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Kurzfassung

Diese Arbeit befasst sich mit Bijektionen zwischen planaren maps und baumartigen Struk-
turen, ein essentielles Konzept der modernen Kombinatorik mit Verbindungen zur Wahr-
scheinlichkeitstheorie und zur statistischen Physik. Seit Tuttes bahnbrechenden Arbeiten
zur Enumeration planarer Maps wurden von verschiedenen Autoren zahlreiche bijektive Me-
thoden entwickelt. In dieser Arbeit werden diese Ansétze gesammelt und présentiert, mit
dem Ziel, ihre gemeinsamen Prinzipien und charakteristischen Unterschiede hervorzuheben.
Zu diesem Zweck fithren wir einheitliche Notationen ein und unterscheiden zwei Hauptka-
tegorien von Bijektionen: (A) Blossoming-Tree-Bijektionen, bei denen Karten durch de-
korierte Spannbdume codiert werden, und (B) Nicht-Spannbaum-Bijektionen, bei denen
alternative Strukturen wie well-labeled Bdume oder Mobiles verwendet werden. Fiir jede
Kategorie beschreiben wir ein vereinheitlichtes Schema, das die Essenz der bijektiven Kon-
struktionen erfasst und aufzeigt, wie verschiedene Resultate in dieses Gesamtbild passen.

Anwendungen dieser Bijektionen zur Enumeration werden anschlieend im Detail disku-
tiert. Zundchst betrachten wir klassische Resultate wie die Enumeration gewurzelter Euler-
scher Maps und Quadrangulierungen, die bereits mit anderen Methoden hergeleitet wurden.
Die Bijektionen liefern dabei nicht nur bekannte Abzéhlformeln, sondern erméglichen auch
ein tieferes konzeptionelles Verstindnis der speziellen Struktur dieser Formeln. Abschlie-
Bend gehen wir kurz auf geometrische Aspekte ein, insbesondere darauf, wie Bijektionen
wie die Korrespondenz von Cori—Vauquelin—Schaeffer als Ausgangspunkt fiir die Analyse
von Absténden in zufélligen planaren Maps und fiir Resultate zu Skalierungs-Limits die-
nen, die zur sogenannten Brown’schen Map konvergieren. Anstelle vollstdndiger Beweise
dieser probabilistischen Resultate liegt der Fokus der Arbeit auf dem kombinatorischen
Hintergrund, der notwendig ist, um zu verstehen, wie bijektive Methoden das Studium der
Zufallsgeometrie unterstiitzen.
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Abstract

This thesis investigates bijections between planar maps and tree-like structures, an essential
concept in modern combinatorics with connections to probability theory and statistical
physics. Since Tutte’s pioneering work on the enumeration of planar maps, many bijective
approaches have been developed by different authors, and here we collect and present
a variety of them, with the aim of highlighting their common principles and distinctive
features. To this end, we introduce a unified notation and distinguish two main categories of
bijections: (A) blossoming-tree bijections, where maps are encoded by decorated spanning
trees, and (B) non-spanning-tree bijections, where encodings rely on alternative structures
such as well-labeled trees or mobiles. For each category, we describe a unified scheme that
captures the essence of the bijective constructions and illustrates how different results fit
into this broader picture.

Applications of these bijections to enumeration purposes are then discussed in detail.
First, we revisit classical results as the enumeration of rooted Eulerian maps and quadran-
gulations that have already been derived using other approaches. The bijections not only
recover known counting formulas, but also provide a deeper conceptual understanding of the
specific structural form of these formulas. Finally, we briefly touch upon geometric aspects,
in particular, how bijections such as the Cori—Vauquelin—Schaeffer correspondence serve as
a starting point for the analysis of distances in random planar maps and for scaling-limit
results leading to the Brownian map. Rather than giving full proofs of these probabilistic
results, the thesis focuses on providing the combinatorial background needed to understand
how bijective methods support the study of random geometry.
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1 Introduction

The study of planar maps (graphs embedded in the sphere up to orientation-preserving
homeomorphisms) has been a central theme in modern combinatorics since the pioneering
work of Tutte in the 1960s. Tutte’s recursive decomposition methods led to functional
equations for generating functions of maps, from which many remarkable enumeration
formulas could be extracted [Tut63]. These results motivated decades of research at the
intersection of combinatorics, probability theory, and statistical physics, where planar maps
play an important role as discrete models of random surfaces.

A major breakthrough was the development of bijective methods, initiated in the works of
Cori, Vauquelin [CV81], Schaeffer [Sch97; Sch98] and later Bouttier, Di Francesco, Guitter
[BFG04]. These approaches provide very direct correspondences between planar maps
and simpler tree-like structures, replacing analytic arguments by explicit combinatorial
encodings. Such bijections not only yield transparent proofs of the classical enumeration
results, but also open the way to studying probabilistic and geometric properties of random
maps, leading to scaling-limit theorems and the construction of the Brownian map [Le 13;
Miel3].

The central focus of this thesis is precisely these bijections between maps and tree-like
structures. Trees are among the most elementary combinatorial objects, and encoding
maps through decorated trees reveals structural features that may be hidden in analytic
methods. Following ideas of Bernardi, Albenque, Chapuy, and others [BF12; AP15; CD17],
we distinguish between two families of bijections:

e Category (A): blossoming-tree bijections, in which a map is encoded by a spanning
tree of the map decorated with additional information;

e Category (B): non-spanning-tree bijections, in which the encoding uses alternative
tree-like structures such as labeled trees or mobiles.

Both families have been extended in recent years to more general classes of maps, in-
cluding those embedded in higher-genus surfaces.

The aim of this thesis is to present a unified account of these bijections. While the
constructions originate from different authors and were often developed independently,
they share a number of common principles. This thesis:

e Collects a broad selection of bijections from the literature and presents them with a
notation as consistent and unified as possible;

e Highlights the structural similarities and differences between various bijections;

e Proposes a unified scheme for each category, showing how many of the known con-
structions can fit into a common framework;
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1 Introduction

e Provides detailed proofs for selected central results, in particular the Cori-Vauquelin-
Schaeffer bijection and the unified blossoming-tree scheme;

e Discusses applications of bijective methods to enumeration and to geometry.

The outline of this thesis is as follows.

Chapter 2 introduces the basic objects and terminology used throughout the thesis. We
begin with directed and undirected graphs and then define planar maps as embeddings
of graphs into the sphere, emphasizing the role of the cyclic order of edges around a ver-
tex. We also recall properties of plane trees, including spanning trees, which will play a
central role in later bijective constructions. Chapter 3 surveys a wide range of bijective
constructions found in the literature. The bijections are divided into two categories as out-
lined above. For both categories, unified schemes are presented, and extensions to maps of
higher genus are included. In Chapter 4, we provide detailed proofs of two central results
to illustrate the mechanics of bijective methods in detail. First, we give a proof of the CVS
bijection, following ideas of Chassaing, Schaeffer, and Chapuy, which demonstrates how
quadrangulations can be encoded by well-labeled trees. Second, we present a proof of the
generic blossoming tree scheme developed by Albenque and Poulalhon, which unifies ear-
lier bijections in category (A). Finally, Chapter 5 discusses two major areas of application.
Using the bijections presented earlier, we derive classical results such as the enumeration
of rooted Eulerian maps and quadrangulations. We then turn to the probabilistic perspec-
tive, where bijections serve as a starting point for analyzing distances in random maps.
In particular, we discuss how the CVS bijection has been used to prove that distances in
random quadrangulations scale like n'/4, and how this leads to the Brownian map as a
universal scaling limit.
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2 Preliminaries

This chapter collects most of the basic graph-theoretical notions used throughout the thesis.
After defining directed and undirected graphs as mathematical objects and many of their
properties, we continue with planar maps as proper embeddings of graphs in the sphere,
together with many related concepts and some basic results. We then proceed with plane
trees, recalling their structural properties, the notion of spanning trees, and some classical
results. These notions form the common language for the bijections developed in the
subsequent chapters.

2.1 Planar maps

We start with directed and undirected graphs and then turn to planar maps, which formalize
the idea of drawing a graph in the plane or on the sphere in a way that fixes the cyclic order
of edges around each vertex. This framework will be fundamental for our combinatorial
encodings discussed later.

Definition 2.1.1: An undirected graph G = (V, E) is an object consisting of the set of
vertices V' = V(@) and the set of edges E = E(G), where each edge e € E is associated
with an unordered pair {u, v} of vertices u,v € V. The association of edges and unordered
pairs of vertices can be formalized by the mapping

. {E—) {Hu,v} :u,v € V},
" e {u,v}

called incidence relation.
Here we always assume V(G) and E(G) to be finite.

Definition 2.1.2: Let G = (V, E) be an undirected graph and ¢ be the corresponding
incidence relation. An edge e is incident to vertices u and v if ¢(e) = {u,v}. In that case,
u and v are the endvertices of e and the edge e is said to connect/join the two vertices.
If we cut an edge e at its middle point, we get two half-edges, each is incident to its
corresponding endvertex of e. We call two vertices v and v adjacent, if there exists an
edge e with t(e) = {u,v}. We call an edge e a loop if |c(e)] = 1. Edges e # €’ are called
multi-edges if t(e) = 1(¢’). An undirected graph without loops or multi-edges is called
simple.

Figure 2.1 shows an example of an undirected graph with one loop and two multi-edges.
The degree of a vertex is an important term in the study of graphs.
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2 Preliminaries

X ¢

Figure 2.1: An undirected graph with multi-edges and one loop.

Definition 2.1.3: Let G = (V, E) be an undirected graph and v € V. Let H(v) define the
half-edges incident to v. We define the (vertex-)degree of v as

degg (v) = |H(v)].
A vertex of degree 0 is called isolated.

With this slight adaptation of the standard definition of the vertex-degree, we present a
result also known as the Handshaking-Lemma.

Lemma 2.1.4: For an undirected graph G = (V, E) the following formula holds

S degg(v) =2 |E].

veV

Proof. Since each half-edge is incident to exactly one vertex, the left-hand side counts the
total number of half-edges in the graph. Each edge consists of exactly two half-edges; thus,
this number is 2 - |E)|. O

In many cases, we want to consider graphs that have a direction for each of the edges.

Definition 2.1.5: A directed graph G = (V| F) is also an object consisting of the set of
vertices V' = V(@) and the set of edges E = E(G), where each edge e € E is associated
with an ordered pair (u,v) of vertices u,v € V. The association of edges and ordered
pairs of vertices can be formalized by the mapping

7.{E—>V><V,

e (u,v)
also called incidence relation. For e € E and 7'(e) = (u,v) we also use the notation
e = (u,v) and e~ := u,e’ := v. In this case, we call u the tail and v the head of e. The

notation of Definition 2.1.2 can be adopted analogously.

The orientation of edges in a directed graph is usually illustrated by a little arrow, as
can be seen in Figure 2.2.

Every directed graph naturally induces an underlying undirected graph by replacing each
edge e associated with the ordered pair (u,v) by an edge ¢’ associated with the unordered

pair {u,v}.
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2 Preliminaries

Definition 2.1.6: Let G = (V, E) be a directed graph and v € V. We define the in-degree
and out-degree of v as

deg,(v) :=|{e€ E|FucV : 7 (e) = (u,v)},
degl(v) :=|{e € E[Fw e V : T(e) = (v,w)}|.

The degree of v € V is defined as degg (v) := degg(v) + degh(v).

Note that by definition the degree of a vertex v in a directed graph is exactly the degree
of v in the underlying undirected graph.
Analogously to Lemma 2.1.4, we can state the Handshaking-Lemma for directed graphs.

Lemma 2.1.7: For a directed graph G = (V, E) the following formula holds

> degg(v) =) degh(v) = |E|.

veV veV
In directed and undirected graphs, we want to consider various sequences of edges.

Definition 2.1.8: Let G = (V, E) be an undirected graph. A path of length k is a se-
quence of edges p = eq, eq, ..., e, for which there exist distinct vertices vg = u,v1,...,vE =
v, such that

L(ei) = {’Uz'_l,’Ui}, for i = 1,...,]€.
A directed path p is defined analogously, with edges satisfying
ei:(vi_l,vi), fOI"iZl,...,k‘

In both cases, we say that u, v are connected by the (directed) path and write len(p) = k.
A graph G is called connected if each pair of vertices is connected. ! If we allow vy = vy,
and k£ > 1, the path is called a (directed) cycle.

Figure 2.2 illustrates a directed graph. It is disconnected as there exists an isolated
vertex that is not connected to any of the other vertices. Apart from the loop, the graph
contains exactly one (directed) cycle, which is highlighted in red (and dashed).

With the definition of a path, the notion of distance between two vertices follows very
naturally.

Definition 2.1.9: Let G = (V, F) an undirected graph and vy,v; € V. The distance
d(vi,v9) := dg(v1,v2) is defined as

dg(v1,v2) := inf{len(p)|p is a path in G connecting v; and va}.

By this definition, the distance between two vertices is oo if they are not connected. For
a connected graph G, (G, dg) can easily be shown to be a metric space.

We now introduce a special class of graphs that will be the basis for most of the upcoming
considerations.

In the case of directed graphs, this only requires the underlying undirected graph to be connected, and
is often called weakly connected.
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2 Preliminaries

Figure 2.2: A disconnected directed graph with a directed cycle in red and dashed.

Definition 2.1.10: A tree is an undirected connected graph without a cycle.

The following classical characterizations of trees are standard and used repeatedly; we
state them without proof.

Theorem 2.1.11: Let G be an undirected graph and n = |V (G)|. Then, the following
statements are equivalent:

1. G is a tree (i.e., connected and acyclic).

2. G is connected and |[E(G)| =n — 1.

G is acyclic and |[E(G)| =n — 1.

For each pair v,w € V(G), there exists a unique path between v and w.

G is minimal connected (i.e., the removal of an edge disconnects G).

S S e

G is mazimal acyclic (i.e., the addition of an edge creates a cycle).
Another important concept is that of bipartite graphs.

Definition 2.1.12: Let G = (V, E) be an undirected graph with a partition of the vertices
in V into two subsets V7 and V5. If for every edge e one endvertex is in V7 and the other
in V5, we call the graph bipartite.

We present a classical result which characterizes bipartite graphs.

Lemma 2.1.13: Let G be an undirected graph. G is bipartite if and only if it contains no
cycle of odd length.

In this section, we have already shown some examples of graphs drawn in the plane.
Since a given graph can usually be represented by many different drawings, it is natural to
introduce the concept of planar maps as proper embeddings in the 2-sphere.

Definition 2.1.14: An embedding of an undirected graph G is an injective function

¢ from G into the 2-sphere. More explicitly, an embedding maps the vertices of G onto

distinct points of S?, and each edge of G onto a simple path on S? connecting the images of

its endpoints. An embedding is proper if distinct edges intersect only at their endpoints.
A planar mabp is a proper embedding of a connected graph G into the sphere S?.
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2 Preliminaries

Later we will provide a generalized definition for maps on general surfaces (i.e., not only
planar maps). Although most of the following definitions and results hold for maps on
general surfaces, we will restrict ourselves to planar maps for now and explicitly indicate
when a statement applies only in the planar case.

From now on, we will not distinguish between the vertices and edges of a graph and
those of its embedded map.

Since an embedding determines the cyclical order of the edges around each vertex, we
can define the following.

Definition 2.1.15: In a planar map, we define a corner c as a pair of consecutive half-
edges around a vertex. The half-edge that appears first (or second) in clockwise order
around the vertex is said to be on the left side (or on the right side) of the corner c.
It is also possible to view corners as the angular sector between those two half-edges or as
incidences between vertices and faces.

A rooted planar map is a planar map with a distinguished corner called the root
corner. The oriented edge e, that lies on the left side of the root corner and is oriented
away from the associated vertex, is called the root edge. The vertex of the root corner is
called the root vertex.

A rooted planar map is pointed if it has an additional distinguished vertex called
pointed vertex. In this case, the map is called root-pointed if the pointed vertex
and the root vertex coincide.

Planar maps are often not illustrated as embeddings in the 2-sphere, but rather by their
representation in the plane. This representation can be obtained by choosing one face of
the planar map as the infinite unbounded face in the plane. In a rooted planar map, it is
common to mark either the root corner or the oriented root edge in an illustration.

Definition 2.1.16: Let M be a planar map. A face is a connected component of S2 \ M.
The faces of a map M are denoted by F(M). The degree deg,,(f) of a face f is the
number of incident corners.

Note that one would actually need Jordan’s curve theorem in order to thoroughly define
the faces of a planar map. We omit these details here and proceed with our intuitive
definition.

The following result is analogous to the Handshaking-Lemma.

Lemma 2.1.17: For every planar map M the following formula holds

S degy(f) =2 [E(M)]. (2.1)

fer(M)

Another well-known result, called Euler’s (polyhedron) formula for planar maps, and its
inductive proof on the number of edges can be found in [Diel7] (Theorem 4.2.9.).

Theorem 2.1.18: Let M be a planar map. Then

[V (M)| = [E(M)| +[F(M)] = 2.
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2 Preliminaries

N - 7
(- - <p

Figure 2.3: Plane representation of planar maps My = My = M3 # Mjy.

It is important to keep in mind that we always work with maps seen up to “deformation”,
or more precisely.

Definition 2.1.19: Two planar maps M and M’ are called isomorphic if there exists an
orientation-preserving homeomorphism A on S? such that V(M) = h(V(M’)) and E(M) =
h(E(M')). The mapping h is called a (map-)isomorphism. Let the maps M and M’
be rooted with root edges e, and e, then they are isomorphic if there exists a map-
isomorphism h such that h(e,) = €.

Note that a map-isomorphism preserves not only the incidence relation between vertices
and edges but also the incidence relation between edges and faces. Figure 2.3 shows the
plane representation of four maps M, ..., My. Note that all maps are proper embeddings
of the same underlying graph, but only My = My = Mj are the same planar map. The
first equality is easy to see because both maps are deformations of each other in the plane.
For the second equality, one needs to realize that the two maps M, and M3 are different
plane representations of the same planar map with different faces chosen as the infinite
outer face. The planar map My has two faces of degree 6 and therefore can not be equal
to the other planar maps that have one face of degree 4 and one face of degree 8.

The identification of maps up to isomorphisms is necessary for the enumeration of these
combinatorial structures.

Definition 2.1.20: The isometry classes of all planar maps with n > 1 edges are denoted
by M,, and the class of all planar maps by M = Un21 M,,.

