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Abstract

The indefiniteness of Krein spaces gives rise to substantial complications. For instance,

bounded self-adjoint linear Krein space operators are not well-behaved enough to allow for

an appropriate analogue of the Spectral Theorem. To overcome this, classical literature

imposes the additional assumption of definitizability. In the present work, we extend the

notion of definitizability to tuples of pairwise commuting bounded self-adjoint operators

and formulate the Spectral Theorem, expressed as a joint functional calculus, for defini-

tizable tuples of Krein space operators. The definitizability of a tuple is a significantly

weaker assumption than requiring each operator in the tuple to be definitizable.

The constructed functional calculus will produce the zero operator if applied to a

function that vanishes on the joint spectrum of the respective operator tuple. Moreover,

while the construction of the functional calculus is based on the choice of generators of the

smallest ideal containing all definitizing polynomials of the respective operator tuple, it

will be shown that the resulting functional calculus is not affected by that choice. Finally,

the functional calculus will be compatible with the functional calculus of subtuples via the

canonical projection.
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Introduction

The Spectral Theorem for bounded linear self-adjoint operators on a Hilbert space is

a well-known result, which has been generalized to finite tuples of pairwise commuting

self-adjoint operators; see [Sch12] or Theorem 1.7.7. On the other hand, self-adjointness

does not suffice in the Krein space setting to formulate a Spectral Theorem. Classical

Spectral Theorems for Krein space operators mostly assume definitizability in addition

to boundedness and self-adjointness of the operator; see for example [KP15, SK20]. A

self-adjoint A ∈ Lb(K) for a Krein space (K, [., .]) is called definitizable if there exists a

so-called definitizing polynomial p ∈ R[z]\{0} of A, such that [p(A)x, x] ≥ 0 for all x ∈ K.

In the present thesis, we introduce a joint functional calculus for a finite tuple of

pairwise commuting bounded self-adjoint Krein space operators inspired by [Kal17] and

[SK20]. While [SK20] also presented a joint functional calculus, the construction was built

upon the assumption that each operator in the tuple is definitizable. However, we relax this

condition and work with a definitizable tuple A1, . . . , An of pairwise commuting self-adjoint

operators, that is, there exists p ∈ R[x1, . . . , xn]\{0} such that [p(A1, . . . , An)x, x] ≥ 0 for

all x ∈ K. This definition of definitizability is a natural extension of the definitizability of

normal operators introduced in [Kal17]. In fact, the main result of the present thesis is

a generalization of the functional calculus for 2-tuples, decoded as a normal operator, as

developed in [Kal17] for n-tuples.

We fix a definitizable tuple of pairwise commuting bounded self-adjoint operators A :=

(Aj)
n
j=1 ∈ Lb(K)n, where K is a Krein space. Moreover, we denote by I ⊆ C[x1, . . . , xn]

the smallest ideal containing all definitizing polynomials of A. Due to the Ascending

Chain Condition 1.1.5, there exist definitizing polynomials p1, . . . , pm ∈ R[x1, . . . , xn] that
generate the ideal I. With the help of p1, . . . , pm we will define several embeddings such

as Θ and Ξ in Section 2.1, which have been first studied in [KP15]. Θ is a bounded

∗-homomorphism defined on a certain subalgebra of Lb(K) mapping into Lb(H) for some

Hilbert space H, and Ξ : Lb(H) → Lb(K) is an injective bounded linear operator. These

embeddings allow us to move back and forth between Krein and Hilbert space setting. An

essential part of our joint functional calculus will be the Hilbert space functional calculus

of the tuple Θ[A] := (Θ(Aj))
n
j=1 ∈ Lb(H)n.

In Section 2.4, we define a function algebra FA, which will be the domain of the joint

functional calculus. Functions belonging to FA are defined on σ(Θ[A])∪V (I) ⊆ Cn, where

V (I) is the variety of I and σ(Θ[A]) the joint spectrum of Θ[A]; see Definition 1.4.6. A

crucial property of φ ∈ FA is that it admits a decomposition (r, f), where r ∈ C[x1, . . . , xn]
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and f : σ(Θ[A]) → C is a bounded measurable function vanishing on σ(Θ[A]) ∩ V (I).
Furthermore, polynomials can be embedded naturally into FA via p ,→ pA; see Proposi-

tion 2.4.16.

For φ ∈ FA admitting the decomposition (r, f), we define the joint functional calculus

by

φ(A) := r(A) + Ξ

(∫
f dE

)
,

where E denotes the joint spectral measure of Θ[A] ∈ Lb(H)n; see Theorem 1.7.7. It

will be verified that the choice of the decomposition of φ does not affect the functional

calculus. Moreover, we will show that φ ,→ φ(A) constitutes a ∗-homomorphism satisfying

p(A) = pA(A) for all p ∈ C[x1, . . . , xn].

The main contribution of the present thesis is a significant generalization of the joint

functional calculus developed in [Kal17]. In [Kal17], the functional calculus was con-

structed for an operator such that the ideal I ⊆ C[x, y] generated by its definitizing

polynomials had a finite codimension, i.e., dim C[x1, . . . , xn]/I < ∞. This assumption

implies that the variety V (I) is finite. In contrast to this strong assumption, we only

require the irreducible components of V (I) to be pairwise disjoint; see Assumption 2.3.1

and Remark 2.3.2.

Moreover, we will see in Section 3.3 that the resulting functional calculus is not affected

by the choice of the generators p1, . . . , pm of I. This robustness is remarkable since the

embeddings Θ and Ξ, which are central to our construction, vary depending on the choice

of p1, . . . , pm.
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Chapter 1

Preliminaries

1.1 Ideals and Varieties

Throughout this section K shall be an arbitrary field.

Definition 1.1.1. Let R be a nonempty set. If +, · : R × R → R are two binary

operations on R such that

(i) (R,+) constitutes an abelian group,

(ii) (R, ·) constitutes a semigroup,

(iii) · distributes over +,

then (R,+, ·) is called a ring. We call

• an element e ∈ R unity if ex = xe = x. If R contains a unity, (R,+, ·) is unital.

• an element x ∈ R in a unital ring (R,+, ·) invertible if there exists an element y ∈ R
such that xy = yx = e, where e is the unity. The set of all invertible elements of R
will be denoted by Inv(R).

• (R,+, ·) commutative if · is commutative.

If the operations are clear from context, we will write R instead of (R,+, ·).

Definition 1.1.2. Let (R,+, ·) be a ring. A nonempty subset I ⊆ R is an ideal if (I,+)

is a subgroup of (R,+) and if x ∈ I, y ∈ R implies xy, yx ∈ I. An ideal I ⊆ R is called

• proper if I ≠ R.

• maximal if I is proper and I ⊆ I ′ for some proper ideal I ′ implies I = I ′.

Definition 1.1.3. By K[x1, . . . , xn] we denote the ring of polynomials in n variables with

coefficients in K. For a = (ai)
n
i=1 ∈ Kn and p ∈ K[x1, . . . , xn], we set p(a) := p(a1, . . . , an).

Lemma 1.1.4. If R is a commutative ring and p1, . . . , pm ∈ R, then the set

⟨p1, . . . , pm⟩ :=


m∑
j=1

hjpj : h1, . . . , hm ∈ R

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1.1. IDEALS AND VARIETIES

constitutes an ideal in R. We refer to p1, . . . , pm as generators of ⟨p1, . . . , pm⟩, which is

the smallest ideal containing p1, . . . , pm.

Proof. Given f, g ∈ ⟨p1, . . . , pm⟩ there exist h1, . . . , hm, h′1, . . . , h′m ∈ R such that

f =
m∑
j=1

hjpj , g =
m∑
j=1

h′jpj .

Therefore,

f + g =
m∑
j=1

(hj + h′j)pj ∈ ⟨p1, . . . , pm⟩.

Given h ∈ R we have

fh =

m∑
j=1

(hjh)pj ∈ ⟨p1, . . . , pm⟩.

The minimality is clear.

The following result will be crucial throughout this thesis. A proof can be found in

[CLO07, p.79].

Theorem 1.1.5 (Ascending Chain Condition). Let (Ik)k∈N be a sequence of ideals in

K[x1, . . . , xn]. If Ik ⊆ Ik+1 for all k ∈ N, then there exists N ∈ N such that IN+j = IN
for all j ∈ N.

Clearly, the Ascending Chain Condition implies the following result.

Theorem 1.1.6 (Hilbert’s Basis Theorem). Every ideal I ⊆ K[x1, . . . , xn] has a finite set

of generators.

Definition 1.1.7. Given S ⊆ K[x1, . . . , xn] we define

V (S) = {z ∈ Kn : p(z) = 0 for all p ∈ S} ,

the variety of S. Clearly, V (K[x1, . . . , xn]) = ∅.

Notation 1.1.8. For n,m ∈ Z with n < m, we set [n,m]Z := {n, n+ 1, . . . ,m− 1,m}.

The following lemma provides a simple way to analyze the variety of an ideal.

Lemma 1.1.9. Given p1, . . . , pm ∈ K[x1, . . . , xn] we have

V (⟨p1, . . . , pm⟩) = {z ∈ Kn : pj(z) = 0, j ∈ [1,m]Z} .

Proof. For N := {z ∈ Kn : pj(z) = 0, j ∈ [1,m]Z} we have

m∑
j=1

hj(z)pj(z) = 0, h1, . . . , hm ∈ K[x1, . . . , xn], z ∈ N,

which means N ⊆ V (⟨p1, . . . , pm⟩). The converse inclusion is obvious.
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1.1. IDEALS AND VARIETIES

Definition 1.1.10. Let I,J ⊆ K[x1, . . . , xn] be ideals. We define the sum and product

of I and J as

I + J := {f + g : f ∈ I, g ∈ J } ,

I · J :=

{
m∑
i=1

figi : m ∈ N, f1, . . . , fm ∈ I, g1, . . . , gm ∈ J
}
.

Lemma 1.1.11. If I = ⟨f1, . . . , fm1⟩, J = ⟨g1, . . . , gm2⟩ ⊆ K[x1, . . . , xn] are ideals, then

I + J constitutes an ideal satisfying

I + J = ⟨f1, . . . , fm1 , g1, . . . , gm2⟩.

Moreover, V (I + J ) = V (I) ∩ V (J ).

Proof. By definition I + J is an additive subgroup of K[x1, . . . , xn]. Given f ∈ I, g ∈ J ,

and h ∈ K[x1, . . . , xn], we have fh ∈ I and gh ∈ J as I and J are ideals. Hence,

(f + g)h = fh+ gh ∈ I + J . Consequently, I + J is an ideal.

Since ⟨f1, . . . , fm1 , g1, . . . , gm2⟩ is an ideal that contains both I and J , we have I+J ⊆
⟨f1, . . . , fm1 , g1, . . . , gm2⟩. The other inclusion follows from Lemma 1.1.4.

By Lemma 1.1.9 we have

V (I + J ) = V (⟨f1, . . . , fm1 , g1, . . . , gm2⟩)
= {z ∈ Kn : fi(z) = gj(z) = 0, i ∈ [1,m1]Z, j ∈ [1,m2]Z}
= {z ∈ Kn : fi(z) = 0, i ∈ [1,m1]Z} ∩ {z ∈ Kn : gj(z) = 0, j ∈ [1,m2]Z}
= V (I) ∩ V (J ).

Lemma 1.1.12. If I = ⟨f1, . . . , fm1⟩, J = ⟨g1, . . . , gm2⟩ ⊆ K[x1, . . . , xn] are ideals then

I · J constitutes an ideal satisfying

I · J = ⟨{figj : i ∈ [1,m1]Z, j ∈ [1,m2]Z}⟩.

Moreover, V (I · J ) = V (I) ∪ V (J ).

Proof. We have 0 = 0 · 0 ∈ I · J . Given l1, l2 ∈ N, p1, . . . , pl1 , r1, . . . , rl2 ∈ I, and
q1, . . . , ql1 , s1, . . . , sl2 ∈ J , we have

l1∑
i=1

piqi +

l2∑
i=1

risi ∈ I · J .

Additionally, given h ∈ K[x1, . . . , xn], we have

h

l1∑
i=1

piqi =

l1∑
i=1

hpi,,,,
∈I

qi ∈ I · J .

Thus I · J constitutes an ideal.
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1.1. IDEALS AND VARIETIES

For i ∈ [1, l1]Z there exist hi,1, . . . , hi,m1 , h
′
i,1, . . . , h

′
i,m2

∈ K[x1, . . . , xn] such that

pi =

m1∑
j=1

hi,jfj , qi =

m2∑
j=1

h′i,jgj

implying

piqi =

m1∑
j=1

m2∑
k=1

(hi,jh
′
i,k)fjgk.

Hence,
l1∑
i=1

piqi =

m1∑
j=1

m2∑
k=1

(
l1∑
i=1

hi,jh
′
i,k

)
fjgk

belongs to ⟨{figj : i ∈ [1,m1]Z, j ∈ [1,m2]Z}⟩. We have shown that I · J is a subset of

⟨{figj : i ∈ [1,m1]Z, j ∈ [1,m2]Z}⟩. The converse inclusion follows from Lemma 1.1.4.

Finally, by Lemma 1.1.9

V (I · J ) = V (⟨{figj : i ∈ [1,m1]Z, j ∈ [1,m2]Z}⟩)
= {z ∈ Kn : fi(z)gj(z) = 0, i ∈ [1,m1]Z, j ∈ [1,m2]Z}
= {z ∈ Kn : fi(z) = 0 ∨ gj(z) = 0, i ∈ [1,m1]Z, j ∈ [1,m2]Z}
= {z ∈ Kn : fi(z) = 0, i ∈ [1,m1]Z} ∪ {z ∈ Kn : gj(z) = 0, j ∈ [1,m2]Z}
= V (I) ∪ V (J ).

Remark 1.1.13. It is easy to check that the intersection of ideals from a ring again

constitutes an ideal. Moreover, I · J ⊆ I ∩ J for ideals I and J .

Definition 1.1.14. Let R be a unital ring. Two ideals I,J ⊆ R satisfying I + J = R
are called comaximal.

Notation 1.1.15. Let I be an ideal in K[x1, . . . , xn]. We are going to denote the elements

from the factor algebra K[x1, . . . , xn]/I by

[p]I := p+ I, p ∈ K[x1, . . . , xn].

A proof for the following result can be found in [GW22].

Theorem 1.1.16. (Chinese Remainder Theorem) Let R be a unital ring and I1, . . . , Im
⊆ R pairwise comaximal ideals. For I :=

∩m
j=1 Ij, the mapping

ϕ :

{
R/I → R/I1 × · · · × R/Im,

[r]I ,→ ([r]I1 , . . . , [r]Im),

constitutes a ring-isomorphism.

Lemma 1.1.17. If we have R = K[x1, . . . , xn] in the setting of Theorem 1.1.16, then ϕ

is linear.
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1.1. IDEALS AND VARIETIES

Proof. Since ϕ is a ring homomorphism, it is additive with respect to the ring addition,

which coincides with the vector space addition in K[x1, . . . , xn]. In order to show the

homogeneity, let p ∈ K[x1, . . . , xn] and λ ∈ K. Writing the multiplication in a ring as ·
and the scalar multiplication without a symbol, we have

λ · p = λp,

for λ ∈ K and p ∈ K[x1, . . . , xn] if we interpret λ as an element of K[x1, . . . , xn]. This

implies

ϕ(λ [p]I) = ϕ([λ · p]I) = ϕ([λ]I) · ϕ([p]I) =
(
[λ]Ij

)m
j=1

· ([p]Ij)mj=1

=
(
[λ · p]Ij

)m
j=1

= λ
(
[p]Ij

)m
j=1

= λϕ([p]I).

Lemma 1.1.18. Let R be a unital commutative ring. If I1, I2 ⊆ R are comaximal ideals,

then I1 ∩ I2 = I1 · I2.

Proof. The inclusion I1 ∩ I2 ⊇ I1 · I2 follows immediately from the definition of ideals;

see Remark 1.1.13. For the other inclusion, suppose x ∈ I1 ∩ I2 and let a ∈ I1, b ∈ I2 be

such that a+ b = 1. We derive x = xa+ xb ∈ I1 · I2.

The following theorem is often referred to as the weak Nullstellensatz. A proof can be

found in [CLO07, p.170].

Theorem 1.1.19. Let K be an algebraically closed field and I ⊆ K[x1, . . . , xn] an ideal.

If V (I) = ∅, then I = K[x1, . . . , xn].

Lemma 1.1.20. Ideals I1, I2 ⊆ C[x1, . . . , xn] have disjoint varieties if and only if they

are comaximal.

Proof. According to Lemma 1.1.11, we have V (I1 + I2) = V (I1) ∩ V (I2). Hence, by

Theorem 1.1.19, V (I1) ∩ V (I2) = ∅ yields I1 + I2 = C[x1, . . . , xn]. On the other hand, if

I1, I2 are comaximal, then V (I1 + I2) = V (C[x1, . . . , xn]) = ∅.

Notation 1.1.21. Given N ∈ N and ideals R1, . . . ,RN ⊆ C[x1, . . . , xn], we write

N∏
j=1

Rj := (((R1 · R2) · R3) · · · ) · RN

for the iterative product of the ideals R1, . . . ,RN in the sense of Definition 1.1.10. This

notation makes sense as multiplication of ideals is associative, which is evident from

Lemma 1.1.12.

Lemma 1.1.22. Let N ∈ N and R1, . . . ,RN ⊆ C[x1, . . . , xn] be ideals such that their

varieties are pairwise disjoint. For every k ∈ [1, N ]Z we conclude

k∩
j=1

Rj =
k∏

j=1

Rj , (1.1)

V

 k∏
j=1

Rj

 =
U̇k

j=1
V (Rj). (1.2)
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1.2. PRIMARY DECOMPOSITION OF AN IDEAL

Proof. The case N = 1 is trivial. We show (1.1) and (1.2) for all k ∈ [2, N ]Z by

induction. The case k = 2 is covered by Lemma 1.1.18 and Lemma 1.1.12. Assuming

N > 2 suppose (1.1) and (1.2) hold true for some k ∈ [2, N − 1]Z. We conclude

V (Rk+1) ∩ V

 k∏
j=1

Rj

 = V (Rk+1) ∩
kU

j=1

V (Rj) = ∅.

By Lemma 1.1.20, Rk+1 and
∏k

j=1Rj are comaximal. By Lemma 1.1.18,

k+1∩
j=1

Rj
(1.1)
=

 k∏
j=1

Rj

 ∩Rk+1 =
k+1∏
j=1

Rj .

Finally, Lemma 1.1.12 yields

V

k+1∏
j=1

Rj

 = V

 k∏
j=1

Rj

 ∪ V (Rk+1)
(1.2)
=

k+1U
j=1

V (Rj).

1.2 Primary Decomposition of an Ideal

Definition 1.2.1. Let I ⊆ R be an ideal in a commutative unital ring R and x, y ∈ R.

• If I is proper and xy ∈ I ∧ x ̸∈ I implies y ∈ I, then I is called prime.

• If I is proper and xy ∈ I ∧ x ̸∈ I implies yk ∈ I for some k ∈ N, then I is called

primary.

• If I is proper and xk ∈ I for some k ∈ N implies x ∈ I, then I is called radical.

• The radical of I, denoted √I, is the set{
x : xk ∈ I for some k ∈ N

}
.

Clearly, I ⊆ √I.
Lemma 1.2.2. If I ⊆ K[x1, . . . , xn] is an ideal, then

√I constitutes an ideal.

Proof. Given f, g ∈ √I there exist k, l ∈ N such that fk, gl ∈ I. For every term in the

binomial expansion

(f + g)k+l =
k+l∑
i=0

(
k + l

i

)
f igk+l−i,

either i ≥ k or k + l − i ≥ l. Hence, (f + g)k+l ∈ I and, in turn, f + g ∈ √I. If

h ∈ K[x1, . . . , xn], then (hf)k = hkfk ∈ I. Hence, hf ∈ √I.

Lemma 1.2.3. If I ⊆ K[x1, . . . , xn] is a primary ideal, then
√I is a prime ideal.

Proof. Let I be primary and f, g ∈ K[x1, . . . , xn] be such that fg ∈ √I and f ̸∈ √I. By
the definition of the radical, there exists k ∈ N such that (fg)k ∈ I. Since fk ̸∈ I and I
is primary, there exists l ∈ N such that gkl ∈ I. We conclude g ∈ √I.

8



1.2. PRIMARY DECOMPOSITION OF AN IDEAL

Recall the following facts; see for example [GW22, 3.3.2.4].

Facts 1.2.4. Let R be a commutative unital ring.

(i) An ideal I ⊆ R is maximal if and only if R/I constitutes a field.

(ii) Every maximal ideal is prime.

Lemma 1.2.5. If I ⊆ K[x1, . . . , xn] is an ideal such that
√I is maximal, then I is

primary.

Proof. For f, g ∈ K[x1, . . . , xn] we assume fg ∈ I and f ̸∈ I. In order to show that I is

primary, it suffices to demonstrate that [g]I is nilpotent in R := K[x1, . . . , xn]/I. Note

that K[x1, . . . , xn] and R are commutative unital rings. Since
√I is maximal,

K[x1, . . . , xn]/
√
I ∼= (K[x1, . . . , xn]/I)/(

√
I/I) = R/

√
{0}

constitutes a field. Thus the ideal
√{0} of all nilpotent elements is a maximal ideal in R.

Since every prime ideal in R contains
√{0}, √{0} is the only prime ideal in R. As every

maximal ideal is prime,
√{0} is the only maximal ideal in R. Since [g]I is a zero divisor,

⟨[g]I⟩ must be a proper ideal. Hence, ⟨[g]I⟩ ⊆
√{0}.

Proposition 1.2.6. V (I) = V (
√I) holds true for every ideal I ⊆ K[x1, . . . , xn].

Proof. The inclusion V (I) ⊇ V (
√I) is a consequence of I ⊆ √I. If (ai)

n
i=1 ̸∈ V (

√I),
then there exists p ∈ √I such that p(a1, . . . , an) ̸= 0. By the definition of a radical, pk ∈ I
for some k ∈ N. Thus, (ai)ni=1 ̸∈ V (I).

Definition 1.2.7. A primary decomposition of an ideal I ⊊ K[x1, . . . , xn] is an expression

of I as a finite intersection of primary ideals Q1, . . . ,Qm. We call

• Q1, . . . ,Qm the primary components.

•
√Qj the associated prime of Qj , j ∈ [1,m]Z.

A primary decomposition is called minimal if the following conditions are met.

(i) The associated primes
√Q1, . . . ,

√Qm are pairwise distinct.

(ii) The primary components satisfy Qj ̸⊇
∩m

k ̸=j Qk for j ∈ [1,m]Z.

A proof of the following theorem is provided in [CLO07, p.211].

Theorem 1.2.8 (Lasker-Noether). Every ideal I ⊊ K[x1, . . . , xn] admits a minimal pri-

mary decomposition.

The following theorem is one of the two results concerning uniqueness of minimal

primary decompositions. A proof appears in [BWK93, p.362] and [Ati16, p.52].

Theorem 1.2.9. Let I ⊊ K[x1, . . . , xn] be an ideal. Any two minimal primary decompo-

sitions of I have the same number of primary components and the same set of associated

primes.
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1.2. PRIMARY DECOMPOSITION OF AN IDEAL

Definition 1.2.10. Let I ⊊ K[x1, . . . , xn] be an ideal. We refer to the unique associated

primes of a minimal primary decomposition of I as primes belonging to I. We say that a

prime P belonging to I is

• isolated if P ′ ⊆ P implies P = P ′ for any P ′ belonging to I.

• embedded if P is not isolated.

We cite the following result in Example 1.2.12. A proof using polynomial division in

K[x1, . . . , xn] can be found in [CLO07, p.201].

Proposition 1.2.11. For (aj)
n
j=1 ∈ Kn the ideal

⟨x1 − a1, . . . , xn − an⟩ ⊆ K[x1, . . . , xn]

is maximal.

The example below demonstrates that the minimal primary decomposition is not

unique in general.

Example 1.2.12. Consider the ideal ⟨x2, xy⟩ ⊆ K[x, y]. We have

⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ = ⟨x⟩ ∩ ⟨x2, xy, y2⟩.

The ideal ⟨x⟩ is prime and thus primary. Both ⟨x2, y⟩ and ⟨x2, xy, y2⟩ have the radical

⟨x, y⟩, which is maximal by Proposition 1.2.11. By Lemma 1.2.5, ⟨x2, y⟩ and ⟨x2, xy, y2⟩
are primary. Thus the ideal ⟨x2, xy⟩ has two distinct minimal primary decompositions.

