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Abstract

The indefiniteness of Krein spaces gives rise to substantial complications. For instance,
bounded self-adjoint linear Krein space operators are not well-behaved enough to allow for
an appropriate analogue of the Spectral Theorem. To overcome this, classical literature
imposes the additional assumption of definitizability. In the present work, we extend the
notion of definitizability to tuples of pairwise commuting bounded self-adjoint operators
and formulate the Spectral Theorem, expressed as a joint functional calculus, for defini-
tizable tuples of Krein space operators. The definitizability of a tuple is a significantly
weaker assumption than requiring each operator in the tuple to be definitizable.

The constructed functional calculus will produce the zero operator if applied to a
function that vanishes on the joint spectrum of the respective operator tuple. Moreover,
while the construction of the functional calculus is based on the choice of generators of the
smallest ideal containing all definitizing polynomials of the respective operator tuple, it
will be shown that the resulting functional calculus is not affected by that choice. Finally,
the functional calculus will be compatible with the functional calculus of subtuples via the

canonical projection.
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Introduction

The Spectral Theorem for bounded linear self-adjoint operators on a Hilbert space is
a well-known result, which has been generalized to finite tuples of pairwise commuting
self-adjoint operators; see [Sch12] or Theorem 1.7.7. On the other hand, self-adjointness
does not suffice in the Krein space setting to formulate a Spectral Theorem. Classical
Spectral Theorems for Krein space operators mostly assume definitizability in addition
to boundedness and self-adjointness of the operator; see for example [KP15, SK20]. A
self-adjoint A € Ly(K) for a Krein space (K,[.,.]) is called definitizable if there exists a
so-called definitizing polynomial p € R[z]\ {0} of A, such that [p(A)x,z] > 0 for all x € K.

In the present thesis, we introduce a joint functional calculus for a finite tuple of
pairwise commuting bounded self-adjoint Krein space operators inspired by [Kall7] and
[SK20]. While [SK20] also presented a joint functional calculus, the construction was built
upon the assumption that each operator in the tuple is definitizable. However, we relax this
condition and work with a definitizable tuple Ay, ..., A, of pairwise commuting self-adjoint
operators, that is, there exists p € R[z1,...,z,]\ {0} such that [p(Ai,..., Ay)z,z] > 0 for
all x € K. This definition of definitizability is a natural extension of the definitizability of
normal operators introduced in [Kall7]. In fact, the main result of the present thesis is
a generalization of the functional calculus for 2-tuples, decoded as a normal operator, as

developed in [Kall7] for n-tuples.

We fix a definitizable tuple of pairwise commuting bounded self-adjoint operators A :=
(Aj)?zl € Ly(K)™, where K is a Krein space. Moreover, we denote by Z C Clzy,...,x,)
the smallest ideal containing all definitizing polynomials of A. Due to the Ascending
Chain Condition 1.1.5, there exist definitizing polynomials p1, ..., py, € R[z1,...,x,] that
generate the ideal Z. With the help of p1, ..., pn we will define several embeddings such
as © and = in Section 2.1, which have been first studied in [KP15]. © is a bounded
s-homomorphism defined on a certain subalgebra of L;(K) mapping into Ly(H) for some
Hilbert space H, and Z : Ly(H) — Ly(K) is an injective bounded linear operator. These
embeddings allow us to move back and forth between Krein and Hilbert space setting. An
essential part of our joint functional calculus will be the Hilbert space functional calculus
of the tuple ©[A] := (0(4;))7_; € Ly(H)".

In Section 2.4, we define a function algebra Fa, which will be the domain of the joint
functional calculus. Functions belonging to F4 are defined on o(0[A])UV(Z) C C™, where
V(Z) is the variety of Z and o(O[A]) the joint spectrum of O[A]; see Definition 1.4.6. A
crucial property of ¢ € F4 is that it admits a decomposition (r, f), where r € Clzy, ..., x,)
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CONTENTS

and f : 0(©[A]) — C is a bounded measurable function vanishing on ¢(0O[A]) N V(Z).
Furthermore, polynomials can be embedded naturally into F4 via p — pa; see Proposi-
tion 2.4.16.

For ¢ € Fa admitting the decomposition (7, f), we define the joint functional calculus
by

B(A) = r(A) + = (/de),

where E denotes the joint spectral measure of ©[A] € Ly(H)"; see Theorem 1.7.7. It
will be verified that the choice of the decomposition of ¢ does not affect the functional
calculus. Moreover, we will show that ¢ — ¢(A) constitutes a x-homomorphism satisfying
p(A) =pa(A) for all p € Clzy,...,zy).

The main contribution of the present thesis is a significant generalization of the joint
functional calculus developed in [Kall7]. In [Kall7], the functional calculus was con-
structed for an operator such that the ideal Z C Clz,y| generated by its definitizing
polynomials had a finite codimension, i.e., dim Clz1,...,z,]/Z < oo. This assumption
implies that the variety V(Z) is finite. In contrast to this strong assumption, we only
require the irreducible components of V(Z) to be pairwise disjoint; see Assumption 2.3.1
and Remark 2.3.2.

Moreover, we will see in Section 3.3 that the resulting functional calculus is not affected
by the choice of the generators py,...,pm of Z. This robustness is remarkable since the

embeddings © and =, which are central to our construction, vary depending on the choice

of p1,...,Pm-
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Chapter 1

Preliminaries

1.1 Ideals and Varieties

Throughout this section K shall be an arbitrary field.

Definition 1.1.1. Let R be a nonempty set. If +,- : R x R — R are two binary

operations on R such that
(i) (R,+) constitutes an abelian group,
(i) (R,-) constitutes a semigroup,
(éii) - distributes over +,
then (R,+,-) is called a ring. We call
e an element e € R unity if ex = xe = z. If R contains a unity, (R, +, ) is unital.

e an element x € R in a unital ring (R, +, -) invertible if there exists an element y € R
such that zy = yx = e, where e is the unity. The set of all invertible elements of R
will be denoted by Inv(R).

e (R,+,:) commutative if - is commutative.
If the operations are clear from context, we will write R instead of (R, +, ).

Definition 1.1.2. Let (R, +,) be a ring. A nonempty subset Z C R is an ideal if (Z,+)
is a subgroup of (R,+) and if z € Z,y € R implies xy,yx € Z. An ideal Z C R is called

o proper if T # R.
e mazimal if 7 is proper and Z C 7' for some proper ideal Z’ implies Z = 7.

Definition 1.1.3. By K]z, ..., x,] we denote the ring of polynomials in n variables with

coefficients in K. For a = (a;)I"; € K" and p € K[z1,...,x,], we set p(a) :=p(ai,...,ap).

Lemma 1.1.4. If R is a commutative ring and p1,...,pm € R, then the set

<p17---;pm>:: Zhjpj:hly---;hmER
j=1
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1.1. IDEALS AND VARIETIES

constitutes an ideal in R. We refer to pi,...,pm as generators of (p1,...,pm), which is

the smallest ideal containing p1,...,Pm-

Proof. Given f,g € (p1,...,pm) there exist hq,..., hy, b, ... hl, € R such that

m m
=Y hipj, g=> hip;.
P =1

Therefore,
F4g=> (hj+H)p; € (p1,....pm).
j=1
Given h € R we have .
fh=" (hih)p; € (1., Dm).
j=1
The minimality is clear. O

The following result will be crucial throughout this thesis. A proof can be found in
[CLOO07, p.79].

Theorem 1.1.5 (Ascending Chain Condition). Let (Zy)ren be a sequence of ideals in
Klzi,...,zn]. If Iy € Iyqq for all k € N, then there exists N € N such that Iy = Iy
for all j € N.

Clearly, the Ascending Chain Condition implies the following result.

Theorem 1.1.6 (Hilbert’s Basis Theorem). Every ideal Z C Kx1,...,zy] has a finite set

of generators.

Definition 1.1.7. Given S C K[z, ..., z,] we define
V(S)={z€K":p(z)=0for all pe S},
the wvariety of S. Clearly, V(K[z1,...,2,]) = 0.
Notation 1.1.8. For n,m € Z with n < m, we set [n,m]z :={n,n+1,...,m —1,m}.
The following lemma provides a simple way to analyze the variety of an ideal.
Lemma 1.1.9. Given p1,...,pm € K[z1,...,x,] we have
V((p1,-...pm)) ={z€K":pj(2) =0, j€[l,m]z}.

Proof. For N :={z € K" : pj(2) =0, j € [1,m|z} we have

> hi(2)pi(2) =0, hi,... by €Kz, 2], 2 €N,
=1

<

which means N C V((p1,...,pm)). The converse inclusion is obvious. O
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1.1. IDEALS AND VARIETIES

Definition 1.1.10. Let Z, 7 C Klz1,...,z,] be ideals. We define the sum and product
of T and J as

I+J ={f+9:fel,geT},

-J:= {Zfi.gi:mEN’fla--"fmEIan""?.ngj}-

i=1

Lemma 1.1.11. If Z = (f1,. .., fomy)» T = (91, Imo) € Kx1,...,2,] are ideals, then
I+ J constitutes an ideal satisfying

1+J= <f1a“'7fm17.gl’""gm2>-
Moreover, V(I +J)=V(Z)NV(J).

Proof. By definition Z 4+ 7 is an additive subgroup of K[z1,...,z,]. Given f €Z, g € J,
and h € Kzy,...,z,], we have fh € Z and gh € J as Z and J are ideals. Hence,
(f+9)h=fh+gheZ+ J. Consequently, Z + 7 is an ideal.

Since (f1,..., fmy1,91,- -+, gms) is an ideal that contains both Z and J, we have Z+7 C
(fis-os fmys 91y -+ Gmy)- The other inclusion follows from Lemma 1.1.4.

By Lemma 1.1.9 we have

VZ+T)=V({(fireees s 915 )
={zeK": fi(z) =9;(2) =0, i € [1,m1]z, j € [l,m2]z}
={zeK": fi(2) =0, i€ [1,mi]z} N{z € K" : ¢gj(2) =0, j € [1,ma]z}
=V(IZ)NnV(J).

O

Lemma 1.1.12. If Z = (f1,..., fmy)s T = (91, -+, 9ms) C K[z1, ..., 2,] are ideals then
T -J constitutes an ideal satisfying

T-J = {figj:i€[Lymlz, je[lmalz}).
Moreover, V(Z-J)=V(Z)UV(T).

Proof. We have 0 =0-0€ Z-J. Given l1,ls € N, p1,...,p1,,71,...,71, € Z, and

qis---,qy, 51,5, € J, we have

I s
sz‘%' +Z7“isi €el-J.
i—1 i—1

Additionally, given h € K[z, ..., x,], we have

I I
hY pigi=Y hpiael-J.
i=1

=1 er

Thus 7 - J constitutes an ideal.
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1.1. IDEALS AND VARIETIES

For i € [1,11]z there exist h;1,...,h; ml,hz 1s---s bl €Kry,...,x,] such that

? " ",mo

mi
pZ:ZhZ,JfJJ Q’L Zhljg]
j=1

implying o
1 2
pigi = Y (hashi ) fign-
j=1 k=1
Hence,
A mi mso
S =335 (Lot o
i=1 j=1k=1
belongs to ({figj : i € [1,m1]z,j € [1,m2]z}). We have shown that Z - J is a subset of

({figj -1 € [1,m1]z,j € [1,m2]z}). The converse inclusion follows from Lemma 1.1.4.

Finally, by Lemma 1.1.9

V(Z-J)=V({figj:i€[l,m]z,j€ [Lmz]z}))

={z€K": fi(z)g;(2) = 0, i € [Lmi]z, j € [1,ma]z}

={zeK": fi(z) =0V ygj(z ) 0, i€[l,mi]z, j€[l,mez}

={zeK": fi(z) =0, i€ [1,mi]z} U{z € K" : g;j(2) = 0, j € [1,ma]z}
=V(@)uV(J). O

Remark 1.1.13. It is easy to check that the intersection of ideals from a ring again
constitutes an ideal. Moreover, Z - 7 C Z N J for ideals Z and J.

Definition 1.1.14. Let R be a unital ring. Two ideals Z, J C R satisfying Z+ J =R

are called comazimal.

Notation 1.1.15. Let Z be an ideal in K[z1, ..., z,]. We are going to denote the elements
from the factor algebra Klzy,...,z,]/Z by

Pl :=p+Z, peKxy,..., z,
A proof for the following result can be found in [GW22].

Theorem 1.1.16. (Chinese Remainder Theorem) Let R be a unital ring and Iy, ..., Iy,

C R pairwise comazximal ideals. For T := ﬂ;n:l Z;, the mapping
) R/T — R/ x--- X R/Ly,
rlz = (g, iz,
constitutes a ring-isomorphism.

Lemma 1.1.17. If we have R = K[x1,...,xy,] in the setting of Theorem 1.1.16, then ¢

1s linear.
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1.1. IDEALS AND VARIETIES

Proof. Since @ is a ring homomorphism, it is additive with respect to the ring addition,
which coincides with the vector space addition in K[zi,...,z,]. In order to show the
homogeneity, let p € K[zy,...,z,] and A € K. Writing the multiplication in a ring as -

and the scalar multiplication without a symbol, we have
A-p=Ap,
for A € K and p € K[zy,...,z,] if we interpret A as an element of K[zy,...,z,]. This
implies
e plz) = @([X - pl) = ¢(N2) - ¢(lplz) = (W), - (Plz,) 1,
= (X -plz,)7n, = A (lplz,) |-y = Aellplz)- m

Lemma 1.1.18. Let R be a unital commutative ring. If 71, Ts C R are comazximal ideals,
then Ty N1y =14 - Io.

Proof. The inclusion Zy N Zs D 7 - Zo follows immediately from the definition of ideals;
see Remark 1.1.13. For the other inclusion, suppose x € Z; NZy and let a € Z7,b € Z5 be
such that a +b = 1. We derive x = xa + zb € Z; - I». O

The following theorem is often referred to as the weak Nullstellensatz. A proof can be
found in [CLOO7, p.170].

Theorem 1.1.19. Let K be an algebraically closed field and T C Klzy,...,xy,] an ideal.
IfV(Z) =0, then T =K[z1,...,z,)].

Lemma 1.1.20. Ideals Z;,Zy C Clx1,...,x,] have disjoint varieties if and only if they

are comazximal.

Proof. According to Lemma 1.1.11, we have V(Z; + Zy) = V(Z1) N V(Z2). Hence, by
Theorem 1.1.19, V(Z1) NV (Zy) = 0 yields Zy + Zo = Clx1, ..., x,). On the other hand, if
7,75 are comaximal, then V(Z; + Zo) = V(Clz1,. .., z,]) = 0. O

Notation 1.1.21. Given N € N and ideals Rq,..., Ry C Clzy,...,x,], we write
N
HR. = (((R1-R2)-R3)---)-Rn
j=1

for the iterative product of the ideals R1,..., Ry in the sense of Definition 1.1.10. This
notation makes sense as multiplication of ideals is associative, which is evident from
Lemma 1.1.12.

Lemma 1.1.22. Let N € N and Ry,..., Ry C Clxy,...,x,] be ideals such that their

varieties are pairwise disjoint. For every k € [1, Nz we conclude

k k
ﬁRj =R (1.1)

j=1 7=1
k -k
1% H&») = Uj:1V(Rj). (1.2)
j=1

J
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1.2. PRIMARY DECOMPOSITION OF AN IDEAL

Proof. The case N = 1 is trivial. We show (1.1) and (1.2) for all k¥ € [2, N]z by
induction. The case k = 2 is covered by Lemma 1.1.18 and Lemma 1.1.12. Assuming
N > 2 suppose (1.1) and (1.2) hold true for some k € [2, N — 1]z. We conclude

k k
VRp) NV [ [IRi | = V(Rex) n | JV(R)) = 0.
j=1 i=1

By Lemma 1.1.20, Ry and H§:1 Rj are comaximal. By Lemma 1.1.18,

k+1 (1.1) k k+1
ij = HRj mRk-l—l:HRj'
j=1 j=1 j=1
Finally, Lemma 1.1.12 yields
k+1 k (12) k+1
VITIR | =V TR | vV(Rer) =" VR
j=1 j=1 j=1

1.2 Primary Decomposition of an Ideal

Definition 1.2.1. Let Z C R be an ideal in a commutative unital ring R and =,y € R.
e If 7 is proper and xy € Z Az & T implies y € Z, then Z is called prime.

o If 7 is proper and zy € T Az ¢ T implies y* € T for some k € N, then T is called

primary.
e If 7 is proper and z* € T for some k € N implies € Z, then Z is called radical.
e The radical of Z, denoted v/Z, is the set

{x:xkeIforsomekEN}.

Clearly, T C VZ.
Lemma 1.2.2. IfZ C K[zy,...,x,] is an ideal, then VI constitutes an ideal.

Proof. Given f,g € VT there exist k,I € N such that f* ¢! € Z. For every term in the
binomial expansion
k+l1 k+1
k+l _ i k+l—i
(f+9) —Z( ) )fg ,
1=0
cither i > k or k +1 —i > 1. Hence, (f + ¢)**" € Z and, in turn, f +¢g € VZ. If
h € Klxy,...,z,], then (hf)k = hEf*¥ € . Hence, hf € VT. O

Lemma 1.2.3. IfZ C K[z1,...,z,] is a primary ideal, then VI is a prime ideal.

Proof. Let T be primary and f,g € K[zy,...,x,] be such that fg € VZ and f ¢ V. By
the definition of the radical, there exists & € N such that (fg)* € Z. Since f¥ ¢ T and T
is primary, there exists [ € N such that ¢" € Z. We conclude ¢ € V7. O
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1.2. PRIMARY DECOMPOSITION OF AN IDEAL

Recall the following facts; see for example [GW22, 3.3.2.4].
Facts 1.2.4. Let R be a commutative unital ring.
(i) Anideal Z C R is maximal if and only if R/Z constitutes a field.
(ii) Every maximal ideal is prime.

Lemma 1.2.5. If Z C K[zy,...,x,] is an ideal such that /T is mazximal, then T is

primary.

Proof. For f,g € K[z1,...,2,] we assume fg € Z and f ¢ Z. In order to show that Z is
primary, it suffices to demonstrate that [g]z is nilpotent in R := K[z1,...,z,]/Z. Note

that K[z1,...,2,] and R are commutative unital rings. Since v/Z is maximal,
Klz1, ..., 20 /VT = (K21,...,2,)/T)/(VI/T) = R//{0}

constitutes a field. Thus the ideal \/{0} of all nilpotent elements is a maximal ideal in R.
Since every prime ideal in R contains /{0}, 1/{0} is the only prime ideal in R. As every

maximal ideal is prime, \/{0} is the only maximal ideal in R. Since [g]7 is a zero divisor,
([g]z) must be a proper ideal. Hence, ([g]z) C 1/{0}. O

Proposition 1.2.6. V(Z) = V(v/T) holds true for every ideal T C K[z, ..., zy].

Proof. The inclusion V(Z) 2 V(V/I) is a consequence of T C VZ. If (a;)", € V(VI),
then there exists p € v/Z such that p(ay,...,a,) # 0. By the definition of a radical, p* € T

for some k € N. Thus, (a;)I", € V(Z). O
Definition 1.2.7. A primary decomposition of an ideal Z C Klx1, ..., z,] is an expression
of 7 as a finite intersection of primary ideals Q1,..., Q,,. We call

o O1,...,9,, the primary components.

e /Q; the associated prime of Q;, j € [1,m]z.
A primary decomposition is called minimal if the following conditions are met.
(i) The associated primes v/Qj, ...,/ Q,, are pairwise distinct.
(7) The primary components satisfy Q; 2 ﬂz;j Qy, for j € [1,m]z.
A proof of the following theorem is provided in [CLO07, p.211].

Theorem 1.2.8 (Lasker-Noether). Every ideal T C Klxy,...,x,] admits a minimal pri-

mary decomposition.

The following theorem is one of the two results concerning uniqueness of minimal

primary decompositions. A proof appears in [BWK93, p.362] and [Atil6, p.52].

Theorem 1.2.9. Let 7 C Klz1,...,zy,] be an ideal. Any two minimal primary decompo-
sitions of T have the same number of primary components and the same set of associated

primes.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.2. PRIMARY DECOMPOSITION OF AN IDEAL

Definition 1.2.10. Let Z C K|z1,...,z,] be an ideal. We refer to the unique associated
primes of a minimal primary decomposition of Z as primes belonging to Z. We say that a

prime P belonging to Z is
e isolated if P C P implies P = P’ for any P’ belonging to Z.
o embedded if P is not isolated.

We cite the following result in Example 1.2.12. A proof using polynomial division in
K[z1,...,zy] can be found in [CLOO07, p.201].

Proposition 1.2.11. For (a;)j_; € K" the ideal
(x1—a1,..., oy —ap) CK[zq,..., 2]
s mazimal.

The example below demonstrates that the minimal primary decomposition is not

unique in general.

Example 1.2.12. Consider the ideal (z2, zy) C K[z,y]. We have
(%, zy) = (z) N (2*,y) = (2) N (2%, 2y, 7).

