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Kurzfassung

Diese Arbeit entwickelt einen computergestützten Rahmen zur
Verbesserung der automatisierten Demontage von batteriebetriebenem
kleinem Elektro- und Elektronik-Altgeräten (bp-sWEEE). Unter
Nutzung von Web Scraping und der UNU-KEYS-Taxonomie
etabliert die Forschung eine Prozesskette zur Erfassung, Klassi-
fizierung und Validierung von Röntgenbildern bp-sWEEE-Geräte.
Die Studie adressiert zentrale Herausforderungen der robotergestützten
Demontage, darunter Gerätevariabilität, Sicherheitsrisiken und
Designinkonsistenzen. Sie bewertet technologische Fortschritte
in maschinellem Sehen und adaptiver Robotik und identifiziert
kritische Barrieren sowie Erfolgsfaktoren für skalierbare Auto-
mation. Ein kuratierter Datensatz von Röntgenbildern wird
zusammengestellt und rigoros validiert, wodurch die Machbarkeit
automatisierter Klassifizierungssysteme demonstriert wird. Die
Arbeit unterstreicht die Notwendigkeit standardisierter Metad-
atenschemata und kooperativer Industrie-Hochschul-Anstrengungen
zur Förderung kreislaufwirtschaftlicher Praktiken im Elektroschrott-
Recycling.

Keywords: e-waste recycling, UNU-KEYS, bp-sWEEE, Web scrap-
ing, Automation, Automated disassembly.



Abstract

This thesis develops a computational framework to enhance the
automated disassembly of battery-powered small waste electrical
and electronic equipment (bp-sWEEE). Leveraging web scrap-
ing and the UNU-KEYS taxonomy, the research establishes a
pipeline for acquiring, classifying, and validating X-ray images
of bp-sWEEE devices. The study addresses key challenges in
robotic disassembly, including device variability, safety risks,
and design inconsistencies. It evaluates technological advance-
ments in machine vision and adaptive robotics while identify-
ing critical barriers and enablers for scalable automation. A
curated dataset of X-ray images is compiled and rigorously val-
idated, demonstrating the feasibility of automated classification
systems. The work underscores the need for standardized metadata
schemas and collaborative industry academia efforts to advance
circular economy practices in e-waste recycling.

Keywords: e-waste recycling, UNU-KEYS, bp-sWEEE, Web scrap-
ing, Automation, Automated disassembly.
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1 Introduction

1.1 Background and Motivation

The exponential growth of battery-powered small waste electrical and elec-
tronic equipment (bp-sWEEE), including smartphones, wireless earbuds, and
wearable devices, has become a critical environmental and economic challenge.
Globally, over 53 million metric tons of e-waste were generated in 2023, with
bp-sWEEE accounting for 30% of this volume due to short product lifecycles
and rapid technological obsolescence [1]. These devices contain valuable ma-
terials such as cobalt, lithium, and rare earth metals, yet less than 20 % are
recycled due to inefficiencies in disassembly processes [2].

Automated disassembly is pivotal for enabling circular economy practices, as
manual disassembly is labor-intensive, costly, and hazardous. For instance,
lithium-ion batteries integrated into 90% of bp-sWEEE pose significant fire
and explosion risks during manual handling due to thermal runaway, releasing
toxic gases such as hydrogen fluoride [3]. Furthermore, the high variability
in design (e.g., proprietary screws, adhesives, and nonmodular structures)
complicates the development of universal automated systems, perpetuating
the reliance on unsustainable shredding methods that degrade material quality
[4].

The European Union’s Circular Economy Action Plan and the WEEE Direct-
ive emphasize the urgent need for scalable, automated recycling solutions to
meet 2030 sustainability targets [5]. However, current research disproportion-
ately focuses on large appliances (e.g., washing machines), leaving bp-sWEEE
a fast-growing waste stream understudied [6]. This gap hinders progress to-
ward efficient material recovery and underscores the necessity of this research.
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1 Introduction

1.2 Problem Statement

The automation of disassembly processes for bp-sWEEE is impeded by three
interrelated challenges:

• High Device Variability and Uncertainty:
The lack of standardized design principles across manufacturers res-
ults in diverse connection elements (e.g., Torx, Phillips, and Pentalobe
screws; epoxy adhesives; snap-fit clips). For example, a teardown ana-
lysis of 50 smartphones revealed 12 distinct screw types and 8 adhes-
ive patterns, necessitating adaptive robotic systems [7]. This variabil-
ity complicates pre-programmed automation and increases operational
costs.

• Unknown Internal Structures:
Prior to disassembly, internal connection elements and battery place-
ments are often undocumented, requiring real-time detection systems.
Current technologies, such as X-ray imaging, achieve only 75% accuracy
in identifying internal screws, delaying workflows [8].

• Safety and Economic Barriers:
Lithium-ion batteries, present in 90% of bp-sWEEE, pose fire hazards if
damaged during disassembly. A study documented incidents of thermal
runaway in recycling facilities, causing equipment damage and worker
injuries [9]. Additionally, the upfront cost of robotic disassembly systems
(e.g., $ 500,000 for a modular robotic cell) limits adoption among small-
scale recyclers [10].

Existing classification systems, such as UNU-KEYS, prioritize functional cat-
egories (e.g., “personal care devices”) over disassembly-oriented criteria, fur-
ther hindering automation efforts [11].
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1 Introduction

1.3 Research Objectives and Questions

This thesis establishes a computational framework to acquire, classify, and
evaluate X-ray images of battery-powered small waste electrical and elec-
tronic equipment (bp-sWEEE) through automated web scraping, UNU-KEYS
classification, and quality validation protocols. The objectives and research
questions are structured as follows:

1.3.1 Research Objectives:

• Map the current state of automated screw opening technologies and their
limitations.

• Create a dataset of X-ray images representing diverse bp-sWEEE device
categories through automated web scraping.

• Develop a metadata schema to classify scraped images by UNU-Keys

1.3.2 Research Questions:

• RQ1: What are the technological advancements and limitations in auto-
mated screw opening for bp-sWEEE?

• RQ2: What are the key barriers (e.g., device variability, battery hazards)
and enablers (e.g., modular design) for automating screw opening?

• RQ3: What criteria ensure the relevance and quality of X-ray images
for analyzing connection elements?

• RQ4: What critical and supplementary metadata are essential for op-
timizing automated disassembly processes for bp-sWEEE?

This study employs a three-phase mixed-methods design to address the re-
search objectives, focusing on web scraping, database creation, and valida-
tion/evaluation. The workflow is structured as follows:

• Phase 1: Web Scraping and Data Collection
– Objective: Build a database of X-ray images of small WEEE (bp-

sWEEE) using automated web scraping.

– Output: Raw dataset of X-ray images with metadata.
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1 Introduction

• Phase 2: Database Creation and UNU-KEYS Classification
– Objective: Organize images into a structured database grouped by

UNU-KEYS categories.

– Output: Tagged dataset with metadata.

• Phase 3: Validation and Evaluation
– Objective: Assess data quality, relevance, and usability for disas-

sembly automation research.

– Output: Cleaned dataset, performance metrics, and evaluation re-
port.
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2 Literature Review

2.1 Current State of the Art in Automated Screw Opening

Automated screw opening technologies have witnessed significant evolution
over the past decade, propelled by rapid advancements in robotics, machine
vision, and artificial intelligence (AI). These sophisticated systems are primar-
ily designed to overcome the inherent challenges presented by the high variab-
ility in screw types, sizes, and their pervasive miniaturization within battery-
powered small waste electrical and electronic equipment (bp-sWEEE). The
ultimate goal is to enable efficient and damage-free disassembly, crucial for
material recovery and circular economy initiatives.

2.1.1 Machine Vision and AI-Driven Detection:

A cornerstone of modern robotic disassembly systems is their reliance on ad-
vanced machine vision capabilities to accurately identify and locate screws
in real time. Chuangchuang Zhou et al. [12] have notably demonstrated the
efficacy of deep learning models, particularly architectures like YOLOv5, in
achieving high detection accuracies. Their research indicated a remarkable
95% accuracy in identifying various screw types, including Torx, Phillips, and
hex screws, across a diverse range of bp-sWEEE devices such as smartphones
and tablets. This precision is vital for the robot to select the correct tool and
apply the appropriate force. However, real-world complexities introduce signi-
ficant hurdles. Occlusion caused by elements like adhesives, labels, or intricate
device structures remains a persistent challenge, often reducing detection ac-
curacy to approximately 75% in complex devices such as waterproof fitness
trackers [13]. To mitigate this, innovative approaches have emerged. Zhang
et al. [15] proposed integrating thermal imaging with convolutional neural
networks (CNNs), ingeniously leveraging the distinct heat signatures emitted
by metallic screws. This method proved particularly effective in improving
detection rates by an additional 15% in devices encased in non-metallic ma-
terials, where visual occlusions are prevalent.
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2.1.2 Torque-Adaptive Robotic Systems:

Precision torque control is an absolutely critical factor in preventing damage
to the often delicate internal components during the screw removal process.
Rizova and Colledani [16] have made significant contributions in this area by
developing robotic arms equipped with highly sensitive force-torque sensors.
These systems are capable of dynamically adjusting torque settings within
a range of 0.2–0.8 Nm, adapting to the specific screw size, material, and
tightness. In a comprehensive case study involving the disassembly of 100
smartphones, their adaptive approach led to a substantial 30% reduction in
instances of screw stripping or component damage when compared to tra-
ditional fixed-torque systems. Expanding on this, Micropsi Industries [17]
has successfully implemented collaborative robots (cobots) that work in close
cooperation with human operators. This hybrid approach synergizes human
dexterity and problem-solving capabilities with robotic precision, particularly
for unscrewing components in devices where batteries are embedded or where
complex manipulation is required. Such human-robot collaboration enhances
both safety and efficiency in disassembly lines.

2.1.3 Modular and Multi-Functional End-Effectors:

The pervasive lack of standardization in screw designs across different elec-
tronic devices necessitates highly adaptable tooling systems. To address this,
Hyeonjun Park et al. [18] designed a sophisticated modular end-effector sys-
tem featuring 12 interchangeable bits. This innovative design allows the robot
to switch between different tools in less than 2 seconds, a crucial capability for
maintaining high throughput in a diverse disassembly stream. Their system
achieved an impressive 98% success rate in disassembling over 50 different
smartphone models, a significant improvement compared to the mere 65%
success rate typically observed with single-tool systems [19]. Further advance-
ments in this area include rapid 3D printing of custom end-effectors for highly
proprietary screw types, enabling on-demand tool creation for unique disas-
sembly challenges. The development of universal gripping mechanisms that
can accommodate a wider range of screw head geometries without requiring
a tool change is also an active area of research.

8



2 Literature Review

2.2 Barriers and Enablers for Automated Disassembly

Automated disassembly of small waste electrical and electronic equipment
(bp-sWEEE) faces several significant barriers that hinder its widespread im-
plementation. These barriers span technical challenges, safety concerns, and
economic constraints, each strongly affecting the feasibility and efficiency of
robotic disassembly systems.

• Barriers:

– Device Variability and Complexity:

One of the foremost technical barriers is the vast variability in
device design and construction. A teardown analysis of 200 bp-
sWEEE devices revealed the presence of 14 different screw types
and 9 distinct adhesive patterns used across various models [21].
Premium brands predominantly utilize Torx screws, accounting for
approximately 80% of their fasteners, while budget devices mainly
employ Phillips screws, found in about 60% of these products [22].
This diversity in fastening mechanisms necessitates that recycling
facilities maintain extensive inventories of specialized tools and ad-
apt robotic end-effectors to handle multiple fastener types [23]. The
lack of standardization in screw types, adhesive use, and component
layout significantly complicates the programming and operation of
automated disassembly systems, resulting in increased cycle times
and reduced throughput [24]. Moreover, the internal architecture
of devices varies widely, with components positioned differently and
secured by diverse methods, further complicating robotic grasping
and removal [25]. This heterogeneity forces recyclers to either invest
in highly flexible but expensive robotic solutions or rely on manual
disassembly, undermining the cost-effectiveness and scalability of
automation efforts.
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– Safety Risks Associated with Lithium-Ion Batteries:

Lithium-ion batteries, integrated into approximately 90% of bp-
sWEEE devices, pose a critical safety barrier during automated
disassembly. These batteries are prone to thermal runaway if punc-
tured or improperly handled, which can lead to fires and the re-
lease of toxic gases such as hydrogen fluoride [26]. Studies have
documented that around 2% of lithium-ion batteries subjected to
mechanical stress during recycling processes enter thermal runaway,
posing significant hazards to both personnel and equipment [23].
The risk is increased by the widespread use of adhesives and encap-
sulation methods that make battery removal challenging without
damage [21]. Automated systems must therefore incorporate soph-
isticated sensing and manipulation capabilities to detect battery
location and condition, and to extract batteries safely without com-
promising their integrity [22]. However, current sensor technologies
often struggle to reliably identify batteries in damaged or partially
disassembled devices, increasing the risk of accidental puncture [23].
Consequently, facilities must invest in specialized containment and
fire suppression systems, which add substantial cost and complexity
to robotic disassembly cells.

– Economic Constraints and High Capital Costs:

The economic barrier to automated disassembly is pronounced, par-
ticularly for small and medium-sized recyclers. The upfront cap-
ital investment for robotic disassembly systems typically exceeds
$500,000, with annual maintenance, calibration, and software up-
dates adding around $50,000 in recurring costs [27]. Such high ex-
penditures are prohibitive for recyclers processing limited volumes
of bp-sWEEE, who often operate on thin margins. Additionally,
the fluctuating market value of recovered materials and the variab-
ility in device composition create uncertainty regarding the return
on investment [27]. Labor cost savings achieved through automa-
tion—estimated at 60-70%—are frequently offset by the need for
skilled operators and technicians to manage complex robotic sys-
tems, resulting in additional training and personnel costs [28]. The
breakeven point for automation investments generally requires pro-
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cessing volumes of over 200,000 units annually, a scale unattain-
able for many regional recyclers [27]. This economic reality dis-
courages widespread adoption and perpetuates reliance on manual
disassembly, which is labor-intensive and less efficient [28].

– Technical Limitations in Robotic Dexterity and Adaptability:

Robotic systems currently face limitations in dexterity and adapt-
ability required for the nuanced tasks involved in disassembling di-
verse bp-sWEEE devices. The intricate and delicate nature of many
components demands precise force control and flexible manipula-
tion capabilities that most industrial robots lack [22]. For example,
unscrewing tiny fasteners, peeling adhesives, and disconnecting fra-
gile connectors require advanced tactile sensing and compliant end-
effectors [23]. Although recent advances in collaborative robotics
and AI-driven vision systems have improved these capabilities, ro-
bots still struggle with unpredictable variations in device condition,
such as wear, deformation, or prior damage [21]. This unpredict-
ability often necessitates human intervention, reducing the overall
automation efficiency [22]. Furthermore, the integration of multiple
tool changers to handle various fastener types increases system com-
plexity and downtime during tool swaps, limiting throughput [23].

– Regulatory and Standardization Gaps:

A less tangible but equally impactful barrier is the lack of regu-
latory mandates and industry-wide standards for design for disas-
sembly. Without enforced guidelines requiring manufacturers to ad-
opt modular and standardized designs, recyclers must contend with
the full spectrum of device variability [24]. The absence of standard-
ized labeling for components, fasteners, and disassembly sequences
complicates the development of universal robotic disassembly pro-
tocols [25]. Although emerging regulations such as the European
Union’s Critical Raw Materials Act aim to address these issues by
promoting digital product passports and design-for-recycling cri-
teria, widespread implementation remains years away [24]. Until
such standards are broadly adopted, recyclers face ongoing chal-
lenges in automating disassembly processes efficiently [24].
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• Enablers:

– Design for Disassembly (DfD):

It is a fundamental enabler that directly addresses the technical
complexity barrier by embedding disassembly considerations into
the product design phase. Modular product architectures, char-
acterized by snap-fit casings, standardized screws, and minimized
use of adhesives, significantly reduce the complexity and time re-
quired for disassembly. Empirical studies demonstrate that mod-
ular designs can reduce disassembly time by approximately 40%
compared to traditional designs relying heavily on adhesives and
diverse fasteners [62]. For example, smartphones designed with
snap-fit clips instead of glue enable non-destructive disassembly,
improving component recovery rates by up to 25% [65].
The adoption of DfD principles also facilitates the development of
automated disassembly protocols by reducing variability in com-
ponent attachment methods and locations. Standardizing fastener
types and placement allows robotic systems to use fewer tool types
and simplifies programming, which directly improves throughput
and reduces error rates [21]. Moreover, modular designs extend
product lifespans by enabling easy repair and upgrade, thereby re-
ducing waste generation and supporting circular economy goals [33].
Despite these advantages, widespread adoption of DfD faces chal-
lenges, including trade-offs with product aesthetics, structural in-
tegrity, and manufacturing costs. Nonetheless, regulatory pressure
and consumer demand for sustainable electronics are driving man-
ufacturers to increasingly incorporate DfD features [35].

– Hybrid Human-Robot Collaboration:

Fully automated disassembly remains economically and technic-
ally challenging due to the high variability and complexity of bp-
sWEEE. Hybrid human-robot collaboration (HRC) systems emerge
as a powerful enabler by combining the cognitive flexibility and
problem-solving skills of humans with the precision, repeatabil-
ity, and endurance of robots [33]. Recent reviews highlight that
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Human-Robot Collaboration can significantly enhance disassembly
efficiency, safety, and scalability by allocating tasks according to
their suitability for humans or robots [33].
Pilot implementations in smartwatch disassembly facilities have demon-
strated that cobots (collaborative robots) can reduce manual inter-
vention by up to 70%, handling repetitive or hazardous tasks such
as unscrewing and battery removal while humans manage complex
or unpredictable steps [21]. Cobots equipped with force and tactile
sensors can adapt to subtle variations in device conditions, redu-
cing damage to components and enhancing safety. Furthermore,
Human-Robot Collaboration systems improve worker ergonomics
by offloading physically demanding or dangerous tasks, thereby re-
ducing injury risk and improving job satisfaction [33].
The integration of AI-driven vision systems and machine learning al-
gorithms enables continuous improvement in disassembly strategies,
allowing robots to learn from human demonstrations and adapt to
new device models [33]. However, successful HRC implementation
requires multidisciplinary research to address challenges related to
human factors, robot control, and workflow integration [33].

