
Learning and Forgetting for Server Selection in

Mobile Edge-Computing: A Perspective

Andrea Ortiz

Institute of Telecommunications, TU Wien.

Corresponding author(s). E-mail(s): andrea.ortiz@tuwien.ac.at;

Abstract

Mobile Edge Computing (MEC) is an architecture that brings computational
capabilities to the edge of mobile networks. It enables low-latency and efficient
task execution by allowing the Mobile Units (MU) to offload computation tasks
to nearby computing servers. However, server selection in MEC remains an open
and complex challenge due to the non-stationary nature of the system dynam-
ics, where channel conditions, server loads, and resource availability change over
time. Traditional reinforcement learning approaches, while effective for adaptive
decision-making, often assume stationary system dynamics. In this perspective,
we discuss the role of learning and forgetting mechanisms in MEC server selec-
tion, emphasizing the need for adaptive mechanisms that can retain and exploit
relevant experience while discarding outdated information.

Keywords: Mobile Edge Computing, Server Selection, Reinforcement Learning,
Non-stationary systems

1 Introduction

In recent years, Mobile Edge Computing (MEC) has established itself as an effective
architecture to bring computing and storage capabilities to the edge of the network.
In traditional mobile networks, the Mobile Units (MUs) use wireless communication
links to the radio access network. The radio access network is formed by Base Sta-
tions (BSs) and Access Pointss (APs) using different technologies and covering areas
of different sizes, as shown in Fig. 1. The BSs and APs are connected to the core net-
work and the Internet via wired or high-capacity wireless links, e.g., using fiber optics
or millimeter wave technology. The connection to the core network also enables the
provision of cloud computing services that allow the MUs to offload the execution

1



Fig. 1 Main components of a conventional mobile network.

of computationally expensive tasks. Examples of such tasks are health data monitor-
ing [?], gesture and face recognition [?, ?], virtual and augmented reality [?, ?], as
well as the synchronization of digital twin models [?, ?]. However, for low-latency and
high-reliability services, such as health monitoring [?], vehicular communications [?]
or Internet of Things (IoT) [?], offloading tasks to the cloud could violate their strict
latency and reliability requirements. This is due to the fact that cloud computing
relies on data centers that are located far away from the MUs, thus introducing sig-
nificant delays, congestion, and unpredictable latency variations [?, ?]. To overcome
these problems, in MEC, the BSs and APs are equipped with computing and caching
capabilities. As a result, computing services are closer to the MUs and the latency
in the execution of tasks is reduced. Furthermore, MEC improves the system’s relia-
bility by distributing processing loads across the different BSs and APs, minimizing
the dependence on a single centralized cloud, and enabling real-time decision making
with improved fault tolerance. This translates in faster computations, better quality
of experience and more flexibility for network operators and application providers.

The performance of MEC highly depends on the association between MUs, BSs
and APs, and the task offloading schedule, i.e., on the selection of the BS or AP
to be used by each MU for offloading, and the selection of which task to offload at
each time. These decisions are non-trivial due to the dynamic nature of MEC. The
quality of the wireless channels between BSs and MUs vary due to the mobility of the
MUs. Furthermore, the availability of computing resources at the BS depends on the
number of offloading MUs and the particular demands of each task. Moreover, the
server selection and offloading decisions need to be resilient and enable fast adaptation
to abrupt and unforeseen changes like failures and anomalies, temporary blockages or
rapid demand surges.

In this paper, we discuss the problem of BS and AP selection in MEC systems.
Specifically, we consider a MU who sequentially selects BSs and APs for task offload-
ing. The MU decides whether to use the computing capabilities at the edge or to take
advantage of the computing services of the cloud. We argue that in order to enable
fast adaption to abrupt changes in the system, and minimize the latency and energy

2



consumption of the MUs, the BS and AP selection policy at the MUs must strike a bal-
ance between learning and forgetting mechanisms. Learning allows the MU to exploit
past decisions to find the optimal offloading policy according to the network condi-
tions. Forgetting helps the MU to adapt to non-stationary changes, like anomalies, by
selectively discarding outdated and irrelevant data. The challenge in balancing these
two mechanisms lies in the fact that in both of them exists the risk of not fulfilling
the strict requirements of the task, thus compromising the system performance.

2 State of the Art

Research effort has been put into finding BS selection and offloading strategies for
MEC. Numerical optimization and game theoretical methods are used in [?, ?, ?]
under the assumption of complete a-priori knowledge of the system dynamics. These
works aim at minimizing the latency and the energy consumption of MEC systems. As
the resulting problems are often non-convex or even NP-hard, these works investigate
the use of relaxation techniques and heuristic approaches for their solution. The main
advantage of using optimization as well as game theoretical methods is that they
enable the provision of theoretical performance bounds. However, they are usually
computationally expensive and require information which is not known in advance,
which makes them unsuitable for real-time MEC applications.

