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Kurzfassung

Für Wechselstrom-Versorgungsnetze stellen oszillierende Schwankungen in der Netzfre-
quenz eine erhebliche Bedrohung für den stabilen Betrieb dar. Die Dämpfung solcher
Oszillationen und damit auch die Stabilität von solchen Stromnetzen beruht in hohem
Maße auf großen mechanischen Trägheitsmomenten von Turbinen und Generatoren in
lokal fokussierten Kraftwerken. Diese traditionellen Methoden der Netzfrequenzdämp-
fung werden allerdings zunehmend durch den wachsenden Anteil erneuerbarer Ener-
gieträger an ihre Grenzen gebracht. Allen voran sind hier die wachsenden Anteile von
Wind- und Solarenergie zu erwähnen, die in verhältnismäßig vielen kleinen Anlagen mit
geringem mechanischen Trägheitsmoment erzeugt werden.
In der vorliegenden Arbeit wollen wir diese Transformation zu erneuerbaren Energie-
trägern vereinfachen und die Stabilisierung von Versorgungsnetzen verbessern, indem
wir kritische Oszillationen nur durch geschickte Aktuierung einer einzelnen Netzwerk-
komponente dämpfen.
Um diesen Ansatz zu untersuchen, haben wir eine Simulationsumgebung aufgesetzt, die
uns nicht nur erlaubt detaillierte Netzmodell zu simulieren, sondern auch Linearisierun-
gen dieses Modells automatisch zu generieren. Mithilfe dieser Linearisierungen entwerfen
wir aktive dämpfende Regler für die wichtigsten Oszillationsmodi des Kundur-2-Area
System. Anhand dieser resultierenden Reglern zeigen wir, dass diese Oszillationen der
Netzfrequenz durch den gezielten Eingriff einer einzelnen Netzwerkkomponente effektiv
gedämpft werden können.
Die vorgestellten Regler bewerkstelligen diese Frequenzdämpfung basierend auf einiger
weniger, sorgfältig ausgewählter Messgrößen von anderen Netzwerkkomponenten und
wirken ausschließlich auf die Erregerspannung des lokalen Synchrongenerators. Den-
noch wurde stets darauf geachtet, dass die verwendeten Entwurfsmethoden auch eine
Anwendung auf Versorgungsnetzen mit Inverter-basierten Netzwerkkomponenten erlau-
ben.
Die erreichte Frequenzdämpfung soll die generellen Möglichkeiten lokaler Aktuierung
aufzeigen und eine Referenz für weitere adaptive oder unabhängigere Ansätze darstellen.
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Abstract

Frequency oscillations in power grids pose a notable threat to the stability of such
systems. The damping of such oscillations and, with it, the operational stability of
power grids, relies to a great extent on large mechanical inertia of turbines and gen-
erators of concentrated power plants. However, the growth of the share of renewable
energy resources in power systems, in particular wind and solar power which introduce
more distributed, low-inertia plants, challenges this traditional way of counteracting
grid frequency oscillations.
In this thesis, we want to facilitate a further transformation towards larger shares of
renewable energy resources and increase the stability of power systems by dampen-
ing hazardous frequency oscillations through clever actuation of just one single grid
participant.
To examine our approach, we develop a simulation framework which allows an inter-
connected analysis of high-fidelity grid models and its linear representations. With this
framework, we design active damping controllers for the most important frequency os-
cillation modes of the Kundur-2-Area System and show that the proposed controller,
installed only in one single power plant, can drastically improve the oscillation behavior
of the entire power grid.
The proposed controllers use only a few carefully selected feedback signals from other
grid participants and achieve their damping performance by actuating only on the
excitation voltage of a synchronous generator. However, the used controller design
methods also allow their application on inverter-based power plants.
Therefore, the resulting damping performances demonstrate the general possibilities
of local actuation and can be referenced as benchmarks for further more adaptive or
independent approaches.
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Chapter 1

Introduction

Due to targets in CO2-emission reduction, as well as financial and strategic reasons,
the share of energy in the European power system coming from renewable sources has
continuously increased in recent decades. And due to the aforementioned reasons, this
growth is projected to further continue. This evolution of the European power grid is
largely driven by wind and solar power, which are the fastest growing energy resources
[1]. The type of energy source is important because, compared to coal or nuclear power
plants, wind and solar power introduce smaller and more distributed plants into the
power system. However, traditional power grid frequency control relies a lot on the
presence of large mechanical inertia of generator rotors from concentrated power plants
[2, 3]. The large mechanical inertia provides energy storage in the form of kinetic
energy and thus can compensate for gid imbalances after component faults or sudden
changes in load demands. Additionally, power generators and consumers are not always
synchronously coupled to each other via the same frequency of the alternating voltages.
If the individual components are connected with power lines of considerable length, the
power lines introduce a noticeable impedance to this coupling. This means the grid
components are connected to each other with a certain degree of flexibility and thus
are able to oscillate against one another. Large mechanical inertia also helps to keep
those oscillation effects less critical and the concentration of power plants reduces the
number of possible oscillation modes. Having said this, we have to consider that the
grid frequency is one of the main indicators of the current power grid stability [4]. The
focus on large power plants as main drivers of the grid frequency allowed manual tuning
of asset control loops to stabilize oscillations within the grid frequency [5, 6]. Tuning
of such stabilizing local control loops for power grids with much more distributed, low
inertia grid participants, like wind and solar power plants, becomes, due to an increased
number of parameters alone, already a much more difficult task though.
As the development of the power grid towards larger renewable energy shares has been
an ongoing process for several decades, researchers came up with a wide variety of
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different approaches for improving grid stabilization. A lot of those approaches are
still based on more traditional power grid structures with reasonably focused inertia
in synchronous generators, whereas others elaborate the impact of low inertia grid
forming power inverter control methods [7], or propose control algorithms which in-
troduce a virtual inertia to the behavior of power inverters [8, 3, 9]. Some focus on
algorithms to optimize parameters of multiple power grid components in a coordinated
way, such as time constants and gains in [6] or virtual masses and damping factors
in [2]. Others again introduce additional active grid components, for example flexible
alternating-current transmission systems (FACTS-devices) with local feedback signals
[10], or selectively add remote feedback signals to enhance the capabilities of conven-
tional stabilization devices [11, 12]. The rotor speeds of different generators are also
used as auxiliary feedback signals to further increase the effectiveness of additional
active grid components like phase shifters [13] and power converters [14]. A compre-
hensive overview over similar inverter based approaches using wide-area measurement
signals is given in [15]. Since the processing of such wide-area measurement signals
heavily depends on a communication network for those signals, the authors in [16] even
consider communication delays on additional inverter based grid components and in
[17] put the scope of their work on the fault resistance of such approaches.

In this thesis however, we put a strong emphasis on generating an improvement in the
frequency oscillation stability that can be achieved by just one single grid participant.
Therefore we only integrate our proposed damping controllers into one single generator
unit, whereas the rest of the power grid stays untouched. With this approach we
facilitate the integration of damping controllers into existing grid infrastructure.
We demonstrate that such a single local damping controller can successfully improve
wide-area frequency oscillations. We showcase this on the Kundur-2-Area System,
which is a renowned benchmark example for investigating frequency oscillation [5, 13,
11]. Although we show the approach of a local stabilizing controller only for direct ap-
plication on a synchronous generator, everything in this thesis was developed to allow
a similar application on power converters.

Given this brief introduction to the dynamics of power grids, we provide a more de-
tailed description of the Kundur-2-Area System simulation model and the methods
to design optimal modal damping controllers for it in Chapter 2. In Section 2.1 we
have an in-depth look at the working and implementation of all the components of the
Kundur-2-Area System and how the complete power grid can be simulated in a MAT-
LAB/Simulink framework. Furthermore we discuss how the MATLAB/Simulink frame-
work not only lets us simulate a high-fidelity model of the power grid, but also lets us
generate linearized representations in an automated way. Section 2.2 then contains the
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description of tools to identify specific oscillation modes and evaluate the controllability
and observability of those modes. Finally in Section 2.3 we rewind the linear-quadratic-
regulatory method (LQR) to construct controllers for linear systems after an optimality
principle. We then discuss how we can use the LQR method to construct controllers
to purposefully dampen selected oscillating eigenvalues of the Kundur-2-Area System.
Further, we also show how this can work not only for a full state feedback, but also if
we only have a selected subset of the full state space available as feedback. In Chapter 3
we apply the proposed damping controllers on the Kundur-2-Area System and present
their effect on the most hazardous oscillation modes. We compare controllers which are
based on a full state feedback to controllers which are only based on a subset of states
available as feedback signals. We showcase with the high-fidelity power grid simulation
model that either of the proposed controllers have a remarkably good damping effect
on the entire power grid, even though they are only installed in one single generator
unit. This is then followed up by the conclusion in Chapter 4.



Chapter 2

Methods

2.1 Modeling of Power Grids
Throughout all analyses considered within this thesis the grid model topology is based
on the original Kundur-2-Area System power grid model [5] and its corresponding MAT-
LAB example implementation [18]. This grid topology can be considered a benchmark
example for investigating oscillation effects between generators and is taken up in many
other works on this topic [13, 11]. An overview of the grid topology is given in Fig. 2.1,
where we can see the locations of the 4 generator unit and the loads as well as the
lengths of the connecting power lines. More detailed illustration of the load and gen-
erator unit setups are given in Figs. 2.2 and 2.3 respectively. Its moderate number of
modeled grid participants provides a good overview over the model, while still model-
ing multiple possible oscillation modes. Those possible oscillation modes can intuitively
be recognized due to their different frequencies. For example the power lines between
generator G1 and G2 are much shorter than the inter-area ones, resulting in a tighter
connection of generator G1 to generator G2 compared to the connection of generator
G1 to G3. Therefore we expect the oscillation between G1 and G2 (in-area-1) to have
a higher eigenfrequency compared to the oscillation between G1 and G3 (inter-area).
Consequently, the different oscillation modes also underlie varying degrees of controlla-
bility for specific system inputs. Intuitively, we expect the in-area-1 mode to be much
more controllable from a control input at generator G1 than the in-area-2 mode, due
to the closer location and tighter interconnection of the oscillation participants.
For simplicity of our grid model we will use symmetric power line lengths and parameters
and identical synchronous generators. The generators are driven by identical steam
turbines and accompanied by likewise identical exciter models.
The excitation systems of generator G2 and G3, as well as G1 only during all the refer-
ence/benchmark simulations, are additionally equipped with a so-called Power System
Stabilizer (PSS) device. Those PSS devices use the generator shaft speed to improve
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Figure 2.1: Illustration of the overall power grid topology of the Kundur-2-Area
System.

the small-signal stability of the power systems through manipulation of the excitation
voltage [5]. Their implementation is discussed in more detail in Section 2.1.2. Gener-
ator G4 is simulated without a PSS device to mimic not perfectly tuned components
in the power grid, due to a natural lack of parameter knowledge or limited financial
possibilities.
Figure 2.3 shows the differences of the PSS configurations between the generator units.
Each turbine-generator unit is rated at 900 MVA and its detailed parameter sets are
taken over from the MATLAB/Simulink example of the Kundur-2-Area System and
listed in Tables 2.1 to 2.6. In the initial state the power grid is running at approximately
75% of its rated power capacity. The initial operating points of each generator can be
found in Table 2.2.
Contrary to the power line distances and the generators, the grid loads are asymmetri-
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Figure 2.2: Illustration of the setup of the individual loads. MW denotes the
active, MVAR the inductive reactive and -MVAR the capacitive
reactive power ratings.