The ideal (z) is prime and thus primary. Both (x2,y) and (22 2y, y?) have the radical
(x,y), which is maximal by Proposition 1.2.11. By Lemma 1.2.5, (2,y) and (22, zy, y?)

are primary. Thus the ideal (22, zy) has two distinct minimal primary decompositions.

Notice that in Example 1.2.12, we could vary the primary component with an embed-
ded associated prime to obtain a different minimal primary decomposition. The following
result is the second uniqueness theorem regarding minimal primary decompositions and
states that the primary component with an isolated associated prime is unique. A proof
can be found in [BWK93, p.364], [Atil6, p.54], and [BGS24, p.242, T.7.12]

Theorem 1.2.13. If 7 C K|x1,...,x,] is an ideal and P is an isolated prime belonging
to T, then there exists a primary ideal @ such that in any minimal primary decomposition

of T the primary component with the associated prime P is Q.

Corollary 1.2.14. Let T C K[z1,...,zy,] be an ideal. If the primes belonging to Z have

pairwise disjoint varieties, then the minimal primary decomposition of T is unique.

Proof. Note that none of the primes belonging to Z has an empty variety due to The-
orem 1.1.19. Since the primes belonging to Z have pairwise disjoint varieties, they are
pairwise incomparable with respect to C. Hence each prime belonging to Z is isolated.

The uniqueness of the minimal primary decomposition follows from Theorem 1.2.13. [J

The minimal primary decomposition of an ideal generated by a univariate polynomial
corresponds to the prime factorization of the polynomial. Since C[z] is a principle ideal
domain, finding a minimal primary decomposition of an ideal in C[z] boils down to finding

its greatest common divisor and factorizing it.

10
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Proposition 1.2.15. For f € C[z] let a,...,a; € C and my,...,m; € N be such that
f= H§:1($ —a;)™ is the prime factorization of f, where ay,...,a; are pairwise distinct.
Then l
(f) =iz —a)™)
i=1

is the unique minimal primary decomposition of (f).

Proof. First, note that V({(z — a;)"™)) = {a;}; see Lemma 1.1.9. Since ay,...,q; are
pairwise distinct, the varieties of the ideals ((z — a;)™),i € [1,]z, are pairwise disjoint.

Thus we can apply Lemma 1.1.22 and obtain

l

((z —a)™) = [[{(z = a)™).

i=1

<.
I ) ~
—

We know from Lemma 1.1.12 that the ideal Hizl((az —a;)™) is generated by the product
of the generators of each ideal, which is f = Hﬁzl(a: —a;)™.

For a fixed i € [1,1]z the radical of ((z —a;)™) is (x — a;), which is maximal according
to Proposition 1.2.11. By Lemma 1.2.5, ((x — a;)™) is primary. Finally, we obtain the
minimality of this primary decomposition from the fact that aq, ..., a; are pairwise distinct

and the uniqueness from Corollary 1.2.14. O

1.3 Joint Spectrum in Commutative Unital Algebras

In the present section, we will define the joint spectrum of a tuple of elements of a com-
mutative unital algebra. The goal is to show that the joint spectrum is nonempty and

compact for tuples of elements of a commutative unital Banach algebra.

Definition 1.3.1. Let A # {0} be a vector space over C. If A is endowed with an

associative bilinear map
- Ax A — A,
. (a,b) — a-b,

then A together with - is called algebra. Note that an algebra is a ring with a vector space

structure. Thus we will employ the terms defined in Definition 1.1.1.

e We call a linear subspace B of an algebra A a subalgebra if B is closed under the

multiplication.

e If A is endowed with a norm ||.|| which satisfies
lzyll < Nzl ly]l for all 2,y € A,

then we call A a normed algebra. If in addition (A, |.||) is a Banach space, A is

called a Banach algebra.

e If a normed algebra A contains a unity e, then we say e is normed if |le|| = 1. If a
normed algebra contains a normed unity, then we call A a unital normed algebra. If

additionally A is a Banach algebra, A is called unital Banach algebra.

11
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Definition 1.3.2. If an algebra A is additionally endowed with a mapping .* : A — A
such that

(i) (z*)* ==z for all x € A,
(ii) Mz +y)* =Az*+y* forall ;,y € A, A € C,
(@i) (zy)* = y*a* for all z,y € A,
then A is called x-algebra. If A is also a Banach algebra and .* satisfies
loll = o]l and flaa*]| = al%, a €A,
then A is called C*-algebra. An element a in a *-algebra A is called
e normal if a*a = aa™.
o self-adjoint if a = a*.
e ynitary if A is unital and aa* = a*a = e.

Lemma 1.3.3. Let A be a normed algebra. If we endow A x A with the product topology,

the multiplication is continuous.

Proof. Let (a;,b;)ien be a sequence in A x A that converges to (a,b) with respect to the
norm ||(x,y)|| = max{||z|],||y||} for x,y € A. One easily derives a; — a and b; — b. In

particular, (a;);cn is bounded and therefore
lasbs — abl| = |lai(b; — b) + (a; — a)bl| < [lailll|b; — b]| + lla; — all[|]
yields ||a;b; — abl| — 0. O
Definition 1.3.4. Let A be an algebra.
e A subalgebra I of A is called ideal if ai,ia € I for all a € A and i € I.
e An ideal I is called proper if I # A.
e A proper ideal I is called mazimal if I C J implies I = J for a proper ideal J.

Remark 1.3.5. Note that while an algebra is a ring, the definition of a ring-ideal in
Definition 1.1.2 and algebra-ideal in Definition 1.3.4 do not coincide in general. While an
algebra-ideal is always a ring-ideal, the converse is not universally true. This is because
an algebra-ideal is a subalgebra and therefore additionally requires the closedness under
scalar multiplication. In this section, we will use the term ideal to refer to algebra-ideals
as in Definition 1.3.4.

A special case where these two definitions coincide is when A is a unital algebra.
Indeed, consider a ring-ideal I in a unital algebra A with unity e. Due to the bilinearity

of the multiplication, we have
at=afe-i)=(ae)-i€l, 1€l aecC.

Thus [ is closed under scalar multiplication.

12
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Example 1.3.6. The ring of polynomials Clzi,...,z,] is an algebra. Endowed with
the mapping p — p”, where p”(z1,...,2,) := p(T1,...,%n), Clz1,...,2,] constitutes a

x-algebra. Since it is unital, the two notions of ideals coincide for Clzy, ..., x,].
Definition 1.3.7. For every x in a unital algebra A with unity e, we denote by
pa(x):={AeC: (z—Xe) € Inv(A)}
the resolvent set of x and by
oalw) = C\ pa(e) = (A€ C: (2 — Ae) ¢ Tnv(A)}
the spectrum of . If the algebra is clear from context, we will write p(z) and o(x).
See [WKB25, 6.4] for a verification of the following facts.
Facts 1.3.8. Let A be a unital Banach algebra and a € A. Then
(i) Inv(A) C A is open.
(ii) o(a) C C is compact.
(ii1) p(a) C C is open.
A proof of the following result is given in [Kal23, Satz 1.1.16].

Theorem 1.3.9 (Gelfand-Mazur). For a unital Banach algebra A such that Inv(A) =
A\ {0}, we have dim A = 1.

Lemma 1.3.10. In a unital algebra A any proper ideal I satisfies INInv(A) = (. If A is
a commutative unital algebra, then a € A is invertible if and only if a & I for any proper

ideal I.

Proof. If a € Inv(\A), then there exists b € A such that ab = e, where e is the unity. Thus
for any ideal I with a € I, we have e = ab € I, which means I = A.

If A is commutative and a ¢ Inv(A), then aA = {ax : x € A} constitutes a proper
ideal. O

Lemma 1.3.11. If A is a unital Banach algebra, then the closure of a proper ideal is a

proper ideal.

Proof. Let I be a proper ideal and a € A. The closure of a subspace is also a subspace.
Since the multiplication by a is continuous, we have a-cl(I) C cl(al) C cl(I) and, similarly,
cl(I)-a Ccl(I). Hence I constitutes an ideal.

Since I is proper, we obtain I C A\ Inv(A) from Lemma 1.3.10. Inv(A) being open
yields cl(Z) C cl(A\ Inv(A)) = A\ Inv(A). Since Inv(A) > e is nonempty, cl(I) is
proper. O

13
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Lemma 1.3.12. Let A be a normed algebra and I a closed proper ideal. A/I endowed
with the quotient norm
lla+ I := inf [|a + |
el

constitutes a normed algebra. If in addition A is a unital normed algebra (Banach algebra),

so is A/I. Moreover, the canonical projection

- A = A/
AT a — a-+1,

constitutes an algebra homomorphism.

Proof. As I is closed, A/I constitutes a normed space with the quotient norm; see
[WKB25, 2.4.9]. If A is a Banach space, so is A/I; see [WKB25, 2.4.9]. Given a,b € A

and 7,7 € I, we have
lla +dllllb + 7]l = lI(a +9)(b + )| = llab + aj +ib +ij || > [lab + I].
I
€

Thus, ||ab+ I|| < ||a+ I||||b+ 1.

If A is a unital normed algebra, we have
0# e+ 1l <lle+Illlle+ 11,

implying 1 < |le+||. On the other hand, we have ||e+I|| < |[e40]|] = 1. By the definition

of the operations on A/Z, 74 /7 constitutes an algebra homomorphism. ]

Proposition 1.3.13. If A is a commutative unital Banach algebra, then every mazximal

ideal in A has codimension one.

Proof. Let I C A be a maximal ideal. By Lemma 1.3.11, I is closed. According to
Lemma 1.3.12, A/I constitutes a unital Banach algebra. Since A is a commutative unital
ring, we identify A/I as a field. Hence, Inv(A/I) = (A/I)\ {0}. By Theorem 1.3.9 the

dimension of A4/I, which equals the codimension of I, is one. O

Definition 1.3.14. Let A, B be algebras. We call a mapping ¢ : A — B an algebra
homomorphism if it is linear and satisfies ¢p(xy) = ¢(x)op(y) for all z,y € A.

e If an algebra homomorphism is bijective, it is called an algebra isomorphism.

o If A B are x-algebras and ¢ : A — B is an algebra homomorphism satisfying ¢(z*) =
¢(z)* for all © € A, then ¢ is called a *-homomorphism.

Definition 1.3.15. Let A be an algebra. A linear functional m : A — C is multiplicative
if m # 0 and
m(xy) = m(x)m(y) for all x,y € A.

We denote by M 4 the Gelfand space of A, which is defined to be the set of all multiplicative

functionals on A.

14
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Remark 1.3.16. A multiplicative linear functional is nothing but a non-trivial algebra

homomorphism into C.
Lemma 1.3.17. If A is a unital algebra and m € M4, then m(e) = 1.

Proof. First of all, m(e) # 0 because m(e) = 0 would imply m(x) = m(z)m(e) = 0 for all

x € A. From m(e) = m(e)m(e) we infer m(e) = 1. O

Proposition 1.3.18. Let A be a commutative unital Banach algebra. If I is a mazximal

ideal, then there exists a multiplicative functional my € M4 such that kermy; = 1.

Proof. By Proposition 1.3.13, A/I has codimension one and e + I # 0. Therefore, the
mapping ¢y : Ae + I — X constitutes a linear bijection from A/I onto C. Furthermore, it
is multiplicative. Hence ¢; is an algebra isomorphism.

We set my := ¢y omyr, where 74,7 is as in Lemma 1.3.12. As a composition of two
algebra homomorphisms, m; is also one. ker ¢; = {0} together with kerm 4,y = I implies

kerm; = I. In particular, my # 0. ]

Corollary 1.3.19. The Gelfand space of a commutative unital Banach algebra is non-

empty.

Proof. Let A be a commutative unital Banach algebra. Since {0} is a proper ideal, there
exists a maximal ideal I in A due to Zorn’s lemma. Proposition 1.3.18 then guarantees

the nonemptiness of M 4. O

Definition 1.3.20. Let A be a commutative unital algebra with unity e. Moreover, let
x = (z;)", € A"

e x is called invertible in A™ if there exists y € A" such that

-y = szyz = €.
i=1
The set of all invertible elements of A" will be denoted by Inv(A™).
e Interpreting A € C" as an element of A" by A = (\je)!_; € A", the set
pa(@) ={AeC":(x—A) € Inv(A™)}

is called joint resolvent set of @, where the subtraction of tuples is to be interpreted

as a pointwise subtraction. The set
oa(@) = C"\ pa(@) = {A € C: (@ — ) ¢ Inv(A")}

is called joint spectrum of x. If the algebra is clear from context, we will write p(x)
and o(x).

Remark 1.3.21. Let A be a commutative unital algebra and « = (z;)}_; € A". If there

exists j € [1,n]z such that z; is invertible in A in the classical sense, then @ is invertible.
~1

j = €.

Indeed, y = (y;)i~; with y; = 0 for i # j and y; = x]-_l satisfies ¢ -y = x;z

15
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Notation 1.3.22. If A, B are algebras and ¢ : A — B an algebra homomorphism, then

for & € A™ we will employ the abbreviation

¢la] = (o(xi))iz (€ BY).

Proposition 1.3.23. Let A be a commutative unital Banach algebra. For a = (a;)!'_, €

A" and X € C" the following statements are equivalent.
(i) A€ o(a).
(ii) IT:={(a—X)-b:be A"} is a proper ideal in A.
(@i) There exists m € M4 such that m[a] = A.

Proof. 1t is clear that, in any case, I is the ideal generated by a; — A, @ € [1,n]z.

(i) < (2): The ideal I is proper if and only if e € I. This is equivalent to (a—\)-b # e
for all b € A", which is the definition of @ — A not being invertible and, in turn, equivalent
to XA € o(a).

(i) = (u4): If J O I is a maximal ideal, the mapping m; € M 4 as in Proposition 1.3.18
satisfies I C J = kerm. For k € [1,n|z and by, := (6; re);_, we have

mJ(ak) — Ak = mJ(ak — )\ke) = 'mJ((a — )\) . bk) = 0.
—_———
el
Consequently, mj[a] = A.
(ii) < (4ii): Let m € M4 be such that m[a] = A. Given b € A" we have

n

m((a—A)-b) = Z(m(ai) — m(Xie)) m(bi) = 0,

showing that I C kerm C A. O

Corollary 1.3.24. Let A be a commutative unital Banach algebra. Given a € A" the

joint spectrum o(a) is nonempty.

Proof. Let m € My # (); see Corollary 1.3.19. By Proposition 1.3.23, ma] is an element

of the joint spectrum o(a). O

Lemma 1.3.25. Let A be a commutative unital *-algebra. If x = (z;)7, € A" is a tuple
of self-adjoint elements, then the joint spectrum o(x) is invariant under the component-

wise complex conjugation.

Proof. Given XA = (\;)}_; € p(x) there exists y € A" such that

n

Z(ﬂii —\i)yi = e.

i=1
Applying the involution yields
n * n n o
= (S0t 20m) =S = St
i=1 i=1 i=1
which demonstrates that A belongs to p(x). We conclude that p(z), and in turn o(x), is

invariant under z — Z. OJ
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Lemma 1.3.26. Let A be a commutative unital normed algebra. Given x,y € A™ the

mapping C" 3 X — (x — ANy € A is continuous.

Proof. Without loss of generality, we assume y; # 0 for some i € [1,n]z. Given an arbitrary
€ > 0let X\, up € C" be such that

mas g = Ai| <0 —e(Z HmH)

i€[l,n]z

Then we have

[(x =Ny —(z—p)yl =

<Dl = Al
=1

< ma -\ <
< ax. |1 — il - ZH.%H €.

O]

Proposition 1.3.27. Let A be a commutative unital Banach algebra. If x = (z;)7, € A",

then the joint spectrum o(x) is compact and satisfies o(x) C o(x1) X -+ X o(zy).

Proof. Suppose A = (\)_, € o(x1) X -+ X o(zy). Without loss of generality, we assume
A1 € p(z1) and conclude 1 — A1 € Inv(A). Hence (x — A) € Inv(A") and A € p(x).
We derived o(x) C o(x1) X -+ X o(xy). Due to this inclusion, it suffices to demonstrate
that p(x) is open in C™ in order to prove the compactness of o(x). Given A € p(x) there
exists y € A" such that (x — A)y = e. Since p — (& — p)y is continuous according to
Lemma 1.3.26, there exists § > 0 such that for any p € C" with max;c( ), | — Ai| <6
we have
le = (x —pyll <1.

This implies absolute convergence of

(e —(x—p)y) = z2¢€ A
k=0
From
(e—(@-pwy)z=(c—(x—wy) Y _ (e (x—py)"
k=0
=Y (e-(@-py)=z—c¢,
=1

we obtain

n

e=((&—py)z=> (v —my>

i=1
meaning that p belongs to p(x). Consequently, the open J-ball around A with respect to

the maximum metric is contained in p(x), which implies the openness of p(x). O
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1.4. JOINT SPECTRUM OF OPERATORS

1.4 Joint Spectrum of Operators

Given a Banach space X, Ly(X) constitutes a unital Banach algebra, which is only com-
mutative for dim X = 1. We will make use of commutants to define the joint spectrum of
a tuple in Ly(X).

Definition 1.4.1. Let A be an algebra and C' C A. The commutant C’ of C' is defined as
C'={reA:xc=cxforalceC}.

For © € A" we set @’ := {x; : i € [1,n]z}’. In particular, 2’ = {x}’ for all z € A. The set
C" .= (C") is called the bicommutant of C.

Facts 1.4.2. Let A be an algebra. If C,Cy,Cy C A, then
(1) CcCC”,

(i) Cy C Cy implies Cf D CY,

(i1i) C" = C",

as can be seen for example in [Kal23, 1.2].

Lemma 1.4.3. Let A be an algebra. For any C C A the set C' constitutes a subalgebra.
If additionally A is a normed algebra, then C' is closed.

Proof. For ¢ € C' we define the linear

wc:{A A,

r = IC—CI.

Since we can express C’ as

C' = ﬂ ker 9., (1.3)

ceC
it is a linear subspace. Given a,b € C’ and ¢ € C, abc = acb = cab shows ab € C'. We
conclude that C’ is a subalgebra.

If A is a normed algebra,
[Pe(@)[| = llze — cxl} < 2le[l[lz]], ceC,
verifies that ¢, is continuous. Due to (1.3), C” is closed. O

Lemma 1.4.4. Let A be a x-algebra. If C C A is a subset that only contains self-adjoint

elements, then C' constitutes a x-subalgebra.

Proof. We know from Lemma 1.4.3 that C’ constitutes a subalgebra. Given z € C" we
have z*c* = (cx)* = (zc)* = ¢*z* for all ¢ € C. Since every element in C is self-adjoint,
zte . O

Proposition 1.4.5. Let A be a unital Banach algebra. If C C A satisfies C C C',
then C" is a commutative unital Banach algebra. Moreover, Inv(C") = Inv(A) N C" and

ocn(x) = oa(x) for all x € C".
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1.5. KREIN SPACE

Proof. By Lemma 1.4.3, C” is a Banach algebra. From C C C’ we infer C" = C" O C”
meaning that C” is a commutative Banach algebra. Since the unity commutes with every
element, C” is also unital.

Given ¢ € Inv(A)NC” and 2 € C", zc = cx implies ¢ 'o = ¢!, Hence, ¢! € 0" =
C”. We obtain Inv(C") = Inv(A) N C” and, in turn, oo (x) = o4(x) for all z € C”. O

Definition 1.4.6. Let X be a Banach space and A = (4;)!"; € Ly(X)" a tuple of pairwise

commuting operators.

e The tuple A is called invertible if A is invertible as an element of (A”)™ in the sense
of Definition 1.3.20.

e We define the joint resolvent set of A as pr, (x)(A) := par(A) and the joint spectrum
of A as oy, (x)(A) :=0ar(A); see Definition 1.3.20.

The following result is an immediate consequence of Corollary 1.3.24 and Proposi-
tion 1.3.27

Corollary 1.4.7. Let X be a Banach space. If A = (A;)}_, € Lp(X)™ is a tuple of pairwise

commuting operators, then the joint spectrum o(A) C C" is nonempty and compact.

1.5 Krein Space

Definition 1.5.1. Let X be a vector space over C. If the mapping [.,.] : X x X — C
satisfies
(i) M +y,z] = ANz, 2] + [y, 2], (Linearity in the first argument)
(ii) 23] = [0 9] (Hermitian)

for x,y,2z € X and A € C, then it is called an inner product and (X, [.,.]) an inner product

space. The inner product [.,.] is called

e positive semidefinite if [x,xz] > 0 for all x € X and negative semidefinite if —|[.,.] is

positive semidefinite.

e positive definite if [z,xz] > 0 for all x € X \ {0} and negative definite if —|.,.] is

positive definite.
e indefinite if it is neither positive nor negative semidefinite.
Furthermore,
e we call z,y € X orthogonal, denoted by x L y, if [z,y] = 0.
e we call A, B C X orthogonal, denoted by A | B, ifa L bfor alla € A and b € B.

e for A C X we denote by At := {z € X :[x,a] =0 for all a € A} the orthogonal

companion of A.
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1.5. KREIN SPACE

e we call z € X isotropic if {x} L X. By (X,[.,.])° we denote the set of all isotropic

elements, which we call the isotropic part of (X,][.,.]).
e we call (X, [.,.]) nondegenerate if (X, [.,.])° = {0} and degenerate otherwise. Corre-
spondingly we call the inner product [.,.] nondegenerate/degenerate.