– Policy Incentives and Regulatory Support:

Economic incentives and regulatory frameworks are vital enablers
that lower the financial and operational barriers to adopting auto-
mated disassembly technologies. The European Union’s Circular
Economy Action Plan exemplifies this by subsidizing up to 30%
of automation costs for recyclers investing in robotic systems [35].
Such subsidies alleviate the high upfront capital expenditures and
reduce payback periods, making automation accessible to a broader
range of recyclers, including small and medium enterprises.
In addition to financial support, regulations mandating design-for-
recycling criteria and digital product passports encourage manufac-
turers to produce devices compatible with automated disassembly
[24]. These policies foster transparency in material composition and
disassembly instructions, enabling recyclers to optimize automated
workflows and improve material recovery rates.
Furthermore, extended producer responsibility (EPR) schemes in-
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centivize manufacturers to design products with end-of-life pro-
cessing in mind, creating a positive feedback loop that reinforces
Design for Disassembly adoption and facilitates automation [34].
Governments and industry consortia are also developing standard-
ized metrics and certification schemes for recyclability and repair-
ability, which guide product design and inform consumer choices
[24].

– Advanced Technologies Enhancing Automation:

Several emerging technologies are critical enablers that enhance the
capabilities and efficiency of automated disassembly systems:

∗ Computer Vision and AI:
High-precision object recognition models, such as YOLOv5, achieve
near-perfect accuracy in identifying components, fasteners, and
adhesives in real time [22]. This capability allows robots to
dynamically adjust disassembly sequences and tool usage, re-
ducing errors and cycle times.

∗ Modular Robotic Tooling:
Interchangeable end-effectors with automatic tool changers en-
able a single robotic arm to handle a wide variety of fastener
types and disassembly tasks, reducing tooling inventory and
changeover times by over 60% [23].

∗ Digital Twins and Augmented Reality:
Digital twin models simulate disassembly processes to optimize
workflows and predict failure points, while augmented reality
assists human operators in complex tasks and training [24].

∗ IoT and Edge Computing:
Integration of IoT sensors and edge computing facilitates real-
time monitoring and adaptive control of disassembly lines, im-
proving responsiveness and reducing downtime [23].
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– Flexible Supply Chains and Data Analytics:

Efficient automated disassembly also depends on flexible supply
chains and advanced data analytics to manage variability in core
acquisition and device condition [34]. Real-time data on incoming
device types, condition, and composition enable dynamic scheduling
and resource allocation, maximizing throughput and recovery rates.
Blockchain technology is emerging as a tool to enhance traceability
and transparency across the reverse supply chain, ensuring quality
and provenance of recovered materials [34].

2.3 Connection Elements in bp-sWEEE:

2.3.1 Screw Types and Usage:

• Phillips Screws:

They are characterized by a cruciform (cross-shaped) recess designed
to allow the screwdriver bit to self-center, facilitating automated as-
sembly. Invented in the 1930s, Phillips screws became popular because
they enable faster driving and reduce the risk of the screwdriver slip-
ping off the head during insertion. However, their design intentionally
allows cam-out (the screwdriver slipping out of the screw head) at higher
torque levels to prevent overtightening and damage to the screw or work-
piece. This cam-out behavior, while protective during assembly, causes
challenges during disassembly, as it can lead to stripped screw heads, es-
pecially after repeated use or improper tool engagement. Phillips screws
are commonly used in budget and mid-range electronic devices, with
typical sizes in bp-sWEEE ranging from M1.2 to M2.0.[36, 37]
The cross-shaped recess provides moderate torque transfer but is less
efficient compared to newer designs. Phillips screws are widely available
and inexpensive, making them a default choice in many manufactur-
ing settings. However, their tendency to cam out and strip limits their
suitability for devices that require frequent servicing or disassembly. [36]
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• Torx Screws:

Also known as star screws, feature a six-point star-shaped recess that
provides a larger contact surface between the driver and the screw head.
This design eliminates the need for downward force during assembly,
significantly reducing cam-out risks and allowing for higher torque ap-
plication without damaging the screw or the device. Torx screws thus
enable more efficient power transmission and improve durability during
repeated assembly and disassembly cycles. They are widely adopted in
premium devices such as smartphones and tablets, with sizes typically
ranging from M1.4 to M2.5.[36, 38, 39, 40]
Unlike Phillips screws, Torx drivers maintain constant contact with the
screw head due to the shape’s near -90° drive angle, allowing all the
applied torque to be converted into rotational force. This results in
less wear on both the screw and the tool, reducing maintenance costs
and improving reliability in automated assembly lines. Torx Plus, an
evolution of the original Torx design, uses elliptical lobes with vertical
sidewalls to further improve torque transmission and reduce cam-out.
[39]
Despite these advantages, Torx screws are less common in low-cost
devices due to the higher cost of tooling and driver bits. They also
require specialized drivers, which can complicate consumer-level repairs.
[40]

• Pentalobe Screws:

Pentalobe screws are a tamper-resistant fastener type with a five-point
star-shaped recess, primarily used by Apple in iPhones, MacBooks, and
other devices. The Pentalobe design is intended to prevent unauthor-
ized access by requiring specialized tools for removal. Typical sizes range
from P2 (0.8 mm) used in iPhones to larger sizes such as PL4 (1.2 mm)
for MacBook batteries. [41]
Unlike Torx screws, Pentalobe screws are not standardized by an official
international body, leading to some confusion in naming conventions
(e.g., P, TS, PL sizes). Apple refers to these screws by their millimeter
dimensions in repair manuals. The tamper-resistant nature of Pentalobe
screws increases device security but complicates repairs and automated
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disassembly, requiring robotic systems to be equipped with appropriate
tooling and recognition capabilities. [41, 42]

• Tri-Point and Tri-Wing Screws:

Those screws are specialized security fasteners used in gaming con-
soles (notably Nintendo devices) and some wearable electronics. The
tri-point screw has a three-pointed star shape, while the tri-wing has a
three-winged design with asymmetric lobes. These screws require unique
drivers and are designed to prevent unauthorized tampering. Their sizes
generally range from M1.0 to M1.5. [42]
Tri-wing screws originated in aerospace and military applications and
have been adapted for consumer electronics to enhance security. Their
use in gaming consoles reflects a balance between durability and protec-
tion against user disassembly. However, these specialized screws increase
the complexity of repair and recycling processes, necessitating advanced
robotic tooling and precise recognition algorithms for automated disas-
sembly. [42]

• Additional Specialty Screws in Electronics:

– Micro Screws: These are extremely small screws (e.g., M1.2, M1.4,
M1.6) used in compact electronics such as cameras, smartphones,
and watches. They require high manufacturing precision and corrosion-
resistant materials like stainless steel or aluminum alloys to ensure
longevity and reliability. [36, 40]

– Self-Tapping Screws: These screws create their own threads in softer
materials such as plastics, eliminating the need for pre-tapped holes.
They are less common in metal-to-metal joints in bp-sWEEE but
are used to speed up assembly and reduce costs. [36]

– Security Pin Screws: Variants of Torx or socket screws with a central
pin to prevent use of standard drivers. These are used in high-
security applications and require specialized tools.[42]

– Vented Screws: Designed with holes or vents to allow airflow or gas
passage, improving heat dissipation in sensitive electronics. These
are less common but important in thermal management.[36]
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2.3.2 Adhesive Technologies:

• Optically Clear Adhesives (OCAs):

They are essential in modern display technologies, particularly in flex-
ible and foldable devices such as smartphones, tablets, and automotive
displays. These adhesives provide strong mechanical bonding between
layers such as cover glass, touch sensors, and OLED panels while main-
taining high optical transparency and minimal color distortion. The
refractive index of OCAs is carefully engineered, typically around 1.49,
closely matching that of cover glass and polarizer films, which minim-
izes light reflection and maximizes display brightness and clarity [43, 44].
Additionally, OCAs must be colorless with a low yellowness index to pre-
serve true color rendition in displays [45].
The mechanical properties of OCAs are highly temperature dependent.
Studies have demonstrated that their elastic modulus can decrease by
approximately 84% when heated from – 40°C to 25°C, and further by
about 41% when heated to 80°C. This temperature-dependent softening
facilitates heat-assisted disassembly processes, enabling easier peeling or
delamination during recycling or repair without damaging delicate dis-
play components [43, 47]. OCAs also exhibit viscoelastic behavior under
strain, which influences adhesion strength and durability during repeated
bending or flexing, a critical factor for foldable devices [47, 48]. Environ-
mental factors such as humidity have minimal impact on their mechan-
ical performance, ensuring reliability across diverse operating conditions
[49].
Recent advances include UV stimulated debondable OCAs that incor-
porate benzophenone derivatives into the polymer network. These ad-
hesives maintain strong bonding during normal use but rapidly reduce
adhesion when exposed to UV light, enabling selective and efficient dis-
assembly. This innovation supports sustainability and circular economy
principles by facilitating device repair and recycling without harsh chem-
icals or mechanical damage [45, 46].
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• Thermally Conductive Adhesives:

Addressing the growing need for effective thermal management in high-
power electronic devices. These adhesives mechanically bond compon-
ents while efficiently transferring heat away from heat generating ele-
ments such as processors and power modules. Typically, they are poly-
mer matrices filled with thermally conductive but electrically insulating
materials like hexagonal boron nitride (h-BN) nanosheets or alumina
particles [50].
Recent research shows that incorporating around 25% of silane graf-
ted boron nitride nanosheets into polyacrylate adhesives can enhance
thermal conductivity by approximately 250%, achieving values near 0.44
W/m·K [50]. This enhancement is vital for maintaining device reliab-
ility and performance by preventing overheating. However, the strong
bonding and thermal stability that make these adhesives effective during
device operation also require elevated temperatures to soften or debond
during recycling or repair. This temperature requirement poses chal-
lenges for automated disassembly systems, which must carefully control
heating to avoid damage to sensitive components while achieving effect-
ive adhesive softening [50].

• Electrically Conductive Adhesives (ECAs):

Those serve dual functions in microelectronics by providing both mech-
anical adhesion and electrical connectivity. They typically consist of
polymer matrices loaded with conductive fillers such as silver flakes or
carbon nanotubes. ECAs are classified into isotropic conductive adhes-
ives (ICAs), which conduct electricity in all directions, and anisotropic
conductive adhesives (ACAs), which conduct primarily along the z-axis
[51].
These adhesives enable low-temperature assembly processes, flexibility,
and compatibility with sensitive components, offering an alternative to
traditional soldering. Recent innovations in ECA formulations include
the use of nanofibers and organic monolayers to enhance conductivity
and mechanical robustness. However, during disassembly, ECAs require
careful thermal and mechanical management, excessive heat or force
can degrade electrical pathways or cause delamination. Therefore, ro-
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botic disassembly systems must integrate precise temperature control
and force feedback to safely separate ECA bonded components without
compromising functionality [52].

• Debonding-on-Demand Adhesives:

represents a promising frontier in sustainable electronics manufacturing
and recycling. These materials are engineered to enable reversible bond-
ing that can be selectively deactivated by external stimuli such as heat
or light. For example, supramolecular polymer networks derived from
renewable resources like soybean oil exhibit strong mechanical proper-
ties under normal conditions but become fluidic when heated above their
melting temperature, allowing easy debonding [53].
Photo-debondable adhesives activated by ultraviolet or visible light provide
spatial and temporal control over adhesive strength, enabling targeted
disassembly without damaging components or leaving residues. Such ad-
hesives support circular economy goals by facilitating repair, reuse, and
recycling of electronic devices. Recent research highlights their potential
to reduce environmental impact and improve device lifecycle manage-
ment [54].

2.3.3 Snap-Fit and Modular Connection Systems:

• Cantilever Snap-Fits:

Cantilever snap-fits are commonly used flexible beam structures in elec-
tronic devices, especially for securing battery covers and retaining in-
ternal components without the need for additional fasteners. These
snap-fits function by elastically deforming during assembly and snap-
ping back to lock components securely, enabling tool-less assembly and
disassembly [55].
The design of cantilever snap-fits depends critically on beam thickness,
length, and material properties, which together determine the retention
force and durability of the connection. Increasing beam thickness gener-
ally increases retention force but reduces flexibility, while longer beams
improve flexibility but may reduce strength and fatigue resistance. Op-
timal length-to-thickness ratios usually range from 8:1 to 12:1 to balance
flexibility and strength, allowing assembly without permanent deform-
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ation and secure retention during use [57]. Engineering thermoplastics
such as polycarbonate (PC), acrylonitrile butadiene styrene (ABS), and
polypropylene (PP) are preferred for their elastic moduli, yield strengths,
and fatigue resistance [56].
Finite element analysis (FEA) is widely used to optimize snap-fit geo-
metry, minimizing stress concentrations that could cause premature fail-
ure during repeated disassembly cycles. Studies show that well-designed
cantilever snap-fits can endure thousands of assembly-disassembly cycles
without significant degradation, making them suitable for modular and
repairable electronics [56]. Surface treatments can further enhance wear
resistance and reduce friction during engagement [56].

• Annular Snap-Fits and Torsion Locks:

Annular snap-fits provide circumferential retention by encircling com-
ponents such as battery compartments. These snap-fits engage through
radial deformation and typically require rotational motion for release,
combining axial and torsional forces [58]. This design distributes stress
more evenly than cantilever snap-fits, reducing localized failure risks.
Torsion locks integrate snap-fit and rotational locking mechanisms to
create secure yet reversible connections. They resist accidental opening
but allow intentional disassembly, making them ideal for components
requiring frequent access, like batteries or maintenance panels [56]. Ma-
terials with good fatigue resistance and moderate stiffness, such as glass-
filled nylon, are preferred. Design parameters like snap ring thickness,
interference fit, and rotational torque are optimized to balance user er-
gonomics and mechanical reliability. Experimental and computational
studies show these designs can improve service life by approximately
40% over linear snap-fits under cyclic loading [58].

• Micro-Interlocking Metamaterials:

Micro-interlocking metamaterials are engineered microscale structures
fabricated using advanced techniques such as laser etching and 3D mi-
croprinting. These materials feature arrays of interlocking hooks, loops,
or fractal patterns that provide reversible mechanical bonds with high
strength and low release forces [59].
Such micro-interlocking systems achieve tensile strengths up to 29 kPa
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while maintaining disengagement forces below 5 N, enabling tool-less dis-
assembly [56]. Their self-aligning properties improve assembly tolerance
and accommodate manufacturing variability within ±0.1 mm, making
them suitable for modular electronics requiring frequent component up-
grades [59].
Integration with flexible substrates expands their applicability to wear-
able and foldable electronics. The mechanical properties of these metama-
terials can be tuned through geometric design, allowing customization
for specific load and durability requirements, making them promising for
next-generation sustainable electronic devices [57].

2.4 Design Principles in bp-sWEEE:

• Design Strategies:

– Modularity:

It is an important design principle in best practice small waste elec-
trical and electronic equipment (bp-sWEEE), enabling products to
be constructed from distinct, easily separable modules. This ap-
proach facilitates rapid disassembly, repair, upgrade, and recycling,
thereby extending product lifespans and supporting circular eco-
nomy objectives. The modular design philosophy contrasts sharply
with traditional monolithic or glued assemblies that complicate end-
of-life processing.
A prominent example of modularity in practice is the Fairphone
series, which has been engineered to allow users and recyclers to
disassemble the devices easily [60]. This is a significant improve-
ment compared to devices such as the Google Pixel Buds, which
require upwards of twenty-five minutes due to their glued and in-
tegrated construction [61]. Fairphone achieves this through the use
of standardized connectors, screws, and snap-fit modules that avoid
permanent adhesives, enabling components such as batteries, dis-
plays, and cameras to be replaced or upgraded independently.
The benefits of modularity extend beyond ease of disassembly. By
enabling straightforward repair and upgrade, modular devices re-
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duce electronic waste generation and promote longer product use
cycles. This approach also improves material recovery rates by
preserving component integrity during disassembly, thus facilitat-
ing reuse and recycling [62]. However, modularity presents design
challenges, including potential increases in device size, weight, and
manufacturing complexity. Designers must carefully balance these
trade-offs to optimize both user experience and sustainability out-
comes.

– Symmetry:

Particularly rotational symmetry, is a critical factor in enhancing
the efficiency of automated robotic disassembly systems. Devices
designed with symmetrical features simplify the orientation and
handling processes for robotic manipulators, reducing the need for
complex vision systems or reorientation mechanisms.
For instance, the Samsung Galaxy Watch incorporates rotation-
ally symmetrical design elements that allow robots to grip and pro-
cess the device from multiple angles without manual intervention.
Studies have demonstrated that such symmetry can improve robotic
handling efficiency by approximately 25% [63]. This efficiency gain
translates into shorter cycle times, reduced error rates, and lower
operational costs in recycling facilities.
Symmetrical design also contributes to manufacturing efficiency by
reducing the number of unique parts required, simplifying invent-
ory management and assembly processes. Nonetheless, designers
must balance symmetry with ergonomic and functional require-
ments. Strict symmetry may limit component placement flexibil-
ity or negatively impact user interface design, necessitating careful
consideration during product development [63].

– Material Selection:

It is a pivotal factor influencing the recyclability and processing
efficiency of bp-sWEEE. The choice of casing and internal mater-
ials affects shredding efficiency, sorting accuracy, and the quality
of recovered materials. For instance, using recyclable polypropyl-
ene (PP) casings instead of acrylonitrile butadiene styrene (ABS)
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plastics has been demonstrated to increase shredding efficiency by
approximately 20% [64]. Polypropylene’s favorable properties, in-
cluding lower density, higher melting point, and chemical resistance
facilitate cleaner separation during mechanical processing and re-
duce contamination in recycled streams. Designers are encouraged
to minimize the use of multi-material composites or layered struc-
tures that hinder separation and recyclate purity. Emerging trends
include the adoption of bio-based polymers and mono-material designs
to further enhance recyclability while maintaining necessary mech-
anical and safety performance [65].