Definition 2.1.21: A map is called Eulerian if all its vertices have even degree? and
m~regular if all its vertices have degree m. We call a map even if all its faces have even
degrees and m-angulation if all its faces have degree m. For the special cases m = 3,4,
we use the terms triangulation and quadrangulation.

Lemma 2.1.22: In the planar case, all even maps are bipartite. Thus, all planar quad-
rangulations are bipartite.

Proof. Let M be an even planar map. We assume M is not bipartite; therefore, it contains
a cycle ¢ of odd length according to Lemma 2.1.13. The cycle ¢ partitions the rest of

2Usually, the property of being Eulerian is defined by the existance of an Euler tour (a closed walk in a
graph that traverses every edge of the graph exactly once). It was shown by Euler in the 18th century
that for a connected graph, this is equivalent to the definition of even vertex-degrees; hence we use this
definition for our purposes.
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2 Preliminaries

the sphere S? \ ¢ into two non-empty connected components P; and P,. Let M’ be the
map obtained by only considering the cycle ¢ and the vertices and edges contained in Pj.
Now, P, is a face of M’ bounded by ¢ and since ¢ is of odd length, P, has an odd degree.
According to Formula (2.1), one of the other faces of M’ must also have an odd degree.
This produces a contradiction, since the other faces of M’ are also faces of the original even
map M. O

Note that this proof does not generalize to the case of general maps. A cycle does not
necessarily produce two non-empty connected components on a surface of higher genus
(e.g., the surface of a torus). For general maps, only the other implication holds true; a
map is even if it is bipartite.

Definition 2.1.23: Let M be a map with a partition of the faces F' into two non-empty
subsets I} and F5. If each edge e is incident to one face in F; and one in F5, M is said to
be bicolorable.

There exist several interesting constructions for planar maps; a few of them are intro-
duced here.

Definition 2.1.24: Let M be a planar map. Its dual M* is the map with vertex set V*
obtained by placing a vertex f* in each face f of M, and with edge set E* obtained by
drawing an edge e* across each edge e of M connecting the vertices corresponding to the
incident faces.

Definition 2.1.25: Let G be an undirected graph. A subgraph T is called a spanning
tree of G if T is a tree and V(T') = V(G).

Theorem 2.1.26: Let M be a planar map with dual M*. For each edge e € E(M), denote
by e* € E(M*) its dual edge. Then the edges T C E(M) form a spanning tree of M if and

only if
T :={e*:e ¢ E(T)}

form a spanning tree of M*.

Proof. Let n = |V(M)|,m = |E(M)|, f = |F(M)|. By Euler’s formula, we have n—m+f =
2. Let T be a spanning tree of M, then |E(T)| =n — 1, hence

T =m—(n—1)=f—1=|V(G")| -1

Thus, T™ is a spanning tree if it is a tree. Assume that T contains a cycle. We take two
arbitrary vertices vy, v2 € V(M) = V(T) that lie on different sides of the cycle. These two
vertices cannot be connected by a path in 7" since this path would need to contain an edge
dual to an edge of the cycle. This is in contradiction to T being connected.

Using very similar arguments, it can be shown that 7™ is connected since 1" does not
contain a cycle. The other implication of the statement can be shown in the same way by
switching the roles of M and M* and using the fact that (M*)* = M. O
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2 Preliminaries

With the help of dual maps, we can show another equivalence of definitions in the planar
case.

Lemma 2.1.27: In the planar case, all Eulerian maps are bicolorable.

Proof. This is in fact a direct consequence of Lemma 2.1.22. Let M be a planar Eulerian
map, then its dual M* is a planar even map, since the property of even face degrees
translates directly into even vertex degrees in the dual case. By Lemma 2.1.22, M* is

bipartite. If a dual map is bipartite, its original map M must, by definition, be bicolorable.
O

Definition 2.1.28: A bipartite map with partition V3 U V5 is called vertex-bicolored
if the vertices of V; are colored black and those of V4, white. Given a planar map M, its
vertex-bicolored incidence map (or quadrangulation) Q(M) is the map with vertex set
V U V*, vertices of V' colored black and vertices of V* colored white. The edge set is
created as follows: For each corner ¢ around a vertex v of the original map M, draw an
edge between the vertex v € V and the vertex f* € V*, where f is incident to the corner c.

Remark 2.1.29: The mapping @ is a bijection from planar maps with n edges to vertex-
bicolored planar quadrangulations with n faces. Given such a quadrangulation, the cor-
responding map can be recovered by drawing, in each face, a diagonal between the two
black corners of that face. The set of black vertices together with these diagonals, yields
the original map. 3

The plane representation of a planar map M with 4 edges and its corresponding quad-
rangulation Q(M) with 4 faces is shown in Figure 2.4. In the left subfigure, the original
map M is still depicted with dashed edges.

(a) Planar map M. (b) M and Q(M).

Figure 2.4: A planar map and its quadrangulation.

Definition 2.1.30: Let M be a planar map. We construct a new map by drawing a vertex
e* in the middle of each edge e of M. For each corner of the map M and its incident edges
e1 and ey, we draw an edge between the vertices e] and e5. This construction yields the
medial map of the map M.

3This also holds for general surfaces (see [CD17]).

10
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2 Preliminaries

A planar map M with 6 edges and its medial map with 12 edges are illustrated in Figure
2.5. In Subfigure 2.5b, the original map M is still depicted with white vertices and dashed
edges to show the connection between both maps.

-

(a) Planar map M. (b) The medial map.

Figure 2.5: M and the medial map construction.

In fact, there is a relation between the number of edges, and one can even show how the
construction can be reversed. For now, we focus on rooted planar map. Let ¢ be the root
corner (with the root edge eg to its left). The root corner of the medial map is then defined
as the corner that contains e.

Since the medial map has an edge for each corner of the original map, a planar map with
n edges yields a medial map with 2n edges. Furthermore, considering any vertex e* of the
medial graph and one of the two half-edges of the edge e, the half-edge is either incident
to two different corners or incident twice to the same corner. Thus, the half-edge produces
either two edges or a loop, in both cases contributing 2 to the degree of the vertex e*. This
shows that each vertex has degree 4.

The reverse construction is given as follows: consider a rooted 4-regular map with 2n
edges. Since the map is Eulerian, its dual graph is bipartite, allowing us to color the faces
of the map in two colors ¢; and co; let ¢; be the color of the face fy that contains the root
corner. We construct a map M with a vertex f* for each face f of color ¢;. Whenever
two faces f1 and fo (not necessarily distinct) are incident to different corners of a shared
vertex, an edge is added between f; and f5. There is one specific edge, whose creation
includes the root corner (and the vertex f;). This edge is chosen as the root edge of M
oriented away from f;. The so constructed rooted planar map M has n edges, and it can
be checked that these constructions are inverse.

Lemma 2.1.31: The medial map construction is a bijection between rooted planar maps
with n edges and rooted 4-regular planar maps with 2n edges.

Later, we will apply this lemma to a certain class of planar maps which can be interpreted
as a subclass of rooted planar maps.

Definition 2.1.32: A plane map (also called a face-rooted map) is a proper embedding
of a connected graph in the plane. The unique unbounded face is called the outer face or
root face, every other face is called inner face.

11



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

2 Preliminaries

The outer degree of a plane map is the degree of the outer face. Vertices, edges and
corners are called outer if they are incident to the outer face and inner otherwise.

Plane maps can also be defined as planar maps with a marked root face; if we already
have a rooted planar map, we can interpret it as a plane map and take the face incident to
the root corner as root face. When illustrated in the plane, the root face is taken as the
unbounded outer face.

We emphasize that plane maps and planar maps are a very similar yet different concept
and must not be confused. It is interesting to refer to Figure 2.3 again and mention that
Ms and M3 are not equal when they are interpreted as plane maps. This is obvious from
the fact that they have different outer degrees.

2.2 Plane trees

Plane trees are among the most fundamental combinatorial objects and are frequently used
for the purpose of map enumeration. In this section, we recall their definitions and basic
properties, setting the stage for their role in bijections with planar maps.

Definition 2.2.1: A (rooted) plane tree is a (rooted) planar map without cycle (and
thus with only one face). The vertices of a tree are also called nodes. The nodes with
degree 1 are called leaves and the nodes with higher degree are called internal nodes.
By P and P,, we denote the class of rooted plane trees and the subset of rooted plane trees
with n edges, respectively.

Rooted plane trees can also be defined recursively as a root node to which is attached a
(possibly empty) sequence of rooted plane trees. This leads to the combinatorial equation

P = {e} x P*, (2.2)
where e denotes the root node and P* denotes the sequence class of the class P defined as
P i={e}+P+(PxP)+(PXPxXP)+---.

Using the combinatorial equation (2.2) and basic methods of analytic combinatorics, the
ordinary generating function (OGF) of rooted plane trees is given by

z

P(z) = 1—7}7(z)

In [FS09], a detailed introduction to combinatorial classes and generating functions can
be found. In the book, they also solve the functional equation for the coefficients of the
OGF and show the following well-known theorem.

Theorem 2.2.2 ([FS09], 1.5.1): The number of rooted plane trees with n edges is given by

1 2n
lpn|:Cn:n+1<n)’ (2.3)

where C,, denotes the n-th Catalan number.

12
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2 Preliminaries

Rooted plane trees are usually depicted in a canonical form, where the root corner is
at the top. As an example, two different illustrations of the same plane tree are shown in
Figure 2.6. This rooted plane tree is rooted at an internal node and is therefore different
from a specific class of rooted plane trees that we define in the following.

AT ! 20N
e o o [ e O o
(a) Rooted plane tree. (b) Canonical depiction of rooted plane tree.

Figure 2.6: The same rooted plane tree.

Definition 2.2.3: A planted plane tree is a plane tree rooted at the (unique) corner of
a leaf.

Note that the definition of planted plane trees is almost identical to the definition of
rooted plane trees. In fact, for n > 1, each planted plane tree with n edges can be converted
to a rooted plane tree with n — 1 edges by removing the root leaf and its incident edge and
adding a new root corner instead, and vice versa. Thus, according to Formula (2.3), the
number of planted plane trees with n edges is given by C),_1.

Definition 2.2.4: A rooted plane tree is labeled if all its nodes are additionally given
integer labels.

It is embedded if the labels of two adjacent nodes differ by at most 1 and the label of
the root node is 1. By &€ and &,, we denote the set of embedded rooted plane trees and the
subset of embedded rooted plane trees with n edges, respectively.

If in addition all nodes have positive labels, the tree is called well-labeled.

Consider a given embedded plane tree T € &,. For each of the n edges, we have 3
different choices for the relation between the labels of the two corresponding endvertices
(being equal or differing by one). Together with Formula (2.3) for the number of rooted

plane trees, this gives us
3" [2n
Enl=3"" = )
[En] = 37 [Pnl n+1<n>

We have already used the notion of the clockwise order of edges around a given vertex that
exists for all vertices in a given map. For a face-rooted map, we can additionally define
a clockwise tour around the map, which is very natural considering the corresponding
embedding in the plane.

Definition 2.2.5: Let M be a face-rooted planar map with m outer corners. We define the
clockwise tour around the map as the cyclic sequence of outer corners and outer edges

<C(o>, e@c) ) m=1) e(m—l)) ,

13
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2 Preliminaries

such that for each 0 < i < 2n — 1, the edge e~ Y lies on the left side and the edge e on
the right side of the corner ¢(®).*

If the map is corner-rooted, the clockwise tour becomes an acyclic sequence starting at
the root corner.

Since a plane tree T' € P, has only one face, each corner is an outer corner. Thus, the
clockwise tour around the tree contains each of the 2n corners, and each of the n edges
twice.

“For i = 0, the edge e{™") is defined to be the edge e~ due to the cyclic nature of the tour.

14
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3 Overview of bijections between maps and
tree-like structures

In this chapter, we present a non-exhaustive overview of different bijections between maps
and tree-like structures. We try to cover the most important advances in research in recent
years and shed light on the differences and connections between these different approaches.

A strategy of clustering the bijections into two different families of constructions could be
made similarly to [BF12]. The bijections can be divided into two categories: (A) bijections
in which the decorated tree is a spanning tree of the map, and (B) bijections in which
the decorated tree is no longer a spanning tree of the corresponding map. These trees are
bicolored and called mobiles in various sources.

3.1 Bijections of category (A)

In this section, we explore a fundamental class of bijections between combinatorial objects;
we will call those bijections of category (A). These bijections serve as a powerful tool to
translate complex problems about maps on surfaces into more tractable structures such as
decorated trees or unicellular maps with additional data. Originating from seminal work
in planar map theory, these bijections have been extended and generalized to surfaces of
higher genus and to both orientable and non-orientable settings.

The core idea behind bijections of category (A) lies in encoding maps through well-
structured unicellular blossoming maps, where combinatorial constraints translate into
conditions on stems, labels, and orientations. This encoding not only enables enumera-
tive formulas but also provides insight into the metric and geometric properties of maps
via the study of the simpler underlying structures.

In particular, this section covers bijections between planar maps and blossoming trees,
as well as their Eulerian and triangular variants, and the higher-genus generalizations
developed in recent works.

3.1.1 Schaeffer’s construction for Eulerian maps

In this subsection, we introduce the concept of a class of decorated trees called blossoming
trees via the bijection between Eulerian planar maps with a prescribed sequence of vertex
degrees and blossoming trees, as described in [Sch97]. Note that [Sch97] uses the notion of
an Eulerian tree. Since we want to highlight their role in the context of blossoming trees,
we will slightly modify them and use the notion of Eulerian blossoming trees instead.

Definition 3.1.1: A blossoming map is a face-rooted map, in which each outer corner
can carry a sequence of opening or closing stems.

15
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3 Overview of bijections between maps and tree-like structures

A blossoming tree is a blossoming map based on a plane tree. A blossoming tree with
d; vertices of degree 2i is called Eulerian if each vertex of degree 2i carries ¢ — 1 opening
stems.

The cyclic contour word of a blossoming map is the word on {e, b, b}, which encodes
the cyclic order of edges and stems along the clockwise tour around the map, where e
encodes an edge, b encodes an opening stem and b encodes a closing stem.

A local closure of a blossoming map is a substitution of a factor be*b by the letter e in
its contour word, where e* denotes any (possibly empty) sequence of e.

A local closure corresponds very naturally to replacing an opening stem and a later (in
the clockwise tour around the map) closing stem by a single new edge in the map. This
new edge is called a closure edge.

The opening and closing stems are usually depicted as little outgoing and ingoing arrows.
The left side of Figure 3.1 shows an Eulerian blossoming tree with 3 opening and 5 closing
stems. The cyclic contour word of this tree is given by bebbebebbebebe.

For our upcoming considerations, we introduce a basic combinatorial result.

Lemma 3.1.2: Let n,k be positive integers. The number of k-tuples (ni,...,ng) with
Zle n; = n is given by
n+k—1
k-1 )

Proof. The problem of enumerating those k-tuples is equivalent to the problem of counting
the possibilities of placing n objects into k bins. The bins are distinguished but the n
objects are not.

Each of these possibilities can be encoded by an arrangement of stars and bars, where
each of the n objects is represented by a star and two adjacent bins are separated by a bar.
Each encoding consists of n stars and k — 1 separating bars and is uniquely determined
by the position of the k — 1 bars. Thus, the problem is reduced to choosing k — 1 out of
n + k — 1 possible positions. O

There is an interesting connection between Eulerian blossoming trees and plane trees.
An Eulerian blossoming tree with d; vertices of degree 2i can be obtained from a plane
tree in which each corresponding vertex has degree i + 1. This correspondence comes from
replacing each leaf and its incident edge by a closing stem, and adding i — 1 opening stems
to each internal vertex of degree i + 1. By Lemma 3.1.2, there are (Qil._l) possible ways. If
one starts with a plane tree with k leaves and n edges, the resulting Eulerian blossoming
tree has k closing stems and n — k edges.

In Figure 3.1 we show an example of an Eulerian blossoming tree and its underlying
plane tree.

We continue with a lemma on the number of leaves in a plane tree, which will be used
in the subsequent analysis.

Lemma 3.1.3: Let T be a plane tree with d; vertices of degree i + 1 for i > 1. Then, the
number k of leaves in T is given by

k=2+) (i—1)d;. (3.1)

i>2

16
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3 Overview of bijections between maps and tree-like structures

+

N

Figure 3.1: Eulerian blossoming tree and its underlying plane tree.

Proof. We prove the result by induction on the number of edges. For the base case, consider
a plane tree consisting of two nodes connected by a single edge. Both nodes have degree 1
(so d; = 0 for ¢ > 2), and Formula (3.1) yields k£ = 2, as required.

Let T be a plane tree with d; vertices of degree i + 1 and T be the plane tree with d;
vertices of degree i + 1 after cutting off a leaf and the connecting edge. If the leaf was
attached to a node of degree j + 1 > 2, then the number of leaves and the sum are both
reduced by 1. If the leaf was attached to a node v of degree j + 1 = 2, then the number of
leaves and the sum both remain the same, since the node v is a new leaf and since d; = JZ
for all 7 > 2. O

Lemma 3.1.4: An Eulerian blossoming tree has exactly two more closing stems than open-
ing stems. This property is invariant under any sequence of local closure operations.

Proof. Consider an Eulerian blossoming tree with d; vertices of degree 2i. By Lemma 3.1.3,
the number of leaves of the underlying plane tree with d; vertices of degree 7 + 1 is given
by

k=24 (i—1)d;,

i>2

which equals the number of closing stems of the Eulerian blossoming tree. Since i — 1
opening stems are added to each of the d; nodes of degree i 4+ 1, the number of opening
stems is given by > .-, (i — 1)d;, so the difference is exactly 2.

A local closure removes one opening stem and one closing stem and, therefore, does not
affect this property. O

If two different local closures are possible on a given blossoming map, the order of per-
forming them does not change the result. As long as the letter b appears in the contour
word, we can find a cyclic permutation containing a factor be*b and thus yielding a local
closure. Hence, iterating closures in any order eventually produces a unique map, which
justifies the following definition.

Definition 3.1.5: The complete closure M of a blossoming map M is the object ob-
tained by iterating all possible local closures until no opening stems remain.

17
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3 Overview of bijections between maps and tree-like structures

An example of an Eulerian blossoming tree and its complete closure is shown in Figure
3.2.

According to Lemma 3.1.4, the complete closure of an Eulerian blossoming tree contains
no more opening stems and exactly two unmatched closing stems. These two closing stems
will play a central role in the analysis of Eulerian blossoming trees.