cally distributed. This leads to a permanent power transfer over the inter-area lines and
lets us investigate the influence of the inter-area oscillations on the usage of the power
transfer capacities. The rating of the loads is retained from the MATLAB/Simulink
implementation of the Kundur-2-Area System. For the investigation of the transient
grid behavior due to loadsteps the loads in Area 1 and in Area 2 are each composed by
a base load and purely active switched load in.
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Figure 2.3: Illustration of the setup of the individual generator units.
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2.1.1 Synchronous Machine Model
All of the four, as stated before, identical turbine-generator units use externally excited
synchronous generators, which is the standard machine used in high power generator
units. The state space model for such an electrical machine has two input variables. One
is the power or torque coming from the turbine shaft and the other is the excitation
voltage coming from an external supply (excitation system or exciter). The states
corresponding to the synchronous machine model can be further subdivided into a
mechanical model and an electrical model.
The mechanical model is composed by the equation of rotational inertia of the generator
rotor, including torque components depending on the rotor angle and torque compo-
nents depending on the rotor angular velocity. This leads to a second order differential
equation, usually referred to as the swing equation [5, 19, 20]. As power grids usu-
ally have to run within relatively tight margins of voltage frequency, which, by a fixed
scaling factor, corresponds to the generator rotational speed ωr, the equations of the
mechanical generator model are often more conveniently written in per-unit deviation
Δωr from the synchronous rotating reference frame frequency ω0, so that we write

Δω̇r = 1
2H

(Tm − Te − KDΔωr) (2.1)

δ̇r = ω0Δωr = ωr. (2.2)

Here Tm denotes the torque input from the turbine shaft. Te is the collective torque
from the electromagnetic effects within the machine and thus from the conversion of
mechanical power to electrical power. 2H corresponds to the per-unit moment of inertia
of the rotor and KD is an additional damping coefficient which is usually applied to
account for oscillation damping losses [5, 2].
The electrical model captures the cross-correlating effects between the excitation volt-
age, the electrical loads and the resulting electrical fields between the generator stator
and rotor, as well as the effects within the stator or the rotor. Those effects are usu-
ally simulated with a state space system using the electromagnetic fluxes in the syn-
chronously rotating dq-reference frame as states. The exact formulation of this state
space system depends on the rotor and stator construction and configuration as well
as the required detail in the simulation. In this thesis we use the MATLAB/Simulink
implementation of such a state space system assuming a round rotor, which is based on
[20] and can be written

dφ

dt
= −(RL−1 + W (ωr))φ + v. (2.3)
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In this notation φ = [φq, φd, φfd, φkd, φkq1, φkq2]T is the state vector of flux linkages,
R and L are the matrices of winding resistances and inductances, and W (ωr) is a
matrix depending on the current rotor speed ωr. We note that the voltage vector
v = [vq, vd, vfd, vkd, vkq1, vkq2]T is an input vector to this state space system of the elec-
trical model. We will pick up on this fact again when discussing the network equation
connecting the individual generators.
The previously mentioned electrical torque Te of the mechanical generator equations
can now be expressed as

Te = φdiq − φqid = φd(L−1φ)q − φq(L−1φ)d, (2.4)

where the currencies id and iq from the dq-reference frame can be expressed using the
corresponding entries of the vector L−1φ.
Until now, we have just elaborated the equations to simulate a single generator unit.
However, we still have to formulate the equations connecting those components to each
other and form the power grid. This set of equations is usually referred to as the Power-
Flow-equations. They can be derived from the first (currents) and second (voltages)
Kirchhoff’s law and depend on the structure of the power grid. Usually the number
of independent grid nodes is smaller than the number of independent loops. For this
reason, writing down the equations for the nodes from first Kirchoff’s law is most often
the preferred way. Using the node admittance matrix Y , we can write this set of
equations as

I = Y V . (2.5)

In this formulation V is the vector of phasor voltages to ground at the nodes 1 . . . n,
and I is the vector of the phasor currents added at the corresponding nodes 1 . . . n.
The entries of the phasor current vector I represent devices connected to the grid such
as generators, converters or nonlinear loads. Whereas the entries of I corresponding
to nodes without such devices, or connecting to constant admittance loads, which are
included in the admittance matrix, are zero. The admittance matrix Y is composed of
the diagonal entries Yi,i, representing the self admittance of the node i, and the mutual
admittances Yi,j between the node i and j [5].
The resulting set of equations is a set of algebraic equations, which have to be fulfilled
at any time throughout the simulation of the power grid. Together with the set of
differential equations of the synchronous generator model, this forms a set of differential-
algebraic equations (DAE) [5, 2].
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In some cases the system of DAEs describing the power grid can be mathematically
transformed into a system of ordinary differential equations (ODE) [2, 6, 21]. This
is also used by the Simulink back-end, when linearizing the power grid model. The
resulting linear state space system therefore only consists of ODEs.
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2.1.2 Additional Grid Components
Steam-Turbine Regulator and Model

The steam turbine model itself is composed of a regulator model, regulating the steam
flow into the turbine, and a model of the conversion of steam flow to mechanical shaft
torque/power. A qualitative overview of the implementation is given in Fig. 2.4.
The regulator model consists of a servo-motor-driven valve model, with a limitation
on opening and closing speed, as well as a limitation on the minimum and maximum
opening state. To correct for control errors due to the speed limits, the regulator uses
a feedback signal of the actual gate position to drive the steam gate into the desired
position. Furthermore, it processes feedback information about the current rotor speed
deviation via a tuned droop control [2].
The power of the steam flow then gets converted to mechanical power through a steam
turbine. The steam turbine is modeled as a series of three stages. Each stage represents
a separate fan and is modeled by a PT1 transfer function. A PT1 transfer function is
a feasibly accurate model of a turbine stage for the purpose of this simulation [22]. It
mainly aims to model the necessary pressure increase within a chamber in front of the
turbine blades, before the increased steam flow results in an increase of torque. In this
thesis 3 turbine stages are used in the simulation, referring to a high-, medium-, and
low-pressure stage of the turbine [6, 23].

Exciter

The exciter model processes feedback signals of the stator voltages in the dq-reference
frame to estimate the terminal voltage of the synchronous generator and to make sure
the requested terminal voltage is met. For the evaluation of the stator voltage signals
a model of a terminal voltage transducer with load compensation is used. The model
of this device is implemented by taking the root-mean-square of the stator voltages
in the dq-reference frame and passing the resulting signal through a low-pass filter [5].
Additionally, the excitor model takes a so-called stabilization voltage into account. This
stabilization voltage is a direct input from a PSS device. If no PSS device is installed
in the generator unit, this stabilization voltage is constantly kept 0. Other than that,
it only consists of a PT1 transfer function with an output saturation, approximating
the response of a voltage regulation device. Figure 2.5 gives a general overview of the
exciter model.
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Power System Stabilizer

As mentioned in the description of the grid topology, generators G2 and G3, as well
as generator G1 for reference simulations, are equipped with a Power-System-Stabilizer
device (PSS). The implementation of the PSS devices used in this thesis use the devia-
tion of the local generator frequency compared to the nominal grid frequency as input.
Over a series of carefully tuned transfer functions [5, 6] a value for the stabilization
voltage is calculated and directly passed to the exciter model. A block diagram of the
used PSS model is shown in Fig. 2.6.

Load

The dynamic load model is implemented as very fast PT1 transfer functions on the
real and imaginary parts of the current pointers. This is important to obtain states
through the linearization of the grid model, which correspond to the active and reactive
loads. For the simulations in this thesis the Three-Phase Dynamic Load - block of the
Simscape/Electrical/Specialized Power System Toolbox is used. In the cases where no
states corresponding to loads in the linearized power grid model were necessary the
Three-Phase Parallel RLC Load - block and the Three-Phase Breaker - block from the
same library, as the dynamic load block, were used.

Transformers and Power Lines

There are two further grid components in the Simulink power grid model. One of which
are the transformers close to the generators, which transform the 20KV terminal voltage
of the generators to the 220kV voltage of the power lines. They are modeled as passive
elements with a resistance and an inductance. For more detail we refer to the Simulink
documentation of the Three-Phase Transformer (Two Windings) model [24].
The last grid component to discuss are the power lines. Obviously the simulation model
of the power lines has to consider an electric resistance per unit length. However, a
more detailed simulation model, especially for long power lines, also has to take an
additional impedance per unit length into account.
For more detailed information on those components it is again referred to the Simulink
documentation of the Three-Phase PI Section Line - and the Distributed Parameter
Line - block [25].
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Figure 2.4: Block diagram of the Steam Turbine Regulator and Model.
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Figure 2.5: Block diagram of the Exciter Model.

Figure 2.6: Block diagram of the Power System Stabilizer Model.
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2.1.3 Simulink/Simscape Model of Power Grid
To ensure the power grid model used for this thesis can be replicated by others we declare
all parameter settings used in the Simulink models of the discussed grid components in
Tables 2.1 to 2.6.

Mechanical input Mechanical power Pm
Rotor type Round
Nominal power, line-to-line voltage, frequency 
[ Pn(VA) Vn(Vrms) fn(Hz) ] [ 900e6  20000   60 ]

Reactances [ Xd Xd' Xd'' Xq Xq' Xq'' Xl ] (pu) [ 1.8 0.3 0.25 1.7 0.55 0.25 0.2 ]
Time constants: d axis Open-circuit
Time constants: q axis Open-circuit
Time constants: [ Tdo' Tdo'' Tqo' Tqo'' ] (s) [ 8 0.03 0.4 0.05 ]
Stator resistance Rs (pu) 0.0025
Inertia coefficient, friction factor, 
pole pairs [ H(s) F(pu) p()] [ 6.5 0  4 ]

Initial conditions 
[ dw(%) th(deg) ia,ib,ic(pu) 
pha,phb,phc(deg) Vf(pu) ]

[ 0 -31.4247 0.784453 
0.784453 0.784453 2.7401 
-117.26 122.74 1.83395 ]

Generator type PV
Active power generation P (W) [ 700e6 ]
Minimum reactive power Qmin (var) -inf
Maximum reactive power Qmax (var) inf

Parameters of the Synchronous Generator Model

Table 2.1: Parameters used to configure the Simulink-block of the Synchronous
Generator Model.

As mentioned before, the set of equations needed to describe a power grid is composed
of differential and algebraic equations, making it a DAE system. To incorporate those
algebraic equations into a Simulink simulation, one needs a suitable solver. This is what
the Simscape engine provides. In rough terms the voltage and current signals are not
transferred between components using standard Simulink signal links, but are mapped
into the power system solver, which takes care about the algebraic power flow equations
corresponding to the physical links [26].
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Generator type Tandem-compound (single mass)
Regulator gain, perm. droop, dead zone 
[ Kp Rp(pu) Dz(pu) ] [ 1 0.05 0 ]

Speed relay and servo-motor time constants 
[ Tsr Tsm ] (s) [ 0.001  0.15 ]

Gate opening limits 
[ vgmin,vgmax (pu/s) gmin,gmax (pu)] [ -0.1 0.1  0  4.496 ]

Nominal speed of synchronous machine (rpm) 3600
Steam turbine time constants [ T2 T3 T4 T5 ] (s) [ 0 10 3.3 0.5 ]
Turbine torque fractions [ F2 F3 F4 F5 ] [ 0 0.36 0.36 0.28 ]
Initial power Pm0 (pu) Generator Unit 1 0.7778
Initial power Pm0 (pu) Generator Unit 2 0.7777
Initial power Pm0 (pu) Generator Unit 3 0.798889
Initial power Pm0 (pu) Generator Unit 4 0.7778

Parameters of the Steam-Turbine Regulator and Model

Table 2.2: Parameters used to configure the Simulink-block of the Steam Tur-
bine and Regulator Model.

