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Kurzfassung

Die Standardisierung von Gesundheitsdaten ist entscheidend, um multizentrische For-
schung zu ermöglichen, die klinische Entscheidungsfindung zu verbessern und die Re-
produzierbarkeit datenbasierter Erkenntnisse sicherzustellen. Gesundheitsinstitutionen
speichern ihre Daten jedoch oft in heterogenen Formaten und institutionsspezifischen
Datenmodellen. Ein Beispiel ist das an der Medizinische Universität Wien (MedUni
Wien) eingesetzte flexible Entity-Attribute-Value (EAV)-Modell, das auf die Bedürfnisse
der Institution zugeschnitten ist. Solche individuellen Modelle erschweren die semantische
Interoperabilität und die Integration klinischer Daten.
Zur Bewältigung dieser Herausforderung stellt diese Arbeit einen generischen Extract,
Transform, Load (ETL)-Prozess vor, der Gesundheitsdaten aus dem EAV-Modell der
MedUni Wien in das Observational Medical Outcomes Partnership (OMOP) Common
Data Model (CDM) überführt. Ziel ist ein wiederverwendbares und erweiterbares ETL-
Framework, das sich an verschiedene Datensätze und Anwendungsfälle anpassen lässt.
Die Entwicklung erfolgte iterativ und feedbackbasiert auf Basis domänenspezifischer An-
forderungen und verband konzeptionelle Modellierung, Implementierung und Evaluation.
Der Prototyp wurde anhand von zwei Evaluationsszenarien mit realen Daten der MedUni
Wien validiert: automatisierte Überwachung von hospital-onset bacteremia and fun-
gemia (HOB) sowie breast cancer benchmarking (BCB). In beiden Fällen gelang die
erfolgreiche Transformation heterogener Quelldaten in das OMOP CDM, womit die
Anpassungsfähigkeit an unterschiedliche klinische Domänen belegt wurde.
Die Evaluation zeigt, dass das System strukturelle Variabilität bewältigen und in ver-
schiedenen Anwendungsfällen eingesetzt werden kann. Während im HOB-Fall effiziente
Laufzeiten erreicht wurden, führten die umfangreicheren BCB-Daten zu längeren Ver-
arbeitungszeiten und verdeutlichten Optimierungspotenzial bei großen Datenmengen.
Beide Szenarien bestätigten die korrekte Transformation und die Erweiterbarkeit des
Frameworks.
Die Ergebnisse belegen, dass eine flexible und strukturierte ETL-Strategie die zuverlässige
Transformation EAV-basierter Gesundheitsdaten in das OMOP CDM ermöglicht und zu
Standardisierung und Interoperabilität in klinischen Datenumgebungen beitragen kann.
Keywords: Gesundheitsdatentransformation, OMOP CDM, Entity-Attribute-Value Mo-
dell, ETL-Prozess, Datenharmonisierung, Semantische Interoperabilität
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Abstract

The standardization of healthcare data is crucial for enabling multicenter research,
enhancing clinical decision-making, and ensuring reproducibility of data-driven insights.
However, healthcare institutions often store their data in heterogeneous formats and
institution-specific models. For example, the flexible Entity-Attribute-Value (EAV) model
used at Medical University of Vienna (MedUni Vienna) is tailored to the institution’s
needs. Such individualized data models limit semantic interoperability and complicate
clinical data integration.
To address this challenge and realize the benefits of standardized data, this thesis presents
a generic Extract, Transform, Load (ETL) process transforming healthcare data from
the EAV model used at the MedUni Vienna into the Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM). The objective is a reusable, extensible,
and high-quality ETL framework adaptable to various datasets and use cases.
The system was designed based on domain-specific requirements and was developed
through an iterative, feedback-driven process that integrates conceptual modeling, tech-
nical implementation, and evaluation.
The prototype was validated through two evaluation scenarios using real-world datasets
from the MedUni Vienna: automated surveillance of hospital-onset bacteremia and
fungemia (HOB) and breast cancer benchmarking (BCB) across European hospitals. In
both scenarios, the system successfully transformed complex and heterogeneous source
data into the OMOP CDM, demonstrating adaptability to different clinical domains.
The evaluation highlights the system’s ability to manage structural variability and apply
semantic mappings across use cases. The HOB scenario demonstrated efficient runtimes.
In contrast, the BCB scenario involved large-scale data, resulting in longer runtimes and
highlighting the need for performance optimization in high-volume settings. Nevertheless,
both evaluation scenarios confirmed the correctness of the transformation, and the reuse
of shared components validated the framework’s reusability and adaptability.
These results demonstrate that a flexible yet structured ETL strategy can enable the
reliable transformation of EAV-based healthcare data into the OMOP CDM, contributing
to broader standardization and interoperability in clinical data environments.
Keywords: Healthcare Data Transformation, OMOP CDM, Entity-Attribute-Value
Model, ETL Process, Data Harmonization, Semantic Interoperability

xiii





Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fundamentals 7
2.1 Entity-Attribute-Value Data Model . . . . . . . . . . . . . . . . . . . . 8
2.2 Research Documentation & Analysis Platform of the Medical University

of Vienna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Semantic Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 OMOP Common Data Model . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 ETL Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Related Work 23
3.1 ETL Process into the OMOP CDM . . . . . . . . . . . . . . . . . . . . 23
3.2 ETL Process from the EAV Data Model . . . . . . . . . . . . . . . . . 29
3.3 Conceptual Modeling of an ETL Process . . . . . . . . . . . . . . . . . 30
3.4 Quality Characteristics for ETL processes . . . . . . . . . . . . . . . . 33
3.5 ETL Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Methodology 39
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Analysis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Design Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Implementation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xv



4.5 Evaluation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Design and Implementation 45
5.1 Requirement Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Implementation Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Prototypical Implementation . . . . . . . . . . . . . . . . . . . . . . . 72

6 Evaluation 83
6.1 Evaluation Scenario 1: Automated Surveillance of Hospital-onset Bac-

teremia and Fungemia . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Evaluation Scenario 2: Breast Cancer Benchmarking . . . . . . . . . . 91
6.3 Challenges of the Evaluation Scenarios . . . . . . . . . . . . . . . . . . 98
6.4 Evaluation of the Requirements . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Discussion 107
7.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusion and Future Work 117

List of Figures 121

List of Tables 123

Acronyms 125

Bibliography 129

Online References 139

A Mock-Ups of Forms 141



CHAPTER 1
Introduction

This thesis focuses on the development of a generic Extract, Transform, Load (ETL)
codebase for transforming healthcare data from the Entity-Attribute-Value (EAV) model
used at the Medical University of Vienna (MedUni Vienna) into the Observational
Medical Outcomes Partnership (OMOP) Common Data Model (CDM). It specifically
tackles the challenge of converting EAV-modeled data to the OMOP CDM, a critical
process for enabling comparable multicenter studies [1].

For instance, in a multicenter study investigating breast cancer treatment outcomes,
participating hospitals may store patient records in institution-specific formats using
structurally diverse systems. One site might use an EAV-modeled database for flexibility,
while another may rely on a traditional horizontal schema. To enable joint analysis
of treatment effectiveness or survival metrics across institutions, these heterogeneous
datasets must first be harmonized into a common data model such as the OMOP
CDM. This transformation ensures consistent representation, facilitating scalable and
reproducible analyses across diverse populations and care settings [1].

The research falls within the health informatics domain, particularly addressing the
harmonization of heterogeneous data structures in the healthcare sector to achieve
semantic interoperability.

This introduction provides a brief overview of the topic of this thesis. It describes the
research problem, outlines the motivation and objectives of the study, and provides a
short overview of the methodology. Finally, a short overview of the thesis’s structure and
a breakdown of its chapters will be provided.

1.1 Problem Statement
In healthcare research, the utilization of CDMs, such as the OMOP CDM, aims to
standardize data across diverse datasets. This standardization is essential for data
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1. Introduction

harmonization and semantic interoperability, which can significantly improve healthcare
research and decision-making by enabling more efficient and accurate analysis and
supporting multicenter studies [1]. Semantic interoperability refers to the ability of
disparate systems to exchange data in a way that preserves the meaning of the information
and ensures the data is understood consistently across different platforms, organizations,
and contexts [2]. Especially in multicenter studies, where data is collected from different
institutions, it is essential to standardize healthcare information both structurally and
semantically to enable meaningful comparisons and federated analytics [3]. However,
healthcare institutions often store data in heterogeneous formats and institution-specific
models, which limits semantic interoperability and complicates integration [4].

The data model used in many electronic health record (EHR) systems is the EAV
model [5], as it is flexible in adapting to structural differences in incoming data and it
allows easy schema updates. It also enables compact storage of sparse data [6]. While
this flexibility is beneficial for local requirements, it results in highly heterogeneous
implementations [4]. To achieve semantic interoperability and facilitate standardized
research, the EAV-modeled data must be transformed into a CDM, like the OMOP CDM.

The OMOP CDM, developed by the Observational Health Data Sciences and Informatics
(OHDSI) community, is one of the most widely adopted CDMs on a global scale [7]. It
provides a structured framework for integrating data from various sources, optimized
explicitly for observational research and large-scale data analytics. By standardizing the
data on a structural and semantic level, the OMOP CDM enables semantic interoperability
and supports multicenter studies, allowing researchers to perform comparative analyses
across patient populations and institutions [1], [8].