Definition 3.1.6: An FEulerian blossoming tree is called marked if one of the closing
stems is marked. In illustrations of a marked Eulerian blossoming tree, the marked closing
stem is indicated by a small circle around it. Two marked Eulerian blossoming trees are
called conjugate if one can be obtained from the other by changing which closing stem is
marked.

A marked Eulerian blossoming tree is called balanced if its marked stem is one of the
two unmatched closing stems in the complete closure.

The complete closure implies a mapping ® from balanced Eulerian blossoming trees to
another class of maps. Given the complete closure of a balanced Eulerian blossoming tree,
we insert a directed root edge from the marked closing stem to the second unmatched closing
stem. The resulting rooted Eulerian map has the same distribution of vertex degrees as
the original blossoming tree. This final step can also be seen in Figure 3.2.

®

N

T A

(a) Eulerian blossoming tree. (b) The complete closure. (c) Eulerian map after final step.

Figure 3.2: The mapping ® illustrated in two steps.

To illustrate why this mapping @ is a bijection, we briefly sketch the construction of its
inverse.

Algorithm 1 operates simultaneously on the contour word and on the corresponding
(blossoming) map.

The exponent m — 1 in €™~ ensures that the updated cyclic contour word corresponds
exactly to the blossoming map, in which the former marked edge is replaced by an opening
stem and a closing stem.

We state the main theorem of this subsection and refer to [Sch97] for the proof.

1
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3 Overview of bijections between maps and tree-like structures

Algorithm 1 Opening algorithm for rooted Eulerian maps ¥

Require: M rooted Eulerian planar map, ¢ the cyclic contour word of M
1: eg < the root edge
2: while M is not a tree do

3: f < the inner face incident to eg

4: m < deg(f)

5: e1 < €

6: ep < the edge after ej in ¢

7 if e; is not a bridge then

8: if ey is the root edge then

9: update ¢ by substituting the letter e corresponding to e; by be™'b
10: else

11: update ¢ by substituting the letter e corresponding to e; by be™ b
12: end if

13: update the map M accordingly

14: end if
15: end while
16: return blossoming tree M

Theorem 3.1.7: The mapping ® is a bijection from balanced Fulerian blossoming trees
with d; vertices of degree 21, k closing stems and n — k edges onto rooted Fulerian planar
maps with d; vertices of degree 2i, e =n — 1 edges, and v =n — k + 1 vertices.

The opening algorithm WV is its inverse.

This bijection will be applied in Section 5.1 to derive an enumeration formula for rooted
Eulerian planar maps.

3.1.2 Triangulations

There exists a bijection between simple rooted triangulations (no loops or multi-edges) and
a certain class of blossoming trees. The bijection is presented in ([PS06]).

Definition 3.1.8: A triangulation is of size n if it has 2n faces. By 7, we denote the set
of rooted simple triangulations of size n.

By Formula 2.1, a triangulation of size n has 3n edges. Applying Euler’s formula then
yields that the number of vertices is given by n + 2.

There are exactly three different rooted simple triangulations of size 3; they are depicted
in Figure 3.3. Observe that they differ only in the choice of the root edge. For larger values
of n, two triangulations may also differ in the structure of their underlying planar map.

Aiming for a bijection onto rooted simple triangulations, in this subsection we introduce
a variation of blossoming trees that differs slightly from the notation used in [PS06], but
is closer to our notation used throughout this section.

Definition 3.1.9: A blossoming tree in which each node carries exactly two opening stems
and no closing stem is called triangular. By BY , we denote the set of triangular blossoming
trees with n nodes.

19



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Overview of bijections between maps and tree-like structures

Figure 3.3: The 3 elements of 7.

A (triangular) local closure of a blossoming map is the operation of substituting a
factor bee by the letter e in its contour word. For a triangular blossoming tree 7', the
partial closure T is the result of the exhaustive recursive application of local closures.

We want to emphasize that the triangular local closure for blossoming maps differs from
the general local closure for blossoming maps, although the underlying idea is conceptually
very similar.

The triangular local closure can be interpreted as the substitution of an opening stem
by an edge between the corresponding node and the next node in clockwise order so that
a new triangular face is created.

The only two possible triangular local closures of a given triangular blossoming tree, and
hence its partial closure, are illustrated in Figure 3.4. We ignore the circle around the one
opening stem for now.

I/ //&/K
(a) Triangular blossoming tree B. (b) Partial closure B.

Figure 3.4: The effect of two local closures.

By definition, a triangular blossoming tree in Bf has 2n opening stems and n — 1 edges.
Therefore, the letter b appears 2n times in the contour word and the letter e appears 2n — 2
times, because each of the n — 1 edges is encountered exactly twice in a tour around the
tree. By performing a local closure, the number of both quantities is effectively reduced
by one and the difference between opening stems and edges remains 2. The partial closure
cannot have two consecutive edges; otherwise, these edges together with one of the opening
stems left would allow for another local closure. Thus, the resulting contour word is an
alternating sequence of the letters b and e with the occurrence of two distinct positions in
the word where two consecutive b’s appear. The nodes corresponding to these places in the
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contour word, which carry both of their original opening stems, are called vy and v. The
resulting contour word can be written as

(be) b (be) b (3.2)
I. part II. part

where (be)* denotes a non-empty sequence of be of any length.
In the example of Figure 3.4, the resulting contour word of B can be written as (be)*b(be)?b.

Definition 3.1.10: A triangular blossoming tree is called marked if one of the opening
stems is marked; it is called balanced if the last b of either the I. or II. part of the contour
word encodes the marked opening stem. In illustrations of a marked triangular blossoming
tree, the marked opening stem is highlighted by a small circle around it.

In a balanced triangular blossoming tree, the marked opening stem belongs, by definition,
to either vy or v}, and comes before the other opening stem of that node in clockwise order.

Definition 3.1.11: Let B € Bf be a balanced triangular blossoming tree and B its partial
closure with its contour word denoted as in (3.2) such that the marked opening stem belongs
to the I. part. The complete closure of B is obtained from B by first adding two new
nodes v and vy, and replacing all opening stems of the I. part with an edge to v; and all
opening stems of the II. part with an edge to vy. Finally, a directed root edge e = (v1, v2)
is added.

Figure 3.5a finalizes the complete closure that was started with the partial closure in
Figure 3.4. Figure 3.5b shows the same map in an embedding that more clearly reveals its
structure as a triangulation.

U2

U1
U1 > V2

(a) Complete closure. (b) Triangular structure.

Figure 3.5: Two embeddings of the complete closure.
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It is straightforward to verify that the complete closure produces a triangulation with n+2
vertices and thus of size n. However, it is not immediately obvious that the triangulation
is simple, i.e., that it does not contain multiple edges. The proof can be found in Section
3.1 of [PS06].

The complete closure suggests a bijection between the set BnA of balanced triangular
blossoming trees with n nodes and the set 7, of simple triangulations of size n.

To describe the inverse construction, we first define the notion of an orientation of a
map.

Definition 3.1.12: An orientation of a planar map is the assignment of a direction for
each edge. A planar map endowed with an orientation can be interpreted as the embedding
of a directed graph, and from now on we will also adopt the notations of the associated
directed graph for an oriented planar map. Let M be a planar map, V the set of vertices,
and « : V — N a function that associates a natural number to each vertex of the map. An
a-orientation is an orientation of M such that

Vv € V,degy,(v) = a(v).
If such an orientation exists, « is said to be feasible on the map M.

We will work with orientations in more detail in Subsection 3.1.3. For the moment, we
require this definition only to introduce the inverse construction.

Let T € T, be a rooted simple triangulation with outer vertices vg, v1, v and root edge
(v1,v2). We equip T with the a-orientation corresponding to the function a(v) = 1 for
each outer vertex and «o(v) = 3 for each inner vertex, which contains no counterclockwise
cycles.!

We apply the following opening Algorithm 2 to a triangulation 7" € 7p,:

The first two parts of Figure 3.6 show the steps before the while-loop of the opening
algorithm applied to the triangulation obtained in Figure 3.5. In the figure, the current
edge e (resp. the opening stem e chosen at the beginning of the algorithm) is represented
in dashed lines. We highlight all the marked edges in red to keep track of when we exit the
while-loop. This final configuration before exiting the loop is shown in the last subfigure
of Figure 3.6. The resulting map consists of the two isolated vertices v; and wve, and the
connected component containing vg. If we additionally mark the opening stem o7, we
eventually obtain the original triangular blossoming tree of Figure 3.4.

We do not show here the correctness of this algorithm nor prove that this opening
algorithm is the inverse of the complete closing. However, we recall the following key result
from [PS06].

Theorem 3.1.13 ([PS06], Proposition 2.7): The opening algorithm returns a spanning tree
of T\ {v1,v2}.? The tree is the unique balanced triangular blossoming tree whose complete
closure produces the triangulation T'. Hence, the complete closure is a bijection between the
set By of balanced triangular blossoming trees with n nodes and the set T, of rooted simple
triangulations of size n. Its inverse is given by the opening algorithm.

We will show later that such an orientation always exists and is unique.
2Here, T\ {v1,v2} denotes the triangulation obtained by removing the two outer vertices v1 and v2 along
with their incident edges.
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3 Overview of bijections between maps and tree-like structures

Algorithm 2 Opening algorithm for triangulations
Require: T € 7,
Ensure: T is endowed with a minimal orientation
1: delete the root edge (vi,v2) and replace the edges (vp,v1) and (vg,v2) with opening
stems attached to vy, denoted o1 and o9

2: 4= 02,V < 1
3: while d unmarked edge do
4: e + {v,u} the edge following e in clockwise direction
5: if ¢’ is unmarked and directed towards v then
6: substitute €’ by an opening stem attached to v
& else
8: mark ¢/
9: e+e€,v+u
10: end if
11: end while
12: return connected component of vy with the marked opening stem o7
v v v
A b @)
\
\ \/ ‘]‘/\.\1
A
—0—
° °
U1 U2 U1 U2 U1 V2
(a) After first steps. (b) 1. iteration of loop. (c) After Termination.

Figure 3.6: Opening algorithm for triangulations.

We will use this bijection in Subsection 5.1.2 to give an explicit formula for the number
of rooted simple triangulations of size n.

3.1.3 Unified bijective scheme

In [AP15], the authors present a generic bijective scheme that unifies and generalizes pre-
vious bijections between planar maps and blossoming trees. This framework relies on
orienting the map in a suitable way and produces a bijection between the map and a span-
ning tree decorated with additional structure, called a blossoming tree. Several known
constructions, such as those described in Subsection 3.1.1, can be recovered as special cases
of this scheme.

The paper presents a new bijective scheme, relying on an orientation of a map, between
the map and a spanning tree of the map with some decorations, called blossoming tree.
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3 Overview of bijections between maps and tree-like structures

Next, we define an extension of plane maps that will be used throughout the rest of
Section 3.1.
We begin by recalling some basic notions about orientations of planar maps.

Definition 3.1.14: An orientation of a map is called accessible from v if for every vertex
w € V there exists a directed path from the root vertex to v. If the map has a root vertex
v, we call the orientation accessible if it is accessible from v.2> For maps with a root face,
we can define clockwise (resp. counterclockwise) cycles as directed cycles that have the
outer face on their left (resp. right) when traversed according to the edge directions. An
orientation without counterclockwise cycles is called minimal. The operation of reversing
all edges of a given oriented cycle is called a flip.

In Figure 3.7, we can see the plane representation of a rooted planar map M endowed
with two different a-orientations for the function a with a(v) = 2 for every vertex v.
The second orientation can be obtained from the first one by performing a flip on the
counterclockwise cycle highlighted in red. Note that both orientations are accessible and
that the second orientation is minimal, since it does not contain a counterclockwise cycle
anymore.

(a) An orientation containing a ccw cycle. (b) A minimal orientation.

Figure 3.7: Performing a flip from the left to the right orientation.

Since the in-degrees of the involved vertices are not changed after performing such a
flip, a given a-orientation is still an a-orientation after performing any sequence of flips.
Moreover, the accessibility of an orientation is preserved under flips. In [Fel04] it is shown
that we can commute between any two «-orientations this way, leading to the following
result.

Theorem 3.1.15: (Felsner [Fel04]) Let M be a planar map with a root face and o be a
feasible function on its vertices. Then, there exists a unique minimal a-orientation.

For any given feasible a-orientation, we can thus use this theorem to canonically associate
one specific minimal a-orientation.

3Note that in [AP15] the definition is stated in the opposite direction; here we follow the convention that
is also used in other sources.
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3 Overview of bijections between maps and tree-like structures

We continue with some definitions regarding blossoming maps in addition to those in-
troduced in the previous subsections.

Definition 3.1.16: Let M be a blossoming map endowed with an orientation. The local
closure is defined analogously to the closure operation introduced earlier. The newly
created closure edge is oriented from the (former) opening stem to the (former) closing
stem.

The interior M° of a blossoming map M is the non-blossoming object obtained from
M by removing all its stems.

The interior degree of a vertex v is the degree of v in M°.

The degree of a vertex v in a blossoming map is the sum of its interior degree and the
number of stems adjacent to it.

In the first subfigure of Figure 3.8, a vertex-rooted blossoming tree endowed with an
accessible and minimal orientation is illustrated. The second subfigure depicts the blos-
soming map after a single local closure, and the final subfigure shows the result after all
possible local closures have been performed. Since the original map had an equal number
of opening and closing stems, the complete closure yields a non-blossoming map.

- - .
N T

o & . o¥

(a) Blossoming tree. (b) Local closure. (¢) Complete closure.

Figure 3.8: The steps of the complete closure applied to a vertex-rooted blossoming tree.

In this example, the resulting map also inherits an accessible and minimal orientation.
The following lemma gives a sufficient condition for creating such an orientation.

Lemma 3.1.17: Let T be a blossoming tree endowed with an accessible orientation. The
complete closure T is then endowed with an accessible and minimal orientation.

Proof. Adding new edges cannot destroy accessibility, since all original directed paths re-
main present in 7. The orientation of 7" is minimal because a tree does not contain any
(counterclockwise) cycle. Each newly added closure edge is inserted from an opening to a
closing stem in clockwise order, which places the outer face on its left. This means that
any local closure cannot introduce a counterclockwise cycle and preserves the minimality
of an orientation. O

When considering a vertex-rooted blossoming tree 7', the only way to endow it with an
accessible (and minimal) orientation is to orient each edge away from the root vertex. As
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3 Overview of bijections between maps and tree-like structures

stated in Lemma 3.1.17, the closure T of the oriented tree is then also endowed with an
accessible and minimal orientation. If, in addition, 7" has an equal number of opening and
closing stems, its closure is a non-blossoming vertex-rooted map.

We now present the opening which recovers the original blossoming tree T' from its
complete closure 7.

For a vertex-rooted plane map M, we define an opening edge as an edge that has
the outer face on its left and whose deletion does not destroy accessibility. To apply the
algorithm, select any opening edge and replace its two half-edges with the corresponding
opening and closing stems

Algorithm 3 Opening algorithm for maps endowed with a minimal and accessible orien-
tation
Require: M vertex-rooted plane map endowed with a minimal and accessible orientation,
¢ the cyclic contour word of M
1: eg < a random outer edge
2: while M is not a tree do
e1 < €
ep < the edge after e; in ¢
if e; is an opening edge then
f < the (inner) face on the right of e;
m < deg(f)
update ¢ by substituting the letter e corresponding to e; by be
update the map M accordingly
10: end if
11: end while
12: return vertex-rooted blossoming tree M

mflg

The proof in Section 4.2 shows that Algorithm 3 always terminates, since an opening edge
can be found whenever M is not a tree. It also establishes that the resulting blossoming
tree is uniquely determined. It follows that the opening algorithm is precisely the inverse
of the closure operation, hence we can state the main theorem for our bijective approach.

Theorem 3.1.18: Let M be a vertex-rooted plane map endowed with an accessible and
minimal orientation O. The opening algorithm yields the unique vertez-rooted blossoming
tree with its accessible orientation, whose closure is M oriented with O.

For certain families of plane maps, the previous theorem implies a bijection with a
corresponding family of blossoming trees via the opening algorithm.

Corollary 3.1.19: If M is a family of plane maps with each map canonically endowed with
an accessible and minimal orientation, there exists a bijection between M and a family of
blossoming trees with the same distribution of in- and out-degrees.

We illustrate this strategy by recovering Schaeffer’s bijection for planar Eulerian maps
with prescribed vertex degrees, as introduced in Subsection 3.1.1. It is well-known that
Fulerian maps can equivalently be defined as follows.
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3 Overview of bijections between maps and tree-like structures

Definition 3.1.20: A map is called Eulerian if there exists an Eulerian cycle? that
traverses every edge of the map exactly once.

From this definition, an Eulerian map M naturally admits an Eulerian orientation
in which every vertex v satisfies deg;,(v) = degji,(v). This orientation is derived from
the directed Eulerian cycle; thus the Eulerian orientation is accessible. An accessible and
minimal Eulerian orientation can be obtained recursively: first, orient the outer edges of
the map clockwise and remove the edges belonging to this clockwise cycle. Since the degree
of each vertex incident to the cycle is reduced by 2, the connected components (possibly
more than one) are Eulerian maps. Repeating this procedure until no edges remain yields
an Eulerian orientation that contains no counterclockwise cycle.

Theorem 3.1.21: Let M be a planar rooted Eulerian map with d; vertices of degree 2i
for i € N, endowed with its minimal Eulerian orientation. Applying the opening algorithm
to M yields a rooted blossoming tree T in which every vertex corresponding to a vertex of
degree 2i in M satisfies degy(v) = degt.(v) = i.

Proof. Each vertex of degree 2¢ in M has in- and out-degree ¢ in the map endowed with
an Eulerian orientation. The opening algorithm replaces each of the two half-edges of a
directed edge by their corresponding opening and closing stem without changing the vertex

degrees, so the property is preserved in 7.
O

This does not immediately recover the bijection from Subsection 3.1.1, as a slight modi-
fication of the opening algorithm is required. In this case, we choose the root edge of the
Eulerian map as the first step in the algorithm; being an outer edge, it has the outer face
on its left and can be deleted without destroying accessibility. Substitute its two half-edges
by the corresponding opening/closing stem as usual, but then replace the closing stem by
another opening stem, and mark it. In this way, you get a balanced Eulerian blossoming
tree as in Subsection 3.1.1 instead of a rooted blossoming tree as in the previous theorem.

The enumeration of rooted blossoming trees with the prescribed vertex-degree distribu-
tion — and hence of planar rooted Eulerian maps — can be carried out analogously to the
method described in Subsection 3.1.1.

