown as the red solid
line.

One solution involves reversing the polarity of the solenoid’s magnetic field. Upon ex-
iting the initial solenoid and entering the solenoid with reversed polarity, the particle
experienced enhanced azimuthal forces, resulting in displacement of the Larmor center
closer to the optical axis. Consequently, the particle orbits around the reference tra-
jectory depicted as the solid line in Fig. 4.7. It is important to note that Fig. 4.7 is
intended as an instructional example and does not represent the actual structure of a
realistic final cooling cell. A more accurate model will be explored in Chapter 5.

The progression of the canonical angular momentum, on average, was established and
confirmed through ICOOL simulations performed by G. Penn [125]. The expression for
the rate of canonical angular momentum in its normalized form is given by

dL
ds

=
β⊥κ
βE2

�
∂E

∂s

�
− L

ε⊥,N

β⊥ pc

2mµc2
d⟨ϑ2⟩
ds

. (4.57)

A detailed mathematical derivation of Eq. (4.57) is provided in [128]. Eq. (4.57) demon-
strates that the magnitude of L increases as the beam traverses the ionization cooling
setup. This leads to a weaker focus since the betatron function in a solenoid depends on
the canonical angular momentum according to Eq. (4.36). Lower values of the beta func-
tion are desirable, as they correspond to reduced emittance heating, as expressed on the
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right-hand side of Eq. (4.51). Additionally, an increase in canonical angular momentum
results in stronger coupling of the beam in both horizontal and vertical planes.

As illustrated by the single-particle example in Fig. 4.7, altering the field polarity proves
advantageous for diminishing the canonical angular momentum of the beam. The de-
sign of a final cooling cell featuring solenoids with inverted fields and absorbers will be
carefully examined and assessed in Chapter 5.2. Regardless of the particle dynamics
involved in ionization cooling within the transverse plane, the subsequent analysis will
focus on the longitudinal behavior of particles.

4.5.6 Longitudinal emittance change in ionization cooling

The variation in longitudinal emittance within an ionization cooling cell arises from the
dynamics related to the energy spread of the bunch σE. This modification of the energy
spread is influenced by systematic and stochastic fluctuations encountered by the bunch
as it passes through specific materials. This section provides a concise discussion on both
effects and compares them using simulations that employ beam parameters relevant to
the final cooling process.

The variation in systematic energy spread within a material is due to the distinct mo-
menta of individual particles in a bunch relative to the reference particle. According to
Bethe’s equation in Eq. (3.17), particles with lower momentum experience a greater en-
ergy loss compared to those with higher momentum. An evolution of the energy spread
through matter is expressed by D. Neuffer [129] as

dσ2
E

ds
≈ −2

d ⟨∂E/∂s⟩
ds

σ2
E. (4.58)

To evaluate the model described in Eq. (4.58), macro particle tracking was carried out us-
ing ICOOL. This software has the ability to selectively deactivate certain single-particle
effects. During the simulation, particles released energies inside the material, but any
form of energy fluctuations was deactivated to test the systematic effects. Lower and
higher kinetic beam energies, as indicated in EKin = [7, 50, 100] MeV, were used for
benchmarking, complemented by the corresponding and arbitrary initial energy spreads,
as noted in σE = [0.7, 3, 5] MeV. These energies and spreads are comparable to those
utilized in the final cooling channel. In ICOOL, the particles were tracked while passing
through a section of liquid hydrogen, which is the material used in ionization cool-
ing studies. The comparative results between ICOOL and the model are depicted in
Fig. (4.8). It is evident that the model demonstrates excellent performance in relation
to the simulations.

Randomly, high-energy charged particles, such as muons, may interact directly with
electrons present in a material [130]. Although this interaction does not significantly
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Figure 4.8.: To evaluate the systematic energy spread evolution, macro particle tracking
was performed using ICOOL. Benchmarking was conducted using a range of kinetic beam
energies, EKin = [7, 50, 100]MeV, along with corresponding and arbitrary initial energy
spreads, σE = [0.7, 3, 5]MeV, consistent with values typical of the final cooling channel.
The comparison between ICOOL and the model shows that the model performs well in
reproducing the simulated results.

alter the trajectory of the particles, it does result in an energy loss from the collision.
This type of statistical fluctuation in energy losses is referred to as straggling. The
progression of statistical energy distribution in the material is expressed by

dσ2
E

ds
= k

Z

A
ρ γ2

g
1− β2

2

n
. (4.59)

The total energy spread of a bunch penetrating a material can be summarized by com-
bining Eq. (4.58) with Eq. (3.20) to

dσ2
E

ds
= −2

d⟨∂E/∂s⟩
dE

σ2
E +

d(ΔE2
Stoch)

ds
. (4.60)

In the comparison involving Eq. (4.60), the same methodology used in the previous
analysis was used. Although the same absorber material and initial parameters EKin

and σE were used, the stochastic fluctuations inherent in the ICOOL simulations were
considered. Fano straggling, as documented in the ICOOL reference manual [72], was
applied for these simulations. The comparison findings of ICOOL with Eq. (4.60) are
illustrated in the graphs of Fig. 4.9 and demonstrate a commendable agreement.

The evolution of the spread of energy within the material can be utilized to assess the
dynamics of the longitudinal emittance in an ionization cooling cell. As demonstrated
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Figure 4.9.: The same methodology as before was used to evaluate Eq. (4.60), with
identical absorber material and initial parameters EKin and σE. The stochastic straggling
effects were included. The results show good agreement between ICOOL simulations and
the model.

in Eq. (4.60), the longitudinal emittance unavoidably increases within a material. The
techniques used in 6D cooling channels [36] have discovered methodologies to increase
longitudinal emittance by incorporating beam dispersions and the choice of specific ab-
sorber geometries.

The main aim during the final cooling phase in the muon-collider complex is to reduce
the transverse emittance while keeping the increase in longitudinal emittance as minimal
as possible. The transverse and longitudinal analytical behavior of a muon beam within
an ionization cooling cell are detailed in Eq. (4.51) and Eq. (4.60). With these equations,
it becomes possible to determine the optimal initial beam parameters to be utilized in a
final cooling cell. This aspect will be further elucidated in the subsequent discussion.

4.6 Best initial energy for ionization cooling

The optimal cooling parameters of a muon collider aim to minimize transverse emittance
while simultaneously limiting longitudinal emittance growth. This approach results in
optimal luminosities within the collider ring. As indicated by Eq. (1.1), the expression
for luminosity is proportional to

LLum ∝ 1

ε⊥,N · εL,N
, (4.61)
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implying that both the transverse and longitudinal normalized emittance should be
minimized6. In the subsequent discussion, an analytical technique that facilitates the
determination of the optimal initial beam energy for a final cooling cell will be pre-
sented.

4.6.1 Steps to identify the best beam energy

For a specified solenoid field strength B and absorber, it is imperative to determine the
optimal initial kinetic energy EKin for the beam as it enters the final cooling cell. Within
a matched beamline external to the cooling cell, ε⊥,N and εL, N remain invariant. Upon
entering the cooling cell with a designated energy spread σE, a scan can be performed
on EKin of the beam. The analysis is guided by the minimization of the tradeoff function
−ΔεL, N/Δε⊥,N to reach maximum luminosity, as delineated by Eq. (4.61).

The phenomenon of particle losses is not considered in this study, as it predominantly
occurs during the long re-acceleration phase, which is outside the scope of this analysis.
To elucidate this matter through an example, a comprehensive energy scan in liquid
hydrogen was performed, referencing ε⊥,N = 200 µm, εL, N = 1mm, and B = 40T. This
involves solving Eq. (4.51) and Eq. (4.60) numerically utilizing a fourth-order Runge-
Kutta algorithm, to ensure high precision. The results, depicted in the plot to the left
of Fig. 4.10, relate to various initial conditions σE. It is evident from the results that
the optimal initial kinetic energy, represented as the minimum of the curves, increases
as the spread of energy σE increases.

4.6.2 Comparison with Simulations from ICOOL

The subsequent stage involves identifying the optimal initial energy for muon cooling
corresponding to each initial transverse emittance ε⊥,N. A kinetic energy scan is per-
formed at εL, N = 1mm with a relative momentum spread of δpz = 2%, and the energy is
subsequently attenuated to 90% of its initial value. A static magnetic field of B = 40T
is applied within liquid hydrogen using ICOOL, and the simulation produces a minimal
trade-off function to determine the optimal energy for the initial transverse emittance.
The results, depicted in Fig. 4.10 right, are evaluated against the analytical model that
employs Eq. (4.51) in combination with Eq. (4.60). As shown in the right graph of
Fig. 4.10, there is a reasonable level of agreement; however, when the analytical evalua-
tion starts with small initial emittances, it starts to deviate from the trend depicted by
the ICOOL simulation data.

6At the muon collider as discussed in [25], the beta-function β∗ is chosen to be equal to the bunch length
σz due to reasons of the hourglass effect (Appendix A.2). The normalized longitudinal emittance is
connected to the length of the bunch (εL,N ∝ σz).

80



Chapter 4. Beam dynamics in ionization cooling

50 100 150 200
Initial EKin [MeV]

10

15

20

25

−Δ
ε L

,N
/Δ

ε ⊥
,N

B = 40T
ε⊥,N = 200 µm
εL,N = 1mm

σ E
=
2.
5M

eV

σ
E =

5M
eV

σ
E
=
7.5M

eV

100 200 300 400
Initial ε⊥,N [µm]

50

100

150

B
es
t
in
it
ia
l
E

K
in
[M

eV
]

δpz = 2%
Bz = 40 T

Model

ICOOL

Figure 4.10.: Left: For specified beam and machine conditions, the optimal initial
beam energy can be determined by identifying the minimum of the trade-off function
−ΔεL, N/Δε⊥,N. Right: The optimal initial kinetic beam energy for ionization cooling,
applicable to various initial normalized transverse emittances in a scenario involving
liquid hydrogen cooling under a magnetic field as described in 40T, has been both
simulated using ICOOL and derived from the analytical model.

An analytical study was performed to identify the ideal initial energy of muons for each
phase of ionization cooling. In this investigation, Neuffer’s transverse cooling equation
in Eq. (4.51) was refined using the Bethe-Wentzel scattering model of Eq. (4.54). This
model demonstrated superior agreement with the ICOOL simulations compared to the
Lynch-Dahl model previously employed in ionization cooling research. An equilibrium
emittance comparison of both methodologies with ICOOL confirms the precision of the
Bethe-Wentzel approach. This facilitated the elucidation of the optimal initial beam en-
ergy for ionization cooling, exhibiting strong alignment with ICOOL simulations. Armed
with a robust analytical model of both the transverse and longitudinal emittance rates
within an ionization cooling setup, the design process for a cooling cell can be conducted
with enhanced efficiency. Compared to macro-particle simulation programs, these ana-
lytical models enable more rapid predictions of the ideal parameters.

4.7 Thermodynamic characteristics of hydrogen ab-
sorbers and beam windows in ionization cooling

Using hydrogen as an absorber makes it possible to significantly reduce the normalized
transverse emittance of a muon beam. This method is particularly effective during
the final cooling stage, where it is combined with strong solenoidal magnetic fields and
low beam energies. Under these conditions, the beam approaches a small equilibrium
emittance, as described by Eq. (4.56).
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As a result, the beam size becomes smaller, concentrating the energy deposition into
a small volume. According to Bethe’s formula for energy loss Eq. (3.17), lower beam
energies also cause muons to deposit more energy into the material. Together, the
reduced beam size and lower energy lead to a high energy density in the absorber.

This section estimates the energy deposited in a material by a passing muon beam. The
analysis helps evaluate the resulting temperature rise and, more importantly, the pres-
sure increase within hydrogen absorbers. This study is significant because the pressures
generated by the beam and their impact on the absorber windows have not been previ-
ously investigated. A brief analysis of heat transfer through the beam windows is also
included.

4.7.1 Energy storage in absorbers

In this analysis, the specific internal energy u of a hydrogen absorber will be calculated
after the passage of a muon beam. This makes it possible to evaluate the increase
in pressure p and temperature T inside the absorber. The focus will be on the beam
conditions in the final cooling cell, which represents the most extreme case. At this
stage, the beam reaches its smallest normalized transverse emittance of ε⊥,N = 25 µm.
Furthermore, muons will have a kinetic energy of approximately 4 to 5MeV as they
exit the absorber, and therefore the beam energy deposition in the absorber will be
maximum.

A muon bunch passing through the absorber releases a kind of channel inside with
changed thermodynamic conditions as depicted in Fig. 4.11. Since the bunch is Gaussian
distributed, it is not obvious to delineate the beam transversely. Only muons within
the mean absolute deviation (MAD) of the beam size will be used as a transverse
limitation. It will define a characteristic radius around the beam axis, which is

r = σr

w
2/π, (4.62)

where σr is the radial rms beam size. The MAD is used because it signifies the core of a
Gaussian distribution, where the particles in the bunch exhibit the highest concentration.
Within the MAD size, 27% of the total number N of muons in the bunch is contained.

Assuming the muon beam can be modeled as a symmetric cylindrical distribution, the
energy is deposited within a small volume defined by a length Δs and a cross-sectional
area of πr2. Taking the beam radius to be the mean absolute deviation (MAD) size, the
volume becomes:

ΔV =
ε⊥,Nβ⊥
βγ

Δs (4.63)
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Figure 4.11.: The muons cause a hot beam path inside the absorber

The specific internal energy deposited within this volume is given by:

Δu[J kg−1] =
0.27×Ne |⟨∂E/∂s⟩|Δs

Δm
= βγ

0.27×Ne |⟨∂E/∂s⟩|
ρ ε⊥,Nβ⊥

, (4.64)

with the electrical charge e ≈ 1.6022× 10−19 C.

By evaluating Δu, it further gives the possibility of evaluating the increase in pressure
and temperature within the beam path. In previous final cooling studies [131, 132],
the absorbers are made of liquid hydrogen with a density of ρ = 70.8 kgm−3. Ther-
modynamic calculations with fluids need additional program, such as CoolProp [133].
CoolProp is an open-source thermophysical property library that provides accurate and
consistent fluid and gas properties for a wide range of engineering applications.

By evaluating Δu, it becomes possible to estimate the resulting increase in pressure
and temperature along the beam path. In previous final cooling studies [131, 132],
the absorbers were composed of liquid hydrogen, with a density of ρ = 0.0708 kgm−3.
To perform accurate thermodynamic calculations for fluids such as liquid hydrogen,
external software is required; one such tool is CoolProp [133]. CoolProp is an open-
source thermophysical property library that provides reliable and consistent fluid and
gas properties for a wide range of engineering applications.

The preliminary study conducted by B. Palmer in 2011 [131] was used to assess the
increase in pressure within the absorbers of a final cooling channel. This reference
provided tabulated data on the initial and final energy values for each final cooling cell.
Moreover, the progression of the transverse emittance and absorber lengths for each cell
was graphically depicted. The solenoid field strength used in this study was established
as detailed in 40T. Using these parameters and substitute them into Eq. (4.64), the
pressure increase can be calculated for each cell using CoolProp, which is summarized
in Fig. 4.12. In performing the calculations, it was assumed that the initial pressure of
the liquid hydrogen absorbers corresponds to the conditions specified in 1 bar. In the
computation, each group utilized N = 6× 1012 muons, which is a higher value than the
ones obtained from the parameter list [27].
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Figure 4.12.: Liquid hydrogen pressure increase in each absorber cell of the final cooling
channel, based on the preliminary study by B. Palmer [131]. The resulting pressures
are computed using CoolProp. After the beam passes through, the resulting pressures
remain extremely high, with the last cell reaching nearly 900 bar. The results highlight
the significant engineering challenge of designing ultra-thin absorber windows capable
of withstanding such extreme conditions.

Subsequent to the beam’s passage through the absorber, the resultant pressures re-
main exceptionally high. In Palmer’s study, the last cell attains a pressure approaching
900 bar. The principal issue is that the absorber must be confined as a result of its liquid
state. The interface at which the beam enters the absorber is referred to as the window.
The window thickness must be minimized to avoid complete stopping of muons. Further-
more, the window material should ideally be composed of a low-Z material to mitigate
the heating of the emittance. As illustrated in Fig. 4.12, the fabrication of extremely
thin materials capable of withstanding such high pressures presents significant technical
challenges.

These high pressure increases have a significant impact on the conceptualization
of a final cooling channel. To reduce the pressure within the absorbers following
the passage of a muon beam, it is necessary to adjust the initial hydrogen pressure
and density. Consequently, some absorbers may transition from a liquid state to
a vapor state.

The length of the absorber can also be extended, as beam depositions in lower densities
will be lower. Longer absorbers will contribute to minimizing the number of final cooling
cells. All these considerations will be examined in Chapter 5.4.3, where the selection of
hydrogen absorbers will be discussed in more detail.
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4.7.2 Window heat dissipation

The absorber also includes windows where the energy of the beam is deposited. Unlike
the hydrogen absorber, the window is made of solid material. It is important to assess
whether the energy accumulated in the window reaches a critical threshold. As a first-
order estimation, one can assess how the heat produced in the beam-interaction zone
flows into the colder, non-irradiated regions of the window.

The energy deposition in the window can be estimated as in the discussion previously.
The region of heating caused by the cylindrical beam is illustrated in left sketch of
Fig. 4.13 as the red zone, which has a radius of a. The focus is on heat transport from
the irradiated area to the rest of the window. This can be evaluated by

dQ

dt
= −λA∇T, (4.65)

which is a differential equation, that describes the time depended heat flow dQ/dt
through a surface A by the temperature gradient ∇T [134]. Like the left figure in
Fig. 4.13 illustrates, the window is approximated as a cylinder with radius b and thick-
ness d. In this example, heat flow is assumed to be only in the radial direction. Therefore,
any heat exchange through the surfaces that face the absorber or the vacuum were ne-
glected in this example. Given these conditions, the rate of radial heat transfer can be
articulated as follows:\ Tout

Tin

dT = − ΔQ

Δt · λ
1

2πd

\ b

a

dr

r
⇒ ΔQ

Δt
= 2πd λ

Tin − Tout

ln(b/a)
, (4.66)

where Tin is the temperature at the window area impacted by the beam, and Tout is the
window’s initial temperature.

The use of a 5mm thick lithium hydride (LiH) window and a 3 µm silicon nitride (Si3N4)
layer is considered, as these materials are strong candidates for windows in the final
cooling channel. A detailed analysis of the specific stages at which each material is
used is provided in Chapter 5.4.3. LiH offers the advantage of being composed of low-Z
material, making it suitable for the early stages of the final cooling channel. In contrast,
Si3N4 can be manufactured as an extremely thin film and is better suited for use in the
later stages.

In the final cooling channel, a bunch of muons pass through the absorbers every 0.2 s [27].
The number of muons per bunch at this stage is estimated to be approximately 6 · 1012,
which is higher than the target value of 4 · 1012 at the collision point. This higher initial
count accounts for expected muon losses due to decay in the pre-accelerator complex
between the final cooling stage and the collision point.

85



Chapter 4. Beam dynamics in ionization cooling

a

b

y

z

x

0 1000 2000
time [ms]

33

34

35

36

T
em

p
er
at
u
re

in
si
d
e
[K

]

LiH, Tout = 33.0K

Figure 4.13.: The left side visualize a cylindrical beam window with its geometrical
parameters. The right plot shows the cooling rate for a cylindrical LiH window. The
peaks in the right diagram illustrate the energy deposition when a muon bunch goes
through the window every 0.2 s.

The evolution of temperature in the center of the window, where the beam passes
through, is analyzed using Eq. (4.65), with the specific parameters summarized in Ta-
ble 4.3. The thermal conductivity of LiH is taken to be λ = 100Wm−1 K−1, as reported
in the reference in [135]. Due to the lack of available thermal conductivity data for Si3N4

at low temperatures, only LiH was considered in this analysis.

Parameter LiH
ε⊥,N 94 µm
d 5mm
b 2.5 cm

Tout 33.0K
λ 100Wm−1K−1

EKin 20.6MeV

Table 4.3.: Parameters for the beam and the window in calculating the heat dissipation
are described. The normalized transverse emittance is denoted by ε⊥,N, and the average
kinetic energy of the beam is given as EKin. The thickness and radius of the LiH window
are represented by d and b, respectively, while the thermal conductivity is indicated by
λ. The initial temperature of the window, prior to muon beam exposure, is referred to
as Tout.

Inside a 40T solenoidal magnetic field, the transverse size of the muon beam is approx-
imately 1.3mm. Under these conditions, the temperature in the center of the window
increases by about 36.5K. This occurs for a muon bunch containing 6× 1012 particles,
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assuming an initial window temperature of 33K. This particular case was taken from
the final cooling cell 4 in Table 5.5 of the next chapter.

Following beam impact, the localized temperature increase, which forms a hot
trace along the beam path, decays exponentially, returning to its initial value
within a time frame of 0.2 s, as illustrated in Fig. 4.3 right. Successive bunches
do not lead to significant temperature accumulation, although heat transfer from
the window to the absorber was not considered in this analysis.

These results represent a first-order analytical approximation, which provides a satisfac-
tory understanding of the thermal behavior. As a next step, it would be beneficial to
extend the same calculations to the case of Si3N4. However, this can only be achieved if
reliable thermal conductivity data at low temperatures are available. Si3N4 windows will
be used for the last cooling stages, where the beam has low energies and low transverse
emittances.