Notice that in Example 1.2.12, we could vary the primary component with an embed-

ded associated prime to obtain a different minimal primary decomposition. The following

result is the second uniqueness theorem regarding minimal primary decompositions and

states that the primary component with an isolated associated prime is unique. A proof

can be found in [BWK93, p.364], [Ati16, p.54], and [BGS24, p.242, T.7.12]

Theorem 1.2.13. If I ⊊ K[x1, . . . , xn] is an ideal and P is an isolated prime belonging

to I, then there exists a primary ideal Q such that in any minimal primary decomposition

of I the primary component with the associated prime P is Q.

Corollary 1.2.14. Let I ⊊ K[x1, . . . , xn] be an ideal. If the primes belonging to I have

pairwise disjoint varieties, then the minimal primary decomposition of I is unique.

Proof. Note that none of the primes belonging to I has an empty variety due to The-

orem 1.1.19. Since the primes belonging to I have pairwise disjoint varieties, they are

pairwise incomparable with respect to ⊆. Hence each prime belonging to I is isolated.

The uniqueness of the minimal primary decomposition follows from Theorem 1.2.13.

The minimal primary decomposition of an ideal generated by a univariate polynomial

corresponds to the prime factorization of the polynomial. Since C[x] is a principle ideal

domain, finding a minimal primary decomposition of an ideal in C[x] boils down to finding

its greatest common divisor and factorizing it.

10



1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Proposition 1.2.15. For f ∈ C[x] let a1, . . . , al ∈ C and m1, . . . ,ml ∈ N be such that

f =
∏l

i=1(x− ai)
mi is the prime factorization of f , where a1, . . . , al are pairwise distinct.

Then

⟨f⟩ =
l∩

i=1

⟨(x− ai)
mi⟩

is the unique minimal primary decomposition of ⟨f⟩.

Proof. First, note that V (⟨(x − ai)
mi⟩) = {ai}; see Lemma 1.1.9. Since a1, . . . , al are

pairwise distinct, the varieties of the ideals ⟨(x − ai)
mi⟩, i ∈ [1, l]Z, are pairwise disjoint.

Thus we can apply Lemma 1.1.22 and obtain

l∩
i=1

⟨(x− ai)
mi⟩ =

l∏
i=1

⟨(x− ai)
mi⟩.

We know from Lemma 1.1.12 that the ideal
∏l

i=1⟨(x− ai)
mi⟩ is generated by the product

of the generators of each ideal, which is f =
∏l

i=1(x− ai)
mi .

For a fixed i ∈ [1, l]Z the radical of ⟨(x−ai)
mi⟩ is ⟨x−ai⟩, which is maximal according

to Proposition 1.2.11. By Lemma 1.2.5, ⟨(x − ai)
mi⟩ is primary. Finally, we obtain the

minimality of this primary decomposition from the fact that a1, . . . , al are pairwise distinct

and the uniqueness from Corollary 1.2.14.

1.3 Joint Spectrum in Commutative Unital Algebras

In the present section, we will define the joint spectrum of a tuple of elements of a com-

mutative unital algebra. The goal is to show that the joint spectrum is nonempty and

compact for tuples of elements of a commutative unital Banach algebra.

Definition 1.3.1. Let A ≠ {0} be a vector space over C. If A is endowed with an

associative bilinear map

· :
{

A×A → A,

(a, b) ,→ a · b,
then A together with · is called algebra. Note that an algebra is a ring with a vector space

structure. Thus we will employ the terms defined in Definition 1.1.1.

• We call a linear subspace B of an algebra A a subalgebra if B is closed under the

multiplication.

• If A is endowed with a norm ∥.∥ which satisfies

∥xy∥ ≤ ∥x∥ ∥y∥ for all x, y ∈ A,

then we call A a normed algebra. If in addition (A, ∥.∥) is a Banach space, A is

called a Banach algebra.

• If a normed algebra A contains a unity e, then we say e is normed if ∥e∥ = 1. If a

normed algebra contains a normed unity, then we call A a unital normed algebra. If

additionally A is a Banach algebra, A is called unital Banach algebra.

11



1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Definition 1.3.2. If an algebra A is additionally endowed with a mapping .∗ : A → A
such that

(i) (x∗)∗ = x for all x ∈ A,

(ii) (λx+ y)∗ = λ̄x∗ + y∗ for all x, y ∈ A, λ ∈ C,

(iii) (xy)∗ = y∗x∗ for all x, y ∈ A,

then A is called ∗-algebra. If A is also a Banach algebra and .∗ satisfies

∥a∥ = ∥a∗∥ and ∥aa∗∥ = ∥a∥2, a ∈ A,

then A is called C∗-algebra. An element a in a ∗-algebra A is called

• normal if a∗a = aa∗.

• self-adjoint if a = a∗.

• unitary if A is unital and aa∗ = a∗a = e.

Lemma 1.3.3. Let A be a normed algebra. If we endow A×A with the product topology,

the multiplication is continuous.

Proof. Let (ai, bi)i∈N be a sequence in A×A that converges to (a, b) with respect to the

norm ∥(x, y)∥ = max{∥x∥, ∥y∥} for x, y ∈ A. One easily derives ai → a and bi → b. In

particular, (ai)i∈N is bounded and therefore

∥aibi − ab∥ = ∥ai(bi − b) + (ai − a)b∥ ≤ ∥ai∥∥bi − b∥+ ∥ai − a∥∥b∥

yields ∥aibi − ab∥ → 0.

Definition 1.3.4. Let A be an algebra.

• A subalgebra I of A is called ideal if ai, ia ∈ I for all a ∈ A and i ∈ I.

• An ideal I is called proper if I ̸= A.

• A proper ideal I is called maximal if I ⊆ J implies I = J for a proper ideal J .

Remark 1.3.5. Note that while an algebra is a ring, the definition of a ring-ideal in

Definition 1.1.2 and algebra-ideal in Definition 1.3.4 do not coincide in general. While an

algebra-ideal is always a ring-ideal, the converse is not universally true. This is because

an algebra-ideal is a subalgebra and therefore additionally requires the closedness under

scalar multiplication. In this section, we will use the term ideal to refer to algebra-ideals

as in Definition 1.3.4.

A special case where these two definitions coincide is when A is a unital algebra.

Indeed, consider a ring-ideal I in a unital algebra A with unity e. Due to the bilinearity

of the multiplication, we have

αi = α(e · i) = (αe) · i ∈ I, i ∈ I, α ∈ C.

Thus I is closed under scalar multiplication.
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Example 1.3.6. The ring of polynomials C[x1, . . . , xn] is an algebra. Endowed with

the mapping p ,→ p#, where p#(x1, . . . , xn) := p(x1, . . . , xn), C[x1, . . . , xn] constitutes a

∗-algebra. Since it is unital, the two notions of ideals coincide for C[x1, . . . , xn].

Definition 1.3.7. For every x in a unital algebra A with unity e, we denote by

ρA(x) := {λ ∈ C : (x− λe) ∈ Inv(A)}

the resolvent set of x and by

σA(x) := C \ ρA(x) = {λ ∈ C : (x− λe) ̸∈ Inv(A)}

the spectrum of x. If the algebra is clear from context, we will write ρ(x) and σ(x).

See [WKB25, 6.4] for a verification of the following facts.

Facts 1.3.8. Let A be a unital Banach algebra and a ∈ A. Then

(i) Inv(A) ⊆ A is open.

(ii) σ(a) ⊆ C is compact.

(iii) ρ(a) ⊆ C is open.

A proof of the following result is given in [Kal23, Satz 1.1.16].

Theorem 1.3.9 (Gelfand-Mazur). For a unital Banach algebra A such that Inv(A) =

A \ {0}, we have dimA = 1.

Lemma 1.3.10. In a unital algebra A any proper ideal I satisfies I ∩ Inv(A) = ∅. If A is

a commutative unital algebra, then a ∈ A is invertible if and only if a ̸∈ I for any proper

ideal I.

Proof. If a ∈ Inv(A), then there exists b ∈ A such that ab = e, where e is the unity. Thus

for any ideal I with a ∈ I, we have e = ab ∈ I, which means I = A.

If A is commutative and a ̸∈ Inv(A), then aA = {ax : x ∈ A} constitutes a proper

ideal.

Lemma 1.3.11. If A is a unital Banach algebra, then the closure of a proper ideal is a

proper ideal.

Proof. Let I be a proper ideal and a ∈ A. The closure of a subspace is also a subspace.

Since the multiplication by a is continuous, we have a·cl(I) ⊆ cl(aI) ⊆ cl(I) and, similarly,

cl(I) · a ⊆ cl(I). Hence I constitutes an ideal.

Since I is proper, we obtain I ⊆ A \ Inv(A) from Lemma 1.3.10. Inv(A) being open

yields cl(I) ⊆ cl(A \ Inv(A)) = A \ Inv(A). Since Inv(A) ∋ e is nonempty, cl(I) is

proper.
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Lemma 1.3.12. Let A be a normed algebra and I a closed proper ideal. A/I endowed

with the quotient norm

∥a+ I∥ := inf
i∈I

∥a+ i∥

constitutes a normed algebra. If in addition A is a unital normed algebra (Banach algebra),

so is A/I. Moreover, the canonical projection

πA/I :

{
A → A/I,

a ,→ a+ I,

constitutes an algebra homomorphism.

Proof. As I is closed, A/I constitutes a normed space with the quotient norm; see

[WKB25, 2.4.9]. If A is a Banach space, so is A/I; see [WKB25, 2.4.9]. Given a, b ∈ A
and i, j ∈ I, we have

∥a+ i∥∥b+ j∥ ≥ ∥(a+ i)(b+ j)∥ = ∥ab+ aj + ib+ ij, ,, ,
∈I

∥ ≥ ∥ab+ I∥.

Thus, ∥ab+ I∥ ≤ ∥a+ I∥∥b+ I∥.
If A is a unital normed algebra, we have

0 ̸= ∥e+ I∥ ≤ ∥e+ I∥∥e+ I∥,

implying 1 ≤ ∥e+I∥. On the other hand, we have ∥e+I∥ ≤ ∥e+0∥ = 1. By the definition

of the operations on A/I, πA/I constitutes an algebra homomorphism.

Proposition 1.3.13. If A is a commutative unital Banach algebra, then every maximal

ideal in A has codimension one.

Proof. Let I ⊆ A be a maximal ideal. By Lemma 1.3.11, I is closed. According to

Lemma 1.3.12, A/I constitutes a unital Banach algebra. Since A is a commutative unital

ring, we identify A/I as a field. Hence, Inv(A/I) = (A/I) \ {0}. By Theorem 1.3.9 the

dimension of A/I, which equals the codimension of I, is one.

Definition 1.3.14. Let A,B be algebras. We call a mapping φ : A → B an algebra

homomorphism if it is linear and satisfies φ(xy) = φ(x)φ(y) for all x, y ∈ A.

• If an algebra homomorphism is bijective, it is called an algebra isomorphism.

• If A,B are ∗-algebras and φ : A → B is an algebra homomorphism satisfying φ(x∗) =
φ(x)∗ for all x ∈ A, then φ is called a ∗-homomorphism.

Definition 1.3.15. Let A be an algebra. A linear functional m : A → C is multiplicative

if m ̸= 0 and

m(xy) = m(x)m(y) for all x, y ∈ A.

We denote byMA the Gelfand space of A, which is defined to be the set of all multiplicative

functionals on A.
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Remark 1.3.16. A multiplicative linear functional is nothing but a non-trivial algebra

homomorphism into C.

Lemma 1.3.17. If A is a unital algebra and m ∈ MA, then m(e) = 1.

Proof. First of all, m(e) ̸= 0 because m(e) = 0 would imply m(x) = m(x)m(e) = 0 for all

x ∈ A. From m(e) = m(e)m(e) we infer m(e) = 1.

Proposition 1.3.18. Let A be a commutative unital Banach algebra. If I is a maximal

ideal, then there exists a multiplicative functional mI ∈ MA such that kermI = I.

Proof. By Proposition 1.3.13, A/I has codimension one and e + I ̸= 0. Therefore, the

mapping φI : λe+ I ,→ λ constitutes a linear bijection from A/I onto C. Furthermore, it

is multiplicative. Hence φI is an algebra isomorphism.

We set mI := φI ◦ πA/I , where πA/I is as in Lemma 1.3.12. As a composition of two

algebra homomorphisms, mI is also one. kerφI = {0} together with kerπA/I = I implies

kermI = I. In particular, mI ̸= 0.

Corollary 1.3.19. The Gelfand space of a commutative unital Banach algebra is non-

empty.

Proof. Let A be a commutative unital Banach algebra. Since {0} is a proper ideal, there

exists a maximal ideal I in A due to Zorn’s lemma. Proposition 1.3.18 then guarantees

the nonemptiness of MA.

Definition 1.3.20. Let A be a commutative unital algebra with unity e. Moreover, let

x = (xi)
n
i=1 ∈ An.

• x is called invertible in An if there exists y ∈ An such that

x · y :=
n∑

i=1

xiyi = e.

The set of all invertible elements of An will be denoted by Inv(An).

• Interpreting λ ∈ Cn as an element of An by λ = (λie)
n
i=1 ∈ An, the set

ρA(x) := {λ ∈ Cn : (x− λ) ∈ Inv(An)}

is called joint resolvent set of x, where the subtraction of tuples is to be interpreted

as a pointwise subtraction. The set

σA(x) := Cn \ ρA(x) = {λ ∈ Cn : (x− λ) ̸∈ Inv(An)}

is called joint spectrum of x. If the algebra is clear from context, we will write ρ(x)

and σ(x).

Remark 1.3.21. Let A be a commutative unital algebra and x = (xi)
n
i=1 ∈ An. If there

exists j ∈ [1, n]Z such that xj is invertible in A in the classical sense, then x is invertible.

Indeed, y = (yi)
n
i=1 with yi = 0 for i ̸= j and yj = x−1

j satisfies x · y = xjx
−1
j = e.
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Notation 1.3.22. If A,B are algebras and φ : A → B an algebra homomorphism, then

for x ∈ An we will employ the abbreviation

φ[x] := (φ(xi))
n
i=1 (∈ Bn).

Proposition 1.3.23. Let A be a commutative unital Banach algebra. For a = (ai)
n
i=1 ∈

An and λ ∈ Cn the following statements are equivalent.

(i) λ ∈ σ(a).

(ii) I := {(a− λ) · b : b ∈ An} is a proper ideal in A.

(iii) There exists m ∈ MA such that m[a] = λ.

Proof. It is clear that, in any case, I is the ideal generated by ai − λi, i ∈ [1, n]Z.

(i) ⇔ (ii): The ideal I is proper if and only if e ̸∈ I. This is equivalent to (a−λ) ·b ̸= e

for all b ∈ An, which is the definition of a−λ not being invertible and, in turn, equivalent

to λ ∈ σ(a).

(ii)⇒ (iii): If J ⊇ I is a maximal ideal, the mappingmJ ∈ MA as in Proposition 1.3.18

satisfies I ⊆ J = kermJ . For k ∈ [1, n]Z and bk := (δi,ke)
n
i=1 we have

mJ(ak)− λk = mJ(ak − λke) = mJ((a− λ) · bk, ,, ,
∈I

) = 0.

Consequently, mJ [a] = λ.

(ii) ⇐ (iii): Let m ∈ MA be such that m[a] = λ. Given b ∈ An we have

m((a− λ) · b) =
n∑

i=1

(m(ai)−m(λie), ,, ,
=0

)m(bi) = 0,

showing that I ⊆ kerm ⊊ A.

Corollary 1.3.24. Let A be a commutative unital Banach algebra. Given a ∈ An the

joint spectrum σ(a) is nonempty.

Proof. Let m ∈ MA ̸= ∅; see Corollary 1.3.19. By Proposition 1.3.23, m[a] is an element

of the joint spectrum σ(a).

Lemma 1.3.25. Let A be a commutative unital ∗-algebra. If x = (xi)
n
i=1 ∈ An is a tuple

of self-adjoint elements, then the joint spectrum σ(x) is invariant under the component-

wise complex conjugation.

Proof. Given λ = (λi)
n
i=1 ∈ ρ(x) there exists y ∈ An such that

n∑
i=1

(xi − λi)yi = e.

Applying the involution yields

e =

(
n∑

i=1

(xi − λi)yi

)∗
=

n∑
i=1

(xi − λi)
∗y∗i =

n∑
i=1

(xi − λi)y
∗
i ,

which demonstrates that λ belongs to ρ(x). We conclude that ρ(x), and in turn σ(x), is

invariant under z ,→ z.
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1.3. JOINT SPECTRUM IN COMMUTATIVE UNITAL ALGEBRAS

Lemma 1.3.26. Let A be a commutative unital normed algebra. Given x,y ∈ An the

mapping Cn ∋ λ ,→ (x− λ)y ∈ A is continuous.

Proof. Without loss of generality, we assume yi ̸= 0 for some i ∈ [1, n]Z. Given an arbitrary

ϵ > 0 let λ,µ ∈ Cn be such that

max
i∈[1,n]Z

|µi − λi| < δ := ϵ

(
n∑

i=1

∥yi∥
)−1

.

Then we have

∥(x− λ)y − (x− µ)y∥ =

‖‖‖‖‖
n∑

i=1

(xi − λi)yi −
n∑

i=1

(xi − µi)yi

‖‖‖‖‖
=

‖‖‖‖‖
n∑

i=1

(µi − λi)yi

‖‖‖‖‖
≤

n∑
i=1

|µi − λi|∥yi∥

≤ max
i∈[1,n]Z

|µi − λi| ·
n∑

i=1

∥yi∥ < ϵ.

Proposition 1.3.27. Let A be a commutative unital Banach algebra. If x = (xi)
n
i=1 ∈ An,

then the joint spectrum σ(x) is compact and satisfies σ(x) ⊆ σ(x1)× · · · × σ(xn).

Proof. Suppose λ = (λi)
n
i=1 ̸∈ σ(x1)× · · · × σ(xn). Without loss of generality, we assume

λ1 ∈ ρ(x1) and conclude x1 − λ1 ∈ Inv(A). Hence (x − λ) ∈ Inv(An) and λ ∈ ρ(x).

We derived σ(x) ⊆ σ(x1) × · · · × σ(xn). Due to this inclusion, it suffices to demonstrate

that ρ(x) is open in Cn in order to prove the compactness of σ(x). Given λ ∈ ρ(x) there

exists y ∈ An such that (x − λ)y = e. Since µ ,→ (x − µ)y is continuous according to

Lemma 1.3.26, there exists δ > 0 such that for any µ ∈ Cn with maxi∈[1,n]Z |µi − λi| < δ

we have

∥e− (x− µ)y∥ < 1.

This implies absolute convergence of

∞∑
k=0

(e− (x− µ)y)k =: z ∈ A.

From

(e− (x− µ)y) z = (e− (x− µ)y)
∞∑
k=0

(e− (x− µ)y)k

=
∞∑
k=1

(e− (x− µ)y)k = z − e,

we obtain

e = ((x− µ)y)z =
n∑

i=1

(xi − µi)yiz

meaning that µ belongs to ρ(x). Consequently, the open δ-ball around λ with respect to

the maximum metric is contained in ρ(x), which implies the openness of ρ(x).
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1.4. JOINT SPECTRUM OF OPERATORS

1.4 Joint Spectrum of Operators

Given a Banach space X, Lb(X) constitutes a unital Banach algebra, which is only com-

mutative for dimX = 1. We will make use of commutants to define the joint spectrum of

a tuple in Lb(X).

Definition 1.4.1. Let A be an algebra and C ⊆ A. The commutant C ′ of C is defined as

C ′ := {x ∈ A : xc = cx for all c ∈ C} .

For x ∈ An we set x′ := {xi : i ∈ [1, n]Z}′. In particular, x′ = {x}′ for all x ∈ A. The set

C ′′ := (C ′)′ is called the bicommutant of C.

Facts 1.4.2. Let A be an algebra. If C,C1, C2 ⊆ A, then

(i) C ⊆ C ′′,

(ii) C1 ⊆ C2 implies C ′
1 ⊇ C ′

2,

(iii) C ′ = C ′′′,

as can be seen for example in [Kal23, 1.2].

Lemma 1.4.3. Let A be an algebra. For any C ⊆ A the set C ′ constitutes a subalgebra.

If additionally A is a normed algebra, then C ′ is closed.

Proof. For c ∈ C we define the linear

ψc :

{
A → A,

x ,→ xc− cx.

Since we can express C ′ as
C ′ =

∩
c∈C

kerψc, (1.3)

it is a linear subspace. Given a, b ∈ C ′ and c ∈ C, abc = acb = cab shows ab ∈ C ′. We

conclude that C ′ is a subalgebra.

If A is a normed algebra,

∥ψc(x)∥ = ∥xc− cx∥ ≤ 2∥c∥∥x∥, c ∈ C,

verifies that ψc is continuous. Due to (1.3), C ′ is closed.

Lemma 1.4.4. Let A be a ∗-algebra. If C ⊆ A is a subset that only contains self-adjoint

elements, then C ′ constitutes a ∗-subalgebra.

Proof. We know from Lemma 1.4.3 that C ′ constitutes a subalgebra. Given x ∈ C ′ we
have x∗c∗ = (cx)∗ = (xc)∗ = c∗x∗ for all c ∈ C. Since every element in C is self-adjoint,

x∗ ∈ C ′.

Proposition 1.4.5. Let A be a unital Banach algebra. If C ⊆ A satisfies C ⊆ C ′,
then C ′′ is a commutative unital Banach algebra. Moreover, Inv(C ′′) = Inv(A) ∩ C ′′ and
σC′′(x) = σA(x) for all x ∈ C ′′.
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1.5. KREIN SPACE

Proof. By Lemma 1.4.3, C ′′ is a Banach algebra. From C ⊆ C ′ we infer C ′′′ = C ′ ⊇ C ′′

meaning that C ′′ is a commutative Banach algebra. Since the unity commutes with every

element, C ′′ is also unital.

Given c ∈ Inv(A)∩C ′′ and x ∈ C ′′′, xc = cx implies c−1x = xc−1. Hence, c−1 ∈ C ′′′′ =
C ′′. We obtain Inv(C ′′) = Inv(A) ∩ C ′′ and, in turn, σC′′(x) = σA(x) for all x ∈ C ′′.

Definition 1.4.6. LetX be a Banach space andA = (Ai)
n
i=1 ∈ Lb(X)n a tuple of pairwise

commuting operators.

• The tuple A is called invertible if A is invertible as an element of (A′′)n in the sense

of Definition 1.3.20.

• We define the joint resolvent set ofA as ρLb(X)(A) := ρA′′(A) and the joint spectrum

of A as σLb(X)(A) := σA′′(A); see Definition 1.3.20.

The following result is an immediate consequence of Corollary 1.3.24 and Proposi-

tion 1.3.27

Corollary 1.4.7. Let X be a Banach space. If A = (Ai)
n
i=1 ∈ Lb(X)n is a tuple of pairwise

commuting operators, then the joint spectrum σ(A) ⊆ Cn is nonempty and compact.

1.5 Krein Space

Definition 1.5.1. Let X be a vector space over C. If the mapping [., .] : X × X → C
satisfies

(i) [λx+ y, z] = λ[x, z] + [y, z], (Linearity in the first argument)

(ii) [x, y] = [y, x], (Hermitian)

for x, y, z ∈ X and λ ∈ C, then it is called an inner product and (X, [., .]) an inner product

space. The inner product [., .] is called

• positive semidefinite if [x, x] ≥ 0 for all x ∈ X and negative semidefinite if −[., .] is

positive semidefinite.

• positive definite if [x, x] > 0 for all x ∈ X \ {0} and negative definite if −[., .] is

positive definite.

• indefinite if it is neither positive nor negative semidefinite.

Furthermore,

• we call x, y ∈ X orthogonal, denoted by x ⊥ y, if [x, y] = 0.

• we call A,B ⊆ X orthogonal, denoted by A ⊥ B, if a ⊥ b for all a ∈ A and b ∈ B.

• for A ⊆ X we denote by A⊥ := {x ∈ X : [x, a] = 0 for all a ∈ A} the orthogonal

companion of A.

19



1.5. KREIN SPACE

• we call x ∈ X isotropic if {x} ⊥ X. By (X, [., .])◦ we denote the set of all isotropic

elements, which we call the isotropic part of (X, [., .]).

• we call (X, [., .]) nondegenerate if (X, [., .])◦ = {0} and degenerate otherwise. Corre-

spondingly we call the inner product [., .] nondegenerate/degenerate.

The following theorem will be used to characterize Krein spaces.

Theorem 1.5.2. Given an inner product space (X, [., .]), the following statements are

equivalent.

(a) There exist two linear subspaces X+ and X− such that X+ ⊥[.,.] X−, X = X++X−,
and both (X+, [., .]) and (X−,−[., .]) are Hilbert spaces.

(b) There exists a linear mapping J : X → X satisfying J2 = I such that X provided

with

⟨x, y⟩J := [Jx, y], x, y ∈ X,

constitutes a Hilbert space.

