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Abstract

Understanding ionic behavior is essential for developing electronic devices that rely on
ion transport. Although machine-learned force fields have become the standard for
large-scale materials simulations, they do not explicitly account for electrostatic inter-
actions. As a result, they are not well-suited for studying systems where ions interact
with an external electric field. The Born effective charge (BEC) - a 3×3 tensor defined
as the derivative of forces with respect to an external electric field - offers a practical
way to compute forces arising from electrostatic interactions. However, calculating
BECs using ab-initio methods is computationally expensive, creating a need for more
efficient approaches. Since BECs, similar to forces, can be expressed as derivatives of
the potential energy, it is possible to obtain them directly by differentiating the output
of a neural network potential (NNP) within a unified model [16]. This approach not
only improves computational efficiency but also ensures that the resulting BECs satisfy
exact physical constraints. In this work, I adapt NeuralIL - a NNP that uses automatic
differentiation to compute forces [38] - and demonstrate that, with carefully designed
descriptors, it is possible to predict Born effective charges with sufficient accuracy to
perform molecular dynamics simulations under external electric fields.
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要旨

イオン輸送に依存する新たな電子デバイスを開発するためには、イオン挙動の正しい

理解が必要である。大規模な材料シミュレーションでは、機械学習による力場が標準

化されつつあるが、その多くは静電相互作用を明示的に考慮しておらず、イオンが外

部電場と相互作用する場合には適さない。よって、電場印加時の静電相互作用を計算

するため、ボルン有効電荷という、外部電場に対する力の導関数として定義される３

× ３テンソルによる計算手法が用いられる。しかし、第一原理計算によるボルン有効

電荷の算出は計算コストが非常に高く、大規模スケールの分子動力学計算は困難であ

るため、より効率的な手法が求められている。一方、ボルン有効電荷は、力と同様に

位置エネルギーの導関数として表することができるため、ニューラルネットワークポ

テンシャルの出力を微分するこてで、統合モデル [16] で直接計算することができる。

これにより、計算効率を向上できるうえ、得られるボルン有効電荷は厳密な物理的拘

束条件を満たす。本研究では、自動微分により力を求める NeuralIL [38] というニュ

ーラルネットワークポテンシャルを拡張し、電場情報を含めた電気化学的記述子を設

計した。この結果、電場印加時の分子動力学計算を実現する上で、ボルン有効電荷を

十分に高い精度で予測することができた。
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Zusammenfassung

Das Verständnis des Ionenverhaltens ist entscheidend für die Entwicklung elektronischer
Geräte, die auf Ionentransport basieren. Obwohl maschinell gelernte Kraftfelder mittler-
weile zum Standard für Materialsimulationen auf großen Skalen geworden sind, werden
elektrostatische Wechselwirkungen nicht explizit inkludiert. Daher erweisen sie sich als
ungeeignet für die Untersuchung von Systemen, in denen Ionen mit einem externen
elektrischen Feld interagieren. Die effektive Born Ladung (BEC) –ein 3×3-Tensor,
definiert als die Ableitung der Kräfte bezüglich eines externen elektrischen Feldes –

bietet eine direkte Methode zur Berechnung der durch elektrostatische Wechselwirkun-
gen entstehenden Kräfte. Die Berechnung von BECs mit ab-initio-Methoden ist jedoch
rechenintensiv, was den Bedarf an effizienteren Methoden schafft. Da sich BECs, ähn-
lich wie Kräfte, als Ableitung der potentiellen Energie darstellen lassen, ist es möglich,
sie direkt durch Differenzieren der Ausgabe eines neuronalen Netzwerkpotentials (NNP)
innerhalb eines einheitlichen Modells zu bestimmen [16]. Dieser Ansatz verbessert nicht
nur die Recheneffizienz, sondern stellt auch sicher, dass die resultierenden BECs exakte
physikalische Randbedingungen erfüllen. In dieser Arbeit adaptiere ich NeuralIL –ein
NNP, das automatische Differenzierung zur Berechnung von Kräften verwendet [38] –
und zeige, dass es mit sorgfältig entworfenen Deskriptoren möglich ist, effektive Born
Ladungen mit ausreichender Genauigkeit vorherzusagen, um Molekulardynamiksimula-
tionen unter externen elektrischen Feldern durchzuführen.
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Chapter 1

Introduction

When developing new electronic and energy-related devices, such as batteries and atomic
switches, it is crucial to understand how atoms, charges, and external electric fields
interact during device operation. While experiments provide valuable insights into
these systems, a detailed understanding at the atomic scale remains largely elusive.

Computational materials science offers a powerful approach to explore materials at
this level of resolution, by performing molecular dynamics (MD) simulations one can
study the time evolution of a system. However, accurate forces are needed at each
time step. One option is to use ab initio methods to calculate the forces, but the high
computational resources needed, limit AIMD simulations to small systems and short
timescales. A more efficient alternative of obtaining forces is to use classical force field,
such as OPLS-AA [26] or ReaxFF [44], which are considered state of the art force
fields for MD. These models are constructed by parametrizing functional forms that
are usually physically motivated. Even though they are very fast to evaluate, they lack
accuracy and transferability needed to study subtle or complex phenomena.

In recent years, machine learing force field (MLFF) have emerged to bridge the gap
between highly accurate but poorly scalable ab initio methods and very low computa-
tional cost but not very accurate classical force fields [11]. The problem of calculating
forces is viewed as a simple regression problem, relying on no arbitrary assumptions on
the functional forms. MLFFs have enabled simulations of unprecedented accuracy and
scale.

Despite this progress, most machine learning (ML) models do not account for electro-
static interactions, making them unsuitable to study systems where these interactions
play a major role. Particularly, in systems with an applied electric fields, it is necessary
to know the forces induced by the electric field. The physical quantity that describes
this interaction is the BEC, thus making it an ideal quantity in the study of such systems
[48]. However, the traditional ab-initio method for calculating BECs is computationally
demanding, motivating the search for alternative methods that provide accurate BECs

1



1. Introduction

at significantly reduced computational cost. Recently, considerable effort has gone into
using, similar to MLFFs, ML to predict BECs [33, 46].

In this thesis, NeuralIL [14, 38] a NNP, that uses local invariant descriptors, is adapted
to predict BEC alongside forces, potential energy and other dielectric properties within
a unified model [16]. Great care is taken in including the electric field information
inside newly designed descriptors, ensuring that both symmetry is preserved and the
descriptors are expressive. Multiple descriptors are tested and compared, with the
ultimate goal of enabling large scale MD simulations under external electric fields.
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Chapter 2

Neural Network Force Fields

The traditional way of studying chemical systems is the so called molecular dynamics
(MD) simulation, a method that computes the time evolution of an atomic system by
numerically solving Newton’s equations of motion. The resulting trajectories provide
information about the positions, velocities, and interactions of particles over time, en-
abling the study of structural and dynamical properties at the atomic scale. To cal-
culate the motion of atoms, the forces acting on each atom at every time step must
be known. One approach is to use ab-initio methods, which aim to solve the underly-
ing quantum mechanical equations. While these methods are highly accurate, they are
also computationally expensive and scale poorly with large systems. To address this
challenge, classical force fields were developed. These models use predefined functional
forms, which are then parametrized either from experimental data or from ab initio
calculation results. They are computationally efficient but often lack the accuracy and
flexibility needed for more complex or subtle interactions. Since the problem given can
be seen as an optimization problem, such that given the atomic positions and types
the potential energy / forces of a system should be predicted, there is no inherent need
to restrict oneself to a predefined functional form. ML methods offer a promising al-
ternative, bridging the gap between speed and accuracy. The model learns to represent
the potential-energy surface (PES) by training on vast amounts of data. This allows
MLFFs to achieve ab initio-level accuracy at a computational cost similar to that of
classical force fields.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) also just referred to as neural networks (NNs) are
biologically inspired algorithms that can be used to model arbitrary functions. Data
points that represent the function to be learned are given to the NN, which updates it’s
internal parameters in the training phase. In theory with a suitable NN architecture
any function, no matter how complex, can be learned [24]. The basic unit of operation
is the artificial neuron that will take a series of inputs x, compute a linear combination
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2. Neural Network Force Fields

of them, add an offset b and apply a non-linear activation function fact to return the
output y (see formula 2.1):

y = fact

��
i

wixi + b

�
(2.1)

The values wi are called the weights of the network and together with the offset b, also
called bias, they are the parameters that are learned during training. To be able to
learn more complex relationships several of these neurons are connected together into a
network where information flows between neurons. Depending on how the connections
are made several types can be discerned: Residual neural networks (RNN) that are par-
ticularly useful for time-series like data, convolutional neural networks (CNNs) usually
used in tasks related to image processing or also graph convolutional neural networks
(GCNNs) that are very relevant in the field of atomistic simulations.

One of the simplest types of NNs is the fully connected feed-forward neural network
(FFNN) where artificial neurons are organized into sequential layers. Each neuron is
connected to the neighboring layers, receiving it’s input from the previous layer and
sending it’s output to the next layer. Connections between neurons in the same layer
do not exist, and as such the working of a FFNN can be seen as a stepwise process where
information is passed from each layer of artificial neurons to the next, transforming the
data in a non-linear way. Data is first passed into an input layer, then through one or
more hidden layers until reaching the output layer.