4.8 Summary of beam dynamic in ionization cooling

The comparison of the RF-Track solenoid model against G4Beamline demonstrates that
RF-Track can reliably simulate particle trajectories through a cylindrically symmetric
solenoid structure. Minor discrepancies arise, particularly at larger radial offsets. How-
ever, the overall agreement between the two simulation tools confirms the accuracy and
robustness of RF-Track in the tracking of macro-particles in solenoids.

This chapter presented a refined analytical model for ionization cooling by integrating
the Bethe-Wentzel scattering approach into the transverse cooling equation. This en-
hancement leads to significantly improved agreement with ICOOL simulation results,
both for transverse equilibrium emittance and longitudinal emittance evolution.

The study in this chapter underscores the critical role of emittance minimization in
achieving optimal luminosity for a muon collider. By highlighting the inverse relation-
ship between luminosity and both transverse and longitudinal normalized emittances, it
becomes clear that careful control of the beam parameters is essential. The foundation
is laid for an analytical approach to identify the optimal initial beam energy for the fi-
nal cooling cell, providing a strategic pathway to enhance collider performance through
precise beam optimization.

Although hydrogen enables a significant reduction in the transverse emittance, the re-
sulting high energy density owing to small beam sizes and low energies leads to notable
energy deposition and pressure build-up within the absorber. These effects require care-
ful adjustment of absorber parameters, such as initial pressure, density, and length, to
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maintain stability and efficiency. In addition, the thermal response of the absorber win-
dows was evaluated, particularly under repeated impacts of the beam, to avoid material
failure. The analytical estimates presented provide an essential first look at these effects
and establish a basis for future studies, including the evaluation of Si3N4 windows in
later cooling stages.
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Beam dynamics study in a final cooling
lattice design

A highly effective final cooling channel is crucial for high-luminosity muon colliders;
however, it is challenging to design due to the increase in longitudinal emittance when
attempting to decrease transverse emittance. The emittance targets for the muon collider
study are set to 25 µm for the transverse emittance and 70mm for the longitudinal
emittance [25]. During an earlier phase of the muon collider complex, specifically in the
6D-cooling channel [36], the muon beam is designed to obtain transverse emittances of
300 µm and longitudinal emittances of 1.5mm1. In the final cooling channel, the muon
beam will undergo further transverse cooling to meet these target specifications.

The strategy for this final cooling design follows a systematic and realistic methodology,
which is different from previous designs [131, 132]. This chapter presents four novel
methods for analyzing the beam dynamics within a final cooling lattice cell. In Section
5.1.2, the first method involves beam matching from low to high field solenoids to
prevent increase in emittance and introduces a novel adiabatic beam matching technique.
In Section 5.2, the second technique reverses the accumulation of canonical angular
momentum in the final cooling cells, which is vital for effective cooling and maintenance
of the decoupled beams. In Section 5.3, the third element involves the continuous fine-
tuning of the energy spread through RF systems, which is crucial for managing the
increase in longitudinal emittance. The forth method, described in Section 5.4, focuses
on the windows and hydrogen density in the final cooling channel, areas that earlier
studies had considered less essential. These iterative techniques led to the attainment of
a final transverse emittance of 27.2 µm, with additional potential for further enhancement
of the longitudinal emittance.

1Recent studies of 6D cooling reach transverse emittances lower than 300 µm [48].
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5.1 Solenoid matching technique

Effective ionization cooling requires strong solenoid fields, such as the CERN high-field
solenoid which is designed to achieve up to 40T [136] while maintaining field uniformity
to optimize cooling efficiency. Beam machine techniques such as adiabatic ramping;
minimizing the betatron function; and using specialized matching coils; all ensure sta-
ble beam conditions, with simulations demonstrating that optimized matching prevents
transverse-emittance growth.

5.1.1 CERN-type high-field solenoids in tracking simulations

CERN’s magnet group has proposed a conceptual and realistic design for high-field
solenoids. This section elucidates how the design developed by CERN’s magnet experts
integrates into tracking codes. Some adjustments in the simulations improve computa-
tional efficiency. As detailed in a recent design report [47], solenoids with a peak field of
40T will be available in the next decade. Although the final cooling design is capable of
supporting higher magnetic fields, the 40T option was chosen for consideration in this
thesis.

The final stage of ionization cooling necessitates extremely strong solenoid fields to
counteract the effects of emittance heating from scattering. This topic was explored in
detail in the previous chapter. Due to the equilibrium emittance, achieving the desired
normalized emittance of 25 µm requires field strengths exceeding 30T [131].

The strength of these high-field solenoid influences the length of the channel. As the
field strength increases, the channel becomes shorter due to enhanced cooling effects.
This not only has impacted the cost of the beamline, but also offers benefits for the
longitudinal beam parameters. However, fields higher than 40T later stages could be
beneficial for longitudinal emittance, but this has to be investigated in another study.

Here, a brief summary of previous research evaluates how the cooling design and lattice
length are affected by the maximum solenoid field strength. H. Sayed et al. [132] used
fields of 25T to 30T, achieving a normalized transverse end emittance of 55 µm and a
normalized longitudinal emittance of about 76mm. They achieved these results with a
transmission rate lower than 50%, resulting in a cooling design that spans approximately
140m.

B. Palmer and colleagues, as outlined in [131], propose the use of high-field solenoids
with a magnetic strength of 40T. This includes an additional single 50T solenoid for the
last cooling cell in the channel. This structure successfully achieves the target transverse
emittance. The normalized longitudinal emittance is 72mm with a transmission of 67%.
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The total beamline is about 75m, which proves that a stronger high-field solenoid indeed
shrinks the final cooling channel.

This chapter adopts B. Palmer’s scheme utilizing a 40T magnet, while excluding the
50T magnet in the last cell. A primary challenge in final cooling is to ensure that
the solenoid’s field homogeneity at the absorber location remains minimal. In other
terms, it implies that the field strength within the absorber must remain as uniform
as possible. Neglecting this factor will result in simulations performing worse than
analytical predictions due to lower field strengths at the absorbers entry and exit areas.
For extremely small normalized transverse emittances near the desired target parameter,
this inconsistency may lead to emittance-heating effects as a result of the emittance
reaching below its equilibrium.

The proposed CERN solenoid employs a high-temperature superconductor (HTS) to
meet the need for a high-field solenoid essential for final cooling. The proposed solenoid
employs a high-temperature superconductor made of rare-earth barium copper oxide,
better known as ReBCO.

The solenoid is constructed in a modular fashion using identical ring-shaped units known
as pancakes. These pancakes are wound with ReBCO wires. Each pancake includes a
hole with a diameter of 50mm, an external radius of 90mm, and a thickness of 12mm.
In the design proposal of B. Bordini et al. [136], 46 pancakes are electrically connected
in series. They are separated by stiff support plates that prevent the axial Lorentz
forces. To achieve a maximum field of 40T, each pancake model has a current density
of 650Amm−2.

To achieve consistent uniformity in the bore of the solenoid, three additional correc-
tor pancakes are added at both the entrance and exit of the solenoid. These pancakes
retain the same inner radius and current density, but have different outer radii. In the
CERN design, the high-field solenoid, which includes the corrector pancakes, measures
a total of 73 cm in length. The following discusses potential modifications to this dimen-
sion. The calculation of the homogeneity of the axial field is given by 1 − B(s)/Bpeak.
In the CERN design, the solenoid remains below 1% within the length 50 cm. The ab-
sorber is proposed to be placed in this low homogeneity region in order to maximize the
ionization cooling efficiency.

In principle, it is possible to create a similar design of this CERN-type solenoid model
using G4Beamline and RF-Track. However, the process of computing the field for each
pancake module requires significant time. This is due to the requirement of solving
elliptical integrals for each pancake module, which is lengthy. Although performing a
single simulation is not problematic, beam matching demands excessive time due to the
optimizer’s search for matched beam conditions across numerous field configurations.

An effective strategy to minimize total elliptic integrals is to substitute a set of equal
pancake modules with a single solenoid. To maintain field uniformity within the solenoid,
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only corrector pancakes will be retained. These corrector modules will be added to both
the entry and exit of this single solenoid. This simplified design achieves a peak field of
40T at a current density of 535.3Amm−2. It can be assumed that the 18% reduction
in current density, relative to the CERN-design, is due to the exclusion of gaps between
each pancake module which are essential for a realistic design.

An illustration of such a simple solenoid used for G4Beamline and RF-Track simulations
is provided in Fig. 5.1. The left side of Fig. 5.1 shows the magnetic field strength on the
axis. The corresponding homogeneity plot is shown in the plot on the left. The right
plot of Fig. 5.1 features a color map illustrating the total magnetic field strength |B⃗| and
its field line configuration. Additionally, Fig. 5.1 shows the three corrector pancakes on
both ends of the solenoid, characterized by their different radii. Those ensure the field
lines remain long and parallel to the beam axis.
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Figure 5.1.: Illustration of the solenoid’s magnetic field on its axis (left top) and
the corresponding homogeneity plot (left bottom). The plot on the right showcases
a colormap depicting the lateral cross section of the total magnetic field strength |B⃗|,
alongside the configuration of the field lines. It also illustrates the corrector pancakes
which ensure that the field lines remain long and straight within the solenoid.

For this study on final cooling, non-liquid hydrogen absorbers were utilized for the first
time. Because of their lower density, these absorbers typically need to be longer than
those with liquid hydrogen. Consequently, the absorber length will be capped at a
maximum of 90 cm, which is the 1%-homogeneity range of the solenoid of 1.2m CERN
type.

The proposed design in the later sections of this chapter necessitates three distinct
lengths for high-field solenoids. Table 5.1 provides the total lengths of these CERN-type
solenoids, as well as the section lengths where homogeneity is with the 1% variation.
For this study, slightly longer CERN-type solenoids were considered. The solenoid of
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minimal length is indicated as 80 cm, and it is the model exhibited in Fig. 5.1 on the
right side.

Total solenoid length [cm] 1% homogeneity [cm]
80 57
100 73
120 90

Table 5.1.: Summary of total lengths for the proposed high-field solenoids and sections
with homogeneity below 1%.

5.1.2 Single particle matching and adiabatic ramping

The subsequent sections will discuss a method for matching a single particle within a
beamline composed of low- and high-field solenoids. This approach can be utilized for a
particle distribution which is Gaussian, axially symmetric, and monoenergetic, provided
the radial beam size is adequately small. To maintain an optimal transverse condition for
ionization cooling of the muon beam, consistent matching is crucial. The main factors
involve:

• ensuring that the cylindrically symmetric betatron function β⊥ attains its mini-
mum value inside the absorber,

• avoiding mismatches, which lead to transverse filamentation and consequently an
increase in the normalized transverse emittance.

Firstly, betatron oscillations in the absorber reduce the effectivity of ionization cooling.
The reason is that scattering-induced heating can be minimized when the beta-function
reaches its lowest value. Secondly, betatron oscillations inside a CERN-type solenoid
with an absorber cause mismatches and lead to additional transverse emittance increases.
A later section will explore the increase in transverse emittance resulting from optical
mismatches.

As discussed in Chapter 4.3, the dynamics of charged particles in a beam can be described
by the solenoid’s envelope equation, given by

2β⊥β′′
⊥ − (β′

⊥)
2 + 4β2

⊥κ
2 − 4(1− L2) = 0. (5.1)

In Eq. (5.1), β⊥(s) = β⊥ refers to the cylindrically symmetric betatron function, where
β′
⊥ and β′′

⊥ represent its first and second derivatives with respect to the path length s
(′ = ∂/∂s). The parameter κ = κ(s) = 0.3B(s)/2pz quantifies the solenoid’s focusing
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strength and L represents the conserved normalized average canonical angular momen-
tum.

Typically, a beam is considered matched when its phase space ellipse is in alignment
with the machine’s ellipse [117]. In a static and homogenetic solenoid, the beta-function
remains both constant and minimized if β′′

⊥ = β′
⊥ = 0 and leads to

β⊥ =
1

κ

√
1 + L2, (5.2)

when L is non-zero.

Apart from a high-field CERN-type solenoid, the final cooling channel is comprised of
multiple other solenoids, each with unique magnetic-field configurations. Parameters
β⊥ and β′

⊥ can be determined along the beamline by solving Eq. (5.1) numerically.
This determination is possible given the magnetic field configuration of solenoids from
position s0 to s1 and knowing the initial conditions β⊥(s0) = β⊥,0 and β′

⊥(s0) = β′
⊥,0.

The numerical solution of the Eq. (5.1) was performed using the odeint function of
the Scientific-Python (SciPy) library [55].

Coil arrangements around a CERN-type solenoid

The following paragraphs outline the method for transferring the beam between solenoids.
An example is intended to illustrate the process of transporting a muon bunch from a
region of low magnetic field to an area of high magnetic field. For the high-field area,
the CERN-designed solenoid is used.

In order to transport a beam from one solenoid to another, a distinct system of coils
with specific characteristics must be placed between them. These coils guarantee that
the beam is aligned with the optics of both solenoids. These particular coils are known
as matchers. Fig. 5.2 presents an example comprising two low-field solenoids, L1 and
L2, situated on either side of a CERN-type high-field solenoid. Positioned between L1
and the high-field device are four upstream matching coils, labeled MU1, MU2, MU3 and
MU4. An analogous arrangement of downstream matching coils, designated MD1, MD2,
MD3 and MD4, is situated between the high-field solenoid and L2. This configuration
is used to transfer the beam into and out of the high-field solenoid. The dimensions of
the low-field solenoids and the matching coils were assumed to use conventional, more
affordable conductors or superconductors, resulting in them being larger than the high-
field solenoid in Fig. 5.2.

In this case, the optical systems L1, L2, and the CERN solenoid satisfy the condition
specified in Eq.(5.2). The MU1-MU4 and MD1-MD4 matchers ensure matching con-
ditions within L1, L2, and the CERN solenoid, provided that unique coil parameters
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Figure 5.2.: The figure should show a lateral cross-section of the solenoid system, with
low-field solenoids L1 and L2 flanking a central CERN-type high-field solenoid. Four
upstream matching coils (MU1–MU4) are located between L1 and the high-field solenoid,
while four downstream matching coils (MD1–MD4) are between the high-field solenoid
and L2. The larger size of the low-field solenoids and matching coils reflects the use of
conventional conductors.

for the matchers are identified. These parameters include current density, inner and
outer radii, and the positions of the matching coils. To avoid spatial conflicts, for this
study, the current density was selected as the unique adjustable parameter for each
matching coil. For a mono-energetic bunch, a theoretically lower matching coil number
than four could be chosen for each transfer between solenoids. For strategic reasons,
which are detailed in the next section, discussing beams with momentum spread, four
were selected.

Optimization techniques for beam matching in solenoids

Optimization of the current density Ji of each matching coil was performed using
the function scipy.optimize.minimize [55], applying the Nelder-Mead algorithm
[137]. The method is well-suited for multidimensional unconstrained optimization prob-
lems. It enabled the precise adjustment of solenoid parameters to achieve the desired
magnetic-field profile. The Nelder-Mead algorithm facilitated efficient fine-tuning of the
system by iteratively minimizing a defined objective function. This process enabled the
system to meet constant and minimum beta values inside L1, L2, and the high-field
solenoid.

To start with the optimization, a cost function ferr must be established and which has to
be minimized by the optimizer. A cost function in an optimizer quantifies the difference
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between the predicted outputs of a model and the actual target values, serving as a
measure of error. In this particular scenario, the values of the predicted parameters
are defined as β⊥(si) and β′

⊥(si). The target values are β⊥,0(si) and β′
⊥,0(si), evaluated

at one or several positions si. The optimizer uses this function to adjust the model’s
parameters iteratively, with the aim of minimizing the error between the target and
the actual values. For the solenoid matching process, the cost function is defined as
follows:

ferr =
�
i

&3
β⊥,0(si)− β⊥(si)

:2
+
3W × β′

⊥(si)
:2-

β⊥,0(si) =
1

κ(si)

√
1 + L2,

1

κ(si)
≈ 2 pref[GeV/c]

0.3B(si)
.

(5.3)

A weight factor W is introduced to the betatron correlation β′
⊥(si) in Eq. (5.3) to ensure

optimal results [138]. In this study, the employment of W = 100 was frequently observed.
To effectively optimize, choose a few points si that are close to the center of the solenoid,
which need to be matched.

Adiabatic field ramping

The 1m solenoids L1 and L2 operating in the low field regime were selected to achieve
a maximum field of approximately 4T, resulting from a current density of 17Amm−2.
Typically, achieving alignment for the beam from L1 to the 40T Cern-type solenoid,
H1, requires some time. The optimizer is sensitive to the initial current densities and,
therefore, may require iterative initial solutions prior to a full minimization.

A strategy for discovering quickly optimized parameters is adiabatic ramping from a
region with a low magnetic field to a higher one. The initial setup is to match two
low-field regions, which rapidly provides a solution for optimized matching coil current
densities. After finding the optimal coil parameters for an optimized configuration for
both solenoids, the current density in one solenoid of them can be ramped up. Once
the magnetic field of a solenoid is heightened, the optimizer can be relaunched, but
starting with the previously optimized matching coil configuration.

Illustrating the previous setup, Fig. 5.2 shows a matching example using a reference
momentum of pref = 112.5MeV/c. Instead of initiating with the H1, the optimizer uses
a geometrically identical solenoid but with a lower field. This is to guide the optimizer to
find easier solutions that can be used for the next set of initial conditions. The example
in the plot on the left side of Fig. 5.3 begins with a CERN-type solenoid at 10T. The
plots also depict the transitional phases of β⊥ and β′

⊥ until they reach the matched
conditions, denoted by a bold line on the graphs. The thin lines are the plots illustrate
the intermediate steps of the optimzer. To recapitulate, optimized settings occur when
the values of in the center of L1, L2 and H1 are β⊥ =

√
1 + L2/κ(s) and β′

⊥ = 0.
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After aligning the matching coils’ parameters, an increase in the field strength of the
CERN-style solenoid can be re-optimized. The re-optimization will be launched by
starting with the previous matched coil conditions. This process can be iterated adia-
batically until the desired field strength of 40T is achieved. The outcome for the 40T
solenoid under these aligned conditions is presented in the right plot of Fig. (5.3).
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Figure 5.3.: Adiabatic ramping of the magnetic field in a CERN-type solenoid is
illustrated. Starting at 10T (left), the optimizer minimizes β⊥ inside the solenoid while
ensuring β′

⊥ = 0, shown as thick lines. Thin lines represent intermediate optimization
steps. Once a solution is found, the solenoid field strength is increased and re-matched,
using the previously matched values as a starting point. This process—matching, in-
creasing the field, and re-matching—is repeated in adiabatic steps. Once the target
field-strength of 40T (right) is reached and the beam is matched, the process ends. The
final and matched solutions of the beam parameters are depicted as the thick lines in
the right plots.

Tables 5.2 and 5.3 present the current densities for the four upstream matching coils
in both the 10T and 40T high-field solenoid scenarios. In particular, current densities
are fairly comparable in both situations. It demonstrates that adiabatic ramping effec-
tively transitions beam parameters from low-field to high-field regions while maintaining
matched conditions. The current densities for the matching coils for cases 10T and 40T
are notably similar, highlighting the efficiency of the approach in achieving stable beam
matching in high-field solenoids.

For a beam with a single energy (single-particle approach), within a symmetric solenoid
setup, achieving beam matching from the region of high magnetic field to the low-field
solenoid L2 is straightforward. The key is to apply a symmetric configuration of current
density in the corresponding MD1, MD2, MD3, and MD4 alternating coils downstream
as opposed to the upstream coils. Four matching solenoids were selected for reasons of
comparative analysis, although alternative matching configurations could also result in
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Coil name J [Amm−2 ]
MU1 24.526
MU2 10.314
MU3 11.087
MU4 24.021

Table 5.2.: Current densities for the
four upstream matching coils in the
10T solenoid configuration.

Coil name J [Amm−2 ]
MU1 22.786
MU2 11.389
MU3 12.475
MU4 19.845

Table 5.3.: Current densities for the
four upstream matching coils in the
40T solenoid configuration.

viable solutions. Fig. 5.4 presents a comparative histogram of the current density in the
matcher coils for both the 10T and 40T scenarios.
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Figure 5.4.: Histogram of current density for upstream (MU1-MU4) and downstream
matcher (MD1-MD4) solenoids for a 10T high-field system depicted as violet bars. As
comparison, green bars are illustrating the 40T case.

5.1.3 Matching strategy of beams with energy spreads in solenoids

In the discussion before, the matching was performed for a single particle. However, in
practical terms, the muon beam displays a momentum spread denoted by σpz . Therefore,
the single-particle matching technique needs a slight extension. Before initiating this
discussion, it is appropriate to note that the matching of two reference particles requires
the optimization of four beam parameters. This optimization is achievable through the
selection of four solenoid parameters as variables, with the current density being the
parameter selected for this analysis. Note that in the ensuing study, no absorbers were
incorporated within the high-field solenoids.
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A practical approach involves using two reference particles, defined as

p1 = pref − σpz , p2 = pref + σpz , (5.4)

where σpz denotes the rms momentum spread of the beam. For beam matching purposes,
more than two reference particles can be employed, and momentum deviations other than
σpz may also be considered.