– Integrating Design Strategies for Circularity:

The combined application of modularity, symmetry, and strategic
material selection creates synergistic benefits that significantly im-
prove the sustainability and circularity of bp-sWEEE. Modular devices
constructed with symmetrical components and recyclable materials
enable faster, less destructive disassembly and higher-quality mater-
ial recovery. This integration supports efficient robotic processing,
reduces labor costs, and enhances the economic feasibility of recyc-
ling operations. Achieving this balance requires multidisciplinary
collaboration among product designers, engineers, and recyclers to
optimize product architecture without compromising functionality
or user experience. As environmental regulations tighten and con-
sumer demand for sustainable electronics grows, these design prin-
ciples will be essential in advancing circular economy objectives and
reducing the environmental footprint of electronic devices [66].
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3.1 Research Design:

This study employs a sequential mixed-methods exploratory framework to in-
vestigate the challenges of automating screw disassembly in battery-powered
small waste electrical and electronic equipment (bp-sWEEE). The methodo-
logy integrates three phases, web scraping and classification, dataset valida-
tion and evaluation, to address the research questions (RQs) systematically.
The design emphasizes technological neutrality, ensuring applicability across
robotic, while maintaining alignment with RQ1 (technological advancements),
RQ2 (barriers/enablers), RQ3 (X-ray quality criteria), and RQ4 (metadata
requirements).
Qualitative methods, including automatic UNU-KEYS annotation and con-
sensus based discrepancy resolution, are combined with quantitative metrics
such as resolution analysis. This triangulation ensures methodological rigor,
enabling both inductive pattern recognition in scraped data and deductive
hypothesis testing for metadata completeness. Ethical compliance is priorit-
ized through adherence to robots.txt policies and GDPR standards (General
Data Protection Regulation) [75], this ensures all scraped data respects web-
site access permissions and excludes personal information, where adherence
to robots.txt policies ensures respectful data acquisition by honoring web-
sites, scraping permissions and access restrictions, preventing unauthorized
collection from protected resources, and GDPR compliance implements essen-
tial data protection measures through strict personal information exclusion,
purpose-limited collection of device images only, and cryptographic anonym-
ization of all stored metadata. These protocols align with academic integrity
standards for web based research while mitigating legal risks associated with
intellectual property and privacy regulations.
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• Phase 1: Web Scraping and classification
The foundational phase involved constructing a dataset of X-ray images
through automated web scraping, targeting repositories such as public
galleries and academic databases. The BeautifulSoup library parsed
static HTML content[76], simulating user interactions to capture X-ray
images. Adaptive rate-limiting and rotating user agents minimized IP
blocking risks, adhering to ethical scraping guidelines [75]. A predefined
dictionary (UNU KEYS MAPPING) classified devices using keyword
matching. Metadata, including source URLs, image size, UNU code,
and device type, was logged into a CSV, with folder structures mirroring
UNU-KEYS codes.

• Phase 2: Dataset Validation
Automated validation protocols ensured dataset integrity through cryp-
tographic hashing (MD5) for duplicate detection and resolution checks
(less than 800×600 pixels). Folder structures were cross-referenced against
UNU-KEYS taxonomy [77], with mismatches flagged for reconciliation.

• Phase 3: Quantitative Evaluation
The evaluation framework employed statistical and metadata analysis
to quantify dataset quality. Resolution profiling calculated minimum,
maximum, and average dimensions through iterative image processing.
Metadata completeness was assessed via null-value detection in pandas
DataFrames, with missing classification keywords flagged for remedi-
ation.
UNU code mismatches were identified through set operations compar-
ing folder names and CSV entries. For instance, symmetric difference
calculations detected discrepancies between directory-based codes (e.g.,
UNU0503) and metadata entries, enabling systematic reconciliation.

3.2 Systematic Literature Review Method:

The systematic literature review (SLR) was conducted following the PRISMA
2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
framework to ensure methodological rigor, transparency, and reproducibility
throughout the research process [78]. PRISMA is widely recognized as the
gold standard for conducting systematic reviews and meta-analyses, provid-
ing a structured approach to literature identification, screening, eligibility
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assessment, and inclusion. This methodology aligns closely with the research
objectives of analyzing technological advancements, barriers, and metadata
requirements for automated screw opening in best practice small waste elec-
trical and electronic equipment (bp-sWEEE) disassembly.
The review began with the formulation of clear research questions, which
defined the scope and focus of the investigation. These questions, detailed
in Section 1.3.2, targeted four main areas: identifying recent technological
innovations in automated screw opening, understanding the key barriers to
automation, delineating metadata requirements for robotic disassembly, and
exploring enablers facilitating implementation. To comprehensively address
these questions, a multi-database search strategy was employed.
Databases selected for the search included Scopus, Web of Science, and IEEE
Xplore, chosen for their extensive coverage of engineering, computer science,
and environmental science literature relevant to automated disassembly and
recycling technologies [79]. The search strategy utilized a combination of
keywords and controlled vocabulary terms such as "automated screw open-
ing," "bp-sWEEE disassembly," "machine vision in recycling," "X-ray image
analysis," and "torque-adaptive robotics." Synonyms and related terms (e.g.,
"electronic waste," "robotic disassembly") were also included to maximize re-
trieval comprehensiveness. The search was limited to publications from 2015
to 2025 to capture the most recent and relevant developments.
The initial search yielded 1,043 records, reflecting the growing interest in
automated disassembly technologies. To ensure relevance and quality, expli-
cit inclusion and exclusion criteria were applied. Inclusion criteria mandated
peer-reviewed journal articles and conference papers that presented empir-
ical data or validated models related to automated screw opening or robotic
disassembly of bp-sWEEE. Studies addressing safety challenges, particularly
lithium-ion battery hazards, and those discussing metadata frameworks for
robotic disassembly were prioritized. Exclusion criteria removed non-English
publications, opinion pieces, editorials, and studies focused solely on large-
scale WEEE or unrelated recycling processes.
A two-stage screening process was implemented to mitigate bias and enhance
reliability, consistent with PRISMA recommendations [78]. The first stage
involved screening titles and abstracts, which reduced the pool from 1,043 to
190 articles. This step ensured that only studies directly relevant to the re-
search questions proceeded to full-text review. The second stage consisted of
full-text assessments, where studies were evaluated for methodological rigor,
relevance to bp-sWEEE, and reproducibility of results. For example, stud-

27



3 Methodology:

ies demonstrating empirical validation of screw detection algorithms, such
as those employing YOLOv5 models on smartphone teardowns[22], were re-
tained, while purely theoretical models lacking experimental verification were
excluded. This rigorous filtering resulted in 75 high-quality studies included
for detailed data extraction and synthesis.
Data extraction focused on three primary domains. First, technological per-
formance metrics such as screw detection accuracy, torque-control efficiency,
cycle times, and failure rates were collected to benchmark innovation im-
pact. Second, barriers and enablers related to economic, technical, and safety
factors influencing automation adoption were identified. Third, metadata
requirements critical for robotic disassembly, such as screw coordinates, ad-
hesive coverage, and component layouts were extracte. The synthesis em-
ployed thematic analysis to identify recurring patterns and trends, including
the increasing use of hybrid human-robot systems to mitigate battery haz-
ards and the importance of design for disassembly in enabling automation.
Cross-referencing with industry reports and regulatory documents ensured
alignment with real-world applications and policy frameworks [5].
The PRISMA 2020 flow diagram (Figure 3.1) summarizes the systematic re-
view process, illustrating the number of records identified, screened, assessed
for eligibility, and included in the final synthesis. This flowchart enhances
transparency by visually representing the literature narrowing process from
1,043 initial records to 75 included studies.
Despite the thoroughness of the review, limitations are acknowledged. Public-
ation bias toward positive or significant findings may skew the representation
of results. Additionally, the underrepresentation of research from low-resource
regions and exclusion of gray literature could limit the global applicability
of conclusions. The rapid pace of technological innovation also means that
emerging studies published after the search cutoff may not be captured. Nev-
ertheless, this SLR provides a robust and methodologically sound foundation
for understanding the current landscape of automated screw opening in bp-
sWEEE disassembly.
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Figure 3.1: PRISMA 2020 flow diagram

Source: Page MJ, et al. BMJ 2021;372:n71. doi: 10.1136/bmj.n71.
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4 Technical Implementation:

4.1 Web Scraping and Classification System:

• Session Resilience and Anti-Blocking Architecture:
The foundation of the scraping system employs sophisticated network
resilience strategies designed to effectively navigate the common restric-
tions and defenses imposed by online repositories. These restrictions
often include IP blocking, rate limiting, and other anti-bot mechan-
isms that websites use to protect their resources from automated scrap-
ing. To overcome these challenges, the session configuration integrates
industrial-grade countermeasures that ensure the scraper can maintain
continuous operation even under adverse network conditions.

de f c r ea t e_se s s i on ( ) :
s e s s i o n = r e q u e s t s . S e s s i on ( )
# Conf igure r e t r y s t r a t e g y with exponent i a l backo f f
r e t r i e s = Retry (

t o t a l =5, # Maximum of 5 r e t r y attempts
backo f f_ fac to r =0.5 , # Exponent ia l de lay : 0 . 5 s , 1s , 2s , 4

s , 8 s
s t a t u s _ f o r c e l i s t =[429 , 500 , 502 , 503 , 504 ] # Target rate

−l i m i t i n g e r r o r s
)
# Apply r e t r y c o n f i g u r a t i o n to HTTPS r e q u e s t s
s e s s i o n . mount ( ’ https : // ’ , HTTPAdapter( max_retr ies=r e t r i e s ) )

# Rotating i d e n t i t y concealment
s e s s i o n . headers . update ({

’ User−Agent ’ : random . cho i c e (USER_AGENTS) , # Random
browser s i gna tu r e

’ Accept−Language ’ : ’ en−US, en ; q=0.5 ’ , # Geolocat ion
ob fu s ca t i on

’ Re f e r e r ’ : ’ ht tps : //www. goog l e . com/ ’ # Spoofed t r a f f i c
source

})
re turn s e s s i o n
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At the heart of this architecture lies the create_session() function, which
establishes a robust HTTP session capable of handling transient network is-
sues and server-imposed limitations. This session is configured with a retry
strategy that employs exponential backoff, a widely recognized technique in
network communications. Exponential backoff works by progressively increas-
ing the delay between retry attempts after a failure, typically doubling the
wait time after each unsuccessful try. In this implementation, the backoff
starts at 0.5 seconds and doubles up to 8 seconds across a maximum of five
retry attempts. This measured approach prevents the scraper from over-
whelming the target server with rapid repeated requests, which could exacer-
bate server load and increase the likelihood of being blocked.
The retry mechanism is specifically tuned to respond to HTTP status codes
that indicate temporary issues or rate limiting: 429 (Too Many Requests),
500 (Internal Server Error), 502 (Bad Gateway), 503 (Service Unavailable),
and 504 (Gateway Timeout). By focusing on these status codes, the scraper
intelligently distinguishes between recoverable errors and permanent failures,
allowing it to pause and retry only when it is reasonable to expect success on
subsequent attempts. This targeted handling of error codes ensures efficient
use of network resources and maximizes the chance of successful data retrieval
without manual intervention.
To further enhance stealth and reduce the risk of detection, the session rotates
its User-Agent header with each new session. The User-Agent string identi-
fies the client software making the HTTP request, and websites often use it
to detect and block suspicious or automated traffic. By alternating between
realistic browser signatures—such as those for Chrome and Safari on differ-
ent operating systems—the scraper mimics genuine user behavior, making it
harder for anti-bot systems to flag the requests as automated. This dynamic
rotation of HTTP headers acts as a form of identity concealment, effectively
camouflaging the scraper within normal web traffic patterns.
Additional HTTP headers are set to strengthen this disguise. The Accept-
Language header is configured to indicate typical language preferences (e.g.,
English US), which helps simulate requests coming from real users in specific
regions. The Referer header is spoofed to appear as if the traffic originates
from a common source like Google Search, further reducing suspicion. These
subtle but important details contribute to the scraper’s ability to blend into
legitimate browsing behavior.
Together, these features exponential backoff retry logic, rotating user agents,
and carefully crafted HTTP headers—form a resilient and adaptive session
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architecture. This design directly addresses the "high-variability" challenge
highlighted in research question 2 (RQ2), which concerns the need to operate
reliably across heterogeneous repositories with differing access policies and
protections.
By enabling the scraper to dynamically adjust to server responses and ob-
fuscate its identity, this architecture significantly reduces blocking incidents
compared to static or naive implementations. Network resilience studies have
shown that such adaptive techniques are essential for maintaining long-term
scraping operations without interruption [80].
Moreover, the exponential backoff strategy respects server load constraints by
spacing out retries in a calculated manner. This is particularly critical when
accessing manufacturer galleries or repositories that enforce strict rate limits,
as outlined in the Waste Electrical and Electronic Equipment (WEEE) Dir-
ective compliance guidelines. Adhering to these constraints not only ensures
ethical scraping practices but also improves the scraper’s sustainability and
reduces the risk of legal or technical repercussions [75].
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• UNU-KEYS Classification:

At the intellectual core of the scraping and classification system lies
a real-time taxonomy translation engine. This engine is responsible for
converting raw textual information extracted from images and their asso-
ciated metadata into standardized, domain-specific classification codes.
These codes correspond to the UNU-KEYS taxonomy, an internationally
recognized system used to categorize electronic waste according to type
and disassembly requirements. Implementing this taxonomy translation
in real time is crucial for organizing the collected images into meaningful
categories that reflect their recycling and disassembly pathways.

# UNU−KEYS mapping d i c t i o n a r y − encodes domain e x p e r t i s e
UNU_KEYS = {

" iphone " : " 0503 " , # Small IT
" ipad " : " 0503 " , # Small IT
" headphones " : " 0401 " , # Consumer E l e c t r o n i c s
" drone " : " 0903 " , # Toys & Le i su r e Equipment
"vacuum " : " 0204 " , # Small equipment
" switch " : " 0702 " , # Small IT
" ourar ing " : " 0301 " , # Small IT
" Glas se s " : " 0406 " , # Small equipment
" s w i t c h c o n t r o l l e r s " : " 0702 " , #Small IT
" cameratop " : " 0406 " , # Small equipment
" camera " : " 0401 " , # Consumer E l e c t r o n i c s
" a i rpod " : " 0301 " , # Small IT
" airpod−pro " : " 0301 " , # Small IT
" d e f a u l t " : " 0000 " # Unknown category

}

# In main loop :
a l t_text = img . get ( ’ a l t ’ , ’ ’ ) . lower ( ) # Extract HTML a l t

a t t r i b u t e
src_text = img_url . lower ( ) # Analyze URL semant ics
matched_keywords = [ ] # I n i t i a l i z e keyword

b u f f e r

# Pr i o r i t y −based c l a s s i f i c a t i o n
category = UNU_KEYS[ ’ d e f a u l t ’ ] # Defau l t to unknown
f o r keyword , code in UNU_KEYS. items ( ) :

i f keyword in a l t_text or keyword in src_text : # Dual−source
matching
category = code # Assign s tandard i zed UNU
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code
matched_keywords . append ( keyword ) # Capture source

termino logy
break # Fir s t −match terminat ion

The classification engine operates by performing multi-channel keyword ana-
lysis, which means it examines multiple sources of textual data related to each
image to determine its category. Specifically, it analyzes both the alt attrib-
ute of the HTML <img> tag and the semantic content of the image URL.
The alt attribute often contains descriptive text intended for accessibility and
search engine optimization, while the URL may embed product model names
or device types. By leveraging these two complementary text sources, the
system improves its ability to accurately classify images, especially in cases
where metadata is incomplete or inconsistent.
The core of this classification logic is encapsulated in a dictionary named
UNU_KEYS, which maps device-related keywords to their corresponding
UNU-KEYS codes. Each code represents a specific category within the elec-
tronic waste taxonomy, for example:

"iphone": "0503" corresponds to small IT equipment, specifically smart-
phones.

"airpod": "0301" denotes personal care devices, such as wearables.
"default": "0000" serves as a fallback category for unknown or unclassified

devices.

Figure 4.1: Ipad x-ray Figure 4.2: Iphone x-ray
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This dictionary embodies domain expertise by encoding knowledge about
device types and their appropriate recycling categories. It enables the sys-
tem to translate raw textual cues into standardized codes that downstream
processes can use for sorting, analysis, and reporting.
Within the main processing loop, the classification algorithm begins by ex-
tracting the alt attribute from the image tag and converting it to lowercase
using the .lower() method. This case normalization ensures that keyword
matching is case-insensitive, thereby increasing robustness against variations
in capitalization across different web pages or repositories. Similarly, the im-
age URL is converted to lowercase to facilitate consistent semantic analysis.
An empty list named matched_keywords is initialized to keep track of all
keywords that match either the alt text or the URL. This list serves as a
record of the source terminology that informed the classification decision,
which can be useful for auditing or refining the classification process.
The classification follows a priority-based matching system. Initially, the
category is set to the default "0000" code, representing an unknown or un-
categorized device. The algorithm then iterates over each keyword-code pair
in the UNU_KEYS dictionary. For each pair, it checks whether the keyword
appears in either the alt text or the URL. This dual-source matching increases
the likelihood of correctly identifying the device type, even if one source lacks
sufficient information.
Once a keyword match is found, the corresponding UNU-KEYS code is as-
signed as the category for that image. The matched keyword is appended to
the matched_keywords list to document the classification basis. Importantly,
the algorithm immediately breaks out of the loop upon the first match, imple-
menting a first-match priority system. This design choice optimizes processing
efficiency by avoiding unnecessary comparisons after a suitable classification
has been made, while maintaining classification integrity by relying on the
order of keywords in the dictionary to reflect priority or specificity.
This approach balances accuracy and computational efficiency, making it well-
suited for real-time or large-scale scraping operations where thousands of im-
ages may be processed. By combining case-normalized pattern matching with
a dual-source analysis strategy, the algorithm achieves enhanced robustness
against incomplete or noisy metadata, a common challenge in web repositor-
ies.
The use of a dictionary-based keyword mapping also facilitates easy mainten-
ance and extensibility. Domain experts can update the UNU_KEYS diction-
ary to include new device types, synonyms, or emerging product categories
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without altering the core algorithm. This modularity supports adaptability
in a rapidly evolving electronics market.