The training of such a network at performing a specific task (e.g. image classification,
prediction of material properties) is a cycle consisting of multiple steps. In a first step,
also called forward pass, the model is fed with labeled data, transforms it’s inputs to
finally produce a prediction Ypred. In a second step the loss that is to be minimized is
computed using a loss function L that takes Ypred and the known true values/labels Y

from the dataset. The loss function is a mean to quantify how well the model performs
and guides the entire training process. While the exact functional form of L depends
on the application and other various factors, it is often taken as the squared residual:

L ({Ypred}, {Y }) =
n�

i=1

�
Y

(i)
pred − Y (i)

�2
(2.2)

In a third step, the backward pass, the gradient of the loss with respect to the model
parameters is computed. In the case of NNs, this will consist of the weights and bi-
ases. The gradient is a measure of how each of the parameters contributes to the loss.
Lastly, the parameters are updated based on the loss and gradient of the loss. For
this the gradient is passed to an optimizer that takes the current model parameters
and the gradient and returns updated parameters that should produce a lower loss.
There are a variety of optimizers available, such as gradient descent, stochastic gradi-
ent descent [49] or Adam [27]. This iterative process of forward pass, loss calculation,
back-propagation and parameter adjustment is repeated until a satisfactory prediction
accuracy is achieved.
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2.2. Representation of the PES

2.2 Representation of the PES

First attempts to fit the PES using a non-linear regression model did so by constraining
the number of dimensions. In [9] and [35] the adsorption of a small molecule on a
surface was carried out by mapping the Cartesian coordinates to a small set of inputs,
that represent the symmetry and distance of the adsorbate to the surface. The inputs
were then fed into a FFNN with the potential energy Epot as final output. These low-
dimensional representations allow for robust and data-efficient training, but are tailored
to a specific system and therefore not transferable. For the general case of 3N degrees of
freedom, several difficulties remain. When using a NN to fit the Cartesian coordinates
to Epot, the parameters remain valid only for the specific input size that the model
was trained for. Making it usable only for a specific system with a fixed amount of
atoms and unchanged elements. Furthermore, the order in which the coordinates are
fed into the regression model matter and need to stay fixed. While physically speaking
the permutation of 2 atoms of the same element leaves the system indifferent, NNs
will have a different output depending on the order. To allow for a high-dimensional
PES representation several ML schemes have been proposed like Gaussian processes [4],
support vector machines [1], Moment Tensor Potentials [45] or also based on NNs [8,
9]. All of them share the reasonable assumption, that the potential energy Epot of a
system can be decomposed into atomic contributions Ei

Epot =
�
i

Ei, (2.3)

which in turn only depend on the local chemical environment of the given atoms (all
atoms inside a given radius Rc around the central atom). Thus this atom-centered ap-
proach [8] changes the original problem of predicting the potential energy of the system,
to that of predicting the atomic contributions for each atom in the system. Assuming
that the Ei themselves do not depend on indexing of atoms, this solves the problem
of permutation invariance. Because the sum of Ei is, by the commutativity property
of the addition, independent of the summation order. Also when switching to the
atom-centered approach, the potential energy only depends on the relative coordinates,
translational invariance is automatically satisfied.

While undoubtedly a better choice than absolute coordinates, the relative Cartesian
coordinates still are not suitable as NN input. First, the above mentioned rigidity of
the NN input layer does not allow a variable amount of coordinates to be used. Which
in turn means that each chemical environment would need a fixed number of neighbors,
or in other words a fixed number of atoms within a cutoff radius Rc. It is clear that
this condition is unlikely to be satisfied under realistic conditions.

Second, for data efficiency and accuracy, it is desirable that the input fed into the
FFNN is invariant to all symmetries of three dimensional space; that is, the euclidean
group in three dimensions (E(3)). Since the NN output, the atomic energy contribution
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2. Neural Network Force Fields

Ei, is a scalar quantity and therefore inherently E(3)-invariant, using invariant inputs
guarantees that the predicted Epot also respects the those symmetries. Although relative
Cartesian coordinates provide translational invariance, as vector quantities they are not
invariant under rotations and reflections. For this reason, they cannot be used directly
as a NNPs input and need to be transformed into a set of descriptors that is explicitly
E(3)-invariant.

Behler-Parrinello symmetry functions

[8] introduced the concept of local descriptors to represent the chemical environment
around each atom in a way that is invariant to E(3) symmetries. Their Behler-Parrinello
(BP) symmetry functions guarantee a fixed length representation that does not depend
on the number of neighbors. This is achieved by using 2 types of symmetry functions:

The first are radial symmetry functions G1
i , which encode the pairwise distances between

the central atom i and neighbor j. They are defined as a sum of Gaussians shifted by
Rs and broadened by η, with the cutoff function fc(Rij) that ensures locality:

G1
i =

�
j ̸=i

e−η(Rij−Rs)
2

fc(Rij) (2.4)

The second are angular symmetry functions G2
i , that capture three-body correlations.

They are constructed by summing over the cosine values θijk =
R⃗ij ·R⃗ik

RijRik
of the angle

spanned by the atoms i,j and k. λ, ζ are again parameters that can be set freely:

G2
i = 21−ζ

�
j,k ̸=i

(1 + λ cos θijk)ζ e−η(R2
ij+R2

ik+R2
jk)fc(Rij)fc(Rik)fc(Rjk) (2.5)

Because of the cutoff function, these functions do not depend on any atom outside of Rc

making them local and because they are defined as sums there is no dependency in the
order, which provides us with permutation invariance. In practical applications multiple
G1

i and G2
i for different values of η, ζ, Rs and λ will be used, to encode information

about the chemical environment around each atom.

Together with the decomposition of Epot into Ei and having rotation, translation and
permutation invariant descriptors, using the same NN for each atom paved the way for
many other NNPs that follow this design [3, 28, 29, 47].

Spherical Bessel descriptors

Spherical Bessel descriptors constitute a major improvement in the domain of local
atomic descriptors. The first generation [28] and then the second generation [29] that
additionally is continuous with respect to atomic displacements, provide an efficient,
compact and systematic way of describing the chemical environment for use in machine
learning potentials (MLPs). First the relative atomic coordinates R⃗ij relative to the
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2.2. Representation of the PES

central atom i are encoded into a neighbor density function ρki (R⃗) (equation 2.6). k

is an index for element types in the system, wk
j a weight factor and δ the Dirac delta

function.
ρki (R⃗) =

�
j

wk
j δ(R⃗− R⃗ij) (2.6)

wk
j is assumed to be one and not further discussed in [29]. The density functions are

projected onto a basis of orthonormal basis functions to yield the complex expansion
coefficients cinlm for atom i (equation 2.7).

ρi(R⃗) ≈
nmax�
n=0

n�
l=0

l�
m=−l

cinlmgn−l,l(R)Y m
l (θ, φ) (2.7)

gnl is a radial basis function, Y m
l (θ, φ) a spherical harmonic and nmax the maximum

order of the expansion. To construct gnl, the functions

fnl(R) =

�
1

R3
c

2

u2ln + u2l,n+1

�
ul,n+1

jl+1(uln)
jl



R
uln
Rc

�
− uln

jl+1(ul,n+1)
jl



R
ul,n+1

Rc

�

(2.8)

are run through a Gram-Schmidt process for 0 ≤ n ≤ nmax. jl(R) is the l-th spherical
Bessel function of te first kind and uln is the (n + 1)-th nonzero root of jl(R). This
linear combination of jl(R) fulfills the requirement fnl(Rc) = 0 but also fnl(Rc)

′ = 0,
fnl(Rc)

′′ = 0 making the first and second derivative of gnl(R) zero at the cutoff radius.
From the radial and angular basis functions in equation 2.7, the expansion coefficients
cinlm are calculated from the relative spherical coordinates of neighboring atoms with
relation

cinlm =
�
j

gn−l,l (Rij)Y
m⋆
l (θij , φij). (2.9)

The power spectrum pnl, which represents the final descriptors to be used in a regression
model, is then given by

pinl =
l�

m=−l

c⋆nlmcinlm. (2.10)

When substituting equation 2.9 into equation 2.10 the spherical harmonic addition
theorem can be applied , reducing the equation to

pinl =
2l + 1

4π

�
j

�
k

gn−l,l(Rij)gn−l,l(Rik)Pl(cos γjik). (2.11)

Pl(cos γjik) is the Legendre polynomial of order l for the angle γjik spanned by the atoms
j, i and k. Equation 2.11 can be evaluated much more efficiently that equation 2.7 on
modern computers. Also the former does not need any complex floating point arith-
metic even though the expansion coefficients are complex, considerably simplifying the
implementation.
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2. Neural Network Force Fields

2.3 NeuralIL

The NNP used in this work as a foundation for predicting BECs is NeuralIL, originally
introduced in [14] and further improved in [38]. This NNP uses a modified form of the
spherical Bessel descriptors discussed in section 2.2. The primary modification consists
in defining a separate neighbor density function for each element type J using

ρiJ(R⃗) =
�
j∈J

Rij<Rc

j ̸=i

δ
�
R⃗− R⃗ij

�
, (2.12)

which applied to equation 2.11 yields the following double sum over pairs of element
types J and K:

piJKnl =
2l + 1

4π

�
j∈J
j ̸=i

�
k∈K
k ̸=i

gn−l,l(Rij)gn−l,l(Rik)Pl(cos γjik). (2.13)

Compared to the 2nd generation spherical Bessel descriptors descriptors (equation 2.11),
this formulation produces one channel for each pair of element types. Effectively gen-
erating nel(nel + 1)/2 times more descriptors, with nel being the number of elements
in the system. While this quadratic increase of descriptors with element types in the
system is undesirable, it has been show that premixing the descriptors from different
element channels decreases prediction performance. Thus implying that premixing the
descriptors induces a significant loss of information. The spherical Bessel descriptors
only encode information about the chemical environment of an atom.