Complementing the model, OHDSI provides open-source tools that facilitate diverse
data-analytic applications on observational patient-level data. These tools standardize
analytical processes across various applications. Researchers can use predefined templates
to conduct analyses without building them each time from scratch, thereby improving
reproducibility, transparency, and efficiency [9]. By using the OMOP CDM, researchers
can overcome the inherent challenges posed by the heterogeneous nature of healthcare
data, thereby enabling more robust and reproducible research outcomes [1].

Transforming data from an EAV model to the OMOP CDM can present unique challenges.
For instance, transforming data from an EAV model to a horizontal model, such as the
OMOP CDM, often involves pivoting the data, which can be a complex operation [10].
Additionally, existing ETL processes are often tailored to data structures or requirements
that differ from the EAV model [11], [12], [13]. They are adapted to specific needs, which
limits their adaptability to new data structures, such as the EAV model. Therefore, the
primary objective of this thesis is to develop a generic ETL code base that transforms
healthcare data from the EAV model used at the MedUni Vienna into the OMOP CDM
and can be reused across different use cases with minimal adaptations.

2



1.2. Motivation

1.2 Motivation
Effective and consistent transformation of healthcare data into a unified data model, such
as the OMOP CDM, is crucial for advancing research, enhancing clinical practice, and
supporting evidence-based decision-making. As the volume and complexity of healthcare
data continue to grow, the need for reliable methods to integrate data from multiple
sources becomes increasingly urgent [1].

In practice, data is often stored in institution-specific formats, such as the flexible EAV
model, which is commonly customized to meet local needs [6]. This variability complicates
large-scale, multicenter studies, which require comparable and semantically consistent
data [1].

CDMs, such as the OMOP CDM, address these challenges by offering a standardized
framework for harmonizing disparate data sources [1]. Existing ETL processes are
frequently tailored to specific schemas, limiting reusability and efficiency when applied to
EAV-modeled data [10], [14]. This lack of generalizability leads to redundant development
efforts and reduces the efficiency of data integration pipelines.

This thesis addresses these limitations by developing a generic ETL framework that
supports reusable and adaptable data transformations from the EAV model of the
research database at the MedUni Vienna to the OMOP CDM. By providing a flexible
and modular solution, the framework streamlines the integration process, reduces the
technical burden of preparing data for analysis, and minimizes redundant development
efforts. This approach ensures that data can be efficiently transformed for standardized,
reproducible analyses across multiple use cases and research projects. It enables efficient
transformation of heterogeneous data and supports scalable, reproducible research.

The work is grounded in principles of data harmonization, semantic interoperability,
and ETL process design. A thorough understanding of the OMOP CDM’s structure
and requirements ensures that transformed data remain analytically valid, semantically
aligned, and technically interoperable, enabling meaningful comparisons across institutions
and datasets.

By addressing these challenges, this thesis contributes to the broader goal of advancing
healthcare data integration. It supports collaborative, multicenter research by enabling
consistent data processing and harmonization, facilitating robust data-driven insights,
and improving the overall quality, accessibility, and reproducibility of healthcare analytics.
Ultimately, the framework aims to empower researchers and healthcare institutions to
leverage complex, heterogeneous data more effectively, accelerating the translation of
data into actionable knowledge for patient care and clinical decision-making.

1.3 Expected Results
This thesis aims to develop a generic ETL code base for transforming healthcare data
from the EAV model of the MedUni Vienna into the OMOP CDM. The thesis will cover

3



1. Introduction

the requirements, design, implementation, and evaluation of the developed prototype.

This research addresses a critical need in health informatics for standardized, efficient,
and scalable data integration processes, essential for enabling comprehensive and com-
parable analyses across diverse healthcare datasets. By supporting the transformation
of heterogeneous data structures into a standardized format, this thesis contributes to
the broader goal of achieving semantic interoperability in healthcare data. Specifically,
it tackles the current gap in reusable ETL implementations for transforming MedUni
Vienna’s EAV-modeled data into the OMOP CDM, a barrier to effective data integration
and analysis.

The following research questions guide the work, each targeting a specific aspect of the
analysis, development, and evaluation of the developed prototype:

RQ1 ETL requirements: What are the specific requirements for the ETL process
to ensure the successful transformation of healthcare data from the EAV
model into the OMOP CDM?
This research question is addressed through a literature review. The goal is to
identify functional and non-functional requirements that inform the design of a
generic, reusable ETL system.

RQ2 ETL process design: How can an effective and generic transformation of
healthcare data from the EAV model into the OMOP CDM be achieved?
This question focuses on developing a conceptual architecture for the ETL process
and implementing it as a prototype using evolutionary prototyping.

RQ3 Use of the generic ETL code base system: To what extent can the developed
ETL process for the transformation of healthcare data from the EAV
model into the OMOP CDM be extended or adapted to specific use
cases?
This question is explored through two evaluation scenarios involving real-world EAV-
modeled datasets. The adaptability of the prototype to different contexts and data
characteristics is evaluated, demonstrating its potential for broader applicability.

RQ4 Evaluation of the ETL process: How does the developed generic ETL code
base perform regarding data quality and adaptability?
This research question is investigated by evaluating the implemented prototype
and its adaptation to the evaluation scenarios against the defined functional and
non-functional requirements.

To answer these research questions, the methodology of this thesis is structured in four
phases: Analysis, Design, Implementation, and Evaluation. In the Analysis Phase, a
literature review is conducted to identify key requirements and quality characteristics for
the ETL process. These insights inform the Design Phase, where a conceptual model

4



1.4. Structure

for the ETL pipeline is developed and continuously refined. The Implementation Phase
overlaps with the Design Phase, as the ETL prototype is literally developed through
iterative refinement cycles using evolutionary prototyping. Finally, in the Evaluation
Phase, two evaluation scenarios are performed to examine the prototype’s adaptability
to different use cases. Additionally, the prototype and its adaptation to the evaluation
scenarios are assessed in terms of its functionality, performance, and compliance with
the defined requirements. A more detailed description of the methodology is provided in
Chapter 4.

1.4 Structure
Chapter 2 lays the groundwork by introducing the key concepts and models essential
to this research. It covers the EAV data model and the Research Documentation &
Analysis platform (RDA platform) of the MedUni Vienna. The chapter emphasizes
the importance of semantic interoperability and introduces the OMOP CDM and ETL
processes. It describes JSON Schema as a tool for ensuring data consistency across
systems, establishing a solid technical foundation for the approach used in this thesis.

Chapter 3 reviews relevant literature and prior research on designing and implementing
an ETL process from the EAV data model to the OMOP CDM. This chapter focuses
particularly on existing ETL processes for the OMOP CDM or from the EAV model.
It also examines conceptual modeling of ETL processes, quality characteristics of ETL
processes, ETL tools, and gaps in current approaches, thereby positioning this research
within the broader field of health informatics.

Chapter 4 details the methodology used in this thesis, which is divided into four phases:
Analysis, Design, Implementation, and Evaluation. Each phase is described in detail,
explaining the approach for developing the ETL code base system and how each step
contributes to the overall goal of data transformation and integration.

In Chapter 5, the research outcomes are presented. The results include the require-
ments for the ETL process, a detailed implementation concept, and the prototypical
implementation of the ETL process.

Chapter 6 presents two evaluation scenarios that apply the developed prototype to
real-world healthcare data: one focused on automated surveillance of hospital-onset bac-
teremia and fungemia (HOB) and the other on breast cancer benchmarking (BCB). These
evaluation scenarios highlight the practical application of the ETL system, providing
insights into its adaptability, the transformation results, and the challenges encoun-
tered when applying the generic ETL process to specific use cases. This chapter also
evaluates the extent to which the implemented prototype fulfills the defined functional
and non-functional requirements. Each requirement is assessed individually, with clear
justifications based on implementation details and observed system behavior.

In Chapter 7, the findings are reflected upon, answering the research questions and
discussing the limitations of the ETL system, the challenges faced during its development

5



1. Introduction

and implementation, and the broader implications for the field of health informatics.

Finally, Chapter 8 summarizes the key findings and contributions of the thesis, emphasiz-
ing the impact on healthcare data integration. The chapter proposes directions for future
research and development, identifying areas for further investigation and refinement, and
offering suggestions for improving the system and methodology.

6



CHAPTER 2
Fundamentals

This chapter outlines the foundational concepts essential for the development of a generic
ETL code base system aimed at transforming healthcare data from the EAV model to
the OMOP CDM.

The chapter begins by examining the EAV data model. This model is a widely used data
structure in healthcare databases due to its flexibility in managing complex, variable, and
heterogeneous data structures. The EAV model effectively manages data with irregular
or evolving attributes [6]. However, its flexibility comes with significant challenges
regarding data integration and exchange. These challenges necessitate the use of advanced
transformation techniques [10].

Next, the RDA platform of the MedUni Vienna is discussed. The RDA platform is
a central repository for clinical and research data, including routine data, laboratory
reports, and surgical protocols [15]. This data is stored using the EAV data model and
forms the core data sources that will be transformed into the OMOP CDM. The RDA
platform ensures that research datasets are accessible, consistent, and ready for analysis,
providing a structured environment for managing healthcare data [16].

A critical challenge in this transformation process is achieving semantic interoperability,
ensuring that data from different systems can be exchanged and correctly interpreted.
Semantic interoperability enables healthcare systems to share data while preserving its
meaning, supporting reliable and consistent analyses across various platforms [17].

The chapter then introduces the OMOP CDM, a standardized data model that facilitates
the systematic analysis of diverse healthcare datasets. By offering a consistent and struc-
tured approach, the OMOP CDM enables semantic interoperability, supports multicenter
studies, and ensures the reliability and reproducibility of research findings [1].