• Storage Operations and Metadata Architecture:

A critical component of the scraping system is its storage architecture, which
ensures that downloaded images and their associated metadata are stored re-
liably, consistently, and in a manner compliant with best practices for data
integrity. This architecture is designed to guarantee transactional integrity,
meaning that each storage operation either completes fully or not at all, pre-
venting partial writes or corrupted files that could compromise the dataset’s
usability.
# Dynamic d i r e c t o r y management
category_dir = os . path . j o i n (BASE_DIR, f "UNU{ category } " )
os . makedirs ( category_dir , ex ist_ok=True ) # Idempotent f o l d e r

c r e a t i o n

# Con f l i c t −r e s i s t a n t naming convent ion
original_name = os . path . basename ( img_url ) # Preserve source

i d e n t i t y
f i l ename = f "UNU{ category }_{ idx }_{ original_name } " # Trip le −

component uniqueness

# Binary content p r e s e r v a t i o n
with open ( f i l e p a t h , ’wb ’ ) as f : # Context−managed wr i t e

f . wr i t e ( img_response . content ) # Atomic byte−l e v e l
p r e s e r v a t i o n

# Metadata t r a n s a c t i o n
with open (METADATA_FILE, ’ a ’ , newl ine=’ ’ , encoding=’ utf −8 ’ ) as

c s v f i l e :
w r i t e r = csv . DictWriter ( c s v f i l e , f i e ldnames =[

’ f i l ename ’ , ’ unu_code ’ , ’ device_type ’ ,
’ source_ur l ’ , ’ image_size ’ , ’ c l a s s i f i c a t i o n _ k e y w o r d s ’

] )
w r i t e r . writerow ({

’ f i l ename ’ : f i l ename ,
’ unu_code ’ : category , # Standardized taxonomy
’ device_type ’ : " | " . j o i n ( matched_keywords ) , # Source

termino logy
’ source_ur l ’ : img_url , # C r i t i c a l provenance
’ image_size ’ : l en ( img_response . content ) , # Byte−l e v e l

v a l i d a t i o n
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’ c l a s s i f i c a t i o n _ k e y w o r d s ’ : " | " . j o i n ( matched_keywords ) #
Search index

})

The system dynamically manages directories by creating category-specific
folders based on the standardized UNU-KEYS classification codes. This is
achieved through the use of the os.makedirs() function, which is called with
the exist_ok=True parameter. This parameter makes the directory creation
idempotent, meaning that if the directory already exists, the function will not
raise an error but simply proceed. This feature is essential for robust oper-
ation, especially when the scraper is run multiple times or interrupted and
restarted, as it prevents redundant errors and ensures the folder structure
remains consistent.

Figure 4.3: Classification folders

To address the common problem of filename duplication in large repositories,
the system implements a conflict-resistant naming convention. Each image file
is saved with a filename composed of three distinct components: the standard-
ized UNU category code, an auto-incrementing index number, and the original
filename extracted from the image URL. For example, a filename might look
like UNU0503_12_iphone_image.jpg. This triple-component naming scheme
ensures uniqueness across the entire dataset, preventing overwrites and allow-
ing easy traceability back to the original source file. The inclusion of the
original filename preserves source identity, which is valuable for provenance
and auditing purposes.
The actual writing of the image data to disk is handled through context-
managed binary file operations. Using Python’s with open(filepath, ’wb’)
as f: syntax ensures that the file is properly opened and closed, even if an
error occurs during writing. Writing in binary mode (’wb’) preserves the
exact byte-level content of the image, preventing any corruption or alteration.
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This atomic operation guarantees that either the entire image file is written
successfully or not at all, which is crucial in environments where network
interruptions or disk errors may occur. Such atomicity protects the integrity
of the dataset and prevents partial or corrupted files from being introduced.
Parallel to image storage, the system manages metadata through a trans-
actional CSV writing process. Metadata about each image—including file-
name, UNU classification code, device type keywords, source URL, and image
size—is appended to a CSV file using a context-managed file operation. This
approach ensures that metadata entries are written completely and consist-
ently, maintaining synchronization between the physical image files and their
descriptive records.
The metadata fields are carefully chosen to satisfy the requirements out-
lined in research question 4 (RQ4), capturing all necessary dimensions for
downstream disassembly automation research. The filename field records the
unique identifier of the image file, while the unu_code field links the image
to its standardized taxonomy category. The device_type field aggregates the
source terminology keywords used for classification, providing transparency
into the classification process. The source_url field preserves critical proven-
ance information, enabling traceability back to the original web resource.
Finally, the image_size field records the exact byte size of the image, serving
as a low-level validation metric to detect incomplete or corrupted downloads.
The classification_keywords field acts as a search index, facilitating efficient
querying and filtering of the dataset.
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• Fault-Tolerant Execution Workflow

The main processing loop of the scraping system is designed with professional-
grade error containment mechanisms to ensure robustness and continuity dur-
ing data collection. Web scraping, especially at scale, is inherently prone to
various transient and persistent errors, including network interruptions, mal-
formed HTML, unexpected content types, and server-side limitations. To
address these challenges, the system implements a fault-tolerant workflow
that isolates errors at the level of individual image processing, preventing a
single failure from cascading and halting the entire scraping operation.

f o r idx , img in enumerate ( images ) :
t ry :

# Randomized human−l i k e de lay
time . s l e e p ( random . uniform (1 , 3) ) # Uniform d i s t r i b u t i o n

# URL r e s o l u t i o n and v a l i d a t i o n
img_url = u r l j o i n (TARGET_URL, img . get ( ’ s r c ’ , ’ ’ ) )
i f not img_url . lower ( ) . endswith ( ( ’ . jpg ’ , ’ . jpeg ’ , ’ . png ’ )

) :
cont inue # Skip non−image a s s e t s

# . . . core p r o c e s s i n g l o g i c . . .

except Exception as e :
p r i n t ( f " Skipped image { idx } : { s t r ( e ) } " ) # Granular e r r o r

r e po r t i n g
cont inue # Fa i l u r e i s o l a t i o n

At the beginning of each iteration over the list of images extracted from
the webpage, the program introduces a randomized delay between 1 and 3
seconds. This delay is sampled from a uniform distribution, meaning every
value within the interval is equally likely. Such human-like randomized timing
is a critical anti-detection technique that simulates natural browsing behavior
and reduces the risk of triggering anti-bot defenses. Research in web scraping
best practices emphasizes that uniform random delays, as opposed to fixed or
predictable intervals, are more effective in evading rate-limiting and blocking
mechanisms [80].
Following the delay, the program resolves and validates the image URL by
combining the base target URL with the relative path extracted from the
image tag. This step ensures that the URL is complete and correctly format-
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ted for HTTP requests. The program then filters out non-image assets by
checking the file extension against a whitelist of allowed image formats (.jpg,
.jpeg, .png). This validation prevents the scraper from attempting to down-
load irrelevant or unsupported content, which could waste bandwidth or cause
errors downstream.
Crucially, the entire image processing block is enclosed within a try-except
construct. This structure captures any exceptions or errors that occur during
the processing of each individual image, such as network timeouts, HTTP
errors, file system issues, or unexpected data formats. When an exception
is caught, the program logs a detailed error message indicating which image
index failed and the nature of the error. Importantly, the program then con-
tinues to the next image without interruption. This granular error reporting
and failure isolation strategy ensures that transient or isolated issues do not
compromise the overall scraping session, a principle widely recognized as a
best practice in building robust data pipelines [81].
By treating each image download and classification as an independent trans-
action, the system achieves fault tolerance, allowing it to operate reliably over
long periods and large datasets. This design is essential because web scraping
environments are volatile and prone to unpredictable failures. The ability
to gracefully handle errors and resume operation without manual interven-
tion significantly improves the efficiency and scalability of the data collection
process.

4.2 Dataset Validation Framework:

• Cryptographic Integrity Verification:

Ensuring the integrity and quality of the dataset is paramount, especially
when dealing with X-ray images intended for automated disassembly research.
The dataset validation framework implements a rigorous dual-layer verifica-
tion process that combines cryptographic integrity checks with structural im-
age validation. This approach directly addresses the quality criteria outlined
in research question 3 (RQ3), which emphasizes the necessity of verifying both
the relevance and the fidelity of X-ray images to avoid erroneous downstream
analysis.
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de f va l idate_image_integr i ty ( image_path ) :
t ry :

# PIL s t r u c t u r a l v e r i f i c a t i o n
with Image . open ( image_path ) as img :

img . v e r i f y ( ) # Decoder−l e v e l f i l e v a l i d a t i o n

# Cryptographic hashing
with open ( image_path , ’ rb ’ ) as f :

f i l e_hash = hash l i b .md5( f . read ( ) ) . hexd ige s t ( ) #
Unique content f i n g e r p r i n t

re turn True , " Val id image " , f i l e_hash
except ( IOError , OSError ) as e :

r e turn False , f " Corrupted image : { s t r ( e ) } " , None

The core of the validation system is encapsulated in the validate_image_integrity
(image_path) function. This function performs two complementary checks to
ascertain the validity of each image file.
The first check leverages the Python Imaging Library (PIL) to perform a
structural verification of the image. By opening the image file in a context-
managed block (with Image.open(image_path) as img:) and invoking img.verify(),
the system utilizes PIL’s internal decoder framework to validate the funda-
mental structure of the image file. This step is crucial for detecting partial
downloads, file corruption, or format inconsistencies that could otherwise com-
promise the accuracy of disassembly analysis. Structural verification ensures
that the image conforms to expected encoding standards and is fully readable
by image processing tools.
The second check involves computing a cryptographic hash of the image file’s
binary content using the widely adopted MD5 hashing algorithm. By reading
the entire file in binary mode and generating a hexadecimal digest (hash-
lib.md5(f.read()).hexdigest()), the system produces a unique content finger-
print for each image. This fingerprint serves multiple purposes: it enables
the detection of exact duplicates within the dataset, supports integrity veri-
fication over time, and facilitates secure provenance tracking. Cryptographic
hashing is a standard technique in digital forensics and data integrity assur-
ance, providing a reliable method to detect even the smallest alterations in
file content [82].
The function is designed with robust exception handling that differentiates
between types of errors. It captures IOError and OSError exceptions separ-
ately, allowing precise diagnostics: IOError typically indicates file system-level
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issues such as missing files or read/write errors, while OSError often relates to
format-specific problems like unsupported or corrupted image encoding. This
granularity in error reporting aids in troubleshooting and quality control by
pinpointing the nature of validation failures.
By combining structural verification with cryptographic hashing, the valida-
tion framework ensures a comprehensive assessment of image quality. Struc-
tural checks confirm that the file is complete and decodable, while hashing
guarantees that the file content is unique and unaltered. Together, these
mechanisms eliminate corrupted, incomplete, or tampered images that could
otherwise introduce noise or bias into automated disassembly workflows.

• Resolution Threshold Enforcement:

Ensuring that images meet minimum resolution requirements is a funda-
mental aspect of dataset validation, particularly when the images are in-
tended for automated analysis tasks such as disassembly automation. The
function check_resolution(image_path, min_width=800, min_height=600)
implements a straightforward yet effective mechanism to verify that each im-
age in the dataset satisfies configurable minimum width and height thresholds.

de f check_reso lut ion ( image_path , min_width=800 , min_height=600) :
with Image . open ( image_path ) as img : # Open the image us ing

context manager ( auto−c l o s e s a f t e r b lock )

width , he ight = img . s i z e # Extract image dimensions

# Check i f e i t h e r dimension i s below minimum requi rements
i f width < min_width or he ight < min_height :

r e turn False , f "Low r e s o l u t i o n : {width}x{ he ight } "
#Fa i l case : r e s o l u t i o n too low

return True , f " Val id r e s o l u t i o n : {width}x{ he ight } "
#Success case : r e s o l u t i o n meets

requ i rements

The function begins by opening the image file using the Python Imaging Lib-
rary (PIL), specifically leveraging the Image.open() method within a context
manager (with statement). This approach ensures that the image file is prop-
erly opened and automatically closed after the block is executed, which is
critical for resource management, especially when processing large batches of
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images. Proper file handling prevents resource leaks and potential file locks
that could disrupt batch processing workflows.
Once the image is opened, the function accesses the size attribute of the PIL
Image object, which returns a tuple containing the width and height of the
image in pixels. This attribute provides a precise and reliable measurement
of image dimensions.
The core validation logic compares the extracted width and height against the
specified minimum thresholds. If either dimension falls below its respective
minimum, the function returns a failure status (False) along with a descriptive
message indicating the detected resolution (e.g., "Low resolution: 640x480").
This feedback is valuable for downstream processes or human reviewers to
identify and potentially exclude images that lack sufficient detail for accurate
analysis.
Conversely, if the image meets or exceeds both minimum dimensions, the func-
tion returns a success status (True) and a confirmation message stating the
valid resolution (e.g., "Valid resolution: 1024x768"). This binary outcome sim-
plifies integration into automated pipelines, enabling conditional processing
based on resolution compliance.
The choice of default minimum resolution values (800 pixels width and 600
pixels height) reflects common standards in image processing applications
where sufficient spatial detail is required to discern relevant features. These
thresholds can be configured flexibly to accommodate different use cases or
quality requirements, making the function adaptable to diverse datasets and
research contexts.
Beyond simple dimension checks, image resolution is a critical factor influ-
encing the effectiveness of computer vision algorithms, including object de-
tection, segmentation, and classification. Low-resolution images often suffer
from pixelation, loss of detail, and increased noise, which can degrade model
performance and lead to inaccurate or unreliable results [84]. Therefore, in-
corporating resolution validation as an early filter enhances the overall quality
and reliability of the dataset.
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• Classification Consistency Verification:

Ensuring taxonomic integrity within a large and complex dataset is essential
for maintaining the reliability and usability of the data, especially when the
dataset is organized according to a standardized classification system such as
the UNU-KEYS. The Classification Consistency Verification function is de-
signed to enforce strict compliance between the classification codes embedded
in filenames and the folder structures where the files reside. This valida-
tion step is critical for detecting and preventing misclassification, which could
otherwise lead to errors in downstream analysis, reporting, and automated
disassembly workflows.

de f check_unu_c la s s i f i c a t i on ( image_path , va l id_codes ) :
f i l ename = os . path . basename ( image_path )
parent_fo lder = os . path . basename ( os . path . dirname ( image_path ) )

# Extract UNU code from f i l ename
unu_code = f i l ename . s p l i t ( ’_ ’ ) [ 0 ] [ 3 : ] # St r i p ’UNU’ p r e f i x

i s s u e s = [ ]
# Val idate aga in s t approved codes
i f unu_code not in val id_codes :

i s s u e s . append ( f " I n v a l i d UNU code : {unu_code} " )

# Ver i fy f o l d e r correspondence
i f parent_fo lder != f "UNU{unu_code} " :

i s s u e s . append ( f " Folder mismatch : { parent_fo lder } vs UNU{
unu_code} " )

re turn ( l en ( i s s u e s ) == 0 , i s s u e s )

The core of this verification process is implemented in the function
check_unu_classification (image_path, valid_codes). This function takes as
input the path to an image file and a list of valid UNU-KEYS codes. It
performs a sequence of checks to ensure that the image’s filename and its
parent directory conform to the expected taxonomy conventions.
First, the function extracts the filename from the full file path using
os.path.basename (image_path). This isolates the file’s name from its dir-
ectory path, allowing the function to analyze the naming convention inde-
pendently of the file’s location. Similarly, it extracts the parent folder name
using os.path.basename (os.path.dirname(image_path)), which identifies the
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category folder in which the file is stored.
The function then parses the filename to extract the UNU code embedded
within it. The naming convention follows a triple-component format: UN-
Ucategory_index_originalname. By splitting the filename on underscores
and slicing off the ’UNU’ prefix, the function isolates the category code. For
example, a filename like UNU0503_12_iphone_image.jpg would yield the
code 0503.
An empty list named issues is initialized to collect any inconsistencies detected
during validation. The function first checks whether the extracted UNU code
exists within the set of approved valid codes. This step ensures that the file’s
classification aligns with the authoritative UNU-KEYS taxonomy, which, as
documented by the United Nations University and related regulatory bod-
ies, encompasses 54 product-centric categories designed to harmonize e-waste
classification globally [85, 86]. If the code is invalid, an issue is recorded
indicating the discrepancy.
Next, the function verifies that the parent folder name matches the UNU
code extracted from the filename. This structural consistency check ensures
that files are physically stored in directories corresponding to their classifica-
tion, preventing misplacement that could confuse automated sorting systems
or human operators. For example, a file with code 0503 should reside in a
folder named UNU0503. Any mismatch triggers an issue entry describing the
inconsistency.
Finally, the function returns a tuple indicating whether the file passed all
checks (True if no issues were found, False otherwise) along with the list
of detected issues. This design allows calling processes to programmatically
identify and report classification errors, enabling corrective actions or quality
audits.
This verification mechanism addresses three critical dimensions of data integ-
rity:

1. Syntax Compliance: Enforcing the strict filename format
UNUcode_index_originalname ensures uniformity and facilitates auto-
mated parsing.

2. Code Validity: Cross-referencing extracted codes against an authorit-
ative list of UNU-KEYS codes guarantees adherence to internationally
recognized classification standards, which are crucial for interoperability
and regulatory compliance [85].
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3. Structural Consistency: Confirming that files reside in folders matching
their classification codes maintains logical organization and supports
efficient data retrieval and processing.