Because these descriptors only capture structural information around an atom, the
element information of the central atom is encoded through an embedding vector of size
nemb that is computed from a small FFNN. The embedding vector is concatenated to
the spherical Bessel descriptors and form a E(3) invariant representation of the system.

Figure 2.1 shows the complete flow of data. Starting with Cartesian coordinates and
atom types on the left to spherical Bessel descriptors and embedding coefficients in an
intermediate step, to Epot as a summation over per-atom energies Ei on the right. The
underlying FFNN layers use the Swish-1 activation function (β = 1),

sβ(x) =
x

1 + e−βx
(2.14)

which is the result of an automated search for activation functions [41], and has been
shown to either outperform or match the rectified linear unit (ReLU) on a variety of
datasets. But, more importantly for this work: All Swish activation functions (which
are obtained by modifying the β parameter) are twice differentiable everywhere, which
is not the case for the heavily used ReLU, whose derivative has a discontinuity at x = 0.
Combined with the spherical Bessel descriptors this ensures that the entire data-pipeline

8



2.3. NeuralIL

Figure 2.1: Representation of the overall NeuralIL model, including generation of spherical Bessel
descriptors, computation of embedding vectors, final sum over atomic contributions to Epot and com-
putation of forces. Taken from [38].

from Cartesian coordinates to Epot is fully differentiable and results in a smooth PES
by design.

Forces are obtained as the negative gradient of the network output Epot with respect to
the atomic coordinates, F⃗i = −∇RiEpot computed efficiently using automatic differen-
tiation [7] as implemented in the JAX framework [13]. JAX is a framework for function
transformation providing just-in-time compilation (JIT) and automatic differentiation
routines. Obtaining forces using differentiation, instead of directly defining a three di-
mensional vector as NN output, has the advantage of resulting in a force field that is
by definition conservative. This ensures that energy is conserved and all forces sum up
to zero, eliminating any drift.

Training uses the log-cosh loss with ⟨·⟩ defined as the average over structures in a
training batch,

L =λF

�
0.1

natoms

natoms�
i=1

log
�

cosh
���F⃗i,predicted − F⃗i,reference

��
2

0.1 eV Å−1

�	�
+

λE

�
0.02 log

�
cosh



Epot,predicted − Epot,reference

0.02 eV

�
�
(2.15)

The log-cosh loss can be seen as a more robust version of the mean average error (MAE).
For deviations larger than a characteristic scale parameter (0.1 eV Å−1 for forces and
0.02 eV for Epot) the log-cosh loss behaves similar to MAE, for deviations smaller than
the scale parameter it is similar to the mean square error (MSE). The loss function is
therefore smooth everywhere and solves the stability problems of MAE. The advantage
over directly using MSE is that possible outliers do not get weighted that much, allowing
the model to retain consistent performance.
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2. Neural Network Force Fields

It worthwhile to note, that not only the direct NN output Epot is included in the loss
function, but also the forces which are defined as the negative gradient of Epot. This
is an approach known as Sobolev training [15]. From a data-efficiency point of view
this is very attractive, since for one structure only one potential energy is given but
3natoms forces exist. For typical structures, this would result in two or more orders of
magnitude more training data when incorporating forces into the loss function. Also,
by only training on Epot the model might learn to correctly reproduce the values of the
PES, but there is no guarantee that the derivative (forces) are correct. Including the
gradient of the target quantity has the effect of making the model more stable and to
extrapolate better [2].

Finally, [14] introduced 2 further improvements to NeuralIL:

• The FFNN is replaced with ResNet style layers from [21], which help alleviate
optimization difficulties in deep NNs by introducing skip connections.

• Instead of using Adam [27] as an optimizer, the learned optimizer Velo from [36,
37] is used to accelerate convergence in training.

2.4 Graph convolutional neural networks

So far the ML representation of a high dimensional PES has relied on handcrafted
descriptors that encode the local chemical environment of atoms, so that they remain
invariant to the symmetries of E(3). However, there is no guarantee that those hand-
crafted descriptors provide the most efficient encoding of structural information for
NNPs.

In recent years GCNN have emerged as a powerful architecture for MLPs, eliminating
the need for handcrafted descriptors and allowing the ML model to learn it’s own rep-
resentation to encode structural information. GCNNs are the generalization of CNNs
to data that is not structured like an euclidean grid. Atomic structures are represented
as a graph, of which nodes usually correspond to atoms and the edges to connections to
neighboring atoms inside a cutoff radius. Each node/atom has an associated vector of
scalar features that is updated through interaction with neighboring atoms. One convo-
lution operation consists of taking the information of neighboring atoms, typically the
feature vector of and the scalar distance to the neighboring atoms, and combining them
with the current scalar feature vector. By repeating those convolutions information is
propagated through the graph, allowing the atoms to build a rich representation of its
environments. Since the interatomic distances used in the update of the atoms internal
state are rotation invariant, the resulting feature vectors and therefore also the GCNN
output are automatically invariant to E(3) symmetries. [6, 42, 43]

10



2.4. Graph convolutional neural networks

Equivariant graph convolutional neural networks

An extension to the GCNN based on rotation invariant features are so called equivariant
GCNN. The features are not simply invariant to E(3) symmetries but instead behave
in an equivariant way, this means that transforming the system will also transform the
features (although not in three dimensional space) in a consistent way [50]. To update
the nodes internal state, not only interatomic distances are used, but also the displace-
ment vector between atoms. Equivariance of the features is enforces by constraining
the weights of the NN. Unlike the invariant GCNN that discard directional information,
having equivariant features enables the ML model to encode more geometric informa-
tion in the representation. This richer representation of the environment in equivariant
GCNN has been shown to be the reason for them achieving state-of-the art performance
with good data efficiency [5, 6, 40].
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Chapter 3

Born effective charges

To describe electrostatic interactions in materials, several notions of atomic charges have
been developed. Static charges, such as e.g. Mulliken charges [39] (based on atomic
orbital coefficients) or Bader charges [22] (computed as partitioning of the electron
density), provide a conceptually simple way of assigning charges to atoms. However,
these static charges are inherently ill-defined quantity that cannot be measured. The
problem of assigning static charges to atoms is equivalent the problem of how to partition
the electron cloud surrounding the nuclei. Only in the special case where neighboring
atoms are clearly separated by a region of zero electron density, one could uniquely
assign the electrons to nuclei and therefore also give a unique value for the atomic
charge. In most materials atoms are mostly not separated by regions of zero electron
density, making it impossible to define a unique atomic charge.

A more physically motivated way of defining charges, is that of the dynamic charge or
BEC [17, 18, 48]. The BEC, often abbreviated as Z∗, is a 3 × 3 tensor defined as the
linear response of a system to atomic displacements or external electric fields,

Z∗
ij =

Ω

e

∂Pi

∂uj
=

1

e

∂Fi

∂Ej (3.1)

where Ω is the unit cell volume, e the elementary charge, Pi, the component of polar-
ization in direction i, and Fi the component of the force in direction i. Furthermore uj

denotes an atomic displacement and Ej an electric field, for both quantities the compon-
ent in direction j. Two equivalent definitions are possible: The change in polarization
Pi with the change in atomic position uj or the change in the force Fi with a change in
electric field strength Ej ; the indices i and j represent the x, y and z directions. As a
practical consequence the electric field induced force ΔF⃗ext can be computed by simply
taking the tensor-vector product,

F⃗total = F⃗ + Z∗ · E⃗ = F⃗ +ΔF⃗ext (3.2)

with E⃗ an arbitrary electric field and a BEC Z∗. The total force F⃗total is then the sum of
the field free forces F⃗ and ΔF⃗ext. Unlike static charges, which are scalar charges, that
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3. Born effective charges

produce only forces parallel to an applied electric field, BECs allow the force response
of the system to also have orthogonal components. BECs are therefore a much richer
description of electrostatic interactions.

It is not uncommon to see BECs whose values are considerably larger than the cor-
responding nominal charge. In those instances we speak of anomalous BEC and the
difference between the BEC and the nominal charge is referred to as anomalous con-
tribution. Such large BECs are the result of changes in orbital hybridizations with
the accompanying charge redistribution. While for static charges, the charge is seen as
localized at the nuclei, BECs directly incorporate the movement of charge that come
with hybridization changes as atoms move. Such anomalous behavior is often observed
in ferroelectric materials [17].

3.1 Computation

BECs are traditionally computed from ab initio methods such as density functional
theory (DFT). One approach is to use finite differences. Small electric fields in the 3
Cartesian directions are applied and for each the DFT forces are calculated. The partial
differential in formula 3.1 is then approximated with a difference quotient. Alternatively
density functional perturbation theory (DFPT) can be used to directly obtain BEC
without finite differences.