Using the solenoid arrangement illustrated in Fig. 5.2 as a starting point, the objective
is now to determine an optimized arrangement for the current densities in the matching
coils (MD1-MD4). In this procedure, the error function ferr(p1) is evaluated for the first
reference momentum, along with ferr(p2) for the second one. The goal of the optimizer
is to reduce the sum of these functions, given by the total cost equation:

f total
err = ferr(p1) + ferr(p2). (5.5)

To initiate optimization, one can employ the adiabatic ramping technique as shown in
the prior subsection, facilitating quick results. The study observed that typically when
a solution is found for two reference particles, as denoted by p± σpz , the macro-particle
beam alignment is also achieved. However, in cases where the macro-particle simulation
yields a mismatch despite finding a solution for two reference particles, it is advisable
to incorporate additional reference momenta. Consequently, the error function becomes
generalized to f total

err =
�

i ferr(pi).

Fig. 5.5 illustrates this example, where the initial reference momentum is p1 = 109.2MeV/c,
and a second reference particle has a momentum of p2 = 115.8MeV/c. The illustration
on the left side of Fig. 5.5 presents the aligned solenoid setup that incorporates the 40T
high-field solenoid. In this beamline, the downstream matching coils (MD1-MD4) are
configured with a pattern of symmetric current density. Due to the symmetric optical
configuration, this aligns with the present density of the upstream coils. This aids in
the beam’s transition from the high-field area to the low-field region L2.

Before concluding this discussion, it is worth mentioning the number of matching coils
required. When matching two reference particles, four beam parameters need opti-
mization: β⊥(p1) and β′

⊥(p1), as well as β⊥(p2) and β′
⊥(p2). In this scenario, four free

parameters are required, specifically the current densities of MU1-MU4 to achieve op-
timal results. The tests were carried out with fewer than four matching coils, but no
optimal results were obtained. Hence, it should be clarified that for, e.g., three reference
particles, six matching coils should be considered. In summary, for n reference particles,
at least 2n free parameters are essential to optimize a beamline of solenoids.
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Figure 5.5.: Matched beam parameters of two reference momenta with p1 =
109.2MeV/c, p2 = 115.8MeV/c depicted on the left diagram. Illustration of the beam
matching setup for a beamline incorporating a 40T high-field solenoid. Without ab-
sorbers included, MU1-MU4 equals always MD4-MD1.

5.1.4 Dynamical matching including absorbers and RF

In the earlier discussions, the matching methods consistently assumed that the longitu-
dinal momenta of the particles did change within a beamline. However, in ionization
cooling, the particles’ pz vary. In ionization cooling, the beam first loses energy in the
absorber, and then pz changes due to acceleration within the cavity system. There is
also a third scenario at the solenoid’s entrance and exit, where momentum is exchanged
between the longitudinal and transverse planes because of fringe-field kicks. This effect
can be ignored if the particles have a minimal radial offset relative to the beam axis.

In beam matching, it is essential to incorporate the dynamics of pz, which will affect the
focusing strength of the solenoids, denoted as κ. In the earlier example, κ(s) varied due
to the alteration of the field of B(s). Now, the momentum changes must also be taken
into account, leading to κ(s) → κ(s, pz) ≈ 0.3B(s)/2pz(s).

Two examples will be discussed in the following paragraphs. These examples have been
selected because of their critical role in the functioning of a final cooling cell. The first
showcases beam matching with a specific energy spread within a high-field solenoid sys-
tem that incorporates a liquid hydrogen absorber. The second highlights beam matching
within a cavity beam acceleration system.

The beamline in the left diagram of Fig. 5.6 utilizes a liquid hydrogen (LH) absorber
within a 40T CERN-style solenoid. In a realistic scenario, thick LiH (5mm) windows
are attached to the ends of the absorber to confine the hydrogen. The liquid hydrogen
target has a material density of 0.043 g cm−3 and a length of 49 cm. This setup was
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chosen to maintain the absorber pressure below 30 bar during beam passage. The total
length of the absorber, including the beam windows, is 50 cm.
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Figure 5.6.: The diagram on the left shows the arrangement of a solenoid within an
ionization cooling cell, with the beam envelope represented by thin blue lines. The
center of the left diagram features the high-field CERN solenoid, incorporating an ab-
sorber illustrated as the gray surface. On the right plot: The setup of a solenoid-cavity
configuration includes five 150MHz RF cavities, each with an accelerating gap of 20 cm
powered at 10MV/m, positioned between two 4T solenoids (L1 and L2). The cavities
are spaced 50 cm apart and interleaved with 20 cm wide matching coils (MRF1-MRF4).
The reference particle starts with a momentum of pref = 131.8MeV/c and an RF phase
of ϕacc = 54◦.

As illustrated in Fig. 5.7 with the appropriate graphs, the initial reference momentum of
pref(s0) = 112.5MeV/c decreases approximately linearly to pref(s1) = 88.25MeV/c. The
beamline starts at s0 = 0m and extends to s1 = 4.4m; the momentum reduction takes
place only in the absorber. Initially, the beam has a momentum spread of σpz(s0) =
3.3MeV/c, which expands to 5.2MeV/c due to the absorber highlighted in the previous
chapter.

For matching, the adiabatic ramping technique was applied with two reference particles
p1(s0) = 109MeV/c and p2(s0) = 115.8MeV/c that included their dynamical moment
changes within the beamline. As can be seen in Fig. 5.7, the matching technique also
works for this example, with a minor extension. The downstream matching coils (MD1-
MD4) do not have the symmetric current density configuration with respect to the
upstream matchers (MU1-MU4). The dynamical momentum change is responsible for
this effect. Therefore, an individual set of MD1-MD4 configurations must be optimized
to transfer the beam from the high-field area to the low-field solenoid L2. The values of
the current density configuration of the matching coils are illustrated as histograms in
the right plot of Fig. 5.7.
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Figure 5.7.: Dynamic beam matching in the absorber region: The left plots show a
momentum decrease of both reference particles (109MeV/c and 115.8MeV/c) in the
absorber area. The adiabatic ramping of the matching coils (MU1-MU4 & MD1-MD4)
establish matched conditions of the beam parametes β⊥ and β′

⊥. The current density
configurations are shown as histograms in the right plot.

The next example explores the concept of dynamic beam matching within a solenoid-
cavity configuration, depicted on the right side of Fig. 5.2. This setup includes five RF
cavities situated between two extended low-field (∼ 4T) solenoids, L1 and L2. Each
cavity has an accelerating gap that measures 20 cm and is powered by a gradient of
10MV/m. The cavities are separated by 50 cm centers and interspersed with wide 20 cm
matching coils (identified as MRF1-MRF4). The reference particle initiates with a beam
momentum of pref = 131.8MeV/c and synchronizes with the RF phase at ϕacc = 54◦.
The normalized longitudinal beam emittance of 2mm was used for this example and
the RF frequency is 150MHz. In Fig. 5.8 left, two reference particles are shown in a
matched state, each with a momentum deviation of Δpz = 3.75MeV/c in relation to
pref. The right-hand histogram in Fig. 5.8 presents the current density values for the RF
matching coils.

In conclusion, the adiabatic matching method is also applicable in solenoid beamlines
where the particle momenta get changed by for example absorbers or RFs. This is
crucial to develop an ionization cooling lattice, where such momentum changes occur.
The solenoid matching method, which included RF systems and absorbers, was explored
and validated, allowing the simulation of a complete simulation of a full final cooling
cell. Prior to this, the next discussion highlights the significance of a matched beamline.
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Figure 5.8.: Dynamic beam matching in a solenoid-cavity setup with five RF cavities
(20 cm gap, 10MV/m) between low-field solenoids (L1, L2, ∼ 4T). The cavity’s centers
are spaced 50 cm apart, with matching coils (MRF1-MRF4) in between. Left: The
reference particles with plots showing their momentum increase and the matched beam
parameters. Right: Current density in the RF matching coils.

5.1.5 Mismatches and transverse emittance increase

Finally, this section’s concluding discussion highlights the significance of beam match-
ing in terms of the normalized transverse emittance. A simulated example of ionization
cooling with G4Beamline is used to compare matched and unmatched beam configura-
tions.

The cooling cell structure comprises of two low field segments, L1 and L2, along with
matching coils upstream (MU1-MU4) and downstream (MD1-MD4), as well as a CERN-
style solenoid 40T, denoted as H1. Within H1 lies an absorber-window setup, identical
to that mentioned in the earlier discussion. In the first example, an optimized set of
coils, MU1-MU4 and MD1-MD4, was identified. Meanwhile, in the second example, only
the MU1-MU4 matchers were optimized, with the MD1-MD4 coils selected randomly.

In each case, an initial beam of normalized transverse emittance, ε⊥,N = 124 µm and 104

µ+, was produced at s0 = 0m, . For both scenarios, the beam path was tracked using
G4Beamline, and the analysis of the normalized transverse emittance incorporated a
sigma cut of 5.

In Fig. 5.9, the image on the left illustrates the ionization cooling cell operating under
matched conditions. The normalized transverse emittance, ε⊥,N, is observed to vary
strictly within the absorber region and remains steady elsewhere along the beam line.
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In contrast, the graph on the right in Fig. 5.9 shows a scenario in which the downstream
matching sections (MD1-MD4) are not optimally configured. It becomes apparent that
emittance begins to grow rapidly. When the Courant-Snyder parameters of the beam
are misaligned with those of the solenoid system, transverse filamentations result in an
increase in transverse emittance. In constant solenoid regions, matches appear when β⊥
is constant and α⊥ is zero.
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Figure 5.9.: Comparison of matched and mismatched Conditions in an Ionization Cool-
ing Cell. The left up plot shows the normalized transverse emittance, ε⊥,N, varying only
within the absorber region under matched conditions, with a flat beam envelope in the
low and high regions(left below). The right upper plot illustrates mismatched con-
ditions in the downstream matching sections (MD1-MD4), leading to rapid emittance
growth and oscillating β⊥ and α⊥ after the high field area(left below), highlighting the
impact of parameter misalignment.

5.2 Beam physics of a field flip

This section details the behavior of the total normalized canonical angular momentum
L. Previously, in the theoretical framework of Chapter 4, it was explained that L
increases or decreases in solenoids with absorbers. The increase or decrease depends on
the polarity of the solenoid field and the sign of the muon charge.

It is essential to correct this, as outlined by the following reasons. Firstly, the effective
betatron function increases with changes in L, since the beta function is scaled by

β⊥ = βp
√
1 + L2. (5.6)

With a higher L, the focus within the solenoid is weakened compared to when L is lower.
Consequently, particle scattering is less suppressed, decreasing the cooling efficiency.

104



Chapter 5. Beam dynamics study in a final cooling lattice design

Secondly, additional canonical angular momentum improves the coupling between the
transverse x and y planes. This coupling leads to an increase in the determinant value
of the non-block diagonal matrices within the four-dimensional covariance matrix, thus
increasing the two-dimensional emittances εy and εy. This augmentation results in
reduced luminosities later in the collider.

This section outlines a proposal for correcting the absorber-induced increase in nor-
malized canonical angular momentum by reversing the field polarity. The study also
discusses cooling efficiency and compares the reduction in transverse emittance with
and without reversed-field polarities. For simplicity, hereafter the text will refer to it as
a canonical angular momentum L, implying its normalized form.

5.2.1 Canonical angular momentum correction in field flipped
cooling cells

It is practical to allow the beam to transition to the next cooling cell by switching from
40T to −40T (or vice versa) to correct the canonical angular momentum. It has not
been evaluated, but it is assumed that the forces between these two high-field magnets
are negligible since there are separated by a few meters. This alteration in polarity within
an ionization cooling cell has been referred to as a field flip in earlier studies [139, 140].
The following example demonstrates, in a G4Beamline simulation, the correction of
canonical angular momentum. This is achieved by a pair of field-flipped solenoids,
including hydrogen absorbers. For comparison, a pair of non-alternating solenoids will
be illustrated and discussed.

This example begins with the first cell of the final cooling channel. The starting emit-
tances are determined from the final values of the six-dimensional rectilinear cooling
channel by D. Stratakis et al. [36], which are ε⊥,N = 300 µm and εL, N = 1.5mm.

Assuming a round beam (α⊥|s=0 = 0), the only main beam parameters that can be ad-
justed are the initial energy E and its energy spread σE. In this context, a 25% reduction
in the initial normalized transverse emittance was proposed to make the beam parameter
changes distinguishable. By analytically optimizing the cost function −ΔεL, N/ε⊥,N with
this reduction in transverse emittance 25%, the best starting parameters EKin = 120MeV
and ΔE = 3.3MeV were determined according to the methodology described in Chap-
ter 4.6.

To decrease the normalized transverse emittance of a muon beam with EKin = 120MeV
from 300 µm to 225 µm, a liquid hydrogen absorber with specific pressure density is re-
quired. This absorber has a length of 1.615m to operate in a field of 40T. To manage the
correction in canonical angular momentum, the absorber is divided into two segments.

105



Chapter 5. Beam dynamics study in a final cooling lattice design

Each segment is housed in separate solenoids of unequal length with reversed-field ori-
entations. Both solenoids are CERN type.

The analytical canonical angular momentum rate was defined in Eq. (4.57) and is

dL
ds

=

√
1 + L2

βE2

�
∂E

∂s

�
− L

ε⊥,N

β⊥pc
2mµc2

d⟨θ2⟩
ds

(5.7)

the first segment measures 95 cm in length, while the second is 65.5 cm long. Each
absorber has a cylindrical form with diameter 5 cm and features 5mm thick LiH windows
at both ends. The density of liquid hydrogen in the first absorber is 76.8 kgm−3, while
the second has a density of 69.2 kgm−3 to ensure low pressure after passage of the muon
beam. In order to ensure high field homogeneity in the absorbers, the total length of
the high field solenoid is 1.2m.

In a G4Beamline simulation, the muon beam was generated in the center of a 1m low-
field 4T solenoid. This beam is then directed to a CERN-style solenoid absorption
system using four matching coils, as detailed previously in 5.1.4, to guarantee the same
conditions.

After traversing the first absorber, eight matching coils are strategically placed to ensure
proper matching to the second high-field solenoid, which has an opposing field polarity.
The field polarity changes adiabatically within these eight-coil setups. Upon exiting
the second absorber, the beam is again directed by four matching coils. Then it is
transmitted to a 1m 4T solenoid, where the simulation concludes. Each matching coil
measures 20 cm in length and the dynamic adiabatic ramping technique, as outlined in
5.1.4, was used to ensure matched conditions.

For this specific solenoid configuration, the output of the G4Beamline simulation in-
volving 104 positively charged muons. The plot on the left in Fig. 5.10 presents the
configuration of the magnetic field along the beam axis. Positioned below this plot
is a depiction of the canonical angular momentum’s evolution. It is evident that by
appropriately selecting the absorber lengths, the canonical angular momentum can be
adjusted to revert to its original value. In this particular scenario, the canonical angular
momentum initially had a value of approximately L = 0 and reaches this value again at
the end of the simulation.

A similar solenoid beam line to the previous setup was constructed once more; however,
this time, without a field flip. The ideal current densities for the matching coils were
determined for this set-up. The on-axis field configuration for this scenario is shown
in the right plot of Fig. 5.10. Below this illustration, a graph details the canonical
angular momentum behavior. With the field polarity unchanged in the second high-field
solenoid, the canonical angular momentum continues to rise. Consequently, this scenario
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also reduces the cooling efficiency of the beam, which will be discussed in the following
section.
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Figure 5.10.: The left plots depict the magnetic field configuration and canonical
angular momentum evolution for a solenoid setup with a field flip, showing how proper
absorber lengths restore the angular momentum to its initial value of approximately
L = 0. In contrast, the right plots represent a configuration without a field flip, where
the angular momentum increases continuously due to unchanged field polarity. This
continuous rise negatively impacts the cooling efficiency of the beam. These results
emphasize the importance of field polarity in ionization cooling.

5.2.2 Cooling efficiency of a field-flipped cooling cell

In continuation of the discussion in the previous example, the following paragraphs
evaluate the cooling efficiency of solenoid-absorber systems with a flipped magnetic field
compared to those without one.

In the left plot of Fig. 5.11, the changes in normalized transverse emittance ε⊥,N are
shown for both the field-flipped and non-field-flipped configurations. Initially, ε⊥,N in-
creases equally in both cases within the first absorber, as expected. However, minor
variations appear in the second absorber, as depicted to the left of Fig. 5.11. The
emittance in the field-flipped configuration is slightly less than that in the non-field-
flipped beamline.

The right plot of Fig. 5.11 provides a detailed examination of the betatron function
β⊥ for both the field-flipped and non-field-flipped modes in the vicinity of the second
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absorber. The relationship between both beta functions is

βnoflip
⊥
βflip
⊥

=

v
1 + L2

noflip

1 + L2
flip

. (5.8)

In the design where the field is not flipped, Lnoflip increases, while Lflip reverts to its
initial level in the second absorber. In the field-flipped example, the canonical angular
momentum returns to its starting value. At the end of the second absorber, the beta
function for the configuration without field flip is expressed as βnoflip

⊥ = βflip
⊥

u
1 + L2

noflip,
but only when the start value of the canonical angular momentum was zero. This
expression indicates that the radius of the beam expands by a factor of (1 + L2

noflip)
1/4,

respectively, to the field-flipped scenario.

For the non-field-flipped scenario, the reduced focusing due to the induced canonical
angular momentum leads to reductions for emittance cooling. As discussed in the previ-
ous chapter, this focusing mechanism helps to contain the emittance growth that results
from muons scattering against the absorber’s atoms. The objective of ionization cool-
ing is to optimize focusing by reducing the canonical angular momentum to its lowest
possible value.
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Figure 5.11.: The left plot illustrates the evolution of normalized transverse emittance
ε⊥,N for both field-flipped and non-field-flipped configurations. It shows a similar initial
increase within the first absorber and minor differences in the second absorber, where the
emittance is slightly lower for the field-flipped case. The right plot examines the relation
of the betatron function β⊥ for both cases inside the second absorber. Due to the field
flip and the associated L reduction, βflip

⊥ decreases correspondingly to βnoflip
⊥ , following

to a higher beam focusing in the absorber and therefore a higher cooling efficiency.
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5.3 Phase rotation and amplitude correlation

In this section, the rotation of the longitudinal phase space between two solenoid ab-
sorber systems with reverse field polarity is discussed. The increase in normalized longi-
tudinal emittance is related to energy spread σE, energy E, and normalized longitudinal
emittance εL,N. Consequently, these parameters must be carefully adjusted to mitigate
the increase in longitudinal emittance. The variable εL,N can be modified and reduced
only in the earlier stages of the muon production and acceleration chain. The parameter
εL,N can be reduced, for example, in the 6D cooling channel [36]. For the final cooling,
the longitudinal emittance can no longer decrease as there is no longer any correlation
between position and momentum, due to dispersion and wedge-shaped absorbers.

If particles pass through a solenoid system without an absorber included, the longitudinal
emittance experiences a small increase. This comes from the correlation effects of the
transverse particle’s amplitude outlined later in Chapter 5.3.2. To mitigate this effect,
one can reduce the transverse emittance of the beam and adjust its energy spread. The
adjustment of the energy spread can be accomplished by using phase-rotating cavity
systems, which will be discussed in the following section.

5.3.1 Longitudinal phase space manipulation

To minimize the energy spread of the bunch, an RF cavity system is used that operates
in a reference phase of ψ = 0◦. The phase of 0◦ is the rising zero-crossing of the electric
field Ez of the cavity, which is the definition used in this thesis. When the RF and
gradient are given, the length of the bunch σL can be adjusted. It can be increased to
reduce the energy spread or decreased to increase the energy spread, particularly when
the RF phase ψ = 0◦. This technique is known as phase rotation [141].

Consider an absorber system that incorporates field-flipped solenoids, complemented by
matching coils and transfer solenoids, as illustrated in Fig. 5.12. As the beam passes
through the absorbers, its energy spread σE and the normalized longitudinal emittance
εL,N increase. As depicted on the left side of Fig. 5.12, the growth rates of σE and εL,N

are more pronounced in the second absorber, although the second absorber is shorter
and less dense than the first absorber (Labs1 = 95 cm, ρabs1 = 78.6 kgm−3, Labs2 =
65.5 cm, ρabs2 = 69.20 kgm−3). This is because the bunch has a lower energy and
a larger energy spread in the second absorber, resulting in a larger increase in the
normalized longitudinal emittance. When the phase rotator is absent, the normalized
longitudinal emittance measures εRot

L,N = 2.5mm, while without rotation, it is εNoRot
L,N =

2.65mm. Although these differences seem minor, the longitudinal emittance will increase
exponentially throughout the lattice, and phase rotation becomes crucial when dealing
with larger longitudinal emittances later in the lattice.
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The example presented in the right plot of Fig. 5.12 involves 6 pillbox cavities charac-
terised by a frequency of 300MHz and a gradient of 12MVm−1 operating in the TM010

mode. These pillbox cavities, measuring 15 cm in gap length, were situated between the
matching coils of both CERN-type high-field magnet systems. The pillbox cavities are
strategically placed, each center located at intervals of 0.5m, as shown on the right in
Fig. 5.12.
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Figure 5.12.: An absorber system with field-flipped solenoids, matching coils, and
transfer solenoids is illustrated. The left panel shows increased energy spread and
normalized longitudinal emittance in the second absorber. This occurs despite its shorter
length and lower density, due to the bunch’s lower energy and greater energy spread. The
right panel highlights six carefully placed pillbox cavities that reduce energy spread. The
normalized longitudinal emittance growth is therefore smaller. The RF system brings
the energy spread back to its original value before to entering the second absorber.
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To examine the longitudinal phase space, Figure 5.13 on the left illustrates both the
particle distribution and the separatrix as observed at the initial stage of the cavity
system. This configuration illustrates how the bunch is precisely placed in the center of
the stationary bucket. The plot on the right of Fig. 5.13 displays the distribution of the
particles after passing through the cavity system.
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Figure 5.13.: The left plot illustrates phase-space correlations in Δt and σE after
particles exit the first absorber, showing the bunch contained within a stationary bucket.
In the plot on the right, a longitudinal bunch rotation facilitates the extension of the
bunch length and the reduction of the energy spread, thereby correcting the correlation
in the longitudinal phase-space. This improvement was achieved by adjusting the RF
frequency, gradient, and gap length to align the machine’s longitudinal parameters with
the beam’s requirements.