3.1.4 p-gonal d-angulations

We now apply the general bijective scheme of the previous subsection to establish a bijection
between p-gonal d-angulations of girth d and p-gonal d-fractional forests, as described in
Section 5 of [AP15].

This construction generalizes the bijection obtained for simple triangulations in Subsec-
tion 3.1.2.

Unlike in other sources, we do not use the canonical plane embedding of face-rooted maps
with the root face as the outer face. Instead, we consider only face-rooted plane maps in
which the outer face and the root face are different. Although this choice yields equiva-
lent enumerative results, it provides technical advantages in the bijective construction, as
discussed in [AP15].

4We slightly deviate from our previous notation of a cycle and allow for revisiting vertices.
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3 Overview of bijections between maps and tree-like structures

Definition 3.1.22: The girth of a map is the length of its shortest cycle.

For a given d € N, any d-angulation has girth at most d (unless it is a tree). In this
subsection, we will restrict ourselves to d-angulations having girth exactly d. We even
generalize the notion of a d-angulation for our purposes.

Definition 3.1.23: For 3 < d < p, a p-gonal d-angulation is a plane map of girth d,
in which a face different from the outer face is additionally marked. The boundary of the
marked face is a cycle of length p, each other face has degree d.

We call a vertex marked if it belongs to the boundary of the marked face.

Definition 3.1.24: For k € N, a k-partial direction of an edge e is a choice of direction
for k copies of e, where the order of the edges does not matter. A partial direction of an
edge is usually depicted as a certain number of arrows going in each of the two directions.
A k-fractional orientation of a plane map is the choice of a k-partial direction for each
edge of the map. In this setting, an edge is called saturated if all its copies are oriented
in the same direction.

In this setting, an edge is called saturated if all its copies are directed in the same
direction.

Given a plane map M, the k-expanded version of M is obtained by replacing each edge
with k copies. The previous definition of a k-fractional orientation can then be interpreted
as an orientation of the k-expanded map, in which two copies of an edge are not allowed
to create a counterclockwise cycle.

Using this interpretation for a map endowed with a k-fractional orientation, the in-
and out-degree of a vertex v, as well as notions such as clockwise and counterclockwise
cycles, minimality, and accessibility, are defined with respect to the orientation of the
corresponding k-expanded map.

Definition 3.1.25: For any j,k € N, a j/k-orientation of a plane map with a marked
face is defined as a k-fractional orientation such that deg™(v) = k for each marked vertex
and deg™ (v) = j for every other vertex, and the boundary of the marked face is a directed
clockwise cycle of saturated edges.

Figure 3.9 illustrates a 5-angulation of girth 5 endowed with a 5/3-orientation. We
will later show that d/(d — 2)-orientations play a central role for d-angulations. This
consideration raises the question of whether we can also endow a p-gonal d-angulation with
a d/(d — 2)-orientation whenever p # d.

Lemma 3.1.26: Let M be a p-gonal d-angulation endowed with a (d — 2)-fractional ori-
entation, such that deg~ (v) = d for every non-marked vertex v. The sum of in-degrees of
the marked vertices is equal to (d —2)p+ (p — d).

Proof. For any p-gonal d-angulation, we have 1 face of degree p and |F(M)| — 1 faces of
degree d. Applying Formula 2.1 gives p+d(|F(M)|—1) = 2-|E(M)|. Using Euler’s formula,
we can eliminate |F'(M)| and rearrange to

(d=2)|E(M)|=d-[V(M)|-p—d
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3 Overview of bijections between maps and tree-like structures

([V(M)| —p)+dp—p—d
(IV(M)| —p) + (d—2)p+ (d —p).

d
d

|

Since d(|V(M)| — p) is the sum of in-degrees of the non-marked vertices, the remaining
term must be the sum of in-degrees of the marked vertices. O

The consequence of this lemma is the following. If we require the degree condition for
all non-marked vertices of a map M, then among the p marked vertices, there must be at
least one vertex v with deg™ (v) > d — 2. Consequently, when p > d, it is impossible to find
a (d — 2)/d-orientation. This justifies the following definition.

Definition 3.1.27: For any j,k > 0, a pseudo-j/k-orientation of a plane map with
a marked face is defined as a k-fractional orientation such that deg™(v) = j for every
non-marked vertex, and the boundary of the marked face is a directed clockwise cycle of
saturated edges.

Figure 3.9 shows a 5-angulation of girth 5 with its minimal 5/3-orientation, and a 4-gonal
triangulation of girth 3 with its minimal pseudo-3/1-orientation.

(a) A 5-angulation. (b) A 4-gonal triangulation.

Figure 3.9: Two d-angulations endowed with a (pseudo-)d/(d — 2)-orientation.

In fact, for any d > 3 the property of a (p-gonal) d-angulation having girth d can be
characterized by the existence of a (pseudo-)d/(d — 2)-orientation.

Theorem 3.1.28 ([BF11], Theorem 13 and Proposition 19): Let d > 3 and M be a d-
angulation with a marked face. M admits a d/(d — 2)-orientation if and only if it has girth
d.

Letp > d > 3 and M be a p-gonal d-angulation. M admits a pseudo-d/(d—2)-orientation
if and only if it has girth d.

In both cases, these orientations are accessible and there exists a unique minimal (pseudo-
)d/(d — 2)-orientation among them.

To apply the results of Subsection 3.1.3, we need to introduce a new family of planar
maps.
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Definition 3.1.29: A p-cyclic forest is a plane map with exactly two faces: the outer
face and a marked face, whose boundary is a simple cycle of length p. A p-cyclic forest can
be seen as a cycle of p planted plane trees.

Ford >3 and 0 < i < d—2, a d-fractional tree of excess i is a planted blossoming tree
without opening stems endowed with an accessible (d — 2)-fractional orientation such that
deg™ (v) = i for the root vertex and deg™ (v) = d for each non-root vertex. In this setting,
a closing stem attached to a vertex v is counted as contributing d — 2 to the in-degree of
v. For p > d > 3, a p-gonal d-fractional forest is a p-cyclic forest, whose planted trees
are d-fractional trees. The excesses of those trees are required to sum up to p — d.

In Figure 3.10a, a 5-gonal 5-fractional forest is illustrated. Only one of its planted trees
is a non-trivial 5-fractional tree; the other four planted trees in the cycle each consist of
a single vertex. Figure 3.10b shows a 4-gonal 3-fractional forest. The sum of excesses is
4 — 3 =1 since only one of the four 3-fractional trees has an excess 1 greater than zero.

(a) A 5-gonal 5-fractional forest. (b) A 4-gonal 3-factional forest.

Figure 3.10: Two d-fractional forests endowed with a (pseudo-)d/(d — 2)-orientation.

The maps in Figure 3.10 closely resemble those in Figure 3.9, and we now outline how they
are connected. For any p-gonal d-angulation of girth d endowed with its minimal (pseudo)-
d/(d — 2)-orientation, we can contract the marked face into a single vertex, obtaining a
vertex-rooted plane map endowed with a minimal accessible (d — 2-fractional) orientation.
After this step, we can use a variant of the opening Algorithm 3. In the previous subsection,
we only introduced “normal” orientations, but all the algorithms and theorems are also valid
for k-fractional orientations since we can reduce those to orientations of the corresponding
k-fractional maps.

Given a vertex-rooted plane map M endowed with a k-fractional orientation, we define
an opening edge as a saturated edge that has the outer face on its left (i.e., each of
its corresponding copies has) and whose deletion does not destroy accessibility. We again
perform an exhaustive deletion of opening edges, but in each step we substitute the edge
only by a closing stem and omit the corresponding opening stem. We do this in order to
simplify the enumeration of these forests. This is an analog to showing only the opening
stems in the case of triangular blossoming trees. In the case of d-fractional forests, the local
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closure is not a substitution of a factor bee by the letter e but a substitution of a factor
e?=1p by the letter e in the corresponding contour word.

This variant of the opening algorithm suggests an application of the master bijection.
Theorem 3.1.18 implies that the opening produces a p-gonal d-fractional forest. Since we
omit the opening stems during the variant of the opening algorithm, we need to check that
the corresponding variant of the closure of a p-gonal d-fractional forest indeed produces a
p-gonal d-angulation. The inner faces are of degree d by construction, the degree of the
outer face needs to be verified. See the proof of Theorem 5.6 in [AP15].

These considerations yield the following main theorem of this section.

Theorem 3.1.30: There exists a bijection between p-gonal d-fractional forests with n ver-
tices and p-gonal d-angulations of girth d with n vertices.

An interesting consequence of this bijective result is that we can now enumerate d-
angulations of girth d simply by counting d-fractional forests. The latter can be enumerated
more easily due to their structure as cycles of d-fractional trees. In [AP15], a formula for
the generating function Mg ,(x) of corner-rooted p-gonal d-angulations of girth d with a
marked outer face and counted according to the number of non-root faces is given. For any
j € NT, let h;j be the polynomial in the variables t1,to,... defined by

. 1
h,j(tl to ...):: [$J]—.: E E tz‘i"'tir
n 1—3 0Tt >0 i1,0nyip>0
Zl++7ﬂr:]
and T; by

1 T1 Td_3 €T
Ty(z) = —— - Iy
@) =17 ’+2<1—T0’ ’1—T0’1—T0>’

for 0 <i<d-3 and 7T; = 0 otherwise.
The generating function is then given by

1 L4 (p) T1 Td_g T
Myy(x)=a(——) -n® .
45(2) $(1—T0> p—d<1—T0’ 1-Ty'1-Tp

3.1.5 Generalization to maps of higher genus

Even though the focus of this thesis is on planar maps, it is interesting to present a little
introduction to maps of higher genus and to how the previously presented concepts have
been generalized. We will present the generalizations of the CVS bijection to maps on
an orientable and non-orientable surface of any genus and follow the ideas of [CD17] and
[DL22].

Definition 3.1.31: A surface S is a compact, connected, two-dimensional real manifold.
Surfaces are considered up to homeomorphism.

For any surface S, we can obtain a new surface S’ by adding so-called handles or
cross-caps. We refer to Chapter 3 of [MTO01] for a thorough introduction to the topic of
surfaces.
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Definition 3.1.32: For any g € N, we denote by S, the torus of genus g, that is, the
orientable surface obtained by adding ¢ holes to S?. For any ¢ € %N\ {0}, we denote by
N, the non-orientable surface obtained by adding 2¢g cross-caps to S?. In both cases, g is
called the type of the surface.

Example 3.1.33: Sy is the sphere, S; the torus, N; /2 the projective plane, and Nj the Klein
bottle.

We now state the main theorem about the classification of surfaces.

Theorem 3.1.34 ([Tho92], Theorem 5.1): Let S be a surface. Then S is homeomorphic
to precisely one of the surfaces Sy for g € N or N for g € %N \ {0}.

These considerations enable us to define maps on general surfaces which generalizes our
definition for planar maps.

Definition 3.1.35: A map of genus g is a proper embedding of a graph on a surface
of genus g such that all its faces (connected components of the complement) are simply
connected. We call a map (non-)orientable if its underlying surface is (non-)orientable.

Note that in the planar case, any unicellular map is a tree, which is not true on positive-
genus surfaces.

Another fundamental result in the theory of maps on surfaces is the Euler characteristic
formula which generalizes Euler’s formula for planar maps.

Theorem 3.1.36: Let M be a map of genus g. Then
[V(M)| = [E(M)[ + |[F(M)| =2 - 2g,
where x := 2 — 2g is the Euler characteristic of the map.

In [Lepl9], Schaeffer’s construction for Eulerian maps is generalized to higher-genus
orientable maps that are in one-to-one correspondence to a specific family of unicellular
blossoming maps.

It is interesting to mention that the opening of [Sch97] was generalized by Bernardi in
[Ber06]; this was then generalized for the higher-genus case by Bernardi and Chapuy in
[BC11]. We now focus on a direct generalization of [Sch97].

In order to present the main theorem of the work, we first need to introduce some
definitions.

Definition 3.1.37: A unicellular blossoming map is a map with only one face, in which
each corner can carry a sequence of opening or closing stems. The number of opening and
closing stems must be equal, and we require one of the opening stems to be marked.

The cyclic contour word is defined almost equally as in Definition 3.1.16. In this case,
we omit the literal e and consider only the word on {b, b}.

Definition 3.1.38: An oriented unicellular map is called well-oriented if in a tour of
the face starting from the marked opening stem, each edge is first traversed in the back-
ward direction (against its orientation) and later in the forward direction (following its
orientation).
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Note that the definition does not depend on whether the tour is clockwise or counter-
clockwise. The well-orientation of a given unicellular map can be obtained by making a
tour starting from the marked stem and orienting the edges backward whenever they are
encountered first.

Definition 3.1.39: A well-oriented unicellular blossoming map is called well-labeled if
it admits the labeling of the corners in the following way. We start at the corner that has
the marked opening stem on its right and make a tour following this orientation.> The first
corner is labeled 0 and each following corner is increased/decreased by one if the corner is
preceded by an opening/closing stem. If the corner is preceded by an edge, the label of the
corner is chosen to be equal to the previous one. Whenever two corners are separated by
an edge, we additionally require the label of the corner on the right side of the edge to be
bigger by one.

A unicellular blossoming map is called well-blossoming if it is well-oriented and well-
labeled.

Since a unicellular blossoming map must have the same number of opening and closing
stems, the labeling process returns to the initial value 0 at the root corner after completing
the tour.

Definition 3.1.40: A Dyck word on two literals ( and ) is a word on {(,)}, such that
the number of ( is equal to the number of ) and each prefix of the word contains no more
) than (.

Any word over an alphabet of two symbols can be interpreted as a one-dimensional walk,
with a step up for the first symbol and a step down for the second. In this interpretation,
Dyck words correspond precisely to walks that start and end at 0 and never go below 0.

Definition 3.1.41: A unicellular blossoming map is called well-rooted if its contour word
(starting at the marked opening stem) is a Dyck word on b and b.

Under the interpretation of Dyck words as one-dimensional walks that never go below 0,
a labeled unicellular blossoming map has all corner labels non-negative if and only if it is
well-rooted. Thus, we could use this as an alternative definition.

In Figure 3.11a, we show a plane embedding of a well-rooted, well-blossoming unicellular
blossoming map of genus 1 on the torus. The map is illustrated inside a square, with the
left border identified with the right border and the top border identified with the bottom
border. On the right side of the figure, we see a (non-blossoming) map with the same
structure of vertices and the same distribution of vertex-degrees as the map on the left
side. It can also be seen easily that the map on the right is bicolorable.

The example given in the figure exhibits a property known from Eulerian maps, namely
that deg™ (v) = deg™ (v) for every node v. This is in fact a general property of well-labeled,
well-oriented unicellular blossoming maps, since the labels of corners around a vertex form
a cycle of numbers differing by 1, with the higher label always to the right of the separating
stem/edge.

5 Although for non-orientable maps we lack the notion of clockwise and counterclockwise, a tour can still
be defined analogously to Definition 2.2.5 for unicellular for maps on non-orientable surfaces.
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3 Overview of bijections between maps and tree-like structures

l

(a) Unicellular map on the torus. (b) Bicolorable map on the torus.

Figure 3.11: A unicellular blossoming map and its closure.

The map in Figure 3.11b is the generalized closure of the unicellular blossoming map
similar to the closure of the previous subsections. In [Lepl9], a generalized opening algo-
rithm is also presented and proven to be the inverse of the generalized closure. Hence, the
bijection of Schaeffer between planar Eulerian blossoming trees and planar Eulerian maps
is generalized to maps of higher genus using conceptually similar algorithms of closure and
opening.

Theorem 3.1.42 ([Lepl9], Theorem 1.2): There exists a constructive weight-preserving

and genus-preserving bijection between rooted bicolorable maps and well-rooted, well-blossoming

unicellular blossoming maps.

We now outline how this result generalizes the bijection from Subsection 3.1.1 for pla-
nar maps. Recall from Lemma 2.1.27 that in the planar case there is an equivalence of
bicolorable and Eulerian maps.

Fulerian blossoming trees can be interpreted as well-rooted, well-blossoming unicellular
blossoming maps. A unique well-orientation is obtained by orienting each edge towards the
marked stem, while the well-rooted condition is equivalent to our notion of “balanced” for
Eulerian blossoming trees. Finally, the requirement that a vertex of degree 2i has i — 1
opening stems in an Eulerian blossoming tree guarantees that the corresponding unicellular
blossoming map is well-rooted.

Using this theorem, the authors of [Lepl9] also give a bijective explanation of an enu-
merative result obtained in 1991.

Theorem 3.1.43: [BC91] For any g > 0, the generating series My(z) of orientable maps
of genus g enumerated by edges is a rational function of z and /1 — 12z.

We emphasize that the previous considerations have dealt only with maps on orientable
surfaces. In [DL22| the results are generalized to maps on any surfaces, orientable and
non-orientable, and we now give a brief overview of the results obtained there.
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3 Overview of bijections between maps and tree-like structures

The definitions of the considered objects remain almost unchanged; the only modification
is the introduction of a notion of color for stems and faces.

Definition 3.1.44: An opening or closing stem is called black/white if the minimum
of the labels of all adjacent corners is odd/even. On the other hand, a face is called
black/white if the minimum of the labels of all adjacent corners is even/odd.

The main result of [DL22] is the following bijection.

Theorem 3.1.45: Let S be a surface, and ne,no,n1,N2,... be integers with finite sum.
There exists a bijection ® between bipartite pointed maps of S with

e n4 black vertices,
e n, white vertices,
e ny, faces of degree 2k (for any k € NT);
and well-blossoming unicellular blossoming maps of S with
e the total number of black leaves and black faces equal to ne,
e the total number of white leaves and white faces equal to no,
e ny vertices of degree 2k (for any k € NT ).
Moreover, the image ®(M) is well-rooted if and only if M is a root-pointed map.

This result not only extends the work of [Lep19] by including non-orientable surfaces,
but it further enables the study of metric properties through the bijection, since it deals
with pointed maps. We also mention that this bijection deals with bipartite maps, while
the bijection in the orientable case deals with bicolorable maps. Recall that bipartiteness
and bicolorability are dual concepts, which suggests a natural connection between the two
settings. The difference comes from the fact that the closure and opening algorithms are
defined differently in [DL22]. In the closure algorithm, first a bicolorable map (with a
marked face) is obtained, and then the dual of this map is taken in order to obtain the
bipartite pointed map. In [DL22], the closure algorithm first constructs a bicolorable map
with a marked face and then takes its dual to obtain the bipartite pointed map. The
construction proceeds by working with both the original map and its dual in order to
obtain the unicellular blossoming map.