The following theorem will be used to characterize Krein spaces.

Theorem 1.5.2. Given an inner product space (X,[.,.]), the following statements are

equivalent.

(a) There exist two linear subspaces X4 and X_ such that X L X, X =X4+ X,
and both (X4, ].,.]) and (X_,—].,.]) are Hilbert spaces.

(b) There exists a linear mapping J : X — X satisfying J*> = I such that X provided
with
<:1:)y>]:: [‘]xay]v %?JEX,

constitutes a Hilbert space.

(¢) There exists a positive definite inner product (.,.) on X such that (X,{.,.)) is a

Hilbert space and the associated norm ||| satisfies

2l = sup |[z,4]l, xe€X.
lvli<t

We prepare the proof of this theorem with several auxiliary results.

Lemma 1.5.3. Let (X,][.,.]) be an inner product space. If J : X — X is the mapping
satisfying (b) of Theorem 1.5.2, then

o [Jx,y| =[x, Jy] for all x,y € X.
e J is self-adjoint and unitary with respect to the Hilbert space (X, {.,.)s).

Proof. (.,.); and [.,.] being Hermitian, we obtain

[J:U,y] = <33,y>J = <yaI>J = [‘]ya .T] = [:Ea Jy]’ z,y € X,

and hence
<J95a?/>J:[J2~’U,y]:[Jﬂf,Jy]:<$aJy>Ja 'T?yer

showing that J is self-adjoint with respect to the Hilbert space (X, (.,.)s). The existence of
J~! and the equality J = J~! are direct consequences of J? = I. Therefore, J* = J = J !,

which means that J is unitary and self-adjoint. O
Lemma 1.5.4. Let (X,[.,.]) be an inner product space. If there exists a norm ||.|| on X
satisfying
[z = sup [[z,y]|, z€X, (1.4)
lyll<1
then (X, [.,.]) is nondegenerate and

[z, 9]l < llzllllyll, 2y e X.
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1.5. KREIN SPACE

Proof. 1f (X,[.,.]) were degenerate, there would exist g € X \ {0} such that [zg,y] =0
for all y € X, implying the contradiction

07 [lzoll = sup |[zo,y][ = 0.
lyll<1

If ||.|| satisfies (1.4), then

)
[z, y]| = |lyll ‘ [:c ” <yl sup |[z,2]| = [lylll|l=], =,y € X\ {0}.
llyll zl<1

O]

Finally, for the proof of Theorem 1.5.2, we will employ the following result. A proof
can be found in [WKB25, 3.2.6 Satz].

Theorem 1.5.5 (Lax-Milgram). Let (H,(.,.)) be a Hilbert space. If [.,.] is a sesquilinear
form on H satisfying |[z,y]| < C|lz||||yll, =,y € H, for some C > 0, then there exists a
unique bounded linear operator G € Ly(H) with |G| < C such that

[z, y] = (Gz,y), z,y€H.

Proof of Theorem 1.5.2. (a)=-(b). Given subspaces X, X_ satisfying (a), we have X N
X_ = {0}. We denote by P;,P_ the projections onto X along X_ and vice versa.
J := Py — P_ satisfies

J?=P}—P.P —P P +P?=P}+P2=P +P =1
Given z,y € X we have

<:an>J = [‘]:Evy] = [Per - P*l‘aPer —{—P,y]
= [Pyx, Pry] — [P_z, P_y].

Thus (.,.)s is positive definite on X and coincides with the inner product on the direct
sum of the Hilbert spaces (X4, [.,.]) and (X_,—[.,.]).

(b)=(a). Given J with the properties described in (b), we set

1 1
Jp = §(I+ J), Jo = 5([— J).
We conclude
Jp=1—-J_ (1.5)
and
1 1
JJ+:§J(I+J):§(J+I):J+, (1.6)
JJ_:%J(I—J):%(J—I):—J_. (1.7)
Because of ) ) )
Ji:Z(I+J)(I+J):Z(I+2J+J2):§(I+J):J+
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1.5. KREIN SPACE

the operator J constitutes a projection. Since J is self-adjoint with respect to (X, (.,.).s)
according to Lemma 1.5.3, J§ = 1/2(I+J)* = 1/2(I+J) = J,. Hence, J is an orthogonal
projection with respect to (X, (.,.)s). Dueto (1.5), X4 := J4 X and X_ := J_X are closed

subspaces of the Hilbert space (X, (.,.)) satisfying X = X, +X_ and Xy L/, X_.
Given z € X4 and y € X_ we have
(L6)
0=(z,y)5 = [Ja,y] =" [2,y]
showing X4 1 j X_.
Given z,y € X_ and employing J* = J = J?, we obtain
_[xay] = —[J_LE‘, J—Z/]
1
= 1 Clagl + L)+ [ ) — [, T4)
1
= Z (_<Jx73/>J + <«T,y>J + <J‘T7 JZ/)J - <xa JZ/)J)
1
=5 (=Uz,9)s +{z,9)J)
a1
= 5 (<$7y>-] + <l‘,y>J) = <33,y>J.
Since X_ is a closed subspace of (X, (.,.)s), (X_,—[.,.]) constitutes a Hilbert space. Sim-

ilarly, using (1.6) instead of (1.7), we can show that (X4, [.,.]) is a Hilbert space.

(b)=(c). Let J : X — X satisfy the conditions in (b). Due to the Cauchy-Schwarz
inequality, the norm ||z||; := \/(x, z) s satisfies
[(Jz,y) gl < Jzlls, zyeX, [lyls=1,

where equality prevails if Jz and y are linearly dependent. We obtain

[Jally = sup [(Jz,y);]
lylls<1

Since J is unitary according to Lemma 1.5.3, we have ||z||; = ||Jz|;. Therefore,

lzly =zl = sup |[(Jo,y)s| = sup |[J%z,y]] = sup |[z,y]l.
lylls<1 lylls<1 lylls<t

(¢)=(b). Let (.,.) be the positive definite inner product as in (c¢). According to
Lemma 1.5.4 the inner product [.,.] is a sesquilinear form that satisfies the requirements
of Theorem 1.5.5 (Lax-Milgram) for the Hilbert space (X, (.,.)). Therefore, there exists a
bounded linear operator J on (X, (.,.)) with ||J|| < 1 such that

[z,y] = (Ja,y), =yeX.
By assumption

[zl = sup [[z,y]| = sup [(Jz,y)| <[|Jz| <|lz]l, =€ X,
lyli<1 lyl<t
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1.5. KREIN SPACE

where the first inequality is a consequence of the Cauchy-Schwarz inequality. Hence, J
is isometric with respect to ||.|| and, in consequence, with respect to (.,.), which implies

J*J = I. Moreover, [.,.] and (.,.) being Hermitian yields

(Ja,y) = [z,y] = [y, 2] = (Jy, 2) = (z, Jy).
Thus J is self-adjoint, and we obtain J? = J*.J = I. Finally, we have
(@,y) = (Jz,y) = [Jo,y], @,y€X.
O

Definition 1.5.6. An inner product space (X, [.,.]) satisfying one of the equivalent state-

ments in Theorem 1.5.2 is called Krein space. If (X, ].,.]) is a Krein space, then

e a pair of subspaces X and X_ with the properties in Theorem 1.5.2 (a) is called

fundamental decomposition;

e a linear mapping J : X — X satisfying the condition in Theorem 1.5.2 (b) is called

fundamental symmetry;

e a norm |.|| on X with the properties in Theorem 1.5.2 (c) is called fundamental

norm.

Remark 1.5.7. The proof of Theorem 1.5.2 shows that the class of fundamental decom-
positions, the class of fundamental symmetries, and the class of fundamental norms of a
Krein space are in bijective correspondences. In particular, for any fundamental norm ||.||

on a Krein space (X, [.,.]), there exists a fundamental symmetry J such that

2]l = VA, 2)s = V[Jz,2], =€ X,

and for any fundamental symmetry J, there exists a fundamental decomposition X, X_

with associated projections P, P_ such that J = P, — P_.

Remark 1.5.8. Every Hilbert space is a Krein space with the identity as fundamental
symmetry. In fact, the identity is the only fundamental symmetry since, by Remark 1.5.7,
the class of fundamental decompositions and the class of fundamental symmetries are in
bijective correspondence and a Hilbert space (H,(.,.)) only has the trivial fundamental

decomposition H, {0}.

A somewhat intuitive way to understand Krein spaces is to think of them as the com-
plex and arbitrarily dimensional analogues of the Minkowski space. The Minkowski space
is a four-dimensional pseudo-Euclidean space that serves as a description of spacetime in

the absence of gravity, for example in Special Relativity.
Example 1.5.9. Consider the complex analogue (C%, [.,.]) of the Minkowski space, where
-1

[ﬁvy] = xTAyv T,y € (C47 A= 0

S = O O

0
0
0
1

o O = O
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1.6. OPERATORS ON KREIN SPACES

The linear J := A satisfies J2 = I and
(x,y)y = [Ja,y] = 2" JT Ay =2 Iy, z,yeC’,

defines a positive definite inner product. Clearly, (C%,(.,.) ;) constitutes a Hilbert space.

Thus, J is a fundamental symmetry which witnesses that (C%,[.,.]) is a Krein space.

Theorem 1.5.10. Let ||.||1 and ||.||2 be two complete norms on the nondegenerate inner
product space (X, [.,.]), such that [.,.] is continuous with respect to each norm. Then ||.||1

and ||.||2 are equivalent norms.

Proof. We will show that
ol = max lal;, = € X, (18)
7=1,2

is equivalent to ||.||;, 7 = 1,2. If (2 )nen is a Cauchy sequence in X with respect to ||.||,
then, due to ||z|| > [|z]|;, * € X, j = 1,2, it is also a Cauchy sequence with respect to
I|.Il;, 7 = 1,2. Let y; be the limit of (z,),en with respect to ||.||;, 7 = 1,2. Since the inner
product is continuous with respect to both |.|[; and |[|.||2, we have

lim (2, 2] = [y;,2], z€X, j=1,2.

n—oo

(X, [.,.]) being nondegenerate, we conclude from [y; —y2, z] = 0 for all z € X that y; = ya.
By (1.8), y1 is also the limit with respect to ||.||. In particular, ||.|| is complete.

For a fixed j = 1,2 this means that for every sequence (zy)nen in X, such that there
exists a limit with respect to both ||.||; and .||, these limits coincide. This statement is
equivalent to the closedness of the graph of the identity mapping id; : (X, ||.||) = (X, [.|l;)-
By the closed graph theorem id; : (X, ||.||) = (X,].]|;) is a homeomorphism, showing that

||.|| and ||.||; are equivalent. O
Corollary 1.5.11. Any two fundamental norms on a Krein space are equivalent.

Proof. As aresult of Lemma 1.5.4, property (c) of Theorem 1.5.2 implies the continuity of
the inner product with respect to any fundamental norm together with its nondegeneracy.

Applying Theorem 1.5.10 to any two fundamental norms completes the proof. O

From now on, we will equip every Krein space with the norm topology of a fundamental

norm.

1.6 Operators on Krein Spaces

Definition 1.6.1. Let (Ky,[.,.]1) and (Ko, [.,.]2) be Krein spaces and let ||.||; and ||.||2 be
fundamental norms on each Krein space, respectively. For a linear operator A : 1 — Ko

we define the operator norm with respect to ||.||; and ||.||2 as

A
= sup 1Al

€ [0, +o0]
ceki\fo} Nzl

and say that A is bounded if || A|| < +o00. By Ly(K1, K2) we denote the space of all bounded

linear operators from Ky to Ko. In case K1 = Ky, we will write Ly(K1).
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1.6. OPERATORS ON KREIN SPACES

Since by Corollary 1.5.11 a different choice of fundamental norms results in an equiva-
lent operator norm, the boundedness of a linear A : K1 — K2 is independent of the choice

of fundamental norms.

Proposition 1.6.2. Let (K1, [, .]1), (Kq,].,.]2) be Krein spaces. Given A € Ly(K1,K2)
there exists a unique operator AT € Ly(Ko, K1) satisfying

[A$,y]2 = [.%',A+y]1, T e Kla Yy e Ks. (19)

Moreover, we have ||Al| = |A™]|, where the operator norms in Ly(K1,Ks) and Ly(Ko, K1)
are constructed with respect to fized fundamental norms ||.|1 and ||.||l2 on (Ki,].,.]1) and

(Ko, [.,.]2), respectively.

Proof. Let J; and Jy be fundamental symmetries of (Ky,[.,.]1) and (Kq,][.,.]2), respec-
tively. Let A* be the Hilbert space adjoint of A with respect to the Hilbert spaces
(K1, (s )0)s (Kay () g)- AT = J; A* J5 satisfies

[Az, ylo = (S Az, y) 5, = (x, A" Jay) g, = [J1z, A% Doyl = [, ATyl1, 2 €Ki,y € Ko,

and, in turn, (1.9). The uniqueness of A™ follows from the nondegeneracy of (K1, [.,.]1).
From ||A|| = ||A*|| and the fact that J; and Jo are unitary with respect to (K, (.,.).s,)

and (Kq, (.,.)s,), respectively, we obtain
IAT] = A A" L]l < (|7l A% [172]l = [[A]l- (1.10)

Furthermore, nondegeneracy of (Ko, [.,.]2) yields A = A™*. Thus (1.10) applied to AT

implies ||A|| = [[ATT] < ||AT||. By Remark 1.5.7 any fundamental norm is associated
with a fundamental symmetry. Thus, ||A|| = ||A"|| for any pairs of fundamental norms on
(K1, [ 1) and (K, [ J2). O

Definition 1.6.3. Let (Ki,[.,.]1) and (K2,[.,.]2) be Krein spaces and A € Ly(Kq, K2).
The unique bounded operator AT € Ly(K2, K1) satisfying (1.9) is called the Krein space
adjoint of A.

Remark 1.6.4. In the case that (K1, [.,.]1) and (K2, [.,.]2) are Hilbert spaces, the Hilbert
space adjoint and the Krein space adjoint of A € Ly(K1, K2) coincide according to (1.9).

Definition 1.6.5. Let (K, [.,.]) be a Krein space and A € Ly(K). We call A
e normal if A commutes with A™.
o self-adjoint if A= AT,
e positive if A is self-adjoint and satisfies [Az, z] > 0 for all € K.

Facts 1.6.6. Let (Ky,].,.]1), (Ko, ].,.]2), and (Ks,[.,.]3) be Krein spaces. Given A, B €
Lb(lCl,ICQ), Ce Lb(]CQ,]Cg), and \ € C, we have

o Att = A [t =T,

o (A+AB)* = At + \B+,
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1.6. OPERATORS ON KREIN SPACES

o (CA) = ATCT,
Lemma 1.6.7. Let (Ky,].,.]1) and (Ka,][.,.]2) be Krein spaces. For every A € Ly(K1,K2)
(ran A)* = ker A¥.

Proof. From the definition of the orthogonal companion and the nondegeneracy of a Krein

space we obtain

(ran A)* = {z € Ky : [z, Ayla = 0,y € K1}
= {l’ € s [AJra:,y]l =0,y € /C1}
= {33 €Ky Atx = O} =ker AT,

O

In [Kall7] a new notion of definitizability for normal operators was introduced. We
extend this definition to finite tuples of pairwise commuting self-adjoint Krein space op-

erators.

Definition 1.6.8. Let (K,[.,.]) be a Krein space. A tuple A = (4;)7_; € Ly(K)" of
pairwise commuting self-adjoint operators is called definitizable if there exists a polynomial
p € Clzy,...,x,] \ {0} such that p(Ai,...,A,) € Ly(K) is a positive operator. Such a
polynomial p is called definitizing polynomial of A.

The joint spectral theorem for finite tuples of pairwise commuting definitizable self-
adjoint operators was formulated in [SK20], where a definitizable operator is an operator
that is definitizable as a 1-tuple in the sense of Definition 1.6.8. Definition 1.6.8 however
does not exclude the possibility of a definitizable tuple (Aj)’;:l of self-adjoint operators,
where a subtuple (A;)jen, N C [1,n]z, is not definitizable. Hence considering a “definiti-
zable tuple” as in Definition 1.6.8 rather than a “tuple of definitizable operators” enables

us to work in a more general setting.

Proposition 1.6.9. Let (K,[.,.]) be a Krein space and A = (Aj);?zl € Ly(K)" a defini-
tizable tuple of operators. If we denote by T C Clxy,...,x,] the smallest ideal that con-
tains all definitizing polynomials of A, then there exist finitely many definitizing polyno-
mials q1,...,q € Rlz1,...,2,] of A such that T = {(q1,...,q). In particular, the variety

V(Z) C C" is invariant under the componentwise complex conjugation.

Proof. We construct an ascending chain of ideals contained in Z inductively. For some
definitizing polynomial p; of A, we define Z; := (p1). Given Z, we choose p,11 as a
definitizing polynomial of A such that p,+1 € Z,, if such a polynomial exists and set

Ipyr = <p1, e apn+1>-

If such p, 11 does not exist, Z, 11 := Z,,. According to the Ascending Chain Condition 1.1.5
there exists N € N such that (p1,...,pn) =Zn =Z.
Recall that p (z1,...,2,) = p(T1,...,Tn), p € Clx1,...,2,]. Given p € Clx1,...,z,],

B U T i
2 >y PIm - 2i

PRe -
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1.7. SPECTRAL THEORY IN HILBERT SPACES

are elements of R[z1,...,x,] such that

D = PRe + iPmm- (1.11)
A being a tuple of self-adjoint operators implies

p(A) =p(AT, ..., AT =p(Ay,...,A)T =pA)T. (1.12)

n

If p is a definitizing polynomial of A, p(A) is self-adjoint. Therefore, (1.12) yields p7* (A) =
p(A) and, in turn, pre(A) = p(A) and pim(A) = 0. Hence, if pre,pmm # 0, they are
definitizing polynomials of A; see Definition 1.6.8. Because of (1.11),

G = {pjpo:J €L, Nz} U{pjp, : 4 € [L.N]z} CRz1,..., 0]

generates Z. Therefore, G\ {0} # ) is a set of real definitizing polynomials that generate
T.
Since 7 has a set of generators in Rlx1, ..., z,], we derive from Lemma 1.1.9 that V()

is invariant under componentwise complex conjugation. ]

Lemma 1.6.10. Let (K,][.,.]) be a Krein space and P € Ly(K) a positive operator. Then
there exists a Hilbert space (H,(.,.)) and an injective T € Ly(H,K) such that TTT = P.

Proof. We define a positive semidefinite inner product on K by [z,y]p := [Pz,y|. Fac-
torizing K by its isotropic part N := (K, [.,.]p)° yields the pre-Hilbert space (K/N, (.,.)),
where (z + N,y + N) := [z, y]p is well-defined.

Denoting by (H,(.,.)) the Hilbert space completion of (C/N,(.,.)), we can interpret

the canonical projection

K — K/N,
VI
r — x4+ N,

as a mapping into H. Given a fundamental norm ||.|[x on K we have
*
w23, = (r2, m2) = [Pz,2] < ||Pallclzllc < [IP|ll=]k,

where % holds true due to Lemma 1.5.4, proving 7 € Ly(K, H). Weset T := 7+ € Ly(H,K)

and derive from the continuity of (.,.)
ker T = (ranm)* = (tan7)" = H* = {0}.
Hence, T is injective. The nondegeneracy of a Krein space and
[TT x,y] = (T"2,TTy) = (x+ N,y + N) = [Pz,y], =,y€Kk,

yield TT+ = P. O

1.7 Spectral Theory in Hilbert Spaces

The main result here will be Theorem 1.7.7, the joint spectral theorem for pairwise com-
muting tuples of self-adjoint Hilbert space operators. It motivates the main result of the

present thesis and plays a key role in its proof.
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1.7. SPECTRAL THEORY IN HILBERT SPACES

Definition 1.7.1. We denote by B°(Q) the C*-algebra of complex-valued bounded &-

measurable functions on 2 endowed with pointwise algebraic operations and the norm

|0]loo == sup,eq |¢(z)|. If the o-algebra is the Borel o-algebra, we will write B(£2).
Furthermore, for compact 2 we denote by C(2) the C*-algebra of continuous complex-

valued functions on €2 endowed with pointwise operations and ||. ||oc-

Definition 1.7.2. Let 2 be a set endowed with a o-algebra & and H a Hilbert space. If
E : 6 — Ly(H) is such that

(i) E(A) is an orthogonal projection for all A € &,
(1) E(0) =0 and E(Q) =1,
(i) E(A1NAg) = E(A1)E(Ag) for A1, Ag € G, and
(iv) for pairwise disjoint A,, € & we have

E(UAn> =) E(A,)

neN neN

in the sense of pointwise convergence,
then E is called spectral measure for (2, &, H).