After that, ETL processes, which are fundamental to data integration and transformation,
are explained. They involve extracting data from multiple sources, transforming it into a

7



2. Fundamentals

consistent format, and loading it into a target database or data warehouse [18]. An ETL
process is a crucial step in ensuring that data is accurately transformed into the OMOP
CDM format [1], [19].

Finally, JSON Schema is introduced as a standardized format for specifying the structure,
content, and constraints of JSON data, enabling validation and consistent data exchange
between systems [20].

Overall, this chapter aims to establish a thorough understanding of these foundational
concepts, providing the necessary context for the subsequent development and implemen-
tation of the ETL system discussed in the subsequent chapters of this thesis.

2.1 Entity-Attribute-Value Data Model
The EAV data model is a generic data model used in many EHR systems [5] due to its
flexibility in adapting to structural differences in incoming data, easy schema updates,
and compact storage of sparse data. These characteristics make it particularly well-suited
for managing the complex and dynamic nature of healthcare data [6].

The EAV data model organizes data into three primary tables: entities, attributes, and
values. The entities table lists the subjects of the data, such as patients. The attributes
table lists the different properties that can be recorded about each entity, such as physical
examinations or lab results. The values table contains the actual data points, linking
each value to a specific entity and attribute [6].

Healthcare data is often sparse because not every patient undergoes all possible tests,
diagnoses, or treatments. For instance, one patient may have numerous lab results and
diagnoses, while another might have only a few recorded visits with minimal information.
In a conventional, horizontal data model, where each attribute has its own column, this
variability would result in many empty fields, leading to inefficient storage and a wide
database schema [21]. The EAV model addresses this issue by storing data in a narrow,
flexible format. Instead of having a wide table with many columns, most of which might
be empty, the values table in the EAV model only stores existing information. The values
table represents each data point as a separate row, with references to the relevant entries
in the entities and attributes tables. This approach allows for more compact and efficient
storage of sparse data [6].

One of the most significant advantages of the EAV model is its ability to accommodate
easy schema updates. In traditional horizontal tables, adding a new property, such as a
new lab test or clinical measurement, typically requires altering the existing schema to
include new columns. This process can be time-consuming and complex, especially in
large systems. In contrast, the EAV model simplifies this process. It is only necessary to
insert a new row into the attributes table to add new data variables. The values table can
then immediately start storing this new data without requiring changes to the existing
schema. This flexibility makes the EAV model ideal for healthcare settings, where new
tests, treatments, and other properties are frequently introduced [6].
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Figure 2.1: This figure is a simplification of possible sample EAV data. The top table
shows a sample horizontal table, and the tables below depict the same data in the EAV
data model.

In a conventional data model, patient data might be stored in a wide table with many
columns representing different attributes. In contrast, the EAV model would store this
data in a much narrower and more flexible format. The values table includes rows for each
patient-attribute pair, with references to the relevant entries in the entities and attributes
tables [6]. Figure 2.1 illustrates how data is represented in both a horizontal and the
EAV data model, highlighting the compactness and flexibility of the EAV approach.
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2.2 Research Documentation & Analysis Platform of the
Medical University of Vienna

The RDA platform is a central component of the scientific infrastructure at the MedUni
Vienna. It provides clinically and scientifically relevant data in a central database,
which is continuously and automatically updated with routine data from the hospital
information system (HIS) of the University Hospital Vienna (German: Allgemeines
Krankenhaus der Stadt Wien) (AKH), known as AKH Informationsmanagement (AKIM).
These data include laboratory results, surgical protocols, clinical reports, and other forms
of clinical documentation. In addition, clinicians can enrich the platform with study-
specific documentation or registry data, thereby combining routine clinical information
with tailored research content and enhancing the scope of available analyses [15].

The RDA platform stores data in an Oracle relational database using an EAV data model.
In this model, patients represent the entities about which information is recorded. The
attributes define medical variables, which can be grouped and configured as fields on
electronic forms. Data entry occurs by completing such forms, which are then stored as
documents. Each document is linked to its underlying form and contains typed values
(e.g., numeric, textual, or temporal), each referencing the corresponding variable. Both
documents and their values are associated with the corresponding patient record. To
promote consistency and standardization, form fields may be constrained to predefined
value sets. Units can further be assigned to numerical values [15], [16].

This architecture allows the RDA to expand dynamically as new forms and variables are
introduced, without requiring modifications to the underlying database schema. Because
all information is stored in a uniform EAV representation, queries can be formulated in a
generic, form-independent manner, spanning across projects and studies [15], [16].

2.3 Semantic Interoperability
Semantic interoperability is crucial for data integration in healthcare systems, particularly
when working with heterogeneous data sources and diverse terminological frameworks [17].
It refers to the ability of disparate systems to exchange data in a way that ensures that
the precise meaning of the information is preserved and consistently understood across
diverse platforms, institutions, and contexts [22]. Achieving semantic interoperability
enables organizations to share data without losing meaning, regardless of the system that
generates the data. It allows the receiving system to automatically process the data, as its
semantics are interpretable within that system. This is especially important in healthcare,
where diverse records and clinical annotations must be consistently interpreted across
different institutions to support patient care, decision-making, and research [17].

As defined in ISO/TR 20514, achieving semantic interoperability requires the use of
a standardized set of domain-specific concept models and standardized terminologies.
These components form the foundation for enabling systems not only to exchange
data in a syntactically correct format but also to ensure that the meaning of the data
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remains consistent and interpretable across different systems and healthcare environments.
According to the standard, semantic interoperability ensures that exchanged data is
interpretable and retains its intended meaning, regardless of the platform or organization
receiving the data [2].

Establishing domain-specific concept models provides a shared understanding of the
structure and semantics of the data within a given domain. By outlining the formal
structure of the data and the rules governing its representation, these models ensure
that the data is consistently encoded, facilitating accurate interpretation across different
systems. Conceptual models form the foundation upon which healthcare data is structured,
enabling interoperability even in diverse system implementations and local adaptations [2].

Equally important is the use of standardized terminologies. Well-established examples
include Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), Inter-
national Classification of Diseases, 10th Revision (ICD-10), and Logical Observation
Identifiers Names and Codes (LOINC). However, organizations can also define individual
standardized terminologies to suit their specific use cases.

SNOMED CT is one of the most comprehensive and expressive clinical terminologies. It
is multidimensional and structured hierarchically, allowing the representation of complex
relationships between clinical concepts, such as symptoms, findings, procedures, and
diseases [23].

ICD-10, developed by the World Health Organization (WHO), is a globally used classifica-
tion system designed primarily for coding diagnoses in administrative and epidemiological
contexts. It is particularly important for mortality statistics and public health reporting.
Unlike SNOMED CT, ICD-10 is a code-value mapping that provides less semantic detail
but is well-suited for statistical aggregation [24].

LOINC is a global standard for identifying laboratory and clinical observations. It is
widely used in laboratory diagnostics to ensure consistent coding and interpretation of
test results across institutions and systems [25].

These terminologies provide a unified naming system for the concepts represented in
healthcare data, ensuring consistency across different systems. Standardized terminologies
are essential for accurately interpreting the semantics of data. They eliminate ambiguity
and enable information systems to assign precise meaning to data by linking it to well-
defined, context-specific concepts. Without such standardized nomenclature, the risk
of misinterpretation and loss of meaning increases, which can lead to errors in clinical
decision-making, data analysis, and research [2].

2.4 OMOP Common Data Model
In contemporary healthcare, vast amounts of data are generated daily from various sources,
including EHRs, claims data, clinical trials, laboratory results, and patient registries [26].
However, this data is often fragmented, heterogeneous, and stored in different formats,
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creating significant challenges for researchers and clinicians in integrating and analyzing
data across systems. The lack of standardization in medical data and terminology
inconsistencies severely limit the potential for large-scale, comparative effectiveness
research and public health monitoring [1].

Data heterogeneity is one of the primary barriers to adequate healthcare research.
Healthcare information is distributed across various institutions, utilizing proprietary
systems and differing coding standards. For example, diagnoses might be recorded using
ICD-10 in one institution and SNOMED CT in another. This inconsistency complicates
the aggregation of data from multiple sources, which is essential for multicenter studies
and population health analysis [1].

In healthcare research, a CDM aims to standardize data across diverse datasets, optimizing
the efficiency and accuracy of data analysis and interpretation. Hence, they are essential
tools for data harmonization and semantic interoperability, which can significantly improve
the quality and reproducibility of healthcare research [1]. Healthcare information needs
to be standardized and harmonized on a structural and semantic level, especially when
performing multicenter studies, to enable distributed network research and federated
analytics. A CDM implements these requirements, enabling semantic interoperability [7].
Section 2.3 explains the requirements for semantic interoperability.

The OMOP CDM, developed by the OHDSI community, is one of the most widely
used CDMs globally [7]. It is a patient-centric data model that provides a standardized
framework for organizing and harmonizing heterogeneous healthcare data from diverse
sources, supporting large-scale observational and multicenter research. By converting
data into a consistent structure and utilizing standardized vocabularies, the OMOP CDM
promotes semantic interoperability and comparability, enabling reproducible analyses
and the generation of meaningful insights from real-world data [1].

A critical component of the OMOP CDM’s functionality are the OHDSI standardized
vocabularies. These vocabularies provide a unified reference ontology incorporating
imported and newly created ontologies, including concepts and their relationships. By
mapping various coding standards (e.g., ICD-10 for diagnoses, LOINC for laboratory mea-
surements) to standard concepts within the OHDSI standardized vocabularies, healthcare
data converted into the OMOP CDM maintains consistency across diverse datasets. This
standardization enables researchers to perform scalable, uniform analyses across regions
and healthcare settings [8].