3.2 Bijections of category (B)

We now turn to bijections between a class of maps and a class of decorated trees. In general,
the decorated tree is no longer a spanning tree of the corresponding map. In many cases
the decorated tree has vertices of two colors. We will call those bijections of category (B).
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3 Overview of bijections between maps and tree-like structures

3.2.1 The CVS Bijection

The Cori-Vauquelin—Schaeffer (CVS) bijection [CV81; Sch98] establishes a fundamental
correspondence between planar rooted quadrangulations and well-labeled trees, serving as
a basis for enumerative and metric studies of planar maps, and for further research in this
field.

In this subsection, we will mainly use the notation of [CD17]. The paper is designed
to prove the CVS bijection for the general case of maps on any surface, but we will limit
ourselves to the case of planar maps for now. A further discussion of the general case is
postponed to Subsection 3.2.6.

Definition 3.2.1: Let M be a map with a root vertex vy. The geodesic distance of a
vertex v is defined as its distance d(v,vg) to the root vertex.

We show a result that will be essential for our further considerations.

Lemma 3.2.2: Let M be a bipartite map with a root vertex and every vertex labeled by its
geodesic distance. The labels of two adjacent vertices differ by exactly 1.

Proof. The labels of two adjacent vertices cannot differ by more than 1. Let v; and vs be
two adjacent vertices connected by an edge e and assume that their labels are both equal to
k € NT. By definition, there exists a shortest path p; from v to v; of length k (for i = 1,2).
There exists a single vertex w that lies on both paths and has the property that the paths
p; from w to v; are disjunct paths of length j with 1 < j < k. The path pieps is now a
cycle of odd length 25 + 1, which contradicts the bipartiteness of the map. O

According to Lemma, 2.1.22, planar quadrangulations are bipartite. Thus, due to the pre-
vious lemma, for any face of a quadrangulation, the labels of the vertices on the (clockwise)
border yield a (cyclic) sequence of the form (i — 1,4,7 — 1,4) or of the form (i —1,4,i+ 1,4)
for some ¢ > 1. This motivates the following definition.

Definition 3.2.3: In a quadrangulation, a face is called simple/confluent if the labels
of the vertices on its border yield a (cyclic) sequence of the form (i — 1,4, — 1,4) / (i —
1,i,7+ 1,7). For each face of a quadrangulation we call local operation the process of
adding a new edge connecting the two corners where the vertex label increases relative to
the preceding corner in clockwise order.

The local operations for a simple and a confluent face are illustrated in Figure 3.12; the
newly created edges are depicted in red. The newly added oriented edges can be ignored
for now.

Definition 3.2.4: Let M be a quadrangulation with a root vertex vg. By ®(M) we denote
the graph defined by performing the local operation on each face of M, then deleting vy
and all edges of the original map M. The map ® is rooted by adding a root corner instead
of the former root edge.

Figure 3.13 illustrates the transformation of a quadrangulation M with 5 faces into
®(M). On the right side of the figure, the superimposition of the original map M (dashed
edges) and the map ®(M) (red edges) is shown.
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(a) Simple face. (b) Confluent face.

Figure 3.12: Local operations and DEG.
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(a) A Quadrangulation. (b) The resulting tree.

Figure 3.13: A rooted quadrangulation M and its corresponding well-labeled tree.

Definition 3.2.5: Let M be a quadrangulation with a root vertex endowed with its
geodesic labeling. We define the dual exploration graph (DEG) as follows:

1. Place a vertex f* inside each face f of the map M U ®(M).

2. For each edge e = {v1,v2} of M, where vy, v9 have labels 4,7 + 1, respectively, add
an edge across this edge connecting the vertices f;, f5 corresponding to the two faces
f1, fo adjacent to e. Orient the edge so that the vertex vy with the higher label ¢ 4 1
is on its right.

Although for our current purposes, the DEG could be considered as an undirected map,
we retain the original orientation conventions of [CD17] to facilitate further engagement
with the topic.

Note that the DEG is not even necessary for defining the CVS bijection in the planar
case. Still, we define it here in order to work with it in subsequent subsections.

We want to show that the map ®(M) is a tree on the vertex set V(M) \ {vo}. The idea
is to prove this, using the following lemma about the structure of the DEG.

Lemma 3.2.6: The DEG of a quadrangulation with root vertex vy contains only one (di-
rected) cycle. This cycle is around the vertex vy and can be contracted into a single vertez.
Hence, the contracted DEG is a tree.
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We will prove this lemma in Section 4.1 and use it here already to show the statement
about the map ®(M). We prove it by applying Theorem 2.1.26.

Note first that the (undirected) DEG is a subgraph of the dual of the map M U ®(M).
In fact, it consists of all edges dual to the edges in M (and therefore not in ®(M)).

Consider now the map M’ obtained from the map M U ®(M) by deleting the vertex vy
and all its incident edges. The construction of M’ corresponds to contracting the cycle
around the vertex vy into a single vertex in the dual (M U ®(M))*; this yields the dual
map (M')*. Now, by the previous lemma, the contracted DEG is a spanning tree of (M’)*.
As mentioned above, ®(M) is the complement of the edges dual to the DEG. By Theorem
2.1.26, ®(M) is a spanning tree of the map M’, which has the vertex set V(M) \ {vo}.

Theorem 3.2.7: For a quadrangulation M with root vertex vy, the map ®(M) is a well-
labeled tree on the vertex set V(M) \ {vo}.

Since each face of M corresponds to one edge in ®(M), the mapping ® sends planar
rooted quadrangulations with n faces to well-labeled rooted plane trees with n edges.

In order to give the inverse construction of the mapping ®, we introduce a function on
the corners of a map.

Definition 3.2.8: Let M be a map with root vertex vy and let F' be a face of degree k
incident to vg. Label each vertex and, thus, also each corner with its geodesic distance.
Enumerate the corners of F' from 0 to k£ — 1 in clockwise order, starting at the corner
incident to vy. The label of each corner 0 < ¢ < k—1 is then denoted by [;. The successor
function s is defined as

s(i) =inf{j >i:l; =1; — 1}
for any corner i.

The successor function plays a crucial role in Algorithm 4, which is proved to be the
reverse construction, and is called the closing of a well-labeled rooted plane tree.

We denote by T the map obtained after the first for-loop. If j is the number of corners
in T incident to a vertex with label 1, the map T has j faces. Note that each of these faces
satisfies the conditions of Definition 3.2.8, allowing us to use the successor function in the
remainder of the algorithm.

We prove the correctness of this algorithm in Section 4.1 and establish the following
bijective theorem.

Theorem 3.2.9: The mapping ® is a bijection between the set of planar rooted quadrangu-
lations with n faces and the set of well-labeled rooted plane trees with n edges. The mapping
has the following property: Let Q be a quadrangulation with root vertex vy and T := ®(Q)
the associated tree. For every vertex v € V(Q) \ {vo}, we have

dq(v,v0) = L, (3.3)

i.e., the geodesic distance in @ is equal to the label in T'.
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3 Overview of bijections between maps and tree-like structures

Algorithm 4 Closing of a well-labeled rooted plane tree W

Require: T a well-labeled plane tree
add a vertex vy with label 0
: for ¢ corner incident to a vertex with label 1 do
add an edge e from vy to ¢
if ¢ is the root corner of 7' then
let e be the new root edge
end if
end for
for f face of Ty do
for i corner of f do
if s(i) #i+ 1 then
add an edge {i,s(i)} > also called a chord
end if
end for
: end for
: delete all edges whose endpoints have equal label
: return V(7))

e e e e e
AR o > S ealS

From Property (3.3), we can derive an upper bound for the distance between two vertices
v1,v2 € V(Q) \ {vo} which is useful for our geometric analysis in Section 5.2. We get

dg(vi,v2) <ly, + ly, — 2max < min l,, min lw> , (3.4)

we[v1,v2] wE[v2,v1]

where the interval notation [v1, v2] denotes the set of all vertices visited on the clockwise
tour around the tree from v to vs.

The CVS bijection can be modified to obtain a new mapping ®. This variant of the
bijection turns out to be a bijection as well.

Theorem 3.2.10: The mapping d is a bijection from the set of planar pointed quadran-
gulations with n faces and a disjoint union of two copies of the set of labeled rooted plane
trees with n edges.

The factor of two corresponds to the choice of the root edge orientation of the pointed
quadrangulation.

3.2.2 The BDG Bijection

The bijection of Bouttier, Di Francesco, and Guitter [BFGO04] describes the general case of
Fulerian planar maps with prescribed face degrees and introduces a new class of labeled
trees. The term mobile will be used throughout this section and appears here for the first
time. The BDG bijection also applies to quadrangulations and, consequently, covers the
CVS bijection.
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3 Overview of bijections between maps and tree-like structures

In Section 2 of the paper, the focus is on planar maps whose faces all have even degrees
and are thus bipartite. In Section 3 the construction is extended to the more general class
of Eulerian (face-bicolored) maps with prescribed numbers of faces of given colors and
degrees.

Recall that for a bipartite map endowed with the geodesic distance labeling, the labels
of the contour of a face form a cyclic sequence with increments 1. As shown in Lemma
2.1.22, in the planar case, every even map is bipartite, and the above observation therefore
applies to even maps as well. For a face f of degree 2k, exactly half of the corners are, in
clockwise order, followed by a corner of smaller label. We denote the set of these k corners
by Sy.

With this notion, we describe Algorithm 5 that transforms a vertex-rooted even planar
map M, endowed with its geodesic labeling, into a bicolored tree.

Algorithm 5 BDG construction for vertex-rooted even planar maps

Require: M a vertex-rooted even planar map
: for f face of M do
2k <« deg(f)
add a new black vertex f* inside f
fOI‘CESde I>|Sf|:k
add an edge from f* to the white vertex incident to ¢
end for
end for
delete all edges of the original map
delete the root vertex vy > By construction, vy has no incident edge
return the resulting map

—_
e

In Figure 3.14, the vertices of the original map are depicted in white.

0 1
1 2
2 3
(a) Vertex-rooted even planar map. (b) The resulting tree.

Figure 3.14: An even map and its corresponding well-labeled Eulerian mobile.

The resulting structure is a plane tree with vertices of two colors which forms an instance
of a general class of decorated trees.

Definition 3.2.11: We define an Eulerian mobile as a plane tree with vertices colored
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3 Overview of bijections between maps and tree-like structures

either black or white, such that every edge connects a black vertex to a white vertex. An
Eulerian mobile is called labeled if every white vertex carries an integer label and for each
black vertex, the labels n and m of two consecutive white neighbors in clockwise order
satisfy m > n — 1. If all labels are positive and there is at least one vertex that has label
1, the Eulerian mobile is called well-labeled.

In Algorithm 6, we define a mapping on well-labeled Fulerian mobiles that reconstructs
the original even planar map. We assume that all corners of the unique face of the mobile
are enumerated starting from a corner that is preceded by a corner of label 1. For the use
of the successor function from the previous subsection in the algorithm, it does not matter
which corner of label 1 is chosen for this purpose.

Algorithm 6 BDG construction for well-labeled Eulerian mobiles

Require: T a well-labeled Eulerian mobile
for ¢ white corner of T" with label n > 2 do
add an edge {c, s(c)}
end for
Fy < the face that is incident to all vertices of label 1
add a white root vertex vy with label 0 in Fj
for ¢ white corner with label 1 incident to F;; do
add an edge between ¢ and vg
end for
delete all black vertices and their incident edges
return the resulting map

—
e

Remark 3.2.12: In the original paper, the face Fj is called the outer face. Since we are
actually not working with plane/face-rooted maps here, we decided to be more precise and
define the face Fj this way.

Whenever new edges are added to the mobile T, this is done in such a way that there
are no intersecting edges. We refer to [BFG04]| for the proof that the construction is well-
defined and that it is indeed the inverse of the previous construction in Algorithm 5. We
state the bijective theorem here.

Theorem 3.2.13: There exists a bijection between vertex-rooted even planar maps with
n vertices and m faces and well-labeled FEulerian mobiles with n — 1 white and m black
vertices. Moreover, each face of degree 2k corresponds to a black vertex of degree k.

In Section 3 of [BFGO04], the BDG construction is further generalized into a bijection
between planar face-bicolored (and hence Eulerian) maps with fixed numbers of faces with
prescribed color and degree and so called well-labeled generalized mobiles. Since the
construction is very similar to the previous one, we will not go into it any further.

Theorem 3.2.14: There exists a bijection between planar face-bicolored vertex-rooted Eu-
lerian maps with n vertices, m black faces, | white faces and well-labeled generalized mobiles
with n — 1 labeled vertices, m unlabeled black vertices, | unlabeled white vertices.
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We show only how this construction covers the bipartite case. Given any bipartite map
M, we can substitute each edge by a double edge, and hence create new (black) faces of
degree two; each original face of M remains the same and is colored white. Thus, any
bipartite map can be represented as a face-bicolored map with fixed numbers of faces with
prescribed color and degree.

Using the same strategy of substituting each edge by a double edge, we can also gener-
alize this bijection for arbitrary planar maps with prescribed face degrees. In particular,
quadrangulations form a special case in which all faces have degree 4.

3.2.3 Unified bijective scheme

We present some kind of unified bijective scheme similar to the one in Subsection 3.1.3.
Here it is called “master bijection” and relies on finding canonical orientations for certain
classes of maps which generalizes previous bijections of this section. The master bijection
here produces a spanning tree of the superimposition of a planar map, its dual and their
common quadrangulation. We mainly follow the notations of [BF11; BF12].

Definition 3.2.15: A biorientation of a map is the choice of a direction for each half-
edge. A half-edge is called ingoing/outgoing if it is oriented toward/from its incident
vertex. For i € {1,2,3}, we call an edge i-way if it has exactly i ingoing half-edges
(see Figure 3.15). The in-degree/out-degree of a vertex is the number of its incident
ingoing/outgoing half-edges. The clockwise degree of a face f is the number of outgoing
half-edges incident to f having f on their right. In a biorientation, we define a directed
path if there exist distinct vertices vy, ..., v, such that for all i = 1,...,k — 1 the edge
{vi,vit1} is either 2-way or 1-way oriented toward v;y+;. A directed cycle is a directed
path which is closed (vg = vg). A biorientation is called accessible from a vertex v if for
every vertex w, there exists a directed path from v to w. In a map with a root face, a
directed cycle is called counterclockwise if each of its edges has the outer face on its left.
A map endowed with a biorientation is called minimal if it has no counterclockwise cycle.

We want to emphasize here that the notion of a biorientation generalizes the orientations
previously introduced. An orientation is a biorientation that consists only of 1-way edges.

From now on, we will also use the term (planar) biorientation for the map itself that
is endowed with the biorientation.

Definition 3.2.16: A weighted biorientation is obtained by associating a weight w(h) € R
to each half-edge h. The weight of an edge is the sum of the weights of its two half-edges.
The weight of a face f is the sum of the weights of all outgoing half-edges incident to f
having f on their right.

A Z-biorientation is a weighted biorientation with weights in N* for ingoing half-
edges and weights in Z \ Nt for outgoing half-edges, i.e., ingoing half-edges have strictly
positive integer weights, while outgoing half-edges have non-positive integer weights. An
N-biorientation is a Z-biorientation with outgoing half-edges having weight 0.

Remark 3.2.17: Ordinary orientations correspond to N-orientations, where each edge is 1-
way with weight 1. More generally, k-fractional orientations are N-orientations where each
edge has weight k.
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Definition 3.2.18: Let M be a Z-biorientation with a root face. M is called admissible
if the contour of the root face is a simple clockwise cycle of 1-way edges with weights 0 on
each outgoing half-edge and weight 1 on each ingoing half-edge, and every inner half-edge
incident to an outer vertex is outgoing. M is called suitable if it is minimal, admissible,
and accessible from every vertex of the root face. We denote by O the set of suitable
Z-biorientations.

Definition 3.2.19: A mobile is a plane tree with vertices colored either black or white,
where each black vertex can be incident to some dangling half-edges called buds. The
excess of a mobile is the total number of half-edges incident to all white vertices minus
the total number of buds. A mobile is weighted if for each non-bud half-edge h a weight
w(h) € R is associated. The in-degree of a vertex is the number of incident non-bud
half-edges, the weight of a vertex is the sum of weights of the incident non-bud half-edges.
The out-degree of a black vertex is the number of incident buds, and its degree is the
sum of in-degree and out-degree.

A Z-mobile is a mobile with weights in N* for (non-bud) half-edges incident to a white
vertex and weights in Z \ NT for (non-bud) half-edges incident to a black vertex.

We now define one of the main mappings on bioriented plane maps as introduced in
[BF11], also called “master bijection”. The mapping is based on a local transformation
performed on each edge.

Definition 3.2.20: Let M be a face-rooted map endowed with a weighted biorientation.
We define a local transformation as follows:

Let h,h' be the half-edges of an edge e with respective weights w and w’. Let v,v" be
the incident vertices, let ¢, ¢’ be the corners preceding h, h' in clockwise order around v, v/,
and let f, f' be the faces incident to these corners. Let by be a black vertex placed inside
each face f of the map.

1. If e is 0-way, then create an edge across e connecting the black vertices by and byr.
Give weight w and w’ to the new half-edges. Finally, delete the edge e.

2. If e is 1-way with h being the ingoing half-edge, then create an edge connecting the
black vertex by with the white vertex v in the corner c. Give weight w and w’ to the
half-edges incident to v and by, respectively. Finally, add a bud on by in the corner
c, and delete the edge e.

3. If e is 2-way, then add buds on by and by in the corners ¢ and ¢, respectively.

Figure 3.15 illustrates all local transformations, with the respective weights omitted for
clarity.

Definition 3.2.21: Let M be a face-rooted map with root face fo endowed with a (weighted)
biorientation. We view the vertices of M as white and in every face f of M we place a
black vertex by.

For M in O, the embedded graph ®(M) with black and white vertices is obtained in
three steps.
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(a) O-way edge. (b) 1-way edge. (c) 2-way edge.

Figure 3.15: Local transformation illustrated without weights.

1. Reverse the orientation of all edges of the root face.
2. Perform the local transformation of each edge as in Definition 3.2.20.

3. Delete the black vertex by, and the vertices and edges incident to the root face (after
Step 2, no other edge or bud is incident to these outer vertices).