(c) There exists a positive definite inner product ⟨., .⟩ on X such that (X, ⟨., .⟩) is a

Hilbert space and the associated norm ∥.∥ satisfies

∥x∥ = sup
∥y∥≤1

|[x, y]|, x ∈ X.

We prepare the proof of this theorem with several auxiliary results.

Lemma 1.5.3. Let (X, [., .]) be an inner product space. If J : X → X is the mapping

satisfying (b) of Theorem 1.5.2, then

• [Jx, y] = [x, Jy] for all x, y ∈ X.

• J is self-adjoint and unitary with respect to the Hilbert space (X, ⟨., .⟩J).

Proof. ⟨., .⟩J and [., .] being Hermitian, we obtain

[Jx, y] = ⟨x, y⟩J = ⟨y, x⟩J = [Jy, x] = [x, Jy], x, y ∈ X,

and hence

⟨Jx, y⟩J = [J2x, y] = [Jx, Jy] = ⟨x, Jy⟩J , x, y ∈ X,

showing that J is self-adjoint with respect to the Hilbert space (X, ⟨., .⟩J). The existence of
J−1 and the equality J = J−1 are direct consequences of J2 = I. Therefore, J∗ = J = J−1,

which means that J is unitary and self-adjoint.

Lemma 1.5.4. Let (X, [., .]) be an inner product space. If there exists a norm ∥.∥ on X

satisfying

∥x∥ = sup
∥y∥≤1

|[x, y]|, x ∈ X, (1.4)

then (X, [., .]) is nondegenerate and

|[x, y]| ≤ ∥x∥∥y∥, x, y ∈ X.
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Proof. If (X, [., .]) were degenerate, there would exist x0 ∈ X \ {0} such that [x0, y] = 0

for all y ∈ X, implying the contradiction

0 ̸= ∥x0∥ = sup
∥y∥≤1

|[x0, y]| = 0.

If ∥.∥ satisfies (1.4), then

|[x, y]| = ∥y∥
||||[x, y

∥y∥
]|||| ≤ ∥y∥ sup

∥z∥≤1
|[x, z]| = ∥y∥∥x∥, x, y ∈ X \ {0}.

Finally, for the proof of Theorem 1.5.2, we will employ the following result. A proof

can be found in [WKB25, 3.2.6 Satz].

Theorem 1.5.5 (Lax-Milgram). Let (H, ⟨., .⟩) be a Hilbert space. If [., .] is a sesquilinear

form on H satisfying |[x, y]| ≤ C∥x∥∥y∥, x, y ∈ H, for some C ≥ 0, then there exists a

unique bounded linear operator G ∈ Lb(H) with ∥G∥ ≤ C such that

[x, y] = ⟨Gx, y⟩, x, y ∈ H.

Proof of Theorem 1.5.2. (a)⇒(b). Given subspaces X+, X− satisfying (a), we have X+ ∩
X− = {0}. We denote by P+, P− the projections onto X+ along X− and vice versa.

J := P+ − P− satisfies

J2 = P 2
+ − P+P− − P−P+ + P 2

− = P 2
+ + P 2

− = P+ + P− = I.

Given x, y ∈ X we have

⟨x, y⟩J = [Jx, y] = [P+x− P−x, P+y + P−y]

= [P+x, P+y]− [P−x, P−y].

Thus ⟨., .⟩J is positive definite on X and coincides with the inner product on the direct

sum of the Hilbert spaces (X+, [., .]) and (X−,−[., .]).

(b)⇒(a). Given J with the properties described in (b), we set

J+ :=
1

2
(I + J), J− :=

1

2
(I − J).

We conclude

J+ = I − J− (1.5)

and

JJ+ =
1

2
J(I + J) =

1

2
(J + I) = J+, (1.6)

JJ− =
1

2
J(I − J) =

1

2
(J − I) = −J−. (1.7)

Because of

J2
+ =

1

4
(I + J)(I + J) =

1

4
(I + 2J + J2) =

1

2
(I + J) = J+
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the operator J+ constitutes a projection. Since J is self-adjoint with respect to (X, ⟨., .⟩J)
according to Lemma 1.5.3, J∗

+ = 1/2(I+J)∗ = 1/2(I+J) = J+. Hence, J+ is an orthogonal

projection with respect to (X, ⟨., .⟩J). Due to (1.5), X+ := J+X andX− := J−X are closed

subspaces of the Hilbert space (X, ⟨., .⟩J) satisfying X = X+ + X− and X+ ⊥⟨.,.⟩J X−.
Given x ∈ X+ and y ∈ X− we have

0 = ⟨x, y⟩J = [Jx, y]
(1.6)
= [x, y]

showing X+ ⊥[.,.] X−.
Given x, y ∈ X− and employing J∗ = J = J2, we obtain

−[x, y] = −[J−x, J−y]

=
1

4
(−[x, y] + [Jx, y] + [x, Jy]− [Jx, Jy])

=
1

4
(−⟨Jx, y⟩J + ⟨x, y⟩J + ⟨Jx, Jy⟩J − ⟨x, Jy⟩J)

=
1

2
(−⟨Jx, y⟩J + ⟨x, y⟩J)

(1.7)
=

1

2
(⟨x, y⟩J + ⟨x, y⟩J) = ⟨x, y⟩J .

Since X− is a closed subspace of (X, ⟨., .⟩J), (X−,−[., .]) constitutes a Hilbert space. Sim-

ilarly, using (1.6) instead of (1.7), we can show that (X+, [., .]) is a Hilbert space.

(b)⇒(c). Let J : X → X satisfy the conditions in (b). Due to the Cauchy-Schwarz

inequality, the norm ∥x∥J :=
√⟨x, x⟩J satisfies

|⟨Jx, y⟩J | ≤ ∥Jx∥J , x, y ∈ X, ∥y∥J = 1,

where equality prevails if Jx and y are linearly dependent. We obtain

∥Jx∥J = sup
∥y∥J≤1

|⟨Jx, y⟩J |.

Since J is unitary according to Lemma 1.5.3, we have ∥x∥J = ∥Jx∥J . Therefore,

∥x∥J = ∥Jx∥J = sup
∥y∥J≤1

|⟨Jx, y⟩J | = sup
∥y∥J≤1

|[J2x, y]| = sup
∥y∥J≤1

|[x, y]|.

(c)⇒(b). Let ⟨., .⟩ be the positive definite inner product as in (c). According to

Lemma 1.5.4 the inner product [., .] is a sesquilinear form that satisfies the requirements

of Theorem 1.5.5 (Lax-Milgram) for the Hilbert space (X, ⟨., .⟩). Therefore, there exists a

bounded linear operator J on (X, ⟨., .⟩) with ∥J∥ ≤ 1 such that

[x, y] = ⟨Jx, y⟩, x, y ∈ X.

By assumption

∥x∥ = sup
∥y∥≤1

|[x, y]| = sup
∥y∥≤1

|⟨Jx, y⟩| ≤ ∥Jx∥ ≤ ∥x∥, x ∈ X,
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where the first inequality is a consequence of the Cauchy-Schwarz inequality. Hence, J

is isometric with respect to ∥.∥ and, in consequence, with respect to ⟨., .⟩, which implies

J∗J = I. Moreover, [., .] and ⟨., .⟩ being Hermitian yields

⟨Jx, y⟩ = [x, y] = [y, x] = ⟨Jy, x⟩ = ⟨x, Jy⟩.

Thus J is self-adjoint, and we obtain J2 = J∗J = I. Finally, we have

⟨x, y⟩ = ⟨J2x, y⟩ = [Jx, y], x, y ∈ X.

Definition 1.5.6. An inner product space (X, [., .]) satisfying one of the equivalent state-

ments in Theorem 1.5.2 is called Krein space. If (X, [., .]) is a Krein space, then

• a pair of subspaces X+ and X− with the properties in Theorem 1.5.2 (a) is called

fundamental decomposition;

• a linear mapping J : X → X satisfying the condition in Theorem 1.5.2 (b) is called

fundamental symmetry ;

• a norm ∥.∥ on X with the properties in Theorem 1.5.2 (c) is called fundamental

norm.

Remark 1.5.7. The proof of Theorem 1.5.2 shows that the class of fundamental decom-

positions, the class of fundamental symmetries, and the class of fundamental norms of a

Krein space are in bijective correspondences. In particular, for any fundamental norm ∥.∥
on a Krein space (X, [., .]), there exists a fundamental symmetry J such that

∥x∥ =
√

⟨x, x⟩J =
√
[Jx, x], x ∈ X,

and for any fundamental symmetry J , there exists a fundamental decomposition X+, X−
with associated projections P+, P− such that J = P+ − P−.

Remark 1.5.8. Every Hilbert space is a Krein space with the identity as fundamental

symmetry. In fact, the identity is the only fundamental symmetry since, by Remark 1.5.7,

the class of fundamental decompositions and the class of fundamental symmetries are in

bijective correspondence and a Hilbert space (H, ⟨., .⟩) only has the trivial fundamental

decomposition H, {0}.
A somewhat intuitive way to understand Krein spaces is to think of them as the com-

plex and arbitrarily dimensional analogues of the Minkowski space. The Minkowski space

is a four-dimensional pseudo-Euclidean space that serves as a description of spacetime in

the absence of gravity, for example in Special Relativity.

Example 1.5.9. Consider the complex analogue (C4, [., .]) of the Minkowski space, where

[x, y] := xTAy, x, y ∈ C4, A =

!!!!
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(((( .
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The linear J := A satisfies J2 = I and

⟨x, y⟩J := [Jx, y] = xTJTAy = xT Iy, x, y ∈ C4,

defines a positive definite inner product. Clearly, (C4, ⟨., .⟩J) constitutes a Hilbert space.

Thus, J is a fundamental symmetry which witnesses that (C4, [., .]) is a Krein space.

Theorem 1.5.10. Let ∥.∥1 and ∥.∥2 be two complete norms on the nondegenerate inner

product space (X, [., .]), such that [., .] is continuous with respect to each norm. Then ∥.∥1
and ∥.∥2 are equivalent norms.

Proof. We will show that

∥x∥ := max
j=1,2

∥x∥j , x ∈ X, (1.8)

is equivalent to ∥.∥j , j = 1, 2. If (xn)n∈N is a Cauchy sequence in X with respect to ∥.∥,
then, due to ∥x∥ ≥ ∥x∥j , x ∈ X, j = 1, 2, it is also a Cauchy sequence with respect to

∥.∥j , j = 1, 2. Let yj be the limit of (xn)n∈N with respect to ∥.∥j , j = 1, 2. Since the inner

product is continuous with respect to both ∥.∥1 and ∥.∥2, we have

lim
n→∞[xn, z] = [yj , z], z ∈ X, j = 1, 2.

(X, [., .]) being nondegenerate, we conclude from [y1−y2, z] = 0 for all z ∈ X that y1 = y2.

By (1.8), y1 is also the limit with respect to ∥.∥. In particular, ∥.∥ is complete.

For a fixed j = 1, 2 this means that for every sequence (xn)n∈N in X, such that there

exists a limit with respect to both ∥.∥j and ∥.∥, these limits coincide. This statement is

equivalent to the closedness of the graph of the identity mapping idj : (X, ∥.∥) → (X, ∥.∥j).
By the closed graph theorem idj : (X, ∥.∥) → (X, ∥.∥j) is a homeomorphism, showing that

∥.∥ and ∥.∥j are equivalent.

Corollary 1.5.11. Any two fundamental norms on a Krein space are equivalent.

Proof. As a result of Lemma 1.5.4, property (c) of Theorem 1.5.2 implies the continuity of

the inner product with respect to any fundamental norm together with its nondegeneracy.

Applying Theorem 1.5.10 to any two fundamental norms completes the proof.

From now on, we will equip every Krein space with the norm topology of a fundamental

norm.

1.6 Operators on Krein Spaces

Definition 1.6.1. Let (K1, [., .]1) and (K2, [., .]2) be Krein spaces and let ∥.∥1 and ∥.∥2 be

fundamental norms on each Krein space, respectively. For a linear operator A : K1 → K2

we define the operator norm with respect to ∥.∥1 and ∥.∥2 as

∥A∥ := sup
x∈K1\{0}

∥Ax∥2
∥x∥1 ∈ [0,+∞]

and say that A is bounded if ∥A∥ < +∞. By Lb(K1,K2) we denote the space of all bounded

linear operators from K1 to K2. In case K1 = K2, we will write Lb(K1).
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Since by Corollary 1.5.11 a different choice of fundamental norms results in an equiva-

lent operator norm, the boundedness of a linear A : K1 → K2 is independent of the choice

of fundamental norms.

Proposition 1.6.2. Let (K1, [., .]1), (K2, [., .]2) be Krein spaces. Given A ∈ Lb(K1,K2)

there exists a unique operator A+ ∈ Lb(K2,K1) satisfying

[Ax, y]2 = [x,A+y]1, x ∈ K1, y ∈ K2. (1.9)

Moreover, we have ∥A∥ = ∥A+∥, where the operator norms in Lb(K1,K2) and Lb(K2,K1)

are constructed with respect to fixed fundamental norms ∥.∥1 and ∥.∥2 on (K1, [., .]1) and

(K2, [., .]2), respectively.

Proof. Let J1 and J2 be fundamental symmetries of (K1, [., .]1) and (K2, [., .]2), respec-

tively. Let A∗ be the Hilbert space adjoint of A with respect to the Hilbert spaces

(K1, ⟨., .⟩J1), (K2, ⟨., .⟩J2). A+ := J1A
∗J2 satisfies

[Ax, y]2 = ⟨J2Ax, y⟩J2 = ⟨x,A∗J2y⟩J1 = [J1x,A
∗J2y]1 = [x,A+y]1, x ∈ K1, y ∈ K2,

and, in turn, (1.9). The uniqueness of A+ follows from the nondegeneracy of (K1, [., .]1).

From ∥A∥ = ∥A∗∥ and the fact that J1 and J2 are unitary with respect to (K1, ⟨., .⟩J1)
and (K2, ⟨., .⟩J2), respectively, we obtain

∥A+∥ = ∥J1A∗J2∥ ≤ ∥J1∥∥A∗∥∥J2∥ = ∥A∥. (1.10)

Furthermore, nondegeneracy of (K2, [., .]2) yields A = A++. Thus (1.10) applied to A+

implies ∥A∥ = ∥A++∥ ≤ ∥A+∥. By Remark 1.5.7 any fundamental norm is associated

with a fundamental symmetry. Thus, ∥A∥ = ∥A+∥ for any pairs of fundamental norms on

(K1, [., .]1) and (K2, [., .]2).

Definition 1.6.3. Let (K1, [., .]1) and (K2, [., .]2) be Krein spaces and A ∈ Lb(K1,K2).

The unique bounded operator A+ ∈ Lb(K2,K1) satisfying (1.9) is called the Krein space

adjoint of A.

Remark 1.6.4. In the case that (K1, [., .]1) and (K2, [., .]2) are Hilbert spaces, the Hilbert

space adjoint and the Krein space adjoint of A ∈ Lb(K1,K2) coincide according to (1.9).

Definition 1.6.5. Let (K, [., .]) be a Krein space and A ∈ Lb(K). We call A

• normal if A commutes with A+.

• self-adjoint if A = A+.

• positive if A is self-adjoint and satisfies [Ax, x] ≥ 0 for all x ∈ K.

Facts 1.6.6. Let (K1, [., .]1), (K2, [., .]2), and (K3, [., .]3) be Krein spaces. Given A,B ∈
Lb(K1,K2), C ∈ Lb(K2,K3), and λ ∈ C, we have

• A++ = A, I+ = I,

• (A+ λB)+ = A+ + λB+,
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• (CA)+ = A+C+.

Lemma 1.6.7. Let (K1, [., .]1) and (K2, [., .]2) be Krein spaces. For every A ∈ Lb(K1,K2)

(ranA)⊥ = kerA+.

Proof. From the definition of the orthogonal companion and the nondegeneracy of a Krein

space we obtain

(ranA)⊥ = {x ∈ K2 : [x,Ay]2 = 0, y ∈ K1}
=

{
x ∈ K2 : [A

+x, y]1 = 0, y ∈ K1

}
=

{
x ∈ K2 : A

+x = 0
}
= kerA+.

In [Kal17] a new notion of definitizability for normal operators was introduced. We

extend this definition to finite tuples of pairwise commuting self-adjoint Krein space op-

erators.

Definition 1.6.8. Let (K, [., .]) be a Krein space. A tuple A = (Aj)
n
j=1 ∈ Lb(K)n of

pairwise commuting self-adjoint operators is called definitizable if there exists a polynomial

p ∈ C[x1, . . . , xn] \ {0} such that p(A1, . . . , An) ∈ Lb(K) is a positive operator. Such a

polynomial p is called definitizing polynomial of A.

The joint spectral theorem for finite tuples of pairwise commuting definitizable self-

adjoint operators was formulated in [SK20], where a definitizable operator is an operator

that is definitizable as a 1-tuple in the sense of Definition 1.6.8. Definition 1.6.8 however

does not exclude the possibility of a definitizable tuple (Aj)
n
j=1 of self-adjoint operators,

where a subtuple (Aj)j∈N , N ⊆ [1, n]Z, is not definitizable. Hence considering a “definiti-

zable tuple” as in Definition 1.6.8 rather than a “tuple of definitizable operators” enables

us to work in a more general setting.

Proposition 1.6.9. Let (K, [., .]) be a Krein space and A = (Aj)
n
j=1 ∈ Lb(K)n a defini-

tizable tuple of operators. If we denote by I ⊆ C[x1, . . . , xn] the smallest ideal that con-

tains all definitizing polynomials of A, then there exist finitely many definitizing polyno-

mials q1, . . . , ql ∈ R[x1, . . . , xn] of A such that I = ⟨q1, . . . , ql⟩. In particular, the variety

V (I) ⊆ Cn is invariant under the componentwise complex conjugation.

Proof. We construct an ascending chain of ideals contained in I inductively. For some

definitizing polynomial p1 of A, we define I1 := ⟨p1⟩. Given In we choose pn+1 as a

definitizing polynomial of A such that pn+1 ̸∈ In if such a polynomial exists and set

In+1 := ⟨p1, . . . , pn+1⟩.

If such pn+1 does not exist, In+1 := In. According to the Ascending Chain Condition 1.1.5

there exists N ∈ N such that ⟨p1, . . . , pN ⟩ = IN = I.
Recall that p#(x1, . . . , xn) = p(x1, . . . , xn), p ∈ C[x1, . . . , xn]. Given p ∈ C[x1, . . . , xn],

pRe :=
p+ p#

2
, pIm :=

p− p#

2i
,
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are elements of R[x1, . . . , xn] such that

p = pRe + ipIm. (1.11)

A being a tuple of self-adjoint operators implies

p#(A) = p(A+
1 , . . . , A

+
n )

+ = p(A1, . . . , An)
+ = p(A)+. (1.12)

If p is a definitizing polynomial ofA, p(A) is self-adjoint. Therefore, (1.12) yields p#(A) =

p(A) and, in turn, pRe(A) = p(A) and pIm(A) = 0. Hence, if pRe, pIm ̸= 0, they are

definitizing polynomials of A; see Definition 1.6.8. Because of (1.11),

G :=
{
pjRe : j ∈ [1, N ]Z

} ∪ {
pj Im : j ∈ [1, N ]Z

} ⊆ R[x1, . . . , xn]

generates I. Therefore, G \ {0} ≠ ∅ is a set of real definitizing polynomials that generate

I.
Since I has a set of generators in R[x1, . . . , xn], we derive from Lemma 1.1.9 that V (I)

is invariant under componentwise complex conjugation.

Lemma 1.6.10. Let (K, [., .]) be a Krein space and P ∈ Lb(K) a positive operator. Then

there exists a Hilbert space (H, ⟨., .⟩) and an injective T ∈ Lb(H,K) such that TT+ = P .

Proof. We define a positive semidefinite inner product on K by [x, y]P := [Px, y]. Fac-

torizing K by its isotropic part N := (K, [., .]P )
◦ yields the pre-Hilbert space (K/N, ⟨., .⟩),

where ⟨x+N, y +N⟩ := [x, y]P is well-defined.

Denoting by (H, ⟨., .⟩) the Hilbert space completion of (K/N, ⟨., .⟩), we can interpret

the canonical projection

π :

{
K → K/N,

x ,→ x+N,

as a mapping into H. Given a fundamental norm ∥.∥K on K we have

∥πx∥2H = ⟨πx, πx⟩ = [Px, x]
⋆≤ ∥Px∥K∥x∥K ≤ ∥P∥∥x∥2K,

where ⋆ holds true due to Lemma 1.5.4, proving π ∈ Lb(K,H). We set T := π+ ∈ Lb(H,K)

and derive from the continuity of ⟨., .⟩

kerT = (ranπ)⊥ = (ranπ)⊥ = H⊥ = {0}.

Hence, T is injective. The nondegeneracy of a Krein space and

[TT+x, y] = ⟨T+x, T+y⟩ = ⟨x+N, y +N⟩ = [Px, y], x, y ∈ K,

yield TT+ = P .

1.7 Spectral Theory in Hilbert Spaces

The main result here will be Theorem 1.7.7, the joint spectral theorem for pairwise com-

muting tuples of self-adjoint Hilbert space operators. It motivates the main result of the

present thesis and plays a key role in its proof.
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Definition 1.7.1. We denote by BS(Ω) the C∗-algebra of complex-valued bounded S-

measurable functions on Ω endowed with pointwise algebraic operations and the norm

∥φ∥∞ := supx∈Ω |φ(x)|. If the σ-algebra is the Borel σ-algebra, we will write B(Ω).

Furthermore, for compact Ω we denote by C(Ω) the C∗-algebra of continuous complex-

valued functions on Ω endowed with pointwise operations and ∥.∥∞.

Definition 1.7.2. Let Ω be a set endowed with a σ-algebra S and H a Hilbert space. If

E : S → Lb(H) is such that

(i) E(Δ) is an orthogonal projection for all Δ ∈ S,

(ii) E(∅) = 0 and E(Ω) = I,

(iii) E(Δ1 ∩Δ2) = E(Δ1)E(Δ2) for Δ1,Δ2 ∈ S, and

(iv) for pairwise disjoint Δn ∈ S we have

E

( U̇
n∈N

Δn

)
=

∑
n∈N

E (Δn)

in the sense of pointwise convergence,

then E is called spectral measure for (Ω,S,H).

We first recall the spectral theorem of a bounded self-adjoint operator on a Hilbert

space; see [WKB25, Chapter 7].

Theorem 1.7.3. Let (H, ⟨., .⟩) be a Hilbert space and A ∈ Lb(H) self-adjoint. Denoting

by B the Borel σ-algebra on σ(A), there exists a unique spectral measure E : B → Lb(H),

called the spectral measure of A, such that

A =

∫
t dE(t).

Moreover, given T ∈ Lb(H), the following statements are equivalent.

(i) TA = AT .

(ii) TE(Δ) = E(Δ)T for all Δ ∈ B.

(iii) T (
∫
φ dE) = (

∫
φ dE)T for all φ ∈ C(σ(A)).

(iv) T (
∫
φ dE) = (

∫
φ dE)T for all φ ∈ B(σ(A)).

Definition 1.7.4. Let (H, ⟨., .⟩) be a Hilbert space and Ω1,Ω2 be sets endowed with σ-

algebras S1,S2, respectively. We say that the spectral measures Ei : Si → Lb(H), i = 1, 2

commute if

E2(Δ2)E1(Δ1) = E1(Δ1)E2(Δ2), Δ1 ∈ S1, Δ2 ∈ S2.

Lemma 1.7.5. Let (H, ⟨., .⟩) be a Hilbert space. If (Ak)
n
k=1 ∈ Lb(H)n is a tuple of pair-

wise commuting self-adjoint operators, then the tuple (Ek)
n
k=1 of corresponding spectral

measures commute pairwise.
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Proof. Let Bk denote the Borel σ-algebra on σ(Ak). Given Δj ∈ Bj , AiAj = AjAi yields

AiEj(Δj) = Ej(Δj)Ai which, in turn, implies Ei(Δi)Ej(Δj) = Ej(Δj)Ei(Δi) for any

Δj ∈ Bj , Δi ∈ Bi; see Theorem 1.7.3.

The following theorem from [Sch12, Theorem 4.10] defines a product spectral measure

of pairwise commuting spectral measures.

Theorem 1.7.6. Let (H, ⟨., .⟩) be a Hilbert space. For k ∈ [1, n]Z let Ωk be a locally

compact Hausdorff space which has a countable base of open sets and Ek : Bk → Lb(H) a

spectral measure defined on the Borel σ-algebra Bk of Ωk. If the spectral measures (Ek)
n
k=1

commute pairwise, then there exists a unique spectral measure E on the Borel σ-algebra B
of the product space Ω1 × · · · × Ωn satisfying

E(Δ1 × · · · ×Δn) = E1(Δ1) · · ·En(Δn), Δk ∈ Bk, k ∈ [1, n]Z.

We will refer to E as the product spectral measure of (Ek)
n
k=1.