In the left plot of Fig. 5.12, the longitudinal emittance increases at the end of the study
carried out within the solenoid system without absorbers. The energy spread of the
beam remained uncorrected, resulting in correlations between the transverse amplitudes
and the longitudinal coordinates of the particles. Such nonlinear effects will be addressed
in the following discussion.

5.3.2 Nonlinear amplitude correlations

In the following sections, the emphasis shifts from examining phase-space rotation to
investigating the non-linear correlation between transverse and longitudinal motion. Ac-
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cording to a description by G. Penn [142], he noted that particles with higher amplitudes
A⊥ tend to lag behind those with smaller A⊥ during their passage through a solenoid.

This phenomenon can be demonstrated with a thought experiment involving a single
particle possessing a radial offset from the beam axis. Due to the presence of fringe
fields, a particle with a larger radial offset receives a stronger angular momentum kick
at the entrance of a solenoid. This leads the particle to gyrate in the solenoid with a
larger radius compared to one with a smaller radial offset. Consequently, particles with
larger helix radii have path lengths longer than those with smaller radii, causing them
to fall behind.

In four dimensions, the amplitude for a single particle is expressed by

A⊥ =
3
v⊤Σ−1v

:
ε⊥, (5.9)

where v = (x, x′, y, y′)⊤ represents the four-dimensional transverse coordinates of the
particle, and Σ denotes the beam’s covariance matrix. In Eq. (5.9), the invariant ε⊥
represents the four-dimensional geometric beam emittance. It is worth mentioning that
the amplitude in Eq. (5.9) is occasionally referred to as the four-dimensional single-
particle emittance.

The normalized longitudinal emittance in two dimensions was defined in Eq. (4.50).
When incorporating the amplitude of particles into the emittance calculation, it is essen-
tial to compute the covariance matrix in the t-E-A⊥ frame and subsequently normalize
it using the mean squared amplitude ⟨A2

⊥⟩, which is defined as

εcorr
L,N =

v
det(Cov[t, E,A⊥])

⟨A2
⊥⟩

. (5.10)

Figure 5.14 illustrates a representative scenario involving a beam exposed to a constant
solenoid magnetic field of 4T. The plots on the left side, shown in Figure 5.14, illus-
trate the discrepancy between εcorr

L,N and εL,N, as observed in a beam characterized by
ε⊥,N = 300 µm. One case involves a spread of energy of σE = 5.5MeV, and another sce-
nario involves σE = 7.5MeV. The differences between εcorr

L,N and εL,N are clearly visible,
demonstrating that particle amplitude increases the normalized longitudinal emittance
in the solenoid. Note that this analysis does not incorporate any absorbers.

In the example on the right-hand side of 5.14 is the same example demonstrated again
but with the transverse beam emittance reduced by an order of magnitude. This example
clearly demonstrates that the amplitude dependency in the longitudinal plane vanishes.
In Fig. 5.14 can also be noticed that there is even with the amplitude corrected expres-
sion still a nonlinear longitudinal emittance increase. This non-linear effects are not
symplectic and therefore phase space densities are not conserved.
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Figure 5.14.: A long solenoid subjected to a 4T magnetic field shows the impact of
particle amplitude on normalized longitudinal emittance, with distinct energy variances
of 5.5MeV and 7.5MeV analyzed for a beam with ε⊥,N = 300 µm. On the right, re-
ducing transverse beam emittance by an order of magnitude eliminates the amplitude
dependency in the longitudinal plane. This analysis excludes beam-stopping materials
like absorbers.

Given the manifestation of these amplitude-correlated dependencies in large normalized
transverse emittances, it is advisable to expedite the cooling of the beam by employing
a short beam line. This strategy mitigates the supplementary longitudinal emittance
growth observed in non-absorber regions within a solenoid and contributes to an efficient
cooling rate within the design.

Armed with a thorough examination of these technical aspects in ionization cooling and
a plan for

1. minimization of emittance increase with matched beam within a solenoid system
within absorbers and RF cavities,

2. Optimization of the RF cavity parameters,

3. angular momentum cancellation with field-flipped solenoids,

4. awareness of longitudinal emittance amplitude correlation,

the next phase involves developing an initial model of an ultimate cooling channel.
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5.4 Final cooling channel including liquid and vapor
hydrogen absorbers

Upon examining the beam dynamics is examined within a final cooling setup, the design
of a potential final cooling cell can be conceptualized. This chapter therefore suggests a
structure for a single cell of the final cooling channel, consisting of:

• a high-field solenoid with uniform field distribution

• a pair of absorbers separated by an arrangement of field-reversed and 40T solenoids
for canonical angular momentum correction,

• phase rotation cavities for energy spread adjustments, and

• matching coils in conjunction with low-field transport solenoids.

To advance the design of an individual cooling cell, this part additionally includes

• beam windows tailored for the absorbers, and

• modifications of hydrogen densities to counteract over pressurized conditions in
the absorber caused by the muon beam.

This section gives a general overview of a potential final cooling channel composed of
nine cooling cells. Each final cooling cell approximately reduces the normalized trans-
verse emittance by 25%. The 25%-emittance reduction was an intuitive choice and did
not follow any results from optimization algorithms. The design was focused on opti-
mizing the hydrogen densities and limiting the solenoid length at 1.2m. This study aims
primarily to execute and evaluate the technical elements of a final cooling cell that were
previously mentioned.

The following discussion presents a technical configuration for a single final cooling
cell and reviews earlier studies on a final cooling design. The study will illustrate the
selection of hydrogen absorber densities and their state, either as saturated liquid or
as vapor. The section continues with a discussion about beam windows, followed by
a thorough examination of the hydrogen density configuration choices for each cell.
Ultimately, the resulting beam parameters from the G4Beamline simulations will be
presented, highlighting promising outcomes for the future advancement of a final cooling
channel.
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5.4.1 Novel setup approach of a final cooling cell and compar-
isons to previous designs

Conceptual design of a final cooling cell

Using the field-flip configuration is beneficial to adjust the acquired canonical angular
momentum as the beam moves through the material-filled solenoid. This setup slightly
enhances the cooling efficiency due to its improved focusing abilities. Another purpose
of a field-flipped cooling cell is to minimize the coupling effects between x- and y-planes.
Achieving this goal enables the transfer of a decoupled beam to the next accelerator
section in the muon collider framework [25].

After the beam exits the absorber, the phase rotating RF cavities adjust the energy
spread σE while preserving the normalized longitudinal emittance εL,N. Lower energy
spreads are beneficial to keep the growth of εL,N low in the absorbers and even in
solenoids, due the to non-linear effects in Fig. 5.14.

Furthermore, in between the solenoid and RF components, the matching coils ensure
aligned conditions between the machine and beam parameters. If the conditions are not
matched, the transverse emittance increases, leading to decreased cooling efficiency of
the cell.

In summary, a single final cooling cell comprises a configuration of two window-
absorber-window setups, utilizing hydrogen as the absorber material. These
are separated by field-flipped solenoids and operate at high magnetic field
strength. Alternating RF cavities and matching coils located right next to the
field-flipped solenoid ensure optimized performance for both longitudinal and
transverse emittance.

Past final cooling design proposals

In prior iterations of the final cooling lattice designs [131, 132], the configuration of a
single cell within the lattice was conceptualized differently. Specifically, a single cell
comprised an individual absorber located within a high-field solenoid module, followed
by a sequential phase rotation and acceleration via an RF system. Indeed, a final cooling
cell could incorporate re-accelerating RF cavities positioned between two field-flipped
solenoid-absorber systems. However, the primary objective of this study is to examine
and elaborate on a final cooling cell from a more technical, e.g. the inclusion of beam
windows and hydrogen absorber adjustments. Another goal is to examine the beam
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dynamic in the final cooling cell with the inclusion of innovative field-flipped and RF
systems.

In these past studies, a field polarity switch was proposed and even implemented in
H. Sayed’s [132] and B. Palmer’s [131] design. However, in Sayed’s work details concern-
ing the exact methodology used to determine when the field-polarity changes occurred
were notably omitted.

The design of Sayed incorporated an RF system within the bore of large low-field
solenoids. In contrast, the design proposed in this thesis positions the RF cavities
between smaller coil components. Applying pillbox geometry, the radius of the cav-
ity is inversely scaled with its frequency [143]. In a vacuum, this relationship can be
approximately expressed as

rCavity =
c

2π

2.40483

f [Hz]
. (5.11)

In Sayed’s design, the maximum frequency used is f = 325MHz, which corresponds to
a cavity diameter of 70 cm. As frequencies decrease along the channel, this necessitates
transport solenoids with larger core radii. This chapter demonstrates, for the first time,
the proof of RF-cavities that are not situated inside solenoids, a scenario not previously
investigated in prior final cooling studies.

The designs proposed by Sayed and Palmer could further benefit from a more detailed
consideration of the adjustments in hydrogen density within the absorber. According
to their studies, liquid hydrogen was assumed to be utilized at constant densities of
ρ = 70.8 kgm−3. However, this assumption may result in pressures reaching several
hundreds of bar within the absorber after the passage of the beam, as evaluated in
Fig. 4.12.

Additionally, their lattice proposals do not currently incorporate beam windows at both
ends of the absorber. Furthermore, both papers could provide greater clarity regarding
the behavior of the magnetic field generated by solenoids within the absorber, as well as
more comprehensive technical specifications of the high-field solenoid.

In the following lattice design discussion, the technical aspects of ionization cooling will
be discussed in a detailed and technical way. The key design components of technical
relevance are the following:

• beam windows for the absorbers, and

• adjustments of the absorber densities to mitigate pressure increases induced by
the muon beam.

In addition, the beam optical aspect of the cooling cell design involves implementing the
following:

• RF-cavities not inside transport solenoids;
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• a high-field solenoid with uniform field distribution, similar to the CERN design.

These CERN-type solenoids [136] have already been incorporated into beam dynamics
studies earlier in this chapter 5.1.1.

5.4.2 Beam windows for absorbers

The beam windows play a critical role in the containment of hydrogen, ensuring that
it remains isolated from the vacuum conditions in the rest of the beam pipe. As the
beam deposits energy in the absorber via ionization, the hydrogen pressure along the
beam path inside the absorber rises. This pressure increase correlates with the initial
density of the hydrogen, which must be adjusted in advance of the beam’s entry into
the absorber.

To minimize Coulomb scattering, these windows should be thin and composed of
a material with a low atomic number Z. Lithium hydride (LiH) and silicon
nitride (Si3N4) are promising materials for such windows.

The final cooling channel will be performed in its initial cells using a higher beam
energy (50-120MeV), due to a better cooling performance. At increased beam energies,
saturated liquid hydrogen (LH) will be used as an absorber. In this preliminary final
cooling lattice design, 5mm LiH windows are used for LH absorbers [144]. To a moderate
extent, this type of window equipped with an LH absorber setup can withstand stresses
up to 30 bar. The densities of LH will initially be calibrated so that the pressure levels
remain below 30 bar after the muon beam passes through.

In the later cells in the final cooling channel, lower beam energies have to be used to reach
low transverse emittances. The combination of low energy levels and reduced transverse
beam dimensions necessitates the employment of vapor hydrogen (VH) as an absorber
equipped with extremely thin windows. VH is used because of its lower density compared
to LH in order to prevent beam-induced high pressures. The application of ultra-thin
windows primarily serves to minimize muon losses caused by particles getting stopped
inside the window. The aim of the system is also to minimize the growth of the transverse
emittance because of the substantially higher equilibrium emittance inherent in the
window material.

Very thin membranes, like Si3N4, have been used as X-ray windows [145]. The initial
pressure tests at CERN involved a sample of 1 µm thick Si3N4 foil with a square size of
6mm×6mm [146]. It shows that this membrane starts to fail at 6.5 bar at a temperature
of 77K.
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In another setup, a equivalent Si3N4 sample was irradiated by 400GeV proton beams
with a beam intensity of 2.6 · 1013 p+/mm [144]. Apart from minor deformation on
the Si3N4-membrane caused by the proton beam hitting it, the pressure inside the test
chamber remained constant at 5 bar, implying that the Si3N4 window remained intact.
Si3N4 windows with a thickness of 1 µm have been shown to withstand a pressure of
6.5 bar [146]. It is plausible to hypothesize that windows with increased thickness, in
the range of 2-3 µm, could endure pressures exceeding 10 bar. However, an empirical
validation is required to confirm this assumption.

In the preliminary final cooling lattice study, the density of the VH absorbers, which
incorporate Si3N4 windows, will be fine-tuned. This adjustment will ensure that the
pressure after the muon beam passes through the VH does not exceed 10 bar.

5.4.3 Properties of the LH and VH absorbers in a final cooling
channel

On the basis of its initial density and pressure, hydrogen can exist as a liquid or a vapor.
A list in Table 5.4 of initial absorber conditions is provided, including density, tempera-
ture, and pressure, in a final cooling channel, starting from a beam with ε⊥,N = 300 µm
and εL,N = 1.5mm. The thermodynamic properties within the absorber, as dictated
by the beam characteristics, were assessed utilizing CoolProp [133]. As a preliminary
illustration, the aim was to decrease 25% of ε⊥,N per cooling cell while maintaining the
solenoid length within the range of 1.0± 0.2m.

The vapor quality factor for a saturated liquid is characterized by Qvap = 0, while
for a saturated vapor, it is defined as Qvap = 1. In any intermediate phase (0 <
Qvap < 1), the hydrogen absorber would comprise both liquid and vapor, leading to
varying density regions. These diverse density areas would cause the beam to release its
energy unevenly, complicating the analysis of ionization cooling.

Each individual cell in the final cooling section contains two absorbers as a result of
corrections for the canonical angular momentum. To ensure that the absorbers remain
in a single phase (Qvap = 0 or Qvap = 1), adherence to the saturation curve is required.
The saturation lines are presented in Fig. 5.15 and Fig. 5.16, indicating ones for pressure
p and those for temperature T in relation to internal energy U . Fig. 5.15 illustrates the p
and T for the first absorber in each cell, while Fig. 5.16 corresponds to the cell’s second
absorber.

The initial pressures and temperatures are marked down on the saturation curve in
Fig. 5.15 and Fig. 5.16. The maximum in the saturation curves is represented by the
critical pressure Pc and the critical temperature Tc. The saturation line to the left of
these critical points corresponds to the saturated-liquid state and is marked as blue

118



Chapter 5. Beam dynamics study in a final cooling lattice design

Cell ρ [kgm−3] Abs. [cm] Sol. [m] Qsat p0 [bar] p1 [bar] T0 [K] T1 [K]

1 78.60 95.0 1.2 0 0.08 22.03 14.21 16.50
69.20 65.5 1.49 24.38 21.75 24.38

2 76.54 70.5 1.0 0 0.10 28.67 14.52 17.51
69.18 49.0 1.50 25.61 21.77 25.61

3 58.80 60.0 1.0 0 6.00 29.84 28.26 32.35
45.16 40.0 11.50 31.89 32.33 38.31

4 43.00 50.0 0.8 0 12.00 31.33 32.61 38.81
34.16 31.5 12.77 33.02 33.04 41.211

5 6.87 87.6 1.2 1 5.60 9.51 27.87 39.92
4.48 75.5 3.70 7.23 25.69 43.11

6 5.71 81.5 1.2 1 4.70 9.11 26.92 43.65
3.76 64.5 3.10 7.8 24.83 53.06

7 3.06 35.4 1.0 1 2.50 7.89 23.86 64.25
1.96 28.1 1.55 5.94 21.9 74.28

8 2.48 43.6 1.0 1 2.00 8.33 22.91 82.19
1.61 34.3 1.25 8.62 21.1 93.63

9 2.08 52.1 1.0 1 1.65 8.86 22.15 101.24
1.38 40.0 1.05 9.23 20.5 161.24

Table 5.4.: Every final cooling cell comprises a pair of absorbers. The initial cells (1-4)
incorporates liquid hydrogen (LH) absorbers, denoted by blue values and Qsat = 0. The
red values represent the absorber characteristics for hydrogen vapor (VH) (cell 5-9) with
Qsat = 1. Within each cell, the initial absorber’s density ρ, pressure, and temperature
are presented in the first line, and those for the second absorber are displayed in the
second line. The starting values of pressure and temperature are denoted by p0 and T0,
respectively, whereas the concluding values after the beam’s passage are denoted by p1
and T1. In the table Abs. and Sol. stand for the lengths of the absorber and the solenoid.

lines. On the right, it indicates the saturated vapor state, and these are marked as red
lines.

Liquid hydrogen (LH) is observed to be used as the absorbers in each of the first four
final cooling cells. These cells have starting pressures ranging from 0.8 bar to 12.77 bar,
just below Pc. Meanwhile, for final cooling cells five through nine, hydrogen vapor (VH)
is utilized for the absorbers, with pressures ranging from 5.6 bar to 1.05 bar.

Upon depositing its energy into the absorber, the beam causes an increase in pressure.
The objective of this study is to maintain the pressure in the LH absorbers, equipped
with LiH windows, around 30 bar after the beam passes through. For VH absorbers, the
pressure after the beam passage is kept below 10 bar due to the proposed limitations of
the ultra thin Si3N4 windows.
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Figure 5.15 depicts the pressures and temperatures recorded following the beam’s pas-
sage through each cell’s primary absorber. Dashed lines in the diagram on the left of
Fig. 5.15 connect the initial and final pressures in each cell. Similarly, the initial and
final temperatures are connected in the right plot of Fig. 5.15. This analysis is also
applied for the second absorber of each cell, as shown in Fig. 5.16. For each absorber
within each cell, both figures illustrate the regulation of pressure for the LH and VH
absorbers.

Table 5.4 presents a summary of the densities chosen for each final cooling cell, along
with the initial and concluding pressure and temperature values. Table 5.4 indicates
that after the conclusion of each cell, specifically cells 2 to 9, it is necessary to adjust the
absorber density. This adjustment ensures that the pressure remains reasonably below
a specific threshold after the passage of the muon beam.
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Figure 5.15.: The saturation curves delineate the boundaries between hydrogen’s
saturated-liquid (blue) and saturated-vapor (red) states, plotted against internal en-
ergy. Initial and final pressures (left) and temperatures (right) for the absorbers in each
cooling cell are connected with dashed lines, showing the progression through the sys-
tem. LH is used in the first four cooling cells, with pressures from 0.8 to 12.77 bar, while
VH is used in cells five through nine, spanning pressures from 5.6 to 1.05 bar. The data
highlights the conditions following beam passage through the initial absorber of each
cell.

After the fourth cell in the final cooling channel, the absorber phase changes to VH. Due
to the lower densities in VH compared to LH, the density starting at cell 5 decreases,
as illustrated in Fig. 5.17. Consequently, a longer absorber is required to dissipate
the beam energy, affecting the transverse emittance. In addition, extended absorbers
require the use of longer solenoids. The lengths of high-field solenoids in cooling cells,
including LH absorbers, are summarized in Table 5.5, while the solenoids containing
VH absorbers are detailed in Table 5.4. In LH, the length of the absorbers reduced
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Figure 5.16.: The second absorbers of each cooling cell operates within the saturation
boundaries, transitioning from an initial to a final state along the saturation curve.
Its pressure and temperature changes are connected by dashed lines, illustrating the
system’s progression through the absorber.

from 95 cm to 31.5 cm. For VH, the original length of 87.6 cm also decreased, with the
shortest absorbers measuring 28.1 cm. Table 5.4 lists the absorber densities relative to
their lengths, while Fig. 5.17 provides a visual representation.
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Figure 5.17.: The left plot depicts the density and length of the first absorber in each
cell, whereas the right plot illustrates these parameters for the second absorber in each
cell. Subsequent to cell 4, the absorbers are composed of VH with significant lower
hydrogen densities. Owing to the reduced densities, the absorber lengths are extended
to maintain a substantial reduction in transverse emittance.

The absorbers that demonstrate the highest sensitivity are located in the final cell of the
channel. A significant amount of energy is deposited by the beam within a very small
volume, as a result of the reduced beam radius achieved in the preceding cells. Fig-
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ure 5.18 provides a representation of the pressure distribution from a lateral perspective
of both absorbers in the last cooling cell. It is evident that the internal pressure can be
maintained within the range described in 10 bar.