3.2 Prediction using ML

Because ab initio methods for calculating BECs are computationally demanding, there
is a strong interest in alternative methods that provide accurate BECs at significantly
reduced computational cost. Recently, considerable effort has gone into using, similar
to MLFFs, machine learning to predict BECs [16, 33, 46]. Three recent strategies for
BEC prediction are outlined in the following:

Unified differentiable learning of electric response From the definition of the
BEC in equation 3.1 the BEC can be expressed as

Z∗
ij = −1

e

∂2Epot
∂Ri∂Ej (3.3)

which is a mixed derivative of the Epot with respect to the atom position Ri and changes
in electric field strength Ej . Since in NNPs forces are often already obtained as a
derivative of the potential energy with respect to atomic positions, by extending the
derivatives to those in equation 3.3 it should also be possible to calculate BECs [16].
Not only BECs and forces are derivatives of Epot but in the context of electric response
also the polarization

Pi = −∂Epot
Ei (3.4)
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3.2. Prediction using ML

and the polarizability, a tensor that indicates how the polarization changes with a change
in electric field strength:

αij =
∂Pi

∂Ej = −∂2Epot
∂Ei∂Ej (3.5)

Thus by using derivative relations (see figure 3.1) a NNP can be used to predict various
properties in one unified model.

Figure 3.1: Schematic representation of uniform differentiable learning of electric response from [16].
The Epot output of a NNP is differentiated with respect to it’s inputs to obtain various properties.

Direct prediction Another approach is the direct prediction of BECs from structural
input using NNs, as demonstrated with the graph neural network (GNN) Equivar [33].
Because BEC is a tensor quantity and therefore not invariant to rotations, models that
rely on rotation invariant descriptors cannot capture the correct transformation behavior
that is essential for tensors. Equivariant GNNs address this issue by explicitly including
features that transform with rotation, ensuring that the predicted BECs strictly follow
proper transformation rules of tensors in three dimensional space.

Derivation from the polarization A midway approach between direct prediction
and prediction with unified differentiable learning of electric response, was proposed
in [46]. Here, vector atomic fingerprint descriptors [12] are used as input to a simple
FFNN that predicts one component of the polarization vector. Differentiating the NN
output derivative with respect to the input positions yields one column of the BEC
tensor. This enables the calculation of forces induced by an electric field along one
chosen Cartesian direction.
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Chapter 4

Methodology

4.1 Training dataset

For the implementation and testing of the framework of BEC prediction a small dataset
consisting of 244 water dimers in vacuum was used. The BECs were computed using
DFPT, as implemented in VASP package [31, 32] with the projector augmented wave
(PAW) [10] formalism. The RPBE exchange-correlation functional [20] was used. After
convergence tests an energy cutoff of 1300 eV for the plane wave basis was chosen.
Fermi smearing was enabled with σ = 0.1 eV. As convergence criteria for the SCF-cycle
a value of 1 × 10−7 eV was used. The maximum number of electronic self-consistency
cycles to 200, all structures converged within that limit. The distribution of BEC values,
separated in off-diagonal elements and diagonal elements of the tensor, can be seen in
figure 4.1. The water molecule not being an ionic compound, values remain close to
zero compared to the formal charges of +1 for hydrogen and -2 for oxygen. Due to
it’s simplicity the water dimer dataset is well suited for the initial development of BEC
prediction in NeuralIL. Also the dataset includes several high symmetry structures,
which allow to verify that fundamental symmetries are correctly modeled. This can
readily be appreciated in figure 4.2.

To also have more realistic test case, models were also trained on a second dataset
of Zirconia ZrO2, used in [33]. The dataset, which will be referred as ZrO2 Defect,
contains a total of 10103 structures spanning four crystal systems. For each system,
isotropic strains of −2%, −1%, 0%, 1%, 2% were applied, additionally some structures
contain a single oxygen vacancy. Representative unit cells are shown in figure A.3
and figure A.4. More details about the composition of ZrO2 Defect are available in
table 4.1.

For faster training and testing, a subset, denoted as ZrO2 NoDefect, that only contains
394 cubic unstrained Zr32O64 structures without oxygen defects, was also used. An
example structure is shown in figure 4.4 (a).

The distributions of BECs for ZrO2 Defect and ZrO2 NoDefect are shown in fig-
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Figure 4.1: Histogram showing the distribution of BECs calculated in VASP for a dataset consisting of
224 water dimers.

Figure 4.2: One high symmetry structure from the water dimer dataset. All atoms lie inside a plane
and a C2-axis goes through the oxygen atoms.

Table 4.1: Composition of ZrO2 Defect. Structures sampled from MD runs at 1300K, 1500K, 1700K
and 1900K. All structures come with isotropic variations of the lattice constant (−2%, −1%, 0%, 1%,
2%), some include a single oxygen vacancy.

Crystal system mp-ID Structures without defect Structures with defect
Cubic mp-1565 1978 1942

Tetragonal mp-2574 1999 2000
Monoclinic mp-2858 0 1587
Tetragonal mp-754403 0 597
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4.2. Born effective charge prediction using forces

ures 4.3 and A.1, respectively. In contrast to the water dimer system, which mainly
had covalent bonding, the ionic bonding in ZrO2 causes the off-diagonal and diagonal
BECs to be clearly separated. The off-diagonal components show a broad distribution
around zero, indicating that they are not negligible for the dynamics of the system
and a treatment of charges as static charges does not fully capture the physics of the
system. The arithmetic mean for the diagonal elements of the BEC is approximately
−2.8 e for oxygen and 5.6 e for zirconium. Compared to the formal charges of −2 e and
4 e respectively, this highlights the BECs anomalous behavior in zirconia.
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Figure 4.3: Histogram showing the distribution of BECs calculated in VASP for ZrO2 Defect

The third dataset used in this thesis is Li3PO4, taken from [33, 46]. Li3PO4 is a widely
used solid electrolyte [34]. The dataset consists of 5000 tetragonal pristine Li12P4O16

structures that were sampled from an AIMD run at 2000K. The distribution of BECs
is shown in figure A.2, and one example structure is displayed in figure 4.4 (b).

4.2 Born effective charge prediction using forces

A simplified approach for predicting BECs consists calculating only a single column
of the full tensor, as demonstrated in [46]. For many scientifically relevant systems,
fixing the electric field in one direction does not consist a serious limitation since this
often represents realistic conditions. From formula 3.2 we know that the tensor vector
product of a given BEC Z∗ and some arbitrary electric field E⃗ yields the force ΔF⃗ext

induced by the electric field. By fitting ΔF⃗ext with neural network force fields (NNFFs)
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4. Methodology

(a) (b)

Figure 4.4: (a) Example structure from ZrO2 NoDefect with cubic symmetry. (b) Orthorhombic
example structure from the Li3PO4 dataset. Phosphorus is represented in orange, lithium in purple.

in a appropriate coordinate system, one is effectively fitting one column of the BEC
tensor. However this approach showed to be problematic and a detailed discussion will
be given in chapter 5.

Training

To fit ΔF⃗ext two models were used: NeuralIL [14] and MACE [5]. For NeuralIL
nmax was set to 6 and ResNet style layers of size [128, 64, 64, 64, 32, 16] in the order
input layer to output layer were used. Compared to the standard [64, 32, 16, 16, 16] this
might seem exaggerated and prone to overfitting, but it serves as a proof of concept to
show whether or not the BEC prediction relying solely of forces is a viable option. The
cutoff radius for the local descriptors was set to 3.5Å enabling each atom in a water
molecule to have the remaining 2 atoms in it’s receptive field. The dataset was split into
90 % for training and /10 % for validation. Since no Epot was available due to there
being no energy that could be assigned to ΔF⃗ext, λE in the loss function was set to zero
and λF to one. The log cosh parameter of the forces was set to 0.2 eV Å−1. Training
lasted for 21 epochs, each split into 8 batches and the model with the lowest force root
mean square error (RMSE) was saved.

For MACE, which is an equivariant GCNN, the same train test split and number of
epochs was used. The hidden irreducible representation parameter was set to ”256x0e +
256x1o” meaning that for each node of the graph neural network 256 scalar features and
256 three dimensional vector features are stored. The training lasted for 1000 epochs
and the model with lowest force RMSE was saved.

20



4.3. Born effective charge prediction in unified framework

4.3 Born effective charge prediction in unified framework

To make the unified differentiable learning of electric response outlined in [16] work
with NeuralIL, 3 important modifications have to be made: First, the model needs
to take an additional input, the 3-dimensional electric field vector E⃗ to make Epot

an electrochemical potential energy [51]. Second, the mixed derivative as defined in
equation 3.3 needs to be implemented within the JAX formalism and finally the loss
function (equation 2.15) needs to be adapted to include BECs.

Electric field descriptors

Incorporating the electric field E⃗ into the model is done indirectly, by defining a func-
tion to generate electric field descriptors. In the context of this thesis, electric field
descriptors refer to a set of numbers that encodes information about the electric field
in a way that is physically meaningful and suitable as input to a NN.

It might not be clear immediately why it is necessary to encode E⃗ into a set of descriptors,
since it is a fixed size vector and could therefore be fed into the NN directly. But
as discussed in section 2.2, the answer lies in the preservation of E(3) symmetries.
For example, rotating the entire system including E⃗ should not affect the descriptors,
whereas rotating only the atomic positions while keeping E⃗ fixed should in principle
produce different descriptors.

In the modified NeuralIL architecture (figure 4.5), the newly introduced input E⃗ is
first processed by a descriptor generator function (shown as turquoise circle), which
outputs nel electric field descriptors for each of the natom atoms in the system. These
descriptors are then concatenated with the spherical Bessel descriptors and the element
embeddings to make up the complete NN input. The specific choice of electric field
descriptors is not unique, and the design and analysis thereof constitutes a major part
of this thesis.