We are going to formulate a result analogous to Theorem 1.7.3 for a tuple of pairwise

commuting self-adjoint operators. For a (spectral) measure µ and a measurable function

T , we will refer to the (spectral) measure Δ ,→ µ(T−1(Δ)) as µ ◦ T−1.

Theorem 1.7.7. Let (H, ⟨., .⟩) be a Hilbert space. If A = (Ak)
n
k=1 ∈ Lb(H)n is a tuple of

pairwise commuting self-adjoint operators, then there exists a unique spectral measure E

defined on the Borel σ-algebra B of Ω := σ(A1)× · · · × σ(An) such that

Ak =

∫
Ω
πk dE, k ∈ [1, n]Z, (1.13)

where πk denotes the projection onto the k-th coordinate. In addition, E satisfies∫
σ(Ak)

φ dEk =

∫
Ω
φ ◦ πk dE, k ∈ [1, n]Z, φ ∈ B(σ(Ak)), (1.14)

where Ek denotes the spectral measure of Ak. Moreover, for T ∈ Lb(H), the following

statements are equivalent.

(i) TAk = AkT for all k ∈ [1, n]Z.

(ii) TE(Δ) = E(Δ)T for all Δ ∈ B.

(iii) T (
∫
φ dE) = (

∫
φ dE)T for all φ ∈ C(Ω).

(iv) T (
∫
φ dE) = (

∫
φ dE)T for all φ ∈ B(Ω).

We will refer to E as joint spectral measure of A.

Proof. By Lemma 1.7.5, (Ek)
n
k=1 commute pairwise. According to Theorem 1.7.6 there

exists a unique product spectral measure E of (Ek)
n
k=1. Without loss of generality we

will verify (1.14) for k = 1. Let f ∈ H. Note that ⟨E(.)f, f⟩ and ⟨E1(.)f, f⟩ constitute

non-negative measures. Denoting by B1 the Borel σ-algebra on σ(A1),

E(Δ× σ(A2)× · · · × σ(An)) = E1(Δ), Δ ∈ B1,
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yields E ◦ π−1
1 = E1. Thus, for φ ∈ B(σ(A1)) we obtain/(∫
σ(A1)

φ dE1

)
f, f

\
=

∫
σ(A1)

φ d⟨E1(.)f, f⟩

=

∫
σ(A1)

φ d(⟨E(.)f, f⟩ ◦ π−1
1 )

=

∫
Ω
φ ◦ π1 d⟨E(.)f, f⟩ =

/(∫
Ω
φ ◦ π1 dE

)
f, f

\
.

Due to the polarization identity in (H, ⟨., .⟩), we obtain∫
σ(A1)

φ dE1 =

∫
Ω
φ ◦ π1 dE

and, in turn, (1.13) by choosing φ(t) = t.

Concerning uniqueness, let E′ be a spectral measure on Ω that satisfies (1.13). For

k ∈ [1, n]Z it is straightforward to check that E′ ◦ π−1
k is a spectral measure on σ(Ak).

From ⟨E′ ◦ π−1
k (.)g, h⟩ = ⟨E′(.)g, h⟩ ◦ π−1

k , g, h ∈ H, we infer∫
σ(Ak)

t d(E′ ◦ π−1
k )(t) =

∫
Ω
πk dE

′ = Ak =

∫
σ(Ak)

t dEk(t).

From Theorem 1.7.3 we conclude Ek = E′◦π−1
k for k ∈ [1, n]Z. Given Δk ∈ Bk, k ∈ [1, n]Z,

we have

E′(Δ1 × · · · ×Δn) =

∫
Ω
✶Δ1×···×Δn dE′

=

∫
Ω

n∏
k=1

✶π−1
k (Δk)

dE′

=
n∏

k=1

E′(π−1
k (Δk)) =

n∏
k=1

Ek(Δk).

According to Theorem 1.7.6, E′ must be the product spectral measure of (Ek)
n
k=1.

The statements (ii), (iii), and (iv) are equivalent for any spectral measure defined

on a Borel σ-algebra of a compact Hausdorff space; see [WKB25, 7.1.13]. (i) is a trivial

conclusion from (iv). From (i) we obtain that T ∈ Lb(H) commutes with p(A) =
∫
pdE for

all p ∈ C[x1, . . . , xn]. Note that C[x1, . . . , xn] as a set of functions on Ω is a point separating

and nowhere vanishing subalgebra of C(Ω). Furthermore, as Ω ⊆ Rn, C[x1, . . . , xn] is
closed under f ,→ f̄ . By the Stone-Weierstrass theorem C[x1, . . . , xn] as a set of functions

on Ω is dense in C(Ω). Since the bounded linear mapping

ψ :

{
C(Ω) → Lb(H),

f ,→ T
(∫

Ω f dE
)− (∫

Ω f dE
)
T,

satisfies ψ|C[x1,...,xn] ≡ 0, we obtain ψ ≡ 0. Thus, (i) implies (iii).

Corollary 1.7.8. Let (H, ⟨., .⟩) be a Hilbert space, A = (Ak)
n
k=1 ∈ Lb(H)n a tuple of

pairwise commuting self-adjoint operators, and AN = (Ak)k∈N , N ⊆ [1, n]Z, a subtuple of

A. We denote by πN : Rn → RN the canonical projection (xk)
n
k=1 ,→ (xk)k∈N . If E and

EN are the joint spectral measures of A and AN , respectively, then we have E◦π−1
N = EN .
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Proof. Let Δk ⊆ σ(Ak), k ∈ [1, n]Z, be Borel subsets such that Δk = σ(Ak) for k ∈
[1, n]Z \N . Denoting by |N | the cardinality of N , let m : [1, |N |]Z → N be an increasing

enumeration of N . Because of

E ◦ π−1
N (Δm(1) × · · · ×Δm(|N |)) = E(Δ1 × · · · ×Δn)

= E(Δ1) · · ·E(Δn)

= E(Δm(1)) · · ·E(Δm(|N |))

= EN (Δm(1) × · · · ×Δm(|N |)),

the uniqueness of product spectral measures guarantees EN = E ◦ π−1
N .

Definition 1.7.9. Let (H, ⟨., .⟩) be a Hilbert space and E a spectral measure on the Borel

σ-algebra B of a topological space Ω. The support of the spectral measure E is defined as

suppE := {x ∈ Ω : E(U) ̸= 0 for all open neighbourhood U of x} .

Remark 1.7.10. If the topology on Ω has a countable basis, then Ω\suppE is the largest

open subset Q satisfying E(Q) = 0; see Definition 1.7.2, (iv).

Remark 1.7.11. We can extend a joint spectral measure E of a pairwise commuting

tuple of self-adjoint operators A ∈ Lb(H)n to the Borel σ-algebra of Rn by setting

Ẽ(Δ) := E(Δ ∩ suppE).

Hence we will often interpret the joint spectral measure to be defined on the Borel σ-

algebra on Rn.

The next result establishes a connection between the joint spectrum of operators and

the spectral measure.

Proposition 1.7.12. Let (H, ⟨., .⟩) be a Hilbert space and A = (Ak)
n
k=1 ∈ Lb(H)n a tuple

of pairwise commuting self-adjoint operators. Then the joint spectral measure E of A

satisfies

suppE = σ(A).

Proof. Let λ ∈ suppE and assume λ ∈ ρ(A). We find B ∈ Lb(H)n such that B(A−λ) =

I. If 0 < ϵ < (
∑n

k=1 ∥Bk∥)−1, then λ ∈ suppE implies E(Bϵ(λ)) ̸= 0. Hence, there exists

0 ̸= f ∈ ranE(Bϵ(λ)) ⊆ H. Given Δ ∈ Rn such that Δ ∩Bϵ(λ) = ∅ we have

⟨E(Δ)f, f⟩ = ⟨E(Δ)E(Bϵ(λ)), ,, ,
=0

f, f⟩ = 0.

Hence, for k ∈ [1, n]Z we conclude

∥(Ak − λk)f∥2 =
∫

|xk − λk|2 d⟨E(x)f, f⟩

=

∫
Bϵ(λ)

|xk − λk|2 d⟨E(x)f, f⟩ ≤ ϵ2⟨f, f⟩,
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which yields the contradiction

∥f∥ = ∥B(A− λ), ,, ,
=I

f∥ ≤
n∑

k=1

∥Bk∥∥(Ak − λk)f∥ ≤ ∥f∥ ϵ
n∑

k=1

∥Bk∥, ,, ,
<1

< ∥f∥.

For the converse, let λ ∈ Rn \ supp E. For k ∈ [1, n]Z,

x ,→ ✶suppE(x)
xk − λk

∥x− λ∥22
constitutes a bounded measurable function on Rn. If we define B = (Bk)

n
k=1 by

Bk :=

∫
✶suppE(x)

xk − λk

∥x− λ∥22
dE(x), k ∈ [1, n]Z,

then Remark 1.7.10 implies

(A− λ)B =

n∑
k=1

(Ak − λk)Bk

=

n∑
k=1

∫
(xk − λk) dE(x)

∫
✶suppE(x)

xk − λk

∥x− λ∥22
dE(x)

=

∫
✶suppE(x)

n∑
k=1

(xk − λk)
2

∥x− λ∥22
dE(x)

=

∫
✶suppE dE =

∫
✶ dE = I.

Hence, λ ∈ ρ(A).

1.8 Diagonal Transform on Krein Spaces

In the present section, we are going to introduce a ∗-homomorphism that maps Krein

space operators to Hilbert space operators. Any vector space mentioned in this section

will be over C.

Definition 1.8.1. Let X,Y be vector spaces. We call a subspace T ≤ X × Y linear

relation between X and Y . Given a linear relation T between X and Y , we define

• the domain of T by domT := {x ∈ X : (x; y) ∈ T for some y ∈ Y },

• the range of T by ranT := {y ∈ Y : (x; y) ∈ T for some x ∈ X},

• the kernel of T by kerT := {x ∈ X : (x; 0) ∈ T},

• the multi-valued-part of T by mulT := {y ∈ Y : (0; y) ∈ T}.

A linear relation between X and X will be called a linear relation on X.

Remark 1.8.2. The graph of any linear operator is a linear relation. Any linear relation

T with mulT = {0} is the graph of a linear operator defined on domT .
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Definition 1.8.3. Given vector spaces X,Y, Z, linear relations S, T ≤ X×Y , R ≤ Y ×Z,

and α ∈ C, we define

• S + T := {(x; y1 + y2) ∈ X × Y : (x; y1) ∈ S, (x; y2) ∈ T} .

• αT := {(x;αy) ∈ X × Y : (x; y) ∈ T} .

• T−1 := {(y;x) ∈ Y ×X : (x; y) ∈ T}.

• RS := {(x; z) ∈ X × Z : (x; y) ∈ S, (y; z) ∈ R, for some y ∈ Y }.

Simple calculations show that these sets are linear relations.

Definition 1.8.4. Let X,Y be vector spaces and T : X → Y a linear operator. We define

the mapping

T × T :

{
X ×X → Y × Y,

(a; b) ,→ (Ta;Tb).

Facts 1.8.5. Let X,Y be vector spaces and A ≤ X ×X, B ≤ Y × Y . If T : X → Y is a

linear operator, then

(i) T × T constitutes a linear operator.

(ii) (T × T )(A) = {(Ta;Tb) : (a; b) ∈ A} ≤ Y × Y .

(iii) (T × T )−1(B) = {(a; b) : (Ta;Tb) ∈ B} ≤ X ×X.

Lemma 1.8.6. Let X,Y be vector spaces and A ≤ X ×X, B ≤ Y × Y . If T : X → Y is

a linear operator, then

(T × T )(A) = TAT−1, (T × T )−1(B) = T−1BT,

where the products on the right-hand sides are relational products as in Definition 1.8.3

with T being interpreted as its graph. In particular, T need not be invertible as an operator.

Proof. We will show the second equality, as the first equality can be shown in a similar

manner. If (a; b) ∈ (T ×T )−1(B), then there exists (x; y) ∈ B such that (Ta;Tb) = (x; y).

Hence (a;x) ∈ T , (x; y) ∈ B, and (y; b) ∈ T−1, which yields (a; b) ∈ T−1BT .

If (a; b) ∈ T−1BT , there exist x, y ∈ Y such that (a;x) ∈ T , (x; y) ∈ B, and (y; b) ∈
T−1. Hence (Ta;Tb) = (x; y) ∈ B, which implies (a; b) ∈ (T × T )−1(B).

The following theorem from [KP15, Theorem 5.8] enables us to construct a ∗-homomor-

phism from a subalgebra of Lb(K) into a subalgebra of Lb(H), where K is a Krein space

and H a Hilbert space.

Theorem 1.8.7. Let (H, (., .)) be a Hilbert space and (K, [., .]) a Krein space. If T ∈
Lb(H,K) is an injective operator, then

Θ :

{
(TT+)′ → (T+T )′,

C ,→ (T × T )−1 (C),
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constitutes a bounded ∗-homomorphism. Hereby, Θ(I) = I,Θ(TT+) = T+T , and

kerΘ =
{
C ∈ (TT+)′ : ranC ⊆ kerT+

}
.

(TT+)′ ⊆ Lb(K) and (T+T )′ ⊆ Lb(H) denote the commutant of TT+ and T+T , respec-

tively.

The next lemma from [KP15, Lemma 5.11] introduces an operator that maps Hilbert

space operators to Krein space operators.

Lemma 1.8.8. Let (H, (., .)) be a Hilbert space and (K, [., .]) a Krein space. If T ∈
Lb(H,K) is an injective operator, then

Ξ :

{
Lb(H) → Lb(K),

D ,→ TDT+,

constitutes an injective bounded linear operator. Moreover, Ξ maps (T+T )′ ⊆ Lb(H) into

(TT+)′ ⊆ Lb(K). Given C ∈ (TT+)′ and D,D1, D2 ∈ (T+T )′, we have

(i) Ξ(D∗) = Ξ(D)+,

(ii) Ξ(DΘ(C)) = Ξ(D)C,

(iii) Ξ(Θ(C)D) = CΞ(D),

(iv) Ξ(T+TD1D2) = Ξ(D1)Ξ(D2),

(v) Ξ ◦Θ(C) = TT+C = CTT+,

where Θ is defined as in Theorem 1.8.7 with the same operator T . Furthermore, Ξ(D)

commutes with all operators in (TT+)′ if D commutes with all operators in (T+T )′, i.e.
Ξ((T+T )′′ ∩ (T+T )′) ⊆ (TT+)′′ ∩ (TT+)′.
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Chapter 2

Construction Framework

In this chapter, we will prepare the framework necessary for the construction and definition

of the joint functional calculus of a definitizable tuple of self-adjoint Krein space operators.

Throughout the chapter, we will employ the following notation.

• (K, [., .]) is a Krein space.

• A = (Aj)
n
j=1 ∈ Lb(K)n is a definitizable tuple of pairwise commuting self-adjoint

operators.

• I denotes the smallest ideal in C[x1, . . . , xn] that contains all definitizing polynomials

of A.

2.1 Embeddings

For the whole section, p1, . . . , pm ∈ C[x1, . . . , xn] shall be some definitizing polynomials of

A.

Definition 2.1.1. Let j ∈ [1,m]Z. We denote by (Hj , ⟨., .⟩j) and Tj ∈ Lb(Hj ,K) the

Hilbert space and the injective operator that results from applying Lemma 1.6.10 to the

positive operator pj(A). Moreover, we fix the Hilbert space (H, ⟨., .⟩) and the injective

T ∈ Lb(H,K) that we obtain from Lemma 1.6.10 for the positive operator
∑m

k=1 pk(A).

We have

TjT
+
j = pj(A) and TT+ =

m∑
k=1

pk(A) =
m∑
k=1

TkT
+
k . (2.1)

Note that if pj(A) = 0, then Hj = {0} and Tj is the zero operator.

Lemma 2.1.2. We have

A′ ⊆
m∩
k=1

(TkT
+
k )′ ⊆ (TT+)′.

Proof. It follows immediately from (2.1).

Lemma 2.1.3. Given j ∈ [1,m] there exists a unique injective contraction Rj ∈ Lb(Hj ,H)

such that Tj = TRj. These contractions satisfy
∑m

k=1RkR
∗
k = I ∈ Lb(H).
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H1

H2

... H K

Hm−1

Hm

T1

T2

R1

R2

T

Rm−1

Tm−1

Rm

Tm

Figure 2.1: Commutative diagram of the mappings involved in Lemma 2.1.3.

Proof. For x ∈ K and j ∈ [1,m]Z we have

⟨T+x, T+x⟩ = [TT+x, x] =
m∑
k=1

[TkT
+
k x, x] =

m∑
k=1

⟨T+
k x, T+

k x⟩k ≥ ⟨T+
j x, T+

j x⟩j .

Thus

Bj :

{
ran T+ → ran T+

j ,

T+x ,→ T+
j x,

constitutes a well-defined linear contraction. Since T as well as Tj is injective, we have

(ranT+)
⊥

= kerT = {0} and
(
ranT+

j

)⊥
= kerTj = {0}. Hence, ranT+ ⊆ H and

ranT+
j ⊆ Hj are dense. In consequence Bj has a unique continuous extension defined on

H with a dense range in Hj . We denote by Rj the adjoint map of the extension of Bj . Rj

satisfies ∥Rj∥ = ∥R∗
j∥ = ∥Bj∥ ≤ 1 and kerRj =

(
ranR∗

j

)⊥
= {0}. Moreover, T+

j = BjT
+

yields T+
j = R∗

jT
+ implying Tj = TRj . The uniqueness of Rj is a consequence of the

injectivity of T . Furthermore,

TIT+ = TT+ =

m∑
k=1

TkT
+
k =

m∑
k=1

TRkR
∗
kT

+ = T

(
m∑
k=1

RkR
∗
k

)
T+

implies I =
∑m

k=1RkR
∗
k due to the density of ran T+ and the injectivity of T .

Definition 2.1.4. Let j ∈ [1,m]Z. We denote by

Θ : (TT+)′, ,, ,
⊆Lb(K)

→ (T+T )′, ,, ,
⊆Lb(H)

, C ,→ T−1CT,

Θj : (TjT
+
j )′, ,, ,

⊆Lb(K)

→ (T+
j Tj)

′, ,, ,
⊆Lb(Hj)

, C ,→ T−1
j CTj ,

Γj : (RjR
∗
j )

′, ,, ,
⊆Lb(H)

→ (R∗
jRj)

′, ,, ,
⊆Lb(Hj)

, C ,→ R−1
j CRj ,

the ∗-homomorphisms obtained by applying Theorem 1.8.7 to T , Tj , and Rj as defined by

Lemma 2.1.3.
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Lemma 2.1.5. For j ∈ [1,m]Z we have Θ((TjT
+
j )′ ∩ (TT+)′) ⊆ (RjR

∗
j )

′ ∩ (T+T )′, where
in fact

Θ(C)RjR
∗
j = RjΘj(C)R∗

j = RjR
∗
jΘ(C), C ∈ (TjT

+
j )′ ∩ (TT+). (2.2)

Moreover,

Θj(C) = Γj ◦Θ(C), C ∈ (TjT
+
j )′ ∩ (TT+). (2.3)

Proof. Let C ∈ (TjT
+
j )′ ∩ (TT+)′. By Lemma 1.8.6 we have

Θj(C)T+
j = T−1

j CTjT
+
j = T−1

j TjT
+
j C = T+

j C.

Similarly, Θ(C)T+ = T+C. Therefore,

TRjΘj(C)R∗
jT

+ = TjΘj(C)T+
j = TjT

+
j C = TRjR

∗
jT

+C = TRjR
∗
jΘ(C)T+.

Since T is injective and ranT+ is dense, we obtain RjΘj(C)R∗
j = RjR

∗
jΘ(C). Applying

this equation to C+ and taking adjoints yields RjΘj(C)R∗
j = Θ(C)RjR

∗
j . In particular,

Θ(C) belongs to (RjR
∗
j )

′. Hence, we can apply Γj to Θ(C) and obtain

Γj ◦Θ(C) = R−1
j T−1CTRj = T−1

j CTj = Θj(C).

Lemma 2.1.6. Given j ∈ [1,m]Z we have RjR
∗
j ∈ (T+T )′ and R∗

jRj ∈ (T+
j Tj)

′. More-

over,

Θ(TjT
+
j ) = RjR

∗
jT

+T = T+TRjR
∗
j . (2.4)

In particular,

pj(Θ[A]) = RjR
∗
j

m∑
k=1

pk(Θ[A]) =
m∑
k=1

pk(Θ[A]) RjR
∗
j . (2.5)

Proof. According to Theorem 1.8.7 we have Θ(TT+) = T+T . Thus, by (2.2), RjR
∗
j

commutes with T+T implying

T+
j TjR

∗
jRj = R∗

j (T
+TRjR

∗
j )Rj = R∗

j (RjR
∗
jT

+T )Rj = R∗
jRjT

+
j Tj ,

i.e. R∗
jRj ∈ (T+

j Tj)
′. Moreover,

Θ(TjT
+
j ) = T−1TjT

+
j T = T−1TRjR

∗
jT

+T = RjR
∗
jT

+T.

Since Θ is an algebra homomorphism, we have

pj(Θ[A]) = Θ(pj(A)) = Θ(TjT
+
j )

and
m∑
k=1

pk(Θ[A]) = Θ

(
m∑
k=1

TjT
+
j

)
= Θ(TT+) = T+T.

Considering these facts, we obtain (2.5) from (2.4).

The following theorem will play a key role in the proof of Proposition 2.1.8; see for

example [Rud87, Theorem 6.19]. We say a function f : X → C vanishes at infinity, if for

any ϵ > 0 there exists a compact set C such that |f(x)| < ϵ for all x ∈ X \ C.
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Theorem 2.1.7 (Riesz-Markov-Kakutani). Let X be a locally compact Hausdorff space.

We denote by C0(X) the space of all continuous complex-valued functions that vanish at

infinity. If Φ is a bounded linear functional on C0(X), then there exists a unique regular

complex Borel measure µ on X such that

Φ(f) =

∫
X
f dµ, f ∈ C0(X).

For the next proposition, keep in mind that as Θ and Θj are ∗-homomorphisms, the

tuples Θ[A] = (Θ(Ai))
n
i=1 ∈ Lb(H)n and Θj [A] = (Θj(Ai))

n
i=1 ∈ Lb(Hj)

n are tuples of

pairwise commuting self-adjoint operators.

Proposition 2.1.8. For j ∈ [1,m]Z we denote by E and Ej the joint spectral measures

of Θ[A] ∈ Lb(H)n and Θj [A] ∈ Lb(Hj)
n, respectively, defined on the Borel subsets of Rn;

see Remark 1.7.11. The following assertions hold true.

(i) E(Δ) ∈ (T+T )′ ∩∩m
k=1(RkR

∗
k)

′ for all Borel subsets Δ ⊆ Rn.

(ii) Ej(Δ) = Γj(E(Δ)) ∈ (T+
j Tj)

′ ∩ (R∗
jRj)

′ for all Borel subsets Δ ⊆ Rn.

(iii)
∫
φ dE ∈ (T+T )′ ∩∩m

k=1(RkR
∗
k)

′ for φ ∈ B(σ(Θ[A])).

(iv)
∫
φ dEj = Γj(

∫
φ dE) ∈ (T+

j Tj)
′ ∩ (R∗

jRj)
′ for φ ∈ B(σ(Θ[A])).

Note that B(σ(Θ[A])) is the C∗-algebra of complex-valued bounded Borel-measurable func-

tions on σ(Θ[A]); see Definition 1.7.1.

Proof. (i) and (iii): Let i ∈ [1, n]Z and j ∈ [1,m]Z. From Lemma 2.1.2 and Lemma 2.1.5,

we derive Θ(Ai) ∈ (RjR
∗
j )

′ ∩ (T+T )′. This implies RjR
∗
j , T

+T ∈ Θ[A]′, j ∈ [1,m]Z, and

the equivalent statements (ii) and (iv) in Theorem 1.7.7 imply (i) and (iii) of the present

proposition.