200 220 240 260
Absorber length s [cm]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
bs

or
eb

rs
iz

e
x

[m
m

]

µ-stream

1σ -beam-size

ρ = 2.3 kg/m3

560 570 580 590 600
Absorber length s [cm]

ρ = 1.4 kg/m3

2

4

6

8

10

12

Pr
es

su
r

p
[b

ar
]

Figure 5.18.: The absorbers in the final cell exhibit the highest sensitivity. The pressure
distribution from a lateral view of the absorbers in the last cooling cell, shown in the
heatmap, demonstrates that internal pressure remains within the specified range of 10
bar.

In light of the substantial temperature rise within the VH absorber (164K), it is neces-
sary to demonstrate that the temperature can increase rapidly despite the high viscosity
of hydrogen. The absorber must be adjusted to its initial pressure and temperature
within 200ms, which is the time frame for the passage of a new muon bunch. Estab-
lishing a continuous VH flow (and potentially LH) within the absorber, linked with an
external loop, may aid in conducting heat out of the absorber.

5.4.4 Beam energies and energy spread choice for each cell

This section discusses the results of optimizations of a beam cooling process through
a series of cooling cells. It focuses on reducing the beam’s transverse emittance while
minimizing longitudinal emittance growth. Adjustments to initial kinetic energy, energy
spread, and use of phase-rotating cavities were key strategies. Technical constraints such
as solenoid length, hydrogen pressure in the absorbers, and cavity specifications were
carefully managed. The study concludes that phase rotation is unnecessary beyond the
sixth cooling cell due to reduced beam energy levels and manageable non-linear effects,
avoiding complications from extended beamline requirements.
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A first attempt of a re-accelerating beamline between two cooling cells will be discussed
in Section 5.5 later. Yet, between cells, at the end of each cell, the energy was raised
and the energy distribution fine-tuned by artificially adjusting the macro-particles. Once
this artificial modification was completed, the beam was directed to pass through the
subsequent final cooling cell.

In this final cooling beamline, calculations were performed for 9 cooling cells, which
reduce the beam’s transverse emittance from ε⊥N : 300 µm to 25 µm. This results in a
roughly 25% reduction in transverse emittance per cell. The aim was to achieve the target
normalized transverse emittance of 25 µm by incorporating both LH and VH absorbers
along with the necessary beam windows. Furthermore, it was essential to maintain the
high-field solenoid within a range of less than 1.2m. A future study proposes to adjust
the normalized longitudinal emittance.

The initial kinetic energy E0
Kin and the initial energy spread σ0

E were adjusted and a
reduction of 25% in the transverse emittance in each cell was made. This adjustment
was made while keeping the growth of the longitudinal emittance minimal. The values
for E0

Kin and the final kinetic energy E1
Kin for each final cooling cell are tabulated in

Table 5.5, as well es the σ0
E and the final energy spread σ1

E.

Furthermore, it was ensured that the solenoid does not exceed the length of 1.2m.
Every cooling cell is initialized with a distinct starting energy and a specific energy
spread, alongside two absorbers. Modifications outlined in EKin and σE are simulated
for each cell employing G4Beamline and are depicted in Fig. 5.19.
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Figure 5.19.: The evolution of kinetic energy EKin in a G4Beamline simulation is
depicted in the left plot, whereas the right plot illustrates the progression of the energy
spread σE. The adjustments of EKin and σE between each cell were executed artificially,
without employing a complex RF system.

The energy spread between the two absorbers in each cell was adjusted by employ-
ing phase-rotating cavities. This approach aimed to suppress longitudinal emittance
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Cell εstart
⊥,N εfinal

⊥,N [µm] E0
Kin [MeV] E1

Kin [MeV] σ0
E [MeV] σ1

E [MeV]

1 300.0 260.1 120.0 83.6 3.5 4.3
260.9 225.3 84.0 58.6 3.3 4.0

2 227.0 200.2 97.2 70.0 3.2 3.8
200.3 174.2 70.0 48.66 3.4 4.1

3 174.5 150.9 65.7 43.9 2.6 3.3
151.1 131.6 43.9 28.6 3.0 3.9

4 133.5 116.0 47.7 31.0 2.6 3.4
116.6 94.0 31.0 20.6 3.3 4.7

5 94.1 85.2 21.5 15.1 1.8 2.4
89.0 76.6 15.4 10.6 1.8 2.3

6 76.6 69.4 17.6 11.9 2.2 2.9
70.2 60.2 12.4 8.2 1.6 2.2

7 60.2 53.5 9.0 6.6 0.6 0.8
53.5 47.5 6.6 5.2 0.8 1.0

8 47.5 42.7 9.0 6.7 0.6 0.8
42.7 37.7 6.7 5.1 0.8 1.0

9 38.2 33.8 9.0 6.6 0.6 0.9
34.0 27.2 6.0 3.6 0.9 1.2

Table 5.5.: The table presents the initial and final kinetic energy (E0
Kin and E1

Kin) and
energy spread (σ0

E and σ1
E) for each final cooling cell. It also includes the initial and final

normalized transverse emittance (εstart
⊥,N and εend

⊥,N). Cells 1-4, which use LH absorbers,
are highlighted in blue, while cells 5-9, using VH absorbers, are marked in red. The
evolution of longitudinal emittance will be illustrated in Fig. 5.25

growth caused by non-linear effects and longitudinal emittance in the absorber. For
the G4Beamline simulation, pillbox cavities with TM010 mode fields were used for the
phase rotating cavities. The technical specifications for these cavities are provided in
Table 5.6.

Beyond cooling cell 6, no other phase rotation systems were implemented. At this point,
the beam has very low energies and small transverse emittances. Implementing any form
of phase rotation would necessitate a long drift or additional RF gymnastics, elongating
the beamline and resulting in more muon decay. The extended bunch lengths would
require cavities with very low frequencies, which presents technical challenges. At this
stage, the non-linear effects are manageable. Hence, employing phase rotation at later
cooling stages becomes unnecessary.
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Cell Freq. [MHz] Cav. Num. Gap. len. [cm] Grad. [MVm−1]
1 300 6 15 12.0
2 200 6 15 7.5
3 140 6 15 6.0
4 60 4 20 8.8
5 55 3 15 2.8
6 20 1 10 4.0

Table 5.6.: Phase rotating cavities were necessitated up to cooling cell 6. The param-
eters for each cell, including frequency, number of cavities, accelerating gap length, and
field gradient, are presented in the accompanying table.

5.4.5 Preliminary design and optimization of the final cooling
channel

This study investigates a preliminary final cooling design aimed at reducing normal-
ized transverse emittance from 300 µm to 25 µm, achieving a final value of 27.2 µm with
muon transmission greater than 70%. The canonical angular momentum was adjusted
by using optimized absorber lengths and densities, enhancing beam focusing and cooling
efficiency. However, discrepancies in emittance reduction and muon losses in later cells
highlight areas for further refinement. Furthermore, the normalized longitudinal emit-
tance increased to 300mm, which requires further optimization to achieve the target of
70mm. A global optimization algorithm will be required to evaluate what are the best
initial solenoid, absorber and beam parameter to keep εL,N growth low, but this went
beyond the scope of this work.

In G4Beamline, the simulations utilized 104 µ+, saving the positions of the particle
phase space every 1mm. In this initial cooling arrangement, the field flips were utilized
to adjust the canonical angular momentum, which is altered as the beam traverses the
absorber. Figure 5.20 provides a summary of the magnetic field on the axis for the
beamline composed of 9 final cooling cells. The field flip was executed solely within a
single cell and did not span two successive cells. This is because the canonical angular
momentum should be completely adjusted after the second absorber of a cooling cell, in
order to archive maximum cooling efficiency in the consecutive cell.

Modifying the canonical angular momentum L is essential for improving the cooling
efficiency in a high-field solenoid that contains an absorber. Enhanced focusing effects
ensure greater cooling efficiency. They also improve the decoupling effects between
both transverse planes, which is significant for high luminosities in the collider. The
modification of L was executed through a precisely derived analytical selection of the two
absorber lengths. The absorbers’ density, temperature, and pressure were determined
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Figure 5.20.: This graph illustrates the magnetic field along the axis of nine final
cooling cells. The inversion of the magnetic field occurs exclusively within a single cell
and not between successive cells, to optimize the cooling efficiency in the cell and to
correct the decoupling between x and y planes.

to ensure that the beam windows are not subjected to excessive stresses as the beam
passes through.

The plot in Fig. 5.21 shows the dynamical evolution of the canonical angular momentum
in each cell analyzed by G4Beamline simulations. Beginning with L = 0, the two
absorbers within each cell, located in opposing field polarities, nearly return the beam
to zero. To achieve L = 0 after each cell, it is advisable to manually adjust the absorber
length. The reason for this is that the analytical expression in Eq. (5.7) offers merely
approximate solutions for the optimal length and density configurations of the hydrogen
absorber.

In the scenario depicted in Fig. 5.21, the beam was reset after each cell, which means
L = 0 at the beginning. The final cell in Fig. 5.21 exceeds the intended correction of
the canonical angular momentum, and the underlying cause of this deviation will be
analyzed in subsequent paragraphs.

It is imperative for a muon bunch to traverse a matched solenoid system of the final
cooling. In regions of high-field magnets, the symmetric cylinder beta function β⊥ must
reach a minimal and constant value. Furthermore, the correlation parameter α⊥ should
be zero within these regions to optimize cooling efficiency. Both independent beam
parameters of the final cooling channel are depicted in Fig. 5.22.

The objective of this preliminary final cooling design was to decrease the normalized
transverse emittance from 300 µm to 25 µm. The evolution of the normalized transverse
emittance ε⊥,N within the final cooling channel is illustrated in Fig. 5.23. The ultimate
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Figure 5.21.: The plot of a G4Beamline simulation illustrates the dynamical evolution
of canonical angular momentum, starting with L = 0 in each cell and showing how
absorbers in varying polarities nearly restore L to its initial state. Manual adjustment
of absorber lengths should be used to fine-tune L-corrections.
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Figure 5.22.: This graph illustrates the beam parameters within the final cooling lattice.
Efficient cooling requires a matched system with minimal cylinder symmetric betatron
function β⊥ and zero α⊥ in high-field regions.

emittance achieved was ε⊥,N = 27.2 µm, which might necessitate either adjustment of
the design or the addition of an extra cell. The table 5.5 provides the values of the initial
and final transverse emittance, εstart

⊥,N and εend
⊥,N, for each cell.

A slight discrepancy can be observed in cell 5 of Fig. 5.23, where the normalized
transverse emittance increases around 4 µm. According to investigations, the adiabatic
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matching technique provides a theoretically matched configuration in Cell 5. However,
G4Beamline simulations using macro-particle bunches might still show mismatches. To
mitigate this, one might consider redoing the matching with alternative initial beam
parameters or adjusting the matching coils using multiple reference particles.
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Figure 5.23.: The normalized transverse emittance ε⊥,N evolution highlights a reduction
target from 300 to 25 µm, achieving a final value of 27.2 µm. A notable increase in
emittance around Cell 5 suggests potential mismatches, prompting considerations for
design adjustments or additional optimization techniques.

Particle losses primarily occur due to muon decay, with occasional contributions from
magnetic-mirror effects that may cause muons to deflect backward. The dependency
of muon decay is correlated with the relativistic factor of muon γ. The survival rate
of muons is quantitatively described by transmission, which is defined as the ratio of
the actual number of muons in the bunch to the initial number of muons at the begin-
ning of the channel. It should also be noted that precise beam matching and aperture
examination contribute to reducing muon losses as well.

It is evident that transmission in LH-containing cells (1-4) does not decrease as signifi-
cantly as illustrated in Fig. 5.24. This phenomenon is attributable to the higher density
of LH, which facilitates the passage of muons with higher beam energies. In contrast,
in cells containing VH (cells 5-9), the muon energy must be reduced to decrease the
transverse emittance within the low-density vapor. A marked decrease in transmission
is observed starting at cell 5. In cell 9, efforts were made to increase the last absorber
to achieve the target emittance. However, unfortunately, this approach resulted in a
substantial loss of muons, causing the transmission increase observed in the final cell of
Fig. 5.24.
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Figure 5.24.: Muon transmission throughout the channel is mainly influenced by de-
cay, with higher transmission observed in LH-containing cells (1-4) due to their ability
to accommodate higher beam energies. Starting at cell 5, where VH is used to reduce
the transverse emittance, a marked decrease in transmission occurs, culminating in sig-
nificant losses in cell 9 due to adjustments aimed at achieving the target emittance.

Finally, the normalized longitudinal emittance εL,N will be addressed in the this para-
graph. The primary objective of this preliminary study was to achieve a 25% reduction
in normalized transverse emittance within each cell. This was accomplished without
exceeding the specified high-field solenoid length, including adjusted absorber densities.
Consequently, less emphasis was placed on the normalized longitudinal emittance. As
illustrated in Fig. 5.25, the final measured value is approximately 300mm, compared to
the target value of 70mm. This requires further investigation of an final cooling chan-
nel to align the longitudinal parameters with the target value. One potential approach
could involve lengthening the solenoids and initiating with higher energies in the cells,
including VH. An alternative proposition involves the utilization of high-pressure VH
absorbers featuring thick LiH windows. However, the optimal strategy remains to be
determined in future studies.

5.5 Cell to cell beam transfer and re-acceleration

In the earlier discussion, re-acceleration was omitted between the final cooling cells.
Rather, the beam was artificially adjusted to its optimal energy, energy distribution,
and optimal canonical angular momentum. In the following sections, an initial concept
for a potential acceleration structure is introduced. This encompasses various cavity
configurations operated under particular RF parameters. Subsequently, an examination
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Figure 5.25.: The normalized longitudinal emittance, with a final measured value of
approximately 300mm compared to the target of 70mm, highlights a need for fur-
ther optimization. Achieving alignment with target parameters may involve lengthening
solenoids, starting with higher cell energies, or refining the cooling channel design.

of the longitudinal phase space dynamics will be undertaken within these RF systems.

5.5.1 RF system components

Nevertheless, the final cooling design has only incorporated the phase rotating cavity
system. These cavities do not accelerate the reference particle, as the synchronized
reference phase of the electric sine wave is set at ψ = 0◦. The phase rotation intends
not only to suppress the longitudinal emittance increase within the absorber but also
mitigate non-linear increase in the transfer lines.

This section goes a step further and discusses a possible design of a re-accelerating
structure between two final cooling cells. For ease of explanation, this discussion focuses
on the connecting beamline between cell 1 and cell 2. Unlike previous studies [131, 132],
in this setup, the cavities are positioned outside the solenoids, which act as transport
and matching components. For its computational design, the cavity elements from
G4Beamline pillbox [78] were utilized. These cavities operate with the electromagnetic
field in the TM010 mode, where the positive slope of the field’s sine wave intersects at
ψ = 0◦.

Two cooling cells are designed with six cavity systems, as shown in Fig. 5.26. The system
labeled RF1 acts as a phase rotation system positioned after the initial absorber in the
first cell. Another phase rotation system, RF2, is situated following the second absorber
of the same cell. Both RF1 and RF2 systems serve to reduce the energy spread of the
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muon beam post-absorbers. The cavities of these systems are installed between the
matching coils, maintaining a separation of 5 cm. This gap was empirically determined
but may be fine-tuned in future cooling studies.
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Figure 5.26.: Depiction of a cooling system with six cavity configurations: RF1 and
RF2 serve as phase rotation systems located after the first and second absorbers in
the initial cell. RF3 incorporates pillbox cavities for beam acceleration. The bunch-
stretchers, part of RF4, are followed by the phase rotator in RF5. RF6, another phase
rotation system, is positioned after the primary absorber in the second cooling cell.

After RF2, the beam enters the system labeled RF3, which consists of pillbox cavities
configured for acceleration. This process boosts the beam’s kinetic energy from 60MeV
to 97MeV. Each acceleration gap within the RF3 cavities spans 20 cm, and the centers of
these cavities are spaced 50 cm apart. There are a total of 30 RF3 cavities, interspersed
with low-field transport solenoids that steer the beam toward the subsequent cooling
cell. Table 5.7 outlines all other crucial technical parameters of the cavity system.

As the beam undergoes acceleration, its energy spread widens. As the beam reference
energy rises, the bucket height grows, which will be detailed in Fig. 5.28. To reduce the
energy spread and optimize the cooling performance in the second cell, two solutions
are available. The first involves allowing the beam to drift within a long solenoid, where
the bunch length extends while the energy spread remains unchanged. Subsequently,
the beam is directed into a phase rotating system for an exchange between bunch length
and energy spread. However, this method requires a very long solenoid (∼ 10m), which
is detrimental to the transmission of the muon beam.
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System Freq. [MHz] Cav. Num. Gap. len. [cm] Grad. [MVm−1] Phase [deg]
RF1 300 6 12 12.0 0
RF2 300 3 12 12.0 0
RF3 200 30 13 13.0 32.4
RF4 300 6 15 15.0 180
RF5 200 6 12 12.0 0
RF6 200 6 7.5 7.5 0

Table 5.7.: Each cavity system, labeled RF1 to RF6, operates at a distinct RF fre-
quency. The Table outlines the number of cavities, the individual cavity’s accelerating
gap length, and the accelerating gradient applicable to each system. The phase for each
system indicates whether the operation is in rotation (0◦), stretching (180◦), or acceler-
ating mode (0 < ψ < 180◦) for the muon bunch.

An advanced approach involves the use of stretching cavities with a reference phase of
ψ = 180◦. The bunch-stretchers [147] belong to the RF4 system and are succeeded by
the phase rotator in the RF5 system. This set-up of stretchers and rotators minimizes
the beamline for energy spread adjustment by a few meters. The cavity parameters
for both RF4 and RF5 are detailed in 5.7. The goal is to provide an energy spread of
σE = 3.2MeV for the next cooling cell, as recommended by Tabel 5.5.

Finally, a phase-rotating system known as RF6 is positioned immediately after the
primary absorber of the second cooling cell. A similar system is also necessary after the
second absorber, which would be a possible RF7 system. However, this was no longer
considered because the primary focus was muon transport between two final cooling
cells. The evolution of kinetic energy EKin and σE is shown in Fig. 5.27.

The subsequent section will provide a detailed analysis of the behavior of the longitudinal
phase space within the RF systems. Particular attention will be paid to the evolution
of the bunch after RF2, during which the beam traverses the intermediate beam line
between the final cooling cells 1 and 2.

5.5.2 RF gymnastics between two cooling cells

This section will outline the evolution of the longitudinal phase space within RF systems,
with a particular focus on the transition from RF3 to RF5 cavity systems. The primary
objective is to modify the energy and energy spread of the muon bunch prior to its
transfer to the next cooling cell. Proper adjustments in the beam’s energy and energy
spread maximize the efficiency of ionization cooling.

After modifying the energy spread in RF2, the bunch proceeds to the RF3 system for re-
acceleration. The RF3 system is configured at a frequency of 200MHz, chosen because
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Figure 5.27.: The energy will be decreased in both the first cooling cell’s absorber and
in the two absorbers within the second cooling cell. Energy recovery occurs at RF3.
The energy spread is fine-tuned following the absorber in RF1, RF2, and RF6. To
achieve the ideal energy spread for the second cooling cell, RF4 and RF5 are designed
to modify this using the technique of bunch stretching followed by a phase rotation.

the area of the running buckets (0 < ψ < 180◦) is narrower than the stationary ones
(0◦). Muons located outside of the designated buckets experience phase de-focusing,
which results in longitudinal tails and potentially losses, and should be avoided. The ac-
celeration phase in RF3 is set to ψ = 32.4◦ in order to avoid emittance growth and beam
acceleration within a short distance. The longitudinal phase space distribution along
with its separatrix is illustrated in Fig. 5.28 left. The separatrix defines the boundary
of the region within the bucket in which the particles undergo phase focusing.

The muon bunch undergoes an energy increase of 36MeV over a span of less than 17m.
This process involves RF3-type pillbox cavities that alternate with transport solenoids.
The increase in energy during acceleration leads to a significant increase in the bucket
height, as shown in the right phase-space plot of Fig. 5.28, depicting the beam’s exit
from the RF3 system.

The height of the bucket depends on the beam’s reference energy, as detailed in Chapter
4. Consequently, this also results in a widening of the energy spread of the bunch form 3.5
to 4.0MeV, which must be adjusted afterward. For future studies, it is recommended to
improve the gymnastics RF within the RF3 section to help reduce the increase in energy
spread and to shorten the overall length of the system.

Following section RF3, the energy spread will be adjusted in RF4. The objective is to
refine the energy spread from 4.0 to 3.2MeV to optimize the cooling performance in the
following cell. A compact approach is to direct the beam through a bunch stretching
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Figure 5.28.: Illustration of the longitudinal phase space distribution and separatrix in
the RF3 system: The left plot shows the initial configuration at the acceleration phase
of ψ = 32.4◦, where the separatrix outlines the phase-focusing region within the bucket.
The right plot demonstrates the phase space at the exit of the RF3 system, highlighting
the increased bucket height and the widened energy spread following a 36MeV energy
gain over less than 17m.

cavity system by placing the reference particle at ψ = 180◦. The bunch is somehow
placed off-stationary, as illustrated in the left plot of Fig. 5.29. This image captures a
snapshot of the longitudinal phase space at the RF4 entry point.