Low-pass filter time constant Tr(s) [ 20e-3 ]
Regulator gain and time constant [ Ka() Ta(s) ] [ 200 0.001 ]
Exciter [ Ke() Te(s) ] [ 1 0 ]
Transient gain reduction [ Tb(s) Tc(s) ] [ 0 0 ]
Damping filter gain and time constant [ Kf() Tf(s) ] [ 0 0 ]
Regulator output limits and gain 
[ Efmin, Efmax (pu), Kp() ] [ -12.3 12.3 0 ]

Initial values of terminal voltage and field voltage 
[ Vt0 (pu) Vf0(pu) ] [ 1 1.83395 ]

Parameters ot the Exciter Model

Table 2.3: Parameters used to configure the Simulink-block of the Exciter
Model.
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Sensor time constant: [ 15e-3 ]
Gain 30
Wash-out time constant: 10
Lead-lag #1 time constants: [ Tnum Tden ] [ 50e-3 20e-3 ]
Leag-lag #2 time constants: [ Tnum Tden ] [ 3 5.4 ]
Output limits: [ VSmin VSmax ] [ -0.15 0.15 ]
Initial input 0

Parameters of the PSS Model

Table 2.4: Parameters used to configure the Simulink-block of the Power Sys-
tem Stabilizer Model.

Winding 1 connection (ABC terminals) Delta (D1)
Winding 2 connection (abc terminals) Yg
Type Three single-phase transformers
Nominal power and frequency [ Pn(VA) , fn(Hz) ] [ 900e6 60 ]
Winding 1 parameters 
[ V1 Ph-Ph(Vrms) , R1(pu) , L1(pu) ] [ 20e3 1e-6 0 ]

Winding 2 parameters 
[ V2 Ph-Ph(Vrms) , R2(pu) , L2(pu) ] [ 230e3 1e-6 0.15 ]

Magnetization resistance Rm (pu) 500
Magnetization inductance Lm (pu) 500

Parameters of the Transformers

Table 2.5: Parameters used to configure the Simulink-block of the Transformer
Model.

Positive- and zero-sequence resistances 
(Ohms/km) [ r1 r0 ] [ 0.0529 1.61 ]

Positive- and zero-sequence inductances 
(H/km) [ l1 l0 ] [ 0.00140318 0.0061 ]

Positive- and zero-sequence capacitances 
(F/km) [ c1 c0 ] [ 0.00245557 5.2489e-9 ]

Frequency used for rlc specification (Hz) 60

Parameters of the Power Lines

Table 2.6: Parameters used to configure the Simulink-block of the Power Line
Model.
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2.1.4 Phasor Simulation
At this point we have to mention the simulation mode with which the simulations
of the power grid model were carried out. The Simulink/Simscape not only allows
simulation by continuous or discrete time integration, but also provides a so-called
phasor, or frequency-and-time simulation mode. To apply this phasor simulation mode,
the model has to have a single nominal frequency. All of the model variables are then
defined with respect to this nominal frequency. This allows the solver to increase the
step size compared to the time-based mode. Consequently, when applicable, the phasor
simulation mode speeds up the simulation. However, we have to consider that this
speed-up comes with decreased simulation accuracy of high frequency effects.
But as the targeted frequency oscillations of this thesis are in the range of 0 − 5Hz,
and therefore even much slower than the nominal grid frequency (60Hz), the phasor
simulation mode is assumed to be sufficient and was used in all simulation runs.
We also have to point out, that the simulation mode selection changes the implemen-
tation of the grid components. Although we consider the effects of those changes negli-
gible for the simulation results, they can have other impacts on the following presented
methods for generating model linearizations. We declare that we tested and used all of
the methods from Sections 2.1.5 and 2.1.6 only on implementations using the phasor
simulation mode.
For more detailed information on the phasor or frequency and time simulation mode
we refer to the MATLAB/Simulink documentation [27].
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2.1.5 Linearizing Simulink Models
To analyze our power grid system in terms of observability, controllability or to design
a feedback controller for it, we want to use the immense range of linear analysis tools.
However, up until now we just set up an nonlinear Simulink simulation model, but do not
have a linearized system representation at hand. For these cases MATLAB/Simulink
provides an extraordinarily practical tool, which lets us easily generate linearizations
of Simulink models at valid operating points. This also works for simulations modeled
within the Simscape framework. This feature can be found in the so-called ‘Model
Linearizer App’ which also provides a graphical user interface [28].
For our application we mainly need to know how to define an operating point for our
linearization, how the states of our linearization are found, and how the software handles
certain blocks like signal-limitation blocks.
First of all we provide a set of initial conditions to the simulation, which might be close
enough to an actually stable operating point, but not exact. Therefore, we expect to
need an initialization period at the start of our simulation, to find an actual stable
operating point. After this initialization phase of the simulation, we can linearize the
system and get a linear model which is able to run stable at the current operating point.
For this reason, we use the feature ‘Linearize at timestep’, which lets us define a certain
point in time, within the simulation timespan, at which the model gets linearized. Here
we chose to linearize at 9 second into the simulation, which is well after the initialization
phase and before any loadsteps.
Next, we have to care about blocks, which introduce nonlinearities into our model.
Those blocks are usually treated as simple gain blocks throughout the linearization,
where the gain factor is evaluated from the current gain of the nonlinearity. This also
applies for signal-limitation blocks. We can notice that when, for example, we can
increase the steam flow to the steam turbine much faster in the linearized model, than
we would be able to do in the nonlinear Simulink model. During the subsequent analysis
of the linear model, we have to keep in mind that the linearization, therefore, might
suggest a significantly different behavior of the linear model compared to the nonlinear
model.
Last but not least, we need to know exactly what blocks from our model become states
in state space representation. We need to know this, because we want to provide a
state feedback, which means to draw a signal link from every block, creating a state,
to the controller we want to design. In short terms every output of an integrator-block
and every state of a state-space subsystem is a state of the overall model. However,
especially with state-space subsystems we do not have direct access to the inherent state,
but only to the output of the block. This distinct difference becomes very important
if a state-space subsystem has a C-matrix which is not an identity matrix or has a
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nonzero D-matrix (assuming a state-space system ẋ = Ax + Bu and y = Cx + Du).
The output of such a block obviously does not correlate with the state of the block,
and we have to account for that to generate a meaningful feedback signal.
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2.1.6 Handling feed-through Systems
As previously discussed, some model states of the Simulink model are not directly
available as we can only access the output of blocks that introduce states to our model.
However, in the following proceedings we want to apply a full state feedback controller
to our Simulink model, hence we have to either provide state feedback signals or account
for the difference between model states and block outputs within the controller gains.
If we place so-called ‘Output Measurement’-points at every feedback signal for our
controller, the ‘Model Linearizer App’ generates an output y and the corresponding
row of the C-matrix of the linearized system. At this point we might notice that the
linearized system has rows of its C-matrix which contain more than just one single
nonzero entry and might also be different from 1. These rows indicate states that are
not directly accessible in our Simulink model. There are two general approaches to
resolve the mismatch of model state signals to block output signals. The first one is
to change the implementation of the Simulink model in order to obtain direct access
to the model state signals. The other approach, which was chosen for this thesis, is
to introduce a similarity transformation for the linearized system so the states of the
transformed linearized system correspond to the block outputs available in the Simulink
model. This approach therefore accounts for the not directly available states within the
controller gains, which are received through methods on the transformed linearized
model.
In the next section we will discuss how to construct this similarity transformation men-
tioned above. We already noted how we gather information about the composition of
our available block outputs by placing ‘Output Measurement’ points on all our feed-
back signals. After linearization, this gives us a model with exactly as many outputs
as states.

ẋlin = Alinxlin + Blinu and ymeas = Clinxlin (2.6)

We now want to transform this linear system into a system where the states corre-
sponding exactly to the outputs of the original system, so that

ẋsig = Asigxsig + Bsigu and ymeas = Csigxsig (2.7)

whereas ymeas = xsig shall hold true (⇒ Csig = I).
This requirement immediately leads us to the required similarity transformation matrix,

Clinxlin = Csigxsig = xsig ⇒ xlin = C−1
lin Csigxsig = C−1

lin xsig (2.8)

which is the C-matrix of the original linear system (or its inverse respectively).
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By inserting this similarity transformation into the originally linearized state space
system Eq. (2.6)

C−1
lin ẋsig = AlinC−1

lin xsig + Blinu ⇒ ẋsig = ClinAlinC−1
lin xsig + Blinu (2.9)

we can evaluate the transformations of the original A and B matrices

Asig = ClinAlinC−1
lin and Bsig = ClinBlin (2.10)

and can define a matrix Csig according to our needs.
The transformed linear system allows us to design a linear controller and be sure the
controller can handle the block outputs as state feedback signals when applied on the
Simulink model.
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2.1.7 Loadstep Scenarios
In this section we define the testing scenarios used to evaluate the performance of the
designed controllers. We defined two scenarios for different purposes. The first scenario
is set up with a single loadstep to evaluate the damping performance of the controller.
The second defined scenario aims to evaluate the controller behavior on a wide range of
operating conditions. Hence we use it to investigate the controller stability throughout
a broader range of nonlinear system behavior. For this reason, the second scenario
contains a series of loadsteps from both loads as well as changes of the generator power
output references.
The single loadstep scenario includes a sudden increase of load at t = 10 sec (after an
initialization phase of the simulation) introduced through either Load 1 or Load 2. The
power demand increase accounts for approximately 13% (360MV) of the overall grid
rating, which increases the overall grid capacity utilization from 75% to 88%. This
is set up to put relatively high stress on the grid and force a significant grid frequency
drop. Following the load increase the reference power is only increased at generator 2
with two consecutive 5% steps at t = 15s and t = 20s.
This unsophisticated compensation of the overall power balance was done for two rea-
sons.
The first reason is that reference power changes on the generator unit setup of this
thesis only effect the grid frequency very slowly. This is mostly due to the limitation
on the steam flow rate of change in the nonlinear model, which is necessary to consider
the structural loads on the steam pipes. Hence, the resulting impact of reference power
changes can be considered too slow to effect the targeted frequency oscillations. There-
fore neglecting a reference power change during a short period after the loadstep does
also barely limit the damping performance. The second reason is to keep the complexity
of the model down by avoiding an additional controller for the reference power with its
own tuning. Furthermore, one might then also consider limitations of the operational
framework, like different reserve capabilities of the individual plants. All of which can
be neglected due to the first reason.
The scenario for testing a wider range of operating conditions contains a series of
loadsteps from both loads as well as changes of the generator power output references.
The loadsteps are timed in a way that they take the power grid from approximately
50% of the grid capacity rating up to 100% during which also different power transfer
loads from the inter-area power line connection are tested.
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The output power references of the four generators are adapted with a slight timeshift
to the loadstep. The order of magnitude of reference changes is chosen to approximately
match Pinput = Poutput, with Pinput being the sum of all power inputs and Poutputs the
sum of all power consumptions. Whereas this is a feasible assumption in general, it is
also necessary to keep the grid frequency within a feasible range.
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2.2 Controllability and Observability of Modes