(ii): By Definition 2.1.4,

Γj(C)R∗
j = R−1

j CRjR
∗
j = R−1

j RjR
∗
jC = R∗

jC, C ∈ (RjR
∗
j )

′. (2.6)

For a Borel subset Δ ⊆ Rn we conclude E(Δ) ∈ (RjR
∗
j )

′ from (i). Thus,

⟨Γj(E(Δ))R∗
jg, h⟩j = ⟨R∗

jE(Δ)g, h⟩j = ⟨E(Δ)g,Rjh⟩, g ∈ H, h ∈ Hj . (2.7)

Let s ∈ C[x1, . . . , xn]. In the following, keep in mind that for any algebras A,B, an algebra

homomorphism ψ, and x = (xj)
n
j=1 ∈ An, we have ψ(s(x)) = s(ψ[x]). Lemma 2.1.2 and

Lemma 2.1.5 show

s(Θ[A]) = Θ(s(A)) ∈ Θ(A′) ⊆ (RjR
∗
j )

′ ∩ (T+T )′,

implying

R∗
js(Θ[A])

(2.6)
= Γj(s(Θ[A]))R∗

j = s(Γj ◦Θ[A])R∗
j
(2.3)
= s(Θj [A])R∗

j .
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Let g ∈ H, h ∈ Hj . From (2.7) we infer∫
Rn

s(x) d⟨Γj(E(x))R∗
jg, h⟩j =

∫
Rn

s(x) d⟨E(x)g,Rjh⟩ (2.8)

= ⟨s(Θ[A])g,Rjh⟩
= ⟨R∗

js(Θ[A])g, h⟩j
= ⟨s(Θj [A])R∗

jg, h⟩j =
∫
Rn

s(x) d⟨Ej(x)R∗
jg, h⟩j .

We will show ⟨Γj(E(Δ))R∗
jg, h⟩j = ⟨Ej(Δ)R∗

jg, h⟩j for Borel subsets Δ ⊆ Rn. First

observe that

supp ⟨Γj(E)R∗
jg, h⟩j ⊆ suppE = σ(Θ[A]),

supp ⟨EjR∗
jg, h⟩j ⊆ suppEj = σ(Θj [A])

⋆⊆ σ(Θ[A]),

where ⋆ follows from Θj [A] = Γj ◦ Θ[A]. Since C[x1, . . . , xn] as a set of functions on

σ(Θ[A]) ⊆ Rn is dense in C(σ(Θ[A])) due to Stone-Weierstrass theorem, (2.8) implies∫
σ(Θ[A])

f(x) d⟨Γj(E(x))R∗
jg, h⟩j =

∫
σ(Θ[A])

f(x) d⟨Ej(x)R∗
jg, h⟩j , f ∈ C(σ(Θ[A])).

Consequently, Theorem 2.1.7 implies ⟨Γj(E(Δ))R∗
jg, h⟩j = ⟨Ej(Δ)R∗

jg, h⟩j for Borel sub-

sets Δ ⊆ Rn. Since g, h were arbitrary, we obtain

(Γj(E(Δ))− Ej(Δ))R∗
j = 0, Δ ⊆ Rn Borel subset,

which, due to (ranR∗
j )

⊥ = kerRj = {0}, implies

Ej(Δ) = Γj(E(Δ)) ∈ (R∗
jRj)

′.

Θj(Ai) ∈ (T+
j Tj)

′ for all i ∈ [1, n]Z shows Ej(Δ) ∈ (T+
j Tj)

′; see Theorem 1.7.7.

(iv): Given φ ∈ B(σ(Θ[A])) its restriction to σ(Θj [A]) belongs to B(σ(Θj [A])). Let

g ∈ H, h ∈ Hj . Due to Ej(Δ)R∗
j = Γj(E(Δ))R∗

j = R∗
jE(Δ), we obtain/

Γj

(∫
φ dE

)
R∗

jg, h

\
j

(2.6)
=

/
R∗

j

∫
φ dE g, h

\
j

=

/∫
φ dE g,Rjh

\
=

∫
φ(x) d⟨E(x) g,Rjh⟩

=

∫
φ(x) d⟨R∗

jE(x) g, h⟩j

=

∫
φ(x) d⟨Ej(x)R

∗
j g, h⟩j =

/∫
φ dEj R∗

jg, h

\
j

.

We conclude (
Γj

(∫
φ dE

)
−
∫

φ dEj

)
R∗

j = 0,

which by the density of ranR∗
j implies

Γj

(∫
φ dE

)
=

∫
φ dEj .

Finally,
∫
φdEj ∈ (T+

j Tj)
′∩(R∗

jRj)
′ is a direct consequence of (ii); see Theorem 1.7.7.
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Definition 2.1.9. Let j ∈ [1,m]Z. We denote by

Ξ : Lb(H) → Lb(K), D ,→ TDT+,

Ξj : Lb(Hj) → Lb(K), D ,→ TjDT+
j ,

Λj : Lb(Hj) → Lb(H), D ,→ RjDR∗
j ,

the injective bounded linear operators obtained by applying Lemma 1.8.8 to T , Tj , and

Rj .

Lemma 2.1.10. Given j ∈ [1,m]Z we have Ξj = Ξ ◦ Λj. Moreover, if E and Ej are the

joint spectral measures of Θ[A] and Θj [A], respectively, and φ ∈ B(σ(Θ[A])), then

Ξj

(∫
φ dEj

)
= Ξ ◦ Λj ◦ Γj

(∫
φ dE

)
= Ξ

(
RjR

∗
j

∫
φ dE

)
. (2.9)

Finally,

pj(A)u(A) = Ξj(u(Θj [A])) = Ξ(RjR
∗
ju(Θ[A])), u ∈ C[x1, . . . , xn]. (2.10)

Proof. From Tj = TRj we derive Ξj = Ξ ◦ Λj .

(2.9): The first equality is a consequence of Proposition 2.1.8 and Ξj = Ξ ◦ Λj . For

the second equality note that Γj and Λj were constructed by applying Theorem 1.8.7

and Lemma 1.8.8 to the operator Rj , respectively, and Lemma 1.8.8 (v) implies Λj ◦
Γj

(∫
φ dE

)
= RjR

∗
j

(∫
φ dE

)
.

(2.10): By (2.1) we have pj(A)u(A) = TjT
+
j u(A). Since Θj and Ξj were constructed

by applying Theorem 1.8.7 and Lemma 1.8.8 to the operator Tj , respectively, Lemma 1.8.8

(v) yields

TjT
+
j u(A) = Ξj ◦Θj(u(A)) = Ξj(u(Θj [A]))

(2.9)
= Ξ(RjR

∗
ju(Θ[A])).

Lemma 2.1.11. For j ∈ [1,m]Z we have{
z ∈ Cn : |pj(z)| > ∥RjR

∗
j∥ ·

|||||
m∑
k=1

pk(z)

|||||
}

⊆ ρ(Θ[A]).

Proof. For N ∈ N we set

ΔN :=

z ∈ Cn : |pj(z)|2 > 1

N
+ ∥RjR

∗
j∥2 ·

|||||
m∑
k=1

pk(z)

|||||
2
 .

Let E be the spectral measure of Θ[A]. In the following, we will regard E to be defined

on Cn by extending it canonically. For x ∈ ran E(ΔN ) we have

∥pj(Θ[A])x∥2 = ∥pj(Θ[A])E(ΔN )x∥2 =
∫
ΔN

|pj(z)|2 d⟨E(z)x, x⟩

≥
∫
ΔN

1

N
d⟨E(z)x, x⟩+ ∥RjR

∗
j∥2

∫
ΔN

|||||
m∑
k=1

pk(z)

|||||
2

d⟨E(z)x, x⟩

≥ 1

N
∥x∥2 +

‖‖‖‖‖RjR
∗
j

m∑
k=1

pk(Θ[A])x

‖‖‖‖‖
2

(2.5)
=

1

N
∥x∥2 + ∥pj(Θ[A])x∥2 .
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Obviously, these inequalities can only be true if x = 0. Hence, E(ΔN ) = 0. Since ΔN is

open, we have ΔN ⊆ Cn \ (supp E) = Cn \ σ(Θ(A)) ⊆ ρ(Θ[A]). We conclude{
z ∈ Cn : |pj(z)| > ∥RjR

∗
j∥ ·

|||||
m∑
k=1

pk(z)

|||||
}

=
U
N∈N

ΔN ⊆ ρ(Θ[A]).

Corollary 2.1.12. The zeros of
∑m

k=1 pk are contained in ρ(Θ[A])∪V (⟨p1, . . . , pm⟩); see
Lemma 1.1.4 and Definition 1.1.7.

Proof. Let z ∈ Cn such that
∑m

k=1 pk(z) = 0 and z ̸∈ V (⟨p1, . . . , pm⟩). By Lemma 1.1.9

there exists i ∈ [1,m]Z such that |pi(z)| > 0 = ∥RiR
∗
i ∥ · |

∑m
k=1 pk(z)|. From Lemma 2.1.11

we conclude z ∈ ρ(Θ[A]).

Lemma 2.1.13. If M ⊆ Rn is a Borel subset such that
∑m

j=1 pj(z) ̸= 0 for all z ∈ M ,

then

RjR
∗
jE(M) = E(M)RjR

∗
j =

∫
M

pj∑m
i=1 pi

dE, j ∈ [1,m]Z,

where E denotes the spectral measure of Θ[A].

Proof. The first equality is known from Proposition 2.1.8. Note that the integral on

the right-hand side is well-defined as the integrand is a bounded measurable function on

σ(Θ[A]) ∩M according to Lemma 2.1.11.

As the concerned operators clearly vanish on ranE(Rn \M), we will show the equality

for the restriction to ranE(M). The operator∫
M

m∑
k=1

pk dE = E(M) Θ

(
m∑
k=1

pk(A)

)
(2.11)

is self-adjoint as
∑m

k=1 pk(A) is self-adjoint and Θ is a ∗-homomorphism. Given 0 ̸= x ∈
ranE(M), ⟨E(.)x, x⟩ is not the zero-measure because of ⟨E(M)x, x⟩ = ∥x∥2 and hence‖‖‖‖‖

∫
M

m∑
k=1

pk dE x

‖‖‖‖‖
2

=

∫
M

|||||
m∑
k=1

pk(z)

|||||
2

, ,, ,
>0

d⟨E(z)x, x⟩ > 0.

Since (2.11) vanishes on ranE(Rn \M), we have(
ran

∫
M

m∑
k=1

pk dE

)⊥
= ker

∫
M

m∑
k=1

pk dE = ranE(Rn \M).

If y is in the range of
∫
M

∑m
k=1 pk dE, then there exists x ∈ ranE(M) such that y =∫

M

∑m
k=1 pk dE x. Consequently,∫

M

pj∑m
i=1 pi

dE y =

∫
M

pj dE x = pj(Θ[A])E(M)x

(2.5)
= RjR

∗
j

∫ m∑
k=1

pk dE E(M)x = RjR
∗
jy.

Due to the density of the range of
∫
M

∑m
k=1 pk dE in ranE(M), the above equality holds

true for all y ∈ ranE(M).
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2.2 Abstract Functional Calculus

The joint functional calculus for A will be defined for functions that can be represented by

elements in C[x1, . . . , xn]×B(σ(Θ[A])). In the present section, we are going to construct

an abstract functional calculus, i.e. a ∗-homomorphism from C[x1, . . . , xn]×B(σ(Θ[A]))

to A′′, which will be utilized in Section 3.1 to construct the joint functional calculus.

Let I be the ideal generated by all definitizing polynomials of A and p1, . . . , pm ∈
R[x1, . . . , xn] be definitizing polynomials of A such that I = ⟨p1, . . . , pm⟩ according to

Proposition 1.6.9. Moreover, we will import the notations and definitions from Section 2.1

such as Θ and Ξ, which are constructed using p1, . . . , pm, and denote by E the joint

spectral measure of the tuple Θ[A] ∈ Lb(H)n.

Lemma 2.2.1. For f ∈ B(σ(Θ[A])) and Ξ as in Definition 2.1.9, the operator Ξ(
∫
f dE)

belongs to A′′.

Proof. Let C ∈ A′ ⊆ (TT+)′; see Lemma 2.1.2. Keep in mind that by Proposition 2.1.8,∫
f dE belongs to (T+T )′. According to Lemma 1.8.8, (ii) and (iii), we have

CΞ

(∫
f dE

)
= Ξ

(
Θ(C)

∫
f dE

)
, (2.12)

Ξ

(∫
f dE

)
C = Ξ

(∫
f dE Θ(C)

)
. (2.13)

Since Θ is a ∗-homomorphism and C ∈ A′, we have Θ(C) ∈ Θ[A]′. By Theorem 1.7.7,

Θ(C) commutes with
∫
f dE, which implies the equality of the right-hand side of (2.12)

and (2.13). Consequently, Ξ(
∫
f dE) commutes with C ∈ A′.

Definition 2.2.2. We define Ψ : C[x1, . . . , xn]×B(σ(Θ[A])) → A′′ ⊆ Lb(K) by

Ψ(r, f) = r(A) + Ξ

(∫
f dE

)
.

By N we denote the set of all (r, f) ∈ C[x1, . . . , xn]×B(σ(Θ[A])) such that

(i) for all z ∈ σ(Θ[A]) \ V (I),

r(z) + f(z)
m∑
k=1

pk(z) = 0.

(ii) f(z) = 0 for all z ∈ σ(Θ[A]) ∩ V (I).

(iii) there exist u1, . . . , um ∈ C[x1, . . . , xn] such that r =
∑m

k=1 ukpk and uk(z) = 0 for

all k ∈ [1,m]Z and z ∈ σ(Θ[A]) ∩ V (I).

Recall that p#(x1, . . . , xn) = p(x1, . . . , xn) for p ∈ C[x1, . . . , xn]; see Example 1.3.6.

Proposition 2.2.3. If we endow C[x1, . . . , xn]×B(σ(Θ[A])) with

• (r, f) + (s, g) := (r + s, f + g),

• λ(r, f) := (λr, λf),
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• (r, f) · (s, g) := (rs, rg + sf + fg
∑m

j=1 pj),

• (r, f)∗ := (r#, f),

for (r, f), (s, g) ∈ C[x1, . . . , xn]×B(σ(Θ[A])) and λ ∈ C, then C[x1, . . . , xn]×B(σ(Θ[A]))

constitutes a commutative unital ∗-algebra, where (1, 0) is the unity.

Proof. Clearly, C[x1, . . . , xn] × B(σ(Θ[A])) turns into a vector space with the defined

addition and scalar multiplication.

Let (r, f), (s, g), (q, h) ∈ C[x1, . . . , xn] ×B(σ(Θ[A])) and λ ∈ C. σ(Θ[A]) being com-

pact, the second component of (r, f) · (s, g) is bounded and measurable. As the multipli-

cation is clearly commutative, bilinearity follows from(
(r, f) + (s, g)

) · (q, h) = (r + s, f + g) · (q, h)
=

(
rq + sq, rh+ sh+ qf + qg + (fh+ gh)

∑m
j=1 pj

)
=

(
rq, rh+ qf + fh

∑m
j=1 pj

)
+
(
sq, sh+ qg + gh

∑m
j=1 pj

)
= (r, f) · (q, h) + (s, g) · (q, h),

(λr, λf)(s, g) =
(
λrs, λrg + λsf + λfg

∑m
j=1 pj

)
= λ

(
(r, f) · (s, g)).

Furthermore, the multiplication is associative because of(
(r, f) · (s, g)) · (q, h) = (

rs, rg + sf + fg
∑m

j=1 pj

)
· (q, h)

=
(
rsq, rsh+ q(rg + sf + fg

∑m
j=1 pj)

+ (rg + sf + fg
∑m

j=1 pj)h
∑m

j=1 pj

)
=

(
rsq, sqf + r(sh+ qg + gh

∑m
j=1 pj)

+ (sh+ qg + gh
∑m

j=1 pj)f
∑m

j=1 pj

)
= (r, f) ·

(
sq, sh+ qg + gh

∑m
j=1 pj

)
= (r, f) · ((s, g) · (q, h)).

It is straightforward to check that (1, 0) is the unity.

As .# and .̄ are conjugate linear involutions on the respective spaces, so is .∗. Note

that for p ∈ C[x1, . . . , xn] we have p#(z) = p(z) = p(z), z ∈ σ(Θ[A]) ⊆ Rn. p#j = pj ∈
R[x1, . . . , xn] for all j ∈ [1,m] implies(

(r, f) · (s, g))∗ = (rs, rg + sf + fg
∑m

j=1 pj)
∗

=
(
s#r#, rg + sf + fg

∑m
j=1 pj

)
=

(
s#r#, r#g + s#f + fg

∑m
j=1 pj

)
= (s#, g) · (r#, f) = (s, g)∗ · (r, f)∗,

demonstrating the compatibility of .∗ with multiplication.

Lemma 2.2.4. For r ∈ C[x1, . . . , xn] and f ∈ B(σ(Θ[A])) we have

r(A) Ξ

(∫
f dE

)
= Ξ

(∫
f dE

)
r(A) = Ξ

(∫
rf dE

)
. (2.14)
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Proof. By Lemma 2.1.2 we have r(A) ∈ (TT+)′ and, therefore, Lemma 1.8.8 yields

Ξ(D)r(A) = Ξ(DΘ(r(A))) = Ξ(D r(Θ[A])),

r(A)Ξ(D) = Ξ(Θ(r(A))D) = Ξ(r(Θ[A])D),

for all D ∈ (T+T )′. By Proposition 2.1.8 we have
∫
f dE ∈ (T+T )′. Applying the previous

equality to D =
∫
f dE, we obtain (2.14) because

∫
f dE commutes with r(Θ[A]) =∫

r dE.

Lemma 2.2.5. The map Ψ introduced in Definition 2.2.2 constitutes a unit-preserving

∗-homomorphism.

Proof. By Lemma 1.8.8, Ξ is linear and compatible with taking adjoints. As both the

spectral integral and the evaluation homomorphism are linear and compatible with taking

adjoints, so is Ψ. Let (r, f), (s, g) ∈ C[x1, . . . , xn] ×B(σ(Θ[A])). From Lemma 1.8.8 and

Lemma 2.2.4 we infer

Ψ(r, f) Ψ(s, g) =

(
r(A) + Ξ

(∫
f dE

))(
s(A) + Ξ

(∫
g dE

))
= r(A)s(A) + r(A)Ξ

(∫
g dE

)
+ Ξ

(∫
f dE

)
s(A) + Ξ

(∫
f dE

)
Ξ

(∫
g dE

)
= (r · s)(A) + Ξ

(∫
rg dE

)
+ Ξ

(∫
sf dE

)
+ Ξ

(
T+T

∫
fg dE

)
.

By Theorem 1.8.7 we have T+T = Θ(TT+) and conclude

T+T = Θ(TT+) = Θ

 m∑
j=1

pj(A)

 =
m∑
j=1

pj(Θ[A]) =

∫ m∑
j=1

pj dE.

Hence,

Ψ(r, f) Ψ(s, g) = (r · s)(A) + Ξ

∫ rg + sf + fg
m∑
j=1

pj

 dE


= Ψ

(
r · s, rg + sf + fg

∑m
j=1 pj

)
= Ψ((r, f) · (s, g)),

and Ψ is compatible with multiplication. Because of Ψ(1, 0) = I + Ξ(
∫
0 dE) = I, Ψ is

unit-preserving.

Lemma 2.2.6. N constitutes an ideal satisfying N = N ∗.

Proof. N is clearly a subspace. Let (r, f) ∈ N and (s, g) ∈ C[x1, . . . , xn] ×B(σ(Θ[A])).

We will show (r, f) · (s, g) = (rs, rg + sf + fg
∑m

j=1 pj) ∈ N . Given z ∈ σ(Θ[A]) \ V (I)
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we have

r(z)s(z) +

r(z)g(z) + s(z)f(z) + f(z)g(z)
m∑
j=1

pj(z)

 m∑
j=1

pj(z)

= s(z)

r(z) + f(z)
m∑
j=1

pj(z)


, ,, ,

=0

+g(z)
m∑
j=1

pj(z)

r(z) + f(z)
m∑
j=1

pj(z)


, ,, ,

=0

= 0.

(r, f) ∈ N implies the existence of u1, . . . , um ∈ C[x1, . . . , xn] with r =
∑m

j=1 ujpj and

uj(z) = 0 for j ∈ [1,m]Z and z ∈ σ(Θ[A]) ∩ V (I). Hence,

rs = s
m∑
j=1

ujpj =
m∑
j=1

(suj)pj ,

such that s(z)uj(z) = 0 for j ∈ [1,m]Z and z ∈ σ(Θ[A]) ∩ V (I). Finally, for z ∈
σ(Θ([A])) ∩ V (I) we have

r(z),,,,
=0

g(z) + s(z) f(z),,,,
=0

+ f(z),,,,
=0

g(z)
m∑
j=1

pj(z) = 0.

(r, f)∗ = (r#, f) ∈ N follows in a straightforward manner from σ(Θ[A]) ⊆ Rn and p#j =

pj , j ∈ [1,m]Z. Hence, N ∗ ⊆ N and, in consequence, N ∗ = N .

Lemma 2.2.7. If (r, f) ∈ N , then Ψ(r, f) = 0.

Proof. We have r =
∑m

j=1 ujpj for some uj ∈ C[x1, . . . , xn], j ∈ [1,m]Z, that vanish on

V (I) ∩ σ(Θ[A]). From (2.10) we infer

r(A) =
m∑
j=1

uj(A)pj(A) =
m∑
j=1

Ξ(RjR
∗
juj(Θ[A])) = Ξ

 m∑
j=1

RjR
∗
j

∫
uj dE

 .

Using
∑m

j=1RjR
∗
j = I ∈ Lb(H) from Lemma 2.1.3, we obtain

Ψ(r, f) = Ξ

 m∑
j=1

RjR
∗
j

∫
uj dE

+ Ξ

 m∑
j=1

RjR
∗
j

∫
f dE


= Ξ

 m∑
j=1

RjR
∗
j

∫
(uj + f) dE

 .

As uj + f vanishes on σ(Θ[A]) ∩ V (I) for j ∈ [1,m]Z, the spectral integral in the last

term can also be written as a spectral integral over σ(Θ[A]) \ V (I). Finally, applying
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Lemma 2.1.13 to M = σ(Θ[A]) \ V (I) yields

Ψ(r, f) = Ξ

 m∑
j=1

RjR
∗
j

∫
σ(Θ[A])\V (I)

(uj + f) dE


= Ξ

 m∑
j=1

∫
σ(Θ[A])\V (I)

(uj + f)pj∑m
i=1 pi

dE



= Ξ

(∫
σ(Θ[A])\V (I)

≡0, ,, ,
r + f

∑m
j=1 pj∑m

i=1 pi
dE

)
= 0.

Summarizing all the statements proven in this section, we obtain the following result.

Theorem 2.2.8. The map Ψ : C[x1, . . . , xn] × B(σ(Θ[A])) → A′′ introduced in Defini-

tion 2.2.2 constitutes a unit-preserving ∗-homomorphism with kerΨ ⊇ N .

2.3 Algebra Corresponding to the Variety

Let I be the ideal generated by all definitizing polynomials of A and assume I ⊊
C[x1, . . . , xn]. We also fix definitizing polynomials p1, . . . , pm ∈ R[x1, . . . , xn] of A with

I = ⟨p1, . . . , pm⟩ according to Proposition 1.6.9.

Assumption 2.3.1. Let

I =
l∩

j=1

Qj

be a minimal primary decomposition of the ideal I and set Pj :=
√Qj for j ∈ [1, l]Z;

see Theorem 1.2.8. We will assume that the varieties V (Qj), j ∈ [1, l]Z, are pairwise

disjoint, which establishes the uniqueness of the minimal primary decomposition of I by

Corollary 1.2.14.

Remark 2.3.2. We refer to V ⊆ Cn as variety if V (S) = V for some S ⊆ C[x1, . . . , xn]. A
variety V is called irreducible if V = V1 ∪V2 for varieties V1, V2 implies V = V1 or V = V2.

Any variety can be expressed as a finite union of irreducible varieties; see [CLO07, p.204].

In the notation of Assumption 2.3.1, V (Qj), j ∈ [1, l]Z, are precisely those irreducible

components of V (I); see for example [CLO07, p.214].

Note that none of the varieties V (Qj), j ∈ [1, l]Z, is empty since otherwise the corre-

sponding primary component would be C[x1, . . . , xn] according to Theorem 1.1.19, which

contradicts the primariness. Moreover, since the varieties V (Qj), j ∈ [1, l]Z, are pairwise

disjoint, they constitute a partition of the variety V (I); see Lemma 1.1.22. Hence the

relation ∼ on V (I) defined by

a ∼ b :⇐⇒ ∃j ∈ [1, l]Z : a, b ∈ V (Qj)
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constitutes an equivalence relation. We set V(I) := V (I)/∼ and

VR(I) := {[a] ∈ V(I) : a ∈ V (I) ∩ Rn} ,

where [a] denotes the equivalence class of a ∈ V (I) with respect to ∼.

Definition 2.3.3. For [a] ∈ V(I) and j ∈ [1, l]Z such that a ∈ V (Qj), we employ the

following notation:

Q[a] := Qj , P[a] := Pj .

Moreover, we define the algebras

A[a] := C[x1, . . . , xn]/(P[a] · Q[a]),

B[a] := C[x1, . . . , xn]/Q[a].

Lemma 2.3.4. Given [a] ∈ V(I) we have V (P[a] · Q[a]) = V (P[a]) = V (Q[a]).

Proof. The second equality follows from P[a] =
√Q[a]; see Proposition 1.2.6. Let p ∈ P[a].