The OMOP CDM is structured into standardized tables, each with predefined fields
and relationships. These tables encompass various aspects of healthcare data, including
patient demographics, clinical events, drug exposures, procedures, measurements, and
healthcare provider information [1]. The current version of the OMOP CDM is CDM
v5.4 [27]. A schematic representation of the OMOP CDM v5.4 is shown in Figure 2.2.
Key tables in the OMOP CDM include [1], [27]:

• Person: Contains demographic information about each patient.
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• Observation Period: Defines the periods during which data is collected for each
patient.

• Death: Captures when and how a person died based on available clinical or
administrative data.

• Care site: Lists institutional (physical or organizational) units where healthcare
services are provided (e.g., offices, wards, hospitals, clinics, etc.).

• Visit Occurrence: Records details of healthcare encounters.

• Visit detail: Represents detailed parts of a visit, such as ward movements or claim
lines, linked to a visit occurrence.

• Condition Occurrence: Captures diagnoses and medical conditions.

• Drug Exposure: Logs medications prescribed and administered to patients.

• Procedure Occurrence: Documents medical procedures performed.

• Measurement: Includes lab results and other clinical measurements.

• Observation: Contains clinical observations not covered by other tables.

• Specimen: Stores records of biological samples collected from persons.

• Fact relationship: Defines relationships between records across or within CDM
tables (e.g., procedure–device, drug–condition)

Figure 2.3 shows how data is structured within the OMOP CDM by illustrating sample
entries in three core tables: Person, Measurement, and Concept. This layout demonstrates
how patient information, clinical measurements, and standardized concepts are structured
and interrelated within the OMOP CDM.

The Person table forms the foundational layer, containing demographic information for
each patient, such as Person ID, Gender, and Birth Date. The Person ID serves as the
primary key for the Person table and as a foreign key in other related tables, allowing all
records to link to an individual patient [27].

The Measurement table captures clinical and laboratory data related to each patient. Each
record in this table includes a unique Measurement ID as the primary key. The Person
ID functions as a foreign key, linking each measurement to the corresponding patient
in the Person table. Additional fields in the Measurement table, such as Measurement
Date, Value, and Unit, describe the specific measurement, providing context for clinical
values like blood pressure, lab results, and other vital data points [27].

The Concept table standardizes terminology across datasets, ensuring the consistent use
of clinical terms within the OMOP CDM. Each concept, represented by a Concept ID as
the primary key, includes fields such as Concept Name and Domain to describe the term,
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Figure 2.2: This figure is a schematic representation of the OMOP CDM v5.4 [27].

as well as the Vocabulary ID, which identifies the original coding system (e.g., SNOMED
CT, LOINC) from which the concept originates. The Concept ID is used as a foreign key
within the Measurement table, mapping each measurement to a specific clinical concept
in the Concept table [27].

This structure facilitates interoperability and data consistency. Integrating the Concept
table ensures that diverse data sources are harmonized under a unified vocabulary,
allowing researchers to analyze clinical measurements reliably across different datasets [1],
[27].

The OMOP CDM’s ability to standardize heterogeneous healthcare data is one of its
primary advantages. Researchers can perform comparative effectiveness studies, identify
trends, and generate real-world evidence globally by converting disparate data sources
into a common format. This standardization also enhances the statistical power and
generalizability of research findings by facilitating data pooling across institutions [1].

Furthermore, the OMOP CDM supports various analytical tools and methods developed
by the OHDSI community. These open-source tools include software for data visualization,
cohort definition, and statistical analysis, all designed to work seamlessly with the OMOP
CDM. Researchers can implement analyses by populating predefined templates, reducing
the need to develop analyses from scratch each time [1], [9]. A central example is Atlas, a
web-based application that enables researchers to define cohorts, perform characterization
studies, and run comparative effectiveness or safety analyses through an intuitive graphical
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interface. By providing a standardized environment for study design and execution, Atlas
reduces the need for custom programming and ensures that analyses are transparent,
reproducible, and easily shareable across research teams [9], [19].

The OMOP CDM has been employed in various fields of healthcare research to address
complex questions through standardized and interoperable data. In the following, the
main concepts and use cases associated with the OMOP CDM will be explained. These
examples illustrate how the OMOP CDM supports large-scale observational studies across
diverse healthcare settings:

Multicenter Surveillance

Multicenter surveillance refers to continuously monitoring healthcare trends across multi-
ple healthcare institutions or geographic regions, including disease outbreaks, treatment
patterns, and adverse events. The OMOP CDM facilitates multicenter surveillance by
standardizing data from diverse healthcare systems, enabling researchers to aggregate
and analyze data across different settings. As a result, public health trends can be
monitored more comprehensively, emerging health threats identified more rapidly, and
coordinated responses implemented across multiple locations. Additionally, the OMOP
CDM enables cross-national comparisons of treatment regimens and health outcomes by
harmonizing data from different registries and healthcare databases. For example, by
analyzing standardized data from multiple regions, researchers can identify variations in
disease management strategies and disparities in clinical outcomes across populations.
Such insights help inform healthcare policies, optimize resource allocation, and improve
patient care through data-driven decision-making [28], [29], [30].

Benchmarking

Benchmarking is the process of comparing healthcare performance across institutions or
regions to identify best practices and areas for improvement. The OMOP CDM supports
benchmarking by standardizing data from multiple healthcare providers, enabling cross-
institutional comparisons on key metrics such as treatment effectiveness, patient outcomes,
and healthcare costs. By aggregating data uniformly, researchers and policymakers can
assess how different institutions perform in various areas and identify practices that lead
to better patient care. A study utilizing the OMOP CDM demonstrated its applicability
in benchmarking by analyzing pediatric prescription patterns across multiple countries.
By harmonizing data from diverse healthcare systems, the study directly compared drug
utilization trends, highlighting variations in prescribing practices and identifying potential
areas for standardization and optimization. This supports quality improvement initiatives,
provides insight into areas of healthcare inefficiency, and promotes the adoption of best
practices across institutions [31].
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Comparative Effectiveness Research

Comparative Effectiveness Research (CER) involves evaluating the relative effectiveness
of different medical treatments or interventions in real-world settings. One of the primary
challenges in CER is data fragmentation across various clinical information systems,
including EHRs, insurance claims, and patient registries. This fragmentation often leads
to inconsistencies in data formats, terminologies, and practices, making it difficult to
conduct meaningful comparisons across diverse datasets. Data fragmentation significantly
hinders the ability to compare treatments effectively, and harmonizing data across
multiple institutions is essential for improving the quality of CER studies. The OMOP
CDM addresses these challenges by integrating data from diverse healthcare systems
into a unified format with standardized vocabularies enabling large-scale CER studies
that are both reliable and reproducible. For example, researchers can compare the long-
term effectiveness of different antihypertensive drugs by analyzing standardized data on
medication exposure, clinical outcomes, and patient characteristics. Using standardized
vocabularies (e.g., ICD-10 for diagnoses and RxNorm for drug names) ensures that the
results are consistent and meaningful across datasets and sites, allowing for accurate and
generalizable findings [32].

Pharmacovigilance and Drug Safety

Pharmacovigilance focuses on monitoring the safety of medications and detecting potential
adverse drug reactions (ADRs) in the post-marketing phase. The OMOP CDM supports
pharmacovigilance by integrating data from disparate real-world healthcare sources, such
as hospital records, outpatient visits, and insurance claims. Researchers can use the Drug
Exposure table to track medication use and the Condition Occurrence table to identify
adverse events like gastrointestinal bleeding or liver toxicity. By linking exposure data
with health outcomes, the OMOP CDM allows the identification of safety signals and
the evaluation of risk factors associated with medications. This capability is essential for
ensuring the ongoing safety of pharmaceuticals once they are on the market [33].

Disease Burden Estimation and Population Health Studies

The OMOP CDM can play a pivotal role in estimating disease burden across popu-
lations and understanding the prevalence and incidence of various health conditions.
By standardizing data from diverse healthcare systems, the OMOP CDM enables the
aggregation of health information, which can then be used to calculate disease prevalence,
identify at-risk populations, and assess the broader impact of diseases on public health.
For example, one approach for estimating disease burden is integrating geographic data
with the OMOP CDM, allowing for spatial analysis of disease distribution. Geographic
Information Systems (GIS) can be combined with OMOP CDM data to visually map
disease prevalence and incidence at the regional or even sub-regional level. Researchers
can identify patterns and disparities in disease burden across different populations and
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areas by incorporating spatial dimensions, such as geographic location, healthcare access,
and environmental factors [34].

Real-World Effectiveness of Medications and Vaccines
Evaluating the effectiveness of medications and vaccines in real-world settings is a crucial
area of research, particularly for monitoring public health interventions and informing
clinical decision-making. The OMOP CDM facilitates such analyses by standardizing data
on patient exposures, whether to vaccines or medications, and subsequent health outcomes.
For instance, the OMOP CDM enables large-scale studies on the effects of medications,
such as examining whether certain drug classes influence disease susceptibility or severity.
A recent international study utilized standardized data to assess the impact of commonly
prescribed medications on COVID-19 outcomes, illustrating how harmonized real-world
data can generate robust evidence on treatment effects across diverse populations. By
enabling these comprehensive investigations, the OMOP CDM can play a crucial role in
supporting public health policies, optimizing treatment strategies, and improving patient
outcomes [35].