2.2.1 Identification of Oscillation Modes
In the following section we discuss the methods used in this thesis to identify and further
analyze certain oscillation modes. This will include identification of poles based on an
approximate measure of their eigenfrequency, or the composition of their corresponding
eigenvector. We will further discuss the theoretical measures of how well we can actuate
on some oscillation modes as well as how well we are able to recognize them through
specific sets of feedback signals.
As the target of this work is to design a controller which specifically dampens oscillations
between generators of a power grid, and we already have a linear system representation
of this power grid, we first have to identify the poles or eigenvalues of this linear system
responsible for the unwanted oscillations. Once we have identified those poles, we can
design a control law, which decisively moves those poles in a way, so that the respective
oscillation modes of our system become much more damped.
To identify the eigenvalues of the inter-area oscillation mode, we can get a first hint
by measuring the frequency of the observable oscillations in the simulation results of a
loadstep response from the original (reference) power grid configuration, Fig. 2.7.
A measurement of approximately 0.63 . . . 0.67 Hz corresponds only to a slightly damped
polepair located at ±3.9i . . . ±4.2i. Therefore assuming the poles at −0.26 ± 4.04i

(frequency f = 0.64 Hz and damping ratio ζ = 0.06) are responsible for this oscillation
mode is reasonable, as there are no other nearly as undamped poles nearby, see Fig. 2.8.
The next most undamped poles in a similar frequency range are at approximately
−2.23 ± 8.00i (f = 1.32 Hz, ζ = 0.26) and −1.79 ± 7.85i (f = 1.28 Hz, ζ = 0.22). For
further investigation of the oscillation modes corresponding to those three pole pairs
we examine their eigenvectors. A large entry, in relation to its overall length, in the
eigenvector tells us the corresponding state of our system is strongly involved in the
oscillation mode under consideration. On the other hand, a small entry, compared to its
overall length, in the eigenvector means the corresponding state is not much involved
[29]. In the present case of the oscillation between generators in a power grid, we
might not be particularly interested in the exact states corresponding to large entries
of the eigenvectors, but more interested in the area or generator unit we can assign the
specific state to. In Fig. 2.9 we see that the eigenvector corresponding to the eigenvalue
at −2.23 ± 8.00i has very prominent main directions towards the generator units G1
and G2 compared to its remaining main directions. Similarly, the eigenvector of the
eigenvalue −1.79 ± 7.85i has very distinct main directions towards the generator units
G3 and G4. This lets us allocate those two eigenvalues to the in-area-1 and in-area-2
oscillations respectively. In contrast, the eigenvector corresponding to the eigenvalue
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Figure 2.7: Rotor angular speeds of generators G1-G4 after a loadstep on the
original power grid configuration. In this configuration a PSS de-
vice is installed in the generator units G1, G2 and G3.

−0.26 ± 4.04i has much more balanced main direction shares towards all four generator
units. Therefore, we can allocate this eigenvalue to the inter-areaoscillation mode.
Furthermore we can also analyze the behavior of specific state variables when starting
a simulation of the linear model from specific initial values. If we make sure to start
our simulation exactly on an oscillation plane corresponding to an eigenvalue λi, the
state space system does not leave this oscillation plane throughout the simulation. We
can then analyze the behavior of state variables during such a simulation and observe
in what way each variable is involved in the oscillation corresponding to λi.
To start the simulation exactly on a specific oscillation plane we recall that, for a pair
of complex conjugate eigenvalues λi and λ̄i, the oscillation plane is spanned by the
corresponding pair of complex conjugate eigenvectors φi and φ̄i.
Therefore we can choose an arbitrary linear combination of the real and imaginary
parts of φi to start the simulation exactly on the oscillation plane of λi. In Fig. 2.10 we
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Figure 2.8: Eigenvalues of the linearized power grid system for an open-loop-
input at the stabilization voltage of the generator unit G1.

compare the angular velocity deviations of the four generator units by twos throughout
such simulations for the three most prominent pole pairs. In those plots we can clearly
distinguish between angular velocities which increase and decrease together and angular
velocities which behave in an opposing manner. The former indicates that the respective
generators are oscillating in sync with each other, whereas the latter behavior indicates
generators oscillating against each other for the specific mode. For instance the graph
for the eigenvalue at −0.26 ± 4.04i, we observe that Δω1 is oscillating in phase with
Δω2 and Δω3 is in phase with Δω4 as well, whereas Δω1 is oscillating against Δω3 and
Δω4. Hence, this is the eigenvalue corresponding to the inter-area oscillation mode.
For the in-area-1 and in-area-2 modes we can also observe oscillation planes close to
perpendicular to a specific axis. This indicates that the specific corresponding generator
does not participate at all in the oscillation mode under consideration. For example we
see that Δω1 and Δω2 both do not participate in oscillations on the oscillation planes
of the eigenvalue −1.79 ± 7.85i, but only Δω3 and Δω4 do. This lets us conclude that
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Figure 2.9: Proportional shares of the most prominent eigenvector directions
from the eigenvectors corresponding to the most critical eigenval-
ues. The eigenvector directions can be allocated to the four differ-
ent generator units via their corresponding states.

the eigenvalue corresponds to the in-area-2 oscillation mode.
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Figure 2.10: Rotor speeds of the different generator units after initializing simu-
lations on the oscillation planes corresponding to the most critical
eigenvalues.
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2.2.2 Modal State Transformation
In this section we elaborate more on measures of how well we can influence modes
with specific inputs (controllability) and how well we can recognize modes with specific
feedback signals (observability) respectively.
The basic approach to this is to find a similarity transformation for our state space
system, which lets us interpret the B- and C-matrix of our system with respect to the
modes under consideration. For such a similarity transformation we can use the right
or left eigenvector matrices, Φr or Φl, as transformation matrices [30, 31, 32].
For demonstration, the right eigenvector matrix Φr is defined as the solution to the
eigenvalue problem AΦr = Φrλ. If all λi have a geometric multiplicity mgeo. equal to
their algebraic multiplicity malg., A is called diagonalizable and λ is a diagonal matrix of
the eigenvalues of A. If an eigenvalue has mgeo. < malg., we have to introduce generalized
eigenvectors to find suitable transformation matrices. As a result, we have to consider
blocks of the Jordan canonical form in the transformed system matrix [30, 31]. However,
since we do only investigate the in-area-1, in-area-2 and inter-area eigenvalues, which
have mgeo. = malg. = 1, those eigenvalues are transformed to completely decoupled
states in the modal state space system. Since this decoupling allows the application
of the following methods on the eigenvalues under consideration, we do not consider
eigenvalues with mgeo. < malg. any further in our proceedings.
With x = Φrz the state space system transforms to

ż = Φ−1
r AΦr� �� �
=Ã=λ

z + Φ−1
r Bu and y = CΦrz� �� �

=C̃

+Du. (2.11)

Likewise, x = Φ−T
l z transforms the state space system to

ż = ΦT
l AΦ−T

l� �� �
=Ã=λ

z + ΦT
l B� �� �

=B̃

u and y = CΦ−T
l z + Du. (2.12)

As stated before, the transformed matrix Ã of the modal systems z contains only
eigenvalues or Jordan canonical blocks on its diagonal. Hence, this representation of the
system, lets us investigate all the eigenvalues with mgeo. = malg. separately. We further
notice, that the entries B̃i,j are composed by φT

l,iBj, where φl,i is the left eigenvector
corresponding to λi and Bj is the j-th column of B. Using the Euclidean norm ∥·∥,
we can therefore establish that the potential numeric value of |B̃i,j| is restricted to the
range 0 ≤ |B̃i,j| ≤ ∥φl,i∥∥Bj∥. In the same way, the entries C̃i,k for the k-th row are
composed by Ckφr,i and restricted to 0 ≤ |C̃i,k| ≤ ∥φr,i∥∥Ck∥.
We use the modal state transformation and the just mentioned observations to discuss
a boolean criterion for the controllability and the observability of selected eigenmodes
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in the next section. Following this, we employ the observation on B̃ and C̃ to discuss
continuous measures for the degree of controllability and observability in Sections 2.2.4
and 2.2.5.
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2.2.3 PBH-Test
Following the idea of the modal state transformation, we now discuss a powerful tool
to investigate the controllability and observability of certain eigenvalues in linear time-
invariant systems called the Popov-Belevitch-Hautus test (PBH-test) or Hautus crite-
rion. It states that an individual eigenvalue λi of the system matrix A is controllable
if

rank([(A − λiI), B]) = n (2.13)

holds, where n = size(x). In a similar way an individual eigenvalue λi is observable if

rank([(A − λiI); C]) = n (2.14)

holds [33, 34].
When looking closer at those criterions we see that (A−λiI) is rank deficient in exactly
the direction of the eigenvector φi, corresponding to the eigenvalue λi. Hence the only
way the criterion can be fulfilled is by B or C having some component in the direction
of the eigenvector φi. Thus, the criterion only state non-controllability for the i-th
mode if all columns of B are exactly orthogonal to φi [35].
According to this, the PBH-test is casting these relations of controllability or observ-
ability into a boolean answer. But it does not give any hints on how well a certain
B-matrix makes the eigenvalue λi of our system controllable, or how well a certain
C-matrix makes λi observable respectively. In practice a B-matrix with entries only
in minor important direction of φi (hence relatively small entries in B̃i, which corre-
sponds to φi and the rows of B being close to orthogonal, see Section 2.2.2), makes the
PBH-test suggest controllability of this eigenvalue.
For this reason we introduce a method which gives a more nuanced measure of the con-
trollability and observability of eigenmodes in the next section. Based on this method,
we then also elaborate further on a systematic approach to construct input and output
matrices for given degrees of freedom in the choice of access points for control inputs
and output signal selection.
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2.2.4 Geometric Controllability and Observability
In the previous section we already discussed that the direction of the column Bj com-
pared to the direction of the eigenvector φi lets us evaluate if the corresponding eigen-
value λi is actually controllable with the input uj.
Similarly, the direction of the row vector Ck, compared to the direction of φi, provides
information about the observability of the eigenvalue λi by the output yk.
This motivates an alternative definition of modal controllability and observability, which
provides a more differentiating assessment compared to the PBH-Test. The so-called
geometric controllability measure mctrb and geometric observability measure mobsv are
defined as

mctrb,i,j = cos(∠(φl,i, Bj)) =
∥φT

l,iBj∥
∥φl,i∥∥Bj∥ (2.15)

and

mobsv,i,k = cos(∠(φr,i, Ck)) = ∥Ckφr,i∥
∥φr,i∥∥Ck∥ . (2.16)