We first recall the spectral theorem of a bounded self-adjoint operator on a Hilbert
space; see [WKB25, Chapter 7].

Theorem 1.7.3. Let (H,(.,.)) be a Hilbert space and A € Ly(H) self-adjoint. Denoting
by B the Borel o-algebra on o(A), there exists a unique spectral measure E : B — Ly(H),

called the spectral measure of A, such that

A= / LAE().
Moreover, given T € Ly(H), the following statements are equivalent.
(i) TA = AT.
(it) TE(A) = E(A)T for all A € B.
(i#) T ([ $dE) = ([ ¢ dE)T for all ¢ € C(o(A)).
(v) T ([ $dE) = ([ $dE)T for all ¢ € B(o(A)).

Definition 1.7.4. Let (,(.,.)) be a Hilbert space and €1, s be sets endowed with o-
algebras &1, Sy, respectively. We say that the spectral measures E; : &; — Ly(H), i = 1,2

commute if
EQ(AQ)El(Al) = El(Al)EQ(Ag), A1 € 61, Ay € Go.

Lemma 1.7.5. Let (H,(.,.)) be a Hilbert space. If (Ap)}_, € Ly(H)"™ is a tuple of pair-
wise commuting self-adjoint operators, then the tuple (Ej)p_, of corresponding spectral

measures commaute pairwise.
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1.7. SPECTRAL THEORY IN HILBERT SPACES

Proof. Let By, denote the Borel o-algebra on o(Ay). Given A; € B, A;A; = AjA; yields
AEj(Aj) = Ej(Aj)A; which, in turn, implies E;(A;)Ej(Aj) = Ej(A))Ei(A;) for any
Aj; € Bj, A; € B;; see Theorem 1.7.3. O

The following theorem from [Sch12, Theorem 4.10] defines a product spectral measure

of pairwise commuting spectral measures.

Theorem 1.7.6. Let (H,(.,.)) be a Hilbert space. For k € [1,n]z let Qi be a locally
compact Hausdorff space which has a countable base of open sets and Ey, : By, — Ly(H) a
spectral measure defined on the Borel o-algebra By, of Q.. If the spectral measures (Ey)}l_,
commute pairwise, then there exists a unique spectral measure E on the Borel o-algebra B

of the product space 1 X --- X €y, satisfying
E(Al X -+ X An) = El(Al) cee En(An), Ak e By, ke [1,77,]2.
We will refer to E as the product spectral measure of (Ey)p_;.

We are going to formulate a result analogous to Theorem 1.7.3 for a tuple of pairwise
commuting self-adjoint operators. For a (spectral) measure p and a measurable function
T, we will refer to the (spectral) measure A +— u(T71(A)) as po T~

Theorem 1.7.7. Let (H,(.,.)) be a Hilbert space. If A = (Ay)p_, € Ly(H)" is a tuple of
pairwise commuting self-adjoint operators, then there exists a unique spectral measure E
defined on the Borel o-algebra B of Q := (A1) X --- x 0(Ay,) such that

A = / mdE, k€ [1,77,]2, (1.13)
Q
where . denotes the projection onto the k-th coordinate. In addition, E satisfies
/ 6 By — / pomudE, ke [l,nlz ¢cBo(Ay), (1.14)
o(Ag) Q

where Ey, denotes the spectral measure of Ai. Moreover, for T € Ly(H), the following

statements are equivalent.

(i) TAy, = AT for all k € [L,n]z.

(ii) TE(A) = BE(A)T for all A € B.
(iii) T ([ ¢ dE) = ([ $dE)T for all ¢ € C().
(iv) T ([ ¢dE) = ([ ¢ dE)T for all ¢ € B().
We will refer to E as joint spectral measure of A.

Proof. By Lemma 1.7.5, (E})}!_; commute pairwise. According to Theorem 1.7.6 there
exists a unique product spectral measure E of (Ej);_,. Without loss of generality we
will verify (1.14) for k = 1. Let f € H. Note that (E(.)f, f) and (E1(.)f, f) constitute

non-negative measures. Denoting by B; the Borel o-algebra on o(A;),

E(A x 0(As) x - x 0(A)) = E1(A), A€ By,
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1.7. SPECTRAL THEORY IN HILBERT SPACES

yields E o ;! = By. Thus, for ¢ € B(0(A;)) we obtain

<< / ¢>dE1> f,f> - / o d(E()]. )
o(Ar) o(Ar)

_ / $d(E()f, f)onh)
o(Ar)

= [somawrn={([oomar) 11).

Due to the polarization identity in (H, (.,.)), we obtain

/ ¢dE1:/¢OW1dE
o(Ar) Q

and, in turn, (1.13) by choosing ¢(t) =

Concerning uniqueness, let E' be a spectral measure on {2 that satisfies (1.13). For
k € [1,n]z it is straightforward to check that E' o m, ! is a spectral measure on o(Ay).
From (E'om, '(.)g,h) = (E'(.)g,h) om;. ", g, h € H, we infer

/ td(E'on,;l)(t):/wk dE’:Ak:/ £ B (D).
o(Ag) Q o(Ayg)

From Theorem 1.7.3 we conclude E), = Eloﬂ'k_l for k € [1,n]z. Given Ay € By, k € [1,n]z,

we have

E’(Al X X An) / ]].Alx XA dE,

/ dE'
Q

k=1
= HE/(W;Zl(Ak)) =]]E
k=1 k=1

According to Theorem 1.7.6, E' must be the product spectral measure of (Ey)}_;.

The statements (7i), (73i), and (iv) are equivalent for any spectral measure defined
on a Borel o-algebra of a compact Hausdorff space; see [WKB25, 7.1.13]. (7) is a trivial
conclusion from (). From (i) we obtain that T' € Ly(H) commutes with p(A) = [ pdE for
allp € Clzy,...,x,). Note that Clxy,...,z,] as a set of functions on € is a point separating
and nowhere vanishing subalgebra of C'(£2). Furthermore, as Q C R", Clxy,...,z,] is
closed under f — f. By the Stone-Weierstrass theorem C[z1,...,z,] as a set of functions

on ) is dense in C(€2). Since the bounded linear mapping

' foe T(fgfdBE) = (JofdE)T
satisfies V|c(,,....z,) = 0, We obtain ¢ = 0. Thus, (i) implies (i1i). O
Corollary 1.7.8. Let (H,(.,.)) be a Hilbert space, A = (Ay)}_, € Ly(H)" a tuple of
pairwise commuting self-adjoint operators, and Ay = (Ax)ken, N C [1,n]z, a subtuple of

A. We denote by mn : R™ — RN the canonical projection (zx)?_, = (zx)ken. If E and
En are the joint spectral measures of A and Ay, respectively, then we have EOWJQI = FEpn.
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1.7. SPECTRAL THEORY IN HILBERT SPACES

Proof. Let Ay C o(Ag), k € [1,n]z, be Borel subsets such that Ay = o(A) for k €
[1,n]z \ N. Denoting by |N| the cardinality of N, let m : [1,|N|]z — N be an increasing

enumeration of N. Because of

Eow&l(Am(l) X X Apay) = E(Ar X X Ay)

E(A1) - E(An)

= E(An@) - E(AnN))
By (A (1) X X D),

the uniqueness of product spectral measures guarantees Ey = F o 7TN O

Definition 1.7.9. Let (X, (.,.)) be a Hilbert space and E a spectral measure on the Borel
o-algebra B of a topological space 2. The support of the spectral measure E is defined as

suppE :={z € Q: E(U) # 0 for all open neighbourhood U of z} .

Remark 1.7.10. If the topology on € has a countable basis, then '\ supp F is the largest
open subset @ satisfying E(Q) = 0; see Definition 1.7.2, (iv).

Remark 1.7.11. We can extend a joint spectral measure E of a pairwise commuting

tuple of self-adjoint operators A € Ly(H)" to the Borel o-algebra of R™ by setting

E(A) := E(ANsupp E).
Hence we will often interpret the joint spectral measure to be defined on the Borel o-
algebra on R".

The next result establishes a connection between the joint spectrum of operators and

the spectral measure.

Proposition 1.7.12. Let (H,(.,.)) be a Hilbert space and A = (Ap)}_, € Ly(H)" a tuple
of pairwise commuting self-adjoint operators. Then the joint spectral measure E of A
satisfies

supp F = o(A).

Proof. Let A € supp E and assume A € p(A). We find B € Ly(H)™ such that B(A—X\) =
IIF0<e< (D, 1Bi||) ", then A € supp E implies E(B.(A)) # 0. Hence, there exists
0# f eran E(B.(A\)) € H. Given A € R" such that AN Bc(X\) = 0 we have

(E(A)f. f) = (E(A)E(B.N) £, f) = 0.

=0

Hence, for k € [1,n]z we conclude
1Ak — M) FI12 = / 2 — Mel? B @), f)
- / M B @) < 30,
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1.8. DIAGONAL TRANSFORM ON KREIN SPACES

which yields the contradiction

Ifll=1B(A—=X)fll <> IBellll(Ax — M) fIl < (Il fz I Bell < I£1]-
T k=1 k=1
21

For the converse, let A € R™ \ supp E. For k € [1,n]z,

Ty — Mg

T lsuppE(:c)W
2

constitutes a bounded measurable function on R". If we define B = (By,)}'_; by

T — Ak
Bii= [ Luppi(@) S dE@). ke (Lol
2

then Remark 1.7.10 implies

(A=X)B =) (A, —A\)By
k=1

& T — >\I<:
_ ; / (2 — M) dE(x) / Lo (@) [ B (2)

" (g — 9
~ [ @) 3 M dE(z)

k=1

z/ﬂsuppEdE:/ME:I.

Hence, A € p(A). O

1.8 Diagonal Transform on Krein Spaces

In the present section, we are going to introduce a x-homomorphism that maps Krein
space operators to Hilbert space operators. Any vector space mentioned in this section

will be over C.

Definition 1.8.1. Let X,Y be vector spaces. We call a subspace T' < X X Y linear

relation between X and Y. Given a linear relation T" between X and Y, we define
e the domain of T by domT := {z € X : (z;y) € T for some y € Y},
e the range of T by ranT := {y € Y : (z;y) € T for some z € X},
o the kernel of T by ker T := {x € X : (z;0) € T'},
o the multi-valued-part of T by mulT :={y €Y : (0;y) € T}.
A linear relation between X and X will be called a linear relation on X.

Remark 1.8.2. The graph of any linear operator is a linear relation. Any linear relation

T with mul 7" = {0} is the graph of a linear operator defined on dom 7'
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1.8. DIAGONAL TRANSFORM ON KREIN SPACES

Definition 1.8.3. Given vector spaces X, Y, Z, linear relations S, T < X xY, R<Y x Z,
and « € C, we define

o S+ T :={(ziy1+y2) € X XY : (z3m1) €S, (z392) € T}.

o aT :={(z;ay) e X xY : (z;y) € T}.

o Tl i={(y;2) €Y x X : (z;y) € T}

o RS:={(z;2) e X xZ:(z;y) €S, (y;2) € R, for some y € Y}.
Simple calculations show that these sets are linear relations.

Definition 1.8.4. Let X,Y be vector spaces and T': X — Y a linear operator. We define

the mapping
TxT XxX — Y xY,
(a;0) — (Ta;Th).

Facts 1.8.5. Let X,Y be vector spaces and A < X x X, B<Y xY. IfT: X —-Yisa
linear operator, then

(i) T x T constitutes a linear operator.

(ii) (T xT)A)={(Ta;Th) : (a;b) € A} <Y x Y.
(iii) (T x T)"Y(B) = {(a;b) : (Ta;Th) € B} < X x X.

Lemma 1.8.6. Let X, Y be vector spaces and A< X x X, BL<Y xY. IfT:X =Y is

a linear operator, then
(T x T)(A) =TAT™', (T xT)"(B)=T"'BT,

where the products on the right-hand sides are relational products as in Definition 1.8.3

with T being interpreted as its graph. In particular, T need not be invertible as an operator.

Proof. We will show the second equality, as the first equality can be shown in a similar
manner. If (a;b) € (T x T)~1(B), then there exists (x;y) € B such that (Ta; Th) = (z;y).
Hence (a;x) € T, (z;y) € B, and (y;b) € T, which yields (a;b) € T~'BT.

If (a;b) € T~1BT, there exist x,y € Y such that (a;z) € T, (2;y) € B, and (y;b) €
T—1. Hence (Ta; Th) = (z;y) € B, which implies (a;b) € (T x T)~Y(B). O

The following theorem from [KP15, Theorem 5.8] enables us to construct a s-homomor-
phism from a subalgebra of L;(K) into a subalgebra of Ly(#), where K is a Krein space
and H a Hilbert space.

Theorem 1.8.7. Let (H,(.,.)) be a Hilbert space and (K,|.,.]) a Krein space. If T €
Ly(H,K) is an injective operator, then
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1.8. DIAGONAL TRANSFORM ON KREIN SPACES

constitutes a bounded x-homomorphism. Hereby, ©(I) = [,O(TTT) =TT, and
ker©® = {C € (I'T") :ranC C kerT™"}.

(TTH) C Ly(K) and (TTT)" C Ly(H) denote the commutant of TTY and TTT, respec-
tively.

The next lemma from [KP15, Lemma 5.11] introduces an operator that maps Hilbert

space operators to Krein space operators.

Lemma 1.8.8. Let (H,(.,.)) be a Hilbert space and (K,[.,.]) a Krein space. If T €

Ly(H,K) is an injective operator, then

= . Lb(H) — Lb(IC)7
o D +— TDTT,

constitutes an injective bounded linear operator. Moreover, = maps (T1TT) C Ly(H) into
(TT*) C Ly(K). Given C € (TT) and D, Dy, Dy € (TTT)', we have

(iv) E(TTTD1Dy) = Z(D1)Z(D3),

0O(C)=TT+C = CTT+,

=
[1]

where © is defined as in Theorem 1.8.7 with the same operator T. Furthermore, =(D)
commutes with all operators in (TT) if D commutes with all operators in (TTT)', i.e.
E(TTT)" N (TTT)) C(TTH)' n(TTT).
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Chapter 2
Construction Framework

In this chapter, we will prepare the framework necessary for the construction and definition
of the joint functional calculus of a definitizable tuple of self-adjoint Krein space operators.

Throughout the chapter, we will employ the following notation.
e (IC,[.,.]) is a Krein space.

o A= (A;)7_, € Ly(K)" is a definitizable tuple of pairwise commuting self-adjoint

operators.

e 7 denotes the smallest ideal in C[z1,. .., z,] that contains all definitizing polynomials
of A.

2.1 Embeddings

For the whole section, p1,...,pm € Clz1,...,z,] shall be some definitizing polynomials of

A.

Definition 2.1.1. Let j € [1,m]z. We denote by (#;,(.,.);) and T; € Ly(H;,K) the
Hilbert space and the injective operator that results from applying Lemma 1.6.10 to the
positive operator pj(A). Moreover, we fix the Hilbert space (#,(.,.)) and the injective
T € Ly(H,K) that we obtain from Lemma 1.6.10 for the positive operator > ;" | pr(A).
We have

m
T,T{ =p;(A) and TT" = Zpk => T} (2.1)
Note that if p;j(A) = 0, then H; = {0} and Tj is the zero operator.
Lemma 2.1.2. We have .
ﬂ (T:T7) < (TTTY.
Proof. 1t follows immediately from (2.1). O

Lemma 2.1.3. Given j € [1,m] there exists a unique injective contraction R; € Ly(H;, H)
such that Tj = TRj. These contractions satisfy y ;- RpR; =1 € Ly(H).
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2.1. EMBEDDINGS

Ry
H T K
/ Rmfl
Hm—l R T

Figure 2.1: Commutative diagram of the mappings involved in Lemma 2.1.3.

Proof. For x € K and j € [1,m]z we have

m m

(T z, TTx) = [TT x, 2] Z [T3.T} , 2] Z (T, Ty ) > (7}*3371?@]'.

k=1 k=1

Thus . .
Bj: { ra?;iaj ;: ;;123,

constitutes a well-defined linear contraction. Since T as well as Tj is injective, we have
(ranTT)" = kerT = {0} and (ranTjJr)L = kerT; = {0}. Hence, ranT" C H and

ran T;r C H; are dense. In consequence B; has a unique continuous extension defined on

‘H with a dense range in H;. We denote by I; the adjoint map of the extension of B;. R;
1

satisfies | R;[| = || Rj|| = || B;|| < 1 and ker R; = (ranR}‘) = {0}. Moreover, T+ B;T+

yields Tj‘" = R;TTJr implying 7; = T'R;. The uniqueness of R; is a consequence of the

injectivity of T'. Furthermore,
m
TITY =TT+ = ZT,J+ = ZTRkRkT+ (Z RkR}‘;> T+
k=1 k=1 k=1

implies I = >"}" | RpR; due to the density of ran T and the injectivity of T'. O

Definition 2.1.4. Let j € [1,m]z. We denote by

O: (ITTH) = (T*T), Cw—T7'CT,
SN—— SN——
CLy(K)  CLy(H)

0, : (L;TH = (TT;), C—T,'CTy,
CLy(K) CLy(Hj)

Uj: (RjR}) = (RjR;), Cw R;'CRj,
~———r ——r
CLy(H) CLy(H;)

the *-homomorphisms obtained by applying Theorem 1.8.7 to T, T}, and R; as defined by
Lemma 2.1.3.
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2.1. EMBEDDINGS

Lemma 2.1.5. For j € [1,m|y we have @((TjTj‘F)' N(TTH)) C(R;R;)' N(THT), where
i fact
O(C)R;R; = R;0;(C)R; = R;R;0(C), C e (T;T;) n(TT™). (2.2)

Moreover,
0,(C) =T;06(C), C e (T N (TTH). (2.3)

Proof. Let C € (TJT;’)’ N(TT*). By Lemma 1.8.6 we have
+ _ p=lopopt _ pelpb o et
0,(C)T} = T, CTTf = 1717 C = T
Similarly, ©(C)T*+ = T*C. Therefore,
TR;O;(C)R;TT = T;0;(C)T; = TyT;C = TR;R;T*C = TR; R;6(C)T™".

Since T is injective and ranT" is dense, we obtain Rj@j(C’)R;f = R]-R;‘@(C). Applying
this equation to C and taking adjoints yields R;j©;(C)R; = ©(C)R;R;. In particular,
©(C) belongs to (R;R})". Hence, we can apply I'; to ©(C) and obtain

[j0O(C) =R, 'T"'CTR; =T, 'CT; = 6,(C).

O]

Lemma 2.1.6. Given j € [1,m]z we have R;R; € (TTT)" and RiR; € (Tij)’ More-

over,
O(TjT}") = RjR;TT = T*TR;R;. (2.4)
In particular,
pi(B[A]) = R;R; Y " pr(O[A]) = Y pr(O[A]) R;R;. (2.5)
k=1 k=1

Proof. According to Theorem 1.8.7 we have ©(TT*) = T*T. Thus, by (2.2), R;R}

commutes with 777 implying
T TiR;R; = R;(T*TR;R})R; = Ri(R;R;T"T)R; = R} R;T; T},
Le. RiR; € (TJJFT])’ Moreover,
O(TyT;") = T'IT; T = T'TR;R;T*T = R;R;T*T.
Since © is an algebra homomorphism, we have

p;(O[A]) = O(p;(A4)) = O(T;T}")

and
> p(OA]) =0 Zm;) = O(IT*) =T*T.
k=1 k=1
Considering these facts, we obtain (2.5) from (2.4). O

The following theorem will play a key role in the proof of Proposition 2.1.8; see for
example [Rud87, Theorem 6.19]. We say a function f : X — C vanishes at infinity, if for
any € > 0 there exists a compact set C such that |f(z)| < e for all z € X \ C.
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2.1. EMBEDDINGS

Theorem 2.1.7 (Riesz-Markov-Kakutani). Let X be a locally compact Hausdorff space.
We denote by Co(X) the space of all continuous complex-valued functions that vanish at
infinity. If ® is a bounded linear functional on Cy(X), then there exists a unique regular

complex Borel measure pn on X such that

‘I>(f)=/deu, f € Co(X).

For the next proposition, keep in mind that as © and ©; are *-homomorphisms, the
tuples O[A] = (O(A4;))", € Ly(H)" and O;[A] = (0;(A;))", € Ly(H;)" are tuples of

pairwise commuting self-adjoint operators.

Proposition 2.1.8. For j € [1,m]z we denote by E and E’ the joint spectral measures
of ©[A] € Ly(H)" and ©,[A] € Ly(H;)", respectively, defined on the Borel subsets of R";

see Remark 1.7.11. The following assertions hold true.

(i) B(A) € (TTT) NN, (RxR;)" for all Borel subsets A C R".

(i) EI(A) =T;(E(A)) € (T;7T) 0 (R;R;) for all Borel subsets A C R™.
(iii) [¢dE € (TTT) Nl (RkRy)' for ¢ € B(a(O[A])).