Health Outcomes Research in Chronic Diseases
Health outcomes research aims to evaluate the long-term impact of healthcare interven-
tions on the health of patients with chronic diseases. The OMOP CDM supports this
type of research by providing a standardized framework for tracking patient outcomes
over time. For example, the OMOP CDM can be used to examine treatment patterns and
health outcomes in patients with multiple chronic conditions, such as cancer and comorbid
diseases. The Condition Occurrence and Drug Exposure tables enable researchers to
track disease progression and treatment history, while the Measurement table captures
clinical outcomes, including laboratory results and symptom assessments. The OMOP
CDM’s ability to harmonize data from multiple sources facilitates the identification of
effective interventions and the improvement of clinical guidelines for chronic disease
management [36].

Predictive Modeling for Patient Outcomes
Predictive modeling uses historical data to forecast future patient outcomes, such as
the likelihood of disease progression, hospital readmission, or length of stay (LOS). The
OMOP CDM enables predictive modeling by providing a structured, standardized dataset
with a wealth of clinical, demographic, and treatment-related information. For instance,
predictive models can be developed to forecast hospital LOS or the likelihood of hospital
readmission. By linking data across various tables in the OMOP CDM, such as the
Condition Occurrence (hospitalization), Drug Exposure (medication use), and Person
(demographics) tables, models can be trained to identify patients at high risk of adverse
outcomes. These predictive models provide clinicians with valuable insights to improve
resource management and reduce unnecessary healthcare costs by identifying patients
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who are likely to require extended hospital stays or experience complications that may
lead to readmission. In this context, the OMOP CDM facilitates the development of
tools for personalized care and targeted interventions, thereby enhancing clinical decision-
making and improving patient outcomes. Such predictive analytics, made possible by
standardized data integration within the OMOP CDM, can also support the development
of more accurate and dynamic healthcare policies that better allocate resources across
patient populations [37].

Healthcare Utilization and Cost Analysis
Understanding healthcare utilization and associated costs is crucial for effective resource
allocation and policy development. The OMOP CDM provides a platform for analyzing
healthcare costs by integrating data on medical treatments, hospitalizations, and outpa-
tient visits. For instance, researchers may assess the pharmacological costs of diabetes
treatment. In such analyses, researchers examine both direct costs, such as medica-
tion usage and hospital admissions, and indirect costs, such as additional healthcare
services, long-term management needs, or downstream complications. By utilizing the
Visit Occurrence and Drug Exposure tables, the OMOP CDM enables a comprehensive
analysis of the economic burden of diseases, shedding light on the contribution of different
treatments to healthcare costs. Moreover, by standardizing data from various healthcare
systems, the OMOP CDM enables researchers to analyze the cost-effectiveness of dif-
ferent pharmacological therapies across various patient demographics. This approach
enables policymakers and healthcare planners to understand better the full financial
impact of new treatments, including not only the direct costs of care but also the poten-
tial costs arising from side effects and subsequent hospital admissions. It also enables
comparisons of the costs associated with different therapeutic approaches, providing
insights into the financial sustainability of disease management strategies. Evaluating
the economic implications of diseases and treatments, particularly for conditions such
as diabetes, significantly contributes to informed healthcare decision-making. It allows
stakeholders to make evidence-based decisions on resource allocation, aiming for more
cost-effective interventions that improve patient outcomes while reducing unnecessary
financial burdens [38].

Longitudinal Cohort Studies
Longitudinal cohort studies track patient outcomes over time to examine the long-term
effects of diseases or treatments on individuals. The OMOP CDM is well-suited for such
studies because it integrates data from different time points and healthcare settings.
For example, researchers can use the OMOP CDM to perform in-depth phenotyping
of patients hospitalized with severe conditions, such as COVID-19, and track their
clinical outcomes over time. The OMOP CDM enables the monitoring of patients across
extended periods, linking treatment exposures with disease progression and long-term
health outcomes. This ability to aggregate longitudinal data across diverse healthcare
systems enhances the quality and generalizability of cohort studies, allowing for the
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identification of key clinical factors that influence patient outcomes and the effectiveness
of medical interventions [39].

2.5 ETL Process
An ETL process is a data integration process that combines, cleans, and organizes data
from multiple sources into a single, consistent data set for storage in a data warehouse,
data lake, or other target system. These data integration approaches involve three phases
or tasks: Extract, Transform, Load [18].

During the extraction phase, data is extracted from one or more sources. Each separate
system may use a different data organization and format. The extraction phase is
followed by the transformation phase, in which transformation rules and techniques are
defined and applied to transform the extracted data. This phase involves many subtasks.
Typical transformations include applying business rules, cleaning, filtering, splitting,
joining, encoding or decoding, deriving new calculated values, aggregating, transposing,
or pivoting. In the last phase, the transformed data is transferred or loaded into the target
system, which can be any data store, including a simple file or a data warehouse [18].

2.6 JSON Schema
JSON Schema [20] is a standard format that allows the definition and validation of
the structure, content, and constraints of JSON data. JSON is widely used for data
interchange across web applications and application programming interfaces (APIs) due
to its lightweight, human-readable format. However, as the complexity of JSON data
has grown, the need to standardize and validate its structure across different systems
has become increasingly important, particularly in applications where consistent and
structured data exchange is critical. JSON Schema addresses this need by providing a
way to formally describe JSON data, enabling both humans and machines to understand
and validate data structures efficiently [20].

The core of JSON Schema lies in its ability to define expected data types, properties,
and validation rules for JSON objects. It introduces keywords to specify fundamental
data types such as string, number, integer, object, array, boolean, and null. This allows
for enforcing the type of data each field should contain, ensuring data integrity and
reducing the potential for unexpected data-related errors in applications. Beyond types,
JSON Schema provides validation mechanisms through keywords like required, which
mandates that specific fields be present in the JSON data, and additionalProperties,
which can restrict the presence of unspecified fields. These features give developers fine-
grained control over the permissible structure of JSON objects, ensuring that each instance
of JSON data aligns with expected formats and contains only relevant information [20].

JSON Schema further enhances validation through type-specific constraints. For example,
in the case of strings, developers can enforce constraints such as minLength and
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maxLength to control the allowable length of text data. Similar constraints exist for
numbers, where boundaries can be set with minimum and maximum values. For arrays,
developers can specify schemas for individual elements and minimum and maximum
array lengths, adding flexibility in defining lists and collections within JSON data. JSON
Schema also supports complex structures, allowing for nested objects and arrays. This
feature is particularly useful when representing hierarchical data, which is common in
JSON, as it enables developers to construct intricate, multi-level data schemas that match
the complex structures required in many applications [20].

The process of using JSON Schema involves defining a schema document that specifies
the structure, types, and constraints for the expected JSON data. A JSON validator
then compares a JSON instance against this schema, checking for adherence to each
specified constraint and returning detailed error messages if the JSON instance does
not conform. This validation process allows developers to identify structural or data
type inconsistencies before data is processed or stored, reducing the likelihood of runtime
errors due to invalid data [20].

JSON Schema has become integral in various applications, particularly in API develop-
ment, configuration management, and data quality enforcement. APIs often use JSON
to exchange data between clients and servers, and JSON Schema ensures that data sent
and received meets a consistent format, reducing errors and enhancing interoperability.
In configuration management, JSON Schema can validate configuration files before they
are used by software systems, helping prevent misconfigurations that could otherwise
lead to system failures. JSON Schema definitions can also be transformed into documen-
tation, clearly representing data requirements, improving developers’ communication,
and facilitating compliance with data standards [20].

In summary, JSON Schema plays a vital role in modern software development by
providing a structured and standardized approach to defining and validating JSON
data. By enforcing data integrity, enabling efficient error detection, and supporting
documentation, JSON Schema contributes significantly to the reliability and robustness
of applications that rely on JSON data, particularly in web and API-based architectures.
Its structured approach to data validation has made it a preferred tool for maintaining
data consistency and quality across distributed systems [20].
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CHAPTER 3
Related Work

The integration of clinical data into standardized formats, such as the OMOP CDM, is a
critical step in enabling large-scale, reproducible health data research. This process relies
heavily on the design and execution of ETL pipelines that can handle the source schemas
and data models [1], [18], [19]. The goal of this chapter is to provide a comprehensive
overview of the state of the art in ETL processes, with a particular focus on their
application to the EAV data model and the OMOP CDM integration.

The chapter begins by surveying existing approaches for transforming healthcare data
into the OMOP CDM. It then focuses specifically on the challenges posed by the EAV
data model, which differs structurally from the horizontal schema required by the OMOP
CDM. Following this, the chapter reviews literature on conceptual modeling techniques
that formalize ETL design. It also discusses quality characteristics essential for designing,
evaluating, and refining ETL pipelines in practical settings. Finally, it compares widely
used open-source ETL tools suitable for healthcare data integration. Figure 3.1 visualizes
the ETL process, with the individual works positioned at the stage of the process to
which they primarily contribute.

Together, these sections establish a foundation for understanding the methodological,
technical, and practical considerations relevant to this thesis. They also help position
the proposed work within the broader research landscape and identify existing gaps that
this thesis aims to address.

3.1 ETL Process into the OMOP CDM
Transforming heterogeneous healthcare data into the OMOP CDM presents both con-
ceptual and technical challenges [40], [41]. ETL processes must handle varied source
schemas, inconsistent semantics, and performance bottlenecks [18]. Numerous tools
and frameworks have emerged to support this process, ranging from Graphical User
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Interface (GUI)-based design tools to fully automated, metadata-driven pipelines [42],
[43]. However, the diversity of data formats, such as Fast Healthcare Interoperability
Resources (FHIR) or EAV data models, limits the universal applicability of many of
these approaches [12], [44].