Identity descriptors As a baseline, the Identity descriptors are defined as the
identity operation on E⃗ , i.e the electric field is directly concatenated to the spherical
Bessel descriptors and element embedding:

pEi = E⃗ (4.1)

While this choice is straightforward to implement, it fails to satisfy the desired symmetry
requirements as discussed in chapter 5.

Radial descriptors A simple set of descriptors that fulfills the basic requirement
of rotational invariance is given by the Radial descriptors. They are constructed by
summing over the dot product of inter atom distances R⃗ij with E⃗ , weighted by radial
basis functions gn,l (with l = 0), that are also used in the spherical Bessel descriptors.
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Figure 4.5: Incorporation of E⃗ as an input of NeuralIL. Modified from [38].

The parameter nE
max determines the maximum order n of the radial basis functions

used, and is chosen independently from nmax for the spherical Bessel descriptors.
��E��2

2

is appended to the pE⃗in to obtain the electric field descriptors:

pEin =
�
j ̸=i

E⃗ · R⃗ijgn,0 (Rij) ,
��E⃗��2

2
= E⃗ · E⃗ (4.2)

Radial2 descriptors One drawback of Radial is that both the radial basis functions
used as weighting as well as the dot product E⃗ · R⃗ij depend on the magnitude of R⃗ij .
Ideally, distance dependence should be encoded exclusively in the radial basis functions,
which were designed for this purpose. To remove the extra distance dependence, a
modified version, Radial2, that divides the dot product by Rij was developed:

pEin =
�
j ̸=i

E⃗ · R⃗ij

Rij
gn,0 (Rij) ,

��E⃗��2
2
= E⃗ · E⃗ (4.3)

Figure 4.6 illustrates the distance dependence of the two descriptor types Radial and
Radial2 for nE

max = 4. In Radial2 (on the left), the division by Rij cancels out
the distance dependence of the dot product, leaving only the damped oscillation like
behavior from gn,0 (the spherical Bessel functions used in the construction of the radial
basis functions are indeed solutions that come up in differential equations related to
wave propagation). As a result the descriptors become less sensitive when neighboring
atoms move further away from the central atom.

In Radial (on the right), the extra linear dependence on Rij remains, leading to almost
no decrease in magnitude within the cutoff radius Rc. As a consequence, neighboring
atoms near Rc influence almost in the same manner than as nearby atoms. For encoding
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4.3. Born effective charge prediction in unified framework

the structural information the smooth decay present in Radial2 is physically more
meaningful. Since atoms beyond Rc are ignored it is only natural that atoms close to
Rc contribute less to the descriptors, and in a nonlinear way also to Epot.
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Figure 4.6: Comparison of the effective radial basis used in Radial2 on the left and Radial on the
right.

Angular descriptors A different type of descriptor can be derived by modifying the
angular part of the spherical Bessel descriptors. Starting the definition of the spherical
Bessel descriptors in equation 4.4, which is equivalent to equation 2.13 with cos γjik
replaced by R⃗ij · R⃗ik/ (RijRik). R⃗ik is replaced by E⃗ to yield equation 4.5. This can be
interpreted as replacing one of the neighbors in the original double sum with a pseudo
atom located at a distance E⃗ from the central atom i (figure 4.7), moving from the
original double sum over two neighbors (a) to a single sum over one neighbor and a
pseudo atom (b).

In practice, since all quantities are evaluated in the limit of E⃗ = 0, the denominator in
equation 4.5 becomes zero, leading to division-by-zero errors. Additionally, the deriv-
ative of gn,0 at zero is undefined. To circumvent these problems, equation 4.5 is further
simplified to equation 4.6. This modification changes the argument of the Legendre
polynomial Pl so that it no longer corresponds to the cosine of an angle, breaking the
definition of the descriptors as products of of expansion coefficients. Nevertheless, des-
pite loosing the rigorous derivation, the Angular descriptors are easy to implement,
and the NN might still be able extract more information from Angular than from
Radial.
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(a) (b)

Figure 4.7: Derivation of Angular. One of the neighbors, k, in the double sum (a) is replaced by a
pseudo atom at a distance E⃗ from i (b).
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OddAngular descriptors The derivative of Pl at zero vanishes for all even values of
l. As a direct consequence, all descriptors with even l do not contribute to the prediction
of dielectric quantities. To address this, OddAngular, a variant of Angular that only
retains odd l, was implemented. This approximately halves the number of descriptors
without loosing any information.

pEiJnl =
2l + 1

4π

�
j∈J
j ̸=i

gn−l,l (Rij)Pl

�
R⃗ij · E⃗
Rij

�
, l ∈ 2N+ 1 (4.7)

Element descriptors The Radial2 descriptors can also be generalized to include
element specific information. For each element type J in the system a separate channel
is created:

pEiJn =
�
j∈J
j ̸=i

E⃗ · R⃗ij

Rij
gn,0 (Rij) (4.8)

As can be seen from the definition, summing over the different J directly reverts the
descriptors back to Radial2, with a considerable amount of information lost on the
way.

24



4.3. Born effective charge prediction in unified framework

EBessel descriptors Finally, a more direct integration of the electric field into the
spherical Bessel descriptors is given in equation 4.9. This form of descriptors, that
will be referred to as EBessel, includes the electric field as a linear perturbation to
the spherical Bessel descriptors. For E⃗ = 0, they revert back exactly to the modified
spherical Bessel descriptors (see equation 2.13) used in NeuralIL, making EBessel
an augmentation of the original descriptors with electric field sensitivity rather than
appending separate descriptors. To allow for varying orders in the encoding the electric
field similar to Radial, here nE

max < nmax is defined as the maximum order of n where
the linear perturbation term is included in the descriptors. To put it differently, for all
n where nE

max < n ≤ nmax, equation 2.13 is used instead of 4.9.

pEiJKnl =
2l + 1

4π

�
j∈J
j ̸=i

�
k∈K
k ̸=i

gn−l,l (Rij) gn−l,l (Rik)Pl (γjik)

�
1 +

R⃗ij · E⃗
Rij

+
R⃗ik · E⃗
Rik

�
(4.9)

Higher order derivatives in JAX

Since JAX used in NeuralIL is a framework of composable function transformations,
is relatively uncomplicated to get higher order derivatives. It only is a matter of combin-
ing function transformations. Given a function calc_potential_energy(positions, types,

cell) that returns the potential energy of a system from atom positions, atom types
(elements) and the unit cell size. The gradient with respect to the atomic positions ,
i.e negative forces, can be calculated with:

1 gradient = jax.grad(calc_potential_energy , argnums=0)

In NeuralIL, calc_potential_energy(self, positions, types, cell) represents the whole
NNP, including the generation of spherical Bessel descriptors, the NN layers and sum
over individual Ei to give the function output Epot. For the prediction of dielectric prop-
erties, the function signature is extended to include the electric field E⃗ calc_potential_energy

(self, positions, types, cell, efield). At this stage, how E⃗ is included as an input, that
is, the exact definition of the electric field descriptors is irrelevant, only that E⃗ is treated
as an additional differentiable input. In the following code snipped the actual function
transformations in the modified NeuralIL are shown. self indicates an instance of class

NeuralILDielec which handles learning of dielectric properties:

1 # Gradient of Epot with respect to positions
2 self._calc_gradient_pos = jax.grad(self.calc_potential_energy , argnums=0)
3 # Gradient of Epot with respect to efield
4 self._calc_gradient_efield = jax.grad(self.calc_potential_energy , argnums=3)
5 # Function to evaluate Epot and its gradients in one go (gradient with

positions and efield)
6 self._calc_value_and_gradients = jax.value_and_grad(
7 self.calc_potential_energy , argnums=[0,3]
8 )
9 # Second derivative of Epot with efield
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4. Methodology

10 self._calc_hessian_efield = jax.hessian(self.calc_potential_energy , argnums
=3)

11 # Mixed derivative of Epot with positions and efield
12 self._calc_jacobian_gradientpos_efield = jax.jacfwd(
13 self._calc_gradient_pos , argnums=3
14 )

Note that jax.grad() performs reverse-mode automatic differentiation, which is more
efficient when the target function has more inputs than outputs. This is ideal for the
function computing Epot since it only has one scalar output. The computation of BECs
requires a mixed derivative with respect to atomic positions and the electric field (equa-
tion 3.3). This is achieved by first applying jax.grad() on calc_potential_energy for the
second argument, effectively generating self._calc_gradient_pos a function that produces
gradients of the Epot with respect to the positions. self._calc_gradient_pos is then dif-
ferentiated with respect to E⃗ using jax.jacfwd which performs forward-mode automatic
differentiation. Forward-mode automatic differentiation is more efficient for functions
where the dimension of the inputs is similar or smaller than that of the outputs, which
is true for self._calc_gradient_pos. Thus, combining reverse-mode automatic differenti-
ation with forward-mode differentiation of calc_potential_energy allows to obtain BECs
efficiently.

Loss function

The loss function from equation 2.15 is extended with an additional term, ΔL (equa-
tion 4.11), which accounts for quantities related to the electric field. Here,

��·��
F

denotes
the Frobenius norm. Each of the batch averages (⟨·⟩) is weighted with the corresponding
weight factor (λZ , λP and λα for BEC, polarization and polarizability respectively). To
account for the multivaluedness of the polarization in periodic systems, as described in
the modern theory of polarization [48], the polarization loss is defined with the minimal
image convention. An integer vector k ∈ Z3 is chosen such that

ΔP⃗MIC = min
���P⃗predicted − P⃗reference + diag(k)ΔP⃗q

��� (4.10)

is minimized, where the polarization quantum ΔP⃗q is defined as the product of the unit
cell size a⃗ with the elementary charge e. This can alternatively be regarded as a folding
of P⃗predicted − P⃗reference to the range

�
−0.5ΔP⃗q,+0.5ΔP⃗q

�
.