(iv) [¢dET =T;([ ¢ dE) € (T, Tj) N (R;R;) for ¢ € B(o(O[A])).

Note that B(c(O[A])) is the C*-algebra of complex-valued bounded Borel-measurable func-
tions on o(O[A]); see Definition 1.7.1.

Proof. (i) and (74): Let ¢ € [1,n]z and j € [1,m]z. From Lemma 2.1.2 and Lemma 2.1.5,
we derive ©(4;) € (R;R}) N (T*TT)". This implies R; R}, T*T € O[A]', j € [1,m]z, and
the equivalent statements (i) and (7v) in Theorem 1.7.7 imply (4) and (éit) of the present
proposition.

(ii): By Definition 2.1.4,

I;(C)R; = R;'CR;R; = R;'R;R;C = R;C, C € (R;R;). (2.6)
For a Borel subset A C R™ we conclude E(A) € (R;R})" from (4). Thus,
(L (E(A)Rjg,h)j = (RjE(A)g, h)j = (E(A)g, Rjh), g € H,h e, (2.7)

Let s € Clzy,...,zy]. In the following, keep in mind that for any algebras A4, B, an algebra
homomorphism v, and & = (z;)7_; € A", we have ¢(s(x)) = s(¢[z]). Lemma 2.1.2 and

Lemma 2.1.5 show
S(O[A]) = O(s(A)) € O(A') C (R;R;) 0 (T* 1Y,

implying
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Let g € H,h € H;. From (2.7) we infer

[ st@ attyE@)Ben); = [ @) dE@g b 28)
~ (s(0lAl)g. Byh)
~ (R;5(O1A4))g, 1)

— (5(0;|ADR’g.h); = / s(z) d(E (x)Rig, ).

We will show (I';(E(A))Rjg,h); = <Ej(A)Rjg, h); for Borel subsets A C R™. First

observe that
supp (T';(E)Rjg, h); C supp E = o(O[A]),
supp (B R'g, hy; C supp BV = 0(6;]A4]) C o(O[A)),

where % follows from ©;[A] = I'; 0 ©[A]. Since C[z1,...,z,] as a set of functions on
o(O[A]) C R" is dense in C(c(O[A])) due to Stone-Weierstrass theorem, (2.8) implies

/ f(z) d(T;(E(x))Rjg, h); = / f(x) d(E? (x)Rjg,h)j, f € C(a(B[A])).
(8]A)) o(0[A])

Consequently, Theorem 2.1.7 implies (I';(E(A))Rig, h); = (Ej(A)R;g, h); for Borel sub-

sets A C R™. Since g, h were arbitrary, we obtain
(T;(E(A)) — Ej(A))R; =0, A CR" Borel subset,
which, due to (ran R}‘)L = ker R; = {0}, implies
EY(A) =T;(E(A)) € (RiR;).

CHUBRS (TJJ“T])’ for all i € [1,n]z shows E/(A) € (TJJr ); see Theorem 1.7.7.
(iv): Given ¢ € B(c(O[A])) its restriction to o(©;[A]) belongs to B(c(O;[A])). Let
g € H,h € H;. Due to E;(A)R; =T;(E(A))R; = R;E(A), we obtain

<rj </¢dE> R;fg,h>j 26) <R;/¢dE g,h>j
—</qﬁdEg,th>
/eb x) g, Rjh)
~ [ (@) dtR;E@) 9.1,
/qﬁ )R g,h) </¢dE R*g,h>j.

g </m>—/mj>@:o,

which by the density of ran R implies

r; </¢dE) :/qdej.

Finally, [ ¢dE; € (T;“T]) (R;R;)" is a direct consequence of (ii); see Theorem 1.7.7. [

We conclude
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Definition 2.1.9. Let j € [1,m]z. We denote by

= Lb(H) — Lb(]C), D TDT+,

Zj: Ly(Hy) = Lo(K), D = T;DT},

Aj : Lb(Hj) — Lb('H), D~ RjDR;f,
the injective bounded linear operators obtained by applying Lemma 1.8.8 to 7', T}, and
R;.
Lemma 2.1.10. Given j € [1,m]z we have E; = Eo A;. Moreover, if E and E’ are the
joint spectral measures of ©[A] and O;[A], respectively, and ¢ € B(c(O[A])), then

Ej(/¢dEj):EoAjon(/¢dE)=E<RjR;/¢dE>- (2.9)
Finally,

pi(A)u(A) = Z;(u(©,[A]) = E(R;Rju(O[A]), weClar,....a.  (210)

Proof. From T; = TR; we derive Z; = ZE0 A;.

(2.9): The first equality is a consequence of Proposition 2.1.8 and Z; = Zo A;. For
the second equality note that I'; and A; were constructed by applying Theorem 1.8.7
and Lemma 1.8.8 to the operator Rj, respectively, and Lemma 1.8.8 (v) implies A; o
Iy (J dE) = RyE; ([ 6dE).

(2.10): By (2.1) we have p;(A)u(A) = TJTfu(A) Since ©; and =; were constructed
by applying Theorem 1.8.7 and Lemma 1.8.8 to the operator T}, respectively, Lemma 1.8.8
(v) yields

TiT; u(A) = 55 0 0;(u(A)) = Z;(u(0;]A]) =’ =(R; R;u(0[A))).

Lemma 2.1.11. For j € [1,m]z we have

m

> pi(2)

k=1

{z € Ipy(2)| > IRy RS- } < p(O]4]).

Proof. For N € N we set

m 2

> pr(z)

n 1 *
AN =< ze(C": \pj(z)|2 > 7N + ||RjRj||2 .
k=1

Let E be the spectral measure of O[A]. In the following, we will regard E to be defined

on C™ by extending it canonically. For x € ran E(Ay) we have

lp; (©[AD ]| = [lp; (B[A) E(An)a]|* = / (=) d(E(2)z, z)

An
> oi(2)

k=1

d(E(z)x,x)

1 x
> [ B+ IRRE [
AN AN
1 2
> el +

R;R;Y " pp(O[A])x
k=1

25) 1
= N\lel2+llpj(@[A])x\I2.
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2.1. EMBEDDINGS

Obviously, these inequalities can only be true if x = 0. Hence, E(Ay) = 0. Since Ay is
open, we have Ay C C" \ (supp E) = C" \ 0(O(A)) C p(O[A]). We conclude

2) } — | ax C p(0]A)).

{Z € C":pj(2)| > [|R; R3]l -
NeN

O]

Corollary 2.1.12. The zeros of > -, py are contained in p(O[A]) UV ((p1,...,pm)); see
Lemma 1.1.4 and Definition 1.1.7.

Proof. Let z € C" such that Y ;" pr(z) =0 and z € V({p1,...,pm)). By Lemma 1.1.9
there exists i € [1,m]z such that [p;(2)] > 0 = ||R;R}||-|> 5, pr(2)|. From Lemma 2.1.11
we conclude z € p(O[A]). O

Lemma 2.1.13. If M C R" is a Borel subset such that >, pj(z) # 0 for all z € M,
then

R;RIE(M) = E(M)R;R; = /M dE, je[1,mlz,

2111

where E denotes the spectral measure of ©[A].

Proof. The first equality is known from Proposition 2.1.8. Note that the integral on
the right-hand side is well-defined as the integrand is a bounded measurable function on
0(O[A]) N M according to Lemma 2.1.11.

As the concerned operators clearly vanish on ran E(R™\ M), we will show the equality

for the restriction to ran E(M). The operator

/ > prdE=E(M)®© (me) (2.11)
Mgy k=1

is self-adjoint as Y -, pr(A) is self-adjoint and © is a *-homomorphism. Given 0 # = €
ran E(M), (E(.)z,z) is not the zero-measure because of (E(M)z,z) = ||z||?> and hence

2
/ Zpk dE x :/
- M
>0
Since (2.11) vanishes on ran E(R™ \ M), we have

m L m
(ran/ ZpkdE> :ker/ ZpkdE:ranE(R"\M).
M1 M=y

If y is in the range of fM > e, pr dE, then there exists z € ran E(M) such that y =
Jor >ohey pr dE 2. Consequently,

2—5)1% R /ZpkdEE Jo = R;R}y.

m

2
> pr(z)

k=1

d{E(z)x,z) > 0.

Due to the density of the range of [,, >} pp dE in ran E(M), the above equality holds
true for all y € ran E(M). O
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2.2. ABSTRACT FUNCTIONAL CALCULUS

2.2 Abstract Functional Calculus

The joint functional calculus for A will be defined for functions that can be represented by
elements in C[z1,...,z,] X B(c(O[A])). In the present section, we are going to construct
an abstract functional calculus, i.e. a x-homomorphism from C[zy,...,z,] X B(c(O[A]))
to A”, which will be utilized in Section 3.1 to construct the joint functional calculus.

Let Z be the ideal generated by all definitizing polynomials of A and p1,...,pm €
R[z1,...,zy,] be definitizing polynomials of A such that Z = (p1,...,pm) according to
Proposition 1.6.9. Moreover, we will import the notations and definitions from Section 2.1
such as © and =, which are constructed using pi,...,pm, and denote by FE the joint
spectral measure of the tuple O[A] € Ly(H)".

Lemma 2.2.1. For f € B(0(0[A])) and Z as in Definition 2.1.9, the operator Z([ f dE)
belongs to A”.

Proof. Let C € A’ C (TT")'; see Lemma 2.1.2. Keep in mind that by Proposition 2.1.8,
| f dE belongs to (TTT)". According to Lemma 1.8.8, (ii) and (iii), we have

CE (/de) == <6(C) /de), (2.12)
E</de>C:E</de @(0)). (2.13)

Since O is a *-homomorphism and C' € A’, we have O(C) € O[A]'. By Theorem 1.7.7,
O(C) commutes with [ f dE, which implies the equality of the right-hand side of (2.12)
and (2.13). Consequently, Z( [ f dE) commutes with C' € A'. O

Definition 2.2.2. We define ¥ : Cxy,...,x,] X B(c(O[A])) = A" C Ly(K) by

W(r, f) = < 1 dE)

By N we denote the set of all (r, f) € C[z1,...,x,] X B(c(6O[A])) such that

(i) for all z € o(O[A]) \ V(Z),

r(z)+ f(2) Y pe(z) =0.
k=1

(ii) f(z) =0 forall z € o(0O[A])NV(Z).

(tii) there exist uy,...,um € Clzy,...,2,] such that r = 3" | ugpy and ug(z) = 0 for
all k € [1,m]z and z € 0(O[A]) NV (T).

Recall that p# (21, ...,2,) = p(Z1,...,Tn) for p € Clz1,. .., z,); see Example 1.3.6.
Proposition 2.2.3. If we endow Clxy, ..., x,] X B(c(O[A])) with

o (rnf)+(s,9):=(+s[f+g),

o A(r, f) == (A, Af),
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2.2. ABSTRACT FUNCTIONAL CALCULUS

o (r,f)(s.9):=(rs,rg+sf+ fg> 11 pj),
o (r,f) =" F),
for (r,f),(s,g9) € Clx1,...,z,] x B(c(O[A])) and X € C, then Clzy,...,x,] x B(c(O[A]))

constitutes a commutative unital x-algebra, where (1,0) is the unity.

Proof. Clearly, Clzi,...,z,] x B(c(O[A])) turns into a vector space with the defined
addition and scalar multiplication.

Let (r, f),(s,9),(q,h) € Clzy,...,z,] X B(c(O[A])) and A € C. o(O[A]) being com-
pact, the second component of (r, f) - (s, g) is bounded and measurable. As the multipli-

cation is clearly commutative, bilinearity follows from
((nf)+(s5,9) (. h) = (r+s,f+9) (¢.h)
(rq+sq,rh+sh+qf+qg+ (fh+gh)2}11pj>
(7" rh+qf + fRY7T 110]) + (sq, sh+qg + th}Lm)
=(r f)-(a:h) + (s,9) - (¢, ),

Ar AD)(3,9) = (Ars, drg +Asf + Mg S0 p3) = M(r 1) - (5,9)).

Furthermore, the multiplication is associative because of

() (5,9)) - (@, ) = (5.7 + 5 + Fa Sy ps ) - (0, h)
= (rsq, rsh+q(rg+sf+ fg> 2L, ;)
+(rg+sf+fg> 7 1 pj)h ] 1PJ>
= (rsq, sqf +r(sh+qg+ghd i, pj)
+(sh+qg+gh > il pi)f 35 m)
= () - (s 5h +ag+ gh S5 ;) = (1) - ((5,9) - (4, ).
It is straightforward to check that (1,0) is the unity.

As .# and T are conjugate linear involutions on the respective spaces, so is .*. Note
that for p € Clzy,...,z,] we have p#(2) = p(Z) = p(2), z € 0(O[A]) C R™. pj# =p; €
Rlz1,...,zy] for all j € [1,m] implies

((r f) - (5,9))" = (rs,rg +sf + fg 250, py)"
(s#r# rg+sf+fgd il 1p])
(s#r# 177G+ 57+ fg > 1pj)
= (s7,9) - (", ) = (s,9)" - (r, )",

demonstrating the compatibility of .* with multiplication. O

Lemma 2.2.4. Forr € Clxy,...,z,] and f € B(c(O[A])) we have

r(A)E( de):E</de>r(A):E</rde). (2.14)
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2.2. ABSTRACT FUNCTIONAL CALCULUS

Proof. By Lemma 2.1.2 we have r(A) € (TT")" and, therefore, Lemma 1.8.8 yields

E(D)r(A) = Z(D6(r(A))) = Z(D r(0]A])),
r(A)E(D) = E(O(r(A))D) = E(r(6[A]) D),

for all D € (T T)'. By Proposition 2.1.8 we have [ fdE € (I'tT)'. Applying the previous
equality to D = [ f dE, we obtain (2.14) because [ f dE commutes with r(O[A]) =
f rdkb. ]

Lemma 2.2.5. The map V introduced in Definition 2.2.2 constitutes a unit-preserving

x-homomorphism.

Proof. By Lemma 1.8.8, = is linear and compatible with taking adjoints. As both the
spectral integral and the evaluation homomorphism are linear and compatible with taking
adjoints, so is ¥. Let (7, f), (s,g) € Clz1,...,2,] X B(c(6O[A])). From Lemma 1.8.8 and

Lemma 2.2.4 we infer

U(r, ) U(s, g) = (T(A)JFE (/de)) <s(A)+5 </ng))

=r(A)s(A) +r(A)= </g dE)
E(/de) )+E</de)E</ng>
Z(T-S)(A)—l—E(/rng)+E(/sde)+E<T+T/fng>.

By Theorem 1.8.7 we have T+T = ©(TT™") and conclude

T =0(TTY) = ij = zm:pj(@[A]) = /zmjpj dE.

Hence,

V(o £) Ws,g) = () A)+ 2 | [ rgsf + 9 p; | dE

j=1
=y (r -s,rg+sf+ fgzglzlpj) =U((r,f)(s,9),

and U is compatible with multiplication. Because of ¥(1,0) = I + Z([0dE) = I, ¥ is

unit-preserving. OJ
Lemma 2.2.6. N constitutes an ideal satisfying N = N*.

Proof. N is clearly a subspace. Let (r, f) € N and (s,g) € Clz1,...,z,] X B(c(O[A)])).
We will show (r, f) - (s,g) = (rs,rg + sf + fgz ' pj) € N. Given z € 0(O[A]) \ V(I)
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2.2. ABSTRACT FUNCTIONAL CALCULUS

we have

(r, f) € N implies the existence of uq,...,un € Clxy,...,x,] with r = >
uj(z) =0 for j € [1,m]z and z € 0(O[A]) NV (Z). Hence,

rs = sZujp] Z suj)p;,

j=1

such that s(z)uj(z) = 0 for j € [1,m]z and z € 0(©[A]) N V(Z). Finally, for z €
a(O([A])) N V(Z) we have

r(2) 9(2) + 5(2) f(2) + f(2) 9(2) D pj(2) =
> 7 Y A

(r, f)* = (r#, f) € N follows in a straightforward manner from o(©[A]) C R™ and p;.éﬁ =
pj, j € [1,m]z. Hence, N* C N and, in consequence, N* = N. O

Lemma 2.2.7. If (r, f) € N, then ¥(r, f) = 0.

Proof. We have r = } 0" u;p; for some uj € Clzy,...,2,], j € [I,m]z, that vanish on
V(Z)No(O[A]). From (2.10) we infer

A) = uj(A)p;(A) =) E(R;Rju;(O[A])) == (ZRjR;/uj dE) .
j=1 J=1

Jj=1

Using > 7" R;R; = I € Ly(H) from Lemma 2.1.3, we obtain
= (ZR R*/uj dE) +E (ZR R*/de)
(Z R;R; / (uj + f) dE) :

=1

As uj + f vanishes on o(0[A]) N V(Z) for j € [1,m]z, the spectral integral in the last

I
(1

term can also be written as a spectral integral over o(O[A]) \ V(Z). Finally, applying
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2.3. ALGEBRA CORRESPONDING TO THE VARIETY

U(r, f)=E (uj + f)dE

/U(@)[A])\V(I)

S (uj + 1)pj
(z; /o<e[A1>\V<I) 21D

|
(1]

=0

I
(1

——
T+ fY D

/ —f%:]—lp] dE | = 0.

cOIANV(T)  Die1 Pi

O
Summarizing all the statements proven in this section, we obtain the following result.

Theorem 2.2.8. The map V : Clzy,...,x,] X B(c(O[A])) — A" introduced in Defini-

tion 2.2.2 constitutes a unit-preserving *-homomorphism with ker ¥ O N .

2.3 Algebra Corresponding to the Variety

Let Z be the ideal generated by all definitizing polynomials of A and assume Z C
Clzy,...,zn]. We also fix definitizing polynomials pi,...,p, € Rlzy,...,z,] of A with
Z = (p1,...,pm) according to Proposition 1.6.9.

Assumption 2.3.1. Let
l
=9
j=1

be a minimal primary decomposition of the ideal Z and set P; := \/Q>J for j € [1,1]z;
see Theorem 1.2.8. We will assume that the varieties V(Q;), j € [1,l]z, are pairwise
disjoint, which establishes the uniqueness of the minimal primary decomposition of Z by
Corollary 1.2.14.

Remark 2.3.2. We refer to V- C C" as variety if V(S) = V for some S C Clzy,...,x,]. A
variety V' is called irreducible if V' = V3 UV, for varieties Vi, Vo implies V = V; or V = V5.
Any variety can be expressed as a finite union of irreducible varieties; see [CLO07, p.204].
In the notation of Assumption 2.3.1, V(Q;), j € [1,l]z, are precisely those irreducible
components of V(Z); see for example [CLOO07, p.214].

Note that none of the varieties V(Q;), j € [1,[]z, is empty since otherwise the corre-
sponding primary component would be C[z1,...,z,] according to Theorem 1.1.19, which
contradicts the primariness. Moreover, since the varieties V(Q;), j € [1,[]z, are pairwise
disjoint, they constitute a partition of the variety V(Z); see Lemma 1.1.22. Hence the
relation ~ on V(Z) defined by

a~b: < Jje[llz:a,beV(Q))
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2.3. ALGEBRA CORRESPONDING TO THE VARIETY

constitutes an equivalence relation. We set V(Z) := V(Z)/~. and
VR(Z) :={[a] e V(Z):a € V(Z)NR"},
where [a] denotes the equivalence class of a € V(Z) with respect to ~.

Definition 2.3.3. For [a] € V(Z) and j € [1,l]z such that a € V(Q;), we employ the

following notation:
Q[a] = Qj, P[a] = Pj.
Moreover, we define the algebras
Ajg) = Clz1,...,20]/(Pla] - Qla))
B[a} = C[{Bl, ce ,;L'n]/Q[a].
Lemma 2.3.4. Given [a] € V(Z) we have V(Piq) - Qa)) = V(Pla)) = V(Qla))-

Proof. The second equality follows from Pq) = |/ Qjq); see Proposition 1.2.6. Let p € Pq).

Since Plq) is the radical of Qjq), we have ke Qlq) for some k € N, which implies prtl €

Pla) - Qla)- Consequently, Piq) € /Plq) - Q[q)- The inclusion /Plq) - Qq] € Plq) is trivial.
Again, Proposition 1.2.6 yields the first equality. O

For N € N and algebras Aj, ..., Ay we denote by Xj.vzl Aj; their Cartesian product.