One widely used design tool is Rabbit-in-a-Hat [19], [45], [46], developed by the OHDSI
community. It is part of the OHDSI community’s suite of open-source tools and is used
explicitly for the ETL process of healthcare data into the OMOP CDM. A graphical
user interface allows users to define mappings between source data and the OMOP
CDM. Through a drag-and-drop interface, users can link source tables and columns to
OMOP CDM equivalents. However, the tool is limited to horizontal data models and
does not support the EAV data model. Moreover, Rabbit-in-a-Hat is intended for ETL
specification rather than execution. It generates documentation but not executable ETL
code, and therefore serves primarily as a design aid.

Moving toward executable, configurable ETL pipelines, Quiroz et al. [14] proposed a
metadata-driven and generic ETL framework for converting health databases to the
OMOP CDM. The framework includes a compiler that converts YAML files into an ETL
script. The YAML files contain mapping logic for OMOP CDM tables. The mapping
rules are defined on a column-by-column basis. They organize structured query language
(SQL) snippets in key-value pairs that define the extract and transform logic to populate
the OMOP CDM columns. Each YAML file describes the mapping logic for a target
OMOP CDM table. It contains three sections:

1. The name of the OMOP CDM table being mapped (YAML field name)

2. The definition of primary keys used by the ETL framework to manage the load
(insert) operations (YAML field primary_key)

3. The mapping rules for each column in the targeted OMOP CDM table (YAML
field columns)

The authors developed a Data Manipulation Language (DML) to define the mapping
logic. The DML uses the YAML key-value pairs to define the source data, the target
OMOP CDM tables and columns, and the extract, transform, and load operations to
map from source data to OMOP.

The first step in their ETL framework is to define the primary key of the OMOP CDM
table. The framework utilizes definitions of primary keys to manage load operations.
Like this, every row in the OMOP CDM table is mapped to all the relevant rows in the
source table(s). The primary_key YAML field defines how to construct the primary key
of the OMOP CDM table and whether it is composed of one or more sources.

The information needed to define the extract and transform operations from source data
to an OMOP column is:
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1. The name of the targeted OMOP column (YAML field name)

2. A listing of one or more source tables containing the data needed to populate the
target field (YAML field tables)

3. An SQL expression defining how one or more fields from the source table(s) map
to the OMOP field (YAML field expression)

A web application provides access to the ETL framework, allowing users to upload and
edit YAML files via a web editor and obtain an ETL SQL script for use in development
environments. The structure of the DML aims to maximize readability, refactoring, and
maintainability while minimizing technical debt and standardizing the writing of ETL
operations for mapping to the OMOP CDM. The authors emphasize the need for tools
that support transparency of the mapping process and reuse by different institutions.

However, the authors do not specifically address the EAV data model. In the context of the
ETL process, the EAV model can present unique challenges. For instance, transforming
data from an EAV model to a horizontal, column-based model, such as the OMOP
CDM, often involves pivoting the data, which can be a complex operation because pivot
operations are commonly computationally inefficient. The EAV model is designed to
handle large volumes of sparse data with varying attribute types. Pivoting involves
restructuring the data, which requires aggregating and transposing rows into columns.
The data is often stored in the same column and needs to be filtered based on the
attribute. The pivoting operation typically consumes a significant amount of time and
substantial computing resources, especially when the dataset is larger than memory, as
it often involves multiple joins and aggregations, particularly when dealing with large
datasets [10], [47]. While the paper provides a valuable framework for the ETL process,
it does not delve into these EAV-specific issues. Therefore, additional strategies and tools
are needed to effectively transform data from an EAV data model to the OMOP CDM.

A related study by Peng et al. [12] presented a comprehensive approach to integrating
German real-world health data from FHIR to the OMOP CDM. The data used in this
study is a synthetic data set based on the Common Core Data Set (CDS) of the German
Medical Informatics Initiative (MII), specified in FHIR, that includes all essential aspects
of patient EHR data and can be exchanged among researchers. It contains six basic
modules covering patient demographics, hospital visits, diagnoses, procedures, laboratory
observations, medications, and other extension modules (e.g., oncology, phenotypes,
and biobank). Each module contains several FHIR profiles (e.g., the diagnoses module
contains the Condition FHIR profile).

As a first step of the ETL process design, a semantic and syntactic mapping of the MII
CDS specification to the OMOP CDM was developed. This mapping provided the basis
for further implementation of the ETL process.

For the implementation of the ETL process, a code-based ETL process using Java was
chosen due to the existence of the HAPI FHIR Java library that can process FHIR
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resources, and the availability of the SpringBatch framework for Java programming,
which is designed to process large datasets at once.

While the work of Peng et al. provides a robust framework for ETL processes in the
context of FHIR and the OMOP CDM, it is not transferable to the transformation of
EAV data into the OMOP CDM. As a standard communication format, FHIR resources
are typically presented in XML or JSON format. In contrast, the EAV model is based
on a relational database [12].

Sathappan et al. [48] conducted a feasibility study to assess the process of transforming
Singaporean healthcare data, including EHRs and questionnaire-based data, into the
OMOP CDM. The focus of their research was the SG_T2DM dataset, a rich collection
of data from patients with type 2 diabetes mellitus. This dataset integrates structured
clinical data (e.g., diagnoses, lab tests, medications) with patient-reported information
obtained through standardized questionnaires.

The study aimed to determine whether local healthcare datasets could be effectively
harmonized using the OMOP CDM. To that end, the authors evaluated multiple aspects
of the transformation process, including data quality assessment, mapping strategies,
ETL design, and conformance to the OMOP CDM. A key feature of their dataset was
its hybrid nature, which posed unique challenges for harmonization.

The authors leveraged existing OHDSI tools, such as WhiteRabbit and Rabbit-in-a-Hat,
to conduct an initial data profiling and mapping exercise. WhiteRabbit was used to scan
the source data schema and generate metadata, which in turn informed the design of the
ETL process. Rabbit-in-a-Hat helped define mappings between the source data fields
and OMOP CDM concepts. These tools facilitated the documentation and validation of
the mapping rules, although they did not support the complete execution of the ETL
process.

The transformation of EHR data into the OMOP CDM was more straightforward because
direct mappings were available between commonly used clinical codes and the OHDSI
standardized vocabularies. However, the mapping of questionnaire responses proved
more complex. Many questions did not have direct equivalents in the OMOP vocabulary,
necessitating the creation of custom concepts or the use of proxy mappings based on
expert judgment.

One of the main challenges addressed in the study was the structural transformation of
the questionnaire data, which was initially organized in a wide-table format with one
row per patient and one column per response. To conform with the OMOP CDM’s
table structure, the data had to be pivoted to a long format where each observation or
response appears as a distinct row. This restructuring required careful consideration to
preserve the semantic meaning of each response, particularly when aligning responses
with standardized vocabularies.

Despite these challenges, the authors successfully mapped a significant portion of the
dataset to the OMOP CDM and demonstrated that the resulting data conformed to the
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OMOP CDM’s requirements. However, the authors acknowledged that further refinement
was needed to ensure semantic alignment, especially in the context of non-clinical data.

Notably, while the paper acknowledges the need to pivot questionnaire data and transform
it into OMOP format, it does not provide in-depth details about the implementation
of these pivot operations or the technical decisions made during the ETL scripting.
When transforming the data from the EAV data model, the data must be pivoted from
a long format to a wide format, which is the reverse transformation. As such, the
study offers a valuable example of applying the OMOP CDM to a hybrid dataset but
leaves some aspects of the transformation process, particularly those related to technical
reproducibility, underspecified.

Nevertheless, the work of Sathappan et al. provides important insights into the feasibility
of adopting the OMOP CDM in healthcare contexts. It highlights the flexibility of the
OMOP CDM in accommodating diverse data sources and underscores the importance of
iterative mapping, validation, and expert involvement in the ETL process.

More recently, Bachir et al. [43] presented a metadata-driven approach aimed at gen-
eralizing transformation steps in ETL processes, a challenge that remains central in
the harmonization of clinical data. Recognizing the limitations of hard-coded, purpose-
specific ETL pipelines, the authors explore how Metadata Repositories (MDRs), built on
standards such as ISO/TS 21526 and ISO/IEC 11179-3, can externalize transformation
logic and improve reuse across use cases.

The core innovation lies in leveraging standardized mappings, defining source-target rela-
tionships and transformation rules, and encoding them in a structured and traceable way.
The integration of provenance metadata using the W3C PROV model adds transparency
and auditability to the data integration workflow, which is crucial in healthcare settings
where regulatory compliance and reproducibility are non-negotiable.

A prototype built on the DEHub metadata repository demonstrates the feasibility of this
architecture, translating Comma-Separated Values (CSV)-based patient data into OMOP
CDM format using rule-based mappings. However, while the extract and load phases
benefit from automation, the transformation step remains partially generalized, especially
for complex, non-trivial transformations. The prototype supports 1:1 and 1:n mappings
effectively, but still requires technical expertise to define advanced transformation logic.

While the work of Bachir et al. makes a valuable contribution to the formalization and
externalization of transformation rules using standardized metadata models, it focuses
primarily on the storage and representation of these mappings within an MDR. The
practical implementation of the ETL process itself is only discussed at a conceptual
level. The prototype demonstrates how rules can be defined and stored, but it does not
provide a mechanism for automatically executing those rules as part of a runnable ETL
workflow. Addressing this implementation gap remains a critical step toward making
metadata-driven ETL approaches fully operational and scalable in real-world healthcare
data integration scenarios.
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3.2 ETL Process from the EAV Data Model
Transforming data from the EAV data model into a horizontal, column-based relational
format is a critical step in many clinical data integration workflows, particularly when
mapping to target schemas like the OMOP CDM. The OMOP CDM requires data to be
structured in a normalized, wide format, which contrasts with the vertical structure of
EAV tables. As a result, EAV-based data must undergo pivot operations that transpose
rows into columns to align with OMOP CDM’s tabular schema [49].