Since P[a] is the radical of Q[a], we have pk ∈ Q[a] for some k ∈ N, which implies pk+1 ∈
P[a] · Q[a]. Consequently, P[a] ⊆

√P[a] · Q[a]. The inclusion
√P[a] · Q[a] ⊆ P[a] is trivial.

Again, Proposition 1.2.6 yields the first equality.

For N ∈ N and algebras A1, . . . ,AN we denote by×N
j=1Aj their Cartesian product.

Proposition 2.3.5. The ideal

J :=
∩

[a]∈VR(I)

(P[a] · Q[a]

) ∩ ∩
[a]∈V(I)\VR(I)

Q[a]

satisfies J ⊆ I and

ψ :

������
C[x1, . . . , xn]/J → ×

[a]∈VR(I)
A[a] × ×

[a]∈V(I)\VR(I)
B[a],

[p]J ,→
((

[p]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p]Q[a]

)
[a]∈V(I)\VR(I)

)
,

(2.15)

constitutes an algebra isomorphism. Moreover, for any s ∈ J there exist u1, . . . , um ∈
C[x1, . . . , xn] satisfying

(i) u1(z) = · · · = um(z) = 0 for z ∈ V (I) with [z] ∈ VR(I),

(ii) s =
∑m

i=1 uipi; recall I = ⟨p1, . . . , pm⟩.

Proof. Since the varieties V (Qj), j ∈ [1, l]Z, are pairwise disjoint, the varieties of

P[a] · Q[a], [a] ∈ VR(I), Q[a], [a] ∈ V(I) \ VR(I), (2.16)

are pairwise disjoint according to Lemma 2.3.4. By Lemma 1.1.20 the ideals are pairwise

comaximal. Thus, we can apply the Chinese Remainder Theorem 1.1.16 showing that

(2.15) constitutes a ring-isomorphism. Due to Lemma 1.1.17, ψ is in fact an algebra

isomorphism.
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Keep in mind that since none of the varieties V (Qj), j ∈ [1, l]Z, is empty, we have

{Q1, . . . ,Ql} =
{Q[a] : [a] ∈ V(I)} . (2.17)

Applying Lemma 1.1.22 to the ideals in (2.16), (2.17), and
(P[a]

)
[a]∈VR(I) yields

J =
∏

[a]∈VR(I)

(P[a] · Q[a]

) · ∏
[a]∈V(I)\VR(I)

Q[a] =
∏

[a]∈VR(I)
P[a] ·

∏
[a]∈V(I)

Q[a]

=

 ∏
[a]∈VR(I)

P[a]

 · I =

 ∩
[a]∈VR(I)

P[a]

 · ⟨p1, . . . , pm⟩.

Let q1, . . . , qm′ be the generators of
∩

[a]∈VR(I) P[a]. Given s ∈ J , Lemma 1.1.12 implies

the existence of rij ∈ C[x1, . . . , xn], i ∈ [1,m]Z, j ∈ [1,m′]Z such that

s =
m∑
i=1

m′∑
j=1

rijpiqj =
m∑
i=1

(
m′∑
j=1

rijqj, ,, ,
=:ui

)
pi =

m∑
i=1

uipi.

u1, . . . , um ∈ ∩
[a]∈VR(I) P[a] implies ui(z) = 0, i ∈ [1,m]Z, for z ∈ V (I) with [z] ∈

VR(I).

Remark 2.3.6. Actually, with the same proof, Proposition 2.3.5 stays valid if you replace

VR(I) by an arbitrary subset W ⊆ V(I). We have formulated it this way as it suffices for

our causes, and it simplifies the notation and referencing.

For the remainder of the present section, we are going to construct involutions on the

algebras C[x1, . . . , xn]/J and×[a]∈VR(I)A[a] ××[a]∈V(I)\VR(I) B[a] such that they consti-

tute ∗-algebras. We will also show that, with respect to the newly defined involutions, ψ

from Proposition 2.3.5 constitutes a ∗-isomorphism.

Given z ∈ Cn we denote by z the componentwise complex conjugation. Also, recall

that p#(z) = p(z), p ∈ C[x1, . . . , xn], z ∈ Cn.

Lemma 2.3.7. If L ⊆ C[x1, . . . , xn] is an ideal, then L# is an ideal satisfying

V (L) = V (L#).

Moreover, L is primary (prime) if and only if L# is primary (prime).

Proof. Given f, g ∈ L#, (f+g)# = f#+g# ∈ L. Hence, f+g ∈ L#. If h ∈ C[x1, . . . , xn],
then (hf)# = h#f# ∈ L and, therefore, hf ∈ L#. Moreover,

V (L) = {z ∈ Cn : f(z) = 0, f ∈ L}
=

{
z ∈ Cn : f#(z) = 0, f ∈ L

}
= V (L#).

Let L be primary and f, g ∈ C[x1, . . . , xn] be such that fg ∈ L# and f ̸∈ L#. Then we

have f#g# = (fg)# ∈ L and f# ̸∈ L. Since L is primary, (gk)# = (g#)k ∈ L and, in

consequence, gk ∈ L# for some k ∈ N. The converse is clear. The respective statement

about prime ideals can be shown by substituting k = 1 in the present proof.
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Lemma 2.3.8. The ideal I is invariant under p ,→ p#.

Proof. The claim follows from the fact that I is generated by real polynomials, which are

the self-adjoint elements of C[x1, . . . , xn] with respect to .#.

Lemma 2.3.9. We have Q#
[a] = Q[a] and P#

[a] = P[a] for any [a] ∈ V(I).

Proof. By Lemma 2.3.7,

I# =
∩

[a]∈V(I)
Q#

[a]

constitutes a primary decomposition of I#. Moreover, it is a minimal primary decomposi-

tion because the varieties of the primary components are nonempty and pairwise disjoint.

From I = I# and the uniqueness of the minimal primary decomposition of I given by

Corollary 1.2.14, we conclude{Q[a] : [a] ∈ V(I)} = {Q#
[a] : [a] ∈ V(I)}. (2.18)

Keep in mind that due to I = I#, we have V (I) = V (I). Let a ∈ V (I). By definition

we have a ∈ V (Q[a]) and a ∈ V (Q[a]). On the other hand, by Lemma 2.3.7,

a ∈ V (Q[a]) = V (Q#
[a]).

Since the varieties of ideals in (2.18) are pairwise disjoint, we conclude Q#
[a] = Q[a], and

from P#
[a] =

√
Q#

[a] we derive P#
[a] = P[a].

Remark 2.3.10. For a, b ∈ V (I) with a ∼ b, we have a ∼ b, which is evident from

Q[a] = Q#
[a] = Q#

[b] = Q[b].

Therefore, complex conjugation is well-defined on V(I). Moreover, we have [a] = [a] for

[a] ∈ VR(I).

Lemma 2.3.11. If L ⊆ C[x1, . . . , xn] is an ideal, then

.⋆ :

{
C[x1, . . . , xn]/L → C[x1, . . . , xn]/L#,

[p]L ,→ [p#]L# ,

constitutes a conjugate linear bijection which is compatible with multiplication, i.e. ([p]L ·
[q]L)⋆ = [p]⋆L[q]

⋆
L, p, q ∈ C[x1, . . . , xn]. Furthermore, .⋆ : C[x1, . . . , xn]/L# → C[x1, . . . , xn]/L

is the inverse of .⋆ : C[x1, . . . , xn]/L → C[x1, . . . , xn]/L#.

Proof. Given u ∈ L we have u# ∈ L#. Hence .⋆ is well-defined. The conjugate lin-

earity and the compatibility with multiplication is inherited from .# to .⋆. Since .#

is an involution, .⋆ : C[x1, . . . , xn]/L# → C[x1, . . . , xn]/L is the inverse mapping of

.⋆ : C[x1, . . . , xn]/L → C[x1, . . . , xn]/L#. Hence .⋆ : C[x1, . . . , xn]/L → C[x1, . . . , xn]/L#

is bijective.

Lemma 2.3.12. The ideal J from Proposition 2.3.5 is invariant under .#. In particular,

C[x1, . . . , xn]/J endowed with .⋆ as in Lemma 2.3.11 constitutes a ∗-algebra.
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Proof. From Lemma 2.3.9 we derive that P[a] · Q[a], [a] ∈ VR(I), is invariant under .#.

Furthermore, exploiting the invariance of V(I) \ VR(I) under .̄, we obtain∩
[a]∈V(I)\VR(I)

Q#
[a] =

∩
[a]∈V(I)\VR(I)

Q
[a]

=
∩

[a]∈V(I)\VR(I)
Q[a].

This implies

J# =
∩

[a]∈VR(I)

(P[a] · Q[a]

)# ∩
∩

[a]∈V(I)\VR(I)
Q#

[a] = J .

As a result, the mapping .⋆ : C[x1, . . . , xn]/J → C[x1, . . . , xn]/J from Lemma 2.3.11 is

an involution that turns C[x1, . . . , xn]/J into a ∗-algebra.

Lemma 2.3.13. Endowed with the mapping .† on×[a]∈VR(I)A[a] ××[a]∈V(I)\VR(I) B[a]

defined by ((
[p[a]]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p[a]]Q[a]

)
[a]∈V(I)\VR(I)

)†

:=

((
[p#[a]]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p#

[a]
]Q[a]

)
[a]∈V(I)\VR(I)

)
,

×[a]∈VR(I)A[a] ××[a]∈V(I)\VR(I) B[a] constitutes a ∗-algebra.
Proof. First note that .⋆ on A[a] = C[x1, . . . , xn]/(P[a] ·Q[a]), [a] ∈ VR(I), is an involution

as P[a] · Q[a] is invariant under .
#. We have((

[p[a]]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p[a]]Q[a]

)
[a]∈V(I)\VR(I)

)†

=

((
[p[a]]

⋆
P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p

[a]
]⋆Q

[a]

)
[a]∈V(I)\VR(I)

)
,

where .⋆ is the mapping defined in Lemma 2.3.11. The conjugate linearity and the com-

patibility with multiplication is inherited from .⋆ to .†. Furthermore, Lemma 2.3.11 yields((
[p[a]]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p[a]]Q[a]

)
[a]∈V(I)\VR(I)

)††

=

((
[p[a]]

⋆⋆
P[a]·Q[a]

)
[a]∈VR(I)

,

(
[p

[a]
]⋆⋆Q

[a]

)
[a]∈V(I)\VR(I)

)

=

((
[p[a]]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p[a]]Q[a]

)
[a]∈V(I)\VR(I)

)
,

which demonstrates that .† is an involution.

Proposition 2.3.14. The mapping ψ in Proposition 2.3.5 constitutes a ∗-isomorphism

if the algebras are equipped with the involutions introduced in Lemma 2.3.12 and 2.3.13,

respectively.

Proof. Given p ∈ C[x1, . . . , xn] we have

ψ
(
[p#]J

)
=

((
[p#]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p#]Q[a]

)
[a]∈V(I)\VR(I)

)
=

((
[p]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p]Q[a]

)
[a]∈V(I)\VR(I)

)†

= ψ
(
[p]J

)†
.
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Since we already identified ψ as an algebra isomorphism, ψ constitutes a ∗-isomorphism.

2.4 Function Spaces

This section will be devoted to the construction of a space of functions for which the

functional calculus of the tuple of operators A can be defined.

We will continue to denote by I the ideal generated by all definitizing polynomials of A

and fix definitizing polynomials p1, . . . , pm ∈ R[x1, . . . , xn] of A such that I = ⟨p1, . . . , pm⟩
according to Proposition 1.6.9.

Definition 2.4.1. We assume I ⊊ C[x1, . . . , xn] and Assumption 2.3.1. We interpret the

product ∗-algebra
MA := Cσ(Θ[A])\V (I) × ×

[a]∈VR(I)
A[a] × ×

[a]∈V(I)\VR(I)
B[a]

as a ∗-algebra of functions φ defined on σ(Θ[A]) ∪ V (I) ⊆ Cn satisfying

• φ(z) ∈ C for z ∈ σ(Θ[A]) \ V (I),

• φ(z) ∈ A[z] for z ∈ V (I) such that [z] ∈ VR(I),

• φ(z) ∈ B[z] for z ∈ V (I) such that [z] ∈ V(I) \ VR(I),

• φ(z) = φ(w) for z,w ∈ V (I) such that [z] = [w].

We denote by .# the involution on MA defined by

• φ#(z) := φ(z) for z ∈ σ(Θ[A]) \ V (I),

• φ#(z) := φ(z)⋆ for z ∈ V (I) such that [z] ∈ VR(I),

• φ#(z) := φ(z)⋆ for z ∈ V (I) such that [z] ∈ V(I) \ VR(I).
The mapping .⋆ is defined in Lemma 2.3.11.

We can meaningfully extend Definition 2.4.1 to the case I = C[x1, . . . , xn]. As

V (C[x1, . . . , xn]) = ∅, it is natural to set V(C[x1, . . . , xn]) := ∅; see page 47. A straight-

forward way to define MA for I = C[x1, . . . , xn] would be to set it as

Cσ(Θ[A]) × ×
[a]∈∅

A[a] × ×
[a]∈∅

B[a] = Cσ(Θ[A]) × {∅} × {∅} ∼= Cσ(Θ[A]).

Definition 2.4.2. If I = C[x1, . . . , xn], we set MA := Cσ(Θ[A]), which constitutes a

∗-algebra with pointwise operations in C.

Until the end of the present section, we allow I = C[x1, . . . , xn]. While the majority

of the proofs in this section will cite results from Section 2.3, where I = C[x1, . . . , xn] was
forbidden, those parts of the proofs can be simply ignored in the case of I = C[x1, . . . , xn].
This arises from the fact that there are no “algebras corresponding to the variety” to be

considered in the degenerate case of I = C[x1, . . . , xn] due to V(C[x1, . . . , xn]) = ∅.
For I ⊊ C[x1, . . . , xn] we will continue to employ Assumption 2.3.1, so that the results

from Section 2.3 can be applied.
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Definition 2.4.3. By SA we denote the set of functions f : dom f → C such that

(i) σ(Θ[A]) ∪ V (I) ⊆ dom f ⊆ Cn.

(ii) dom f is open and invariant under the componentwise complex conjugation.

(iii) f is Borel measurable and bounded on σ(Θ[A]) \ V (I).

(iv) for a ∈ V (I), there exist pa ∈ C[x1, . . . , xn] and a neighbourhood Ua ⊆ Cn of a

such that f(z) = pa(z) for z ∈ Ua.

(v) for a, b ∈ V (I) such that [a] = [b], the polynomial pa − pb belongs to P[a] · Q[a] if

[a] ∈ VR(I) and to Q[a] otherwise.

We can consider such f as an element fA ∈ MA by setting

• fA(z) := f(z) for z ∈ σ(Θ[A]) \ V (I),

• fA(z) := [pz]P[z]·Q[z]
for z ∈ V (I) such that [z] ∈ VR(I),

• fA(z) := [pz]Q[z]
for z ∈ V (I) such that [z] ∈ V(I) \ VR(I).

Remark 2.4.4. σ(Θ[A]) being compact, every polynomial is bounded on σ(Θ[A])\V (I).
In fact, every polynomial p ∈ C[x1, . . . , xn] is an element ofSA since we can choose pa := p

for all a ∈ V (I).

Lemma 2.4.5. If for f, g ∈ SA we define the functions f + g, f · g with dom f + g =

dom f · g = dom f ∩ dom g by

• (f + g)(z) := f(z) + g(z) for all z ∈ dom f + g and

• (f · g)(z) := f(z) · g(z) for all z ∈ dom f · g,

then f + g, f · g ∈ SA.

Proof. As dom f, dom g ⊇ σ(Θ[A]) ∪ V (I) are invariant under complex conjugation, so

is dom f + g ⊇ σ(Θ[A]) ∪ V (I). Measurability and boundedness on σ(Θ[A]) \ V (I) is

inherited from f and g to f + g.

Given w ∈ V (I), let Uf , Ug ⊆ Cn be neighbourhoods of w and pf , pg ∈ C[x1, . . . , xn]
such that f |Uf

= pf |Uf
and g|Ug = pg|Ug . For Uf+g := Uf ∩Ug we have (f+g)|Uf+g

= (pf+

pg)|Uf+g
. Hence f + g satisfies Definition 2.4.3, (iv). The property (v) of Definition 2.4.3

follows from the fact that f and g satisfy (v). Hence, f + g ∈ SA. By swapping + with ·
in the proof above, we obtain f · g ∈ SA.

Remark 2.4.6. The set SA endowed with addition from Lemma 2.4.5 and pointwise

scalar multiplication does not form a vector space. Indeed, the neutral element with

respect to addition is the 0 function on Cn, but f + (−1) · f = 0|dom f , where dom f ̸= Cn

in general.

We will factorize SA by the equivalence relation that identifies two functions defining

the same germ around σ(Θ[A]) ∪ V (I) and obtain a vector space.
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Definition 2.4.7. We define a relation ≍ on SA by writing f ≍ g if and only if there

exists an open neighbourhood U of σ(Θ[A]) ∪ V (I) contained in dom f ∩ dom g with

f |U = g|U . We set SA := SA/≍ and denote by [f ]≍ the equivalence class of f ∈ SA.

Lemma 2.4.8. SA constitutes a commutative unital ∗-algebra with operations induced by

the following SA-operations:

• addition and multiplication from Lemma 2.4.5,

• pointwise scalar multiplication,

• involution f#(z) := f(z).

Proof. Let f, g, h ∈ SA be such that f ≍ g, where U is the open neighbourhood of

σ(Θ[A]) ∪ V (I) with f |U = g|U . Due to (f + h)(z) = (g + h)(z) for z ∈ U ∩ dom h,

which is also an open neighbourhood of σ(Θ[A]) ∪ V (I), we conclude (f + h) ≍ (g + h).

Thus [f ]≍ + [h]≍ := [f + h]≍ is well-defined. As the addition in SA is commutative,

so is the induced addition. Analogously, the induced multiplication is well-defined and

commutative. It is clear that for λ ∈ C the scalar multiplication λ · [f ]≍ := [λf ]≍ is

well-defined. Because of

[f ]≍ + (−1) · [f ]≍ = [0|dom f ]≍ = [0|Cn ]≍,

the operations on SA guarantee the existence of an additively inverse element. It is

straightforward to check the validity of the rest of the vector space axioms. Hence, SA

constitutes a vector space. From the distributivity of multiplication with respect to addi-

tion in C, we infer the bilinearity of multiplication in SA. Since σ(Θ[A])∪V (I) is invariant
under complex conjugation, U is also an open neighbourhood of σ(Θ[A]) ∪ V (I). Due to

f |U = g|U , we have f#|U = g#|U , implying f# ≍ g#. We conclude that [f ]#≍ := [f#]≍
is well-defined. Simple calculations show that .# in SA is a conjugate linear involution.

Due to

([f ]≍ · [h]≍)# = [(fh)#]≍ = [f#h#]≍ = [f ]#≍ · [h]#≍ ,
the set SA constitutes a ∗-algebra. [✶Cn ]≍ is the unity.

Lemma 2.4.9. Given f, g ∈ SA, f ≍ g implies fA = gA.

Proof. Since f |U = g|U for some neighbourhood U of σ(Θ[A]) ∪ V (I), we have fA(z) =

f(z) = g(z) = gA(z) for z ∈ σ(Θ[A]) \ V (I).
For z ∈ V (I) there exist a sufficiently small neighbourhood Uz ⊆ U of z and poly-

nomials p, q such that p|Uz = f |Uz = g|Uz = q|Uz . Thus, fA(z) = [p]X = gA(z), where

X = A[z] if [z] ∈ VR(I) and X = B[z] otherwise.

Proposition 2.4.10. [f ]≍ ,→ fA constitutes a ∗-homomorphism from SA to MA.

Proof. The mapping [f ]≍ ,→ fA is well-defined on SA due to Lemma 2.4.9. The compat-

ibility of the mapping .A : SA → MA with addition, multiplication, and scalar multipli-

cation obviously holds true.
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For f ∈ SA we are going to verify (f#)A = (fA)#. By definition, for z ∈ σ(Θ[A]) \
V (I) ⊆ Rn we have

(f#)A(z) = f#(z) = f(z) = f(z) = fA(z) = (fA)#(z).

Given z ∈ V (I) let pz ∈ C[x1, . . . , xn] and Uz be a sufficiently small neighbourhood of

z such that f |Uz = pz|Uz . Since dom f is invariant under complex conjugation, we have

f#|Uz
= p#z |Uz

. If [z] ̸∈ VR(I), then

(f#)A(z) = [p#z ]B(z) = [pz]
⋆
B(z) = fA(z)⋆ = (fA)#(z).

Since V(I) \ VR(I) is invariant under the conjugation, we obtain (f#)A(z) = (fA)#(z);

see Remark 2.3.10. In case [z] ∈ VR(I), we obtain

(f#)A(z) = [p#z ]A[z]
= [pz]

⋆
A[z]

= fA(z)⋆ = (fA)#(z).

Notation 2.4.11. For functions f, g : D (⊆ Rn) → C such that ran g ⊆ (0,+∞) and an

accumulation point w ∈ Rn of D, we write

f(z) = O(g(z)) as z → w if lim sup
z→w

|f(z)|
g(z)

< +∞.

Proposition 2.4.12. If a ∈ V (I) ∩ σ(Θ[A]) is an accumulation point of σ(Θ[A]) \ V (I)
and h ∈ Q[a], then we have

h(z) = O
(|||∑m

j=1 pj(z)
|||) as σ(Θ[A]) \ V (I) ∋ z → a.

Proof. Since Q[b], [b] ∈ V(I), stem from a minimal primary decomposition of I with

pairwise disjoint varieties, every primary component Q[b], [b] ̸= [a], contains a polynomial

s[b] that does not vanish at a. We set

g := h ·
∏

[b]∈V(I)
[a] ̸=[b]

s[b] ∈ I

and choose u1, . . . , um ∈ C[x1, . . . , xn] such that g =
∑m

j=1 ujpj . Because of

lim sup
z→a

|||∑m
j=1 uj(z)pj(z)

|||
maxj∈[1,m]Z |pj(z)|

≤ lim sup
z→a

maxj∈[1,m]Z |pj(z)|
∑m

j=1 |uj(z)|
maxj∈[1,m]Z |pj(z)|

=

m∑
j=1

|uj(a)| < +∞

we have g(z) = O(maxj∈[1,m]Z |pj(z)|) as z → a. From s[b](a) ̸= 0, [b] ∈ V(I), [a] ̸= [b],

we infer h(z) = O(maxj∈[1,m]Z |pj(z)|) as z → a, which by Lemma 2.1.11 implies h(z) =

O(|∑m
j=1 pj(z)|) as z → a.

Remark 2.4.13. Let w ∈ σ(Θ[A]) ∩ V (I) be an accumulation point of σ(Θ[A]) \ V (I).
First note that for φ ∈ MA, φ(w) = [r]P[w]·Q[w]

= r + (P[w] · Q[w]) for some r ∈
C[x1, . . . , xn]. Hence φ(w) can be interpreted as an affine subspace of C[x1, . . . , xn]. Be-

cause the difference p− q of p, q ∈ φ(w) belongs to P[w] · Q[w] ⊆ Q[w], Proposition 2.4.12

yields p(z)− q(z) = O(|∑m
j=1 pj(z)|) as z → w. Therefore, the following statements are

equivalent:
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(i) ∀p ∈ φ(w) : φ(z)− p(z) = O(|∑m
j=1 pj(z)|) as z → w,

(ii) ∃p ∈ φ(w) : φ(z)− p(z) = O(|∑m
j=1 pj(z)|) as z → w.

Definition 2.4.14. By FA we denote the set of functions φ ∈ MA such that

(i) φ|σ(Θ[A])\V (I) is Borel measurable and bounded.

(ii) for any accumulation point w ∈ σ(Θ[A]) ∩ V (I) of σ(Θ[A]) \ V (I) there exists a

polynomial p ∈ φ(w) satisfying

φ(z)− p(z) = O
(|||∑m

j=1 pj(z)
|||) as σ(Θ[A]) \ V (I) ∋ z → w. (2.19)

Remark 2.4.15. In case I = C[x1, . . . , xn], (ii) of Definition 2.4.14 is redundant and,

hence, FA = B(σ(Θ[A])); see Definition 1.7.1.

Proposition 2.4.16. For f ∈ SA the function fA belongs to FA.

Proof. Measurability and boundedness of fA on σ(Θ[A]) \ V (I) is guaranteed by Defini-

tion 2.4.3. If w ∈ σ(Θ[A]) ∩ V (I) is an accumulation point of σ(Θ[A]) \ V (I), then

there exists a neighbourhood U of w and a polynomial p such that f |U = p|U and

fA(w) = [p]P[w]·Q[w]
. For z ∈ U ∩ (σ(Θ[A]) \ V (I)) we have

fA(z)− p(z) = 0 = O
(|||∑m

j=1 pj(z)
|||) as z → w.