In Figure 3.16, the mapping ® applied to a biorientation can be seen. In the second
subfigure, we show Step 2 of performing all local transformations but keeping edges of the
original map for better illustration.

\
O

Q > O Q

—7 ?.ﬁ

Y Y
A { A { &

A

O < O O < O

(a) Suitable Z-biorientation. (b) Local transformations. (¢) The resulting Z-mobile.

Figure 3.16: The bijection ® applied to a suitable Z-biorientation.
One can readily verify that ® maps any suitable Z-biorientation to a Z-mobile of negative

excess. By construction of the local transformations, the following parameter correspon-
dences hold between a map M and its associated mobile ®(M).
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3 Overview of bijections between maps and tree-like structures

1. The outer degree d corresponds to the excess —d;
2. inner vertices correspond to white vertices (with the same weight);
3. inner faces correspond to black vertices (with the same degree and weight);

4. 0-way edges, inner 1-way edges, and 2-way edges correspond to black-black edges,
black-white edges and white-white edges (with the same weight).

Example 3.2.22: We explicitly give the parameter correspondences for the Z-biorientation
M and its resulting Z-mobile ®(M) in Figure 3.16.

1. M has outer degree 4, ®(M) has excess 7 — 11 = —4;
2. M has 4 inner vertices, ®(M) has 4 white vertices;

3. M has 6 inner faces, ®(M) has 6 black vertices and the degree of each face is equal
to the degree of the corresponding black vertex;

4. M has 4 0-way edges, 3 inner 1-way edges, and 2 2-way edges, ®(M) has 4 black-black
edges, 3 black-white edges, and 2 white-white edges.

The mapping ® can be shown to be a bijection. Although we do not provide the full
proof here, we describe how to recover any Z-biorientation M from its associated mobile
D(M).

We first need to introduce a generalized version of the dual of a map.

Definition 3.2.23: Let M be a Z-orientation. The oriented dual M* of M is obtained
by first taking the dual of the map M, disregarding the orientation. Each dual edge e*
corresponding to an edge e of M is then oriented as follows:

*

1. If e is O-way, e* is oriented 2-way.

*

2. If e is 2-way, e* is oriented 0-way.

3. If e is 1-way (with the face on its left called f), e* is oriented 1-way toward the vertex
f* corresponding to f.

Unlike in the non-oriented case, the oriented dual is not an involution: applying it twice
yields (M™*)*, which is the original Z-orientation M with reversed orientations of all 1-way
edges. Consequently, the oriented dual is of order 4.

For Algorithm 7, recall the definition of a local closure in Section 3.1 In this case, the
local closure is performed counterclockwise, and the newly created edges are 1-way oriented
from bud to stem. The definition of a partial closure follows analogously as in the case of
blossoming maps.

In [BF11], this construction of a “closure” is introduced for (properly bicolored) mobiles
and suitable orientations. Our algorithm extends this construction to Z-biorientations, and
we therefore state the result in a more general form.
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3 Overview of bijections between maps and tree-like structures

Algorithm 7 Closing of a Z-mobile

Require: T a Z-mobile (possibly weighted) with negative excess ¢
1: insert a black vertex in the middle of each white-white edge
2: for e black-white edge do
3 x < the black vertex of e
4 ¢ < the corner incident to x that has e on its right
5: add a stem (ingoing dangling half-edge) at ¢
6
7
8
9

: end for
. perform the partial closure
- add a black root vertex vy in the outer face
: for b unmatched bud do > there are exactly |0]
10: substitute b by a 1-way edge from vy to b
11: end for
12: delete all white-white and black-white edges and white vertices
13: for v black vertex inserted in line 1 do
14: substitute v and its two ingoing edges by a 0-way edge
15: end for
16: for e edge without an orientation do
17: orient e as a 2-way edge
18: end for
19: M* < oriented dual of the map M
20: return M*

Theorem 3.2.24 ([BF11], Theorem 31.): For any d € N, the closure maps a mobile of
excess —d to a suitable biorientation of outer degree d. For any bioriented map M, the
closure of ®(M) recovers the original map M.

This theorem is the main step in proving that ® is a bijection.

Theorem 3.2.25: [[BF11], Theorem 11.] The mapping ® is a bijection between the set O
of suitable Z-biorientations and the set of Z-mobiles of negative excess.

Note that in [BF11], the mapping ® is called ®_ and Theorem 3.2.25 is stated for N-
biorientations and N-mobiles. However, the argument applies analogously when replacing
N with Z, since the proof does not rely on the non-negativity of weights.

3.2.4 p-gonal d-angulations

For p > d > 3, we denote by C4 the class of d-angulations of girth d, and by C, 4) the class
of (p-gonal) d-angulations of girth d. For these classes of maps, there is a canonical way to
orient each map in C, thereby associating to C a corresponding set of oriented maps O¢.
By specializing the master bijection of [BF11], we obtain, for each class C4 (resp. Cpq), a
bijection with a class of mobiles characterized by specific degree conditions.

Note that this strategy unifies the bijections for the class C3 of simple triangulations
[FPS08] and the class C4 of simple quadrangulations [Sch98].
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3 Overview of bijections between maps and tree-like structures

We now introduce a new type of weighted biorientations, closely related to the j/k-
orientations defined in Subsection 3.1.4.

Definition 3.2.26: Let M be a map with a root face of outer degree d with no face of degree
less than d. A pseudo-d/(d—2)-biorientation of M is an admissible Z-biorientation such
that every outgoing half-edge has weight in {0, —1, —2}, and

(i) each inner edge has weight d — 2,
(ii) each inner vertex has weight d,
(iii) each inner face f has degree and weight satisfying deg(f) + w(f) = d.

For d-angulations, condition (iii) implies that w(f) = 0 for every face f and therefore
outgoing half-edges have weight 0. In that case, we refer to the orientation as d/(d — 2)-
biorientation.

The left subfigure of Figure 3.17 shows a 5-angulation M with a suitable (5/3)-biorientation.
Since outgoing half-edges have weight 0, the ingoing half-edges of 1-way edges always have
weight 3. Therefore, we do not denote the weights for 1-way edges in the illustration. The
fact that M is of girth 5, is an example of an important property. Analogously to Subsec-
tion 3.1.4, (pseudo-)d/(d — 2)-biorientations characterize a certain class of maps, as shown
in Section 8.3 of [BF12].

Theorem 3.2.27 ([BF12|, Theorem 12): Let M be a map with a root face of outer degree
d with no face of degree less than d. Then, M admits a (pseudo-)d/(d — 2)-biorientation if
and only if M has girth d. In this case, there exists a unique suitable (pseudo-)d/(d — 2)-
biorientation of M.

In particular, Theorem 3.2.27 implies that the class C; of d-angulations of girth d can
be identified with the subset &; of Z-orientations in O having only faces of degree d, inner
edges with weight d — 2 and inner vertices of weight d.

For the application of the master bijection, we define a new kind of mobiles.

Definition 3.2.28: A pseudo-d-branching mobile is a Z-mobile such that every half-
edge incident to black vertices has weight in {0, —1, —2}, and

(i) each edge has weight d — 2,
(ii) each white vertex has weight d,
(iii) each black vertex v has degree and weight satisfying deg(v) + w(v) = d.

If we additionally demand w(v) = d for every black vertex v, we refer to the mobile as
d-branching mobile.

An example of a 5-branching mobile is illustrated in the right subfigure of Figure 3.17.
Combining Theorem 3.2.25 with the parameter correspondences listed earlier, one sees
that the master bijection ® maps any Z-biorientation M € &; to a d-branching mobile of
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3 Overview of bijections between maps and tree-like structures

(a) A 5-angulation of girth 5. (b) The resulting Z-mobile.

Figure 3.17: A 5-angulation of girth 5 and the 5-branching mobile.

excess —d, and conversely. Moreover, each inner face of M corresponds to a black vertex
of the d-branching mobile.

The condition of having excess —d is in fact inherent to the class of d-branching mobiles.
It follows directly from the degree constraints on black vertices and the weight constraints
on white vertices, as a straightforward algebraic consequence. Thus, the master bijection
® induces a new bijection.

Theorem 3.2.29: For d > 3 and n > 1, there is a bijection between the class Cc(ln) of
face-rooted d-angulations of girth d with n inner faces and the class of d-branching mobiles
with n black vertices.

In Subsection 3.1.4 we did not just find a bijection between d-angulations and a certain
class of blossoming trees, but we also managed to generalize this to p-gonal d-angulations
with an additionally marked face of degree p with 3 < d < p.

A similar generalization is possible in this case in order to find a bijection between
so called non-separated p-gonal d-angulations of girth d with n inner faces and so
called (p,d)-branching mobiles with n black vertices. We refer to [BF11] for a precise
description of this generalization.

3.2.5 Maps of girth d with root face degree d

In [BF12], the master bijection introduced in the previous subsection is extended to yield
a correspondence between plane maps of girth d with root face degree d and a family of
decorated plane trees called d-branching mobiles.

Definition 3.2.30: For d € N*, we consider the class P; of face-rooted maps of outer
degree d and girth d.

As in the previous section, we first characterize the maps in Py via suitable Z-biorientations,
thereby identifying P, with a subset of 0. This gives us the possibility to apply the master
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3 Overview of bijections between maps and tree-like structures

bijection to this class of biorientations and obtain a specialized bijection for the maps in
Pa.

We recall Theorem 3.2.27 and identify the class Py with the class F; of suitable pseudo-
d/(d — 2)-biorientations.

The left side of Figure 3.18 depicts an example for d = 3, i.e., a map with a triangular
outer face and girth three, endowed with its suitable 3/1-biorientation.

We apply the master bijection of Theorem 3.2.25 to suitable pseudo-d/(d—2)-orientations
F, as a subset of O in full analogy to the construction in the previous subsection.

As before, every pseudo-d-branching mobile has excess —d, so we can immediately con-
clude the following generalization of the bijective Theorem 3.2.29.

Corollary 3.2.31: For d > 3, there is a bijection between the class Py of face-rooted maps
of girth d and outer degree d and the class of pseudo-d-branching mobiles. Each inner face
of degree i > d in the map corresponds to a black vertex of degree i in the mobile.

Figure 3.18 illustrates the bijection for d = 3, showing the correspondence between a
suitable pseudo-3/(1)-biorientation and a pseudo-3-branching mobile. For improved read-
ability, we denote positive weights in blue and the absolute value of negative weights in

red.

(a) Map with triangular outer face of girth 3. (b) Resulting pseudo-3-branching mobile.

Figure 3.18: A map of girth 3 and the pseudo-3-branching mobile.

3.2.6 Generalization to maps of higher genus

Similar to Subsection 3.1.5, we provide a compact overview of key generalizations of bijec-
tions of category (B) for planar maps to maps on surfaces of higher genus.

The CVS bijection has been extended to maps on orientable surfaces of arbitrary genus
[MS01; CMSO08], while a generalized BDG bijection is constructed for Eulerian maps on
orientable surfaces of genus g with a distinguished vertex, leading to so-called g-mobiles
[Cha08].
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3 Overview of bijections between maps and tree-like structures

For this subsection, we adopt the definitions from Subsection 3.1.5 about blossoming
bijections on higher genus maps. For the following, we define the generalization of plane
trees.

Definition 3.2.32: For g € N, a g-tree is a map of genus g with only one face. A g-tree
with a root vertex is called well-labeled if each node carries a positive integer label, labels
of two adjacent vertices differ by at most 1, and the root node has label 1.

For g =0, a g-tree is a plane tree; for g > 1, any g-tree contains at least one cycle.

Recall the CVS bijection ® from Subsection 3.2.1 between planar quadrangulations and
well-labeled trees. Omne main consideration in the construction of ® was the fact that
the faces of a planar quadrangulation are either simple or confluent since each planar
quadrangulation is bipartite. In higher genus, this property no longer holds in general (see
the discussion following Lemma 2.1.22). In Subfigure 3.19b, we construct a quadrangulation
of genus 1 on the torus that is not bipartite. This can be seen by looking at the cycle of odd
length 3, highlighted in red. Bipartite quadrangulations, however, do exist on the torus, as
shown in Subfigure 3.19a.

D L J @ . @
@ > @ L J L
(a) Bipartite quadrangulation. (b) Non-bipartite quadrangulation.

Figure 3.19: A (non-)bipartite quadrangulation on the torus.

The generalization of the CVS bijection in [CMSO08] applies specifically to those bipartite
quadrangulations on orientable surfaces of arbitrary genus. When the vertices of a bipartite
quadrangulation are labeled with their geodesic distance, each face is either simple or
confluent, allowing the local operations defined in Definition 3.2.3 to be applied.

The opening ®, is defined analogously to the planar case, and the argument that this
mapping produces a g-tree follows similarly via the dual exploration graph (DEG). How-
ever,For g > 1, one must additionally verify that the unique face of the resulting embedding
is simply connected. This is done in [CMS08] using the duality with the DEG and some
familiarity with graphs on surfaces, and we omit these technical details here.

The closure of well-labeled g-trees is a natural extension of the construction for well-
labeled-trees in the planar case. It can be shown that the closure produces a bipartite
quadrangulation of genus g, and together with the opening, it establishes the main bijective
correspondence.

Theorem 3.2.33 ([CMS08|, Theorem 1): The mapping ®, is a bijection from pointed
bipartite quadrangulations of genus g with n faces to well-labeled g-trees with n edges.
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3 Overview of bijections between maps and tree-like structures

There also exists an alternative formulation of the bijection, where the pointing of the
quadrangulation is exchanged by a rooting, and the g-trees are now rooted.

Corollary 3.2.34 ([CMS08], Corollary 1): The mapping ®, can be extended to a bijection
from rooted bipartite quadrangulations of genus g with n faces to rooted well-labeled g-trees
with n edges.

In [CD17], the Marcus—Schaeffer construction is generalized to include all surfaces,
whether orientable or non-orientable. For any surface S, there exists a bijection between
rooted bipartite quadrangulations on S and labeled unicellular maps on S.

This extension is especially significant for non-orientable surfaces, for which no bijective
tools previously existed to analyze distance properties of random maps.

In the orientable case, the Marcus—Schaeffer bijection relies crucially on a global orienta-
tion of the surface (given by the orientation of the root corner), which determines the local
opening operations for confluent faces. In the non-orientable case, such a global orientation
does not exist. For example, in the rooted bipartite quadrangulation of the Klein bottle
N:% shown in Subfigure 3.20a, the faces lack a consistent notion of clockwise direction,
preventing a direct application of the local operations. The construction in [CD17] over-
comes this issue by assigning a canonical local orientation to each face prior to applying
the operations.

Recall from Subsection 3.2.1 that, in the orientable setting, the dual exploration graph
(DEG) was used in the proof that the opening mapping ® produces a valid map. In the
non-orientable setting, the DEG is first constructed using only local orientations, before
building the corresponding unicellular map. This order is necessary because, unlike in the
orientable case, the orientation of DEG edges cannot be defined from a missing global
orientation.

For a given rooted bipartite quadrangulation M on the Klein bottle as shown in Subfigure
3.20a, the corresponding dual exploration graph (DEG) is depicted in Subfigure 3.20b.
The construction of the DEG follows the procedure described in [CD17]. We refer to the
original source for the proof that this construction is well-defined. In Algorithm 8, we will
also denote this construction of a DEG by V(M).

In the algorithm, we refer to the two configurations of faces in Figure 3.12. It can be
shown that each face of M U V(M) has exactly one of the two given forms (without the
red edge); thus, this step is well-defined.

The construction of the map ®(M), obtained from the superimposition of the quadran-
gulation M and its DEG on the Klein bottle, is shown in 3.20c.

Analogously to the orientable case, one can define an inverse mapping A on rooted
unicellular maps. Given such a map U, the construction of the bipartite quadrangulation
M = A(U) (together with its DEG V(M)) proceeds via steps mirroring those used for
constructing V(M) in Algorithm 8. The mapping A is the inverse of ®.

The following theorem formalizes the bijection and its preservation of structure between
distances in the quadrangulation and labels in the unicellular map.

5Maps on a Klein bottle can be illustrated inside a square, with the top edge identified with the bottom
edge and the left edge identified with the upside-down right edge.
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3 Overview of bijections between maps and tree-like structures

Algorithm 8 Generalized opening of a rooted bipartite quadrangulation ®

Require: M rooted bipartite quadrangulation on a general surface

1: V(M) + the DEG of M
2: for f face of M do
3: add a red edge so that the face matches one of the two configurations in Figure 3.12
4: end for
5: ®(M) < the map with all vertices of M and red edges
6: delete vy from ®(M)
7: eg < the root edge of M
8: ¢ + the unique corner in ®(M) of label 1 that is incident to e
9: set ¢ to be the root corner of (M)
10: return ®(M)
e ° * e ° ° / oy
e e e e ° °
\ 4 Y
4 4
4 ) A )
e ° o e ° *
e ° o e ° o
(a) Quadrangulation M. (b) The DEG V(M). (¢) Unicellular ®(M).

Figure 3.20: The CVS bijection on the Klein bottle.

Theorem 3.2.35 ([CD17|, Theorem 3.1): For any surface S, the mapping ® is a bijection
between the set of rooted bipartite quadrangulations on S with n faces and the set of well-
labeled unicellular maps on S with n edges. Its inverse is given by A.

Moreover, if for a given bipartite quadrangulation we denote by N; the set of its vertices
at distance i from the root vertex, and by E(N;, N;_1) the set of edges between N; and N;_1,
then the associated well-labeled unicellular map has | N;| vertices of label i and |E(N;, N;—1)|
corners of label 1.
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4 Selected proofs

In this chapter, we prove some selected results from Chapter 3 that are not only crucial for
understanding the essential underlying concepts of the bijections, but also yield interesting
insights for further study of the topic.

4.1 Proof of the CVS Bijection

Because the CVS bijection serves as a basis for many other constructions, we present here
a detailed proof of the intermediate results that lead to the main bijective Theorem 3.2.9.
Our proof follows a combination of the ideas of [CS02] and [CMSO08].

First, we show some helpful results on the opening ®.

Lemma 4.1.1: If there exists a cycle in the DEG, it is directed and cycles counterclockwise
around a single vertez.

Proof. By definition, each vertex of the DEG has exactly one outgoing edge, so any cycle
must be a directed cycle. Moreover, since each vertex also has at least one ingoing edge,
the presence of any other vertex inside a cycle of the DEG would force a vertex on the
cycle to have two outgoing edges, which is impossible by definition. Thus, the interior of
the cycle corresponds to a face in the DEG and contains exactly one vertex of the original
quadrangulation. From the definition of the local configurations in Figure 3.12, it follows
that the edges of the cycle are counterclockwise around this vertex. O

Lemma 4.1.2: The DEG of a quadrangulation with root vertex vg contains exactly one
(directed) cycle. This cycle encircles the vertex vy and can be contracted into a single vertex
within the DEG. The resulting contracted DEG is a tree.