In order to investigate dynamic MEC systems, recent works have considered the
use of reinforcement learning techniques [?, ?, ?, ?, ?]. Although these works are able
to overcome the unrealistic assumption of complete a-priori knowledge of the system
dynamics, they still rely on simplified assumptions about the characteristics of the
dynamic behaviour of MEC systems. For instance, [?, ?] assume the MEC system is
dynamic but statistically stationary, [?] assumes identical computational capabilities
across BSs, in [?] the load variations in the BSs are modeled as a non-stationary
random process while the quality fluctuations of the wireless channels are ignored and
in [?] the dependency of the BS computing capabilities on the tasks characteristics
is not considered. In [?], a first step into including forgetting mechanisms in MEC is
presented. The authors model the dynamics of the MEC system as statistical non-
stationary and use a fixed time window to detect changes in the average performance
and increase the adaptation speed. Nevertheless, [?] focuses on the interaction of BSs
and MUs and disregards the contribution of cloud computing services.

3 Learning and Forgetting in MEC

3.1 Why Learning?

In MEC, the MU repeatedly decides whether to perform its tasks locally, to offload
them to a BS or AP, or to offload them to a cloud server. The goal of the MU is to
minimize a cost function, whose definition depends on the particular requirements of
each MEC application. Nevertheless, in most cases the cost function is defined as a
linear combination of the latency experienced by the MU and the energy it consumes.
In case the task is performed locally, the latency includes the processing and queuing
latency at the MU. Similarly, the energy corresponds to the processing required for the

3



task execution and the one consumed in idle mode. In case the task is offloaded, the
experienced latency includes the transmission latency for the communication between
the MU and the selected computing server, i.e., BS, AP or cloud server, as well as
the processing, queuing and migration latencies at the MU and the computing server.
The energy consumed by the MU includes in this case, the transmission energy and
the energy consumed in idle mode.

As discussed in Sec. 2, MEC systems are dynamic due to fluctuations in the wireless
channel conditions, the mobility of the MUs, and the varying loads of the BSs, APs and
cloud servers. Therefore, policies for the selection of the computing servers that can
adapt to these variations without compromising the system’s performance are needed.
Reinforcement learning is a suitable tool to obtain such policies1. Using reinforcement
learning, the MU learns, in an online or an offline fashion, the optimal server selection
policy through sequential decision-making. Specifically, the MU builds estimates of
the expected cost associated to offloading tasks to each possible computing server
and the expected cost of local computation. The estimates are built by repeatedly
selecting the different computation options, i.e., offloading to a computing server and
local computation, for task execution and evaluating their performance, e.g., the cost.
In reinforcement learning terminology, MU balances exploration, i.e., trying different
computing servers as well as local computation to evaluate their performance, and
exploitation, i.e., choosing the option that has provided the lowest average cost based
on past experiences. This trade-off ensures that the MU can both discover potentially
better options and leverage the best-known strategy for optimal performance.

3.2 Why Forgetting?

Although using reinforcement learning for computing server selection in MEC enables
the adaptation to dynamic scenarios, traditional reinforcement learning approaches
rely on the assumption that the systems changes in a statistically stationary manner.
This means that the expected cost associated to selecting each of the BSs, APs, cloud
servers or even local computation remains constant over time. Under such assumption,
the MU increases the rate of exploitation as time progresses to ensure the optimal
computing server is chosen often. However, in realistic scenarios, anomalies and failures
can violate the stationarity assumption and change the expected cost associated to
each computing server. In this setting, traditional offline and online reinforcement
learning approaches struggle to adapt to the changes in the expected cost. On the
one hand, when offline reinforcement learning is used, the MU’s offloading policy is
fixed and cannot be changed through real-time updates. On the other hand, when
online reinforcement learning approaches are considered, the adaptation is usually slow
because the rate of exploration is lower, compared to the initial learning phase, and
the MU tends to stick with the exploitation of what it has deemed as the best option.

To enable fast adaptation in statistically non-stationary environments, the MU
must be equipped with forgetting mechanisms that allow it to discard outdated infor-
mation, e.g., outdated estimates of the cost, and prioritize recent experiences when
making offloading decisions. In this way, the MU is able to continuously adjust its

1Note that although we focus on computing server selection for task offloading, reinforcement learning
can also be used for resource allocation in MEC.

4



server selection and task offloading strategy in response to changes in the channel con-
ditions, server loads, and task requirements, thus preventing overfitting to past system
conditions. The main challenge when introducing forgetting mechanisms in MEC is
the definition of outdated. A strict forgetting mechanism might lead to premature loss
of valuable experiences, hindering long-term learning, while a relaxed forgetting mech-
anism could rely too much on outdated information and reduce the MU’s adaptation
capabilities. Furthermore, as the non-stationary behavior of MEC systems is caused
by multiple factor, the rate at which their probability distributions vary might differ
from each other. As a results, context-aware forgetting mechanisms are required.