In this definitions Bj is the j-th column of B, Ck is the k-th row of C and φl,i and
φr,i are the left and right eigenvector corresponding to λi. For Bj parallel to φl,i
this definition gives the maximum measure of controllability (mctrb,i,j = 1), and with
Bj orthogonal to φl,i it gives the minimum measure (mctrb,i,j = 0). The geometric
observability measure mobsv,i,k works respectively [36, 37, 38].
This definition of controllability measures enables us to directly find the single most
effective control input location to dampen the eigenvalues of the inter-area and in-area-1
oscillations.
Therefore, we select single input locations by setting the corresponding entry in Btest,i
to 1, whereas all others are set to 0. To find the most effective input from the generator
unit G1, we can constrain the selection of the nonzero entry of Btest,i to states of this
unit. The maximum geometric controllability score is reached when the single nonzero
entry corresponds to the most dominant eigenvector direction (largest entry in the
eigenvector).
Table 2.7 shows the geometric controllability scores of feasible input configurations
corresponding to states of the generator unit G1. The state ’G1/STG/Govenor/Speed
Regulator/Relay’ denotes the opening- or closing-speed of the valve controlling the
steam flow into the steam turbines. ’G1/EXCITER/Main Regulator’ corresponds to
the excitation voltage for the rotor windings. The scores are evaluated for the inter-area,
in-area-1 and in-area-2 oscillation mode.
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At this point we also want to recall, that the geometric controllability is only inves-
tigated on the linearized power system model, where strict (nonlinear) limitations of
some state variables are ignored. For the affected states, the geometric controllabil-
ity measures can suggest a better modal controllability than actually available in the
nonlinear system.

eigenvalue
-0.26 ± 4.04i
(f = 0.64 Hz, 

ζ = 0.06)

eigenvalue
-2.23 ± 8.00i
(f = 1.32 Hz, 

ζ = 0.26)

eigenvalue
-1.79 ± 7.85i
(f = 1.28 Hz, 

ζ = 0.22)
G1/STG/Governor/Speed Regulator/Relay 4.92e-6 1.5191e-6 5.2544e-7
G1/EXCITER/Main Regulator 3.8089e-7 8.8732e-7 2.7064e-7

Geometric Controllability of Eigenmodes

States

Geometric Controllability Score

Table 2.7: Geometric controllability measures (0 ≤ mctrb ≤ 1) of the most
critical eigenvalues evaluated for inputs belonging to different states
from the generator unit G1.
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2.2.5 Participation Factor
In the previous section we evaluated the geometric controllability measure by allowing
only one nonzero entry in Btest,i = 1 corresponding to a state of the generator unit G1.
This lets us use this measure to find the single best suited input location to actuate on
the eigenmode corresponding to λi.
However, the geometric observability measure does not let us directly evaluate a collec-
tive observability measure for a selection of feedback signals. We do want to have such
an evaluation method in order to choose the most important feedback signals to provide
a good observability of specific eigenmodes. Once we provide a good observability of
an eigenmode through the feedback signals, our controller can then actuate on them.
In this section we discuss a method, proposed in [39], to find such a reduced selection
of feedback signals xS ⊂ x to accurately map specific eigenmodes of interest to a
controller. If we are able to find a comparable small selection of important feedback
signals, this lets us drastically simplify the feedback structure.
The relevance of specific states to certain eigenmodes of the system can be expressed
through, so-called, participation factors, [40, 29, 35]. Based on this factor, the authors
compute reduced order models which accurately reproduce selected modes and deter-
mine the components of the original system which are most involved in those modes. It
is assumed, that the states with relatively high involvement carry most of the relevant
information about the eigenmodes under consideration. Therefore, those states are pro-
posed to be used as feedback signals to actuate on those eigenmodes. Following this,
we aim to select the states with the highest participation factors for the eigenmodes
under consideration as feedback signals, so that the controller gets passed a maximum
of information about the eigenmodes of interest with a minimum number of feedback
signals.
The participation factor for the eigenvalue λi is defined by the normalized left and right
eigenvectors, Φr,i and Φl,i so that

ΦT
l,iΦr,j =

1, if i = j

0, otherwise.
(2.17)

Then the magnitude of the dimensionless participation factor

pi,k = φl,i,kφr,i,k. (2.18)

measures the relative participation of the state xk in the eigenmode corresponding to λi

[29, 40]. In [35], the authors show that this also corresponds to a combined measurement
of the geometric controllability and observability from Section 2.2.4.
Table 2.8 shows the states with the 10 largest magnitude values of participation factors.
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Appendix A links the used state names to the equations from Section 2.1.1 and the block
diagrams from Section 2.1.2. We immediately notice that the rotor angle and speed
deviations evaluate to highly important states for the eigenmodes under investigation.
This corresponds well to the observations in [39], even-though the power system model
investigated in this thesis uses very detailed models of the electrical machines and the
auxiliary devices.
Based on the evaluation in Table 2.8, we naturally select feedback signals with a strong
involvement in the critical eigenmodes. This ensures that the feedback carries as much
information about those modes as possible to the controller. However, when assembling
such a set of feedback signals we also want to consider a few other restrictions. For exam-
ple, the feedback signals should actually be measurable in a real life application. Thus
states, such as the electromagnetic flux states, might drop out of a possible selection.
Furthermore, the authors in [37] conduct further considerations about the variation of
the controllability and observability measurements over the course of changing operat-
ing conditions. Hence, one might also discard states from a feedback selection, which
have a strong variation of their participation factors over changing operating conditions.
Such variation analysis is left out in this thesis, as the feedback signal selection focuses
more on practical considerations. This will be discussed more in detail later in this
thesis.
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Rank State Magnitude
1 G4/SM/Mechanical model/Δω 0.1874
2 G4/SM/Mechanical model/Δδ 0.1809
3 G1/SM/Mechanical model/Δω 0.1678
4 G1/SM/Mechanical model/Δδ 0.1617
5 G3/SM/Mechanical model/Δω 0.1333
6 G3/SM/Mechanical model/Δδ 0.1253
7 G2/SM/Mechanical model/Δω 0.0506
8 G2/SM/Mechanical model/Δδ 0.0468
9 G4/STG/Govenor/Speed Regulator/Pos. 0.0043

10 G3/EXCITER/Low Pass Filter 1 0.0039

Rank State Magnitude
1 G2/SM/Mechanical model/Δω 0.4615
2 G2/SM/Mechanical model/Δδ 0.2856
3 G1/SM/Mechanical model/Δδ 0.1797
4 G1/SM/Mechanical model/Δω 0.1778
5 G2/EXCITER/Low Pass Filter 1 0.0474
6 G3/SM/Mechanical model/Δω 0.0323
7 G3/SM/Mechanical model/Δδ 0.0209
8 G1/EXCITER/Low Pass Filter 1 0.0177
9 G2/STG/Govenor/Speed Regulator/Pos. 0.0039

10 G4/SM/Mechanical model/Δδ 0.0026

Rank State Magnitude
1 G3/SM/Mechanical model/Δω 0.3578
2 G4/SM/Mechanical model/Δδ 0.2463
3 G4/SM/Mechanical model/Δω 0.2444
4 G3/SM/Mechanical model/Δδ 0.2251
5 G3/EXCITER/Low Pass Filter 1 0.0228
6 G2/SM/Mechanical model/Δω 0.0190
7 G1/SM/Mechanical model/Δδ 0.0114
8 G1/SM/Mechanical model/Δω 0.0113
9 G2/SM/Mechanical model/Δδ 0.0112

10 G4/EXCITER/Low Pass Filter 1 0.0104

Pariticipation Factor for Eigenvalue -0.26 ± 4.04i
(f = 0.64 Hz, ζ = 0.06)

Pariticipation Factor for Eigenvalue -2.23 ± 8.00i
(f = 1.32 Hz, ζ = 0.26)

Pariticipation Factor for Eigenvalue -1.79 ± 7.85i
(f = 1.28 Hz, ζ = 0.22)

Table 2.8: Ranked participation factors for the most critical eigenvalues. The
tables show the states with the highest participation in the corre-
sponding eigenmodes. For a more detailed description of the states,
see Appendix A.
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2.3 Optimal Controller Design

2.3.1 Linear Quadratic Regulator
In this section we discuss how we can design a controller using an optimality principle
which ensures stability of our system. For this, we address the so-called linear-quadratic
regulator (LQR) and how it provides an optimal control strategy for a given cost func-
tion.
The linear-quadratic regulator is one of the most important results in the field of optimal
control. It provides an algorithm to calculate a feedback controller gain which ensures
to stabilize a linear, time-invariant system that is stabilizable. For a linear state space
system to be stabilizable all of its uncontrollable eigenmodes have to be asymptotically
stable.
The resulting LQR controller does not only provide a stabilization, but is the result of
an optimization problem in the terms of minimizing a quadratic cost function of the
form

J(x, u) =
� ∞

0
(xT Qx + uT Ru + 2xT Nu)dt (2.19)

[41]. In this cost function definition we distinguish three different parts. The first part,
xT Qx, defines the cost created by states x deviating from their set points. These state
deviations are weighted by the entries of the matrix Q. The second term of the cost
function, uT Ru, penalizes excessive control inputs u, again weighted by the matrix R.
The third part of the cost function, 2xT Nu, penalizes certain combinations of inputs
u and state deviations x by the weights defined in N . This third part of the cost
function is only noted here for the sake of completeness, but was not used throughout
the work for this thesis. Hence we set N = 0. Q and R have to be symmetric and
positive definite [41, 42].
The solution of this optimization problem, defined with the cost function and the linear
state space system, can be found by solving the so-called algebraic Riccati equation

AT S + SA − (SB + N )R−1(BT S + NT ) + Q = 0 (2.20)

for S [41]. In this equation, A, B are the corresponding matrices from the linear state
space system to control, and Q, R, N are the weighting matrices from the cost function
definition. The feedback gain K for a feedback control law in the form of u = −Kx is
than derived from the solution of S by

K = R−1(BT S + NT ) (2.21)
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[41]. The application of this control law then leads to the closed loop poles

Pcl = eig(A − BK) (2.22)

of the system, where eig() is the function evaluating the eigenvalues.
We already stated stabilizability of the linear system to be a main requirement for the
LQR controller. However, we not only have to make sure that all uncontrollable eigen-
modes are asymptotically stable, but we also have to make sure all unstable behavior
causes increasing cost. For this reason Q is required to be positive semi-definite.
This can usually be achieved by assigning values larger than zero to the diagonal entries.
In this case the resulting controller will put in more effort to bring higher weighted states
to their reference values compared to states with smaller corresponding entries in the
Q matrix.
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2.3.2 Modal Weighting Matrix
In the previous section we discussed how we can use the LQR method to design a
controller and ensure a stable closed-loop behavior. We also briefly covered how the
Q matrix of the quadratic cost function definition can emphasize or play down the
importance of keeping state values close to their reference values. However, in this work
we are not interested in emphasizing certain states to track a specific reference value.
The controller we want to design shall dampen selected oscillation modes no matter
what the actual current state values are. For applications like this, we can design the
Q matrix for an LQR controller in a way that puts emphasis on combinations of states
that correspond to the oscillation modes of interest.
To obtain such a weighting matrix Q̂, we demand

Q̂φk = φkmk (2.23)

to be valid for a set of k = 1 . . . n open loop eigenvectors [42]. The scalar weights mk

assigned to each eigenvector are arranged in a diagonal matrix M , in the same way
as the eigenvectors φk are arranged into an eigenvector matrix Φ. Then the preceding
equation can be rewritten to

Q̂ = ΦMΦ−1. (2.24)

To make sure the Q matrix for the LQR algorithm is symmetrical we define

Q = Q̂T Q̂. (2.25)

If we plug this definition of Q into our quadratic cost function definition of the LQR
algorithm from Eq. (2.19) and evaluate the cost for a state combination corresponding
to a critical eigenvector sk,

φT
k Qφk = φT

k Q̂T Q̂φk = m2
k with abs(φk) = 1 (2.26)

we see that the weighting for a state combination of an unwanted oscillation mode is
exactly the squared weight m2

k assigned to that eigenvector.
This, of course, assumes full state feedback. In a subsequent section, we will further
proceed to adapt this method for a controller which does not have full state feedback.