Proposition 2.3.5. The ideal

J= (1 Pa-Qa)n () Qa

[a]eVr(T) [a]eV(Z)\Vr(Z)

satisfies J C T and

Clz1, .. zn]/T — X Ap) x X Bia),
[a]eVr(T) [a]leV(D)\Vr(T)

o (2.15)
plo = (([p]P[aTQ[“J)[a}eVR(I) ’ <[p]g[“]>[a}€V(I)\VR(I)> ’
constitutes an algebra isomorphism. Moreover, for any s € J there exist uy,..., Uy, €
Clxi, ..., zy] satisfying
(i) ui(z) = =um(z) =0 for z € V(I) with [z] € Vr(Z),

(1) s =iy wipi; recall T = (p1,...,pm)-
Proof. Since the varieties V(Q;), j € [1,(]z, are pairwise disjoint, the varieties of
,P[a} ’ Q[a]a [a] € VR(I)a Q[a}? [a] € V(I) \VR(I)a (2]—6>

are pairwise disjoint according to Lemma 2.3.4. By Lemma 1.1.20 the ideals are pairwise
comaximal. Thus, we can apply the Chinese Remainder Theorem 1.1.16 showing that
(2.15) constitutes a ring-isomorphism. Due to Lemma 1.1.17, ¢ is in fact an algebra

isomorphism.
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2.3. ALGEBRA CORRESPONDING TO THE VARIETY

Keep in mind that since none of the varieties V(Q;), j € [1,1]z, is empty, we have

Applying Lemma 1.1.22 to the ideals in (2.16), (2.17), and (P[a])[a]EVR(I) yields
J= 1l Pa-Qa): Il  Qa= Il Pa- I Qu
la]€Vr(T) [a]eV(Z)\Vr(T) [a]€Vr(T) [aleV(T)

[a]eVr(T) [a]eVR(T)

Let q1,...,qy be the generators of ﬂ[a]eVR(I) Plq)- Given s € J, Lemma 1.1.12 implies

the existence of ri; € Clxy,...,xy], i € [1,m]z, j € [1,m']z such that
m m/ m m’ m
s = erijpiq]' = Z (Zrij%’ >pz' = Zumz
i=1 j=1 i=1 \ j=1 i=1
~——

=:u;

U, Uum € (jgjeve () Pla) implies ui(z) = 0, @ € [I,m]z, for 2 € V(I) with [2] €
Vg (Z). O

Remark 2.3.6. Actually, with the same proof, Proposition 2.3.5 stays valid if you replace
Vr(Z) by an arbitrary subset W C V(Z). We have formulated it this way as it suffices for

our causes, and it simplifies the notation and referencing.

For the remainder of the present section, we are going to construct involutions on the
algebras Clzy,...,z,]/J and X{a]eva (D) Alg) X X a]eV(T)\V(Z) Bjq) such that they consti-
tute x-algebras. We will also show that, with respect to the newly defined involutions, v
from Proposition 2.3.5 constitutes a *-isomorphism.

Given z € C" we denote by Z the componentwise complex conjugation. Also, recall

that p”(2) = p(Z), p € Clx1,...,7,), 2 € C".

Lemma 2.3.7. If L C Clxy,...,x,)] is an ideal, then L7 is an ideal satisfying

V(L) =V (L#).
Moreover, L is primary (prime) if and only if L% is primary (prime).

Proof. Given f,g € L%, (f+9)" = f#+g" € L. Hence, f+g € L7. If h € Clxy,..., 2],
then (hf)# = h# f# € L and, therefore, hf € L#. Moreover,

V(L)y={z€C": f(2)=0, fe L}
- {Ee@" L fH(z) =0, feﬁ} = V(LH).

Let £ be primary and f,g € C[xz1,...,2,] be such that fg € £# and f ¢ L£L#. Then we
have f#g# = (fg)" € L and f# ¢ L. Since £ is primary, (¢*)* = (¢7)¥ € £ and, in
consequence, ¢g¢ € L£# for some k € N. The converse is clear. The respective statement

about prime ideals can be shown by substituting £ = 1 in the present proof. O
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2.3. ALGEBRA CORRESPONDING TO THE VARIETY

Lemma 2.3.8. The ideal T is invariant under p — p¥.

Proof. The claim follows from the fact that Z is generated by real polynomials, which are

the self-adjoint elements of C[x1,. .., x,] with respect to .7. O
Lemma 2.3.9. We have Qi] = Qg and P[ﬁ] = Pig) for any [a] € V(I).

Proof. By Lemma 2.3.7,
# _ #
= () 9
[a]eV(I)
constitutes a primary decomposition of Z#. Moreover, it is a minimal primary decomposi-
tion because the varieties of the primary components are nonempty and pairwise disjoint.
From Z = Z# and the uniqueness of the minimal primary decomposition of Z given by

Corollary 1.2.14, we conclude
{Qua): [a] € V(T)} ={QF,, : [a] € V(T)}. (2.18)

Keep in mind that due to Z = Z#, we have V(Z) = V(Z). Let a € V(Z). By definition
we have a € V(Q|q)) and @ € V(Q|g)). On the other hand, by Lemma 2.3.7,

acV(Qu)=VI(Q):

Since the varieties of ideals in (2.18) are pairwise disjoint, we conclude Qi] = Qjg), and
from P[ﬁ} = Qi] we derive Pi] = Pla)- 0

Remark 2.3.10. For a,b € V(Z) with @ ~ b, we have @ ~ b, which is evident from

_
Qa) = 9

_ N N
1= 9 = -

Therefore, complex conjugation is well-defined on V(Z). Moreover, we have [a] = [a] for
[a] € VR(Z).

Lemma 2.3.11. If £L C Clxy,...,x,] is an ideal, then

{ Clay,...,zn)/L — Clzy,...,2a)/L%,
- [p]ﬁ = [p#][,#’

constitutes a conjugate linear bijection which is compatible with multiplication, i.e. ([pr -
ldlc)* = [pl%lals, p,q € Clzy, ..., xp). Purthermore, * : Clz1,...,x,]/L7 — Clz1,...,2,]/L
is the inverse of * : Clxy,...,x,]/L — Clxy, ..., 2,]/L7.

Proof. Given u € £ we have u” € L£#. Hence .* is well-defined. The conjugate lin-

earity and the compatibility with multiplication is inherited from .# to .*. Since .7

is an involution, .* : Clzy,...,x,]/L% — Clry,...,2,]/L is the inverse mapping of
F:Claty ..y wn]/L — Clan, ... x,]/L7. Hence * : Clxy, ..., 2n)/L — Clzy, ..., 2]/ L7
is bijective. 0

Lemma 2.3.12. The ideal J from Proposition 2.5.5 is invariant under .. In particular,

Clxy, ..., zn]/T endowed with .* as in Lemma 2.3.11 constitutes a x-algebra.
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2.3. ALGEBRA CORRESPONDING TO THE VARIETY

Proof. From Lemma 2.3.9 we derive that Pl - Qjq), [a] € Vr(Z), is invariant under .
Furthermore, exploiting the invariance of V(Z) \ Vg(Z) under -, we obtain

N %= N 2= N Qa

[a]eV(Z)\Vr(T) [a]eV(Z)\Vr(T) [a]eV(Z)\Vr(T)

This implies
#
J¥ = (N (Pa-Qa)"n () 9L=7

[a]eVR(T) [a]eV(Z)\Vr(Z)
As a result, the mapping .* : Clzy,...,2,]/T — Clzy,...,2,]/T from Lemma 2.3.11 is

an involution that turns Clzy,...,z,]/J into a x-algebra. O

Lemma 2.3.13. Endowed with the mapping .! on X{alevy(T) Alg) X X{a]eV(T)\V&(T) Bq)
defined by

T
<<[P[a]]7’[a]~9[a]) [a]eVR(T) ([p[a]]g[a]) [a]GV(I)\VR(Z)>

—((1# 4
' (Op[aﬂp[“]'g[‘”)[a}ew:o ! <[p [al]g“‘]) [a]eV(I)\Vm(I)> ’

X[a]GVR(I) A[a] X X[a}EV(I)\VJR(I) B[a] constitutes a x-algebra.

Proof. First note that .* on Ayq) = Clz1, ..., 24]/(Pla)- Qla)), [@] € Vr(Z), is an involution

as Plq] - Q[q] 18 invariant under #. We have

T
< ([p{a] [Pla) Qe ) (aleVa (D)’ <[p lall Q) ) [a]EV(I)\VR(I)>

- (Up[aﬂp[a]g[a} > laleVa (@’ <[pm ) QH) [a}ew)\wz)) ’

where .* is the mapping defined in Lemma 2.3.11. The conjugate linearity and the com-

patibility with multiplication is inherited from .* to .I. Furthermore, Lemma 2.3.11 yields
T
<([p[“ﬂ% ) laleVa(T)’ (Palew) [aJeVm\VR(z))

- (Op[aﬂp[‘” <) (aleV(@) (bﬁ] Qm) [a}ev(z)\wm)

- <([p[aﬂ7’[“} %) e (Pale) [a}ew:f)\wn) ’

which demonstrates that .7 is an involution. O

Proposition 2.3.14. The mapping Y in Proposition 2.5.5 constitutes a x-isomorphism
if the algebras are equipped with the involutions introduced in Lemma 2.53.12 and 2.3.13,

respectively.

Proof. Given p € Clxy,...,zy,] we have

U(p?ls) = [p#]P[a]'Q[a]> ) <[p#]9[“1>[a]ev(z)\w1))

((

;
- (<[p]7’[‘” s ) [aleVa(D)’ <[p == ) [a]em)\wz))
w(lpls)"

[a]eVr(Z)

20
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2.4. FUNCTION SPACES

Since we already identified 1 as an algebra isomorphism, v constitutes a x-isomorphism.

O]

2.4 Function Spaces

This section will be devoted to the construction of a space of functions for which the
functional calculus of the tuple of operators A can be defined.

We will continue to denote by Z the ideal generated by all definitizing polynomials of A
and fix definitizing polynomials pi, ..., pm € R[z1,...,2,] of A such that Z = (p1,...,pm)
according to Proposition 1.6.9.

Definition 2.4.1. We assume Z C Cl[zy,...,x,]| and Assumption 2.3.1. We interpret the

product x-algebra

MA = (CU(G[A])\V(I) X X .A[a} X X B[a]
[a]eVR(T) [a]eV(Z)\Vr(Z)

as a x-algebra of functions ¢ defined on o(©[A]) UV (Z) C C" satisfying
¢(z) € Cfor z € 0(O[A]) \ V(2),
$(2) € A for z € V(Z) such that [2] € Vg(Z),
¢(z) € By for z € V(Z) such that [2] € V(Z) \ V& (Z),
¢(z) = p(w) for z,w € V() such that [z] = [w].

We denote by .# the involution on M 4 defined by

o ¢#(2) = ¢(2) for z € 0(O[A]) \ V (),
o ¢7(2) := ¢(2)* for z € V(I) such that [z] € Vr(Z),

o ¢7(2) := ¢(2)* for z € V(Z) such that [z] € V(Z)\ Vr(Z).
The mapping .* is defined in Lemma 2.3.11.

We can meaningfully extend Definition 2.4.1 to the case Z = Clzy,...,2,]. As
V(Clz1,...,2z,)) = 0, it is natural to set V(Clx1,...,x,]) := 0; see page 47. A straight-
forward way to define M 4 for Z = Clxq,. .., z,] would be to set it as

CoOMD 5 X Ay x X Bigy = C7OM) x [} x {0} = co©AD,
[a]led [a]led
Definition 2.4.2. If Z = Clxy,...,z,], we set M4 = Co®lAD | which constitutes a

x-algebra with pointwise operations in C.

Until the end of the present section, we allow Z = C[xy,...,z,]. While the majority
of the proofs in this section will cite results from Section 2.3, where Z = C|x1, ..., z,] was
forbidden, those parts of the proofs can be simply ignored in the case of Z = Clx1, ..., x,].
This arises from the fact that there are no “algebras corresponding to the variety” to be
considered in the degenerate case of Z = C[zy,...,x,] due to V(Clzy,...,z,]) = 0.

For 7 C Clzy,...,x,] we will continue to employ Assumption 2.3.1, so that the results

from Section 2.3 can be applied.
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2.4. FUNCTION SPACES

Definition 2.4.3. By G 4 we denote the set of functions f : dom f — C such that
(1) o(B[A]) UV(Z) € dom f C C".
(ii) dom f is open and invariant under the componentwise complex conjugation.
(7i) f is Borel measurable and bounded on o(©[A]) \ V(Z).

() for @ € V(Z), there exist pg € Clzy,...,z,] and a neighbourhood U, C C" of a
such that f(z) = pa(z) for z € U,.

(v) for a,b € V(I) such that [a] = [b], the polynomial pg — pp belongs to Pjq) - Qlq) if
[a] € VR(Z) and to Q4 otherwise.

We can consider such f as an element f4 € M4 by setting
o fa(z) = f(z) for z € 0(O[A]) \ V(I),
o fa(2) = [p:lp. 0y, for z € V(I) such that [z] € Vg(Z),
o fa(2) = [p:]o,, for z € V(Z) such that [2] € V() \ Vg(Z).

Remark 2.4.4. 0(©[A]) being compact, every polynomial is bounded on o(0O[A])\ V(Z).
In fact, every polynomial p € Clzy, ..., x,] is an element of & 4 since we can choose pg := p
for all @ € V(Z).

Lemma 2.4.5. If for f,g € Sa we define the functions f + g, f-g with dom f + g =
dom f - g = dom f Ndom g by

o (f+9)(z):=f(z)+9g(z) for all z € dom f + g and
o ([-9)(z):=[f(2)-9(2) for all z € dom f - g,
then f+gq, f-g€ S4.

Proof. As dom f,domg D o(©[A]) UV(Z) are invariant under complex conjugation, so
is dom f + g O 0(©[A]) UV(Z). Measurability and boundedness on o(©[A]) \ V(Z) is
inherited from f and g to f + g.

Given w € V(Z), let Uy, U, € C" be neighbourhoods of w and pg,pg € Clz1, ..., xy]
such that f|y, = pylu, and glu, = pylu,- For Usy 4 := UrNUy we have (f+g)|u,,, = (pr+
pg)lu,,,- Hence f + g satisfies Definition 2.4.3, (iv). The property (v) of Definition 2.4.3
follows from the fact that f and g satisfy (v). Hence, f + g € & 4. By swapping + with -
in the proof above, we obtain f-g € G4. O

Remark 2.4.6. The set &4 endowed with addition from Lemma 2.4.5 and pointwise
scalar multiplication does not form a vector space. Indeed, the neutral element with
respect to addition is the 0 function on C", but f + (—1) - f = 0|4om f, where dom f # C"

in general.

We will factorize G 4 by the equivalence relation that identifies two functions defining

the same germ around o(©[A]) UV (Z) and obtain a vector space.
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Definition 2.4.7. We define a relation < on G 4 by writing f =< g if and only if there
exists an open neighbourhood U of o(O[A]) U V(Z) contained in dom f N dom g with
flu = glu. We set .#4 := &4/~ and denote by [f]= the equivalence class of f € & 4.

Lemma 2.4.8. %4 constitutes a commutative unital x-algebra with operations induced by

the following & 4-operations:
e addition and multiplication from Lemma 2.4.5,
e pointwise scalar multiplication,
e involution f#(z) := f(Z).

Proof. Let f,g,h € &4 be such that f =< g, where U is the open neighbourhood of
c(0O[A]) UV(Z) with f|ly = gly. Due to (f + h)(z) = (9 + h)(z) for z € U Nndom h,
which is also an open neighbourhood of o(©[A]) UV (Z), we conclude (f + h) =< (g + h).
Thus [f]= + [h]x := [f + h]= is well-defined. As the addition in &4 is commutative,
so is the induced addition. Analogously, the induced multiplication is well-defined and
commutative. It is clear that for A\ € C the scalar multiplication A - [f]x = [Af]= is

well-defined. Because of

[f]x + (_1) : [f]x = [O|dom f]x = [O|(C"]Xa

the operations on .4 guarantee the existence of an additively inverse element. It is
straightforward to check the validity of the rest of the vector space axioms. Hence, .#4
constitutes a vector space. From the distributivity of multiplication with respect to addi-
tion in C, we infer the bilinearity of multiplication in .#4. Since o(O[A])UV (Z) is invariant
under complex conjugation, U is also an open neighbourhood of o(©[A]) U V/(Z). Due to
flu = glu, we have f#|U = g#|ﬁ, implying f7 = ¢g”. We conclude that [f]ﬁ = [f7]=
is well-defined. Simple calculations show that .# in .#4 is a conjugate linear involution.

Due to
([fl= - [W=)* = [(fR)F]= = [FFr¥]= = [/ - [R)Z,

the set .#4 constitutes a *-algebra. [Lcn]< is the unity. O

Lemma 2.4.9. Given f,g € G4, f =< g implies fa =ga.

Proof. Since f|y = g|y for some neighbourhood U of ¢(©[A]) UV (Z), we have fa(z) =
f(2z) = 9(z) = ga(z) for z € 0(6[A]) \ V(Z).
For z € V(Z) there exist a sufficiently small neighbourhood U, C U of z and poly-

nomials p, ¢ such that p|y, = flu. = glv. = ¢lu.. Thus, fa(z) = [p]x = ga(z), where
X = A, if [2] € VR(Z) and X = B[, otherwise. O

Proposition 2.4.10. [f]= — fa constitutes a x-homomorphism from .4 to Ma.

Proof. The mapping [f]= — fa is well-defined on .#4 due to Lemma 2.4.9. The compat-
ibility of the mapping .4 : &4 — M4 with addition, multiplication, and scalar multipli-

cation obviously holds true.
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For f € G4 we are going to verify (f#)a = (fa)”. By definition, for z € 0(©[A]) \
V(Z) C R™ we have

(fF)alz) = [7(2) = f(2) = f(2) = fa(z) = (fa)" (2).

Given z € V(Z) let p, € Clxy,...,z,] and U, be a sufficiently small neighbourhood of

z such that f|y, = pz|v,. Since dom f is invariant under complex conjugation, we have
f#loz = p¥lg If [2] & Vr(Z), then

(fF)a(Z) = E]s) = [p=lpe) = fal2)" = (FA)* ().

Since V(Z) \ Vr(Z) is invariant under the conjugation, we obtain (f#)4(2) = (fa)"(2);
see Remark 2.3.10. In case [z] € Vr(Z), we obtain

(f")a(z) = E]ay, = =li, = fa(2)" = (fa)*(2).
O

Notation 2.4.11. For functions f,g: D (C R™) — C such that ran g C (0, 4+00) and an

accumulation point w € R" of D, we write

f(z2) =0(g(2)) as z — w if limsup |f(2)]

2w 9(2)

Proposition 2.4.12. Ifa € V(Z)No(O[A]) is an accumulation point of o(0O[A])\ V(Z)
and h € Q[a}, then we have

) (\Zgﬂ:lpj(z)‘) as 7(O[A) \V(Z) 3 = — a.

Proof. Since Qp, [b] € V(Z), stem from a minimal primary decomposition of Z with

< +00

pairwise disjoint varieties, every primary component Qpy, [b] # [a], contains a polynomial

s[p] that does not vanish at a. We set

g:=h- H S[b]EI

[b]eV(T)
[a]#[b]
and choose uy,...,uy, € C[zy,...,x,] such that g = Z;n:l u;jp;. Because of
) Z;nﬂ uj(z)p;j(=) ) MaXje(1,m), Ipj(2)] Z] g Juj(z -
lim sup < lim sup Z uj(a)| < +o0
z—a MaXjc[l m], |pj (Z)| z—a max;e,mjz |p]( )| j=1

we have g(z) = O(max;c( m), [pj(2)|) as 2 — a. From sy(a) # 0, [b] € V(I), [a] # [b],
we infer h(z) = O(maxje(1 ), [Pj(2)]) as 2 — a, which by Lemma 2.1.11 implies h(z) =
O(1> 271 pi(2)]) as z — a. 0

Remark 2.4.13. Let w € 0(0[A]) N V(Z) be an accumulation point of o(©O[A]) \ V(Z).
First note that for ¢ € Ma, ¢(w) = [r]p,0u = 7+ (P * Q) for some r €
Clz1,...,zy]. Hence ¢(w) can be interpreted as an affine subspace of C[xy,...,z,]. Be-
cause the difference p — g of p,q € ¢(w) belongs to Pl * Q) € Qpu)» Proposition 2.4.12
yields p(z) — q(2) = O(| 2272, pj(2)]) as z — w. Therefore, the following statements are

equivalent:
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(1) Vp € ¢(w) : ¢(2) —p(z) = O(| 271, pj(2)]) as z = w,
(%) Jp € p(w) : §(z) — p(z) = O(| 132, pi(2)]) as z = w.

Definition 2.4.14. By Fa we denote the set of functions ¢ € M 4 such that
(1) 9lo(oja)\v(z) is Borel measurable and bounded.

(7) for any accumulation point w € o(O[A]) N V(Z) of o(O[A]) \ V(Z) there exists a
polynomial p € ¢(w) satisfying

6(z) —p(z) = O (|C]ipsi(2)]) as o(OUAD\V@D) 52w, (219)

Remark 2.4.15. In case Z = Clx1,...,zy], (it) of Definition 2.4.14 is redundant and,
hence, F4 = B(c(O[A])); see Definition 1.7.1.

Proposition 2.4.16. For f € &4 the function fa belongs to Fa.