Luo and Frey [10] presented techniques to improve the efficiency of pivot operations
in the context of EAV-modeled data. They noted that the process of pivoting can be
time-consuming and resource-intensive, particularly when performed regularly, such as
for daily content refreshes in a clinical data warehouse.

While the EAV model offers flexibility in handling sparse, heterogeneous, or extensible
datasets, such as those found in clinical observations, it introduces significant computa-
tional complexity during transformation. Pivoting EAV data can be resource-intensive,
particularly when dealing with large volumes of records that include numerous attributes
and high levels of sparsity. Many values may be null or missing, and the data is often
fragmented across multiple tables. These structural characteristics lead to complex SQL
queries involving numerous joins, filters, and aggregations, which can place a heavy
burden on memory and processing resources [47].

To address these challenges, Luo and Frey propose a set of optimization techniques
aimed at improving the efficiency of pivot operations over EAV-modeled data. Their
work targets explicitly scenarios involving frequent or large-scale pivoting, such as daily
refreshes of data marts or clinical data warehouses. The proposed techniques include:

1. Filtering out EAV tuples related to unneeded clinical parameters early on: By
identifying and removing tuples corresponding to irrelevant clinical parameters
before the pivot operation, the volume of data being processed is significantly
reduced. This selective filtering minimizes unnecessary operations and intermediate
storage requirements.

2. Supporting pivoting across multiple EAV tables: In many systems, clinical data is
not stored in a single EAV table but instead partitioned across multiple EAV-like
structures. Supporting multi-table pivoting reduces redundancy in transformation
workflows and improves the scalability of the ETL process.

3. Conducting multi-query optimization: Pivoting often involves executing a series
of interrelated queries. Optimizing these as a group rather than in isolation
enables more efficient query planning and execution, particularly when common
sub-expressions or filtering conditions can be shared.

These optimizations, while developed for general clinical warehouse use cases, are directly
applicable to OMOP CDM transformation workflows.
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Despite the contributions of Luo and Frey, a gap remains in translating these performance-
focused optimizations into standardized ETL frameworks or OMOP CDM-specific
pipelines. Most OMOP CDM ETL tools, such as Rabbit-in-a-Hat or metadata-driven
systems like those proposed by Quiroz et al. and Bachir et al., assume horizontally
structured input data. They provide little support for the dynamic, schema-less charac-
teristics of EAV models. As a result, institutions using EAV-based systems must either
pre-transform their data through manual pivoting scripts or develop custom integration
logic, which increases the development burden and hampers reusability.

3.3 Conceptual Modeling of an ETL Process
Conceptual modeling plays a critical role in designing and understanding ETL processes,
especially in domains like healthcare data integration, where transformations are often
complex, iterative, and semantically rich. Explicit conceptual representations can facili-
tate communication among stakeholders, improve reusability, and support automation,
validation, and optimization of ETL workflows [1], [8], [19], [50].

According to the OHDSI community [19], the ETL process for converting raw clinical
data into the OMOP CDM is best understood as a structured, four-step workflow.

1. Design the ETL

2. Create the code mappings

3. Implement the ETL

4. Quality control

In the design phase, data experts and OMOP CDM experts collaborate to align the source
schema with the OMOP CDM structure. Profiling tools such as WhiteRabbit and mapping
tools such as Rabbit-in-a-Hat are frequently used to support this stage. The code mapping
phase focuses on semantic alignment, in which domain experts create mappings between
source terminologies and the OHDSI standardized vocabularies, typically supported by
OHDSI tools like Usagi and Athena. During the implementation phase, technical staff
translate the design and mappings into executable ETL scripts, most often written in
SQL, enabling reproducibility and scalability. Finally, the quality control phase involves
systematic verification of the ETL output, using validation tools such as Automated
Characterization of Health Information at Largescale Longitudinal Evidence Systems
(Achilles) and the Data Quality Dashboard (DQD) to ensure correctness, completeness,
and conformance.

This four-step structure emphasizes that ETL development is inherently iterative, of-
ten requiring cycles of refinement between design, implementation, and validation. It
also highlights the interdisciplinary nature of the process, where clinical knowledge,
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technical skills, and methodological rigor must come together to achieve reliable data
transformation.

This structured framework proposed by OHDSI provides a practical foundation for
designing and implementing ETL processes into the OMOP CDM.

Building on this foundation, Henke et al. [40] conducted a literature review to conceptu-
alize a more fine-grained and generic data harmonization process. Their work focuses on
publications addressing the harmonization of clinical and claims data into the OMOP
CDM and derives a set of nine process steps that extend and refine the four stages
suggested by OHDSI.

From 23 publications, they conceptualized a generic data harmonization process for the
OMOP CDM, consisting of nine process steps. Based on the literature, the authors
determined a chronological order for the data harmonization process, with the most
agreement across publications:

1. Dataset specification

2. Data profiling

3. Vocabulary identification

4. Coverage analysis of vocabularies

5. Semantic mapping

6. Structural mapping

7. ETL process

8. Qualitative data quality analysis

9. Quantitative data quality analysis

They assigned the identified steps to those proposed by OHDSI. Steps 1-3 and 6 were
assigned to OHDSI’s first step, “Design the ETL”. Steps 4 and 5 were assigned to OHDSI’s
second step, “Create the code mappings”. Step 7 was assigned to OHDSI’s third step,
“Implement the ETL”. Finally, steps 8 and 9 were assigned to OHDSI’s fourth step,
“Quality control”.

Furthermore, the authors identified seven OHDSI tools that supported five of the process
steps.

The tool WhiteRabbit was used for data profiling. OHDSI provides a vocabulary
repository called Athena and a tool that supports semantic mapping, called Usagi. The
structural mapping was performed using the tool RabbitInAHat. For performing quality
checks, OHDSI provides the tools Achilles and the DQD. A quantitative data quality
analysis was performed using Atlas to define cohorts.
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The authors noted that the publications have shown that some process steps may not be
relevant in a given use case. Additionally, using OHDSI tools is seen as optional. They
also mentioned that the process should be considered iterative, so errors identified during
the quality analysis may necessitate repeating the process steps. However, depending on
the context, some process steps may be skipped in subsequent iterations. The authors
suggested that the defined generic data harmonization process can be used as a step-
by-step guide to assist other researchers in harmonizing source data in the OMOP
CDM.
Dhaouadi et al. [51] provided a comprehensive review of data warehousing modeling
approaches. The authors summarized relevant works related to modeling data warehousing
approaches, ranging from classical ETL processes to Extract, Load, Transform (ELT)
design approaches. They conducted a systematic literature review and defined a detailed
set of comparison criteria. They noted that there is no standard model for representing
and designing this process, which has led several researchers to propose modeling methods
based on different formalisms. These formalisms include Unified Modeling Language
(UML), ontology, Model-Driven Architecture (MDA), Model-Driven Development (MDD),
and graphical flow, which includes Business Process Model Notation (BPMN), Colored
Petri Nets (CPN), YAML, CommonCube, Entity Modeling Diagram (EMD), and more.
The paper emphasizes that the success of data warehouse projects is essentially based on
correctly modeling the ETL process. These works provide valuable insights into the design
and implementation of ETL processes, which might be applied to the transformation of
data from the EAV data model to the OMOP CDM.
Theodorou et al. [52] investigate in their work the recurring structures or patterns within
ETL workflows. The authors highlight the complexity and importance of ETL processes
in data integration and management tasks, and propose a novel approach for identifying
frequent patterns in these workflows. ETL workflows, often highly complex, require
efficient design and optimization, making the identification of recurring structures crucial
for understanding and improving ETL systems.
The approach introduced in this paper models ETL workflows as labeled directed graphs,
where nodes represent operations and edges represent the flow of data. By using graph
mining techniques, the authors can identify common patterns that frequently appear
across multiple ETL workflows. These patterns, once identified, can be used to simplify
workflow representation and provide insights into common practices, inefficiencies, or
opportunities for optimization.
In their empirical study, the authors apply this methodology to workflows derived
from the Transaction Processing Performance Council – Data Integration (TPC-DI)
benchmark, a widely used data integration specification. The TPC-DI benchmark is a
standardized performance benchmark designed to evaluate the efficiency and scalability
of data integration systems. It simulates a realistic data warehousing environment by
measuring the ability to ETL data from multiple sources into a central repository. TPC-
DI assesses both throughput and data consistency, providing a comprehensive metric for
comparing different ETL tools and architectures [53].
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Theodorou et al. identify several frequent patterns, such as sequence, parallel split,
synchronization, exclusive choice, and simple merge, which are commonly found in ETL
processes. These patterns are significant because they encapsulate the core structural
components of ETL workflows and can be reused or optimized in future process designs.

Furthermore, the paper explores how these identified patterns can be mapped to concep-
tual models, facilitating the creation of abstract representations of ETL workflows. This
mapping enables the transformation of ETL workflows from logical models to conceptual
models, making it easier to analyze and optimize them at a higher level. Additionally,
the authors argue that the frequent patterns can be used to generate cost models, which
are crucial for evaluating the efficiency of ETL workflows and making decisions about
their optimization.