RF4 is made up of six 300MHz pillbox cavities. These cavities extend the muon horizon-
tally and vertically in the Δt-ΔE phase space across a span of 3m. In Fig. 5.29, the right
panel displays a snapshot at the end of RF4. This snapshot illustrates the alignment of
the bunch with the contours of two adjacent stationary buckets. The energy distribution
increases from 3.9MeV at the beginning of RF4 to 8.6MeV at its conclusion.

From RF4 the bunch will guided into six 200MHz cavity systems which enhance the
system RF5. In this beamline, the energy spread will be reduced by increasing the
bunch length. The system decreases the energy spread from 8.6MeV to 3.2MeV, which
is the target value for the consecutive cooling cell. In Fig. 5.30, the diagram on the left
illustrates the evolution of the longitudinal phase space at the entrance of RF5, while
the evolution at the end of the system is shown on the right.
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Figure 5.29.: Depiction of the longitudinal phase space evolution in RF4: The left
plot shows the phase space at the RF4 entry, where the reference particle is positioned
off-stationary at a phase of 180◦. The right plot illustrates the phase space at the RF4
exit, where the beam aligns with the contours of two adjacent stationary buckets.

5.5.3 Evolution of the emittances in the re-acceleration chain

Fig. 5.31 shows the development of normalized transverse and longitudinal emittances,
ε⊥,N and εL, N. The final transverse emittance is 200 µm, although it could potentially
be reduced to 174 µm, compared to Table 5.5. As illustrated in Fig. 5.31, the increase of
ε⊥,N observed in the transfer line spanning cell 1 to cell 2 is attributed to mismatches.

Eight matching coils are installed between these cells, represented by the magenta sec-
tions between RF3 and RF5 in Fig. 5.26. This suggests that additional matchers could
be installed to maintain the transverse emittance constant.

The longitudinal emittance undergoes a slight increase, notably in RF3, which shows
both an upward and downward trend. Figure 5.31 illustrates that this emittance growth
is attributed to non-linear effects within the solenoid transport lines as well as the RF
systems. These RF systems further contribute to emittance expansion because of the
beam to a RF-bucket misalignment.

In summary, this example is at an initial stage, and further modifications are necessary.
However, unlike previous studies [131, 132], it represents the first attempt at longitudinal
beam gymnastics, which yields very encouraging results. Increasing the gradients in the
RF system would reduce the beamline length. However, this change would require higher
frequencies, which would result in greater mismatches and an increase in longitudinal
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Figure 5.30.: Illustration of the longitudinal phase space evolution in RF5: The left
diagram shows the phase space at the entrance of RF5, where the energy spread is
8.6MeV. The right diagram depicts the phase space at the system’s end, where the
energy spread is reduced to the target value of 3.2MeV.

emittance. This issue is complex and demands both time and technical innovation to op-
timize the re-acceleration process. Achieving the highest efficiency involves maintaining
constant emittance values, longitudinal and transverse, with minimal muon loss.

At this point, the chapter concludes with promising results. These results demonstrate
that final cooling, a bottleneck in muon collider technology, is feasible. This finding
bolsters the motivation for a further study of muon colliders. The acceleration of muons
within the final initial cooling cells has been demonstrated. In subsequent cells, the na-
ture of acceleration will differ due to the anticipated increase in longitudinal emittances
and bunch lengths. This aspect requires further investigation, as it extends beyond the
scope of this thesis.

5.6 Summary of an ionization cooling lattice design

Achieving effective ionization cooling in the final cooling channel requires the use of
extremely strong solenoid fields. The CERN high-field solenoid, which utilizes ReBCO
high-temperature superconductors, is capable of generating fields up to 40T while main-
taining a high quality of field uniformity. Due to the inclusion of long gas absorbers, the
lattice design requires a CERN-type solenoid with a maximum length of 1.2m.

136



Chapter 5. Beam dynamics study in a final cooling lattice design

0 10 20 30 40

s [m]

200

220

240

260

280

300

ε ⊥
,N

[µ
m
]

RF1 RF2 RF3 RF4 RF5 RF6

Cell 1

Cell 2
2

3

4

ε L
,N

[m
m
]

Figure 5.31.: Development of normalized transverse and longitudinal ε⊥,N and εL, N:
The transverse emittance shows a noticeable inconsistency between cooling cells 1 and 2,
achieving a final value of 200 µm, with potential reduction to 174 µm. This inconsistency
arises from the limited number of matching coils (eight). The growth in longitudinal
emittance results from nonlinear dynamics and mismatches occurring within the cavity
regions.

A key aspect of this study is the method of adiabatic ramping a single particle in
a solenoid-based beamline. This technique ensures optimal transverse conditions for
muon beam ionization cooling. This method of matching shifts the beam from low-field
solenoids to solenoids with fields that are gradually increased adiabatically, all while
keeping the matching conditions consistent. In addition to matching single particles,
the adiabatic ramping method is effective for macro-particle bunches within solenoid
beamlines that incorporate absorbers and RF systems, where the longitudinal momen-
tum of the beam is dynamically altered.

The chapter also investigates the impact of field flipping on the canonical angular mo-
mentum in a final cooling system. By reversing the solenoid field polarity, the canonical
angular momentum can be restored to its initial value. This action enhances cooling
efficiency and decouples the muon beam. Ultimately, these improvements contribute to
higher luminosity values for the collider.

Controlling energy spread is essential for mitigating longitudinal emittance growth.
Phase rotation, implemented using RF cavity systems, plays a critical role in adjusting
energy spread. Additionally, non-linear amplitude correlations in solenoids contribute to
further emittance growth. These contributions are predominantly observed at the ini-
tial phases of the final cooling channel, where the transverse emittance exhibits higher
values. Managing the energy spread through RF phase rotating systems at these early
stages is advantageous for controlling the growth of the longitudinal emittance.
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This study primarily addressed the installation of beam windows at the absorber in
the final cooling design. The beam windows play a critical role in containing hydrogen
within the absorbers and preventing it from leaking into the beam pipe vacuum. These
windows must be made from low-atomic number materials such as lithium hydride (LiH)
or ultra-thin materials such as silicon nitride (Si3N4) to minimize Coulomb scattering or
muon losses.

This chapter initially discussed the critical role of maintaining pressure regulations
within hydrogen absorbers to avert potential window damage and subsequent leakages.
As the muon beam passes, the absorber pressure increases, necessitating careful initial
hydrogen density calibration to maintain pressure control.

Due to a careful choice of hydrogen pressures and absorber windows, a preliminary
design and optimization of a final cooling channel was carried out. This design aimed
to reduce the normalized transverse emittance from 300 µm to 25 µm. The process
achieved a final value of 27.2 µm with muon transmission exceeding 70%. The process
of optimization entailed altering the canonical angular momentum L by modifying the
lengths and densities of the absorbers. The normalized longitudinal emittance increased
to 300mm, deviating from the target of 70mm, necessitating additional optimization.
Future improvements may include extending the solenoid lengths and initiating cooling
with higher beam energies.

A beam transfer with acceleration between the final cooling cells was presented. This
design suggested an alteration of the cavities and solenoid modules. The cavity systems
re-accelerate the beam between two cells and adjust the energy spread. During the
procedure, the evolution of both longitudinal and transverse emittance is examined,
underscoring the necessity for enhanced matching. Although some emittance growth is
observed, the system shows promising results in addressing the final cooling challenges.
This study marks an important step toward the feasibility of muon colliders, encouraging
further investigation into advanced beam dynamics in a final cooling channel.
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Conclusion

This work has presented high-precision Standard Model (SM) calculations, a contribut-
ing development of the advanced particle tracking software RF-Track, detailed solenoid
beam dynamics studies, and an optimization strategy for a final cooling cell, all aimed
at motivating and shaping the design of a final cooling stage for a muon collider. The
thesis introduces significant breakthroughs in six key areas:

• The prediction of measuring the lepton-parton distribution functions (LePDFs) in
muon colliders is another method for the precise examination of the SM.

• Developing and testing a novel semi-Gaussian deflection model for charged particle
scattering in materials for simulating relisting beam dynamics in ionization cooling.

• The first quantitative evaluation of hydrogen pressure throughout a final cooling
lattice, including mitigation strategies that preserve cooling performance, demon-
strates that acceptable operating conditions are achievable.

• The first analytical formulation of transverse emittance evolution in absorbers us-
ing an improved model, enabling accurate predictions of optimal beam parameters
in final cooling cells.

• Demonstrating the positive effect of magnetic field flips on beam dynamics, re-
sulting in a fully designed final cooling cell with matched optics and field-reversed
solenoids with the inclusion of lithium hydride (LiH) or silicon nitride (Si3N4) at
the hydrogen absorbers.

• Identification of non-linear longitudinal emittance growth in drift spaces and high-
field solenoids, along with initial mitigation strategies employing phase-rotating
cavities between field-flipped solenoids.

RF-Track offers a new method for simulating particle scattering in absorbers and solenoids,
achieving better alignment with experimental results and consistent deflection patterns,
even with small integration steps. These advancements are essential for RF-Track to
be reliably compared with standard simulation toolkits. The primary motivation for
upgrading RF-Track at CERN to simulate ionization cooling is its ability to model col-
lective effects. RF-Track will allow for the first systematic study of collective effects in
ionization cooling.
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This thesis also provides a comprehensive analysis of the beam dynamics within the final
cooling channel, incorporating realistic components that are often neglected in earlier
studies. These include thermodynamic modifications of hydrogen absorbers, implemen-
tation of thin-beam windows, realistic high-field solenoid models, and transverse-beam
entanglements. This work enables the evaluation of a complete lattice designs for the
final cooling, incorporating all critical effects. Without such realistic models, predicting
the performance of a muon collider and the corresponding technological requirements
for beam acceleration and steering would be impossible.

The muon collider is presented as a unique environment for precision SM measurements,
such as the determination of the triple-Higgs coupling. Chapter 2 analyzes lepton-parton
distribution functions (LePDFs), derived from SM principles, through the detection
of final-state photons in processes involving partonic muon and neutrino interactions.
Enhanced differential cross sections at small forward angles offer a means for high-
precision measurements of the neutrino LePDF in a muon collider setting. Furthermore,
the muon collider serves as a Higgs factory, predominantly producing Higgs bosons via
vector boson fusion (VBF). Although LePDF effects are included in the analysis, their
impact on the Higgs production cross section is shown to be negligible because of the
low exchange energies.

A critical focus of this thesis is the modeling of interactions relevant to ionization cooling,
including electronic energy losses, their fluctuations, and nuclear multiple Coulomb scat-
tering (MCS), all implemented within RF-Track. Benchmark comparisons with ICOOL
and G4Beamline show excellent agreement in energy loss simulations, with discrepan-
cies below 0.15%. The deflection of charged particles within materials is modeled using
a semi-Gaussian mixture distribution parameterized by the Bethe-Wentzel scattering
model, a novel approach developed in this work. This method is in strong agreement
with existing models, with relative errors below 8% in liquid hydrogen (LH) and LiH.
Moreover, RF-Track delivers even greater accuracy in scattering patterns for small inte-
gration steps compared to that of ICOOL, establishing RF-Track as a powerful tool for
ionization cooling research. However, further refinements are necessary in the energy-
straggling model to achieve even higher physical accuracy.

Chapter 4 validates the reliability of RF-Track to simulate particle motion in solenoids
by comparing the results with G4Beamline, which shows strong agreement despite slight
deviations at larger radial offsets. This chapter also introduces a refined analytical model
for ionization cooling, incorporating Bethe-Wentzel scattering into the transverse emit-
tance rate equation, which achieves better consistency with ICOOL simulations than
previous versions of the analytical cooling equation. Beyond minimizing transverse and
longitudinal emittances to maximize collider luminosity, an analytical framework was
developed to determine the optimal initial beam energy. Critical thermal challenges
within hydrogen absorbers were also addressed, highlighting the importance of optimiz-
ing their initial temperature, pressure, and density, an aspect that was overlooked in
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previous studies. Analytical estimates of radial heat transport in LiH windows indi-
cate that sufficient thermal dissipation keeps window temperatures below 37K during
operation.

Chapter 5 presents the design and analysis of an ideal final cooling cell. A major inno-
vation introduced here is the method of adiabatic ramping, a beam-matching technique
that allows for the smooth transition between solenoids of different strengths, prevent-
ing beta-beating, and thus avoiding emittance growth. This method enables precise
and efficient beam matching, which is essential for the lattice design of a final cooling
channel.

Furthermore, a systematic and novel final cooling cell design is proposed, which features
two high-field solenoids equipped with hydrogen absorbers. A key innovation is the
use of reversed field polarities between cells, which is crucial to nullifying canonical
angular momentum accumulation across multiple solenoids. Such a canonical angular
momentum degrades the cooling efficiency and induces beam coupling between both
transverse planes. The design also incorporates LiH and Si3N4 beam windows and
thermodynamically optimized hydrogen absorbers. For the first time, absorbers are
modeled as liquid or vapor based on thermodynamic conditions, preventing excessive
pressure increases after beam passage. Optimal parameters for initial pressure, density,
temperature, and absorber length were determined through analytical estimations using
CoolProp software simulations.

This work presents a preliminary design for a final cooling channel capable of reducing
the normalized transverse emittance from 300 µm to 25 µm with a transmission efficiency
exceeding 70%, a performance not previously achieved. Although the longitudinal emit-
tance exceeds the target value, improvements in the cooling rates per cell offer potential
for further optimization. Chapter 5 also demonstrates a method for transferring the
beam between two final cooling cells using a phase-rotating and re-accelerating cav-
ity system. The tracking simulations show promising results in preparing the beam’s
momentum and energy spread for successive cooling stages.

In summary, this thesis demonstrates the rich physics opportunities enabled by a muon
collider, ranging from probing the existence of LePDFs to precision Higgs studies. It also
highlights the critical importance of precise engineering and beam dynamics in achieving
the required emittance reductions. The advances made here lay the groundwork for the
realization of final cooling lattices. These advances include improved MCS modeling in
low-Z materials, optimized thermal management of hydrogen absorbers, beam window,
and adiabatic matching strategies in high-field solenoids. Continued refinement of these
techniques is expected to bring ionization cooling technologies closer to implementation,
thereby enabling the unprecedented precision of SM tests and opening pathways to
discoveries beyond it.
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Luminosity

A.1 Luminosity of muon colliders

To derive the expression for the luminosity of the muon collider L, two Gaussian-
distributed particle bunches are considered which cross at the interaction point (IP).
The particle density in each bunch is given by

ρi(x, y, s,±s0) = Ni, ρx,i(x), ρy,i(y), ρz,i(s± s0), (A.1)

where i = a,b and Ni is the number of particles per bunch. Assuming identical Gaussian
distributions for both beams:

ρu(x) =
1√
2πσu

exp

g
− u2

2σ2
u

n
, (A.2)

with u = x, y, z. The luminosity per bunch crossing is defined as

LLum = K

\
dt d3x ρaρb, (A.3)

with the kinematic factor

K = va + vb =

x
(v⃗a − v⃗b)2 − 1

c2
(v⃗a × v⃗b)2. (A.4)

For head-on collisions at relativistic speeds (|v⃗a| ≈ |v⃗b| ≈ c), this simplifies to K = 2c
[148], and with dt = ds0/c, the expression becomes

LLum = 2
NaNb

(2π)3σ2
xσ

2
yσ

2
s

\
dx dy ds e

− x2

σ2
x e

− y2

σ2
y e

− (s−s0)
2+(s+s0)

2

2σ2
s . (A.5)
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Evaluating the integrals yields

LLum =
N2

4πσxσy

, (A.6)

assuming Na = Nb = N and a symmetric beam (σx = σy = σ⊥).

Since the beam is accelerated to near-light speed (β ≈ 1), we substitute σ⊥ =
w

ϵ⊥,Nβ∗
⊥/γ

to obtain:
LLum =

N2γ

4πϵ⊥,Nβ∗
⊥
. (A.7)

In a circular circular collider of circumference C with a single interaction point and a
bunch repetition rate fr, the time between collisions is t = C/c. Including muon decay
(N(t) = N0e

−t/γτ0), the time-integrated luminosity becomes:

L =
γ2τ0c

2C

N2
0

4πϵ⊥,Nβ∗
⊥

(A.8)

A.2 Hourglass effect

The hourglass effect refers to the reduction in collider luminosity due to the finite length
of particle bunches and the variation of the beam’s transverse size near the IP. As a
bunch travels through the final focus region, the transverse beam size changes according
to the beta-function, which reaches a minimum at the collision point and increases
parabolically with distance from it as demonstrated in Fig. (A.1) left.

If the bunch length is comparable to or larger than the region over which the beam
remains tightly focused, only a fraction of the particles experience optimal overlap during
collision. This spatial mismatch leads to a decrease in the effective luminosity. The
hourglass effect is quantified by a correction factor Fh and the muon collider luminosity
scales to

LLum =
γ2τ0c

2C

N2
0

4π ε⊥,N β∗fr Fh (A.9)

The hourglass factor depends on the ratio of the IP beta function β∗ to the bunch length
σz. The ration (β∗/σz) versus the hourglass factor is illustrated as a graph on the right
side of Fig. (A.1).

A.3 Pinch effect

The pinch effect in collider physics refers to the mutual electromagnetic attraction be-
tween charged particle bundles that move in opposite directions during a collision, which
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Figure A.1.: Left: Visualization of the hourglass effect, where the transverse beam size
varies along the beam axis s. The minimum size occurs at the IP, and grows parabolically
away from it. This spatial variation, combined with the finite bunch length, leads to a
reduction in collider luminosity characterized by the hourglass factor, which depends on
the ratio β∗/σz, illustrated in the right plot.

can lead to dynamic focus of the beams. As two high-intensity bunches pass through
each other, the electromagnetic fields generated by one beam can compress or pinch
the other, reducing its transverse size and increasing the local particle density. In other
words, its an beam induced extra focusing effect.

This self-focusing enhances the overlap of the beams at the interaction point. It effec-
tively boosts the instantaneous luminosity beyond what would be expected from static
beam parameters alone. The strength of the pinch effect is characterized by the disrup-
tion parameter

D =
Nrµσz

γσ2
x

, (A.10)

which depends on the number charges in the bunch, the beam, and transverse beam size
[149]. The constant rµ is the muon radius. The muon collider luminosity expanses to

LLum =
γ2τ0c

2C

N2
0

4π ε⊥,N β∗fr FhHD (A.11)

with the enhancement factor

HD = 1 +D
1
4

D3

1 +D3
log

d√
D + 1

k
+ 2 log

g
0.8

β∗

σz

n
. (A.12)
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A.4 Luminosity summary

The luminosity was calculated based on the assumption of head-on collisions of particle
bunches exhibiting Gaussian distributions in the transverse phase space. The longitu-
dinal distribution of these particle bunches, along with the focusing effects induced by
the collider optics, alters the collision cross section. This alteration results in a reduc-
tion in luminosity. This modified cross-section exhibits a characteristic form known as
the hourglass effect. The mutual attraction of the charged collider bunches induces an
additional focusing effect. This effect is referred to as the pinch effect, which leads to
an increase in luminosity.
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Selected precession measurement
events

B.1 Extended derivation of the Lorentz invariant phase
space

In particle physics, the Lorentz invariant phase space (LIPS) provides a framework
for describing the kinematics of multi-particle systems in a way that is independent of
the reference frame. It ensures that calculations of physical observables, such as cross
sections and decay rates, remain consistent under Lorentz transformations.

B.1.1 d2Lips

The phase space volume element is constructed to be invariant by incorporating both
the momentum conservation delta function and the relativistically correct integration
measures over the final state momenta. Specifically, for a process that involves 2 final-
state particles with total momentum P = p1 + p2.

To derive the LIPS for a 2-particle final state, the general expression for the differential
phase space element for a final state of 2 particles is

d2Lips(P, p1, p2) = (2π)4δ(4)(P − p1 − p2)
d3p1

(2π)32p01

d3p2
(2π)32p02

(B.1)

The total energy is E2 = P 2 +M2 and in the frame, where P 2 = 0, the state momenta
are defined as p∗1 = −p∗2 = p and the center of mass energy (cm) is M =

√
s. The LIPS

in the cm frame yields then

d2Lips(P, p1, p2) = d2Lips(0, p,−p) =
1

(2π)2
δ(
√
s− E1 − E2)

d3p

2E12E2

(B.2)
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Switch to spherical coordinates for integrating over the angular part is d3p = p2dp dΩ =
p2dp sin(ϑ)dϑdϕ and taking the definition\

p̃

δ(f(p)) · g(p) dp = g(p̃)

����dfdp
����−1

p̃

, (B.3)

with the Dirac-Delta function δ. The LIPS for of 2 final state particles results to

d2Lips(P, p1, p2) =
1

(2π)2

\
p

4
√
s
dΩ =

1

(2π)2

\
λ1/2(s,m2

1,m
2
2)

8s
dΩ (B.4)

with the Källén function λ explained in detail in the next section.