Proof. Measurability and boundedness of f4 on 0(O[A]) \ V(Z) is guaranteed by Defini-
tion 2.4.3. If w € o(©[A]) N V(Z) is an accumulation point of o(0O[A]) \ V(Z), then
there exists a neighbourhood U of w and a polynomial p such that f|y = p|y and
fa(w) = [plp, -, For z€ UN(o(0[A])\ V(I)) we have

fa(z)—p(z)=0=0 (‘Z;”:lp](z)’) as z = w.
(]

In Chapter 3, the joint functional calculus will be defined for functions belonging to
Fa. Due to Proposition 2.4.16 every polynomial p € C[zy,...,x,] can be interpreted as
an element pga € Fa. This is important as we want to test the meaningfulness of our
joint functional calculus by checking if “p4(A)” matches the already well-defined concept
p(A). As a functional calculus shall be a *-homomorphism, we will first make sure that

F A constitutes a x-algebra.
Lemma 2.4.17. Fa constitutes a unital sub x-algebra of M a.

Proof. 1t is straightforward to check that F4 is a subspace. If ¢1,¢9 € F4, then their
product is clearly bounded and measurable on o(©[A]) \ V(Z). Given an accumulation
point w € o(O[A]) N V(Z) of o(O[A]) \ V(Z), p1 € ¢1(w), and pa € ¢a(w), we have
p1p2 € d1(w)p2(w) = (Pp1d2)(w). As ¢1, 2 € Fa and o(O[A]) is compact, we obtain
g (@102 = @)@ _ - jon (2)]62(2) — pa(2)] + Ipa()lln (2) — a(2)
=S p(2)] o Srpi(2)|
< limsup |¢1(2)| - lim sup [02(2) = pa(2)]
zZ—w z—w ‘Z;nzl D; (z)‘
[91(2) — p1(2)]

z—w z—w ‘Z;‘n:lpj(z)’

< +o0.

Hence, F4 is closed under multiplication and therefore constitutes a subalgebra of M 4.
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Given ¢ € F4, also ¢7 is bounded and measurable on o(0[A])\ V(Z). For an accumu-
lation point w € o(O[A]) NV (Z) of 0(O[A]) \ V(Z) we have w € R™ and, in consequence,
[w] € VR(Z). For p € ¢(w) we have ¢7 (w) = ¢(w)* = [p]%[w].g[w] = [p#]’p[w].g[w] showing
p” € ¢7 (w); see Definition 2.4.1.

|67 (2) — % (2)| = [6(2) — p(2)| = [é(2) — p(2)|, =z € a(O[A])\V(I),

yields ¢7(2) — p™(z) = O(] > ie1pi(2)]) as z — w. Therefore, F4 is closed under 7
Finally, for the constant one-function 1, 14 belongs to F4 due to Proposition 2.4.16 and

constitutes the unity. O

Lemma 2.4.18. Let ¢ € Fa and w € V(I). If ¢(w) is invertible in A, then p(w) # 0
for all p € ¢(w).

Proof. For p € ¢(w) and q € ¢(w)~!, we have 1 = pq + r with some r € Pl * Q)
r(w) = 0 yields p(w)q(w) = 1. O

Lemma 2.4.19. Let w € o(O[A]) N V(Z) be an accumulation point of o(O[A]) \ V(Z).
If ¢ € Fa is such that

(i) ¢(w) is invertible in Ay, and

(i) there exists a sufficiently small neighbourhood U of w in o(O[A]) such that 0 is not
contained in the closure of (U \ V(I)) C C,

then
¢1z) —-p(z) =0 (’ZT:M%(z)D as z = w, pe d(w)L.

Proof. For p € ¢p(w)™!, g € p(w), and z € U \ V(Z), we have
1 1 1 1
50~ (5 ~a) * (7 )
_ <¢(Z) = q(Z)) B <q(Z) () — 1>
#(2) - q(z) q(2) '
—al(2) =5(2)

As ¢(w) is invertible, Lemma 2.4.18 yields g(w) # 0. Since 0 is not an accumulation point
of p(U\ V(I)), we have |p(z) - q(z)| > € for all z € W\ V(Z) for some ¢ > 0, where W is
a sufficiently small neighbourhood of w. We conclude a(z) = O(¢(z) — ¢(2)) as z —» w.
From ¢(z) — q(z) = O(| .71, pj(2)]) as 2 = w, we conclude a(z) = O(| X7, pj(2)]) as
z —w.

Because of ¢(w) - ¢(w) ! = [1]P(y)-Qp» the numerator of 3(z) belongs to Pl - Q) ©
Qpw)- As q(w) # 0, Proposition 2.4.12 yields B(z) = O(| 7L, pj(2)]) as 2 — w. O

Clearly, a tuple of functions (¢j)?:1 € F is invertible in the sense of Definition 1.3.20
if there exists jo € [1,n]z such that ¢;, is invertible in F4. In the following lemma, we
will give a sufficient condition for invertibility of members in F7 that covers more than
the trivial case. Specifically, the invertibility of the tuple can be obtained if there exists a
measurable partition (P;);er of the domain o(O[A]) UV (Z) such that for every i € I there
exists some ¢j,, j; € [1,n]z, that is pointwise invertible on P;. In a sense, if the tuple is

locally invertible everywhere, it is invertible in F7%.
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Lemma 2.4.20. Let ¢ = (gbj);‘:l € F§ be such that there exist an arbitrary set I, a
partition (P;)ier of o(O[A]) UV (T), and (j:)icr € ([1,n]z)! such that

(i

P; is measurable for all i € I.

(ii) w € P; implies V(Q)) C Pi for every w € V(I).

(iv

)
)
(#1) 0 is not contained in the closure of ¢;,(P;\ V(Z)) C C for alli e I.
) ¢j.(2) is invertible in Al or By, accordingly, for z € V(Z)Nn P
)

(v) for every accumulation point w € o(O[A])NV(Z) of o(O[A])\V(Z), w € P; implies
that w is an interior point of P; N o(O[A]).

Then the tuple ¢ is invertible in F in the sense of Definition 1.3.20.

Proof. For j € [1,n]z we define

¢'(Z)_1’ HZEIZGPZ andji:j,
Bi(z) =1 "’
0, else,

where 0 is in A}, B}, or C, respectively. (ii) implies 3; € Ma. We will verify 3; € Fa.
First note that
871 ({0c}) = o(@[AN\ V()N | B (2.20)
1%
is measurable. We have f;(z) = % (Z) for z € (c(O[A]) \ V(7)) \ 5]71({0@}), which is
measurable. Hence f3; is measurable on o(©[A]) \ V(Z) and bounded on o(0[A]) \ V(I)
because of (7).
Let w € 0(0O[A])NV(Z) be an accumulation point of o (©[A])\V(Z). If w € P; for some
i such that j; # j, then because of (v) we have 3;(z) = 0 for all z in a sufficiently small
neighbourhood of w. If w € P; for some ¢ such that j; = j, then we apply Lemma 2.4.19
to w, ¢ = ¢;, and U being the neighbourhood of w that is contained in F;, which exists
due to (v). In any case, (2.19) is satisfied.
We denote by 1p € M4 for B C 0(O[A]) UV (Z) the function such that 15(z) is
the unity in C, Ay, or By, respectively, if z € B, and 0 otherwise. Multiplying ¢ and

8= (/Bj)?:l results in

¢-8B= Z ¢j - Bj = Z Lp, = Ly(0A) UV (D)

j=1 i€l

Since 1,(g(a])uv(z) 18 the unity in Fa, ¢ is invertible in Fy. 0

Lemma 2.4.21. If ¢ € Fa is such that ¢(z) is invertible in A, and By, respectively,
for all z € V(Z) and 0 € C is not an accumulation point of ¢(c(0O[A])\ V(Z)), then ¢ is

invertible in Fa, where ¢~ 1(2) := ¢(2)~! constitutes the inverse element.

Proof. Viewing ¢ as a tuple with one element, it satisfies the requirements in Lemma 2.4.20
with j; = 1 for all 4 € I. Since the invertibility as in Definition 1.3.20 agrees with the
usual invertibility for .7:2 = Fa, ¢ is invertible. Therefore, the function ¢! is an element
of Fa. O

o7
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Chapter 3

Joint Functional Calculus

Having established a suitable framework for the functional calculus in the previous chapter,
we now proceed to define it. The joint functional calculus defined in the present thesis is a
proper generalization of the joint functional calculus in the Hilbert space setting. In fact,
as we will see, it coincides with the Hilbert space joint functional calculus when (IC,[.,.])

is a Hilbert space.

3.1 Assembling the Joint Functional Calculus

We will continue to work with the notations and assumptions from Section 2.4. In partic-
ular, Z denotes the ideal generated by all definitizing polynomials of A, and p1,...,pm €
Rlx1,...,zy,] are definitizing polynomials of A such that Z = (py,...,pn) according to
Proposition 1.6.9. Furthermore, Z = C[zy, ..., z,] will be allowed and if Z C Clz1, ..., z,],
7 shall satisfy Assumption 2.3.1.

Definition 3.1.1. Given ¢ € Fa a pair (r, f) € Clzy,...,z,] X B(c(O[A])) is called a

decomposition of ¢ if it satisfies
(1) ¢(2z) =ra(z) for z € V(I),
(it) ¢(z) =r(z) + f(2) X272 pj(2) for all z € o(O[A]) \ V(T),
(iii) f(2) =0 for z € o(B[A]) N V(I).
Moreover, we define ® C Fu x Clz, ..., 2] x B(o(O]A])) as
&= {(¢;(r, f)) : (r, f) is decomposition of ¢} .
Lemma 3.1.2. The set ® is a linear relation between Fa and Cla1, ..., x,] x B(c(O[A))).

Proof. Let ¢1, ¢y € Fa admit decompositions (r, f), (s, g), respectively, and A € C. f+ g
clearly vanishes on o(0O[A]) NV (Z). Moreover, (r+ As)a(z) =ra(z) +Asa(z) = ¢1(z) +
Ap2(z) for z € V(Z). Lastly,

$1(2) + A\pa(2z) = ij + As(z) + Ag(z Zp]

= (r+Xs)(2) + (f + A9)(2) ij(z), z € o(O[A)\ V(Z),

o8
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3.1. ASSEMBLING THE JOINT FUNCTIONAL CALCULUS

identifies (r + As, f + Ag) as a decomposition of ¢1 + A¢pa. O

Proposition 3.1.3. Fvery function in F A admits a decomposition. In particular, we have
dom® = Fyu.

Proof. By definition, for ¢ € Fa we have

vy = (0(2))gevip) € X Al X X Big-
[a]€eVr(Z) [a]eV(D)\VRr(Z)

According to Proposition 2.3.5

Clxyy...,xn]/T — X A X X Bia),
[a]eVE(T) [a]eV(D\Vr(T)

Py = <(@]P[“J'Q[“} ) la]eVr(T)’ Up]g[“] ) [a}ewa\wz)) ’

constitutes an isomorphism. Hence r € 1/1_1(¢|V(Z)) is a polynomial satisfying

SOV (T [z]evR<I>}: o
ne {MQW o e vap [~ OF 2V,

We define f : 0(0O[A]) — C by

¢(z) —r(2)
flz):= 22 "2 e 0(0]A) \ V(T),
(2) ST 5i(2) (OlA)\V(T)
and f(z) := 0 for 2z € ¢(O[A])NV(Z). By Corollary 2.1.12 the zeros of 37", p; in o(O[A])
are indeed contained in o(©[A]) NV (Z). Hence f is well-defined and satisfies

#(z) =r(z) + [(2) Y _pi(2), =z€o(O[A)\V(T).
j=1

It remains to show that f is measurable and bounded. Note that V(Z) is measurable as
it is a finite intersection of the preimage of {0} under polynomials, which are measurable
functions. Thus the measurability of f is a consequence of the measurability of ¢ on
o(O[A]) \ V(Z).

As ¢ — r is bounded on o(O[A]) \ V(Z), it suffices to check the boundedness of f
in the neighbourhood of every w € o(©[A]) N V(Z) which is an accumulation point of
a(O[A]) \ V(Z). Since r € ¢(w), we have ¢(z) —r(z) = O(| 212, pj(2)]) as z — w; see
Remark 2.4.13. Thus,

O C NP
&) = S5 =0 wszow

O

For the following recall that Clz1,...,z,] x B(c(O[A])) carries a multiplication and

an involution turning this space into a x-algebra according to Proposition 2.2.3.

Lemma 3.1.4. Given (¢1;(r, f)), (d2;(s,9)) € ® we have (¢1¢2; (r, f) - (s,9)) € P.
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3.1. ASSEMBLING THE JOINT FUNCTIONAL CALCULUS

Proof. According to Proposition 2.2.3, (r,f) - (s,9) = (rs,rg +sf + fg> 7 1 p;). We
have (rs)a(z) = ra(z)sa(z) = ¢1(2)p2(z) for z € V(Z) due to Proposition 2.4.10. For
z € 0(O[A]) \ V(I) we calculate

m

o1(2)d2(2) = | r(2) + f(2) D_pi(=) | | 5(2) +9(2)Y_pi(=)

Jj=1 Jj=1

Finally,

Lemma 3.1.5. (¢;(r, f)) € ® implies (¢7; (r, f)*) € ®.

Proof. Note that (r, f)* = (r, f) and (r#)a = (ra)”; see Proposition 2.4.10. Thus,
(r*)a(z) = (ra)”(z) = ¢7(z) for z € V(I). Given z € ¢(0[A]) \ V(Z) C R", the fact

pj# =pj, j € [1,m]z, yields

o7 (2) =r(2) + f(2) )_pi(2) =r#(2) + f(2) ) pj(2).
j=1 j=1

Because f clearly vanishes on o(0[A]) NV (Z), we have (¢7; (r, f)*) € ®. O
Lemma 3.1.6. mul ® is contained in N .

Proof. If (r, f) is a decomposition of the zero function, then (i) and (i) from Defini-
tion 2.2.2 clearly hold true. As ra(z) = 0a(z) for all z € V(Z), Proposition 2.3.5 yields
r € J and the existence of ui,...,u, € Clxy,...,z,] that vanish on o(O[A]) NV (Z)
satisfying r = Z;n:1 u;p;. Consequently, (r, f) € N. O

Theorem 3.1.7. If ¥ is the x-homomorphism introduced in Definition 2.2.2, then the

relational product W® constitutes a *x-homomorphism from Fa to A”.

Proof. mul® C N C ker ¥ implies mul W® = {0}. Since dom ® = F4, P is a linear oper-
ator from F 5 to A”. Lemma 3.1.4, Lemma 3.1.5, and the fact that ¥ is a *-homomorphism

implies that U® is a x-homomorphism. O

Definition 3.1.8. For ¢ € F4 we set ¢p(A) := VP(¢) and refer to the x-homomorphism

¢ ¢(A)

as the joint functional calculus of A.
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3.2. SPECTRUM

Proposition 3.1.9. Given p € Clzy,...,x,] we have
p(A) = pa(A).
In particular, 7; ,(A) = Aj for the polynomial mj(x) = x;.

Proof. Since (p,0) is a decomposition of pa, we obtain pg(A) = VP(pa) = VU(p,0) =
p(A). [

Remark 3.1.10. We want to summarize the requirements we have posed on A throughout
the present thesis. The tuple A € L,(K)™ needs to satisfy the following statements so that
Definition 3.1.8 is possible.

(i) A is definitizable; see Definition 1.6.8. In particular, the members of the tuple A

are self-adjoint and commute pairwise.

(i) The ideal Z C Cl[zy,...,x,| generated by all definitizing polynomials of A satisfies
either of the following.

(a) T =Clxy,...,zp].
(b) Z € Clzy,...,z,) and admits a minimal primary decomposition such that the

varieties of the primary components are pairwise disjoint; see Assumption 2.3.1.

3.2 Spectrum

In Proposition 3.2.2, we will see that o(A) = o(0[A]) U (V(Z) N o(A)). While the
functions in F4 are defined on o(O[A]) U V(Z), it will be shown that the functional
calculus only depends on the function values on o(A), as one expects from a functional
calculus. Moreover, we will provide a weak spectral mapping theorem for continuous
functions in & 4.

We will be working with the same assumptions as in Section 3.1. In particular, Z
shall denote the ideal generated by all definitizing polynomials of A, which in case Z C
Clx1, ..., zy] shall satisfy Assumption 2.3.1. Furthermore, we fix definitizing polynomials

Dl Pm € Rlz1,...,2,) of A with Z = (p1,...,pm) according to Proposition 1.6.9.

Lemma 3.2.1. Let [w] € V(I), X € {Apy), Bjw)}, and N € N. If the tuple (sj)é-v:l €

(Clay, ..., m,))N satisfies
V((Sl, ceey SN>) N V(Q[w}) = @,
then ([sj]x);v:l is invertible in XV in the sense of Definition 1.3.20.

Proof. Let X = Ap,). Since V(P - Q) = V(Qpuw]), we have V((s1,...,5n5)) NV (P -
Q) = 0; see Lemma 2.3.4. By Lemma 1.1.20, (s1,...,sy) and Pjy,] - Q) are comaxi-

mal. Let hy,..., hy generate Pl - Q- As the given ideals are comaximal, there exist
ULy ooy Uky Ugt1,-- -, UgsN € Clzy, ..., xy,] such that
k N
1= Z u;h; + Z Uk4Sj-
i=1 j=1
EPlw) QL]
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3.2. SPECTRUM

Thus ([s;] .4,
Qp); the invertibility in Ap,) implies the invertibility in By, O]

])é\[: 1 is invertible in Af:;], where ([ug+;]4, )é\le is its inverse. As Plyy) - Q) ©

Proposition 3.2.2. We have
o(A) =o(O[A]) U(V(I)Na(A)).

In particular, c(A)\V(Z) = o(O[A])\V(Z) does not depend on the choice of the generators
D1y, Pm of the ideal L.

Proof. Since © is a non-trivial *-homomorphism, o(0©[A]) C o(A). Hence, it suffices to
verify 0(A) C o(O[A]) UV(Z). Let A € C*\ (¢(O[A]) UV (Z)) and set s;(x) := xj — \j,
j € [1,n]z, so that V((s1,...,sn)) = {A}. We will show that (s;)}_; € F is invertible
by constructing (3;)7_; € F4 such that 377, s; ,8; = 1a

Given [w] € V(Z) we know from Lemma 3.2.1 that there exist (bgw])?zl € Clzy,y...,zp)"
and hl*) € Pl - Qjyp) such that

S 5o =14 vl (3.1)
j=1

For z € V(Q)) we set Bj(z) = [bg.w]]X, j € [1,n]z, where X = Ap,) if [w] € Vg(Z) and
X = By otherwise. We obtain

n

Zﬁg 2)sja(2) = >0 x[si]x = [1]x.

7j=1

Since hl*! vanishes on V(Qpw)), there exists el > 0 such that
1
B < g = € o(OLAD N (V(Qu) + Biw(©))

where B, ] (0) denotes the open ball centered at 0 with radius elwl,
Moreover, since the sets o(0[A]) NV (Q[y)), [w] € V(I), are compact and pairwise
disjoint, there exists € > 0 such that o(0[A]) N (V(Qpuy) + Be(0)), [w] € V(I), are

pairwise disjoint. We set € := min {e min|,)ev(7) e[“’]} and

U = (#(©LA\ VD) 0 (VIQu) + BO)), [wlevD, (32
which are pairwise disjoint sets. For z € Up,), [w] € V(Z), we define
™l (2)
. — J 1
B](Z) T 1 + h[w](z)a j E [17n]Za
and obtain .
[w
ZBJ z)sj 4 (2 7 +h ]:1 b ( =),

We are going to deﬁne Bj, j € [1,n]z, on

C 1= o(O[A]) \ ( U U[w]) 7(O[A)\ (V(T) + B.(0).

(w]eV(Z
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3.2. SPECTRUM

Due to A € 0(©[A]), given z € C, there exist J, > 0 and j, € [1,n]z such that s;, does
not vanish on cl(Bs,(2)). As C is compact, there exist z1,...,zn such that Bs, (z),
i € [1, N]z, is a finite open covering of C'. We construct a partition of C' inductively by

P = <35 ) U P, i€[l,N]z. (3.3)
Moreover, we set j; := j,, € [1,n|z, which indicates that s;, does not vanish on P;. For
z € P;,i € [1,N]z, we define §;, j € [1,n]z, by
1 S
Bi(z) = { O

0, otherwise,

and obtain
1
E BJ S]A WSJZ(Z) = 1, FAS PZ

Thus we have constructed Bj € Ma, j € [1,n]z, such that

Zﬁj S]A —lA.

At last, we verify 8; € Fa, j € [1,n]z; see Definition 2.4.14. The measurability on
o(©[A])\V(Z) is clear, as ; is a rational function on each of the measurable sets defined
in (3.2) and (3.3). Due to the choice of €, |1+ h®!| is bounded from below by 1/2 on Utw)
for any [w] € V(Z) and thus j3; is bounded on Ul,, [w] € V(Z). The boundedness of 3;
on P; is ensured by the fact that s;, does not vanish on cl(B;, (2)), i € [1, N]z.