2.3 Optimal Controller Design 41

2.3.3 Linear Quadratic Regulator for Output Feedback
In the previous sections, we summed up the tools to design a modal damping LQR
controller based on a full state feedback. In this section we will extend those tools to
design a controller, based on the modal LQR approach, which needs only a subset of the
states as feedback signals. This facilitates the controller implementation into real world
applications, as many of the states of the simulation model are difficult to measure. For
example the electromagnetic fluxes between the generator stator and rotor can hardly
be measured directly to fit the definitions of the corresponding states in the simulation
model. Additionally, some states react very quickly to disturbance events or control
inputs, hence an effective utilization of such states would also require a very fast and
robust communication network between the grid components.
To select the feedback signals from the state vector we define a signal selection matrix
CS, according to an output matrix, so that the selected feedback states xS are

xS = CSx for x from ẋ = Ax + Bu. (2.27)

We notice that xS is defined in an analogous way to an output definition y = Cx.
This allows us to use a so-called output feedback controller design approach to define a
control law based on xS. In the following, we show the design of an optimal controller
based on selected feedback states xS. Thereby, we use the same optimality principle
as for the full state feedback LQR. Subsequently, we will briefly discuss how to select
feedback signals to design an effective modal damping controller.
To elaborate the changes for the optimization problem of our output feedback controller,
we compare the output feedback to the full state feedback structure. We immediately
recognize some differences in the control law and the closed-loop dynamics. The original
control law u = −Kx of the full state feedback becomes

u = −Ky = −KCx or u = −KxS = −KCSx (2.28)

for the output feedback and the feedback of selected states respectively.
Consequently, when applying the control law from Eq. (2.28), the closed-loop dynamics
change from

ẋ = Ax − BKx (2.29)

for the full state feedback, to

ẋ = Ax − BKCx respectively ẋ = Ax − BKCSx = ACx. (2.30)
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Plugging the control law with the selected states as output feedback from Eq. (2.28)
into the cost function definition Eq. (2.19) (omitting the cross-weighting term, hence
N = 0), we can come up with a symmetric matrix P , so that

d

dt
(xT P x) = −xT (Q + CT

S KT RKCS)x

= ẋT P x + xT P ẋ = xT (AT
CP + P AC)x.

(2.31)

If we can actually find such a constant, positive semi-definite matrix P , this definition
converts the dynamical optimization problem into an equivalent static problem [43].
For this to hold true for all initial condition and all trajectories, where we expect the
cost to always vanish for t → ∞, we can rearrange Eq. (2.31) and, for a given K, solve
the resulting equation

0 = AT
CP + P AC + CT

S KT RKCS + Q (2.32)

for P , which is closely related to the algebraic Riccati equation 2.20 [44]. Since we do
not know K, but want to find its optimal entries, this leads us to an iterative procedure
to find the optimal controller gain K. Throughout this iterative procedure, Eq. (2.32)
then ensures that the boundaries given by the system dynamics are fulfilled.
In practice however, the iterative approach to elaborate such an output feedback gain
often reaches its limits very soon. [44] therefore proposes necessary and sufficient con-
ditions for convergence of the controller gain optimization. Having said this, many
of the iterative methods proposed in [43, 45, 44] only work sufficiently well on small
systems, but fail to converge or struggle with numerical issues on larger systems (such
as algorithm 1 from [44] on our current linearized power grid system). To overcome
these issues, [46] and [44] propose specialized optimization algorithms. For the results
proposed in this thesis, we used algorithm 2 from [44] with a slightly relaxed stopping
criterion (stopCrit = 1e − 6).
Finally, we have to elaborate on the selection of feedback signals for the output feedback
LQR controller. As already mentioned above, measurements of the state signals shall be
accessible in reality. Furthermore, in order to actively dampen certain oscillation modes,
we have to recognize those critical oscillations through the feedback signals. Hence the
feedback signals shall collectively provide good information about the oscillation modes
to dampen. For this reason, we select feedback signals which have a high participation
in the modes of interest, see Section 2.2.5. The set of feedback states is selected via the
aforementioned signal selection matrix CS. The output feedback LQR controller gain is
then calculated with the system matrices A, B, CS and the modal weighting Q-matrix
from Section 2.3.2.
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The resulting controller will usually have a less precise influence on the targeted system
poles then a full state feedback controller. Hence it is also going to shift poles which are
not weighted in the modal weighting Q-matrix. One way to avoid this drawback is to
develop an observer, which calculates an estimation of the full state feedback based on
the selected feedback signals. However, such an observer has to be carefully designed
and tuned by its own, using knowledge of the underlying system. In the case of this
work, we considered the development of an observer to introduce to much design effort
not related to the critical eigenmodes under consideration.
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2.3.4 Setpoint Tracking
Although we already stated that the controller to be designed should not track any
specific reference setpoint, but shall react only on specific state combinations, we do
not achieve this by a constant state feedback controller gain. The modal LQR feedback
controller gain will still generate a control input if the system is in a steady state other
than the one used for the design.
However, the power grid system under consideration in this work is able to operate
at different steady state operating points. They might be reached by a different dis-
tribution of power inputs between the four generators. Or they might be reached by
a concurring increase or decrease of power consumption and inputs. Additionally we
have to consider that the controller actuating only on states of the generator unit G1
does not have full state controllability with respect to the whole power grid system.
Therefore, it is simply not possible for our controller to steer the system back to its
original operating point after any disturbance event. As a consequence the controller
has to cope with the external conditions of the power grid operation after an event, even
though the feedback states might not exactly correspond to the values anticipated by
the controller gain for steady state operation. Knowing that the controller will be trying
to restore original state values after any disturbance but will be unable to do so, we
want to avoid any unnecessary control inputs. For this reason the controller actuation
shall become zero as soon as the critical oscillations are sufficiently dampened.
We achieve this behavior by adding a fade-out on the controller actuation. The con-
troller is thus able to apply its full potential of control actuation for a short period after
an event. But after this initial period the further controller actuation is progressively
scaled down to zero. Until a recurrence of the critical oscillations modes in the feed-
back signals is registered and the controller can use its full actuation potential again.
In the case of our controller, which is directly acting on the excitation voltage and
therefore influences the terminal voltage of the generator, the fade-out of the control
input is actually critical to reach the reference terminal voltage of the generator after
a disturbance event. This is important to keep the grid voltage on its required level.
For the exact same reason the original PSS is also equipped with a wash-out transfer
function, see Section 2.1.2 and Fig. 2.6.
At this point, we want to re-interpret this wash-out transfer function not as an ad-
hoc solution to avoid a steady controller actuation, but as a variation of the idea of
the integration of the control error. When adding an integration of the control error
to a feedback loop, we add an additional system state to make sure any deviation of
the closed-loop output to the output reference due to modeling inaccuracies or system
disturbances will asymptotically become zero.
In the present case of the damping controller, we do not care about any specific output
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reference, but we only want the control output to asymptotically become zero after any
disturbance. This means, we do not want to react to a persistent difference between the
output and the output reference, but we want to avoid a persistent difference between
the control input to our system and an, always zero, reference control input. If those
signals deviate for a certain duration, hence the integral of their difference becomes
notable, we want to correct for that. When transforming this integrating control input
feedback loop, illustrated in Fig. 2.11, we end up with the same transfer function, as
with an additional wash-out transfer function.

Figure 2.11: Block diagram of the LQR controller with the setpoint integration.
The gain K is the LQR controller feedback gain and the gain
Tw is a manually tuned time constant of the wash-out/setpoint
integration and is set to Tw = 0.5 for all simulation runs presented
in this thesis.

The controller output Vstab expressed by the state vector x gives

Vstab = −Kx + (0 − Vstab

Tw
s)

⇒ Vstab = −Kx

(1 + 1
Tw

s) = −Kx
Tws

(Tws + 1)

(2.33)

with the controller gain K and a tunable time constant for the wash-out Tw. The
transfer function of the wash-out Gwashout is defined as

Gwashout = Tws

(Tws + 1) . (2.34)
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Using the expression for Vstab to obtain the controller transfer function yields

Gcontroller = Vstab

x
= −K

Tws

(Tws + 1) ≡ −KGwashout. (2.35)

This can also be interpreted as adjusting the reference setpoint of the system to dis-
turbances, so they do not cause constant control inputs. The time constant for the
setpoint integration (or wash-out) can be tuned manually. For all simulation results
we present in this thesis, we set Tw = 0.5 which was chosen in reference to the original
configuration with the PSS device.
If we do not want to tune this time constant manually, we can use the LQR method
from Section 2.3.1 or Section 2.3.3 to optimize it simultaneously with the controller
gain. In that case we introduce the additional state variable

p(t) =
t�

0

(uref(τ) − u(τ))dτ (2.36)

which corresponds to the output of the integrator block in Fig. 2.11. With Eq. (2.36)
and uref(τ) = 0, we then augment the state space system of the power grid and obtain

ẋ

ṗ

�
=


A 0
0 0

�
� �� �

Aaug


x

p

�
����
xaug

+


B

−1

�
� �� �
Baug

u. (2.37)

Likewise we augment the weighting matrix

Qaug =

Q 0
0 mw

�
(2.38)

where Q is the modal weighting matrix from Section 2.3.2 and mw is an additional
weighting factor for the integration of the control input. From the LQR method we
then obtain the optimized controller gain Kaug =

�
K Tw



.

However, in the case of this thesis we chose the manual tuning of the controller wash-out
to avoid the additional complexity of simultaneously tuning the weighting Q and mw
and to ensure a similar behavior compared to the original configuration with the PSS
device.