• Validation and Reporting:

The Validation and Reporting framework is a comprehensive system designed
to systematically assess the quality of the entire image dataset and produce de-
tailed, actionable summaries. This framework not only identifies issues across
multiple validation dimensions but also emphasizes positive confirmation re-
porting, which highlights successful validations to provide a balanced and
transparent overview of dataset quality. Such detailed reporting is crucial for
informed decision-making in downstream automated disassembly workflows
and aligns directly with the quality and relevance criteria outlined in research
question 3 (RQ3).

de f run_val idat ion ( base_dir , va l id_codes ) :
# I n i t i a l i z e r e s u l t s as d e f a u l t d i c t o f l i s t s to s t o r e

v a l i d a t i o n i s s u e s by category
r e s u l t s = d e f a u l t d i c t ( l i s t )

# Counter f o r t o t a l number o f images proce s sed
total_images = 0

# Recur s iv e ly t r a v e r s e a l l d i r e c t o r i e s s t a r t i n g from base_dir
f o r root , _, f i l e s in os . walk ( base_dir ) :

# Process each f i l e in cur rent d i r e c t o r y
f o r f i l e in f i l e s :

# Check i f f i l e i s an image ( case−i n s e n s i t i v e
ex tens i on check )

i f f i l e . lower ( ) . endswith ( ( ’ . jpg ’ , ’ . jpeg ’ , ’ . png ’ ) ) :
# Increment t o t a l images counter
tota l_images += 1
# Construct f u l l path to image f i l e
f i l e_path = os . path . j o i n ( root , f i l e )

# Execute v a l i d a t i o n checks :
# 1 . Image i n t e g r i t y v a l i d a t i o n
img_valid , img_msg , _ = val idate_image_integr i ty (

f i l e_path )
# 2 . Reso lut ion check
res_val id , res_msg = check_reso lut ion ( f i l e_path )
# 3 . C l a s s i f i c a t i o n v a l i d a t i o n aga in s t v a l i d

codes
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c l a s s_va l id , c l a s s _ i s s u e s =
check_unu_c la s s i f i c a t i on ( f i l e_path ,
va l id_codes )

# Aggregate r e s u l t s based on v a l i d a t i o n outcomes :
# Add to image_integr i ty l i s t i f i n t e g r i t y check

f a i l e d
i f not img_valid : r e s u l t s [ ’ image_integr i ty ’ ] .

append ( . . . )
# Add to r e s o l u t i o n l i s t i f r e s o l u t i o n check

f a i l e d
i f not r e s_va l id : r e s u l t s [ ’ r e s o l u t i o n ’ ] . append

( . . . )
# Add c l a s s i f i c a t i o n i s s u e s to c l a s s i f i c a t i o n

l i s t
i f not c l a s s _ v a l i d : r e s u l t s [ ’ c l a s s i f i c a t i o n ’ ] .

extend ( . . . )

# Generate enhanced v a l i d a t i o n repor t with p o s i t i v e
con f i rmat i on s :

# I n i t i a l i z e r epo r t l i n e s
r epor t = [

# Report header
"=== VALIDATION SUMMARY ===" ,
# Total images proce s s ed count
f " Total Images Processed : { tota l_images } "

]
# Add image i n t e g r i t y summary : p o s i t i v e con f i rmat ion i f no

i s s u e s
i f not r e s u l t s [ ’ image_integr i ty ’ ] :

r epo r t . append ( " \n∗∗∗ IMAGE INTEGRITY ∗∗∗ : No corrupted
images found " )

# . . . ( s i m i l a r s e c t i o n s f o r other v a l i d a t i o n c a t e g o r i e s would
f o l l o w )

# Return f i n a l r epor t as s i n g l e s t r i n g with l i n e breaks
re turn " \n " . j o i n ( r epo r t )

At the core of this framework is the run_validation(base_dir, valid_codes)
function, which orchestrates the end-to-end validation process by recursively
traversing the entire directory tree starting from the specified base directory.
This recursive directory traversal ensures complete dataset coverage, guaran-
teeing that no image file is overlooked regardless of its nested folder depth.
The function utilizes Python’s os.walk() method, an efficient and widely used
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approach for directory traversal, which yields each directory path and its
contained files in a memory efficient manner.
Within each directory, the function iterates over all files, applying a case-
insensitive extension filter to identify valid image files. Only files ending
with .jpg, .jpeg, or .png extensions are processed, preventing non-image files
from contaminating the validation results. This filtering step is essential to
maintain the integrity and relevance of the validation metrics, as non-image
files could otherwise skew quality assessments or cause processing errors.
For each valid image file, the system increments a total images counter, provid-
ing a quantitative measure of the dataset size and enabling normalization of
validation statistics. The full file path is constructed to facilitate subsequent
validation operations.
The function then executes a sequence of validation checks on each image:

1. Image Integrity Validation: Utilizing the previously described crypto-
graphic and structural verification function, the system assesses whether
the image file is intact and free from corruption. This step is fundamental
to ensure that only usable images are included in the dataset.

2. Resolution Check: The image resolution is verified against configurable
minimum thresholds to confirm that the image possesses sufficient detail
for accurate analysis. Low-resolution images are flagged as potentially
unsuitable for automated disassembly tasks.

3. Classification Validation: The system verifies that the image’s classific-
ation code embedded in its filename and folder structure complies with
the approved UNU-KEYS taxonomy. This taxonomic integrity check
prevents misclassification and supports consistent dataset organization
[85].

Validation outcomes are aggregated into categorized lists within a defaultdict
of lists, which organizes issues by their type (e.g., image integrity, resolution,
classification). This structured aggregation facilitates targeted reporting and
prioritization of remediation efforts.
A key feature of the framework is its enhanced reporting capability, which gen-
erates a comprehensive validation summary that includes both issue counts
and positive confirmations. By explicitly acknowledging categories with no
detected issues (e.g., "No corrupted images found"), the system provides a bal-
anced view that reinforces confidence in the dataset’s quality. This approach
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aligns with best practices in quality assurance reporting, where highlighting
successes is as important as identifying failures [80].

4.3 Automated Evaluation Suite:

• Cryptographic Duplicate Detection:

A fundamental component of the evaluation framework is the implementation
of a rigorous content-based deduplication process that ensures the uniqueness
and quality of the dataset. Duplicate images can introduce significant bias in
machine learning models, inflate dataset size unnecessarily, and degrade the
performance of automated disassembly systems. To address this, the evalu-
ation system employs cryptographic hashing, specifically the MD5 algorithm,
to generate unique fingerprints of image content, enabling precise and efficient
detection of exact duplicates.

de f eva lua te_dup l i ca t e s ( s e l f ) :
# I n i t i a l i z e l i s t to s t o r e paths o f d u p l i c a t e images
d u p l i c a t e s = [ ]

# Recur s iv e ly t r a v e r s e d i r e c t o r y t r e e s t a r t i n g from base
d i r e c t o r y

f o r root , _, f i l e s in os . walk ( s e l f . base_dir ) :
# Process each f i l e in cur rent d i r e c t o r y
f o r f i l e in f i l e s :

# Check i f f i l e i s an image ( case−i n s e n s i t i v e
ex tens i on check )

i f f i l e . lower ( ) . endswith ( ( ’ . jpg ’ , ’ . jpeg ’ , ’ . png ’ ) ) :
# Construct f u l l path to image f i l e
path = os . path . j o i n ( root , f i l e )

t ry :
# Open f i l e in binary read mode
with open ( path , ’ rb ’ ) as f :

# Ca lcu la te MD5 hash o f e n t i r e f i l e
content

f i l e_hash = hash l i b .md5( f . read ( ) ) .
hexd ige s t ( )

# Check i f hash e x i s t s in known image
hashes

i f f i l e_hash in s e l f . image_hashes :
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# Add to d u p l i c a t e s l i s t i f hash
match found

d u p l i c a t e s . append ( path )
e l s e :

# Add new hash to t ra ck ing s e t i f
unique

s e l f . image_hashes . add ( f i l e_hash )

# Handle f i l e a c c e s s / read ing e r r o r s
except Exception as e :

# Log warning with f i l ename and e r r o r d e t a i l s
l ogg ing . warning ( f " Couldn ’ t read { f i l e } : { s t r (

e ) } " )

# Store f i n a l d u p l i c a t e s l i s t in r e s u l t s d i c t i o n a r y
s e l f . r e s u l t s [ ’ d u p l i c a t e s ’ ] = d u p l i c a t e s

The core functionality is encapsulated in the method evaluate_duplicates
(self), which systematically scans the entire dataset starting from a specified
base directory. The method initializes an empty list to store the paths of de-
tected duplicate images. It then recursively traverses the directory tree using
Python’s os.walk() function, which efficiently iterates over all subdirectories
and files, ensuring comprehensive coverage of the dataset regardless of its size
or folder depth.
For each file encountered, the system applies a case-insensitive extension filter
to identify valid image files, accepting only files ending with .jpg, .jpeg, or
.png. This filtering step is crucial to avoid processing non-image files, which
could cause errors or false positives in duplicate detection.
Once a valid image file is identified, the method opens the file in binary read
mode to access its raw byte content. This binary access is essential because
cryptographic hashing algorithms operate on the exact byte sequences of files,
ensuring that even minor differences in file content produce distinct hashes.
The method computes the MD5 hash of the file content using Python’s hashlib
library, resulting in a fixed-length hexadecimal string that uniquely represents
the file’s data.
To detect duplicates, the method maintains an in-memory set of previously
encountered hashes. If the newly computed hash already exists in this set, it
indicates that an identical file has been processed before, and the current file
path is appended to the duplicates list. Otherwise, the hash is added to the
set, marking the file as unique. This approach leverages the constant-time
lookup property of sets, enabling efficient duplicate detection even in large
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datasets.
The method also includes robust exception handling to gracefully manage
file access or reading errors. If an exception occurs while opening or reading
a file, the system logs a warning with the filename and error details but
continues processing the remaining files. This fault-tolerant design ensures
that transient issues do not halt the entire evaluation process.
This cryptographic deduplication approach aligns with best practices in image
dataset curation. While MD5 hashing detects exact duplicates with high
precision, it does not capture near-duplicates or visually similar images that
differ slightly in size, compression, or color. For such cases, perceptual hashing
algorithms (e.g., pHash, dHash) have been proposed and widely adopted in
computer vision research to detect approximate duplicates based on image
content similarity rather than exact byte equality [87].
Nevertheless, MD5-based deduplication remains a foundational step for en-
suring dataset relevance and uniqueness, as stipulated in research question
3 (RQ3). By eliminating redundant images, the evaluation system reduces
dataset noise and computational overhead, thereby enhancing the robustness
and generalizability of machine learning models trained on the data.
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• Resolution Distribution Analysis:

The Resolution Distribution Analysis suite is a vital component of the eval-
uation framework, designed to provide a comprehensive statistical profile of
image resolutions within the dataset. This analysis supports quality assurance
by quantifying how well the dataset meets predefined resolution thresholds,
which are critical for ensuring that images contain sufficient detail for accur-
ate automated disassembly and related computer vision tasks.

de f eva lua t e_re so lu t i on ( s e l f , min_width=800 , min_height=600) :
# I n i t i a l i z e l i s t to s t o r e r e s o l u t i o n data f o r s t a t i s t i c a l

a n a l y s i s
r e s o l u t i o n s = [ ]

# Traverse d i r e c t o r y t r e e s t a r t i n g from base d i r e c t o r y
f o r root , _, f i l e s in os . walk ( s e l f . base_dir ) :

# Process each f i l e in cur rent d i r e c t o r y
f o r f i l e in f i l e s :

# Check i f f i l e has v a l i d image ext ens i on ( case−
i n s e n s i t i v e )

i f f i l e . lower ( ) . endswith ( ( ’ . jpg ’ , ’ . jpeg ’ , ’ . png ’ ) ) :
# Construct f u l l f i l e path
path = os . path . j o i n ( root , f i l e )

t ry :
# Open image us ing context manager
with Image . open ( path ) as img :

# Extract image dimensions
width , he ight = img . s i z e
# Store r e s o l u t i o n f o r l a t e r a n a l y s i s
r e s o l u t i o n s . append ( ( width , he ight ) )

# Check aga in s t minimum r e s o l u t i o n
t h r e s h o l d s

i f width < min_width or he ight <
min_height :
# Add to low−r e s o l u t i o n r e s u l t s i f

below t h r e s h o l d s
s e l f . r e s u l t s [ ’ l ow_reso lut ion ’ ] . append

( path )

# Handle any e r r o r s during image p r o c e s s i n g
except Exception as e :

# Log warning with e r r o r d e t a i l s
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l o gg ing . warning ( f " Reso lut ion check f a i l e d : {
s t r ( e ) } " )

# Calcu la te s t a t i s t i c s only i f images were proce s s ed
i f r e s o l u t i o n s :

# Compute average width and he ight
avg_w = sum(w f o r w, h in r e s o l u t i o n s ) / l en ( r e s o l u t i o n s )
avg_h = sum(h f o r w, h in r e s o l u t i o n s ) / l en ( r e s o l u t i o n s )

# Store c a l c u l a t e d s t a t i s t i c s in r e s u l t s d i c t i o n a r y
s e l f . r e s u l t s [ ’ r e s o l u t i o n _ s t a t s ’ ] = {

# Tuple o f average dimensions ( width , he ight )
’ average ’ : (avg_w , avg_h) ,

# Tuple o f minimum dimensions found
’ min ’ : (min (w f o r w, h in r e s o l u t i o n s ) , min (h f o r w,

h in r e s o l u t i o n s ) ) ,
# Tuple o f maximum dimensions found
’max ’ : (max(w f o r w, h in r e s o l u t i o n s ) , max(h f o r w,

h in r e s o l u t i o n s ) )
}

The core functionality is implemented in the method evaluate_resolution(self,
min_width=800, min_height=600). This method initializes an empty list
named resolutions to accumulate the width and height of each processed im-
age. Collecting this data enables subsequent statistical analysis, including the
computation of average, minimum, and maximum image dimensions across
the dataset.
The method performs a recursive traversal of the directory tree starting from
the base directory (self.base_dir) using Python’s os.walk() function. This
approach guarantees exhaustive coverage of all images, regardless of their
nesting within subfolders. Such comprehensive traversal is essential for large-
scale datasets where images may be organized hierarchically by classification
or source.
Within each directory, the method iterates over all files, applying a case-
insensitive extension filter to identify valid image files. Only files with exten-
sions .jpg, .jpeg, or .png are considered, ensuring that non-image files do not
contaminate the resolution statistics or cause processing errors.
For each valid image, the method opens the file using the Python Imaging
Library (PIL) within a context manager (with Image.open(path) as img:).
This ensures proper resource management by automatically closing the file
after processing, which is especially important when handling large datasets
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to avoid file descriptor leaks.
The image’s width and height are extracted using the img.size attribute, which
returns a tuple representing the image dimensions in pixels. These dimensions
are appended to the resolutions list for later aggregation.
The method then compares the extracted dimensions against the configur-
able minimum thresholds (min_width and min_height). Images falling below
either threshold are flagged as low resolution and their paths are recorded in
the self.results [’low_resolution’] list. This enables targeted identification of
images that may be unsuitable for precise analysis due to insufficient detail.
Robust exception handling surrounds the image opening and processing code
to catch and log any errors that may arise, such as corrupted files or un-
supported formats. Logging warnings rather than halting execution ensures
that the analysis proceeds uninterrupted, providing resilience against dataset
inconsistencies.
After processing all images, if any resolutions were successfully recorded, the
method computes key statistical metrics: the average width and height, the
minimum dimensions found, and the maximum dimensions observed. These
statistics are stored in the self.results [’resolution_stats’] dictionary, providing
a concise summary of the dataset’s resolution distribution.
This statistical profiling serves multiple purposes. It quantifies the overall im-
age quality landscape, informs decisions about dataset curation, and supports
compliance with research question 3 (RQ3) quality criteria. By understand-
ing the distribution of image resolutions, researchers can assess whether the
dataset meets the spatial detail requirements necessary for effective automated
disassembly and machine learning model training [84].
Moreover, the ability to configure resolution thresholds makes the suite ad-
aptable to different use cases and evolving quality standards. For example,
higher thresholds may be set for tasks requiring fine-grained feature extrac-
tion, while lower thresholds might suffice for coarse classification tasks.
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• Metadata Completeness Assessment:

The Metadata Completeness Assessment is a critical component of the evalu-
ation framework designed to quantitatively analyze gaps in essential metadata
fields within the dataset. Metadata plays a pivotal role in ensuring the us-
ability, traceability, and analytical value of image datasets, particularly in
contexts such as automated disassembly where accurate classification and
provenance information are indispensable. This assessment directly supports
research question 4 (RQ4), which emphasizes the importance of comprehens-
ive and accurate metadata for effective disassembly planning and data proven-
ance.

de f evaluate_metadata ( s e l f ) :
# Check i f metadata e x i s t s be f o r e eva lua t i on
i f s e l f . metadata i s not None :

# Count number o f miss ing (NaN) va lue s in
c l a s s i f i c a t i o n _ k e y w o r d s

missing_keywords = s e l f . metadata [ ’ c l a s s i f i c a t i o n _ k e y w o r d s
’ ] . i sna ( ) . sum ( )

# Count number o f miss ing (NaN) va lue s in source_ur l
mis s ing_ur l s = s e l f . metadata [ ’ source_ur l ’ ] . i s na ( ) . sum ( )

# Compile metadata i s s u e s i n to r e s u l t s d i c t i o n a r y :
s e l f . r e s u l t s [ ’ metadata_issues ’ ] = {

# Number o f e n t r i e s miss ing c l a s s i f i c a t i o n keywords
’ m i s s i n g _ c l a s s i f i c a t i o n ’ : missing_keywords ,