Common forgetting mechanisms for reinforcement learning include sliding window
experience replay, decay-based forgetting, adaptive decay-forgetting, priority-based
forgetting and change-point detection. Sliding window experience replay uses a fixed-
size temporal window to decide which experiences to use for learning and which ones
to discard. Decay-based and adaptive decay forgetting use a discount factor to grad-
ually reduce the contribution of outdated experiences in the learning. In the former
case, the discount factor is fixed. For the latter, it is dynamically adjusted depending
on the context, e.g., the system conditions. Instead of discarding outdated experiences
uniformly or randomly, priority-based forgetting assigns an importance score to each
stored experience based on factors like the magnitude of the achieved reward, the
temporal relevance or the overall contribution to learning. Experiences with low prior-
ity, for example, outdated or less useful for making offloading decisions are removed.
Change-point detection mechanisms aim at actively looking for changes in the dis-
tribution of the expected cost in order to trigger exploration at MU. In this way,
past experiences are not discarded until a significant shift in the system’s dynamics is
detected, ensuring that valuable experiences are retained when conditions remain sta-
ble. The change-point detection can be done by monitoring variations in metrics such
as latency, server load, or transmission rates to help the MU differentiate between
natural fluctuations and true distributional changes. Once a change is detected, the
MU can adjust its exploration-exploitation balance, prioritizing the collection of new
experiences to learn an updated server selection strategy. Although steps have been
taken to introduce forgetting mechanisms in MEC, see for example [?], research effort
is still needed to identify the main contributing factors for non-stationary behavior in
MEC and to develop adaptive forgetting mechanism that balance performance maxi-
mization with fast reaction to changes. Future research should also focus on scalability,
computational efficiency, and real-time implementation of forgetting mechanisms to
ensure practical deployment in dynamic MEC systems.

Acknowledgements. This work has been funded by the Vienna Science and
Technology Fund (WWTF) [Grant ID: 10.47379/VRG23002].

References

[1] Qiang He, Zhaolin Xi, Zheng Feng, Yueyang Teng, Lianbo Ma, Yuliang Cai, and
Keping Yu. Telemedicine monitoring system based on fog/edge computing: A
survey. IEEE Transactions on Services Computing, 18(1):479–498, 2025.

5



[2] Jiagang Liu, Ju Ren, Yongmin Zhang, Xuhong Peng, Yaoxue Zhang, and
Yuanyuan Yang. Efficient dependent task offloading for multiple applications in
MEC-cloud system. IEEE Transactions on Mobile Computing, 22(4):2147–2162,
2023.

[3] Hongbo Jiang, Xingxia Dai, Zhu Xiao, and Arun Iyengar. Joint task offloading
and resource allocation for energy-constrained mobile edge computing. IEEE
Transactions on Mobile Computing, 22(7):4000–4015, 2023.

[4] Latif U. Khan, Walid Saad, Dusit Niyato, Zhu Han, and Choong Seon Hong.
Digital-twin-enabled 6g: Vision, architectural trends, and future directions. IEEE
Communications Magazine, 60(1):74–80, 2022.

[5] Maximilian Wirth, Andrea Ortiz, and Anja Klein. Risk-aware bandits for digital
twin placement in non-stationary mobile edge computing. In IEEE International
Conference on Communications Workshops (ICC Workshops), pages 13–18, 2024.

[6] Arash Bozorgchenani, Setareh Maghsudi, Daniele Tarchi, and Ekram Hos-
sain. Computation offloading in heterogeneous vehicular edge networks: On-line
and off-policy bandit solutions. IEEE Transactions on Mobile Computing,
21(12):4233–4248, 2021.

[7] Thinh Quang Dinh, Jianhua Tang, Quang Duy La, and Tony Q. S. Quek. Offload-
ing in mobile edge computing: Task allocation and computational frequency
scaling. IEEE Transactions on Communications, 65(8):3571–3584, 2017.

[8] Jianhui Liu and Qi Zhang. Offloading schemes in mobile edge computing for
ultra-reliable low latency communications. IEEE Access, 6:12825–12837, 2018.

[9] Hong Kang, Minghao Li, Lehao Lin, Sizheng Fan, and Wei Cai. Bridging
incentives and dependencies: An iterative combinatorial auction approach to
dependency-aware offloading in mobile edge computing. IEEE Transactions on
Mobile Computing, 2024.

[10] Jiawen Chen, Yajun Yang, Chenyang Wang, Heng Zhang, Chao Qiu, and Xiaofei
Wang. Multitask offloading strategy optimization based on directed acyclic graphs
for edge computing. IEEE Internet of Things Journal, 9(12):9367–9378, 2021.

[11] Tao Ouyang, Rui Li, Xu Chen, Zhi Zhou, and Xin Tang. Adaptive user-managed
service placement for mobile edge computing: An online learning approach. In
IEEE International Conference on Computer Communications (Infocom), pages
1468–1476. IEEE, 2019.

[12] Saeed Ghoorchian and Setareh Maghsudi. Multi-armed bandit for energy-efficient
and delay-sensitive edge computing in dynamic networks with uncertainty. IEEE
Transactions on Cognitive Communications and Networking, 7(1):279–293, 2020.

6


	Introduction
	State of the Art
	Learning and Forgetting in mec
	Why Learning?
	Why Forgetting?
	Acknowledgements