Chapter 3

Results

3.1 Full State Feedback
In this chapter we discuss how the previously mentioned methods have been used to de-
sign different controller configurations for damping inter-area and in-area-1 oscillations.
We present the results obtained from linear analysis during the design process and
simulation results from the nonlinear Simulink model of the Kundur-2-Area System.
All of the controller designs assume direct measurement of model states within the
limits mentioned in Section 2.1.6. The first controller we will present assumes all model
states are available as such measurement. This is less of a feasible assumption for
controllers actually applicable in reality, but will serve as a benchmark in comparisons
with the following controller designs. Those following controllers are designed based on
feedback signals, which are restricted to a small selection of model states. The selection
of feedback signals follows the treatise from Section 2.2.5, and shall provide a more
realistically realizable approach.
However, all controller designs have in common that the controller output is only the
stabilization voltage for the generator unit G1. All other generator units (G2-G4)
stay untouched compared to the original grid configuration described in Section 2.1.
The results are compared to simulation runs with the original grid configuration and
a classical PSS device installed in generator unit G1(denoted with PSS in the plots).
Furthermore the applied controllers are all equipped with the wash-out described in
Section 2.3.4. The controller gains are designed with the methods from Sections 2.3.1
and 2.3.2 for the full state feedback benchmark and with the method from Section 2.3.3
for the controller with only selected feedback signals. The weighting decisions will be
discussed in the following, but in general we adapted only the weighting factors of the
inter-area and in-area-1 oscillation modes. All other eigenmodes of the system remained
unweighted.
The linear state space system of the power grid is obtained directly from the Simulink
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model using the ‘Model Linearizer App’ and the similarity transformation from Sec-
tion 2.1.6.
When adjusting the weights for the inter-area and in-area-1 modes we generally paid
attention to not overly strong influence poles other than the ones under consideration.
With the assumption of full state feedback, we could not observe any unwanted influence
on other poles. However this criterion becomes more important when using only a subset
of the states as feedback signals.
Furthermore, we wanted to put more emphasis on damping the inter-area oscillation but
still hinder extensive in-area-1 oscillations. But since the methods from Section 2.2.4
show that, with the given controller, we have a much higher controllability of the
in-area-1 mode than of the inter-area mode, the in-area-1 mode requires significantly
smaller weights compared to the inter-area mode.
Finally we also have to consider the physical limitations of certain grid components,
when tuning the controller gain indirectly via the modal weights. As described in
Section 2.1.2 the original PSS and the exciter model have limitations of their output
voltages. Excessively exceeding those limitations would impair the performance of the
controller. Therefore, we want to make sure the controller output, the stabilization
voltage, complies to the original limits of the PSS output, and the excitation voltage
also does not run into the given limits. This basically means the modal weights must
not be chosen overly large.
Carefully balancing those criteria lets us decide on the weights shown in Table 3.1 and
results in the controller gain specified in Tables 3.2 and 3.3. The state names used
in those tables are linked to the equations discussed in Section 2.1.1 and the block
diagrams from Section 2.1.2 in Appendix A. The modification of the system poles due
to the application of the controller gain is visualized in Fig. 3.1. We can see, that
the controller application moves the system poles of the inter-areaoscillation to a much
more damped location. Also the poles of the in-area-1 and in-area-2 oscillations are
moved to a slightly more damped location, whereas all other system poles stay at their
initial location.
In Fig. 3.2 and Fig. 3.3 we can see the results of the loadstep simulations with the
nonlinear Simulink grid model and the full state feedback modal LQR the controller
deployed in G1. Figure 3.2 shows the simulation results for a loadstep in Load 1,
whereas Fig. 3.3 shows the simulation results for the event at Load 2.
The frequency dip of the generator frequencies after the loadstep of Load 1 is even less
deep than with the original PSS configuration. Whereas after the loadstep of Load
2 the minimal frequency slightly exceeds the one with the original PSS configuration.
In general the maximal frequency deviation after a disturbance event is an important
criterion in terms of the frequency stability of the power system [4].
Nevertheless, the proposed controller, although it is only deployed in the generator
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Eigenvalue full state
feedback

Δδ + Δω
feedback

Δω
feedback

-0.26 ± 4.04i (f = 0.64 Hz, ζ = 0.06) 0.15 0.15 0.5
-2.23 ± 8.00i (f = 1.32 Hz, ζ = 0.26) 0.003 0.012 0.0005
-1.79 ± 7.85i (f = 1.28 Hz, ζ = 0.22) 0.06 0 0

Weights

Eigenvalue Weighting for Modal Weighting Matrix

Table 3.1: Summary of all the weighting factors for eigenvalues used to generate
the modal damping Q-matrix for the LQR controller.

unit G1, is able to dampen the generator frequency oscillations very effectively. Ap-
proximately 2 seconds after the loadstep event, either through Load 1 or Load 2, we
cannot observe any significant oscillations any more. This is a very good improvement
compared to the original configuration.
Throughout the Simulink simulation runs, we also record the measurements of active
and reactive power transfer over the inter-area lines, see Fig. 2.1. The resulting mea-
surements for steps of Load 1 and Load 2 are plotted in Fig. 3.4.
As we can see in those measurements, the controller in G1 does not only reduce the
frequency oscillation, but, with that, also reduces the peak loads of the inter-area power
lines. This is especially noticeable for the apparent power S. Since the apparent power
is defined by the active power P and the reactive power Q as

S =



P 2 + Q2, (3.1)

it is an important measurement for the dimensioning of power lines. The reduction of
peak apparent power transfer is particularly prominent after the increase of Load 2.
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Figure 3.1: Eigenvalues of the linearized power grid system without the LQR
controller (’Open Loop’) and with the full-state-feedback LQR con-
troller in place (’Closed Loop’).
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Figure 3.2: Simulink simulation results of a loadstep at Load 1 with the full-
state-feedback LQR controller acting on the stabilization voltage
of the generator unit G1.
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Figure 3.3: Simulink simulation results of a loadstep at Load 2 with the full-
state-feedback LQR controller acting on the stabilization voltage
of the generator unit G1.
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Figure 3.4: Inter-area power transfer from Simulink simulation runs with load-
steps at either Load 1 or Load 2 and the full-state-feedback LQR
controller installed in generator unit G1.
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3.2 Reduced Set State Feedback
After presenting the benchmark modal damping LQR controller with full state feedback
in the last section, we subsequently present two modal damping LQR controllers which
use only subsets, or reduced sets, of states as feedback. We present again simulation
results of our power grid example with the proposed controllers applied.
The first step to design such a reduced set modal damping LQR controller, is to select
the subset with the methods from Section 2.2.5. This follows the general idea, that
the controller must receive adequate information about an oscillation mode in order to
successfully act on it. The resulting ratings of feedback signals is presented in Table 2.8.
We notice that different feedback states are important for the observability of different
modes. Because we want to consider the inter-area and the in-area-1 oscillation mode,
we therefore have to manually select a compromise. Furthermore, we do not want to
restrict our selection of feedback signals to a certain configuration of the power grid,
but rather find a subset as general as possible. Following this, we restrict our selection
to choose the same signals from every generator. Through all those considerations we
consider only the rotor speed and angle deviation signals as possible feedback signals.
Some other states from the exciter model or the PSS device might be ranked more
beneficial, but when replacing, for example, one of the generator units by a power
converter, those states would not exist for this device any more. However, the rotor
speed or angle deviation signal correspond to the frequency or phase deviation of a
power converter.
To design the reduced set of modal damping LQR controller gains KΔδ+Δω and KΔω,
we use the method introduced in Section 2.3.3. When comparing the resulting controller
gains KΔδ+Δω and KΔω to the full state feedback controller gain Kx, we have to
consider that they generate different controller outputs on the same scenarios when
they are derived from the same weighting matrix Q. For this reason, we re-tuned the
weighting matrix Q for the reduced set feedback controller. This re-tuning allows us to
take full advantage of the original range of controller output limits and achieve similar
performance with the reduced set feedback controllers. The selected weights and the
resulting controller gains are specified in Table 3.1 and Tables 3.2 and 3.3 respectively.
For a description of the used state names we again refer to Appendix A.
In Fig. 3.5 we compare the polemotion plots of the different feedback signal configura-
tions. We observe that the controllers with reduced sets of feedback signals additionally
influence poles other than the actually anticipated ones. However none of the uninten-
tionally moved poles is becoming an additional critical oscillation mode. Although the
rotor-speed-deviation-feedback configuration does unintentionally move one pole pair
aggressively towards the right halfplane, a sufficient margin to the imaginary axis can
be kept.
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Figure 3.5: Eigenvalues of the linearized power grid system without the LQR
controller (’Open Loop’) and with a comparison of the different
LQR controller configurations in place (’Closed Loop’).

Figure 3.6, Fig. 3.7, Fig. 3.9 and Fig. 3.10 show the results of loadstep simulations
with the two proposed reduced set feedback modal damping controllers deployed in G1.
Figure 3.6 and Fig. 3.9 show the results of an increase in Load 1, whereas Fig. 3.7 and
Fig. 3.10 show the results to the event in Load 2 respectively.
As described in Section 3.1, throughout the simulations the proposed controllers are
only deployed in the generator unit G1. The rest of the power grid stays unchanged
compared to the comparative example (denoted with PSS).
We can see that in all scenarios the proposed controllers are able to effectively dampen
any generator frequency oscillation within less than 2 seconds after the loadstep event.
The main difference compared to the simulation results in Fig. 3.2 can be observed in
the behavior of the rotor speed of generator unit G1 shortly after the loadstep event
at Load 1. Whereas with the full state feedback the graphs show only a slight bow
to the right, this graph feature becomes much more prominent with the reduced set
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feedback controllers. The controller with only rotor speed deviation feedback signals
even slightly increases the rotor speed of generator unit G1 for a short time, before
dropping like the other generator units (Fig. 3.9).
The fact that such an aggressive maneuver is necessary to keep the frequency dip close
to the comparative configurations might already indicate a significant loss of sensibility
through the reduction of feedback signals.
We also recorded the active and reactive power transfer over the inter-area power lines
for the reduced set feedback controller configurations. Figure 3.8 shows the measure-
ment for the controller with rotor angle and speed deviation feedback, and Fig. 3.11
shows the measurement for the controller with rotor speed deviation feedback only.
Each plot shows the measurement after an event at Load 1 and Load 2 respectively.

Figure 3.6: Simulink simulation results of a loadstep at Load 1 with the Δδ +
Δω-feedback LQR controller acting on the stabilization voltage of
the generator unit G1.
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Figure 3.7: Simulink simulation results of a loadstep at Load 2 with the Δδ +
Δω-feedback LQR controller acting on the stabilization voltage of
the generator unit G1.
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Figure 3.8: Inter-area power transfer from Simulink simulation runs with load-
steps at either Load 1 or Load 2 and the Δδ + Δω-feedback LQR
controller installed in generator unit G1.
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Figure 3.9: Simulink simulation results of a loadstep at Load 1 with the Δω-
feedback LQR controller acting on the stabilization voltage of the
generator unit G1.
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Figure 3.10: Simulink simulation results of a loadstep at Load 2 with the Δω-
feedback LQR controller acting on the stabilization voltage of the
generator unit G1.
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Figure 3.11: Inter-area power transfer from Simulink simulation runs with load-
steps at either Load 1 or Load 2 and the Δω-feedback LQR con-
troller installed in generator unit G1.
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Model states full state
feedback

Δδ + Δω
feedback

Δω
feedback

G1/SM/Electrical model/φ(1) 0.0042 0 0
G1/SM/Electrical model/φ(2) 0.0220 0 0
G1/SM/Electrical model/φ(3) 0.4735 0 0
G1/SM/Electrical model/φ(4) 0.0055 0 0
G1/SM/Electrical model/φ(5) 0.0287 0 0
G1/SM/Electrical model/φ(6) 0.1052 0 0
G1/SM/Mechanical model/Δδ -0.2935 -0.1249 0
G1/SM/Electrical model/Neg.-seq. current(1) 2.8589e-12 0 0
G1/SM/Electrical model/Neg.-seq. current(2) 3.8339e-13 0 0
G2/SM/Electrical model/φ(1) 0.0011 0 0
G2/SM/Electrical model/φ(2) 0.0034 0 0
G2/SM/Electrical model/φ(3) 0.0383 0 0
G2/SM/Electrical model/φ(4) 0.0011 0 0
G2/SM/Electrical model/φ(5) -0.1743 0 0
G2/SM/Electrical model/φ(6) -0.0934 0 0
G2/SM/Mechanical model/Δδ -0.5729 -0.3344 0
G2/SM/Electrical model/Neg.-seq. current(1) 7.2819e-13 0 0
G2/SM/Electrical model/Neg.-seq. current(2) 5.7280e-13 0 0
G3/SM/Electrical model/φ(1) 0.0041 0 0
G3/SM/Electrical model/φ(2) -0.0228 0 0
G3/SM/Electrical model/φ(3) -0.1491 0 0
G3/SM/Electrical model/φ(4) -0.0146 0 0
G3/SM/Electrical model/φ(5) 0.3901 0 0
G3/SM/Electrical model/φ(6) 0.1214 0 0
G3/SM/Mechanical model/Δδ 1.0673 0.3461 0
G3/SM/Electrical model/Neg.-seq. current(1) -2.4311e-12 0 0
G3/SM/Electrical model/Neg.-seq. current(2) -2.2415e-12 0 0
G4/SM/Electrical model/φ(1) -0.0117 0 0
G4/SM/Electrical model/φ(2) -0.0064 0 0
G4/SM/Electrical model/φ(3) -0.4870 0 0
G4/SM/Electrical model/φ(4) 0.0071 0 0
G4/SM/Electrical model/φ(5) -0.1832 0 0
G4/SM/Electrical model/φ(6) -0.1059 0 0
G4/SM/Mechanical model/Δδ -0.2009 0.1132 0
G4/SM/Electrical model/Neg.-seq. current(1) -8.5376e-13 0 0
G4/SM/Electrical model/Neg.-seq. current(2) 3.7466e-12 0 0
G1/SM/Mechanical model/Δω -82.7847 -87.0192 -298.8706
G2/SM/Mechanical model/Δω -29.7671 -38.4898 -153.5536
G3/SM/Mechanical model/Δω 87.5023 60.0738 209.2502
G4/SM/Mechanical model/Δω 45.3037 62.3510 233.6082