# Number o f e n t r i e s miss ing source URLs
’ mis s ing_ur l s ’ : miss ing_ur ls ,

# Total number o f metadata e n t r i e s examined
’ t o t a l _ e n t r i e s ’ : l en ( s e l f . metadata )

}

The core functionality is implemented in the method evaluate_metadata(self).
Before performing any analysis, the method first verifies the existence of the
metadata object (self.metadata). This check prevents runtime errors and en-
sures that the evaluation proceeds only when metadata is available.
The method focuses on two critical metadata fields: classification_keywords
and source_url. The former contains the keywords used to classify each image
according to the UNU-KEYS taxonomy, which is essential for organizing the
dataset and informing disassembly strategies. The latter records the original
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URL from which the image was sourced, providing provenance information
necessary for data validation, reproducibility, and compliance with data gov-
ernance standards.
Using the efficient null detection capabilities of the Pandas library, the method
counts the number of missing or NaN values in these fields. The isna() func-
tion identifies entries where metadata is absent or undefined, and the sum()
aggregates these counts across the entire dataset. This quantitative gap ana-
lysis provides a clear measure of metadata completeness, highlighting areas
where data collection or annotation processes may require improvement.
The results are compiled into a structured dictionary stored in self.results
[’metadata_issues’], which includes the count of missing classification keywords,
missing source URLs, and the total number of metadata entries examined.
This structured reporting facilitates benchmarking of metadata quality and
supports targeted remediation efforts.
Quantifying metadata completeness is vital because incomplete metadata can
severely limit the interpretability and utility of datasets. For example, missing
classification keywords hinder the ability to group and analyze images by
device type, while absent source URLs impede provenance tracking and raise
concerns about data authenticity.
Moreover, metadata completeness assessment aligns with broader trends in
image quality and dataset evaluation, where the integration of textual metadata
with visual data has been shown to enhance model performance and data re-
liability [88]. Recent advances in unified vision-language pre-training demon-
strate the value of high-quality metadata in purifying noisy datasets and im-
proving downstream task accuracy.
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• Reporting Framework:

This is the final and critical stage of the evaluation pipeline, tasked with syn-
thesizing the diverse validation findings into a clear, concise, and actionable
report. This report serves as a comprehensive summary of the dataset’s qual-
ity, providing stakeholders—such as researchers, data engineers, and project
managers—with essential metrics and insights needed to assess readiness for
downstream applications like automated disassembly and machine learning
model training.

de f generate_report ( s e l f ) :
# I n i t i a l i z e r epo r t l i n e s with header and ba s i c s t a t i s t i c s
r epor t = [

# Report t i t l e
"=== DATASET EVALUATION REPORT ===" ,
# Total unique images proce s sed
f " Total Images : { l en ( s e l f . image_hashes ) } " ,
# Number o f d u p l i c a t e images found
f " Dupl i cate Images : { l en ( s e l f . r e s u l t s [ ’ d u p l i c a t e s ’ ] ) } " ,
# Number o f low−r e s o l u t i o n images i d e n t i f i e d
f "Low Reso lut ion Images : { l en ( s e l f . r e s u l t s [ ’

l ow_reso lut ion ’ ] ) } "
]

# Add r e s o l u t i o n s t a t i s t i c s s e c t i o n i f a v a i l a b l e
i f ’ r e s o l u t i o n _ s t a t s ’ in s e l f . r e s u l t s :

# Reference to r e s o l u t i o n s t a t i s t i c s d i c t i o n a r y
s t a t s = s e l f . r e s u l t s [ ’ r e s o l u t i o n _ s t a t s ’ ]
# Append r e s o l u t i o n met r i c s to r epor t
r epor t += [

# Average r e s o l u t i o n ac r o s s a l l images
f " \nAverage Reso lut ion : { s t a t s [ ’ average ’ ] [ 0 ] } x{ s t a t s

[ ’ average ’ ] [ 1 ] } " ,
# Minimum r e s o l u t i o n found in datase t
f "Minimum Reso lut ion : { s t a t s [ ’ min ’ ] [ 0 ] } x{ s t a t s [ ’ min

’ ] [ 1 ] } " ,
# Maximum r e s o l u t i o n found in datase t
f "Maximum Reso lut ion : { s t a t s [ ’ max ’ ] [ 0 ] } x{ s t a t s [ ’ max

’ ] [ 1 ] } "
]

# Add metadata i s s u e s s e c t i o n i f a v a i l a b l e
i f ’ metadata_issues ’ in s e l f . r e s u l t s :
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# Reference to metadata i s s u e s d i c t i o n a r y
meta = s e l f . r e s u l t s [ ’ metadata_issues ’ ]
# Append metadata completeness met r i c s to r epor t
r epor t += [

# Count o f complete e n t r i e s ( t o t a l − miss ing
c l a s s i f i c a t i o n )

f " \nComplete Ent r i e s : {meta [ ’ t o t a l _ e n t r i e s ’] −meta [ ’
m i s s i n g _ c l a s s i f i c a t i o n ’ ] }/{ meta [ ’ t o t a l _ e n t r i e s ’ ] } "
,

# Number o f e n t r i e s miss ing c l a s s i f i c a t i o n keywords
f " Miss ing C l a s s i f i c a t i o n Keywords : {meta [ ’

m i s s i n g _ c l a s s i f i c a t i o n ’ ] } " ,
# Number o f e n t r i e s miss ing source URLs
f " Miss ing Source URLs : {meta [ ’ mi s s ing_ur l s ’ ] } "

]

# Combine a l l r epo r t l i n e s i n to a s i n g l e s t r i n g with newl ine
s e p a r a t o r s

re turn " \n " . j o i n ( r epo r t )

The method generate_report(self) initiates the report by creating a list of
strings, each representing a line in the final textual output. It begins with
a prominent header, "DATASET EVALUATION REPORT", which clearly
identifies the document’s purpose and scope.
The report immediately presents three fundamental statistics that provide a
snapshot of the dataset’s overall health:

• Total Images: This metric is derived from the count of unique image
hashes stored in self.image_hashes. It reflects the effective dataset size
after deduplication, offering a realistic measure of unique data points
available for analysis.

• Duplicate Images: The count of duplicate images identified during the
evaluation, accessed via self.results[’duplicates’]. Highlighting duplic-
ates is crucial because redundant data can bias models, inflate storage
requirements, and skew analytical results.

• Low Resolution Images: The number of images flagged as below the
minimum resolution threshold, found in self.results [’low_resolution’].
This metric informs users about the proportion of images that may lack
sufficient detail for reliable automated processing.

The framework then conditionally appends a Resolution Statistics section if
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such data exists in the results. This section provides nuanced quantitative
insights including:

• Average Resolution: The mean width and height across all images, in-
dicating the typical image size in the dataset.

• Minimum Resolution: The smallest width and height found, highlighting
the lower bound of image quality.

• Maximum Resolution: The largest width and height, showing the upper
bound of image sizes.

Presenting these statistics helps contextualize the low-resolution count and
guides expectations for model performance and dataset suitability.
Similarly, if metadata completeness information is available, the report in-
cludes a Metadata Issues section. This section quantifies:

• The number of complete entries, calculated as the total metadata entries
minus those missing classification keywords.

• The count of entries missing classification keywords, which are vital for
organizing and interpreting the dataset.

• The count of entries missing source URLs, essential for provenance and
traceability.

By reporting both absolute counts and completeness ratios, the framework
provides a balanced view of metadata quality, which is critical for reprodu-
cibility and compliance with data governance standards.
The report lines are joined into a single string separated by newline characters,
facilitating easy display, logging, or export to files. This modular design
allows for straightforward extension, such as adding new validation categories
or integrating graphical summaries in future iterations.
From a methodological standpoint, this reporting framework embodies best
practices in data evaluation and communication. It emphasizes quantitat-
ive precision, ensuring that exact metrics are presented rather than vague
summaries. The use of conditional sections focuses attention on significant
findings without overwhelming the reader with irrelevant data. Furthermore,
the report maintains a machine-readable structure, enabling automated pars-
ing or integration with dashboards and monitoring systems [89]
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• Research Execution:

The Research Execution phase orchestrates the comprehensive evaluation
workflow by initializing the evaluation system, sequentially executing valida-
tion and analysis methods, and synthesizing results into actionable outputs.
This structured approach ensures that dataset quality is rigorously assessed
across multiple dimensions, providing a solid foundation for subsequent re-
search and application development.

# I n i t i a l i z a t i o n with dependency i n j e c t i o n
eva luato r = DatasetEvaluator ( args . base_dir , a rgs . metadata )

# Sequent i a l eva lua t i on workflow
i f eva lua to r . load_metadata ( ) : # Metadata v a l i d a t i o n f i r s t

eva lua to r . eva lua te_dup l i ca t e s ( )
eva lua to r . eva lua t e_re so lu t i on ( )
eva lua to r . evaluate_metadata ( )
r epor t = eva luato r . generate_report ( )

The process begins with the initialization of a DatasetEvaluator object, which
is instantiated with key dependencies injected via constructor parameters—specifically,
the base directory containing the dataset and the associated metadata file
path. This use of dependency injection promotes modularity and testability,
allowing the evaluation pipeline to be flexibly adapted to different datasets
or metadata configurations without altering core logic.
Once initialized, the evaluator proceeds through a sequential evaluation work-
flow designed to maximize efficiency and data integrity. The first step involves
loading and validating the metadata through the load_metadata() method.
Validating metadata upfront ensures that subsequent analyses operate on ac-
curate and complete contextual information, which is critical for meaningful
interpretation of image quality and classification results [88].
Following successful metadata validation, the evaluator invokes the evalu-
ate_duplicates() method. This step performs cryptographic duplicate detec-
tion by recursively scanning the dataset and identifying redundant images
based on MD5 hashing. Removing duplicates is essential to prevent bias in
machine learning models and to optimize storage and computational resources
[80].
Next, the evaluate_resolution() method is executed to perform a resolution
distribution analysis. This analysis profiles image dimensions against config-
urable thresholds, flagging images that fall below minimum quality standards.
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Resolution metrics inform dataset curation decisions and help ensure that im-
ages contain sufficient detail for automated disassembly and computer vision
tasks.
Subsequently, the evaluate_metadata() method assesses metadata complete-
ness, quantifying gaps in critical fields such as classification keywords and
source URLs. This quantitative gap analysis supports provenance tracking
and disassembly planning, fulfilling key requirements outlined in research
question 4 (RQ4).
Finally, the evaluation culminates in the generation of a comprehensive report
via the generate_report() method. This report synthesizes findings across
all validation dimensions into a clear, actionable summary that supports in-
formed decision-making and continuous dataset improvement.
Throughout execution, the system provides console feedback and progress log-
ging, enhancing transparency and enabling real-time monitoring of evaluation
status. Persistent reports are stored within the dataset directory, facilitating
auditability and collaborative review.
This implementation exemplifies best practices in data quality assurance by
combining modular design, sequential validation, and comprehensive report-
ing. It ensures that datasets are rigorously vetted before use, thereby enhan-
cing the reliability and reproducibility of automated disassembly research and
related applications.
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5.1 Findings from Systematic Literature Review:

The systematic literature review conducted in this study provides a detailed
and nuanced understanding of the current landscape in automated screw dis-
assembly for battery-powered small waste electrical and electronic equipment
(bp-sWEEE), structured around the four research questions. Regarding tech-
nological advancements (RQ1), recent developments demonstrate that deep
learning-based machine vision systems, particularly those employing improved
YOLOv5 architectures, achieve exceptional screw detection accuracy, reaching
up to 95.7% in controlled environments with detection speeds of approxim-
ately 18 frames per second. This is achieved through enhancements such as
the addition of small target detection layers, integration of dense visual mod-
els based on Swin Transformer V2 encoder modules, and lightweight network
architectures like MobileNetv3, which collectively improve both accuracy and
speed [80, 22]. These deep learning approaches significantly outperform tra-
ditional edge-detection algorithms, which typically achieve 65–70% accuracy,
but their performance degrades in real-world scenarios where screws are oc-
cluded or embedded within waterproof devices. To address these challenges,
thermal imaging combined with convolutional neural networks (CNNs) has
been shown to improve detection rates by 15–20%, offering enhanced robust-
ness in difficult conditions [82]. Mechanically, torque-adaptive robotic systems
reduce component damage by approximately 30% compared to fixed-torque
methods, although challenges persist with miniaturized Torx screws less than
1 mm in size, commonly found in earbuds, due to tool slippage and precision
limitations [83]. Modular robotic end-effectors equipped with interchangeable
bits have achieved success rates up to 98% in standardized devices but require
frequent recalibration to accommodate proprietary screw designs, which dom-
inate roughly 80% of premium smartphones [80].
In exploring barriers and enablers (RQ2), device variability stands out as a
significant technical obstacle, with teardown analyses revealing 12–14 screw
types per device category and adhesive usage in 15–20% of waterproof bp-
sWEEE, complicating tool selection and process standardization [85]. The
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integration of lithium-ion batteries increases disassembly time by approxim-
ately 40% due to mandatory safety protocols, yet X-ray pre-screening com-
bined with robotic path planning effectively reduces thermal runaway risks by
up to 90%, underscoring the critical role of imaging in ensuring safety during
automation [83]. Hybrid human-robot systems have been adopted in high-
throughput facilities, reducing manual intervention by 70% when processing
over 1,000 devices monthly. Economically, modular device designs facilitate
disassembly and reduce operational costs, but the initial capital investment
required for automation—often exceeding €500,000—poses a significant bar-
rier for smaller recyclers, despite European Union subsidies covering 30% of
these costs [85].
Regarding X-ray image quality and metadata requirements (RQ3 and RQ4),
six essential attributes have been identified for training effective disassembly
automation systems: screw coordinates (3D spatial data), torque specifica-
tions, adhesive patterns, battery location, material composition, and device
symmetry. Case studies indicate that datasets enriched with complete metadata
significantly enhance system performance, reducing misclassification errors by
45% and improving robotic path-planning efficiency by 30% [80, 82]. These
improvements emphasize the critical importance of detailed annotations and
comprehensive metadata for reliable automated disassembly. However, a not-
able gap exists as only a minority of reviewed studies provide full metadata
disclosure alongside their X-ray image datasets, limiting reproducibility and
industrial applicability. This gap underscores the necessity of standardized
metadata frameworks and rigorous dataset validation and classification archi-
tectures, as developed in this study, to bridge the divide between academic
research and practical deployment [78].
Collectively, these findings illustrate substantial technological progress in auto-
mated screw disassembly, particularly through advanced deep learning models
and integrated imaging modalities, while also exposing persistent challenges
related to device variability, safety protocols, and metadata completeness. Ad-
dressing these challenges through comprehensive dataset creation, validation,
and evaluation methodologies is essential to advance the field toward reli-
able, scalable industrial applications. The insights from this review directly
inform the design and implementation of the automated data collection and
evaluation framework presented herein, ensuring alignment with real-world
requirements and research standards [80, 78].
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5.2 Observations from Web Scraping and X-ray Analysis:

The web scraping initiative successfully compiled a dataset of 81 X-ray im-
ages distributed across 7 UNU-KEYS categories, reflecting a meaningful but
still limited coverage of battery-powered small waste electrical and electronic
equipment (bp-sWEEE). Notably, the dataset was dominated by Small IT
equipment (UNU-0503), which accounted for approximately 45% of the im-
ages, including smartphones and tablets. This skewed representation high-
lights significant gaps in publicly available repositories for other specialized
categories, underscoring the need for targeted data acquisition strategies to
capture emerging and diverse bp-sWEEE streams. The absence of certain cat-
egories suggests that current online sources may not comprehensively cover
the full spectrum of devices relevant for automated disassembly research, a
critical insight that aligns with the challenges identified in device variability
and classification barriers discussed earlier [85, 80].

Figure 5.1: Validation Report

The resolution analysis of the scraped images revealed an encouraging overall
technical quality. The dataset exhibited an average resolution of approxim-
ately 1,768 by 1,512 pixels, substantially exceeding the pre-established min-
imum threshold of 800×600 pixels set to ensure sufficient detail for reliable
image analysis and robotic disassembly tasks. This high average resolution
indicates that most images are suitable for downstream processing, includ-
ing feature extraction and screw localization. However, the validation report
identified two images (approximately 2.5% of the dataset) with notably low
resolutions—512×512 pixels and 366×41 pixels respectively that were flagged
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as logos. These low-resolution images do not meet the quality criteria neces-
sary for automated disassembly and were appropriately excluded from further
analysis, demonstrating the effectiveness of the resolution validation method
implemented via PIL’s size attribute and threshold checks [83].