Let [w] € V(Z) be such that there exists @ € V(QJ,)) which is an accumulation point
of 7(O[A]) \ V(Z). For z € Uy, and j € [1,n]z we have

e —plwl ()l (5
Bj(z)—bgw}(z): J ( ) ( )] ( )

Trallz) U 2 1+ hlvl(z)

Since h[ Jb[“’] € Qup and lim,,q 1 + hl*l(z) = 1, Proposition 2.4.12 yields 8;(z) —
b[w] (’Z " pi(z D as z — a. Hence 5 € Fa, j € [1,n]z, and we conclude that

(sj A) 7y is invertible in F7;. As a consequence, we obtain the invertibility of
(554(A)7 = (4 = N)j_ = A= X

implying A € p(A). O

Corollary 3.2.3. The function space Fa does not depend on the choice of the generators

Ply -, Pm Of the ideal L.

Proof. According to Proposition 3.2.2 the set M 4 does not depend on the choice of genera-
tors. In fact, it only depends on the ideal Z and its unique minimal primary decomposition.
Assume that also qi,...,q generate Z. For any a € V(Z) we have q1,...,q € Z C Q(a).
Thus by Proposition 2.4.12

!
Z] 14i(z (’ZJ 1pi(z D as z — a.

By swapping the roles of q1,...,q and p1,. .., pm, we see that (2.19) is indeed a statement
independent of the choice of the generators of Z. O
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3.2. SPECTRUM

Definition 3.2.4. Let [w] € V(Z) be such that V(Qp,)) N o(O[A]) = . We define
f(ﬁw} € Mgy by

§7 FAS V(Q['w})a
0 =
¢ [w](z) { 0, otherwise,

where & belong to A, if [w] € Vr(Z) and to By, otherwise.

Lemma 3.2.5. Let [w] € V(Z) be such that V(Qp,)) No(O[A]) = 0. If we denote by e
the unity in App) and Byy), then

(@) ed[w} € Fa.
(ii) edpw)(A) constitutes a projection.

(iii) A|raneé[w](A) = (Aj‘raneJ[w](A))?:l € Lb(ran e5['11)} (A))n

(w) U(A|rane6[w](A)) - V(Q[w])

Proof. (i): It is straightforward to check edj,,) € Fa; see Definition 2.4.14.
(i4): From (edjy))* = edpy,], we infer that edj,,(A) constitutes a projection.

(@ii): Given j € [1,nl]z we have
Aj|rane6[w] (A) — (x])A(A) eé[w}(A)’raneé[w](A) = eé[w] (A) (:L‘j)A(ANrane&[w](A)‘

Thus, ran A;|,., €0y (A) C TAI €[y (A).

(1): We assume [w] ¢ Vg(Z). For [w] € Vg(Z) simply replace every instance of Biy,
in the remaining part of the proof with Af,.

For A € C"\ V(Qju)) we set sj(x) := z; — Aj, j € [1,n]z. Because of V((s1,...,8n)) =

{A}, Lemma 3.2.1 yields the existence of (b;)7_; € B, such that Z?Zl[sj]g[w]bj =e
implying
ZSJA bj0w) = (Z[Sj]g[w] bJ) Ofap] = €0
j=1 j=1
We conclude that the tuple
<Aj|rane§[w](A) - Aj)jzl — (SjA(A)|rane§[w](A))j:1 € Ly(ran e, (A))"
is invertible, which means A € p(A|.., 8 A)) Ol

Proposition 3.2.6. If ¢ € Fa vanishes on o(A), then ¢(A) = 0.

Proof. Let w € V(Z) be such that ¢(w) # 0. ¢ being constant on V(Q[y)), ¢lsa) = 0
implies
V(Qup) N (o(O[A]) U (V(T) N o(A)) = 0. (3.4)

-~

=c(A)

Hence, V(Q[y))No(O[A]) = 0 and, in turn, ed,,)(A) constitutes a projection; see Lemma 3.2.5.
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3.3. INDEPENDENCE OF THE CHOICE OF GENERATORS

According to (3.4), A € V(Q[y)) C V(Z) implies A € p(A). Hence A — A and, in turn,
Alian () (A) ~ A is invertible. From Lemma 3.2.5 we conclude o(A|,., e(s[w](A)) = (), which
is only possible if ran edj,,|(A) = {0}. Hence, edj,,(A) = 0 and

P(A) = > ¢-edg | (A) = > P(A) - edjq)(A) = 0.
[a]eV(T) [a]eV(T) —
V(Q[a])ﬂU(A):Q) V(Q[a])mJ(A):(Z)

The next result was motivated by the classical spectral mapping theorem, which states

o(p(a)) = p(o(a)), p € Clz],
for a unital algebra A and a € A.

Proposition 3.2.7. We set V := {z € V(I): V(Qp) No(A) #0}. If ¢ € &4 is con-
tinuous, then

o(¢a(A)) C ¢(a(A)UV).
Proof. f X & ¢(c(A)UV), then ¢pa(z) = ¢(z) # A for all z € 0(O[A])\ V(Z). Since o(A)

is compact and ¢ is continuous, ¢(o(A)) is compact. Hence,

A€ d(0(A)) 2 cl(o(a(O[A]) \ V(T))).

Given z € V let p € Clzy,...,z,] and U C C™ be a neighbourhood of z such that
plu = ¢ly. For any w € V(Q[,)) there exists h* € Q. such that (p + h*)|lw = ¢|w,
where W is some neighbourhood of w; see Definition 2.4.3. A" (w) = 0 implies p(w) =
p(w) + h*(w) = ¢(w) # A. Therefore, the polynomial p — A does not vanish on V(Qy;).
Employing Lemma 3.2.1 for N = 1, we conclude that (¢ — N a(z) = (p — N a(z) is
invertible in A[;) or By}, respectively. According to Proposition 3.2.6 the function values
for z € V(Z) \ V do not affect the functional calculus. Hence we can assume ¢4(z) = e,
z € V(Z)\V. Consequently, (¢ —\) 4 satisfies the assumptions of Lemma 2.4.21, resulting
in its invertibility. Thus ¢4(A) — A is an invertible operator. O

3.3 Independence of the Choice of Generators

Although the functional calculus was constructed using concepts that depend on the choice
of the generators of Z, we are going to show in the present section that the resulting joint
functional calculus is independent of this choice. As an application, we will demonstrate
that the Hilbert space joint functional calculus is a special case of the Krein space joint
functional calculus.

We fix two families of generators s := (s;)72; and ¢ := (t;)!_, of the ideal Z. In order
to avoid confusion, we will mark objects with the generators used to construct them. For
example, we will denote by ¢(A)s the functional calculus constructed with respect to s.

Henceforth, our goal in this section is to prove that
P(A)s = d(A), &€ Fa. (3.5)
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3.3. INDEPENDENCE OF THE CHOICE OF GENERATORS

We consider the family of generators s Ut = (s1,...,Sm,1,...,t) and show

P(A)s = (A)sut, ¢ € Fa.

We then obtain (3.5) by symmetry.

Recall that Ts € Ly(Hs,K) and Ty € Ly(Hi, K) are operators satisfying TsT, =
> je18j(A) and i1 = 3L ti(A); see T € Ly(H,K) in Definition 2.1.1. Accordingly,
the operator Ts t € Ly(Hsut, K) is such that

m l
TatTihe =Y si(A) + ) t(A) = T.TS + LT,
j=1 i=1
Applying Lemma 2.1.3 to the definitizing polynomials p; := >, s; and py = Zi’:l t;
of A yields the existence of unique injective contractions Rs € Ly(Hs, Hsut), Rt €
Ly(Hy, Hsop) such that Ty = Ty Rs, Ty = TeutRe, and ReRY + ReRy = 1.

7—[3/_\ \

\
%sut —Tsut —— K
Ht / /
\,

Figure 3.1: Commutative diagram of operators introduced in Section 3.3.

Recall that we have already established that the function space F4 does not depend

on the choice of generators; see Corollary 3.2.3.

Lemma 3.3.1. Let ¢ € Fa. If (r,f)s is a decomposition of ¢ with respect to s, then

(r, F)sut constitutes a decomposition of ¢ with respect to s Ut, where

/ Z;n 155
Py ]+Zz 1t
Proof. Applying Proposition 2.4.12 for the generators s U t, we obtain Z;”Zl sj(z) =

O(| 327, s5(2) + Zizl ti(z)|) as z = w € V(Z). In concequence, F is bounded. f being

measurable implies measurability of F. (r, F')sut clearly satisfies (éii) of Definition 3.1.1

F=1 c(AN\V(T) E %(U(esut[A])).

for © = O4¢ and (7) since (, f)s is a decomposition of ¢ with respect to s. Note that
o(Osut[A)\V(Z) =0(A)\ V(Z) = 0(0s[A]) \ V(Z) according to Proposition 3.2.2. For
z €0(A)\ V(Z) we have

m l m
2)FF() [ Y si(2) + ) ti(z) | =r(z) + f(2) ) s(2) =
j=1 i=1 j=1
Thus, Definition 3.1.1, (4) is also satisfied. O
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3.3. INDEPENDENCE OF THE CHOICE OF GENERATORS

Lemma 3.3.2. If f € B(0(Osut[A])) satisfies floo,,1a)nv () = 0, then

s
Es </f dEs> = ESUt </ mfZ]—l ‘; dESUt) )
> jm155 T iz bi

where Eg, Eg i are the joint spectral measures of Os[A], Osut[A], respectively.

Proof. We apply Lemma 2.1.10 to p; = Z;n:l 55, p2 = Zizl t; and translate the notation
into that of the present section by

= = =_ = 1
Ri = R, E1 =Es, 2 =Esut, 0 = 637 @:@sUh B =FEs, E=FEg.

By (2.9) applied to our situation,

z, < 1 dEs> — B (RSR: 1 dEsut>

" <RSR:EsUt(o(®sut[AD\V(I))/ I dESUt)'

According to Corollary 2.1.12, Z;”Zl 55 + 22:1 t; does not vanish on o(Og[A]) \ V(Z)
because s Ut generates Z. Applying Lemma 2.1.13 to p; = Z;n:l 85, p2 = Zé:l t;, and
M = 0(0,4[A]) \ V(Z) yields

Esut

RyRLE = 1
sRyEsut(0(0sut[A]) \ V(2)) = p ;
o(Osut[AN\V(T) D5l 85+ Do ti

and, in turn,

Ee (/des> = Esut (/ — 2=t Sjl dEsUt/desut)
o(@sut[AN\V(T) D01 85+ D b

f270 85
sUt (/ s =1 ]l dEsut | -
Zj:l $j+ D i1 ti

We have gathered all the necessary tools in order to prove the main result of this

I
(1]

O]

section.
Theorem 3.3.3. Given ¢ € Fa we have
Cb(A)s = ¢(A)sut-
Proof. Let (r, f)s be a decomposition of ¢ with respect to s. By Lemma 3.3.1, (7, F')sut
with m
f Zj:l Sj

m l ’

D185+ 2 b

is a decomposition of ¢ with respect to s Ut. Employing Lemma 3.3.2 we conclude

F=Tlsanv @)

O(A)an = r(A) + Zan ( [F dEsUt)
— r(A) +E, ( & dEs) — 4(A)..
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3.4. COMPATIBILITY WITH SUBTUPLES

Corollary 3.3.4. The joint functional calculus constructed in the present thesis does not
depend on the choice of generators of I, i.e., for two families of generators s,t of I we

have

P(A)s = 0(A), ¢ € Fa.
Proof. By Theorem 3.3.3 we have ¢(A)s = ¢(A)sut = ¢(A)¢ for ¢ € Fa. O

The joint functional calculus indeed generalizes the joint functional calculus for tuples
of pairwise commuting bounded self-adjoint operators on Hilbert spaces, as we will see in

the following theorem.

Theorem 3.3.5. If (K,[.,.]) is a Hilbert space, then any tuple A € Ly(K)" of pairwise
commuting self-adjoint operators is definitizable. Moreover, the above developed functional

calculus is applicable on Fa = B(c(A)) and

o(4) = [odE. o€ Bo(a)),
where E is the joint spectral measure of A.

Proof. In a Hilbert space the identity operator I € L;(K) is a positive operator. Therefore,
1 € Clxy,...,x,] definitizes any tuple A of pairwise commuting self-adjoint operators.
This implies Z = C[z1, ..., x,]. By Remark 3.1.10 the Krein space joint functional calculus
can be constructed.

Because of Corollary 3.3.4, we can choose p; = 1 as the generator of Z for constructing
the joint functional calculus implying H = H1 and T" = T7; see Definition 2.1.1. Moreover,
when we take a look at how we constructed H and 7' : H — K in the proof of Lemma 1.6.10,
we obtain H = K and T' = I. As a result, the operators © = ©7 and Z = =1 both coincide
with the identity operator on Ly(K) = (ITT)" = (IT1)". Furthermore, since V(Z) is empty,
the function space F4 equals B(c(O[A])) = B(c(A)); see Remark 2.4.15.

Let ¢ € Fa = B(0(A)). Because of V(Z) = 0, X7, pj(z) = pi(2) = 1, and
¢ € B(c(A)), the pair (0,¢) is a decomposition of ¢; see Definition 3.1.1. We obtain

¢(A)—0+E</¢dE> —/qﬁdE.

3.4 Compatibility with Subtuples

For a definitizable tuple A of pairwise commuting self-adjoint operators, let Ay =
(Aj)jen € Ly(K)N, N C [1,n]z, be a subtuple. If we denote by mn : C* — CV the

canonical projection (Zj)?zl > (2j)jen, then for any polynomial p € Clxz1, ..., 2N,
p(AN) =ponn(A). (3.6)

Assuming that the joint functional calculus can be defined for both A and Ay, our goal

in the present section is to generalize (3.6) and to show
P(AN) = pomn(A), &€ Fay,
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3.4. COMPATIBILITY WITH SUBTUPLES

where the term on the right-hand side has yet to be defined.

For objects related to the construction of the joint functional calculus of A, we will
continue to employ the notation used since Chapter 2. In order to avoid confusion, any-
thing related to A will be indicated by the subscribt .. For example, we will denote by
In the ideal generated by all definitizing polynomials of A .

Lemma 3.4.1. If we denote by ¢ : Clz1, ..., 25| = Clz1,. .., 2,] the mapping p — pornn,
then 1(Zn) CZ and nn(V(Z)) C V(Zn).

Proof. 1f p € Clx1,..., 2|y is a definitizing polynomial for Ay, then, clearly, p o my is
a definitizing polynomial for A. Hence, «(Zy) € Z and, in consequence, mn(V(Z)) C
N (V(«(IN))) = V(IN). O

Let q1,...,q € Clzy,... ,w‘N|] be the generators of Zn used for constructing the func-
tional calculus of Ay. Moreover, we set p; = 22:1 giomn € t(Zy) € Z and extend it to
a family p1, ..., p, of generators of Z, which will be used to construct the joint functional
calculus in Section 2.1. This choice indeed does not affect the joint functional calculus of

A, as we have seen in Corollary 3.3.4.

Definition 3.4.2. For ¢ € Fa, and 7 € C[zy,...,z|y|] such that ¢|y(z,) = raylv(zy)
we define (p o), € Mg as

P(mn(2)), z € 0(O[A]) \V(Z), nn(2) € o(ON[AN]) \ V(ZN),

oz | TENE) 20U \VD), ma() € o(Ox[An) \V(TY),
" [ro 7TN]73[ Lon %€ V(2),[z] € Vr(Z),
[romn]g zeV(2),[z] € Vr(Z)

(=]’

Lemma 3.4.3. With the notation and assumption from Definition 3.4.2, the function
(pomn), belongs to Fa.

Proof. The measurability of (¢ o mx), on o(O[A]) \ V(Z) is a concequence of the mea-
surability of the function ¢ o mn and the sets V(Z),V(Zy),c(O[A)]), c(On[An]). Since
0(O[A]) is compact and ¢ is bounded on o(On[AN]) \ V(ZN), (¢ o mn)r is bounded on
o(0[A)\ V(I).

If w € V(Z) is an accumulation point of o(©[A]) \ V(Z), then w € R™ and (¢ o
m™N)r(w) = [r o wnlpy, 0, - Furthermore, due to mn(V(Z)) C V(Zn), mn(w) € V(Zn)
and (mn (w)) = (1P (wy Qpry -

We are going to consider two cases that do not exclude each other. First assume that
7y (w) is an accumulation point of o(On[AN]) \ V(Zn). Due to ¢ € Fa,,

By (=) = r(my(2) = O (|Tis o mv(2)|) as 2= w,

where z € 0(O[A]) \ V(Z) such that 7y(z) € 0(On[AN]) \ V(Zn). Moreover, 22:1 gi ©
nn € T implies

o(nn(z)) —r(nn(z (’ZJ 1Pz D as z — w;

see Proposition 2.4.12.
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3.4. COMPATIBILITY WITH SUBTUPLES

If 7 (w) is an accumulation point of RV\ (6(ON[AN])\V (Zx)), then for z € o(O[A])\
V(Z) such that mn(2) € 0(ON[AN]) \ V(Zn), we have

(60 m)r(2) = r(m(2)) = 0= O (|, pi(2)]) s 2 - w.
Since the growth condition is satisfied in both cases, we conclude
(60 m)r(2) — r(mw(2)) = O (| Sy pi(2)]) s as 2 > w.
Hence (¢ o ), belongs to Fa. O

Lemma 3.4.4. Given ¢ € Fa, and its decomposition (r, f)n, the tuple (r o wn, F)

constitutes a decomposition of (¢ o wn),, where

HoxE i lm=) |5 € 0(0[A]) \ V(T), mv(2) € o(ON[AN) \ V(Tw),
F(z):=4 o, z € o(O[A)\ V(T), 7n(2) € c(ON[AN]) \ V (ZN),
0, z € o(O[A]) NV (T)

Proof. Given z € 0(O[A]) \ V(Z) we have

_ { r(my(2)) + f(mn(2) Tisy ai(an(2)), 7n(z) € o(On[AN]) \ V(Zn), }
) TN (2) & o (ON[AN]) \ V(ZN),

= (pomn)r(2).

Clearly, F' vanishes on o(©[A]) N V(Z) and (r o 7n)alv(z) = (P o 7N )rlv(z)

The set 0(On[An]) \ V(Zy) and f being measurable implies the measurability of F.
From Zﬁzl giomn € 1(Iy) € I, we obtain ¢;(7n(2)) = O(| 3272, pi(2)]) as z — w € V(I);
see Proposition 2.4.12. Since f is bounded, we derive the boundedness of F. Hence

(romn, F) constitutes a decomposition of (¢ o 7wy ),; see Definition 3.1.1. O
Theorem 3.4.5. If ¢ € Fay and r € Clxy, ..., zn|] satisfy dlyzy) = Tay|v(zy), then

P(An) = (o mn)r(A).

Proof. Let (r, f)n be a decomposition of ¢ and (r o my, F') a decomposition of (¢ o 7wy ),
as defined in Lemma 3.4.4. We set

D =7y (c(On[AN]) \ V(ZN)).

Due to my(V(Z)) C V(Zn), we have DN V(Z) = (. If E denotes the spectral measure of
©[A], then

(pomn)r(A) =rony(A)+E </FdE)
(/ foﬂszllp?oﬁNdE>
(/MME/ )
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3.4. COMPATIBILITY WITH SUBTUPLES

By applying Lemma 2.1.13 to M = DN o(O[A]) we see that the last term can be written

r(Ay) +E ((/D fory dE) RARIE(D N a(@[A]))) .

Since, by Proposition 2.1.8, R1 R} commutes with fD fomn dE, this is equal to

T‘(AN) += (RlRT/ fomn dE> R
D

which according to (2.9) can be rearraged to

r(AN) + 21 </Dfoer dEl) ,

where E' denotes the joint spectral measure of ©1[A]; see Definition 2.1.4. p; = 22:1 q; ©
7w implies Tler =p(A) = 22:1 ¢i(An) = TnTy, which allows us to choose Ty =
Tyn. Consequently, Z; = Ey and ©; = Opy. Since On[Ap] is a subtuple of ©1[A],
Corollary 1.7.8 yields E' o 7r;,1 = Ex, where Ey is the joint spectral measure of O y[Ay].

Taking these facts into consideration, we conclude

(ponn)r(A) =7r(AN) +E1 (/Df omN dE1>
=r = 107[_71
= r(A) + Ex (/WN(D)fd(E v ))

:T(AN)+EN / deN :¢(AN)
a(ON[AND\V(ZN)

Due to Theorem 3.4.5, ¢ o mn(A) is well-defined in the following sense.

Definition 3.4.6. For ¢ € Fa, and 7 € C[xy,...,z|y|] such that ¢|y(z,) = raylv(zy)

we set

qb [e) WN(A) = (gb o WN)T(A)-
Corollary 3.4.7. For p € Clz1,...,z|y|] we have
pay o mN(A) =pay(An) =p(An) =ponn(A) = (pomn)a(A).

Proof. The first equality holds due to Theorem 3.4.5. The second and the fourth equality

is true according to Proposition 3.1.9. O
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