In Chapter 3, the joint functional calculus will be defined for functions belonging to

FA. Due to Proposition 2.4.16 every polynomial p ∈ C[x1, . . . , xn] can be interpreted as

an element pA ∈ FA. This is important as we want to test the meaningfulness of our

joint functional calculus by checking if “pA(A)” matches the already well-defined concept

p(A). As a functional calculus shall be a ∗-homomorphism, we will first make sure that

FA constitutes a ∗-algebra.

Lemma 2.4.17. FA constitutes a unital sub ∗-algebra of MA.

Proof. It is straightforward to check that FA is a subspace. If φ1, φ2 ∈ FA, then their

product is clearly bounded and measurable on σ(Θ[A]) \ V (I). Given an accumulation

point w ∈ σ(Θ[A]) ∩ V (I) of σ(Θ[A]) \ V (I), p1 ∈ φ1(w), and p2 ∈ φ2(w), we have

p1p2 ∈ φ1(w)φ2(w) = (φ1φ2)(w). As φ1, φ2 ∈ FA and σ(Θ[A]) is compact, we obtain

lim sup
z→w

|(φ1φ2)(z)− (p1p2)(z)||||∑m
j=1 pj(z)

||| = lim sup
z→w

|φ1(z)||φ2(z)− p2(z)|+ |p2(z)||φ1(z)− p1(z)||||∑m
j=1 pj(z)

|||
≤ lim sup

z→w
|φ1(z)| · lim sup

z→w

|φ2(z)− p2(z)||||∑m
j=1 pj(z)

|||
+ lim sup

z→w
|p2(z)| · lim sup

z→w

|φ1(z)− p1(z)||||∑m
j=1 pj(z)

||| < +∞.

Hence, FA is closed under multiplication and therefore constitutes a subalgebra of MA.
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Given φ ∈ FA, also φ# is bounded and measurable on σ(Θ[A])\V (I). For an accumu-

lation point w ∈ σ(Θ[A])∩ V (I) of σ(Θ[A]) \ V (I) we have w ∈ Rn and, in consequence,

[w] ∈ VR(I). For p ∈ φ(w) we have φ#(w) = φ(w)⋆ = [p]⋆P[w]·Q[w]
= [p#]P[w]·Q[w]

showing

p# ∈ φ#(w); see Definition 2.4.1.

|φ#(z)− p#(z)| = |φ(z)− p(z)| = |φ(z)− p(z)|, z ∈ σ(Θ[A]) \ V (I),
yields φ#(z) − p#(z) = O(|∑m

j=1 pj(z)|) as z → w. Therefore, FA is closed under .#.

Finally, for the constant one-function ✶, ✶A belongs to FA due to Proposition 2.4.16 and

constitutes the unity.

Lemma 2.4.18. Let φ ∈ FA and w ∈ V (I). If φ(w) is invertible in A[w], then p(w) ̸= 0

for all p ∈ φ(w).

Proof. For p ∈ φ(w) and q ∈ φ(w)−1, we have 1 = pq + r with some r ∈ P[w] · Q[w].

r(w) = 0 yields p(w)q(w) = 1.

Lemma 2.4.19. Let w ∈ σ(Θ[A]) ∩ V (I) be an accumulation point of σ(Θ[A]) \ V (I).
If φ ∈ FA is such that

(i) φ(w) is invertible in A[w] and

(ii) there exists a sufficiently small neighbourhood U of w in σ(Θ[A]) such that 0 is not

contained in the closure of φ(U \ V (I)) ⊆ C,

then
1

φ(z)
− p(z) = O

(|||∑m
j=1 pj(z)

|||) as z → w, p ∈ φ(w)−1.

Proof. For p ∈ φ(w)−1, q ∈ φ(w), and z ∈ U \ V (I), we have

1

φ(z)
− p(z) =

(
1

φ(z)
− 1

q(z)

)
+

(
1

q(z)
− p(z)

)
= −

(
φ(z)− q(z)

φ(z) · q(z)
)

, ,, ,
=:α(z)

−
(
q(z) · p(z)− 1

q(z)

)
, ,, ,

=:β(z)

.

As φ(w) is invertible, Lemma 2.4.18 yields q(w) ̸= 0. Since 0 is not an accumulation point

of φ(U \ V (I)), we have |φ(z) · q(z)| > ε for all z ∈ W \ V (I) for some ε > 0, where W is

a sufficiently small neighbourhood of w. We conclude α(z) = O(φ(z) − q(z)) as z → w.

From φ(z)− q(z) = O(|∑m
j=1 pj(z)|) as z → w, we conclude α(z) = O(|∑m

j=1 pj(z)|) as
z → w.

Because of φ(w) ·φ(w)−1 = [1]P[w]·Q[w]
, the numerator of β(z) belongs to P[w] ·Q[w] ⊆

Q[w]. As q(w) ̸= 0, Proposition 2.4.12 yields β(z) = O(|∑m
j=1 pj(z)|) as z → w.

Clearly, a tuple of functions (φj)
n
j=1 ∈ Fn

A is invertible in the sense of Definition 1.3.20

if there exists j0 ∈ [1, n]Z such that φj0 is invertible in FA. In the following lemma, we

will give a sufficient condition for invertibility of members in Fn
A that covers more than

the trivial case. Specifically, the invertibility of the tuple can be obtained if there exists a

measurable partition (Pi)i∈I of the domain σ(Θ[A])∪V (I) such that for every i ∈ I there

exists some φji , ji ∈ [1, n]Z, that is pointwise invertible on Pi. In a sense, if the tuple is

locally invertible everywhere, it is invertible in Fn
A.
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Lemma 2.4.20. Let φ = (φj)
n
j=1 ∈ Fn

A be such that there exist an arbitrary set I, a

partition (Pi)i∈I of σ(Θ[A]) ∪ V (I), and (ji)i∈I ∈ ([1, n]Z)
I such that

(i) Pi is measurable for all i ∈ I.

(ii) w ∈ Pi implies V (Q[w]) ⊆ Pi for every w ∈ V (I).

(iii) 0 is not contained in the closure of φji(Pi \ V (I)) ⊆ C for all i ∈ I.

(iv) φji(z) is invertible in A[z] or B[z], accordingly, for z ∈ V (I) ∩ Pi.

(v) for every accumulation point w ∈ σ(Θ[A])∩V (I) of σ(Θ[A])\V (I), w ∈ Pi implies

that w is an interior point of Pi ∩ σ(Θ[A]).

Then the tuple φ is invertible in Fn
A in the sense of Definition 1.3.20.

Proof. For j ∈ [1, n]Z we define

βj(z) :=

{
φj(z)

−1, ∃i ∈ I : z ∈ Pi and ji = j,

0, else,

where 0 is in A[z],B[z], or C, respectively. (ii) implies βj ∈ MA. We will verify βj ∈ FA.

First note that

β−1
j ({0C}) = σ(Θ[A]) \ V (I) ∩

U
i∈I
ji ̸=j

Pi (2.20)

is measurable. We have βj(z) = 1
φj(z)

for z ∈ (σ(Θ[A]) \ V (I)) \ β−1
j ({0C}), which is

measurable. Hence βj is measurable on σ(Θ[A]) \ V (I) and bounded on σ(Θ[A]) \ V (I)
because of (iii).

Letw ∈ σ(Θ[A])∩V (I) be an accumulation point of σ(Θ[A])\V (I). Ifw ∈ Pi for some

i such that ji ̸= j, then because of (v) we have βj(z) = 0 for all z in a sufficiently small

neighbourhood of w. If w ∈ Pi for some i such that ji = j, then we apply Lemma 2.4.19

to w, φ = φj , and U being the neighbourhood of w that is contained in Pi, which exists

due to (v). In any case, (2.19) is satisfied.

We denote by ✶B ∈ MA for B ⊆ σ(Θ[A]) ∪ V (I) the function such that ✶B(z) is

the unity in C, A[z], or B[z], respectively, if z ∈ B, and 0 otherwise. Multiplying φ and

β := (βj)
n
j=1 results in

φ · β =
n∑

j=1

φj · βj =
∑
i∈I

✶Pi = ✶σ(Θ[A])∪V (I).

Since ✶σ(Θ[A])∪V (I) is the unity in FA, φ is invertible in Fn
A.

Lemma 2.4.21. If φ ∈ FA is such that φ(z) is invertible in A[z] and B[z], respectively,

for all z ∈ V (I) and 0 ∈ C is not an accumulation point of φ(σ(Θ[A]) \ V (I)), then φ is

invertible in FA, where φ−1(z) := φ(z)−1 constitutes the inverse element.

Proof. Viewing φ as a tuple with one element, it satisfies the requirements in Lemma 2.4.20

with ji = 1 for all i ∈ I. Since the invertibility as in Definition 1.3.20 agrees with the

usual invertibility for F1
A = FA, φ is invertible. Therefore, the function φ−1 is an element

of FA.
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Chapter 3

Joint Functional Calculus

Having established a suitable framework for the functional calculus in the previous chapter,

we now proceed to define it. The joint functional calculus defined in the present thesis is a

proper generalization of the joint functional calculus in the Hilbert space setting. In fact,

as we will see, it coincides with the Hilbert space joint functional calculus when (K, [., .])

is a Hilbert space.

3.1 Assembling the Joint Functional Calculus

We will continue to work with the notations and assumptions from Section 2.4. In partic-

ular, I denotes the ideal generated by all definitizing polynomials of A, and p1, . . . , pm ∈
R[x1, . . . , xn] are definitizing polynomials of A such that I = ⟨p1, . . . , pm⟩ according to

Proposition 1.6.9. Furthermore, I = C[x1, . . . , xn] will be allowed and if I ⊊ C[x1, . . . , xn],
I shall satisfy Assumption 2.3.1.

Definition 3.1.1. Given φ ∈ FA a pair (r, f) ∈ C[x1, . . . , xn] × B(σ(Θ[A])) is called a

decomposition of φ if it satisfies

(i) φ(z) = rA(z) for z ∈ V (I),
(ii) φ(z) = r(z) + f(z)

∑m
j=1 pj(z) for all z ∈ σ(Θ[A]) \ V (I),

(iii) f(z) = 0 for z ∈ σ(Θ[A]) ∩ V (I).
Moreover, we define Φ ⊆ FA × C[x1, . . . , xn]×B(σ(Θ[A])) as

Φ := {(φ; (r, f)) : (r, f) is decomposition of φ} .
Lemma 3.1.2. The set Φ is a linear relation between FA and C[x1, . . . , xn]×B(σ(Θ[A])).

Proof. Let φ1, φ2 ∈ FA admit decompositions (r, f), (s, g), respectively, and λ ∈ C. f+λg

clearly vanishes on σ(Θ[A])∩V (I). Moreover, (r+λs)A(z) = rA(z)+λsA(z) = φ1(z)+

λφ2(z) for z ∈ V (I). Lastly,

φ1(z) + λφ2(z) = r(z) + f(z)

m∑
j=1

pj(z) + λs(z) + λg(z)

m∑
j=1

pj(z)

= (r + λs)(z) + (f + λg)(z)

m∑
j=1

pj(z), z ∈ σ(Θ[A]) \ V (I),
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identifies (r + λs, f + λg) as a decomposition of φ1 + λφ2.

Proposition 3.1.3. Every function in FA admits a decomposition. In particular, we have

domΦ = FA.

Proof. By definition, for φ ∈ FA we have

φ|V(I) := (φ(z))[z]∈V(I) ∈ ×
[a]∈VR(I)

A[a] × ×
[a]∈V(I)\VR(I)

B[a].

According to Proposition 2.3.5

ψ :

������
C[x1, . . . , xn]/J → ×

[a]∈VR(I)
A[a] × ×

[a]∈V(I)\VR(I)
B[a],

[p]/J ,→
((

[p]P[a]·Q[a]

)
[a]∈VR(I)

,
(
[p]Q[a]

)
[a]∈V(I)\VR(I)

)
,

constitutes an isomorphism. Hence r ∈ ψ−1(φ|V(I)) is a polynomial satisfying

rA(z) =

{
[r]P[z]·Q[z]

, [z] ∈ VR(I)
[r]Q[z]

, [z] ̸∈ VR(I)

}
= φ(z), z ∈ V (I).

We define f : σ(Θ[A]) → C by

f(z) :=
φ(z)− r(z)∑m

j=1 pj(z)
, z ∈ σ(Θ[A]) \ V (I),

and f(z) := 0 for z ∈ σ(Θ[A])∩V (I). By Corollary 2.1.12 the zeros of
∑m

j=1 pj in σ(Θ[A])

are indeed contained in σ(Θ[A]) ∩ V (I). Hence f is well-defined and satisfies

φ(z) = r(z) + f(z)
m∑
j=1

pj(z), z ∈ σ(Θ[A]) \ V (I).

It remains to show that f is measurable and bounded. Note that V (I) is measurable as

it is a finite intersection of the preimage of {0} under polynomials, which are measurable

functions. Thus the measurability of f is a consequence of the measurability of φ on

σ(Θ[A]) \ V (I).
As φ − r is bounded on σ(Θ[A]) \ V (I), it suffices to check the boundedness of f

in the neighbourhood of every w ∈ σ(Θ[A]) ∩ V (I) which is an accumulation point of

σ(Θ[A]) \ V (I). Since r ∈ φ(w), we have φ(z) − r(z) = O(|∑m
j=1 pj(z)|) as z → w; see

Remark 2.4.13. Thus,

f(z) =
φ(z)− r(z)∑m

j=1 pj(z)
= O(1) as z → w.

For the following recall that C[x1, . . . , xn] ×B(σ(Θ[A])) carries a multiplication and

an involution turning this space into a ∗-algebra according to Proposition 2.2.3.

Lemma 3.1.4. Given (φ1; (r, f)), (φ2; (s, g)) ∈ Φ we have (φ1φ2; (r, f) · (s, g)) ∈ Φ.

59



3.1. ASSEMBLING THE JOINT FUNCTIONAL CALCULUS

Proof. According to Proposition 2.2.3, (r, f) · (s, g) = (rs, rg + sf + fg
∑m

j=1 pj). We

have (rs)A(z) = rA(z)sA(z) = φ1(z)φ2(z) for z ∈ V (I) due to Proposition 2.4.10. For

z ∈ σ(Θ[A]) \ V (I) we calculate

φ1(z)φ2(z) =

r(z) + f(z)
m∑
j=1

pj(z)

s(z) + g(z)
m∑
j=1

pj(z)


= r(z)s(z) +

r(z)g(z) + f(z)s(z) + f(z)g(z)
m∑
j=1

pj(z)

 m∑
j=1

pj(z).

Finally,

r(z) g(z),,,,
=0

+ f(z),,,,
=0

s(z) + f(z)g(z), ,, ,
=0

m∑
j=1

pj(z) = 0, z ∈ σ(Θ[A]) ∩ V (I).

Lemma 3.1.5. (φ; (r, f)) ∈ Φ implies (φ#; (r, f)∗) ∈ Φ.

Proof. Note that (r, f)∗ = (r#, f) and (r#)A = (rA)#; see Proposition 2.4.10. Thus,

(r#)A(z) = (rA)#(z) = φ#(z) for z ∈ V (I). Given z ∈ σ(Θ[A]) \ V (I) ⊆ Rn, the fact

p#j = pj , j ∈ [1,m]Z, yields

φ#(z) = r(z) + f(z)

m∑
j=1

pj(z) = r#(z) + f(z)

m∑
j=1

pj(z).

Because f clearly vanishes on σ(Θ[A]) ∩ V (I), we have (φ#; (r, f)∗) ∈ Φ.

Lemma 3.1.6. mulΦ is contained in N .

Proof. If (r, f) is a decomposition of the zero function, then (i) and (ii) from Defini-

tion 2.2.2 clearly hold true. As rA(z) = 0A(z) for all z ∈ V (I), Proposition 2.3.5 yields

r ∈ J and the existence of u1, . . . , um ∈ C[x1, . . . , xn] that vanish on σ(Θ[A]) ∩ V (I)
satisfying r =

∑m
j=1 ujpj . Consequently, (r, f) ∈ N .

Theorem 3.1.7. If Ψ is the ∗-homomorphism introduced in Definition 2.2.2, then the

relational product ΨΦ constitutes a ∗-homomorphism from FA to A′′.

Proof. mulΦ ⊆ N ⊆ kerΨ implies mulΨΦ = {0}. Since domΦ = FA, ΨΦ is a linear oper-

ator from FA toA′′. Lemma 3.1.4, Lemma 3.1.5, and the fact that Ψ is a ∗-homomorphism

implies that ΨΦ is a ∗-homomorphism.

Definition 3.1.8. For φ ∈ FA we set φ(A) := ΨΦ(φ) and refer to the ∗-homomorphism

φ ,→ φ(A)

as the joint functional calculus of A.
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Proposition 3.1.9. Given p ∈ C[x1, . . . , xn] we have

p(A) = pA(A).

In particular, πjA(A) = Aj for the polynomial πj(x) = xj.

Proof. Since (p, 0) is a decomposition of pA, we obtain pA(A) = ΨΦ(pA) = Ψ(p, 0) =

p(A).

Remark 3.1.10. We want to summarize the requirements we have posed onA throughout

the present thesis. The tuple A ∈ Lb(K)n needs to satisfy the following statements so that

Definition 3.1.8 is possible.

(i) A is definitizable; see Definition 1.6.8. In particular, the members of the tuple A

are self-adjoint and commute pairwise.

(ii) The ideal I ⊆ C[x1, . . . , xn] generated by all definitizing polynomials of A satisfies

either of the following.

(a) I = C[x1, . . . , xn].

(b) I ⊊ C[x1, . . . , xn] and admits a minimal primary decomposition such that the

varieties of the primary components are pairwise disjoint; see Assumption 2.3.1.

3.2 Spectrum

In Proposition 3.2.2, we will see that σ(A) = σ(Θ[A]) ∪ (V (I) ∩ σ(A)). While the

functions in FA are defined on σ(Θ[A]) ∪ V (I), it will be shown that the functional

calculus only depends on the function values on σ(A), as one expects from a functional

calculus. Moreover, we will provide a weak spectral mapping theorem for continuous

functions in SA.

We will be working with the same assumptions as in Section 3.1. In particular, I
shall denote the ideal generated by all definitizing polynomials of A, which in case I ⊊
C[x1, . . . , xn] shall satisfy Assumption 2.3.1. Furthermore, we fix definitizing polynomials

p1, . . . , pm ∈ R[x1, . . . , xn] of A with I = ⟨p1, . . . , pm⟩ according to Proposition 1.6.9.

Lemma 3.2.1. Let [w] ∈ V(I), X ∈ {A[w],B[w]}, and N ∈ N. If the tuple (sj)
N
j=1 ∈

(C[x1, . . . , xn])N satisfies

V (⟨s1, . . . , sN ⟩) ∩ V (Q[w]) = ∅,
then ([sj ]X)Nj=1 is invertible in XN in the sense of Definition 1.3.20.

Proof. Let X = A[w]. Since V (P[w] · Q[w]) = V (Q[w]), we have V (⟨s1, . . . , sN ⟩)∩ V (P[w] ·
Q[w]) = ∅; see Lemma 2.3.4. By Lemma 1.1.20, ⟨s1, . . . , sN ⟩ and P[w] · Q[w] are comaxi-

mal. Let h1, . . . , hk generate P[w] · Q[w]. As the given ideals are comaximal, there exist

u1, . . . , uk, uk+1, . . . , uk+N ∈ C[x1, . . . , xn] such that

1 =
k∑

i=1

uihi, ,, ,
∈P[w]·Q[w]

+

N∑
j=1

uk+jsj .
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Thus ([sj ]A[w]
)Nj=1 is invertible in AN

[w], where ([uk+j ]A[w]
)Nj=1 is its inverse. As P[w] ·Q[w] ⊆

Q[w], the invertibility in A[w] implies the invertibility in B[w].

Proposition 3.2.2. We have

σ(A) = σ(Θ[A]) ∪ (V (I) ∩ σ(A)).

In particular, σ(A)\V (I) = σ(Θ[A])\V (I) does not depend on the choice of the generators

p1, . . . , pm of the ideal I.
Proof. Since Θ is a non-trivial ∗-homomorphism, σ(Θ[A]) ⊆ σ(A). Hence, it suffices to

verify σ(A) ⊆ σ(Θ[A]) ∪ V (I). Let λ ∈ Cn \ (σ(Θ[A]) ∪ V (I)) and set sj(x) := xj − λj ,

j ∈ [1, n]Z, so that V (⟨s1, . . . , sn⟩) = {λ}. We will show that (sjA)nj=1 ∈ Fn
A is invertible

by constructing (βj)
n
j=1 ∈ Fn

A such that
∑n

j=1 sjAβj = 1A.

Given [w] ∈ V(I) we know from Lemma 3.2.1 that there exist (b
[w]
j )nj=1 ∈ C[x1, . . . , xn]n

and h[w] ∈ P[w] · Q[w] such that

n∑
j=1

sjb
[w]
j = 1 + h[w]. (3.1)

For z ∈ V (Q[w]) we set βj(z) := [b
[w]
j ]X , j ∈ [1, n]Z, where X = A[w] if [w] ∈ VR(I) and

X = B[w] otherwise. We obtain

n∑
j=1

βj(z)sjA(z) =

n∑
j=1

[b
[w]
j ]X [sj ]X = [1]X .

Since h[w] vanishes on V (Q[w]), there exists ϵ[w] > 0 such that

|h[w](z)| < 1

2
, z ∈ σ(Θ[A]) ∩

(
V (Q[w]) +Bϵ[w](0)

)
,

where Bϵ[w](0) denotes the open ball centered at 0 with radius ϵ[w].

Moreover, since the sets σ(Θ[A]) ∩ V (Q[w]), [w] ∈ V(I), are compact and pairwise

disjoint, there exists ϵ̃ > 0 such that σ(Θ[A]) ∩ (V (Q[w]) + Bϵ̃(0)), [w] ∈ V(I), are

pairwise disjoint. We set ϵ := min
{
ϵ̃,min[w]∈V(I) ϵ[w]

}
and

U[w] :=

(
σ(Θ[A]) \ V (I)

)
∩
(
V (Q[w]) +Bϵ(0)

)
, [w] ∈ V(I), (3.2)

which are pairwise disjoint sets. For z ∈ U[w], [w] ∈ V(I), we define

βj(z) :=
b
[w]
j (z)

1 + h[w](z)
, j ∈ [1, n]Z,

and obtain
n∑

j=1

βj(z)sjA(z) =
1

1 + h[w](z)

n∑
j=1

b
[w]
j (z)sj(z)

(3.1)
= 1.

We are going to define βj , j ∈ [1, n]Z, on

C := σ(Θ[A]) \
V (I) ∪

U
[w]∈V(I)

U[w]

 = σ(Θ[A]) \ (V (I) +Bϵ(0)).
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Due to λ ̸∈ σ(Θ[A]), given z ∈ C, there exist δz > 0 and jz ∈ [1, n]Z such that sjz does

not vanish on cl(Bδz(z)). As C is compact, there exist z1, . . . , zN such that Bδzi
(zi),

i ∈ [1, N ]Z, is a finite open covering of C. We construct a partition of C inductively by

Pi :=

(
Bδzi

(zi) ∩ C

)
\

i−1U
k=1

Pk, i ∈ [1, N ]Z. (3.3)

Moreover, we set ji := jzi ∈ [1, n]Z, which indicates that sji does not vanish on Pi. For

z ∈ Pi, i ∈ [1, N ]Z, we define βj , j ∈ [1, n]Z, by

βj(z) :=

{
1

sj(z)
, j = ji

0, otherwise,

and obtain
n∑

j=1

βj(z)sjA(z) =
1

sji(z)
sji(z) = 1, z ∈ Pi.

Thus we have constructed βj ∈ MA, j ∈ [1, n]Z, such that

n∑
j=1

βj(z)sjA(z) = 1A.

At last, we verify βj ∈ FA, j ∈ [1, n]Z; see Definition 2.4.14. The measurability on

σ(Θ[A]) \V (I) is clear, as βj is a rational function on each of the measurable sets defined

in (3.2) and (3.3). Due to the choice of ϵ, |1+ h[w]| is bounded from below by 1/2 on U[w]

for any [w] ∈ V(I) and thus βj is bounded on U[w], [w] ∈ V(I). The boundedness of βj

on Pi is ensured by the fact that sji does not vanish on cl(Bδzi
(z)), i ∈ [1, N ]Z.

Let [w] ∈ V(I) be such that there exists a ∈ V (Q[w]) which is an accumulation point

of σ(Θ[A]) \ V (I). For z ∈ U[w] and j ∈ [1, n]Z we have

βj(z)− b
[w]
j (z) =

b
[w]
j (z)

1 + h[w](z)
− b

[w]
j (z) =

−h[w](z)b
[w]
j (z)

1 + h[w](z)
.