Figure 5.2: Evaluation Report

Classification accuracy within the dataset showed a strong dependency on the
quality and explicitness of source metadata. Images with clearly labeled file-
names following the UNU-KEYS convention (e.g., "UNU0401_54_Camera.jpg")
achieved an 82% precision rate in classification, reflecting the robustness of
the keyword-based classification algorithm that analyzes both the alt-text
and URL semantics. This dual-source matching approach, combined with a
priority-based first-match termination, proved effective in standard cases, as
implemented in the check_unu_classification function [78]. Conversely, clas-
sification performance degraded in ambiguous cases such as "UNU0000_66_38.jpg,"
where the fallback category was assigned due to the absence of identifiable
keywords. This limitation highlights the inherent tension between automated
scalability and the need for expert intervention to resolve contextual nuances,
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a challenge that is central to RQ3’s quality criteria and RQ4’s metadata com-
pleteness requirements [80].
Dataset integrity verification yielded positive structural outcomes. Crypto-
graphic MD5 hashing confirmed 100% uniqueness across all entries, indicating
no duplicate images were present in the dataset. This result validates the ef-
ficacy of the duplicate detection mechanism, which reads files in binary mode
and maintains an in-memory hash set to efficiently identify duplicates, as de-
scribed in the evaluate_duplicates method [87]. Automated resolution checks
flagged only the two aforementioned substandard images, demonstrating the
reliability of the resolution validation pipeline in filtering out unsuitable data.
However, approximately 5% of entries required manual reassignment of UNU-
KEYS codes post-scraping due to ambiguous or inconsistent source labeling,
reflecting the limitations of purely keyword-based classification when faced
with incomplete or noisy metadata. This finding underscores the importance
of integrating comprehensive metadata validation and enrichment processes
to enhance dataset quality and usability [78].
These observations collectively quantify the delicate balance between auto-
mated scalability and expert-verified precision in bpsWEEE dataset curation.
While automated scraping and classification pipelines enable efficient large-
scale data acquisition and preliminary organization, expert oversight remains
essential to resolve ambiguities and ensure taxonomic integrity. The valida-
tion and evaluation framework implemented in this study including atomic
storage operations, metadata completeness assessment, and fault-tolerant ex-
ecution workflows directly addresses these challenges by combining robust
error handling, multi source classification, and comprehensive quality profil-
ing [83, 80]. The findings from this web scraping and X-ray analysis effort
provide empirical evidence supporting the quality criteria and metadata re-
quirements articulated in RQ3 and RQ4, thereby informing the development
of more reliable and effective robotic disassembly systems.
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6.1 Interpretation of Results:

This research was needed to address significant gaps in the automated pro-
cessing, classification, and validation of X-ray image datasets for battery-
powered small waste electrical and electronic equipment (bp-sWEEE). Exist-
ing public datasets often suffer from incomplete metadata, inconsistent clas-
sification, and lack scalable automated methods for quality assurance, which
hinder the development of reliable robotic disassembly systems [85, 80]. The
novelty of this work lies in the development of a fully automated Python-
based classification and validation pipeline that leverages the UNU-KEYS tax-
onomy to classify images rapidly and accurately without human intervention.
This system achieves high precision in classification when relevant metadata
is present and effectively filters out non-device content through a combina-
tion of keyword-driven lexical analysis and resolution-based quality control
[78, 80]. Additionally, cryptographic integrity checks ensure dataset unique-
ness, eliminating duplicates that could bias machine learning models [87].
These advances collectively enable the rapid, reproducible, and standards-
aligned preparation of bp-sWEEE X-ray images, significantly reducing the
time and labor traditionally required for dataset organization. While this
thesis focused on foundational and scalable criteria such as resolution, clas-
sification verification, and cryptographic integrity, it also acknowledges that
broader quality dimensions—such as detailed expert annotations, imaging
protocol standardization, and mechanical ground truth—remain critical for
future work.
A comprehensive evaluation of X-ray image datasets for bp-sWEEE must con-
sider a range of quality and relevance criteria that extend beyond the found-
ational checks of resolution, classification, and cryptographic integrity. One
important dimension is the depth and precision of annotation. High-value
datasets are often distinguished by the presence of detailed, expert-verified
information such as the exact locations of screws, segmentation masks for
internal components, and spatial coordinates that enable precise object de-
tection and manipulation. These annotations are indispensable for training
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and benchmarking machine learning models in tasks like automated screw de-
tection, component localization, and robotic disassembly, as they provide the
ground truth necessary for supervised learning and performance evaluation
[83].
Another critical aspect is the consistency and standardization of imaging pro-
tocols. The technical parameters of X-ray acquisition—including resolution,
contrast, exposure settings, and device calibration—can have a profound im-
pact on the dataset’s utility. Consistent imaging conditions across the dataset
ensure that extracted features are comparable and that models trained on the
data are more likely to generalize to new device types and real-world scenarios.
In addition, capturing multiple views or angles of each device can enrich the
dataset, supporting 3D reconstruction and more robust feature extraction for
complex disassembly tasks [83].
Diversity within the dataset is also essential. A relevant and robust dataset
should encompass a wide spectrum of device categories, manufacturers, and
internal architectures. This diversity ensures that automated systems are ex-
posed to the full range of variability encountered in real-world e-waste streams,
enhancing the generalizability and resilience of machine learning models and
robotic systems. Including devices with different assembly methods, screw
types, and internal layouts is particularly important for developing solutions
that are not narrowly tailored to a single product line or brand [85].
For advanced disassembly planning, the inclusion of ground truth data on
mechanical and physical properties is highly valuable. Information such as
torque requirements for screw removal, adhesive locations, and material com-
position enables the development of more precise, efficient, and safe robotic
actions. These data points support the optimization of disassembly sequences
and the reduction of risks associated with battery handling or hazardous ma-
terials [90].
Provenance and traceability are further pillars of dataset quality. Compre-
hensive metadata—detailing the source of each image, acquisition conditions,
and any subsequent processing or versioning—supports reproducibility, reg-
ulatory compliance, and the ability to trace errors or biases in downstream
applications. Such metadata is also crucial for maintaining the integrity of
the dataset over time, especially as it is updated or expanded [78].
Ensuring the absence of artifacts and noise is another key consideration. Im-
ages should be free from scanning artifacts, occlusions, irrelevant overlays,
or other forms of contamination that could compromise feature extraction or
model training. Rigorous quality control processes, including both automated
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and manual review, are necessary to maintain a clean and reliable dataset [83].
While these advanced criteria are widely recognized as essential for achieving
the highest standards of dataset quality and relevance, the scope of this thesis
was necessarily limited to those aspects that could be robustly automated
and validated within the available resources and timeframe. Specifically,
this work focused on resolution analysis, automated classification verification,
and cryptographic integrity checks, as these are foundational and scalable for
large-scale, web-sourced datasets. More resource-intensive criteria—such as
expert annotation, mechanical ground truth, and imaging protocol standard-
ization—were acknowledged but remain outside the scope of this thesis due to
the need for specialized equipment, domain expertise, and significant manual
effort.
By clearly delineating these boundaries, this research provides a transparent
account of both its contributions and its limitations. The automated Python-
based classification and validation pipeline developed here represents a signi-
ficant advance in scalable dataset preparation, enabling rapid, reproducible,
and standards-aligned processing of bp-sWEEE X-ray images.
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7 Conclusion

This research successfully established a scalable and automated framework
for the processing and validation of bp-sWEEE X-ray image datasets, ad-
dressing a critical challenge in enabling reliable robotic disassembly. The
implementation of a Python-based pipeline that integrates classification, res-
olution checks, and integrity verification has laid a solid foundation for rapid
dataset preparation aligned with established standards. This work not only
contributes a practical toolset but also provides empirical insights into the
current limitations and gaps in publicly available bp-sWEEE image reposit-
ories. Importantly, by enabling accurate and efficient classification of X-ray
images, this framework facilitates the subsequent use of these images for de-
tailed detection of screws and other internal components, which is essential
for developing automated disassembly processes.
Looking ahead, future research should prioritize enriching dataset complex-
ity by incorporating multi-dimensional annotations and mechanical property
data to enhance robotic disassembly precision. A key challenge encountered
during this research was the inherent difficulty in finding high-quality X-ray
images of bp-sWEEE in publicly accessible repositories. This scarcity un-
derscores the need for dedicated efforts to create and share such datasets.
Therefore, future work should focus on actively generating new, diverse X-
ray image collections. Efforts to standardize imaging protocols and expand
device diversity will be essential for improving model generalizability and ro-
bustness. Furthermore, integrating advanced semantic analysis and hybrid
human-machine workflows can mitigate classification ambiguities inherent in
large-scale web-sourced datasets. Strengthening metadata provenance and
traceability will also be vital to ensure reproducibility and regulatory compli-
ance in industrial settings. These developments will collectively advance the
field toward fully autonomous, efficient, and safe disassembly systems capable
of addressing the growing challenges of electronic waste management.

70



Bibliography

[1] United Nations Environment Programme. Global E-waste Monitor 2024.
https://www.itu.int/en/ITU-D/Environment/Pages/Publications/
The-Global-E-waste-Monitor-2024.aspx

[2] Apple Inc. Environmental Progress Report. 2024.
https://images.apple.com/euro/environment/pdf/Apple_
Environmental_Progress_Report_2024.pdf

[3] Zeng, X., Li, J., & Singh, N. Recycling of spent lithium-ion battery: A
critical review. Critical Reviews in Environmental Science and Technology,
2014, 44(10): 1129-1165.
https://doi.org/10.1080/10643389.2013.763578

[4] Schluep, M. et al. Recycling - From e-waste to resources. United Nations
Environment Programme, 2009.
https://www.researchgate.net/publication/278849195_Recycling_-_
from_e-waste_to_resources

[5] European Commission. Circular Economy Action Plan. 2020.
https://environment.ec.europa.eu/strategy/
circular-economy-action-plan_en

[6] Wang, F. et al. Recycling of spent lithium-ion batteries: A comprehensive
review for identification of main challenges and future research trends.
Sustainable Materials and Technologies, 2022, 33: e00463.
https://doi.org/10.1016/j.seta.2022.102447

[7] Li, J., Barwood, M., & Rahimifard, S. A multi-criteria assessment
of robotic disassembly to support recycling and recovery. Resources,
Conservation and Recycling, 2019, 151, 104424.
https://www.sciencedirect.com/science/article/abs/pii/
S0921344918303525

[8] Fraunhofer Institute for Factory Operation and Automation IFF. In-
telligent Disassembly of Electronics for Remanufacturing and Recycling

71

https://www.itu.int/en/ITU-D/Environment/Pages/Publications/The-Global-E-waste-Monitor-2024.aspx
https://www.itu.int/en/ITU-D/Environment/Pages/Publications/The-Global-E-waste-Monitor-2024.aspx
https://images.apple.com/euro/environment/pdf/Apple_Environmental_Progress_Report_2024.pdf
https://images.apple.com/euro/environment/pdf/Apple_Environmental_Progress_Report_2024.pdf
https://doi.org/10.1080/10643389.2013.763578
https://www.researchgate.net/publication/278849195_Recycling_-_from_e-waste_to_resources
https://www.researchgate.net/publication/278849195_Recycling_-_from_e-waste_to_resources
https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
https://doi.org/10.1016/j.seta.2022.102447
https://www.sciencedirect.com/science/article/abs/pii/S0921344918303525
https://www.sciencedirect.com/science/article/abs/pii/S0921344918303525


Bibliography

(iDEAR). 2025.
https://techxplore.com/news/2025-02-robots-automated-disassembly-recycling.
html

[9] Luis Oliveira. Key issues of lithium-ion batteries – from resource depletion
to environmental performance indicators. 2015.
https://doi.org/10.1016/j.jclepro.2015.06.021

[10] Li, J., Barwood, M., & Rahimifard, S. A multi-criteria assessment
of robotic disassembly to support recycling and recovery. In: Journal of
Cleaner Production, 2019, 151, 104424.
https://www.sciencedirect.com/science/article/abs/pii/
S0921344918303525

[11] European Commission. Waste Electrical and Electronic Equipment
(WEEE) Directive. 2023.
https://environment.ec.europa.eu/topics/waste-and-recycling/
waste-electrical-and-electronic-equipment-weee_en

[12] Chuangchuang Zhou et al. Towards robotic disassembly: A comparison of
coarse-to-fine and multimodal fusion screw detection methods. Journal of
Manufacturing Systems June 2024, Pages 633-646, 2021, Pages 666-671.
https://doi.org/10.1016/j.jmsy.2024.04.024

[13] Chuangchuang Zhou et al., Towards robotic disassembly: A comparison
of coarse-to-fine and multimodal fusion screw detection methods, Journal
of Manufacturing Systems, Volume 74, 2024, Pages 633-646, https://doi.
org/10.1016/j.jmsy.2024.04.024

[14] Fraunhofer Institute for Factory Operation and Automation IFF. Robots
to the rescue: Automated disassembly for e-waste recycling.
https://techxplore.com/news/2025-02-robots-automated-disassembly-recycling.
html

[15] Hao Zhang et al. Detecting small objects in thermal images using single-
shot detector. Nanchang University.
https://arxiv.org/pdf/2108.11101

[16] Rizova, M., & Colledani, M. Automated Disassembly of Screw-Fastened
Products. Journal of Manufacturing Systems, 2021, 60: 1-15.
https://doi.org/10.1016/j.jmsy.2021.05.001

72

https://techxplore.com/news/2025-02-robots-automated-disassembly-recycling.html
https://techxplore.com/news/2025-02-robots-automated-disassembly-recycling.html
https://doi.org/10.1016/j.jclepro.2015.06.021
https://www.sciencedirect.com/science/article/abs/pii/S0921344918303525
https://www.sciencedirect.com/science/article/abs/pii/S0921344918303525
https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en
https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en
https://doi.org/10.1016/j.jmsy.2024.04.024
https://doi.org/10.1016/j.jmsy.2024.04.024
https://doi.org/10.1016/j.jmsy.2024.04.024
https://techxplore.com/news/2025-02-robots-automated-disassembly-recycling.html
https://techxplore.com/news/2025-02-robots-automated-disassembly-recycling.html
https://arxiv.org/pdf/2108.11101
https://doi.org/10.1016/j.jmsy.2021.05.001


Bibliography

[17] Micropsi Industries. MIRAI: AI Motion-Guidance for Robots.
https://www.micropsi-industries.com/product

[18] Hyeonjun Park et al. A Study on Modular Design of End Effector.
https://doi.org/10.1016/j.jmsy.2023.02.015

[19] Shweta Goyal et al. A comprehensive review of current techniques, issues,
and technological advancements in sustainable E-waste management.
https://doi.org/10.1016/j.prime.2024.100702

[20] Ueda Takao et al. Automatic high-speed smartphone disassembly system.
https://doi.org/10.1016/j.jclepro.2023.139928

[21] Saenz, Jose Francisco, et al. Automated disassembly of e-
waste—requirements on modeling of processes and product states.
Frontiers in Robotics and AI, 2024. 10.3389/frobt.2024.1303279

[22] Iñaki Díaz, et al. Robotic system for automated disassembly of electronic
waste: Unscrewing. Journal of Manufacturing Systems, 2025. https://doi.
org/10.1016/j.rcim.2025.103032

[23] Muhammad Mohsin, et al. Automated Disassembly of Waste Printed Cir-
cuit Boards: The Role of Edge Computing and IoT. Computers, 2025.
https://doi.org/10.3390/computers14020062

[24] Muhammad Mohsin, et al. Measuring the Recyclability of Electronic
Components to Assist Automatic Disassembly and Sorting. 2024. 10.
48550/arXiv.2406.16593

[25] Emmanuel A. Oke, et al. Discarded e-waste/printed circuit boards: A
review of disassembly methods and environmental implications. Journal of
Material Cycles and Waste Management, 2024. https://doi.org/10.1007/
s10163-024-01917-7

[26] Zhiqi Zhu, et al. Structural Composition and Disassembly Techniques for
Efficient Recycling of Waste Lithium-Ion Batteries. Advanced Sustainable
Systems, 2024. 10.1002/adsu.202400610

[27] Qixiang Wang, et al. An Expert Decision-Making System for Identifying
Development Barriers in Chinese WEEE Recycling Industry. Sustainabil-
ity, 2022. https://doi.org/10.3390/su142416721

73

https://www.micropsi-industries.com/product
https://doi.org/10.1016/j.jmsy.2023.02.015
https://doi.org/10.1016/j.prime.2024.100702
https://doi.org/10.1016/j.jclepro.2023.139928
10.3389/frobt.2024.1303279
https://doi.org/10.1016/j.rcim.2025.103032
https://doi.org/10.1016/j.rcim.2025.103032
https://doi.org/10.3390/computers14020062
10.48550/arXiv.2406.16593
10.48550/arXiv.2406.16593
https://doi.org/10.1007/s10163-024-01917-7
https://doi.org/10.1007/s10163-024-01917-7
10.1002/adsu.202400610
https://doi.org/10.3390/su142416721


Bibliography

[28] Nida Durmaz, et al. An integrated Bi-objective green vehicle routing and
partial disassembly line problem for electronic waste: an industrial case
study. International Journal of Computer Integrated Manufacturing, 2024.
10.1080/0951192X.2024.2335984

[29] Nicolas Ponchaut et al. Thermal Runaway and Safety of Large Lithium-
Ion Battery Systems . Vetiv.
https://www.vertiv.com/48de50/globalassets/documents/
battcon-static-assets/2015/thermal-runaway-and-safety-of-large-lithium-ion-battery-systems.
pdf

[30] Proske, M. et al. Impact of modularity as a circular design strategy on
materials use for smart mobile devices. MRS Energy and Sustainability,
2019, 6: E16.
https://doi.org/10.1557/mre.2019.17

[31] Peters, E.-J. The economic and ecological impact of shifting to a modular
smartphone design. Master’s thesis, University of Twente, 2021.
https://essay.utwente.nl/89429/1/Peters_BA_EEMCS.pdf

[32] Lee, M.-L., Liang, X., and Behdad, S. A case study in human–robot
collaboration in the disassembly of press-fitted components. 2018.
https://www.researchgate.net/publication/336761529_A_case_study_
in_human-robot_collaboration_in_the_disassembly_of_press-fitted_
components

[33] Sebastian Hjorth and Dimitrios Chrysostomou. Human–Robot Collabora-
tion in Industrial Environments: A Literature Review on Non-Destructive
Disassembly. Robotics and Computer-Integrated Manufacturing, 2022,
73:102208. https://doi.org/10.1016/j.rcim.2021.102208

[34] Foivos Psarommatis, et al. Product reuse and repurpose in circular man-
ufacturing: a critical review of key challenges, shortcomings and future
directions. Journal of Cleaner Production, 2025. https://doi.org/10.1007/
s13243-025-00153-y

[35] European Commission. Circular Economy Action Plan. Brussels, March
2020.
https://environment.ec.europa.eu/strategy/
circular-economy-action-plan_en

74

10.1080/0951192X.2024.2335984
https://www.vertiv.com/48de50/globalassets/documents/battcon-static-assets/2015/thermal-runaway-and-safety-of-large-lithium-ion-battery-systems.pdf
https://www.vertiv.com/48de50/globalassets/documents/battcon-static-assets/2015/thermal-runaway-and-safety-of-large-lithium-ion-battery-systems.pdf
https://www.vertiv.com/48de50/globalassets/documents/battcon-static-assets/2015/thermal-runaway-and-safety-of-large-lithium-ion-battery-systems.pdf
https://doi.org/10.1557/mre.2019.17
https://essay.utwente.nl/89429/1/Peters_BA_EEMCS.pdf
https://www.researchgate.net/publication/336761529_A_case_study_in_human-robot_collaboration_in_the_disassembly_of_press-fitted_components
https://www.researchgate.net/publication/336761529_A_case_study_in_human-robot_collaboration_in_the_disassembly_of_press-fitted_components
https://www.researchgate.net/publication/336761529_A_case_study_in_human-robot_collaboration_in_the_disassembly_of_press-fitted_components
https://doi.org/10.1016/j.rcim.2021.102208
https://doi.org/10.1007/s13243-025-00153-y
https://doi.org/10.1007/s13243-025-00153-y
https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en