Proof. Each edge incident to vy induces an edge in the DEG, which is, by definition, oriented
such that vy is on its right. Thus, these edges form a counterclockwise cycle of the DEG
around vg.
Given any directed cycle of the DEG, by Lemma 4.1.1, it cycles around a single vertex
v. Since each neighbor of this vertex v must have a larger label, this vertex has to be vy.
Therefore, the only directed cycle surrounds vy. Contracting this cycle in the DEG yields
an acyclic connected graph, i.e., a tree. O

Theorem 4.1.3: The mapping ® maps a rooted quadrangulation with n faces to a well-
labeled tree with n edges.

Proof. We already know that the resulting map is a tree. In the construction of the map-
ping, each of the n faces creates a distinct edge of the tree ®(M). By definition, each
such edge connects two vertices whose labels differ by at most one, so ®(M) is also well-
labeled. O
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We now turn to the closing of Algorithm 4 and analyze various of its properties in order
to show that it is the inverse of the mapping ®.

Lemma 4.1.4: In Algorithm 4, the chords of type {i, s(i)} can be drawn in a non-intersecting
way.

Proof. Let k denote the number of faces of Ty, and consider any of the k faces. Note that
a corner j with i < j < s(i) cannot have a label lower than [,(;, since neighboring corners
can only differ by at most one. By the definition of the successor function, the labels of j
and s(i) can also not be equal, and therefore we get I; > l,;). Assume that there are two
chords {i, s(i)} and {7, s(7)} that intersect (w.l.o.g. ¢ < 7). This induces a counterclockwise
order of these four corners i < j < s(i) < s(j). The first two inequalities imply I; > Ly4),
the last two inequalities imply ;) > l5(j) > [;, which is a contradiction. O

Lemma 4.1.5: After adding chords according to the successor function in Algorithm 4,
every face is either triangular with labels [, [+1,[+1 or quadrangular with labels —1,1,1+1,1.
Thus, after the final step of deleting all edges, whose endpoints have equal label, all faces
are quadrangular.

Proof. Let F be any of the k faces of Ty. When adding chords, F' is divided by the chords
into various smaller faces. Let f be one of those faces and consider the numbers and labels
of its corners inherited from F'. Let j be the corner in f with the largest number and let
i1 resp. 1o be the corner following, resp. preceding in clockwise direction, then we have
1 <o < j .

We now distinguish two cases. For the first case, let j be the corner incident to vg. Then
both its incident corners have label 1 and thus l;; = [;,.

If j is not incident to vg, the edge {i1, j} has to be a chord with j = s(i1) (and {;; =1;+1);
if the edge {i1,j} was not a chord, we would have i; = j 4+ 1 contradicting the maximality
of j. Since i9 lies on the clockwise tour around the face f from i; to j, its label cannot be
smaller than /;, due to the definition of j = s(i;). Together with the fact that the labels
of neighboring corners can differ by at most one and hence [;, < [; + 1, we also get the
equality l;, = l;; = [; + 1 in this case.

As a next step, we show that the edge {i1,41 + 1} borders the face f. If not, there would
need to be a chord arriving at the corner of i; between this edge and the chord {iy,j}.
By construction of the successor function, this chord would have to come from a corner i3
with i1 < i3 < 7, and would thus intersect the chord {i,j}, which contradicts the result
of Lemma 4.1.4.

As mentioned above, the label of a corner in the clockwise tour around the face f from
71 to j cannot be smaller than [;;. Due to this consideration, as a neighboring corner, there
are only two possibilities for the label of i; + 1:

1. l;;41 = l;;, then 7; + 1 cannot be different from iy since otherwise, there would be a
chord {i; + 1, j} excluding i from the face f. Thus, the face f is triangular.

2. lj;+1 =1;; + 1, then 47 + 1 is connected to iy because iy is its successor. If there were
another corner i3 < ig with i3 = s(i1), and a chord {is3, j} would exclude iy from the
face f. Thus, the face f is quadrangular.
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In summary, any edge whose endpoints have the same label [ is adjacent to two triangular
faces, each having a third vertex of label [ — 1. Removing such an edge in the last step
merges these two triangles into a (simple) quadrangular face with the desired label pattern,
completing the proof. O

Figure 4.1 shows an illustration that can be very helpful in understanding the proof.

(a) Step 1 applied to a well-labeled tree. Cor-  (b) Adding chords to the face F. Added chords
ners of the face F' are numbered in blue. illustrated in dashed lines.

Figure 4.1: Illustration for understanding the proof of Lemma 4.1.5. Consider the face f;
with j = 7 and 71 = 1,79 = 6 as an example for a quadrangular face and the
face fo with 7 =6 and i1 = 4,73 = 5 as an example for a triangular face.

As a next step, we show a statement about the number of faces that the resulting
quadrangulation has.

Lemma 4.1.6: Let T be a well-labeled tree with n edges. Applying the closing procedure to
T produces a quadrangulation with n faces.

Proof. A tree with n edges has n + 1 vertices. In the first step of Algorithm 4, another
vertex vg is added and thus, by the previous lemma, a quadrangulation @@ with n + 2
vertices is obtained in the following steps. We call f the number of faces; since each
face of a quadrangulation has degree 4 and each edge is incident to exactly two faces, the
number of faces must equal 4m/2 = 2m. Using Euler’s formula, we obtain the equation
(n+2) — 2m + m = 2 and simplify it for m = n. O

We have shown so far that the mapping ® : Q, — W, and the closing procedure
v : W, — Q, can be applied one after another due to their domain and co-domain. It
remains to be shown that both mappings are inverse to each other.

Theorem 4.1.7 ([CS02], Proposition 2): The closing procedure is the inverse of the map-
ping P.

Proof. Since the rooting conventions of ® and ¥ agree in straightforward manner, we omit
further discussion of them.

For a given well-labeled tree T, the faces of the map 7" obtained after adding all chords
are classified as in Lemma 4.1.5. As can be seen in the proof of the lemma, each face of T’
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is bordered by the edge {i1,i1 + 1} which is also part of the original tree. For a triangular
face (and its corresponding incident triangular face with the same label distribution), this
boundary edge {i1,7; + 1} is precisely the one removed during the opening step, ensuring
that the face merges correctly into a simple quadrangular face. For a (confluent) quadran-
gular face, this is exactly the edge that is chosen for a local operation. Thus, applying the
local operations to the closing ¥(7T") selects exactly the n edges of the original tree, and we
have ®(U(T)) =T.

For our bijective result, it remains to show that ¥(®(Q)) = @ for any given quadrangu-
lation Q). From now on, we call T' = ®(Q) the corresponding tree and @’ the map obtained
after performing a local operation (and hence adding a diagonal edge) to each simple face.
Applying the mapping ¥ to T, we call T and 7" the two maps obtained after Step 2 and
Step 3. We will first prove that 7" = @’. The equality ¥(®(Q)) = Q follows directly, since
@’ is obtained from @ by adding diagonal edges in simple faces, and ¥(7T') is obtained from
T’ by removing exactly those edges producing simple quadrangular faces (see the proof of
Lemma 4.1.5).

Consider the root vertex vy of @ resp. @’ and the local transformations around it to
construct 7' = ®(Q). Each edge with labels 1 — 2 in T" has been part of a confluent face
in @Q and is thus on the left side of a corner in @’ that has an edge with labels 1 — 0 on
its right side. Each edge with labels 1 — 1 in 7" has been part of a simple face in ) and is
thus part of two such corners in Q. Hence, the map Ty produced by Step 1 of the closing
procedure ¥, where an edge with labels 1 — 0 is added to each corner of label 1, is not only
a submap of 7" but also a submap of Q.

Moreover, Ty covers all the vertices of T', so that edges of T” not in Ty are edges in the
faces of Ty. The same holds for Ty as a submap of ’. Note that 77 and @’ have the
same number of vertices and, by Lemma 4.1.5, also the same number of triangular and
quadrangular faces. Thus, we can conclude by Euler’s formula that they must have the
same number of edges. By this consideration, it is enough to show that for each face of Ty,
each chord of 7" is also an edge of @’ (by the equality of the numbers of edges, the opposite
inclusion is not necessary) to finally show 7" = Q.

Let now f be a face of Ty. By construction, the face contains exactly one corner of
label 0 and two neighboring corners of label 1. For the case deg(f) = 3, these are the
only three corners; for the case deg(f) = 4, there exists another corner that must be of
label 2, since labels along the border can only differ by +1. In both cases, no chord is
added inside the face during the construction of 7”, and there is no other edge inside the
face of @’. Thus, we now assume k := deg(f) > 5 and number the corners (and thus the
vertices) of the face in clockwise order from 1 to k starting from the corner after the one
incident to the root vertex. By e; we denote the label of the corner with number i. Note
that eg = 1,e0 = 2,619 = 2,ex_1 = 1,e = 0, and e; > 2 otherwise. We consider the
corners with label 2 in increasing order with numbers i1 = 2 < iz < ...%, = k — 2. By the
definition of the successor function, for each 1 < j < p, the chord {i;, k — 1} is added for
the creation of 7”. In the following, we will check inductively that these edges also appear
in . Firstly, for the chord {i1,k — 1} in T’, we consider in Q' the face f; that contains
the corners with labels 0,1 and 1 (with numbers k,1 and k — 1). Since f has degree larger
than 4, also f; cannot be triangular and must contain a fourth corner (with label 2). If
i, = k — 2 was the fourth corner, the corner of the face f; would read (k,1,k—2,k—1) in
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clockwise order, starting with the corner of label 0. In this case, the edge {1,k — 2} would
have been selected for the creation of the tree ®(Q), but it is not an edge of Ty. Thus, the
only other possibility of iy = 2 being the fourth corner of f; remains, and we have shown
that {i1,k — 1} was an edge of @Q'.

For the induction step, let now 1 < j < p and assume that {i;;,k — 1} was an edge of
Q' for each j' < j. Consider in @’ and inside of f the face f; that is incident to the edge
{i; —1,4;}. We distinguish two cases. If ¢;, 1 = 2, the edge {i; — 1,4;} was added inside a
confluent face of ) and thus, the face f; is triangular and contains the edge {i1,k —1}. In
the other case, if e;, 1 = 3, the face f; is a (simple) quadrangular face and the other edge
from i; goes to a corner of label 1. If this edge connected i; to the corner with number
1, it would intersect the edge {i1,k — 1} by the same argument as in the proof of Lemma
4.1.4. Hence, there must be the edge {i;,k — 1} in Q'

So far we have shown that each chord in 7" with labels 1 — 2 was also an edge in @Q’.
Adding all of these chords to Tp yields a new map 77 in which each face f is subdivided
into faces f; with the following property: Each face f; obtained at this stage has exactly
one corner with label 1 and two neighboring corners with label 2, each other corner has
label at least 3 — the same structure as f, except that the minimum label is 1 instead of 0.
By subtracting one from all labels, we obtain an isomorphic situation. Thus, we can show
that each chord in 7”7 with labels 2 — 3 was also an edge in @', create a new map Tb by
adding all these chords to 77, and continue this argumentation successively until we are left
with T, = T’ (where €4, is the maximum label of all corners in 7). This completes

€max

the proof of 7" = @’ and thus ¥V (®(Q)) = Q. O

4.2 Proof of the unified bijective scheme of category (A)

We state and prove a theorem from [AP15] that implies Theorem 3.1.18 and is at the heart
of all bijections between orientations on maps and blossoming trees.

Theorem 4.2.1 ([AP15], Theorem 2.3): Let M be a plane map with root vertex vy, and
suppose that M is endowed with a minimal accessible orientation O. Then M admits a
unique edge-partition (Tyr,Car) such that:

1. edges in Ty (called tree edges) form a spanning tree of M, rooted at vy, on which
the restriction of O is accessible;

2. any edge in Cpr (called closure edges) is a saturated clockwise edge in the unique
cycle it forms with edges in Tyy.

Let us call such a partition a tree-and-closure partition.

Proof. We carry out the proof by induction on the number of faces of M. If M has one face,
we take Tpr := M and Cps := {}. Thus, T is a spanning tree of M, and it is accessible
since M is. This tree-and-closure is unique since the only spanning tree of a tree is the tree
itself.

Let now M be a plane map with root vertex vy and n faces (with n > 2) endowed
with a minimal accessible orientation O. We assume the existence and uniqueness of a
tree-and-closure partition for any such map with less than n faces.
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We try to find an edge e whose deletion from M produces a map M’ that is still accessible.
In this case, e was not a bridge, therefore the map M’ has n — 1 faces, and we are done
because we can simply apply our assumption to the map M’ to obtain a tree-and-closure
partition (7;;,Cp). The partition of M is then given by (7;,,Car U {e}).

Due to minimality, the outer edges do not form a counterclockwise cycle, thus at least
one of them has the outer face on its left and is not a bridge. Let (u,v) be such an edge;
if the map is still accessible after deleting (u,v), we can choose e := (u,v) and are done.
Otherwise, let

A:={w € V(M)|vg is accessible from w in M'}, U:=V(M)\ A

Note that there can be no edge from U to A. It is easy to see that v € A and u € U.
Moreover, for any vertex w € U, accessibility to vy in M required the edge (u,v), so u is
accessible from each such w. Because (u,v) was not a bridge, there must exist an edge
from A to U. Deleting such an edge does not change the accessibility of vertices. Thus,
we can choose as the edge e the leftmost of these edges (having the outer face on its left)
and apply the same strategy as above. This reduces the number of faces by one, while
preserving minimality and accessibility.

To show the uniqueness of this tree-and-closure partition, we assume that there exists
another partition (7,,,Cyr) with the edge e = (z,y) of the previous step in the tree, or
equivalently e ¢ C},. From now on, for vertices u,v, we denote by 7,, the directed path
from u to v with edges in 7}, if it exists. Moreover, we simply write 7, := 7,4, for the
path to the root vertex. Since T, is accessible, there exists such a path 7, for each vertex
u, and this path is uniquely determined as two different paths would create a cycle in the
tree. We first note that 7, = {(x,y)} U7,. Let m, denote the path from z to vy with edges
in Tps. This path 7, cannot be completely contained in 7, thus it must contain at least
one closure edge e € C),.

Let thus e; = (z1,%1) be the first closure edge in 7, and consider the path 7,, and the
path 7, ;. The edge e; builds a cycle with edges of the paths 7, ;,, 7, and Tp.L

If the involved edges of the path 7,, had the inside of this cycle on its left, so would
the edge e;. This is not possible since, by the definition of a closure edge, e; is oriented
clockwise in the unique cycle it forms with tree edges. Thus, the involved edges of 7, have
the inside of the cycle on its right. This implies that 7, intersects 7, already at the vertex
x since e = (x,y) has the outer face on its left and cannot be “wrapped” by edges of 7.

We can now define 7, as the intersection of the path 7, that starts at y;. The path 7,
has to contain closure edges, too. Otherwise, there would be a cycle m,, U7y, of tree edges.
Let ea = (x2,y2) be the first closure edge and show in exactly the same way as before that
Ty, intersects 7, at . This yields an infinite strictly nested sequence of closure edges in 7,
which is impossible in a (finite) map. Hence our assumption was false, and the partition is
unique. O

"More precisely, the edge e; = (z1,y1) builds the cycle with the tree edges 7,4, U (7, AT:) since the paths
Ty, and 7, might intersect (which they do as we show in the course of the proof).
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5.1 Enumeration of Maps

The systematic enumeration of planar maps began in the 1960s with the pioneering work
of Tutte [Tut63]. By exploiting recursive decompositions of maps, Tutte derived functional
equations satisfied by their generating functions, from which explicit enumeration formulas
could be extracted.

Since then, successful ideas have been used to rederive and generalize the results of Tutte,
including the bijective constructions presented in this work. These not only provide an ele-
gant rederivation of Tutte’s formulas, but also yield deeper insights into the combinatorial
structure of maps.

In this section we present enumeration formulas for two classes of planar maps, obtained
by analyzing the corresponding classes of decorated trees given by the bijections introduced
earlier.

5.1.1 Rooted Eulerian planar maps

We use the bijection between balanced Eulerian blossoming trees and rooted Eulerian
planar maps (Theorem 3.1.7) to enumerate the number of rooted Eulerian planar maps
and, from these, derive the enumeration of rooted planar maps in general.

We start by stating a classical result about planted plane trees.

Lemma 5.1.1 ([Wal72]): The number of planted plane trees with d; vertices of degree i+ 1
fori>1, k=24 (i+ 1)d; leaves and n = (>_d;) + k — 1 edges is

1 n (n—1)! 1
= =TT 5.1
n(k—l,dl,dg,...,dimam> (k—l)!il;[ldi!’ (5.1)

Where imaz 1S the maximal index i such that d; # 0.

Recall from Subsection 3.1.1 how marked Eulerian blossoming trees can be obtained from
planted plane trees. This connection, together with Formula (5.1), immediately implies the
following lemma.

Lemma 5.1.2: The number of marked Eulerian blossoming trees with d; vertices of degree
2i fori>1, k closing stems and n — k edges is

(n—1)! 2i —1\% 1
<k-1>!g( ) 2

As a final step, we link this enumeration of marked Eulerian blossoming trees to the
enumeration of rooted Eulerian planar maps using the bijective approach.
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Proposition 5.1.3: The number of rooted Eulerian planar maps with d; vertices of degree
2i, e edges and v vertices s

%e! 2 —1\% 1
(e—v+2)!i1;11< i ) 4 (5:3)

Proof. In an Eulerian blossoming tree, each of the k closing stems can be marked, yielding k
pairwise conjugate trees, 2 of which are balanced. If the tree admits a rotational symmetry
of order 2, then the conjugacy class has size k/2, and only one balanced tree remains.
In both cases, the proportion of balanced trees in a conjugation class of marked Eulerian
blossoming trees is 2/k.

Multiplying Formula 5.2 with this factor yields the number of balanced Eulerian blos-

soming trees
(n—1)! 2 —1\% 1
2—— —.
a U ) @

i>1

By Theorem 3.1.7, these balanced blossoming trees correspond bijectively to rooted Eule-
rian planar maps, with the same number of verticesv =n—k+1land e = (n—k)+(k—1) =
n — 1 edges. O

As a direct consequence, we obtain an enumeration formula for rooted planar maps,
which are in bijection with a special class of rooted Eulerian planar maps.