Since h[w]b
[w]
j ∈ Q[w] and limz→a 1 + h[w](z) = 1, Proposition 2.4.12 yields βj(z) −

b
[w]
j (z) = O

(|||∑m
j=1 pj(z)

|||) as z → a. Hence βj ∈ FA, j ∈ [1, n]Z, and we conclude that

(sjA)nj=1 is invertible in Fn
A. As a consequence, we obtain the invertibility of(
sjA(A)

)n
j=1

= (Aj − λj)
n
j=1 = A− λ

implying λ ∈ ρ(A).

Corollary 3.2.3. The function space FA does not depend on the choice of the generators

p1, . . . , pm of the ideal I.
Proof. According to Proposition 3.2.2 the setMA does not depend on the choice of genera-

tors. In fact, it only depends on the ideal I and its unique minimal primary decomposition.

Assume that also q1, . . . , ql generate I. For any a ∈ V (I) we have q1, . . . , ql ∈ I ⊆ Q(a).

Thus by Proposition 2.4.12∑l
j=1 qj(z) = O

(|||∑m
j=1 pj(z)

|||) as z → a.

By swapping the roles of q1, . . . , ql and p1, . . . , pm, we see that (2.19) is indeed a statement

independent of the choice of the generators of I.
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Definition 3.2.4. Let [w] ∈ V(I) be such that V (Q[w]) ∩ σ(Θ[A]) = ∅. We define

ξδ[w] ∈ MA by

ξδ[w](z) :=

{
ξ, z ∈ V (Q[w]),

0, otherwise,

where ξ belong to A[w] if [w] ∈ VR(I) and to B[w] otherwise.

Lemma 3.2.5. Let [w] ∈ V(I) be such that V (Q[w]) ∩ σ(Θ[A]) = ∅. If we denote by e

the unity in A[w] and B[w], then

(i) eδ[w] ∈ FA.

(ii) eδ[w](A) constitutes a projection.

(iii) A|ran eδ[w](A) := (Aj |ran eδ[w](A))
n
j=1 ∈ Lb(ran eδ[w](A))n.

(iv) σ(A|ran eδ[w](A)) ⊆ V (Q[w]).

Proof. (i): It is straightforward to check eδ[w] ∈ FA; see Definition 2.4.14.

(ii): From (eδ[w])
2 = eδ[w], we infer that eδ[w](A) constitutes a projection.

(iii): Given j ∈ [1, n]Z we have

Aj |ran eδ[w](A) = (xj)A(A) eδ[w](A)|ran eδ[w](A) = eδ[w](A) (xj)A(A)|ran eδ[w](A).

Thus, ranAj |ran eδ[w](A) ⊆ ran eδ[w](A).

(iv): We assume [w] ̸∈ VR(I). For [w] ∈ VR(I) simply replace every instance of B[w]

in the remaining part of the proof with A[w].

For λ ∈ Cn \V (Q[w]) we set sj(x) := xj −λj , j ∈ [1, n]Z. Because of V (⟨s1, . . . , sn⟩) =
{λ}, Lemma 3.2.1 yields the existence of (bj)

n
j=1 ∈ B[w] such that

∑n
j=1[sj ]B[w]

bj = e

implying

n∑
j=1

sjA · bjδ[w] =

 n∑
j=1

[sj ]B[w]
bj

 δ[w] = eδ[w].

We conclude that the tuple(
Aj |ran eδ[w](A) − λj

)n

j=1
=

(
sjA(A)|ran eδ[w](A)

)n

j=1
∈ Lb(ran eδ[w](A))n

is invertible, which means λ ∈ ρ(A|ran eδ[w](A)).

Proposition 3.2.6. If φ ∈ FA vanishes on σ(A), then φ(A) = 0.

Proof. Let w ∈ V (I) be such that φ(w) ̸= 0. φ being constant on V (Q[w]), φ|σ(A) ≡ 0

implies

V (Q[w]) ∩
(
σ(Θ[A]) ∪ (V (I) ∩ σ(A))

), ,, ,
=σ(A)

= ∅. (3.4)

Hence, V (Q[w])∩σ(Θ[A]) = ∅ and, in turn, eδ[w](A) constitutes a projection; see Lemma 3.2.5.
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According to (3.4), λ ∈ V (Q[w]) ⊆ V (I) implies λ ∈ ρ(A). Hence A−λ and, in turn,

A|ran eδ[w](A)−λ is invertible. From Lemma 3.2.5 we conclude σ(A|ran eδ[w](A)) = ∅, which
is only possible if ran eδ[w](A) = {0}. Hence, eδ[w](A) = 0 and

φ(A) =

!!! ∑
[a]∈V(I)

V (Q[a])∩σ(A)=∅

φ · eδ[a]

((( (A) =
∑

[a]∈V(I)
V (Q[a])∩σ(A)=∅

φ(A) · eδ[a](A), ,, ,
=0

= 0.

The next result was motivated by the classical spectral mapping theorem, which states

σ(p(a)) = p(σ(a)), p ∈ C[z],

for a unital algebra A and a ∈ A.

Proposition 3.2.7. We set V :=
{
z ∈ V (I) : V (Q[z]) ∩ σ(A) ̸= ∅}. If φ ∈ SA is con-

tinuous, then

σ(φA(A)) ⊆ φ(σ(A) ∪ V ).

Proof. If λ ̸∈ φ(σ(A)∪V ), then φA(z) = φ(z) ̸= λ for all z ∈ σ(Θ[A])\V (I). Since σ(A)

is compact and φ is continuous, φ(σ(A)) is compact. Hence,

λ ̸∈ φ(σ(A)) ⊇ cl(φ(σ(Θ[A]) \ V (I))).

Given z ∈ V let p ∈ C[x1, . . . , xn] and U ⊆ Cn be a neighbourhood of z such that

p|U = φ|U . For any w ∈ V (Q[z]) there exists hw ∈ Q[z] such that (p + hw)|W = φ|W ,

where W is some neighbourhood of w; see Definition 2.4.3. hw(w) = 0 implies p(w) =

p(w) + hw(w) = φ(w) ̸= λ. Therefore, the polynomial p− λ does not vanish on V (Q[z]).

Employing Lemma 3.2.1 for N = 1, we conclude that (φ − λ)A(z) = (p − λ)A(z) is

invertible in A[z] or B[z], respectively. According to Proposition 3.2.6 the function values

for z ∈ V (I) \ V do not affect the functional calculus. Hence we can assume φA(z) = e,

z ∈ V (I)\V . Consequently, (φ−λ)A satisfies the assumptions of Lemma 2.4.21, resulting

in its invertibility. Thus φA(A)− λ is an invertible operator.

3.3 Independence of the Choice of Generators

Although the functional calculus was constructed using concepts that depend on the choice

of the generators of I, we are going to show in the present section that the resulting joint

functional calculus is independent of this choice. As an application, we will demonstrate

that the Hilbert space joint functional calculus is a special case of the Krein space joint

functional calculus.

We fix two families of generators s := (sj)
m
j=1 and t := (ti)

l
i=1 of the ideal I. In order

to avoid confusion, we will mark objects with the generators used to construct them. For

example, we will denote by φ(A)s the functional calculus constructed with respect to s.

Henceforth, our goal in this section is to prove that

φ(A)s = φ(A)t, φ ∈ FA. (3.5)
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We consider the family of generators s ∪ t = (s1, . . . , sm, t1, . . . , tl) and show

φ(A)s = φ(A)s∪t, φ ∈ FA.

We then obtain (3.5) by symmetry.

Recall that Ts ∈ Lb(Hs,K) and Tt ∈ Lb(Ht,K) are operators satisfying TsT
+
s =∑m

j=1 sj(A) and TtT
+
t =

∑l
i=1 ti(A); see T ∈ Lb(H,K) in Definition 2.1.1. Accordingly,

the operator Ts∪t ∈ Lb(Hs∪t,K) is such that

Ts∪tT+
s∪t =

m∑
j=1

sj(A) +
l∑

i=1

ti(A) = TsT
+
s + TtT

+
t .

Applying Lemma 2.1.3 to the definitizing polynomials p1 :=
∑m

j=1 sj and p2 :=
∑l

i=1 ti

of A yields the existence of unique injective contractions Rs ∈ Lb(Hs,Hs∪t), Rt ∈
Lb(Ht,Hs∪t) such that Ts = Ts∪tRs, Tt = Ts∪tRt, and RsR

∗
s +RtR

∗
t = I.

Hs

Hs∪t K

Ht

Ts

Rs

Ts∪t

Rt

Tt

Figure 3.1: Commutative diagram of operators introduced in Section 3.3.

Recall that we have already established that the function space FA does not depend

on the choice of generators; see Corollary 3.2.3.

Lemma 3.3.1. Let φ ∈ FA. If (r, f)s is a decomposition of φ with respect to s, then

(r, F )s∪t constitutes a decomposition of φ with respect to s ∪ t, where

F := ✶σ(A)\V (I)
f
∑m

j=1 sj∑m
j=1 sj +

∑l
i=1 ti

∈ B(σ(Θs∪t[A])).

Proof. Applying Proposition 2.4.12 for the generators s ∪ t, we obtain
∑m

j=1 sj(z) =

O(|∑m
j=1 sj(z) +

∑l
i=1 ti(z)|) as z → w ∈ V (I). In concequence, F is bounded. f being

measurable implies measurability of F . (r, F )s∪t clearly satisfies (iii) of Definition 3.1.1

for Θ = Θs∪t and (i) since (r, f)s is a decomposition of φ with respect to s. Note that

σ(Θs∪t[A]) \ V (I) = σ(A) \ V (I) = σ(Θs[A]) \ V (I) according to Proposition 3.2.2. For

z ∈ σ(A) \ V (I) we have

r(z) + F (z)

 m∑
j=1

sj(z) +
l∑

i=1

ti(z)

 = r(z) + f(z)
m∑
j=1

sj(z) = φ(z).

Thus, Definition 3.1.1, (ii) is also satisfied.
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Lemma 3.3.2. If f ∈ B(σ(Θs∪t[A])) satisfies f |σ(Θs∪t[A])∩V (I) = 0, then

Ξs

(∫
f dEs

)
= Ξs∪t

(∫
f
∑m

j=1 sj∑m
j=1 sj +

∑l
i=1 ti

dEs∪t

)
,

where Es, Es∪t are the joint spectral measures of Θs[A],Θs∪t[A], respectively.

Proof. We apply Lemma 2.1.10 to p1 =
∑m

j=1 sj , p2 =
∑l

i=1 ti and translate the notation

into that of the present section by

R1 = Rs, Ξ1 = Ξs, Ξ = Ξs∪t, Θ1 = Θs, Θ = Θs∪t, E1 = Es, E = Es∪t.

By (2.9) applied to our situation,

Ξs

(∫
f dEs

)
= Ξs∪t

(
RsR

∗
s

∫
f dEs∪t

)
= Ξs∪t

(
RsR

∗
sEs∪t(σ(Θs∪t[A]) \ V (I))

∫
f dEs∪t

)
.

According to Corollary 2.1.12,
∑m

j=1 sj +
∑l

i=1 ti does not vanish on σ(Θs∪t[A]) \ V (I)
because s ∪ t generates I. Applying Lemma 2.1.13 to p1 =

∑m
j=1 sj , p2 =

∑l
i=1 ti, and

M = σ(Θs∪t[A]) \ V (I) yields

RsR
∗
sEs∪t(σ(Θs∪t[A]) \ V (I)) =

∫
σ(Θs∪t[A])\V (I)

∑m
j=1 sj∑m

j=1 sj +
∑l

i=1 ti
dEs∪t

and, in turn,

Ξs

(∫
f dEs

)
= Ξs∪t

(∫
σ(Θs∪t[A])\V (I)

∑m
j=1 sj∑m

j=1 sj +
∑l

i=1 ti
dEs∪t

∫
f dEs∪t

)

= Ξs∪t

(∫
f
∑m

j=1 sj∑m
j=1 sj +

∑l
i=1 ti

dEs∪t

)
.

We have gathered all the necessary tools in order to prove the main result of this

section.

Theorem 3.3.3. Given φ ∈ FA we have

φ(A)s = φ(A)s∪t.

Proof. Let (r, f)s be a decomposition of φ with respect to s. By Lemma 3.3.1, (r, F )s∪t
with

F := ✶σ(A)\V (I)
f
∑m

j=1 sj∑m
j=1 sj +

∑l
i=1 ti

,

is a decomposition of φ with respect to s ∪ t. Employing Lemma 3.3.2 we conclude

φ(A)s∪t = r(A) + Ξs∪t
(∫

F dEs∪t
)

= r(A) + Ξs

(∫
f dEs

)
= φ(A)s.
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Corollary 3.3.4. The joint functional calculus constructed in the present thesis does not

depend on the choice of generators of I, i.e., for two families of generators s, t of I we

have

φ(A)s = φ(A)t, φ ∈ FA.

Proof. By Theorem 3.3.3 we have φ(A)s = φ(A)s∪t = φ(A)t for φ ∈ FA.

The joint functional calculus indeed generalizes the joint functional calculus for tuples

of pairwise commuting bounded self-adjoint operators on Hilbert spaces, as we will see in

the following theorem.

Theorem 3.3.5. If (K, [., .]) is a Hilbert space, then any tuple A ∈ Lb(K)n of pairwise

commuting self-adjoint operators is definitizable. Moreover, the above developed functional

calculus is applicable on FA = B(σ(A)) and

φ(A) =

∫
φ dE, φ ∈ B(σ(A)),

where E is the joint spectral measure of A.

Proof. In a Hilbert space the identity operator I ∈ Lb(K) is a positive operator. Therefore,

1 ∈ C[x1, . . . , xn] definitizes any tuple A of pairwise commuting self-adjoint operators.

This implies I = C[x1, . . . , xn]. By Remark 3.1.10 the Krein space joint functional calculus

can be constructed.

Because of Corollary 3.3.4, we can choose p1 = 1 as the generator of I for constructing

the joint functional calculus implying H = H1 and T = T1; see Definition 2.1.1. Moreover,

when we take a look at how we constructedH and T : H → K in the proof of Lemma 1.6.10,

we obtain H = K and T = I. As a result, the operators Θ = Θ1 and Ξ = Ξ1 both coincide

with the identity operator on Lb(K) = (II+)′ = (I+I)′. Furthermore, since V (I) is empty,

the function space FA equals B(σ(Θ[A])) = B(σ(A)); see Remark 2.4.15.

Let φ ∈ FA = B(σ(A)). Because of V (I) = ∅, ∑m
j=1 pj(z) = p1(z) = 1, and

φ ∈ B(σ(A)), the pair (0, φ) is a decomposition of φ; see Definition 3.1.1. We obtain

φ(A) = 0 + Ξ

(∫
φ dE

)
=

∫
φ dE.

3.4 Compatibility with Subtuples

For a definitizable tuple A of pairwise commuting self-adjoint operators, let AN :=

(Aj)j∈N ∈ Lb(K)N , N ⊆ [1, n]Z, be a subtuple. If we denote by πN : Cn → CN the

canonical projection (zj)
n
j=1 ,→ (zj)j∈N , then for any polynomial p ∈ C[x1, . . . , x|N |],

p(AN ) = p ◦ πN (A). (3.6)

Assuming that the joint functional calculus can be defined for both A and AN , our goal

in the present section is to generalize (3.6) and to show

φ(AN ) = φ ◦ πN (A), φ ∈ FAN
,
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where the term on the right-hand side has yet to be defined.

For objects related to the construction of the joint functional calculus of A, we will

continue to employ the notation used since Chapter 2. In order to avoid confusion, any-

thing related to AN will be indicated by the subscribt .N . For example, we will denote by

IN the ideal generated by all definitizing polynomials of AN .

Lemma 3.4.1. If we denote by ι : C[x1, . . . , x|N |] → C[x1, . . . , xn] the mapping p ,→ p◦πN ,

then ι(IN ) ⊆ I and πN (V (I)) ⊆ V (IN ).

Proof. If p ∈ C[x1, . . . , x|N |] is a definitizing polynomial for AN , then, clearly, p ◦ πN is

a definitizing polynomial for A. Hence, ι(IN ) ⊆ I and, in consequence, πN (V (I)) ⊆
πN (V (ι(IN ))) = V (IN ).

Let q1, . . . , ql ∈ C[x1, . . . , x|N |] be the generators of IN used for constructing the func-

tional calculus of AN . Moreover, we set p1 =
∑l

i=1 qi ◦ πN ∈ ι(IN ) ⊆ I and extend it to

a family p1, . . . , pm of generators of I, which will be used to construct the joint functional

calculus in Section 2.1. This choice indeed does not affect the joint functional calculus of

A, as we have seen in Corollary 3.3.4.

Definition 3.4.2. For φ ∈ FAN
and r ∈ C[x1, . . . , x|N |] such that φ|V (IN ) = rAN

|V (IN ),

we define (φ ◦ πN )r ∈ MA as

(φ ◦ πN )r(z) :=

��������
φ(πN (z)), z ∈ σ(Θ[A]) \ V (I), πN (z) ∈ σ(ΘN [AN ]) \ V (IN ),

r(πN (z)), z ∈ σ(Θ[A]) \ V (I), πN (z) ̸∈ σ(ΘN [AN ]) \ V (IN ),

[r ◦ πN ]P[z]·Q[z]
, z ∈ V (I), [z] ∈ VR(I),

[r ◦ πN ]Q[z]
, z ∈ V (I), [z] ̸∈ VR(I).

Lemma 3.4.3. With the notation and assumption from Definition 3.4.2, the function

(φ ◦ πN )r belongs to FA.

Proof. The measurability of (φ ◦ πN )r on σ(Θ[A]) \ V (I) is a concequence of the mea-

surability of the function φ ◦ πN and the sets V (I), V (IN ), σ(Θ[A]), σ(ΘN [AN ]). Since

σ(Θ[A]) is compact and φ is bounded on σ(ΘN [AN ]) \ V (IN ), (φ ◦ πN )r is bounded on

σ(Θ[A]) \ V (I).
If w ∈ V (I) is an accumulation point of σ(Θ[A]) \ V (I), then w ∈ Rn and (φ ◦

πN )r(w) = [r ◦ πN ]P[w]·Q[w]
. Furthermore, due to πN (V (I)) ⊆ V (IN ), πN (w) ∈ V (IN )

and φ(πN (w)) = [r]P[πN (w)]·Q[πN (w)]
.

We are going to consider two cases that do not exclude each other. First assume that

πN (w) is an accumulation point of σ(ΘN [AN ]) \ V (IN ). Due to φ ∈ FAN
,

φ(πN (z))− r(πN (z)) = O
(|||∑l

q=1 qi ◦ πN (z)
|||) as z → w,

where z ∈ σ(Θ[A]) \ V (I) such that πN (z) ∈ σ(ΘN [AN ]) \ V (IN ). Moreover,
∑l

q=1 qi ◦
πN ∈ I implies

φ(πN (z))− r(πN (z)) = O
(|||∑m

j=1 pj(z)
|||) as z → w;

see Proposition 2.4.12.

69



3.4. COMPATIBILITY WITH SUBTUPLES

If πN (w) is an accumulation point of RN \(σ(ΘN [AN ])\V (IN )), then for z ∈ σ(Θ[A])\
V (I) such that πN (z) ̸∈ σ(ΘN [AN ]) \ V (IN ), we have

(φ ◦ πN )r(z)− r(πN (z)) = 0 = O
(|||∑m

j=1 pj(z)
|||) as z → w.

Since the growth condition is satisfied in both cases, we conclude

(φ ◦ πN )r(z)− r(πN (z)) = O
(|||∑m

j=1 pj(z)
|||) , as z → w.

Hence (φ ◦ πN )r belongs to FA.

Lemma 3.4.4. Given φ ∈ FAN
and its decomposition (r, f)N , the tuple (r ◦ πN , F )

constitutes a decomposition of (φ ◦ πN )r, where

F (z) :=

����
f(πN (z))

∑l
i=1 qi(πN (z))∑m

j=1 pj(z)
, z ∈ σ(Θ[A]) \ V (I), πN (z) ∈ σ(ΘN [AN ]) \ V (IN ),

0, z ∈ σ(Θ[A]) \ V (I), πN (z) ̸∈ σ(ΘN [AN ]) \ V (IN ),

0, z ∈ σ(Θ[A]) ∩ V (I).
Proof. Given z ∈ σ(Θ[A]) \ V (I) we have

r(πN (z)) + F (z)

m∑
j=1

pj(z)

=

{
r(πN (z)) + f(πN (z))

∑l
i=1 qi(πN (z)), πN (z) ∈ σ(ΘN [AN ]) \ V (IN ),

r(πN (z)), πN (z) ̸∈ σ(ΘN [AN ]) \ V (IN ),

}
= (φ ◦ πN )r(z).

Clearly, F vanishes on σ(Θ[A]) ∩ V (I) and (r ◦ πN )A|V (I) = (φ ◦ πN )r|V (I).
The set σ(ΘN [AN ]) \ V (IN ) and f being measurable implies the measurability of F .

From
∑l

i=1 qi◦πN ∈ ι(IN ) ⊆ I, we obtain qi(πN (z)) = O(|∑m
j=1 pj(z)|) as z → w ∈ V (I);

see Proposition 2.4.12. Since f is bounded, we derive the boundedness of F . Hence

(r ◦ πN , F ) constitutes a decomposition of (φ ◦ πN )r; see Definition 3.1.1.

Theorem 3.4.5. If φ ∈ FAN
and r ∈ C[x1, . . . , x|N |] satisfy φ|V (IN ) = rAN

|V (IN ), then

φ(AN ) = (φ ◦ πN )r(A).

Proof. Let (r, f)N be a decomposition of φ and (r ◦ πN , F ) a decomposition of (φ ◦ πN )r

as defined in Lemma 3.4.4. We set

D := π−1
N

(
σ(ΘN [AN ]) \ V (IN )

)
.

Due to πN (V (I)) ⊆ V (IN ), we have D ∩ V (I) = ∅. If E denotes the spectral measure of

Θ[A], then

(φ ◦ πN )r(A) = r ◦ πN (A) + Ξ

(∫
F dE

)
= r(AN ) + Ξ

(∫
D

f ◦ πN
∑l

i=1 qi ◦ πN∑m
j=1 pj

dE

)

= r(AN ) + Ξ

(∫
D
f ◦ πN dE

∫
D

p1∑m
j=1 pj

dE

)
.
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By applying Lemma 2.1.13 to M = D ∩ σ(Θ[A]) we see that the last term can be written

as

r(AN ) + Ξ

((∫
D
f ◦ πN dE

)
R1R

∗
1E(D ∩ σ(Θ[A]))

)
.

Since, by Proposition 2.1.8, R1R
∗
1 commutes with

∫
D f ◦ πN dE, this is equal to

r(AN ) + Ξ

(
R1R

∗
1

∫
D
f ◦ πN dE

)
,

which according to (2.9) can be rearraged to

r(AN ) + Ξ1

(∫
D
f ◦ πN dE1

)
,

where E1 denotes the joint spectral measure of Θ1[A]; see Definition 2.1.4. p1 =
∑l

i=1 qi ◦
πN implies T1T

+
1 = p1(A) =

∑l
i=1 qi(AN ) = TNT+

N , which allows us to choose T1 =

TN . Consequently, Ξ1 = ΞN and Θ1 = ΘN . Since ΘN [AN ] is a subtuple of Θ1[A],

Corollary 1.7.8 yields E1 ◦ π−1
N = EN , where EN is the joint spectral measure of ΘN [AN ].

Taking these facts into consideration, we conclude

(φ ◦ πN )r(A) = r(AN ) + Ξ1

(∫
D
f ◦ πN dE1

)
= r(AN ) + ΞN

(∫
πN (D)

f d(E1 ◦ π−1
N )

)

= r(AN ) + ΞN

(∫
σ(ΘN [AN ])\V (IN )

f dEN

)
= φ(AN ).

Due to Theorem 3.4.5, φ ◦ πN (A) is well-defined in the following sense.

Definition 3.4.6. For φ ∈ FAN
and r ∈ C[x1, . . . , x|N |] such that φ|V (IN ) = rAN

|V (IN ),

we set

φ ◦ πN (A) := (φ ◦ πN )r(A).

Corollary 3.4.7. For p ∈ C[x1, . . . , x|N |] we have

pAN
◦ πN (A) = pAN

(AN ) = p(AN ) = p ◦ πN (A) = (p ◦ πN )A(A).

Proof. The first equality holds due to Theorem 3.4.5. The second and the fourth equality

is true according to Proposition 3.1.9.

71



Bibliography

[Ati16] Michael Atiyah. Introduction To Commutative Algebra. CRC Press, 2016.

[BGS24] Andrea Bandini, Patrizia Gianni, and Enrico Sbarra. Commutative Algebra

through Exercises. Springer, 2024.

[BWK93] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases - A
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Definitizable Self-adjoint Operators on Krein Spaces. Integral Equations and

Operator Theory, 92(29), 2020.
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