The log cosh parameters for each of the quantities in the loss function are chosen to
approximately match the RMSE of that quantity in the final trained model. As already
noted in [38], the exact value of these parameters has a negligible effect on performance.
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4.3. Born effective charge prediction in unified framework

This could be confirmed again in hyperparameter tests.

ΔL =λZ
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Training - water dimer

For water dimer dataset the loss weights λZ , λα, λF , λP , λE in the modified loss
function L + ΔL were set to 10, 10, 2, 2, 1 respectively, assigning higher weights for
quantities representing higher-order derivatives in accordance to [16]. The parameters
of the log cosh loss that determines the change from quadratic to linear behavior were
set to 0.05, 0.03, 0.15, 0.05, 0.02. The cutoff radius was 3.5Å, with nmax = 4 and the
default NN layers of [64, 32, 16, 16, 16]. Again a dataset split of 90 % training dataset
and 10 % validation dataset was used. The training was run for 200 epochs, with the
data split into 8 batches.

Training - zirconia

Since the dataset ZrO2 Defect dataset does not include polarizations and polarizabil-
ities, the corresponding weights in the loss function were set to zero. The parameters of
the log cosh loss were set to 0.1 for BEC, 0.02 for energies and to 0.1 for forces.An extens-
ive hyperparameter testing was conducted using the smaller and therefore faster to train
on ZrO2 NoDefect dataset. The tests showed that the previously used rcut = 3.5Å
was not sufficient, which was to be expected from the bigger interatomic distances. A
cutoff radius of 4.3Å proved to be a good compromise between performance and accur-
acy. Increasing nmax to 8 gave significant performance gains, the number of spherical
Bessel descriptors with that parameter amount to 135, which is comparable to the 150
in [38]. The number of training epochs was increased to 600. While the train/validation
split was left unchanged, with the increased dataset size the number of batches was fur-
ther increased to 16. Also a diversity of different layer widths and depths were tested
for the NN but the default choice remained the best. Deeper architectures showed un-
stable convergence and were prone to overfitting while wider architectures showed no
improvement at all at the cost of a larger model. With higher order derivatives and
more data to fit in general it would have been thinkable that a deeper network or one
with more parameters performs better which interestingly was not the case.
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Chapter 5

Results

5.1 Born effective charge prediction using forces

Fitting forces induced by an electric field, rather than fitting BECs directly, has the
advantage of requiring no modifications to NNFFs. In the current approach, forces in-
duced by 3 electric fields, E⃗x, E⃗y and E⃗z, each with an electric field strength of 2.57V Å−1

and pointing in the x, y and z direction respectively are computed from the BECs and
fitted using an NNFF. The resulting fit of the forces induced by E⃗z can be seen in
figure 5.1. Based on this parity plot alone one might come to the conclusion that pre-
dicting BECs indirectly using forces is a viable strategy. However, that those forces are
fitted correctly is more of a coincidence. This becomes clear when examining figure 5.2
which shows the parity plots for forces induced by E⃗x and E⃗y respectively, both making
it evident that there is a fundamental problem with this approach.

Figure 5.1: Fitting of forces ΔF⃗ext induced by the electric field E⃗z using NeuralIL.
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5. Results

Figure 5.2: Fitting of forces ΔF⃗ext induced by electric fields E⃗x and E⃗y using NeuralIL.

The same fitting procedure was also applied to the NNFF MACE [5], showing very
similar results (see figures B.1 and B.2. To get a better understanding of the underlying
problem, one highly symmetric structure (figure 4.2) and the corresponding forces were
analyzed.

The forces ΔF⃗ext induced by E⃗z, E⃗y and E⃗x can be seen schematically for one of the water
molecules in the high symmetry structure (see figure 4.2) in figure 5.3. First taking a
closer look to the case (b), where the electric field E⃗y is applied: The force on the oxygen
atom points exactly in the opposite direction to the electric field vector while for the
2 hydrogen atoms the forces point approximately in the same direction as the electric
field. Although there is nothing inherently wrong with those forces, it is important
to note that the NNFF has only Cartesian coordinates and atom types as inputs and
therefore has no knowledge of the external electric field. From the perspective of the
NNFF, the molecule is still a perfectly symmetric H2O molecule, even though in reality
the applied electric field E⃗y breaks the horizontal mirror symmetry of the xy-plane.

By design NeuralIL and many other NNFFs respect such symmetries. This means Epot

is invariant under those symmetry operations and the forces transform as normal vectors
in three dimensional space. Because the oxygen lies in the xy-mirror plane, it’s y-force
component has to be equivalent to its mirror, that is, the negative y-force component,
effectively rendering it zero. Similarly the forces acting on the two hydrogen atoms also
need to be the mirror images of each other. Performing a mirror operation followed by a
sign flip yields the corresponding other hydrogen atoms force. Clearly the forces induced
by E⃗y do the opposite of what symmetry demands. All structures in the dataset, while
not perfectly symmetric, have a similar orientation to the example provided before. It
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(a) (b) (c)

Figure 5.3: Induced forces ΔF⃗ext shown schematically for (a) E⃗z, (b) E⃗y and (c) E⃗x .

is not surprising to see results like in figure 5.2 where almost all predictions are close to
zero. The model cannot reproduce forces that violate the symmetry it enforces.

A similar situation arises in case (c) E⃗x: All atoms lie in the yz mirror plane and the
electric field is perpendicular to that. If the electric field is absent, from symmetry,
the x-components of all forces must be zero. Applying an electric field breaks this
symmetry, but here again, this is not something the NNFF can see, which results in
close to zero predictions for all forces as can be seen in figure 5.2.

In contrast, forces induced by E⃗z are fitted reasonably well. This can be explained again
with symmetry. The electric field vector is parallel to both mirror planes, therefore
no symmetries are broken and the forces remain consistent with the models implicit
enforced symmetry.

5.2 Born effective charge prediction in unified framework

In the previous section it was shown that predicting BECs indirectly via forces is not a
viable option. The problem arises from the NNFF that was used respecting the funda-
mental symmetries of E(3). In principle a NNFF that does not respect those symmetries
such as ForceNet [25] could be used. However, this would require considerably more
training data and the the model would have to explicitly learn how rotation affects
forces.

A more efficient approach is the unified differentiable learning of electric response [16],
that was implemented in NeuralIL as part of this thesis. As explained in chapter 4,
three main modifications were necessary:

• Adding the electric field vector as a input to NeuralIL.

• Implementing the corresponding derivatives of Epot to obtain the polarization,
polarizabilities and BECs.

• Changing the loss function to also include polarization, polarizabilities and BECs.
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To include E⃗ as an input first the Identity descriptors introduced in chapter 4 were
first used. Identity only performs the identity operation on the electric field before
concatenating it with the other descriptors. In other words, the electric field vector is
appended to the remaining descriptors without any modification. The performance of
the trained model is shown in figure 5.4 for Epot and forces. For the small dataset of
water dimers considered here, the predictions are highly accurate, as expected. Since
these quantities are not affected by an electric field of zero, the results essentially reflect
the performance of the unmodified NeuralIL. For the prediction of BECs the modific-

Figure 5.4: Prediction of the potential energy Epot and forces F⃗ in the water dimer dataset using the
unified differentiable learning of electric response framework with the Identity descriptors.

ations added in this thesis become relevant. The corresponding parity plot for BECs is
shown in figure 5.5. The diagonal elements of Z∗ denote the response of the system in
the same direction as the perturbation whereas off-diagonal elements represent the sys-
tem’s response in orthogonal directions to the perturbation. Therefore in most systems
the diagonal elements tend to be much larger than the off-diagonal elements. To reflect
this in the parity plots of BECs, diagonal components and off-diagonal components of
the tensor are discerned by assigning different colors.

When predicting BEC with Identity descriptors, we can see that some diagonal com-
ponents get predicted close to zero by the model. Upon closer examination it becomes
apparent that the Z∗

xx, Z∗
yy are the problematic points. This is also the same direction

that also couldn’t be predicted in forces-only approach discussed in section 5.1. Sim-
ilarly the polarization predicted by the model with Identity descriptors fails for the
x and y-components, but accurately captures the z-components. In contrast, the pre-
dicted polarizabilities show good agreement with the DFPT ground truth (figure B.3).
Considering that the water dimer dateset is very small and composed only of highly
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5.2. Born effective charge prediction in unified framework

Figure 5.5: Prediction of BECs in the water dimer dataset using the unified differentiable learning of
electric response framework with the Identity descriptors.

similar structures, it is unlikely that the model itself is not powerful enough to describe
the system. Instead these shortcomings hint to a more fundamental limitation of the
Identity descriptors.

As discussed in chapter 2, descriptors should provide physically meaningful representa-
tion of of an atom’s environment. For NNPs we required the descriptors to be invariant
to rotation, translation and permutation of atoms. How exactly to extend these re-
quirements to descriptors that encode electric field information is best explained with
an example.