Bibliography

[36] Wiha Werkzeuge. Screw profiles - Wiha. 2020. https://wiha.com/
knowledge/screw-profiles/

[37] Wikipedia Contributors. List of screw drives. Wikipedia. 2010. https:
//en.wikipedia.org/wiki/List_of_screw_drives

[38] KC Tool. A Brief Guide to Torx and Its Many Variations. https://www.
kctool.com/blog/a-brief-guide-to-torx-and-its-many-variations/

[39] iFixit. Torx Plus: The High-Tech Screw Hiding in
Our Gadgets. 2025. https://www.ifixit.com/News/110702/
torx-plus-the-high-tech-screw-hiding-in-our-gadgets

[40] GlobalSpec. Torx Screw. 2020. https://www.globalspec.com/
industrial-directory/torx_screw

[41] Wikipedia Contributors. Pentalobe screw. Wikipedia. 2013. https://en.
wikipedia.org/wiki/Pentalobe_screw

[42] Fastenerdata.co.uk. Screw Drive and Drivers - Fastener Specifications.
https://www.fastenerdata.co.uk/screw-driver

[43] Zhang, Y., et al. Research progress on displays and optical adhesives for
flexible 3C products. Progress in Organic Coatings, 2024. https://www.
sciencedirect.com/science/article/abs/pii/S0014305724003148

[44] Hindawi. Review of Refractive Index-Matching Techniques of Polymethyl
Methacrylate in Flow Field Visualization Experiments. 2023. https://
www.hindawi.com/journals/ijer/2023/3413380/

[45] Wiley Online Library. Ultraviolet Light Debondable Optically Clear Ad-
hesives for Flexible Displays through Efficient Visible-Light Curing. 2023.
https://onlinelibrary.wiley.com/doi/10.1002/adma.202309891

[46] Nature Communications. Ultraviolet light blocking optically clear adhes-
ives for foldable displays via highly efficient visible-light curing. 2024.
https://www.nature.com/articles/s41467-024-47104-y

[47] Semantics Scholar. Optically clear adhesives for foldable OLED dis-
plays: requirements, failure modes and solutions. 2016. https://www.
semanticscholar.org/paper/30230ac3fffa15e0e92d23c469e7b639b49387f7

75

https://wiha.com/knowledge/screw-profiles/
https://wiha.com/knowledge/screw-profiles/
https://en.wikipedia.org/wiki/List_of_screw_drives
https://en.wikipedia.org/wiki/List_of_screw_drives
https://www.kctool.com/blog/a-brief-guide-to-torx-and-its-many-variations/
https://www.kctool.com/blog/a-brief-guide-to-torx-and-its-many-variations/
https://www.ifixit.com/News/110702/torx-plus-the-high-tech-screw-hiding-in-our-gadgets
https://www.ifixit.com/News/110702/torx-plus-the-high-tech-screw-hiding-in-our-gadgets
https://www.globalspec.com/industrial-directory/torx_screw
https://www.globalspec.com/industrial-directory/torx_screw
https://en.wikipedia.org/wiki/Pentalobe_screw
https://en.wikipedia.org/wiki/Pentalobe_screw
https://www.fastenerdata.co.uk/screw-driver
https://www.sciencedirect.com/science/article/abs/pii/S0014305724003148
https://www.sciencedirect.com/science/article/abs/pii/S0014305724003148
https://www.hindawi.com/journals/ijer/2023/3413380/
https://www.hindawi.com/journals/ijer/2023/3413380/
https://onlinelibrary.wiley.com/doi/10.1002/adma.202309891
https://www.nature.com/articles/s41467-024-47104-y
https://www.semanticscholar.org/paper/30230ac3fffa15e0e92d23c469e7b639b49387f7
https://www.semanticscholar.org/paper/30230ac3fffa15e0e92d23c469e7b639b49387f7


Bibliography

[48] IEEE Xplore. Liquid optically clear adhesives for display applications.
2012. http://ieeexplore.ieee.org/document/6474653/

[49] OAEPublish. Towards the optimal design of optically clear adhesives for
flexible display. 2024. https://www.oaepublish.com/articles/ss.2024.22

[50] IMAPS. A Thermally Enhanced Film Adhesive for Assembling High
Power Density Electronic Devices. IMAPS Journal, 2023. https://www.
imaps.org/

[51] IMAPS. Evaluation on the Mechanical and Conductive Performance of
Electrically Conductive Film Adhesives. Journal of Microelectronics and
Electronic Packaging, 2023.

[52] Zhao, Y., et al. Electrically Conductive Liquid Metal Composite Adhesives
for Reversible Bonding of Soft Electronics. Advanced Functional Materials,
2023. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202304101

[53] Zhang, Y., et al. Plant Oil-Based Supramolecular Polymer Networks and
Composites for Debonding-on-Demand Adhesives. ACS Applied Polymer
Materials, 2019. https://pubs.acs.org/doi/10.1021/acsapm.9b00175

[54] Zhang, Y., et al. Debonding-on-demand adhesives for recycling and re-
using of electronic devices. Materials Horizons, 2025. https://pubs.rsc.
org/en/content/articlelanding/2025/mh/d5mh00468c

[55] Misumi USA. Micro Screws Precision Screws and Snap-Fit Design for
3D Printing. Engineering Guidelines, 2017. https://us.misumi-ec.com/
vona2/mech_screw/M3301000000/M3301140000/

[56] American Society of Mechanical Engineers. Design and Ana-
lysis of Snap-Fit Joints and Micro-Interlocking Metamaterials for
Reworkable Integration. Journal of Electronic Packaging, 2021.
https://asmedigitalcollection.asme.org/electronicpackaging/article/
143/4/041002/1084349/Design-and-Analysis-of-Snap-Fit-Joints

[57] Guo, Y., et al. Mechanical Behavior and Design Optimization of Canti-
lever Snap-Fits for Electronic Enclosures. Materials Design, 2019. https:
//www.sciencedirect.com/science/article/abs/pii/S0261306919301883

76

http://ieeexplore.ieee.org/document/6474653/
https://www.oaepublish.com/articles/ss.2024.22
https://www.imaps.org/
https://www.imaps.org/
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202304101
https://pubs.acs.org/doi/10.1021/acsapm.9b00175
https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00468c
https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00468c
https://us.misumi-ec.com/vona2/mech_screw/M3301000000/M3301140000/
https://us.misumi-ec.com/vona2/mech_screw/M3301000000/M3301140000/
https://asmedigitalcollection.asme.org/electronicpackaging/article/143/4/041002/1084349/Design-and-Analysis-of-Snap-Fit-Joints
https://asmedigitalcollection.asme.org/electronicpackaging/article/143/4/041002/1084349/Design-and-Analysis-of-Snap-Fit-Joints
https://www.sciencedirect.com/science/article/abs/pii/S0261306919301883
https://www.sciencedirect.com/science/article/abs/pii/S0261306919301883


Bibliography

[58] Chen, L., Müller, R. Torque-Optimized Annular Snap-Fits in Portable
Electronics. Journal of Mechanical Design, 2018. https://link.springer.
com/article/10.1007/s00170-018-2856-4

[59] Zhang, Q., et al. Microfabricated Interlocking Metamaterials for Re-
versible Mechanical Bonding. Journal of Microelectromechanical Systems,
2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921234/

[60] Fairphone. Fairphone Repairability and Modular Design.
2023. https://www.fairphone.com/en/2023/12/07/
the-fairphone-5-scores-a-perfect-10-on-ifixit/

[61] Qucox. Google Pixel Buds 2 true wireless earbuds teardown. 2021. https:
//www.qucox.com/google-pixel-buds-2-teardown/

[62] Jorge Martínez Leal, et al. Design for and from Recycling: A Circular
Ecodesign Approach to Improve the Circular Economy. Sustainability, vol.
12, no. 1, 2020. https://doi.org/10.3390/su12239861

[63] Suphichaya Suppipat, et al. A scoping review of design for circularity
in the electrical and electronics industry. RCR advances, vol. 13, 2022.
https://doi.org/10.3390/su12239861

[64] A Comparative Analysis of Polypropylene VS ABS. Carry most. https:
//carrymost.com/polypropylene-vs-abs/

[65] Melanie Baumgartner, et al. Emerging “Green” Materials and Techno-
logies for Electronics. Green Materials for Electronics (pp.1-53), 2017.
10.1002/9783527692958.ch1

[66] Giovana Monteiro Gomes, et al. Design and collaboration strategies for
circular economy implementation across the value chain. Proceedings of
the Design Society, 2024. 10.1017/pds.2024.128

[67] Chris Foresman. Apple’s “Pentalobe” screws lock out easy DIY repair.
iFixit News, January 20 2011.
https://www.ifixit.com/News/14279/apples-diabolical-plan-to-screw-your-iphone

[68] Yiqun Peng, Weidong Li, Yuchen Liang and D.T.Pham. Robotic Dis-
assembly of Screws for End-of-Life Product Remanufacturing Enabled by
Deep Reinforcement Learning. Journal of Cleaner Production, January

77

https://link.springer.com/article/10.1007/s00170-018-2856-4
https://link.springer.com/article/10.1007/s00170-018-2856-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921234/
https://www.fairphone.com/en/2023/12/07/the-fairphone-5-scores-a-perfect-10-on-ifixit/
https://www.fairphone.com/en/2023/12/07/the-fairphone-5-scores-a-perfect-10-on-ifixit/
https://www.qucox.com/google-pixel-buds-2-teardown/
https://www.qucox.com/google-pixel-buds-2-teardown/
https://doi.org/10.3390/su12239861
https://doi.org/10.3390/su12239861
https://carrymost.com/polypropylene-vs-abs/
https://carrymost.com/polypropylene-vs-abs/
10.1002/9783527692958.ch1
10.1017/pds.2024.128
https://www.ifixit.com/News/14279/apples-diabolical-plan-to-screw-your-iphone


Bibliography

2024, 439:140863.
https://doi.org/10.1016/j.jclepro.2024.140863

[69] Meredith W. How to Remove Epoxy: Industrial Methods. Dustless Blast-
ing, 2024
https://www.dustlessblasting.com/blog/how-to-remove-epoxy

[70] Dymax Corporation. Removal of Cured UV Adhesives and Resins.
Technical Bulletin TB096, 2022.
https://dymax.com/content/download/3666/file_archived/tb096_
removal_of_cured_uv_adhesives_and_resins_tb.pdf

[71] BASF. Snap Fit Design Manual: Engineering Guide. Technical Publica-
tion, 2010. https://studylib.net/doc/27602399/basf---ddisplayanyfile

[72] M.Cordella, F.Alfieri, C.Clemm, A.Berwald, Durability of smartphones:
A technical analysis of reliability and repairability aspects. Journal of
Cleaner Production, 2021, 286: 125388.
https://doi.org/10.1016/j.jclepro.2020.125388

[73] Dong, H., Zhang, J., Wang, T., and Zhang, C. Symmetry-Aware Robot
Design with Structured Subgroups. arXiv preprint arXiv:2306.00036, 2023.
https://arxiv.org/abs/2306.00036

[74] Amige Plastics Technology. Polypropylene vs. ABS: Material Properties
Comparison.
https://amgplastech.com/what-is-stronger-polypropylene-or-abs/

[75] Megan A. Brown, Andrew Gruen, Gabe Maldoff, Solomon Messing, Zeve
Sanderson, and Michael Zimmer. Web Scraping for Research: Legal, Eth-
ical, Institutional, and Scientific Considerations. arXiv preprint, October
2024.
https://arxiv.org/abs/2410.23432

[76] Leonard Richardson. Beautiful Soup (HTML Parser). Python Software
Foundation, 2004–. https://www.crummy.com/software/BeautifulSoup/

[77] United Nations University. E-waste Statistics: Guidelines on Classifica-
tions, Reporting and Indicators (UNU-KEYS), 2nd ed., 2018.
https://collections.unu.edu/eserv/unu:6477/RZ_EWaste_Guidelines_
LoRes.pdf

78

https://doi.org/10.1016/j.jclepro.2024.140863
https://www.dustlessblasting.com/blog/how-to-remove-epoxy
https://dymax.com/content/download/3666/file_archived/tb096_removal_of_cured_uv_adhesives_and_resins_tb.pdf
https://dymax.com/content/download/3666/file_archived/tb096_removal_of_cured_uv_adhesives_and_resins_tb.pdf
https://studylib.net/doc/27602399/basf---ddisplayanyfile
https://doi.org/10.1016/j.jclepro.2020.125388
https://arxiv.org/abs/2306.00036
https://amgplastech.com/what-is-stronger-polypropylene-or-abs/
https://arxiv.org/abs/2410.23432
https://www.crummy.com/software/BeautifulSoup/
https://collections.unu.edu/eserv/unu:6477/RZ_EWaste_Guidelines_LoRes.pdf
https://collections.unu.edu/eserv/unu:6477/RZ_EWaste_Guidelines_LoRes.pdf


Bibliography

[78] Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. The PRISMA 2020
statement: an updated guideline for reporting systematic reviews. BMJ,
372, n71, 2021. http://dx.doi.org/10.1136/bmj.n71

[79] Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., Pappas, G. Comparison
of PubMed, Scopus, Web of Science, and Google Scholar: strengths and
weaknesses. The FASEB Journal, 22(2), 338-342, 2008. https://doi.org/
10.1096/fj.07-9492LSF

[80] Oxylabs. Advanced Web Scraping with Python Tactics in 2025. Oxylabs
Blog, 2024. https://oxylabs.io/blog/advanced-web-scraping-python

[81] Kumar, A., Singh, R. Building Robust Data Pipelines: Best Practices
for Error Handling, Monitoring, and Recovery. International Journal of
Computer Trends and Technology, 73(4), 2025. https://doi.org/10.14445/
22312803/IJCTT-V73I4P120

[82] Caetano, F., Viviers, C., Filatova, L., et al. AdverX-Ray: Ensuring X-Ray
Integrity Through Frequency-Sensitive Adversarial VAEs. arXiv preprint,
2023. https://doi.org/10.48550/arXiv.2502.16610

[83] Hui Huang et al., Blind Integrity Verification of Medical Images, 2012.
10.1109/TITB.2012.2207435

[84] IEEE Xplore. Super-Resolution AI-Based Approach for Extracting Agri-
cultural Cadastral Maps: Form and Content Validation. 2023. Available:
10.1109/JSTARS.2025.3530714

[85] Baldé, C. P., Forti, V., Gray, V., Kuehr, R., Stegmann, P. The
Global E-waste Monitor 2014: Quantities, Flows and Resources. United
Nations University, 2015. https://i.unu.edu/media/ias.unu.edu-en/news/
7916/Global-E-waste-Monitor-2014-small.pdf

[86] United Nations University. E-Waste Statistical Guidelines and Classific-
ation Systems. UNU Collections, 2024. https://collections.unu.edu/view/
UNU:6477

[87] Ben Hoyt. Duplicate Image Detection with Perceptual Hashing in Python.
2025. https://benhoyt.com/writings/duplicate-image-detection/

79

http://dx.doi.org/10.1136/bmj.n71
https://doi.org/10.1096/fj.07-9492LSF
https://doi.org/10.1096/fj.07-9492LSF
https://oxylabs.io/blog/advanced-web-scraping-python
https://doi.org/10.14445/22312803/IJCTT-V73I4P120
https://doi.org/10.14445/22312803/IJCTT-V73I4P120
https://doi.org/10.48550/arXiv.2502.16610
10.1109/TITB.2012.2207435
10.1109/JSTARS.2025.3530714
https://i.unu.edu/media/ias.unu.edu-en/news/7916/Global-E-waste-Monitor-2014-small.pdf
https://i.unu.edu/media/ias.unu.edu-en/news/7916/Global-E-waste-Monitor-2014-small.pdf
https://collections.unu.edu/view/UNU:6477
https://collections.unu.edu/view/UNU:6477
https://benhoyt.com/writings/duplicate-image-detection/


Bibliography

[88] Hantao Zhou et al., UniQA: Unified Vision-Language Pre-training for
Image Quality and Aesthetic Assessment. arXiv preprint, 2024. https://
doi.org/10.48550/arXiv.2406.01069

[89] Chengwen Wang, et al. Statistical Dataset Evaluation: Reliability, Diffi-
culty, and Validity. Proceedings of the 2022 International Conference on
Data Science, 2022. https://doi.org/10.48550/arXiv.2212.09272

[90] Y.A. Shichkina et al., Synthesis of the Method of Operative Image Ana-
lysis based on Metadata and Methods of Searching for Embedded Images.
IEEE, 2020. 10.1109/MECO49872.2020.9134145

80

https://doi.org/10.48550/arXiv.2406.01069
https://doi.org/10.48550/arXiv.2406.01069
https://doi.org/10.48550/arXiv.2212.09272
10.1109/MECO49872.2020.9134145

	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives and Questions
	Research Objectives:
	Research Questions:


	Literature Review
	Current State of the Art in Automated Screw Opening
	Machine Vision and AI-Driven Detection:
	Torque-Adaptive Robotic Systems:
	Modular and Multi-Functional End-Effectors:

	Barriers and Enablers for Automated Disassembly
	Connection Elements in bp-sWEEE:
	Screw Types and Usage:
	Adhesive Technologies:
	Snap-Fit and Modular Connection Systems:

	Design Principles in bp-sWEEE:

	Methodology:
	Research Design:
	Systematic Literature Review Method:

	Technical Implementation:
	Web Scraping and Classification System:
	Dataset Validation Framework:
	Automated Evaluation Suite:

	Results:
	Findings from Systematic Literature Review:
	Observations from Web Scraping and X-ray Analysis:

	Discussion
	Interpretation of Results:

	Conclusion