Corollary 5.1.4: The number of rooted planar maps with m edges is given by
2.3m 2m
(m+2)(m+1)\m )’
Proof. By the medial map bijection (Lemma 2.1.31), the number of rooted planar maps

with m edges equals the number of rooted 4-regular maps with 2m edges (and m vertices).
By Formula 5.3 these can be enumerated by

M(4—1>m 1

(m+2)!\ 2 m!’

which simplifies to the claimed expression. O

5.1.2 Rooted simple triangulations

Using the bijection of Subsection 3.1.2 between marked triangular blossoming trees and
rooted simple triangulations, we derive an enumeration formula for rooted simple triangu-
lations in this subsection.

We first state an auxiliary result as given in [PS06].

Lemma 5.1.5: The number of triangular blossoming trees with n nodes is given by
2 dn — 2
B2 = . )
" 4dn -2 ( n—1 >
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A triangular blossoming tree with n nodes has 2n opening stems, and exactly two of
these can be marked to yield a balanced triangular blossoming tree. Therefore, the ratio
of balanced trees in B is 2/(2n) = 1/n.

Corollary 5.1.6: The number of rooted simple triangulations of size n is given by

1 dn — 2
%_n(Zn—l)'<n—1)'

5.2 Intrinsic geometries of planar quadrangulations and maps

Beyond the combinatorial interpretation of counting formulas, an important motivation for
developing the bijective methods is that they are the cornerstone of the study of random
maps.

One important motivation from statistical physics is the interpretation of random maps,
particularly triangulations and quadrangulations, as discrete models of random surfaces in
two-dimensional FEuclidean quantum gravity. Using bijective methods, we discuss results
concerning the geometry of those random maps. For example, in a random rooted planar
quadrangulation with n faces, the typical graph distance between two uniformly chosen
vertices is of order n!/4 [CS02]. Moreover, uniform random quadrangulations, rescaled by
the factor n'/4, converge in distribution to the so-called Brownian map [Miel3; Le 13].

The CVS bijection was the starting point for deriving distance properties in random
planar maps.

5.2.1 Distances in planar maps

Definition 5.2.1: Let M be a rooted planar map with root vertex vg. Then, the radius
(sometimes also called eccentricity) r of M is defined as the maximum distance from the
root vertex r := max{d(v,vp) : v € M}. For a rooted plane tree T', the radius is called the
height H(T).

Let M,, be a random planar quadrangulation that is uniformly distributed in @, the
set of planar quadrangulations with n faces. We begin by analyzing the distance from
a uniformly chosen vertex to the root vertex. The CVS bijection provides a convenient
framework to determine this distance.

Let E,, be a uniform rooted embedded tree with n edges. This random tree E, can be
constructed from a uniform (unlabeled) plane tree T), by assigning a label increment in
{=1,0,1} to each edge, chosen uniformly and independently. The label of a vertex is then
defined by summing these increments along the path from the root vertex, with the root
label set to 0.

It is well known (see, e.g. Section 20.3 in [Janll]) that the height H(T,,) of a uniform
plane tree is typically of order n'/2, and the distance from a uniformly chosen vertex of T,
to the root vertex is of the same order. Since the label of a vertex is obtained by summing
H(nl/ 2) independent, centered, bounded increments, by the central limit theorem, the label
is of order (n'/2)!/2 = p'/* in probability.
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Via the CVS correspondence, these labels encode graph distances in M,,. This provides
a heuristic explanation for the n'/? scaling of distances in quadrangulations.
We refer to [CS02] for a rigorous analysis of this approach and state a result from the

paper.

Theorem 5.2.2 ([CS02], Corollary 3): The random variable n="*r, converges weakly to
(8/9)1/47", where 1y, is the radius of the quadrangulation corresponding to M, and r > 0 is
a real-valued random variable.’

5.2.2 The Brownian map as a universal scaling limit

From the observation of the previous subsection that the distance from a random vertex to
the root vertex is typically of order n!/4, the idea arises to find a certain kind of continuum
limit for random planar quadrangulations of size n rescaled by a factor of order n=/4. In
this subsection, we closely follow the presentation of [Le 13| and [Gall4]. We adopt the
framework and definitions, restating key theorems as in the original work, while occasionally
providing additional explanations for clarity.

Definition 5.2.3: Let (X, d) be a metric space. For s >0, d >0 and E C X, set

1nf{Zdlam )|U; C X,E C UUZ,dlam(Ui) <5},

i=1

where diam(U) := sup{d(z,y) : z,y € U} for each ) # U C X and diam(0) := 0. Any
collection (U;);>1 from the definition is called a d-covering of E. The s-dimensional
Hausdorff measure of F is then defined as

H¥(E) := lim Hi(E).
6—0
From the definition of the Hausdorff measure, we can immediately show an interesting
property.

Lemma 5.2.4: Let (X, d) be a metric space, s > 0,0 > 0,E C X. Then, for everyt > s,
we have

HL(E) < 5 H3(E). (5.4)

Proof. Let (U;);>1 be a é-covering of E. For any i > 1, by definition diam(U;)!™* < 675,
and we get

Z diam(U, Z diam(U, )i *diam(U;)* < Z 5t *diam(U,

i>1 1>1 i>1
Taking the infimum over all §-coverings of E yields the inequality. O

The previous lemma implies another basic result about the Hausdorff measure.

! “The random variable r is the radius of the limiting Brownian map; see [CS02] for its definition and exact
value.
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Proposition 5.2.5: Let (X,d) be a metric space, E C X and 0 < s < t. Then, we have
the following properties.

e H¥(E) <oo = HYE)=0;
e H'(E) >0 = H*(E) = oo.
Proof. Using the previous lemma, we assume the left side of the implication and get

(5.4)
o H'(E) =lims_o H5(E) < lims_o 6" *H (E) = H*(E) - lims_0 6" = 0

(5.4)
e H*(E) = lims_yq HS(E) > limg_,g 5S_tHg(E) = Ht(E) -limg_y 657 = oo.

O

We can now define the Hausdorff dimension of a subset E as the unique value s along
R, where the measure transitions from being co to being 0 as indicated by the previous
proposition.

Definition 5.2.6: Let (X, d) be a metric space. For E C X, the Hausdorff dimension
of E is defined by

dimg(F) :=inf{s > 0: H*(E) = 0} = sup{s > 0: H*(E) = oo}.

These notions allow for a description of the “size” of sets in a metric space, extending the
idea of integer-valued topological dimension to non-integer values. It can be shown easily
that the Hausdorff dimension coincides with the common notion of dimension for shapes
of “traditional” geometry. Examples are dimg([0,1]) = 1 and dimy([0,1]?) = 2. On the
other hand, for fractal sets non-integer values arise (e.g., the well-known Cantor set has
Hausdorff dimension log2/log 3).

We consider a random planar quadrangulation M, that is uniformly distributed in @,
and identify M,, with the finite metric space (V (M,,), dar, ), where dyy,, is the graph distance
on the vertex set V(M,,). Thus, we can also view M,, as a random variable taking values
in the space M of compact metric spaces up to isometry. We want to endow the space M
with a topology by defining a distance between two metric spaces.

Definition 5.2.7: A correspondence R C X xY between two sets X and Y is a relation
such that for every z € X, there exists at least one y € Y with (z,y) € R and for every
y' €Y, there exists at least one 2/ € X with (2/,3) € R. We denote by Cor(X,Y) the set
of all correspondences between X and Y.

Let (X,dx) and (Y, dy) be two metric spaces and R be the correspondence between X
and Y. The distortion dis(R) of R is defined as

dis(R) := sup ldx (z,2") — dy (y,y")].
(z,y),(z"y")ER

Definition 5.2.8: Let (X,dx) and (Y, dy) be two compact metric spaces. The Gromov-
Hausdorff distance dgy(X,Y) is defined to be

dep(X,Y) inf  dis(R).

. 5 ReCor(X,Y)
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Note that this definition of the Gromov-Hausdorff distance is actually a reformulation of
another definition that builds on the more familiar Hausdorff distance between sets. The
definition presented here turns out to be more useful for explicit computations and concrete
examples. In addition, we adopt the convention with the prefactor 1/2; some authors omit
it, leading to an equivalent distance up to scaling.

The space (M, dgpr) of compact metric spaces up to isometry, endowed with the Gromov-
Hausdorff distance, is a separable and complete metric space. For proofs, see, for example,
Theorem 7.3.30 in [BBIO1] and Theorem 1 in [EPWO04]. Within this space, the scaling
limits of random maps can be studied. An important result of [Le 13] shows that for
several classes of planar maps, after rescaling the graph distances by a factor of order
n~1/4, the vertex set converges in distribution to a random compact metric space known
as the Brownian map. More precisely:

Theorem 5.2.9 ([Le 13], Theorem 1.1): Suppose that either p = 3 or p > 4 is an even

integer, set
9 1/4
cp=|——=
8 (p(p—Q))

Cc3 = 61/4.

if p is even, and

For every integer n > 2, let MY, denote the set of rooted p-angulations with n faces, let M,
be uniformly distributed over M%,. There exists a random compact metric space (M, D*)
called the Brownian map, which does not depend on p, such that
d
(V(My), cyn~YVdpg,) —2 (moe, DY) (5.5)
n—oo

where the convergence holds in distribution with respect to the Gromov-Hausdorff distance
on M.

In other words, the Brownian map arises as a universal scaling limit for different classes
of planar maps, independent of the face degree parameter p, up to the scaling constant c,,.
As a concrete example, for the case of triangulations (p = 3), the rescaled vertex set

(V(T,),6Y*n =Yy, )

converges in distribution to the Brownian map. The special case of quadrangulations
(d = 4) was obtained independently in [Miel3]. The theorem illustrates how a highly
combinatorial object such as a random triangulation encodes, in the large size limit, a
universal continuous random surface.

We now want to precisely construct this limiting space.

The Brownian continuum random tree (CRT) (introduced and studied by Aldous [A1d93])
is another famous probabilistic model that is a universal scaling limit of discrete trees, in a
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sense analogous to (5.5). The Brownian map can be constructed from the CRT by gluing
certain pairs of points.

Our discrete bijections from the previous sections are not able to fully explain the results
as (5.5), but they provide a good background for understanding the construction of the
Brownian map from the CRT. The underlying idea of the construction of the Brownian map
is to use a continuous analog of the CVS bijection, where plane trees will be substituted by
Aldous’ CRT. A discussion of scaling limits of labeled plane trees can be found in [GM12].

Therefore, we first introduce another well-known random compact space.

Definition 5.2.10: A metric space (7,d) is called R-tree if for every a,b € T

1. there exists a unique isometric map f, 5 from [0, d(a,b)] into 7 such that f,,(0) = a
and f,p(d(a,b)) = b and

2. for a continuous injective map ¢ from [0, 1] into 7 with ¢(0) = a and ¢(1) = b, we
have

Q([O’ 1]) = fa,b([07 d(av b)])

The elements of an R-tree 7 are called vertices. A vertex a € T is called a leaf if 7\ {a}
is connected.
If a vertex p in an R-tree is distinguished, we call the tree rooted.

Intuitively, a compact R-tree is a connected union of line segments in the plane without
loops, equipped with the natural path metric.
We now show how rooted R-trees can be coded by a certain type of functions.

Definition 5.2.11: An excursion function is a continuous function g : [0,1] — RT with
g(0) = g(1) = 0. For every s,t € [0,1], define

t):= inf
mg(s’ ) re[sl/{lt,svt]g(r)

and
dg(s,t) = g(s) + g(t) — 2my(s,t).

By the symmetric definition, we have dy(s,t) = d4(t,s) and one can verify that the
triangle inequality holds for dy. Therefore, it is a pseudo-metric on [0, 1] and we can define
the corresponding equivalence relation ~, by

srvgti= dy(s,t) =0 <= my(s,t) = g(s) = g(t)

for s,t € [0,1]. We note that, by the definition of g, we have 0 ~, 1. On the quotient space
given by 7, := [0,1]/~,, the function d, is a metric. It can be shown that the metric space
(T4,dy) is a compact R-tree. (Theorem 2.1 in [DGO05]) We will view (7,,dy) as a rooted
R-tree, by choosing its root to be p = m4(0) = m4(1) where 7, : [0,1] — 7T, denotes the
canonical projection. Furthermore, g — 7Ty is continuous from (C([0,1], || - ||oc) to the space
of compact R-trees equipped with the Gromov-Hausdorff distance.

The encoding by an excursion function induces a (cyclic) ordering on the tree 7,. Later,
we want to make use of the notion of intervals that correspond to the set of vertices that
are visited when going from one vertex to another in “clockwise order around the tree”.
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5 Applications

Definition 5.2.12: Let g be an excursion function and a,b € 7, with a # b. Let [s,t] be
the smallest interval such that 7,(s) = a and 7,(¢) = b holds.? We then set

la,b] :=my([s,1]).

Next, we give some basic notions that are widely used in probability theory and related
fields.

Definition 5.2.13: For a given probability space (2, F,P), a real-valued stochastic pro-
cess is a mapping X : [0,00) x @ — R. We write X; = X;(w) := X (¢, w) and require the
random variables X; to be F-measurable for each ¢t > 0.

Note that a stochastic process is a family (X;);>¢ of random variable; in many applica-
tions, the variable ¢ has the meaning of time.

Definition 5.2.14: A real-valued stochastic process (X;);>0 is called a Gaussian process
if for every finite choice of t1,...,tx > 0, the random vector

(Xeys oo, Xyy)
has a multivariate normal distribution with some mean vector and covariance matrix.

Definition 5.2.15: A real-valued stochastic process (By);>o is called a Wiener process
(or Brownian motion) with start in z € R if the following properties hold:

1. By = x almost surely,

2. formn € Nand all 0 <t; <ty <--- <t,, the increments Btj — Bt]._l for j=2,...,n,
are independent random variables,

3. for every t > 0, the increments By, — By, u > 0, are normally distributed with mean
0 and variance u,

4. the function ¢t — By is almost surely continuous.
A Brownian motion with start in 0 is called a standard Brownian motion.

Similarly, the Brownian motion is the universal scaling limit for many different random
walks on the lattice.

The Brownian map seems to be the right model for a purely random surface, similar to
how Brownian motion can be viewed as a purely random continuous curve.

Definition 5.2.16: Let (B;):>0 be a standard Brownian motion. Set 74 := inf{t > 1 :
By = 0} and 7_ :=sup{t < 1: By = 0}. The stochastic process (B;)r_<i<r, is called the
Brownian excursion. The stochastic process defined by

e = (e)ocret = (M)
T VT — T- 0<t<1

is called the standard Brownian excursion

*With the convention that [s,#] := [s,1] U [0,] if s > t.
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5 Applications

It is important to note that 7— < 1 < 74 almost surely since By = 0 and W7 # 0 almost
surely Thus, a Brownian excursion process is basically a Brownian motion conditioned to
be positive on (0,1) and to return to the value 0 at ¢ = 1.

It is a classical result (see [Ald93; GM12]) that the normalized contour function of a uni-
form random plane tree with n edges converges in distribution to the normalized Brownian
excursion.

Analogously to Definition 5.2.11, we can also define random R-trees from random con-
tinuous functions that satisfy the properties of an excursion function. We specify such a
random R-tree for a special kind of random continuous function.

Definition 5.2.17: The Continuum Random Tree (CRT) is the random compact
R-tree (e, de) coded by the normalized Brownian excursion e.

Theorem 5.2.18: The Hausdorff dimension dimy(7Te) of the CRT (Te, de) is almost surely
equal to 2.

In order to perform a similar strategy as in the CVS bijection, we need something like
labels on the CRT. Consider first a (deterministic) R-tree (7,d) rooted at p, and the
real-valued centered Gaussian process Z = (Z,)q,ec7 whose distribution is determined by
Z,=0and E[(Z, — Z)?] = d(a,b) for a,b € T. In a very similar way, we can construct
such a process Z = (Z,)ae7, from the CRT (7e,de). Since we consider a random process
Z indexed by a random set 7Te, we need to be a bit careful. A rigorous construction of the
process Z can be done via the theory of the Brownian snake (we refer to [Gal99] for an
introduction).

We now present a continuous analog of the right side of the distance bound in discrete
graphs (3.4):

For every a,b € Te, we set

D°(a,b) := Z, + Zp — 2max ( min Z., min ZC) )
c€la,b) c€lb,a)
The function D° does not satisfy the triangle inequality and thus, does not serve as a
pseudo-metric on 7. On the other hand, we can define another function® by

k
D(a,b) := inf{z D°(aj-1,a;)}
i=1

for every a,b € Te, where the infimum is taken over all finite sequences ag, a1, ..., ax_1, ax
of Te with ag = a and ap = b. Now, D is a pseudo-metric on 7¢, and we can consider
the corresponding equivalence relation ~ with a ~ b if and only if D(a,b) = 0 for every

a,b € Te.

Definition 5.2.19: The Brownian map is the quotient space my, := 7¢/~ equipped
with the distance induced by D.

3In fact, the function D is the largest symmetric function that has D° as upper bound and satisfies the
triangle inequality.
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5 Applications

If we write II : Te — my for the canonical projection, and keep the notation D for the
induced distance on mq, one can prove the following using Theorem 3.4 in [Le 07].

Proposition 5.2.20: For every a,b € Te, we have almost surely

D(a,b) =0 <= D°a,b) =0 <= Z, = Z, = max ( min Z., min Zc> .
c€la,b] c€[b,a]

Proposition 5.2.20 implies that two vertices a, b of the CRT are equivalent under ~ and
are thus identified in the Brownian map if they have equal labels Z, = Z; and if there
exists a (clockwise or counterclockwise) “tour around the tree” where only vertices with
label greater than or equal to Z, = Z, are encountered. In fact, only certain leaves of the
CRT are identified under =, and the set of these leaves has Hausdorff dimension 1, whereas
the CRT itself can be shown to have Hausdorff dimension 2. Moreover, every equivalence
class of ~ contains at most 3 vertices, and there are only countably many equivalence
classes consisting of exactly 3 points.

The Brownian map exhibits various properties that distinguish it from a smooth surface.

Theorem 5.2.21: The Hausdorff dimension of the Brownian map is almost surely equal
to 4. The Brownian map is almost surely homeomorphic to the sphere S?.

The proof of the first statement can be found in Theorem 6.1 of [Le 07], the proof of the
second statement can be found in Chapter 3 of [GP06].
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