B.1.2 Källén Function

The Källén function, also known as the triangle function, frequently arises in the kine-
matics of two-body decays and scattering processes. It provides a compact expression for
combinations of masses and invariant quantities and is particularly useful in calculating
momenta and phase-space factors.

Consider the decay of a particle with mass M into two daughter particles with masses
m1 and m2. In the rest frame of the parent particle, the energy of each daughter particle
satisfies the relativistic energy-momentum relation:

E2
i = m2

i + p2i , i = 1, 2,

where pi is the magnitude of the 3-momentum of the particle i.

The four-momenta of the system in the rest frame of the decaying particle are given
by:

P µ =

g
M

0⃗

n
, pµ1 =

g
E1

p⃗

n
, pµ2 =

g
E2

−p⃗

n
, (B.5)

where p⃗ is the momentum of particle 1 in the center-of-mass (CM) frame, and −p⃗ that
of particle 2, due to momentum conservation.

According to the kinematics in the CM frame, as illustrated in Fig. B.1, we have:

M =
√
s = E1 + E2,

0⃗ = p⃗1 + p⃗2.
(B.6)

From this it follows that p⃗∗1 = −p⃗∗2 = p⃗. Although the momenta are equal in magnitude
and opposite in direction, the energies depend on the respective masses and are generally
not equal.
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To compute the energies, we use the invariant-mass condition. Starting with:

m2
2 = (M − E1)

2 − p2,

and using E2
1 − p2 = m2

1, we find:

m2
2 = M2 − 2ME1 +m2

1,

which can be solved for E1 to yield:

E1 =
M2 +m2

1 −m2
2

2M
. (B.7)

Now, the magnitude of the momentum is obtained via:

p2 = E2
1 −m2

1

=
(M2 +m2

1 −m2
2)

2

4M2
−m2

1

=
M4 +m4

1 +m4
2 − 2M2m2

1 − 2M2m2
2 − 2m2

1m
2
2

4M2

=
λ(M2,m2

1,m
2
2)

4M2
,

(B.8)

where λ is the Källén function. Finally, for a general invariant mass
√
s of the decaying

system, the momentum of the decay products in the CM frame becomes:

p =

w
λ(s,m2

1,m
2
2)

2
√
s

. (B.9)

This result is fundamental in analyzing two-body decays, and the Källén function pro-
vides a concise way to express the dynamics of the available phase space.

P

p1

p2

Lab frame

p−p
M

Rest frame

Figure B.1.: Lorentz transformation from the lab frame to the rest frame.
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B.2 Average squared matrix element of µ−ν̄µ → γW−

The derivation of the average squared matrix element for process µ−ν̄µ → γW− will
be conducted at the parton level. This process is equivalent to µ+νµ → γW+. The
s-channel amplitude will be introduced initially, followed by the presentation of the
t-channel amplitude.

B.2.1 t-Channel

The t-channel is depicted in Fig. B.2 with a µ− as the exchanged particle. The matrix
element of the process shown in Fig. B.2, under the assumption of mµ ≈ 0, scales to

Mfi = ξ v(p2)
3
γν(1− γ5)

:
/qγ

µu(p1)ϵ
∗
µ(p3)ϵ

∗
ν(p4), (B.10)

with
ξ = − g e

2
√
2 t

, (B.11)

where e denotes the electrical charge, g represents the coupling constant of the W -boson,
and t = q = (p1−p3)

2 refers to the Mandelstam variable. In Eq. (B.10), the Dirac spinors
corresponding to the fermion and anti-fermion are designated as u and v, respectively,
while the spinor associated with the boson is indicated as ϵ. The Dirac gamma matrices
are represented by γµ, and the chiral matrix is defined as γ5 = iγ0γ1γ2γ3. Slashed
tensors are defined as /q = γµqµ.

The average squared matrix element is the product of Eq. (B.10) with its conjugation
M †

fi averaged by all possible initial spin states. Spin average spared matrix element is

�|M |2t
�
=
1

2

�
Spin

|MfiM
†
fi| =

ξ2

4

iiii
�
Spin

ϵ∗λ(p3)ϵµ(p3)!  � "
−gλµ

pppp
iiiii
�
Spin

ϵ∗σ(p4)ϵβ(p4)!  � "
−gσν+p4σp4ν/m2

W

ppppp

·

iiiii
�
Spin

u(p1)u(p1)!  � "
/p1

ppppp
f
γλ

/qγ
σ(1− γ5)

m
iiiii
�
Spin

v(p2)v(p2)!  � "
/p2

ppppp
f
γν
/qγ

µ(1− γ5)
m
.

(B.12)
The summation over the spinor in Eq. (B.12) can be summerized to matrices, where gαβ
is the metric tensor. The sum over the initial states can further solved with the trace
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formalism, leading to

�|M |2t
�
= −ξ2

g
gσν − p4σp4ν

m2
W

n
p1αqβp1γqδ Tr

f
γαγβγσγγγνγδ(1− γ5)

m
. (B.13)

By means of the trace rules, summarized in [7], the final result for the average squared
matrix element yields to

�|M |2� = g2 e2

2tm2
W

3
2m4

W − 2m2
W (s+ t) + st

:
. (B.14)

p1

µ−
p3
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νµ
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γ
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ν

Figure B.2.: Feynman diagram of the t-channel process of µ−ν̄µ → γW−.

B.2.2 s-Channel

The s-channel process is illustrated in the Feynman diagram on the left of Fig. B.3. The
triple gauge boson vertex necessary for the calculation is detailed in the right diagram
of Fig. B.3 and is sourced from H. Eberl’s lecture notes [49], which is

−ig

g
cosϑW , for Z0

sinϑW , for γ

n3
gσν(p4 + q)λ − gσλ(2p4 − q)ν − gνλ(2q − p4)

σ
:
. (B.15)

According to the Feynman rules, the matrix element Mfi for the process is written as:

−iMfi =v(p2)

4
− ig√

2
γµ1

2
(1− γ5)

;
u(p1)

−i (gµν − qµqν/m
2
W )

(q2 −m2
W )− imWΓW

· (−ig sinϑW )3
gσν(2p4 + p3)

λ − gσλ(p4 − p3)
ν − gνλ(2p3 + p4)

σ
: · ϵ∗λ(p3)ϵ∗σ(p4) (B.16)

The electric charge is articulated as e = g sinϑW , where ϑW denotes the Weinberg angle.
The mass and decay width of the W boson is represented as mW and ΓW . The matrix
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element simplifies when the muon mass is negligible1 to

Mfi = ξ·v(p2)
3
γµ(1− γ5)

:
u(p1)

3
gσµ(2p4 + p3)

λ − gσλ(p4 − p3)µ − gλµ(2p3 + p4)
σ
:
ϵ∗λ(p3)ϵ

∗
σ(p4),

(B.17)
with

ξ = − eg

2
√
2[(s−m2

W )− imWΓW ]
(B.18)

The average squared matrix element can be evaluated by the trace technique and is

�|M |2s
�
=

e2g2

2 [(s−m2
W )2 +m2

WΓ2
W ]

4
s(s2 + st+ t2)

m2
W

−m2
W (s− 5t)− 4s2 − 6st− 5t2

;
,

(B.19)
with the Mandelstam2 variable t and s = (p1 + p2)

2.

p1

p3p2

W−

p4

µ−

νµ

W−

γ

µ λ
σ

ν

−p3
p4

q
γ/Z0

W−

W+

λ

σ

ν

Figure B.3.: The left Feynman diagram illustrates the s-channel process of µ−ν̄µ →
γW−. The right diagram provides a more detailed summary of the kinematics associated
with the triple gauge vertex.

B.2.3 Interference term and total squared amplitude

The matrix element is also called the amplitude. In order to determine the total squared
amplitude of the process, it is necessary to evaluate the crossing term of the s- and t-
channel. This term is referred to as the interference term in the results ⟨|M |2⟩Int =

Re(MsM
†
t ). The total squared amplitude of the µ−ν̄µ → γW− process is ⟨|M |⟩ =

⟨|M |⟩s + ⟨|M |⟩t + 2 ⟨|M |⟩Int, derived by disregarding ΓW

⟨|M |⟩ = 2e2g2

t(s−m2
W )2

(m2
W − s− t)

3
m4

W − 2m2
W t+ s2 + 2t(s+ t)

:
. (B.20)

1Dirac equation: v(p2)(/p2 +mµ) = 0, (/p1 −mµ)u(p1) = 0, (/p1 −mµ)u(p1) = 0
2s+ t+ u = m2

W
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These findings can be compared with reference [150] and are identical.

B.3 Vector boson fusion cross sections

Vector boson fusion (VBF) studies offer a robust approach to understanding the struc-
ture of matter and testing the SM. VBF plays a crucial role in generating the Higgs boson
at muon colliders, which offer a cleaner environment compared to hadron colliders.

This section presents a comprehensive overview of the procedure for calculating the total
cross section of VBF. An emphasis will be placed on the Lorentz invariant phase space
for three particles, along with the derivation of the average squared matrix element using
Feynman rules.

B.3.1 Three body scattering kinematics

The Lorentz-invariant phase space (Lips) is essential when calculating cross sections and
decay rates in particle physics. For three final-state particles, the LIPS these particles
will be derived which can be applied for the calcuation of the total cross section of the
VBF in a muon colliders3.

The lip for three particles is written as d3Lips. Calculating d3Lips is need for determine
1 + 2 → 3 + 4 + 5 scattering processes, such as VBF. In W+W−-fusion, involving νµ, ν̄µ
and H, the process simplifies to two-body 1+2 → 3+4 scattering4. Neutrinos νµ and ν̄µ
are unified as a single virtual particle with mass m12 and momentum k⃗. The kinematics
of this interaction are shown in Fig. B.4. Incoming particles µ− and µ+ have momenta
p1 and p2, with a virtual outgoing particle k12 and a Higgs boson k3. The 4-momenta in
the cm frame are defined as

pµ1 =

ii
p
0

p sin(ϑ)
p cos(ϑ)

pp , pµ2 =

ii
p
0

−p sin(ϑ)
−p cos(ϑ)

pp , kµ
12 =

ii
E12

0
0
k

pp , kµ
3 =

ii
EH

0
0
−k

pp (B.21)

where p =
√
s
2

, EH =
w

m2
H + k2 and E12 =

w
m2

12 + k2. The outgoing momentum k can
be evaluated by the Källén function, summarized in Appendix B.1.2, and results to

k =
λ1/2 (s,m2

12,m
2
H)

2
√
s

(B.22)

3Equivalent to Higgs production via VBF in e+e− linear colliders.
4Also valid for Z0Z0-fusion.
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k12k3

p2

p1

ϑ

Figure B.4.: The kinematics of the three-body process have been reduced to a two-
scattering event. The momenta labeled as p1 and p2 correspond to the incoming muons,
whereas k12 represents that of a virtual particle, and k3 pertains to the Higgs boson.
This virtual particle is responsible for combining the two outgoing muon-neutrinos.

The artificially introduced virtual particles decay into νµ and ν̄µ. Within the rest frame
of this virtual particle, the neutrino’s 4-momenta are denoted as k∗

1 and k∗
2. In particular,

the rest frame of the virtual particle differs from the center-of-momentum frame of the
collision µ+µ−. The muon-neutrinos have equal spatial momentum values k∗. However,
this spatial momentum occurs with polar and azimuthal angles, given by ϑ∗ and ϕ∗,
respectively to the cm frame. The relevant kinematic details are depicted in Fig. B.5.

k12

k1

k2

ϕ∗
m12

k∗
1

k∗
2

ϑ∗

Figure B.5.: On the left side, within the cm frame, the virtual particle characterized by
momentum k12 undergoes a decay process resulting in the formation of a pair of muon-
neutrinos with momenta k1 and k2. The rest frame of this virtual particle is illustrated
in the right sketch, presenting the associated momentum definistions.

The four-momenta of the muon-neutrinos, as observed in the rest frame of the virtual
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particle and subsequently in the cm frame, are defined as

kµ
1
∗ =

ii
k∗

k∗ sin(ϑ∗) sin(ϕ∗)
k∗ sin(ϑ∗) cos(ϕ∗)

k∗ cos(ϑ∗)

pp , kµ
2
∗ =

ii
k∗

−k∗ sin(ϑ∗) sin(ϕ∗)
−k∗ sin(ϑ∗) cos(ϕ∗)

−k∗ cos(ϑ∗).

pp (B.23)

The determination of the spatial momentum within the rest frame of the virtual particle
is provided in

k∗ ≈ λ1/2 (m2
12, 0, 0)

2m12

=
m12

2
, (B.24)

under the assumption that both muon masses mνµ and mν̄µ are negligible. The essential
step involves performing a Lorentz transformation k∗

i = Λ−1ki of muon neutrinos into
the cm frame, as indicated by i = 1, 2. The inverse Lorentz boost matrix is derived as

Λ−1 =

ii
γ 0 0 γβ
0 1 0 0
0 0 1 0
βγ 0 0 γ

pp , (B.25)

utilizing the Lorentz factors γ = E12/m12 and β = k/E12. The muon-neutrinos’ mo-
menta in the cm frame results in

kµ
1 =

1

2

ii
E12 + k cosϑ∗

m12 sin(ϑ
∗) sin(ϕ∗)

m12 sin(ϑ
∗) cos(ϕ∗)

k + E12 cos(ϑ
∗)

pp , kµ
2 =

1

2

ii
E12 − k cosϑ∗

−m12 sin(ϑ
∗) sin(ϕ∗)

−m12 sin(ϑ
∗) cos(ϕ∗)

k − E12 cos(ϑ
∗)

pp (B.26)

B.3.2 Three body decay phase space

The d3Lips can be analytically evaluated through the convolution of two two-body
Lorentz-invariant phase spaces, denoted as d2Lips. One of these, d2Lips, corresponds
to the simplified VBF process illustrated in Fig. B.4, while the second pertains to the
decayed virtual particle depicted in Fig. B.5. The d3Lips is defined as

d3LIPS = (2π)4δ(4)(kµ − kµ
1 − kµ

2 − kµ
3 )

3r
i=1

d3ki
(2π)32Ei

=
1

(2π)5
δ(4)(pµ1 + pµ2 − kµ

3 − kµ
1 − kµ

2 )
d3k1 d

3k2 d
3k3

2E1 2E2 2E3

(B.27)
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with the total momentum of VBF process is kµ = pµ1+pµ2 = kµ
1 +kµ

2 +kµ
3 . The Dirac-delta

function is
] s

i δ(xi) dxi = 1 which results to the unity of\
δ(4)(kµ

12 − kµ
1 − kµ

2 ) dE12 d
3k = 1 (B.28)

Due to E12 dE12 = m12 dm12 of the virtual particle, the unity is reshaped to

2

\
δ(4)(kµ

12 − kµ
1 − kµ

2 )m12
dm12 d

3k12
2E12

= 1. (B.29)

This unity will be inserted into Eq. (B.27) resulting to

d3LIPS =
1

(2π)
2

\
m12 dm12

(2π)4

(2π)6
δ(4)(kµ − kµ

3 − kµ
12)

d3k d3k3
2E12 2E3

· (2π)
4

(2π)6
δ(4)(kµ

12 − kµ
1 − kµ

2 )
d3k1 d

3k2
2E1 2E2

(B.30)

As discussed in Appendix B.1.1, the equation above can be decomposed into two d2Lips

d3LIPS =
1

(2π)
2

\ √
s−mH

0

m12 dm12 d2LIPS(
√
s, k3, k12) d2LIPS(k, k1, k2) (B.31)

with the lower integration limit of mνµ + mν̄µ ≈ 0 and the upper limit as cm energy
reduced with the Higgs mass. The 2-body phase space expressions are

d2LIPS(
√
s, k3, k) =

1

(2π)2

\
dΩ

k

4
√
s
=

1

(2π)2
λ1/2 (s,m2

H ,m
2
12)

8s

\
dΩ

d2LIPS(k, k1, k2) =
1

(2π)2

\
dΩ∗ k∗

4m12

=
1

(2π)2
1

8

\
dΩ∗,

(B.32)

with dΩ = sin(ϑ) dϑ dϕ. Given that the Matrix element is independent of ϕ, the integral
can be solved without complication. Consequently, the d3Lips results in

d3LIPS =
1

(2π)4
1

16
√
s

\ 2π

0

dϕ∗
\ π

0

sin(ϑ∗) dϑ∗
\ π

0

sin(ϑ) dϑ

\ √
s−mH

0

m12 k dm12,

(B.33)
the final result of Lorentz invariant phase space of three final state particles.
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B.3.3 Amplitude of the W+W−-Fusion

In the upcoming section, an extensive elaboration of the squared amplitude (matrix
element) of the W+W− fusion will be conducted, employing the Feynman rule framework
and the trace technique [7]. Previously, the Feynman diagram depicting the W+W−

fusion was illustrated in Fig. 2.4 on the left. It should be noted that the invariant eigen-
product of each 4-momentum is zero due to the negligible particle masses relative to the
cm energy

√
s, with the exception of (kµ

3 )
2 = mH . The definition of the 4-momenta of

the W boson is according to Fig. 2.4 is defined as

qµ1 = (p1 − k1)
µ, qµ2 = (p2 − k2)

µ. (B.34)

The matrix element may be derived using the Feynman rules and results in

−iMfi =

4−ig√
2
u(k1)γ

µ1

2
(1− γ5)u(p1)

;
×
4−i (gµν − q1µq1ν/m

2
W )

q21 −m2
W

;
×

igνλ g mW ×
4−i (gλσ − q1λq1σ/m

2
W )

q21 −m2
W

;
×
4−ig√

2
v(p2)γ

σ 1

2
(1− γ5)v(k2)

;
.

(B.35)

Within this equation, one can identify two fermion currents, delineated as

Jµ
1 = ū(k1)γ

µ(1− γ5)u(p1), Jσ
2 = v̄(p2)γ

σ(1− γ5)v(k2). (B.36)

The interaction constants and associated denominator terms are encapsulated in

ξ =

g
g3

8

n
mW

(q21 −m2
W )(q22 −m2

W )
. (B.37)

Subsequently, the matrix element can be further simplified to

Mfi =ξ

Jµ
1 gµν gνλ gλσ J

σ
2!  � "

A

+
1

m4
W

Jµ
1 q1µq1ν · gνλ · q2λ q2σJσ

2!  � "
B

−

ξ

 1

m2
W

Jµ
1 gµν gνλ · q2λ q2σJσ

2!  � "
C

+
1

m2
W

Jµ
1 q1µ q1ν · gνλ gλσJσ

2!  � "
D

, (B.38)

yielding four distinct terms, namely A,B,C and D. The following procedure involves
the elimination of the metric tensors via the application of the Einstein summation
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convention to each term

A = Jµ
1 gµν gνλ gλσ!  � "

gµσ

Jσ
2 = Jµ

1 J2µ = (J1J2), C =
1

m2
W

(J1q2)(q2J2),

B =
1

m4
W

(J1q1) (q1q2)(q2J2), D =
1

m2
W

(J1q1)(q1J2),

(B.39)

where the Lorentz product is specified as aµbµ = (ab). The Dirac equation, described in
[/q −mµ]u = 0, assumes the muon and neutrino masses to be negligible, allowing for the
Dirac equation to be approximated as /qu ≈ 0. The Lorentz product of any current Ji
with a W-boson momentum qj, given i, j = 1, 2, yields

(Jiqj) = ū(ki)γ
µ(1− γ5)u(pi) · qj µ = ū(ki)[γ

µqj µu(pi)− γµγ5qj µu(pi)]

= ū(ki)[/qju(pi) + γ5
/qju(pi)] = 0,

(B.40)

whereby the terms B,C and D are reduced to zero. The squared amplitude is

|Mfi|2 = M †
fiMfi = ξ2(J†

2 · J†
1)(J1 · J2), (B.41)

with the hermitian conjugated currents

Jµ†
1 = ū(p1)γ

µ(1− γ5)u(k1), Jσ†
2 = v̄(k2)γ

σ(1− γ5)v(p2). (B.42)

The spin averaged matrix element is

⟨|M |2⟩ = 1

4

�
spins

|Mfi|2 = ξ

4

�
spins

[v̄(k2)]a
3
γν(1− γ5)

:
ab [v(p2)]b [ū(p1)]c

3
γν(1− γ5)

:
cd

[u(k1)]d [ū(k1)]e
3
γµ(1− γ5)

:
ef [u(p1)]f [v̄(p2)]g

3
γµ(1− γ5)

:
gh [v(k2)]h

(B.43)
The completeness relation is denoted as

�
spins u(p)ū(p) = /p+m and

�
spins v(p)v̄(p) =

/p − m. Assuming the muon and neutrino mass is negligible and reordering the terms
leads tod�

v(k2)v̄(k2)
k

ha

3
γν(1− γ5)

:
ab

d�
v(p2)v̄(p2)

k
bg

3
γµ(1− γ5)

:
ghd�

u(p1)ū(p1)
k

fc

3
γν(1− γ5)

:
cd

d�
u(k1)ū(k1)

k
de

3
γµ(1− γ5)

:
ef

(B.44)

The averaged squared amplitude contains two trace terms

⟨|Mfi|2⟩ = ξ

4
Tr

#
/k2γν(1− γ5)/p2γµ(1− γ5)

*
Tr

#
/p1γ

ν(1− γ5)/k1γ
µ(1− γ5)

*
. (B.45)
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An application demonstrating the resolution of the initial trace in the aforementioned
equation will be presented. The chirality operator rules are: (γ5)2 = 1, γµγ5 = −γ5γµ.
The formulation of the first trace in the equation is as follows:

Tr
#
/k2γν/p2γµ(1− γ5)2

*
= 2 k2,α p2,β Tr

%
γαγνγ

βγµ(1− γ5)
,
=

2 k2,α p2,β
f
Tr

%
γαγνγ

βγµ
,− Tr

%
γαγνγ

βγµγ
5
,m

=

2 k2,α p2,β
f
4
f
gαν g

β
µ − gαβgνµ + gαµg

β
ν

m− i4ϵαν
β
µ

m
=

8
f
k2,ν p2,µ − (k2 p2)gνµ + k2,µ p2,ν − i k2,α p2,β ϵ

α
ν
β
µ

m
.