The upper half of figure 5.6 shows a water molecule with some applied electric field
E⃗ together with the data flow to the final NNP output Epot. The embedding vector
(purple) only encodes the element type of the central atom The Power spectrum gener-
ator calculates the 2nd generation spherical Bessel descriptors (brown), which depend
solely on atomic positions and element types of the neighbor atoms. Finally, the electric
field descriptors (turquoise), whose functional form is yet to be defined, are intended to
encode the electric field information. These three types of descriptors concatenated are
fed into the NN to yield atomic energies, which are the summed to obtain Epot.

The expected behavior under a uniform rotation of both the atomic positions R⃗i and
E⃗ are shown in the bottom half of figure 5.6. Physically speaking, a such a rotation
leaves the system itself unchanged, only the observer’s viewpoint changes. Therefore
all descriptors should stay unchanged and as a direct consequence Epot invariant. This
requirement immediately invalidates the Identity descriptors. Because they depend
directly on E⃗ , any change in magnitude or direction is going to alter the descriptor
values. In the example shown, rotating the whole system changes the direction of E⃗ .
As a result the descriptor change along with the predicted Epot even though it must
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remain unchanged. While the spherical Bessel descriptors and embedding vector pre-
serve rotation invariance, Identity descriptors violate it, making them fundamentally
unsuitable as electric field descriptors.

Figure 5.6: Depiction of how ideally the descriptors used in the NNP should behave under rotation of
both positions R⃗i and electric field vector E⃗ .

One might consider using a descriptor that depends only on the magnitude
��E⃗��

2
of

the electric field. This is possible in principle and avoids the rotational invariance
problems described above. However, BECs are defined in the limit of zero electric field,
thus the electric fields used during model training and validation are three element null
vectors. The quantities of interest BEC, polarizations and polarizabilities are obtained
as derivatives of Epot with respect to E⃗ at E⃗ = 0. As a result we need differentiability
of Epot with respect to E⃗ which is not given for

��E⃗��
2
. Using instead

��E⃗��2
2

would restore
differentiability at E⃗ = 0, but render all derivatives 0, leaving the model unable to
predict anything else that P⃗ = 0, Z∗

i = 0 and α = 0. This is already an indication that
the electric field descriptors cannot depend solely on E⃗ ; they must take into account
atomic positions as well.

Returning to the water molecule example, we can consider the case where only the

Figure 5.7: Depiction of how ideally the descriptors used in the NNP should behave under rotation of
positions R⃗i.
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5.2. Born effective charge prediction in unified framework

positions are rotated while the electric field vector remains fixed in space (see figure 5.7).
From the molecules perspective, E⃗ now points in a different direction. This very likely
leads to an altered electron density. Since the electron density uniquely defines the
ground-state wavefunction [23] and thus energy, this transformation does not leave the
physical system unchanged. The embedding vector and spherical Bessel descriptors
do not reflect this change, leaving only the electric field descriptors to distinguish the
transformed system from the original system. However Identity descriptors remain
unchanged if E⃗ remains the same, again failing to capture the physics. The same
limitation also applies to descriptors based on

��E⃗��
2

or powers thereof, which would also
not be able to distinguish between these physically distinct configurations.

To make the electric field descriptors invariant under rotation, similar to the example
shown above, an approach analogous to the spherical Bessel descriptors and other local
descriptors can be adopted. Such descriptors only depend on interatomic distances
and the angles spanned by 2 neighboring atoms and the central atom (angle located
at central atom). Because these quantities are independent of the absolute orientation
of the system, they naturally are rotation invariant. The proposed Radial descriptors
(see equation 4.2) implement this by taking dot products of E⃗ and interatomic distances
R⃗ij . It might not be obvious on a first glance why E⃗ · R⃗ij is an appropriate choice for
enforcing rotation invariance, but using the cosine relation

E⃗ · R⃗ij =
��E⃗��

2

��R⃗ij

��
2

cos θ (5.1)

with θ as the angle between the two vectors, it follows that the dot product only
depends on the magnitude of and angle between the vectors. A new parameter nE

max is
introduced which determines the number of radial basis functions to use for the electric
field descriptors, chosen independently of nmax for the spherical Bessel descriptors.

Using nE
max = 5 and training on the water dimer dataset, the prediction of quantities

related to the electric field, namely BECs, polarizations and polarizabilities show good
accuracy. For BEC prediction (figure 5.8), predicted values are in close agreement with
the reference values for both diagonal and off-diagonal tensor components. While no
major improvements are observed for polarizabilities, predicted polarizations are now
considerably more accurate and do not show artifacts such as x and y-components
being predicted close to zero (figure B.5). As expected, energy and force predictions
(figure B.4) remain comparable to those with Identity descriptors.

ZrO2 NoDefect With descriptors at hand that respect symmetry requirements, it
makes sense address a more complex dataset. Using the Radial descriptors, the BECs
of ZrO2 NoDefect can be predicted accurately. Unlike the water dimer,zirconia is an
ionic compound and therefore exhibits a clear separation of diagonal from off-diagonal
tensor components. Setting nE

max to 11 shows good performance. With that nE
max +2 =

13 Radial descriptors are generated. Compared to over 100 spherical Bessel descriptors
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Figure 5.8: Prediction of BECs in the water dimer dataset using the unified differentiable learning of
electric response framework with the Radial descriptors.

for nmax = 8, the impact on inference time is clearly negligible. Further increasing nE
max

showed no increase in prediction accuracy. With this parameters, we obtain predictions
close to the reference values for BECs (figure 5.9) and energy/forces (figure B.6).

Figure 5.9: Prediction of BECs in the ZrO2 NoDefect dataset using the unified differentiable learning
of electric response framework with the Radial descriptors.

Also alternative descriptors were tested using the same parameters. The Radial2
descriptors, where the distance dependence is isolated in the radial basis functions and
that were expected to show superior performance, showed no significant difference to
Radial. Also Element descriptors were used with nE

max = 11. For a system with
2 types of elements such as zirconia, the splitting of descriptors into element channels
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5.2. Born effective charge prediction in unified framework

results in twice as much descriptors as with with Radial. As summarized in table 5.1,
the Element descriptors had an impact on performance: while force RMSE remained
unchanged, the BEC RMSE decreased, indicating that element-specific channels help
to encode more information about the electric field.

Table 5.1: Final validation set performance of NeuralIL models on the ZrO2 NoDefect dataset.
From six trained models the mean performance and the one of the model showing lowest Z∗ RMSE is
shown.

Arithmetic mean of RMSE RMSE of model with lowest Z∗ RMSE
Z∗ (e) F⃗ (eV Å−1) Z∗ (e) F⃗ (eV Å−1)

Radial 0.097 0.080 0.092 0.078
Radial2 0.097 0.082 0.093 0.078
Element 0.091 0.078 0.088 0.078

ZrO2 Defect Table 5.2 and figure 5.10 show the final validation set performance of
several NeuralIL models trained on the ZrO2 Defect dataset. Training runs that
diverged were started again so that in total four converged models for each descriptor
type or other modification are available. Radial descriptors served as baseline to
compare with the descriptors designed in this thesis. Although in principle the choice
of electric field descriptors should not influence force predictions, in practice we observe
a correlation. Models that have low BEC RMSE also exhibit higher force RMSE.

Table 5.2: Final validation set performance of NeuralIL models on the ZrO2 Defect dataset. From
four trained models the mean performance and the one of the model showing lowest Z∗ RMSE is shown.
Models marked with * are trained with a log cosh parameter of 10 e for the BEC and λBEC = 20.

Arithmetic mean of RMSE RMSE of model with lowest Z∗ RMSE
Z∗ (e) F⃗ (eV Å−1) Z∗ (e) F⃗ g(eV Å−1)

Radial 0.183 0.118 0.179 0.115
Angular 0.197 0.114 0.160 0.122

OddAngular 0.181 0.123 0.170 0.119
Element 0.184 0.123 0.156 0.112
Element* 0.183 0.102 0.150 0.101
EBessel 0.143 0..154 0.132 0.156
EBessel* 0.157 0.116 0.150 0.120

The Radial descriptors (with nE
max = 11) achieve BECs predictions with a RMSEs

deviation of around 4 % relative to a reference value of 5 e. In itself, this accuracy could
already be sufficient for MD simulations under electric field, since forces induced by the
electric field under realistic conditions are at least one order of magnitude smaller that
the field-free forces. At this level of accuracy for BECs, deviations from AIMD will
mostly be due to errors in the field-free force predictions themselves. However, upon
closer inspection we can see problematic artifacts: BEC predictions for some oxygen
atoms have unphysical values up to 10 e instead of the expected −2.5 e (figure 5.11).
Although these outliers, that is, those datapoints that lie inside the rectangle from
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Figure 5.10: Final validation set performance of NeuralIL models on the ZrO2 Defect dataset. Visual
representation of data in table 5.2. Models marked with * are trained with a log cosh parameter of 10 e
for the BEC and λBEC = 20.

(−5 e, 0 e) to (−1.16 e, 10 e), amount to ∼ 1000, which is a very small fraction of the
∼ 7 million data points, they can alter the system dynamics in critical moments of a
MD simulation. Interestingly, the force and energy predictions in the same model do
not show any of these artifacts (see figure 5.12), suggesting that Radial descriptors
fail to encode the electric field information adequately. This limitation motivated the
development of descriptors beyond Identity and Radial.

Figure 5.11: Prediction of BECs in the ZrO2 Defect dataset using the unified differentiable learning
of electric response framework with the Radial descriptors.