Controll Gains for the different controller configurations (1/2)

Table 3.2: List of controller gains for the different controller configurations,
specified for the corresponding feedback signals, first part.
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Model states full state
feedback

Δδ + Δω
feedback

Δω
feedback

G1/STG/Governor/Speed Regulator/Pos. 0.0732 0 0
G2/STG/Governor/Speed Regulator/Pos. 0.0633 0 0
G3/STG/Governor/Speed Regulator/Pos. -0.0948 0 0
G4/STG/Governor/Speed Regulator/Pos. -0.0510 0 0
G2/PSS/Sensor 24.2093 0 0
G2/PSS/Wash-out -0.8153 0 0
G2/PSS/Lead-lag #1 0.7957 0 0
G2/PSS/Lead-lag #2 -1.4202 0 0
G3/PSS/Sensor -44.9929 0 0
G3/PSS/Wash-out 1.4839 0 0
G3/PSS/Lead-lag #1 -1.4697 0 0
G3/PSS/Lead-lag #2 2.6232 0 0
G1/EXCITER/Main Regulator 6.2982e-5 0 0
G1/EXCITER/Low Pass Filter 1 -0.2370 0 0
G1/STG/Governor/Speed Regulator/Relay 0.0005 0 0
G2/EXCITER/Main Regulator 5.0462e-6 0 0
G2/EXCITER/Low Pass Filter 1 -0.0163 0 0
G2/STG/Governor/Speed Regulator/Relay 0.0004 0 0
G3/EXCITER/Main Regulator -1.9319e-5 0 0
G3/EXCITER/Low Pass Filter 1 0.0301 0 0
G3/STG/Governor/Speed Regulator/Relay -0.0006 0 0
G4/EXCITER/Main Regulator -6.5291e-5 0 0
G4/EXCITER/Low Pass Filter 1 0.2877 0 0
G4/STG/Governor/Speed Regulator/Relay -0.0003 0 0
G1/STG/Steam Turbine/Stage 1 0.0602 0 0
G1/STG/Steam Turbine/Stage 2 0.2620 0 0
G1/STG/Steam Turbine/Stage 3 0.2750 0 0
G2/STG/Steam Turbine/Stage 1 0.1469 0 0
G2/STG/Steam Turbine/Stage 2 0.3041 0 0
G2/STG/Steam Turbine/Stage 3 0.3108 0 0
G3/STG/Steam Turbine/Stage 1 -0.1958 0 0
G3/STG/Steam Turbine/Stage 2 -0.4099 0 0
G3/STG/Steam Turbine/Stage 3 -0.4198 0 0
G4/STG/Steam Turbine/Stage 1 -0.0166 0 0
G4/STG/Steam Turbine/Stage 2 -0.1583 0 0
G4/STG/Steam Turbine/Stage 3 -0.1676 0 0

Controll Gains for the different controller configurations (2/2)

Table 3.3: List of controller gains for the different controller configurations,
specified for the corresponding feedback signals, second part.
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3.3 Stability Analysis
To check that the proposed controller is improving the power grid stability throughout
a wide range of operating conditions we apply the proposed controllers on each lin-
earization of the linearization series described in Section 2.1.7. This series consists of
16 linearizations from different operating points of the power grid system within the
range of approximately 50% up to 100% of the overall grid capacity rating. We can
then analyze the movement of the poles through the controller application for each
linearization and gather an approximate idea of the nonlinear system behavior.
This methodology offers a well applicable approach to analyze the stability of a nonlinear
system. However, it does not provide a complete stability analysis, since we can not
tell what happens in between the snapshots, where we linearize the system. To carry
out a complete stability analysis we would have to apply the methodology of analyzing
Lyapunov-functions. Although valid Lyapunov-functions do exist for simple generator
models, they are very difficult to find for more detailed models [20, 47, 48, 49]. For
this reason we stick to the analysis of poles from a linearization series. Figure 3.12
shows the poles of all the 16 different linearized grid models from the aforementioned
linearization series without application of a controller. The critical inter-area and in-
area-1 and in-area-2 poles of each linearization snapshot show up as tight clusters.
After applying the controller we see that in Figs. 3.13 and 3.14 the influenced poles
still show up as distinctive clusters in a more damped location. But, especially in
Fig. 3.13, we also see a lot of scattered poles moved into frame from the left in the
area −(15 . . . 7) ± (10 . . . 15)i. Those unintentionally moved poles are not yet critical in
this configuration, but when tuning the controller more aggressively they might become
an issue. However this analysis overall indicates that the proposed controller does not
move any pole into an unstable location (right halfplane), but can provide a stability
improvement throughout the tested scenario.
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Figure 3.12: Pole locations of the linearized systems throughout the lineariza-
tion series without the LQR controller at the generator unit G1.
The area of the inter-area and in-area-1 poles is additionally
marked.
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Figure 3.13: Pole locations of the linearized systems throughout the lineariza-
tion series with the Δδ+Δω-feedback LQR controller installed at
the generator unit G1. The new area of the inter-area and in-
area-1 poles is marked and compared to the initial area location
without the LQR controller.



3.3 Stability Analysis 67

Figure 3.14: Pole locations of the linearized systems throughout the lineariza-
tion series with the Δω-feedback LQR controller installed at the
generator unit G1. The new area of the inter-area and in-area-1
poles is marked and compared to the initial area location without
the LQR controller.



Chapter 4

Conclusion and Outlook

In the scope of this thesis we set up a MATLAB/simulink framework which allows us
to get linearization of a high fidelity power grid simulation model, apply linear analysis
tools to design controllers and apply and test those controllers on the high fidelity
simulation.
We used this simulation framework to design a full state feedback modal damping LQR
controller which replaces a conventional PSS device in just one of four generator units
in the Kundur-2-Area System. Although the rest of the power grid remains untouched,
we show that this modal damping controller is able to effectively dampen generator
frequency oscillations after a loadstep scenario. However, the assumption of having an
accurate enough feedback of all power grid states in reality is not feasible. Nevertheless
those results serve as a valuable benchmark.
Following this benchmark example, we elaborate tools to analytically identify the most
important feedback signals for modal observability. Furthermore, we take up a special-
ized optimization algorithm to design output feedback LQR controllers. These tools
allow us in a next step to significantly reduce the number of feedback signals and design
modal damping LQR controllers by selecting feedback states via an auxiliary output
matrix.
By cleverly selecting only one, respectively two, states per generator unit as feedback
signals we are able to extract enough information about the critical oscillation modes
to dampen them comparable to the full state feedback. We show that the rotor angle
and speed deviations of the four generator units are sufficient feedback signals to design
a reduced set modal damping LQR controller.
The generator rotor angle and speed deviations are also chosen with consideration for
the introduction of power converter into the power grid. In that case, those states
correspond to the phase and frequency deviations of the power converter.
However, implementing power converters into the simulation framework and testing the
proposed controllers on the resulting power grid system is still open to future work.
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Additionally, the results of this work shall motivate further investigation of the addi-
tional grid forming capabilities of power converters. Since they are not restricted by a
high physical inertia of a rotor, they might be able to provide an even more effective
stabilizing actuation potential.
The results of this work also show useful details for future work of state communication
between power plants. As already stated, we can show that the rotor angle and speed
deviations are sufficient feedback signals to dampen generator frequency oscillations.
Those states are all mechanical states of high inertias and thus behave much slower
than electromagnetic states, for example. Hence those states are much less susceptible
to communication faults and delays and facilitate their exchange between power plants.
In further consequence he presented methods to analyze power grid systems and design
damping controllers might also pave the way to reduce the number of feedback signals
even more and facilitate damping controllers which rely only on local measurements.



Appendix A

Description of state variables

In the following table we use GU as placeholder for the different generator units G1 to
G4.

Name Description
GU/SM/Electrical model/φ(1) Electromagnetic flux component φq,

see Eq. (2.3)
GU/SM/Electrical model/φ(2) Electromagnetic flux component φd,

see Eq. (2.3)
GU/SM/Electrical model/φ(3) Electromagnetic flux component φfd,

see Eq. (2.3)
GU/SM/Electrical model/φ(4) Electromagnetic flux component φkd,

see Eq. (2.3)
GU/SM/Electrical model/φ(5) Electromagnetic flux component φkq1,

see Eq. (2.3)
GU/SM/Electrical model/φ(6) Electromagnetic flux component φkq2,

see Eq. (2.3)
GU/SM/Mechanical model/Δδ Rotor angle deviation, see Eq. (2.1)
GU/SM/Mechanical model/Δω Rotor speed deviation, see Eq. (2.1)
GU/SM/Electrical model/
Neg.-seq. current(1)

Negative sequence current in d-direction
from usage of symmetric components

GU/SM/Electrical model/
Neg.-seq. current(2)

Negative sequence current in q-direction
from usage of symmetric components

GU/STG/Governor/
Speed Regulator/Pos.

Steam valve position, state of
’Servo-motor position’-block, see Fig. 2.4

GU/STG/Governor/
Speed Regulator/Relay

Steam valve speed, state of
’Speed Relay’-block, see Fig. 2.4
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Name Description
GU/STG/Steam Turbine/
Stage 1

Mechanical shaft power from the first turbine
stage, state of ’Stage1’-block, see Fig. 2.4

GU/STG/Steam Turbine/
Stage 2

Mechanical shaft power from the second
turbine stage, state of ’Stage2’-block, see
Fig. 2.4

GU/STG/Steam Turbine/
Stage 3

Mechanical shaft power from the third
turbine stage, state of ’Stage3’-block, see
Fig. 2.4

GU/EXCITER/Main Regulator Main regulator for the excitation voltage,
state of ’Main Regulator’-block, see Fig. 2.5

GU/EXCITER/Low Pass Filter 1 Filter for terminal voltage measurements,
state of ’Low Pass Filter’-block, see Fig. 2.5

GU/PSS/Sensor PSS state of ’Sensor’-block, see Fig. 2.6
GU/PSS/Wash-out PSS state of ’Wash-out’-block, see Fig. 2.6
GU/PSS/Lead-lag #1 PSS state of ’Lead-lag #1’-block, see Fig. 2.6
GU/PSS/Lead-lag #2 PSS state of ’Lead-lag #2’-block, see Fig. 2.6
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