(B.46)

A similar approach applied to the second term results in

Tr
#
/p1γ

ν(1− γ5)/k1γ
µ(1− γ5)

*
= 8

f
pν1 k

µ
1 − (p1 k1)gνµ + pµ1 k

ν
1 − i pλ1 k

σ
1 ϵ

λνσµ
m
. (B.47)

Moreover, the average matrix element gets the form of

⟨|M |2⟩ = 16ξ
f
2 (p1 k2)(p2 k1) + 2 (p1 p2)(k1 k2)− k2,α p2,β p

λ
1 k

σ
1 ϵ

λνσµ ϵαν
β
µ

m
. (B.48)

A detailed examination of the epsilon tensor product reveals that it manifests as a
product of Kronecker deltas

ϵλνσµ ϵαν
β
µ = δλνσµανβµ = δλσαβ = −2 (δλαδ

σ
β − δλβδ

σ
α), (B.49)

resulting in

⟨|M |2⟩ = m2
W g6

(p1k2) · (p2k1)
[2(p1k1) +m2

W ]
2
[2(p2k2) +m2

W ]
2 (B.50)

with the eigen-production of the boson momenta

q21 = (p1 − k1)
2 = −2 (p1k1),

q22 = (p2 − k2)
2 = −2 (p2k2).

(B.51)

The derivation for the production of a single Higgs boson via W+W− fusion is equally
applicable to the Z0Z0 fusion process.

B.3.4 Higgs strahlung contribution and its interference

Higgs strahlung refers to a production mechanism in which a Higgs boson is emitted
simultaneously with a Z0 boson, predominantly during fermion-anti-fermion collisions
at 240GeV <

√
s < 250GeV. For example, this mechanism is the predominant process

for Higgs production in the proposed e−e+ ring colliders [151, 152].
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Higgs strahlung has a minor role in multi-TeV muon colliders, yet it is worth mentioning.
The final state νµν̄µH is not produced solely by the process W+W−; Higgs strahlung
also contributes, as shown in the Feynman diagram in Fig. B.6 left, with Z0 decaying
into neutrinos. The production of the Higgs boson through Z0Z0 fusion, along with
the Higgs strahlung process resulting in final states of µ−, µ+, and H, is illustrated in
Fig. B.6 right.

k2

p2

Z0

Z0

k1
p1

νµ

ν̄µ
µ+

µ−
H

k2

p2

Z0

Z0

k1
p1

µ−

µ+

µ+

µ−
H

Figure B.6.: The contribution of Higgs strahlung with a final state consisting of a
neutrino pair (left) and a muon pair (right).

The amplitude of the left process depicted in Fig. B.6 is given by

HZ→νν̄H

Mfi = ξ2
3
ū(k1)γ

µ(1− γ5)v(k2)
: · 3v̄(p2)γν(cV − cA γ5)u(p1)

:
, (B.52)

with the vector- and axial vector coupling, cV and cA, of the muon to Z0. In Eq. (B.52),

ξ2 =
g′3

8

mZ

(q̃21 −m2
Z)(q̃

2
2 −m2

Z)
(B.53)

where g′ is the coupling constant and mZ the mass of the Z0 boson. The intermediate
momenta fulfill the kinematics q̃21 = s and q̃µ2 equals kµ

12 in Eq. (B.21). The decay rate
of the Z0 boson is denoted as ΓZ . Executing the squared sum of Eq. (B.52) follows to

HZ→νν̄H

⟨|M |2⟩ = g′6m2
Z (m2

12 −m2
Z)

2 (cA − cV )
2(p1k1)(p2k2) + (cA + cV )

2(p1k2)(p2k1)

4(s−m2
Z)

2 [(m2
12 −m2

Z)
2 +m2

ZΓ
2
Z ]

2 (B.54)

For an exhaustive computation of Eq. (B.52) and Eq. (B.54), the mathematical methods
outlined in the preceding section can be utilized.

For the total cross section of the scattering process of µ−µ+ → W−W+ → νµν̄µH, the
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total average and square amplitude has to be evaluated first which is

νν̄H

⟨|M |2⟩ =
����WW→νν̄H

Mfi +
HZ→νν̄H

Mfi

���2�
=

WW→νν̄H

⟨|M |2⟩ +
HZ→νν̄H

⟨|M |2⟩ + 2
Interference

⟨|M |2⟩
(B.55)

where
νν̄H

⟨|M |2⟩ is equal to Eq. (B.50) and the interference term is defined as

Interference

⟨|M |2⟩ = Re
g

WW→νν̄H

Mfi ·
HZ→νν̄H

M †
fi

n
. (B.56)

B.3.5 Higgs rate in different collider types

In the following, Table B.1 compares the muon collider as a Higgs factory with other
future lepton collider concepts. Depending on the collider type and operation energy,
Higgs particles are generated by different leading processes.

Leading σtot LLum × 1034 Higgs Rate 1
Rate

Linear colliders process [fb] [cm−2s−1] [s−1]
CLIC 1.5TeV W−W+ 309.7 3.7 0.012 1.5min
CLIC 3TeV W−W+ 496.6 5.9 0.029 34.1 s
ILC 250GeV HZ0 242.9 1.5 0.004 3.5min
ILC 1TeV W−W+ 210.3 4.9 0.010 41.1 s

e+e− ring colliders
FCC-ee 240GeV HZ0 242.7 8.5 0.021 48.4 s
CEPC 240GeV HZ0 242.7 8.3 0.020 49.7 s
LEP3 240GeV HZ0 242.7 1.0 0.002 6.9min

µ-colliders
µ-collider 3TeV W−W+ 496.6 2.0 0.010 1.6min
µ-collider 10TeV W−W+ 845.1 21.5 0.182 5.5 s

Table B.1.: An overview of lepton collider concepts as Higgs factories is presented.
At lower energies, Higgs strahlung dominates, while at higher energies, W−W+ fusion
acts as the leading process. The 3TeV muon collider is comparable to linear colliders,
whereas the 10TeV machine produces a Higgs every 5 s, an order of magnitude faster
than other concepts.

Within the low energy spectrum (240GeV-250GeV), the prevalence of Higgs strahlung

161



Appendix B. Selected precession measurement events

as the dominant mechanism is observed. For collider systems operating within the TeV
energy range, such as muon colliders, W−W+ predominantly facilitates the production
of Higgs particles. A 3TeV muon collider is compatible with the linear collider as shown
in Table B.1. A muon collider operating at 10TeV has the potential to produce a
significantly high event rate, generating a Higgs every 5 s. This performance surpasses
that of other lepton collider concepts, making it a key motivation for ongoing research
and development efforts within the muon collider study [25].
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Specific calculations relevant for
ionization cooling

C.1 From Maxwell’s equations to the magnetic field of
a finite current sheet

The analytical model for describing realistic solenoids can be derived from Maxwell’s
equations. In the following a brief overview of these equations will be discussed.

C.1.1 Maxwell equation

Charges and currents are responsible for creating electromagnetic fields that influence
the space around them. In 1864, James Clerk Maxwell combined these processes into
four differential equations, now famously known as Maxwell’s equations. They explain
the link between the electric field E⃗(x⃗, t) and the magnetic field B⃗(x⃗, t), and also their
connection to their generating sources through variables of time t and position x⃗. The
fields carry energy and momentum and exert influence over charges and currents on the
basis of their location. Presented below is a concise summary of Maxwell’s equations in
a vacuum.

Gauss’s law is illustrated by the first equation, indicating that the divergence of the
electric field is directly related to the charge density ϱ(x⃗, t):

∇ · E⃗(x⃗, t) =
ϱ(x⃗, t)

ε0
. (C.1)

In this context, ∇ denotes the vector differential operator, while ε0 represents the vacuum
permittivity. The second equation, referred to as Gauss’s law for magnetism, states that
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magnetic monopoles do not exist, or if they do, they have yet to be found. Consequently,
the magnetic field B⃗(x⃗, t) invariably creates closed loops:

∇ · B⃗(x⃗, t) = 0. (C.2)

The third Maxwell equation, referred to as Faraday’s law of electromagnetic induction,
articulates that a temporally varying magnetic field generates a circulating electric field.
In essence, temporal alterations in the magnetic field engender a rotational or "curl"
configuration within the electric field.

∇× E⃗(x⃗, t) = −∂B⃗(x⃗, t)

∂t
. (C.3)

The Ampère-Maxwell law is an essential equation illustrating that a magnetic field with
a curl arises from both electric currents and changing electric fields. This law conser-
vatively extends Maxwell’s equations by incorporating the displacement current, crucial
for describing electromagnetic waves:

∇× B⃗(x⃗, t) = µ0J⃗(x⃗, t) + µ0ε0
∂E⃗(x⃗, t)

∂t
. (C.4)

In Eq. (C.4), µ0 refers to the vacuum permeability, while J(x⃗, t) represents the current
density. According to the third Maxwell equation, ∇ · B⃗ = 0, the magnetic field B⃗ can
be mathematically be expressed as the curl of a vector potential, which is given by

B⃗(x⃗, t) = ∇× A⃗(x⃗, t). (C.5)

C.1.2 Current sheet model derivation

This section aims to analytically derive the axial and radial components of the field both
inside and outside a finite solenoid. A solenoid is a coiled wire, typically cylindrical,
which generates a magnetic field when an electric current passes through it. To analyze
the magnetic field of a solenoid, one begins by examining the field created by a single
current-carrying loop. Given the cylindrical symmetry of a solenoid, it is advantageous
to perform additional calculations in cylindrical coordinates x⃗ = (ϱ ϕ z)⊤.

A given point P is exposed to a magnetic field generated by a loop carrying a current
density J⃗ positioned in the (x, y)-plane, as depicted in the diagram to the left in Fig. C.1.
At a point Q within this loop, the separation PQ can be determined using trigonometric
methods as |x⃗− x⃗ ′| =

w
z′2 + ϱ2 + r2 − 2ϱr cosϕ. This derivation is sourced from [153].

The solenoid is constructed by integrating the contributions from numerous identical
coaxial loops, evenly distributed along its length L. For simplification purposes, these
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y

I

L

r

Figure C.1.: Left: Distance |x⃗− x⃗ ′| between a point Q on a wire loop of radius r and
point P . Right: Multiple coils can be simplified as a single current sheet of length L.

loops can be represented as an infinitesimally thin conductive current sheet, illustrated
on the right in Fig. C.1. The surface current density of this cylindrical sheet is expressed
as

J =
I

L
δ(r − ϱ′) cosϕ. (C.6)

In Eq. (C.6), r denotes the radius of the sheet, and δ represents the Dirac-Delta function.
The vector potential for this cylindrical current sheet can be determined using Eq. (C.5)
with the functional determinant d3x′ = ϱ′dϱ′ dϕ dz′ and is expressed as

Aϕ =
µ0

4π

I

L

\ L/2

−L/2

dz′
\ 2π

0

dϕ

\ ∞

0

dϱ′
ϱ′ δ(r − ϱ′) cosϕw

ϱ2 + ϱ′2 + (z − z′)2 − 2ϱ′ϱ cosϕ
. (C.7)

By performing the integration over ϱ′, the δ vanishes, and substituting ζ = z − z′, we
obtain

Aϕ =
µ0Ir

2πL

\ ζ+

ζ−
dζ

\ π

0

dϕ
cosϕw

ϱ2 + r2 + ζ2 − 2rϱ cosϕ
, (C.8)

where the integration bounds are defined as ζ− = z−L/2 and ζ+ = z+L/2. Proceeding
with the evaluation of the double integral, we have\ ζ+

ζ−
dζ

\ π

0

dϕ
cosϕw

ϱ2 + r2 + ζ2 − 2rϱ cosϕ
=

\ π

0

dϕ cosϕ [ln (ζ + α(ζ))]
ζ+
ζ− ,

where α(ζ) =
w

ϱ2 + r2 + ζ2 − 2rϱ cosϕ.

(C.9)

Next step, the integral of the angle ϕ will be executed where the in partial integration
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is performed

Aϕ =
µ0

2π

I r

L

4
✭✭✭✭✭✭✭✭✭✭✭✭3
sinϕ ln (ζ + α(ζ))

:π
0
−
\ π

0

dϕ sinϕ ln (ζ + α(ζ))

;ζ+
ζ−
. (C.10)

The initial term of Eq. (C.10) is nullified owing to the inherent asymmetry of the sine
function, whereas the subsequent term may be simplified through the application of a
mathematical technique as described in [154]. Consequently, the vector potential adjusts
to

Aϕ =
µ0

2π

ϱ I r2

L

4
ζ

\ π

0

sin2 ϕdϕ

(r2 + ϱ2 − 2rϱ cosϕ)
w
r2 + ϱ2 + ζ2 − 2rϱ cosϕ

;ζ+
ζ−
. (C.11)

By implementing the substitution of ϕ = 2ϑ, the form of the integral becomes\ π

0

sin2 ϕdϕ

(r2 + ϱ2 − 2rϱ cosϕ)
w

r2 + ϱ2 + ζ2 − 2rϱ cosϕ

=

\ π
2

0

8
f
sin2 ϑ− sin4 ϑ

m
dϑ3

(ϱ+ r)2 − 4rϱ sin2 ϑ
:u

(ϱ+ r)2 + ζ2 − 4rϱ sin2 ϑ
.

(C.12)

At this juncture, the new variables will be introduced

k2 =
4ϱ r

(ϱ+ r)2
,

h2 =
4ϱ r

(ϱ+ r)2 + ζ2
,

(C.13)

with the result that the integral in Eq. (C.12) is simplified to

h2k√
rϱ 3

\ π
2

0

8
f
sin2 ϑ− sin4 ϑ

m
dϑf

1− h2 sin2 ϑ
mw

1− k2 sin2 ϑ
, (C.14)

which can be resolved using complete elliptical integrals. In the context of elliptic
integrals, “complet” refers to evaluating the integral over the full range of the independent
variable, typically from 0 to π/2. Complete elliptic integrals are special functions that
arise in the study of the arc length of ellipses and other problems in mathematical
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physics. They are categorized into three types of complete elliptic integrals:

First kind: K(k2) =

\ π
2

0

dϑw
1− k2 sin2 ϑ

,

Second kind: E(k2) =

\ π
2

0

w
1− k2 sin2 ϑ dϑ,

Third kind: Π(h2, k2) =

\ π
2

0

dϑf
1− h2 sin2 ϑ

mw
1− k2 sin2 ϑ

.

(C.15)

Improved numerical calculations of these integrals are documented in [59, 155].

Aϕ =
µ0I

2πL

x
r

ϱ

4
ζ k

g
K(k2)

h2 + k2 − h2k2

h2k2
− E(k2)

1

k2
+

h2 − 1

h2
Π(h2, k2)

n;ζ+
ζ−

(C.16)

which full derivation is over viewed in appendix C.1.2. Curl in cylinder coordinates

∇× F⃗ =

i 1
r
∂Fz

∂ϕ
− ∂Fϕ

∂z
∂Fr

∂z
− ∂Fz

∂r
1
r
∂(r Fr)

∂r
− 1

r
∂Fr

∂ϕ

p (C.17)

follows to
Bϱ = −∂Aϕ

∂ζ
, Bϕ = 0, Bz =

1

ϱ

∂

∂ϱ
(ϱAϕ) (C.18)

Evaluating the derivatives of elliptical integrals with respect to ζ and ϱ is not a simple
task, yet these can be readily found in literature.

Bϱ =
µ0I

2πL

x
r

ϱ

4
k2 − 2

k
K(k2) +

2

k
E(k2)

;ζ+
ζ−

(C.19)

Special attention is required when ϱ = 0 in Eq. (C.19), resulting in Bϱ = 0. Furthermore,
when ϱ = r and z = ±L/2, the radial B field vanishes, indicating the edges of the sheet.

Bz =
µ0I

4πL

1√
rϱ

4
ζ k

g
K(k2) +

ϱ− r

r + ϱ
Π(h2, k2)

n;ζ+
ζ−

(C.20)

According to Eq. (C.20), the axial field components are zero when r = ϱ. Field maps
for both axial and radial components are depicted in Fig. C.2. When ϱ = 0, Eq. (C.20)
reduces to the on-axis longitudinal field:

Bz(ϱ = 0) =
µ0I

2L

g
z + L/2w

r2 + (z + L/2)2
− z − L/2w

r2 + (z − L/2)2

n
(C.21)
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In the finite current sheet model, it was presumed that the sheet had an infinitesimally
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Figure C.2.: The maps illustrate the spatial distribution of both radial (left) and axial
(right) field components.

small size. As illustrated in Fig. C.3, the field lines curl around the sheet, and the total
magnetic field’s intensity amplifies as it approaches the symmetry axis within the current
sheet.
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Figure C.3.: Magnetic field lines curling around the finite current sheet, with the total
magnetic field intensity increasing toward the symmetry axis.
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C.2 Hamiltonian of solenoids

The Hamiltonian for a particle carrying charge q within a relativistic framework is de-
lineated in the context of an electromagnetic field. It is denoted as

H(x, px, y, py, s, ps; t) =

x
c2
d
P⃗ − e

c
A⃗
k2

+m2
0c

4 + eΦ, (C.22)

where Φ represents the electric field potential and A⃗ signifies the vector potential from
the magnetic field. The canonical momentum is defined as

P⃗ = mv⃗ + eA⃗ = βγm0c+ eA⃗, (C.23)

where m0 is the mass of the particle in its rest frame. Eq. (C.23) differs from the kinetic
momentum mv⃗. As stated in Wolski’s textbook [117], a series of transformations are
performed on Eq. (C.22), which will be subsequently listed:

• Change the independent time variable t to the spatial variable s.

• Express the longitudinal coordinates of time as

z =
s

β
− ct, δ̃ =

E

cβ
− 1

β
. (C.24)

• Scaling Eq. (C.22) by applying the paraxial approximation

H̃ =
H

p0
, a⃗ =

e

p0
A⃗, p̃x,y =

Px,y

p0
=

px,y + eAx,y

p0
. (C.25)

The Hamiltonian subsequently assumes the form

H̃(x, p̃x, y, p̃y, z, δ̃; s) =
δ̃

β
−

vg
δ̃ +

1

β

n2

− (p̃x − ax)2 − (p̃y − ay)2 − 1

β2γ2
. (C.26)

The Hamiltonian of Eq. (C.26) is non-linear. The paraxial approximation p̃x,y ≪ 1
allows the construction of the linearized version of Eq. (C.26). Considering the field of
a simplified solenoid with only a longitudinal and static component B⃗ = (0, 0, B0)

⊤,
the Eq. (4.1) simplifies in Cartesian coordinate to

A⃗ =
f−B0

2
y, B0

2
x, 0

m⊤
. (C.27)
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Substituting Eq. (C.27) into Eq. (C.26) and linearize it yields to the second order Hamil-
tonian

H̃2 =
p2x
2

+
p2y
2

+
δ2

2β2γ2
+

κ2x2

2
+

κ2y2

2
− κ(xpy + ypx), (C.28)

where kappa is κ = cB0/2p0.

C.3 Normalized transverse emittance rate equation

The derivative of the normalized emittance in the transverse space with respect to the
reference orbit s results in two terms

d

ds
ε⊥,N = ε⊥

d(βγ)

ds
+ βγ

dε⊥
ds

. (C.29)

The first term in Eq. (C.29) involves the derivative of the Lorentz factors, expressed
using relativistic kinematics

d(βγ)

ds
=

1

mc2
d(pc)

ds
=

1

mc2
d

ds

√
E2 −m2c4 =

1

β ·mc2
dE

ds
. (C.30)

The change of the beam energy follows the Bethe formula in Eq. (3.17). The second
term is

dε⊥
ds

=
d

ds

√
detΣ =

1

2ε⊥

g
σ2
x′
dσ2

x

ds
+ σ2

x

dσ2
x′

ds
− 2σxx′

dσxx′

ds

n
. (C.31)

The assumptions include the beam in an absorber within a solenoid with a strong,
homogeneous magnetic field along the longitudinal direction. The beam is matched
with the machine ellipse of the solenoid, which nullifies σxx′ and dσ2

x/ds. Therefore, the
remaining term in Eq. (C.31) is the change in transverse angular distribution, where σ2

x′

represents small angle deflections of the muon caused by Coulomb scattering. Finally,
the cooling equation results in

dε⊥,N

ds
= −ε⊥,N

Eβ2

�
∂E

∂s

�
+ βγ

β⊥
2

dσ2
x′

ds
. (C.32)
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