The Angular descriptors (with nE
max = 8) show inconsistent results. While their best

performing model outperforms Radial, the variability is very big. Since Angular
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5.2. Born effective charge prediction in unified framework

Figure 5.12: Prediction of the potential energy Epot and forces F⃗ in the ZrO2 Defect dataset using
the unified differentiable learning of electric response framework with the Radial descriptors.

are redundant (see chapter 4) this gives the NN an additional burden and can explain
the high variability. Removing the redundancy with OddAngular descriptors (also
nE

max = 8) improves consistency but not the overall accuracy. Also the problem of the
outlier BECs still persists.

Similar results can be seen for the Element descriptors. Large variability across train-
ing runs, but the best models also outperform models using Radial descriptors.

Using the different approach of EBessel (with nE
max = nmax = 8), where the electric

field is introduced as a linear perturbation to the spherical Bessel descriptors, show
consistent improvements in BEC prediction. This gain however, comes at the cost of
much lower accuracy in the force predictions. The parity plot (figure 5.13, B.7) shows
that outliers still remain, although fewer in numbers.

That the outliers remain is to some extent also related to the log-cosh loss, that weights
large deviations less than MSE loss. Those ∼ 1000 outliers may strongly deviate from the
reference value, if fitting those points causes the overall RMSE to increase, the optimizer
will effectively ignore them. To address this issue and include these outliers more in the
training process, the MSE loss was used instead of the log-cosh loss. With the current
log-cosh loss, this can be achieved by setting the log-cosh parameter excessively large
and multiplying the loss by 2 (to account for the 0.5 MSE dependence of log-cosh for
deviations smaller the scale parameter). The implementation in this thesis uses a BEC
log-cosh parameter of 10 e and a weight of λBEC = 20 instead of λBEC = 10. The models
that were trained with the modified loss, EBessel and Element, will be referred to
as EBessel* and Element* respectively.
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Figure 5.13: Prediction of BECs in the ZrO2 Defect dataset using the unified differentiable learning
of electric response framework with the EBessel descriptors.

The modification of the loss proves to be effective. For EBessel* the outliers are
reduced to ∼ 300 and for Element* even down to ∼ 150. This can be appreciated in
figure 5.14 for Element*. Not only the number but also the deviation of outliers is
reduced, making this model much more appropriate for MD simulations under electric
fields than models trained on the unmodified log-cosh loss. Moreover, the MSE loss puts
less weight on small deviations of BEC, which has the effect that the model produces
more accurate forces (see figure B.8), even though for the forces a non modified log-cosh
loss was used.

Figure 5.14: Prediction of BECs in the ZrO2 Defect dataset using the unified differentiable learning
of electric response framework with the Element descriptors. Trained with a BEC log cosh parameter
of 10 e and λBEC = 20.
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5.2. Born effective charge prediction in unified framework

Li3PO4 Finally a set of 5000 pristine Li3PO4 structures was used for training. The
parity plot of BEC prediction for a model using EBessel (with nE

max = nmax = 6)
is shown in figure 5.15. The diagonal components can be decomposed into 3 distinct
regions, corresponding from left to right (negative to positive charge) to oxygen, lith-
ium and phosphorus. While the predictions of oxygen and phosphorus do not deviate
considerably from the reference data, lithium displays considerable deviations, with
some values being predicted close to zero or even with the wrong sign. However, those
deviations are less pronounced that those of the ZrO2 Defect dataset.

Figure 5.15: Prediction of BECs in the Li3PO4 dataset using the unified differentiable learning of electric
response framework with the EBessel descriptors.

To remedy the erroneous BEC prediction on the lithium atom, the BEC log-cosh para-
meter was again modified, so as to approximate the MSE loss. The result, shown in
figure 5.17, indicate that even though points with the strongest deviation improved
considerably, the parity plot remains largely unchanged.

Figure 5.16 shows the model comparison between EBessel and EBessel*. Similar
to ZrO2 Defect, switching to the MSE loss increases the final BEC RMSE, but more
interestingly, the force RMSE approximately halves. This improvement is also visible
in the parity plots for forces and energies(figures B.9 and B.10).
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Figure 5.16: Final validation set performance of NeuralIL models on the Li3PO4 dataset. For each
model, 4 repetitions were carried out. Models marked with * are trained with a log cosh parameter of
10 e for the BEC and λBEC = 20.

Figure 5.17: Prediction of BECs in the Li3PO4 dataset using theunified differentiable learning of electric
response framework with the EBessel descriptors. Trained with a BEC log cosh parameter of 10 e and
λBEC = 20.
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Chapter 6

Conclusion and Outlook

In this thesis, different approaches for predicting BEC using NNPs were explored. In an
initial attempt, an unmodified NNP was used to predict forces induced by an external
electric field, which is equivalent to fitting one column of the BEC tensor. This proved
to be an poor choice: Applying an electric field breaks the symmetries, inducing forces
that inherently cannot be fitted with a symmetry aware NNP.

To overcome this limitation, the unified differentiable learning of electric response
from [16] was implemented in the NNP NeuralIL [38]. Obtaining the BECs as mixed
derivative of the potential energy ensures that the predicted BECs satisfy exact physical
constraints. The implementation required three main modifications: Modifying the loss
function, adding the electric field vector as a model input and extending the derivatives
of Epot to higher order and mixed derivative with respect to positions and the electric
field.

The main focus of this thesis was the development electric field descriptors. Since
NeuralIL uses local rotation-invariant descriptors, the electric field descriptors have
to reflect, how the electric field alters the symmetry. Simple descriptors based on dot
products of interatomic distances and the electric field vector, denoted as Radial in this
work, showed satisfactory accuracy for BEC predictions for simple datasets. However
with larger and more diverse datasets, more powerful electric field descriptors were
needed. Several different types descriptors were designed and tested in the scope of
this thesis. The most accurate descriptors were those that add the electric field as a
linear perturbation to the spherical Bessel descriptors (EBessel). When combining
them with a modified loss function based on MSE, these descriptors had the overall
best performance in providing both accurate BECs and forces, while avoiding outliers.

The unified differentiable learning of electric response framework can also predict po-
larizabilities and polarizations, in addition to the investigated potential energy, forces
and BECs. These additional quantities were only investigated in the implementation
phase for the water dimer dataset, but not when developing more accurate electric field
descriptors. The main conclusions of this thesis therefore only apply to models that
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6. Conclusion and Outlook

predict the potential energy, forces and BECs at the same time, leaving the study of
polarization and polarizability predictions for a future study.

Overall, the results demonstrate that it is possible to obtain tensorial quantities such
as BEC using only rotation invariant descriptors. Moreover, both the electric field
descriptors as well as the spherical Bessel descriptors are strictly local, with a receptive
field of ∼ 5Å, allowing for very efficient predictions and parallelization across multiple
compute devices. This enables us to perform large scale MD simulations under electric
fields and deepen our understanding of electrochemical processes.

It would be of interest to not only assess BEC predictions with simple metrics such as
RMSE or MAE, but also extend this to quantities obtained during MD simulations.
Examples include diffusivities and ion conductivities, both of which have direct relev-
ance for real-world devices such as batteries. Moreover, during MD simulations unseen
configurations are likely to be encountered, allowing us to get a grasp of stability and
transferability of the BEC predictions.
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Methodology
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Figure A.1: Histogram showing the distribution of BECs calculated in VASP for ZrO2 NoDefect
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Figure A.2: Histogram showing the distribution of BECs calculated in VASP for a dataset of pristine
Li3PO4 generated with AIMD at 2000K.
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Figure A.3: One tetragonal structure (mp-754403) from ZrO2 Defect.

(a) Tetragonal (b) Monoclinic

Figure A.4: (a) One tetragonal structure (mp-2574) and (b) one monoclinic structure (mp-2858) from
ZrO2 Defect.
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Appendix B

Results

Figure B.1: Fitting of forces ΔF⃗ext induced by the electric field E⃗z using MACE.
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B. Results

Figure B.2: Fitting of forces ΔF⃗ext induced by electric fields E⃗x and E⃗y using MACE.

Figure B.3: Prediction of polarizations P⃗ and polarizabilities α in the water dimer dataset using the
unified differentiable learning of electric response framework with the Identity descriptors.
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Figure B.4: Prediction of the potential energy Epot and forces F⃗ in the water dimer dataset using the
unified differentiable learning of electric response framework with the Radial descriptors.

Figure B.5: Prediction of polarizations P⃗ and polarizabilities α in the water dimer dataset using the
unified differentiable learning of electric response framework with the Radial descriptors.
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B. Results

Figure B.6: Prediction of the potential energy Epot and forces F⃗ in the ZrO2 NoDefect dataset using
the unified differentiable learning of electric response framework with the Radial descriptors.

Figure B.7: Prediction of the potential energy Epot and forces F⃗ in the ZrO2 Defect dataset using the
unified differentiable learning of electric response framework with the EBessel descriptors.
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Figure B.8: Prediction of the potential energy Epot and forces F⃗ in the ZrO2 Defect dataset using the
unified differentiable learning of electric response framework with the Element descriptors. Trained
with a BEC log cosh parameter of 10 e and λBEC = 20.

Figure B.9: Prediction of the potential energy Epot and forces F⃗ in the Li3PO4 dataset using the unified
differentiable learning of electric response framework with the EBessel descriptors.
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B. Results

Figure B.10: Prediction of the potential energy Epot and forces F⃗ in the Li3PO4 dataset using the
unified differentiable learning of electric response framework with the EBessel descriptors. Trained
with a BEC log cosh parameter of 10 e and λBEC = 20.
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