The authors’ work provides significant value to the field by offering an empirical and
systematic methodology for understanding the common structures within ETL workflows.
The identification of frequent patterns not only helps improve the conceptualization and
design of ETL processes but also contributes to the optimization of their execution and
maintenance in real-world applications.

Together, these works highlight the diversity of conceptual modeling strategies and
the critical importance of ETL abstraction in complex integration scenarios. For the
specific case of transforming EAV-modeled health data into the OMOP CDM, such
conceptualization efforts provide valuable guidance. While tools and standards for the
OMOP CDM ETL process are evolving, the integration of conceptual modeling practices,
particularly those that capture semantic mappings, process patterns, and quality controls,
remains essential for building scalable, maintainable, and transparent ETL systems.

3.4 Quality Characteristics for ETL processes
Theodorou et al. [54] defined a comprehensive model for ETL process quality characteris-
tics based on a systematic literature review. The authors focus on defining specific quality
characteristics and metrics for evaluation. The model consists of five process characteris-
tics with construct implications and three process characteristics for design evaluation.
They include data quality, performance, upstream overhead, security, auditability and
adaptability, usability, and manageability, respectively.

Nwokeji and Matovu [50] performed a comprehensive analysis of the current state
and challenges of ETL processes in the context of Big Data. The review aimed to
assess existing approaches, identify research gaps, and suggest future directions for
improvement. The authors identified eight quality attributes from primary studies. They
include performance, interoperability, flexibility, reusability, fault-tolerance, scalability,
reliability, and data quality.

Both models overlap significantly and can be summarized by the characteristics defined
by Theodorou et al. Upstream overhead was added as a subcategory to Performance.
The quality characteristics are defined as follows.
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Data quality measures how well the data output of an ETL solution meets the criteria
for being accurate, complete, and suitable for its intended use.

Performance refers to the amount of resource utilization and the timeliness of the
service delivered.

Security refers to protecting information during data processes and transactions.

Auditability refers to the ability of the ETL process to provide data and business rule
transparency.

Adaptability describes how an ETL process can effectively and efficiently be adapted
for different operational or usage environments.

Usability describes the ease of use and configuration of the ETL process.

Manageability defines the ease of monitoring, analyzing, testing, and tuning the
implemented ETL process.

3.5 ETL Tools
ETL tools are commonly categorized into two categories: tool-based and source-code-
based [55], [56]. Tool-based ETL tools are pre-built software solutions designed explicitly
for ETL processes, typically featuring a GUI and pre-built functionalities to simplify
data transformation tasks. These tools are user-friendly and designed to minimize the
need for extensive programming knowledge. Several open-source data integration tools
in this category have achieved high levels of maturity and performance, particularly in
healthcare use cases [56].

In contrast, source-code-based ETL solutions offer developers greater flexibility. These
solutions typically involve writing custom scripts or applications in programming lan-
guages like Java or Python. While these solutions offer more control and customization,
they require advanced programming expertise and may incur higher maintenance costs,
which can increase the complexity of the development process [56].

This thesis focuses on open-source ETL tools primarily due to licensing considerations.
Open-source tools eliminate the need for costly licenses associated with proprietary
software, making them more accessible for academic research and organizations with
limited budgets. Furthermore, open-source software often provides greater control over
the software’s long-term sustainability and usability, as there are no concerns about the
tool being discontinued or locked behind paywalls. These factors make open-source tools
an ideal choice for healthcare data integration, where cost-effectiveness, flexibility, and
long-term viability are critical. Furthermore, adopting open-source ETL tools facilitates
the reuse and extension of the developed prototype, enabling future improvements or
adjustments.
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Additionally, using an ETL tool rather than building a solution from scratch significantly
reduces development overhead. While custom-built solutions may provide more tailored
functionality, they demand substantial resources for optimization and ongoing mainte-
nance. In contrast, pre-existing ETL tools are already optimized for performance and
have been rigorously tested, offering a stable foundation that can significantly reduce
development time and complexity. These characteristics make such tools particularly
advantageous for non-technical users, such as healthcare professionals or researchers with
limited programming expertise, who may benefit from accessible, user-friendly systems.
This capability is crucial for fostering broader adoption and integration of the solution,
as it lowers initial hurdles and allows teams without coding expertise to benefit from the
developed system. For those reasons, only open-source ETL tools will be covered in this
section.

Given the variety of open-source ETL tools available, it is crucial to carefully evaluate
which tool best suits the specific needs of healthcare data integration. The selection
of an appropriate ETL tool depends on several factors, including performance, ease of
use, interoperability, and flexibility. Each tool has its strengths and limitations, making
it essential to understand how well they align with the requirements of transforming
healthcare data into standardized formats, such as the OMOP CDM.

Widely used open-source ETL tools are Pentaho Data Integration (PDI) and Apache
NiFi.

Apache NiFi [57] is a tool designed for scalable data routing and automating data flows
between systems. It is designed for real-time data processing and features a web-based
user interface that simplifies the design, monitoring, and control of data flows. Apache
NiFi supports extensive data integration and transformation capabilities, allowing for the
extension of its core functionality through the development of custom processors. This
flexibility makes it a powerful solution for complex data workflows [56], [58].

PDI [59], also known as Kettle, is a tool designed to facilitate and streamline data
management processes, particularly within Business Intelligence applications. Its primary
function is to perform ETL operations. PDI facilitates data extraction from various
sources, offering a comprehensive set of transformation tools that enable users to clean,
normalize, and aggregate data through functions, filters, and calculations. Once the
data is transformed, it can be loaded into various target systems or databases. Highly
extensible, PDI supports custom scripting and plugin development, allowing users to
create tailored data transformation workflows. The tool’s standalone GUI, called Spoon,
enables users to visually design data transformations, which are saved in XML format.
These transformations, whether stored as XML files or within a database repository, can
be executed using the execution engine, known as Kitchen.

In addition to its ETL capabilities, PDI integrates seamlessly with other Business
Intelligence tools, providing advanced analytics and reporting functionalities. This
integration enables users to create dashboards and visualizations, providing powerful
insights into the transformed data [55], [60], [61].
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Jouned et al. [49] performed a comparative evaluation of PDI, Apache NiFi, and a
custom-built solution in the context of transforming healthcare data to the OMOP
CDM. The evaluation of these tools is based on a set of criteria identified through an
extensive review of existing literature, which includes connectivity and interoperability,
user interface design, performance, and technical flexibility.

The findings indicate that all three tools are capable of performing basic data trans-
formation tasks effectively, although each tool exhibits distinct characteristics in terms
of usability and performance. PDI is particularly noted for its user-friendly interface,
which simplifies the process of data mapping and transformation. The graphical design
environment makes PDI an appealing choice for users with limited technical expertise,
as it streamlines the ETL process without requiring extensive programming skills. In
contrast, Apache NiFi, while offering a steeper learning curve, provides greater technical
flexibility and scalability, making it more suitable for advanced users who require cus-
tomization and efficiency in handling larger datasets. The custom-built tool, although
tailored to meet specific needs, was found to lack the scalability and robustness of the
more established tools.

Regarding performance, the study reveals that all tools are competent in handling basic
transformation tasks, but their capabilities diverge when working with larger and more
complex datasets. Apache NiFi was found to excel in terms of speed and scalability,
handling high-volume data processing more effectively than the other tools. While
PDI is adequate for smaller-scale transformations, it is less efficient when tasked with
more resource-intensive processes. The custom-built solution, while offering specialized
functionalities, did not demonstrate the same level of performance optimization as Apache
NiFi.

The evaluation of technical flexibility further underscores the differences between the
tools. Apache NiFi is identified as the most technically flexible solution, offering extensive
customization options that enable it to be tailored to a wide array of use cases. PDI,
although less flexible in terms of customization, strikes a balance between ease of use and
functional capabilities, making it suitable for a broader range of users. The custom-built
tool, although highly specialized, lacked the versatility and adaptability of either PDI or
Apache NiFi.

In conclusion, the study suggests that all three ETL tools are adequate for transforming
healthcare data into the OMOP CDM, with their applicability largely depending on the
user’s technical expertise and the specific requirements of the transformation task. PDI is
recommended for those seeking an intuitive interface and ease of use, while Apache NiFi is
better suited for users who require advanced features, scalability, and customization. The
custom-built tool, while adequate for specific needs, lacks the general applicability and
robustness of the other tools and may be less suitable for larger-scale or more complex
data transformations.
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3.6 Conclusion
While existing approaches contribute important tools, frameworks, and conceptual
models for OMOP CDM transformation, they often fall short in addressing the practical
complexities of integrating EAV-modeled data. This thesis aims to bridge that gap by
developing an ETL solution that explicitly supports the transformation of EAV-modeled
data from the research database of the MedUni Vienna into the OMOP CDM. Most
prior work has focused on ETL processes that assume horizontally structured source
data [14], [19], [45], which limits their applicability to healthcare systems that rely on
EAV-based representations. The EAV model introduces additional complexity into the
transformation process, particularly the need for pivoting, which is both computationally
expensive and challenging to generalize [10].

Furthermore, previous studies that addressed pivoting from EAV models did not target
the OMOP CDM as the output schema. The OMOP CDM not only imposes a rigid
relational structure but also requires alignment with standardized terminologies, such
as SNOMED CT and RxNorm. This dual requirement for structural normalization
and semantic harmonization significantly increases the complexity of the transformation
process. Consequently, this thesis aims to fill this gap by developing an ETL approach
that supports EAV-to-OMOP CDM transformation in a way that is both semantically
transparent and technically robust.

Table 3.1 presents an overview of the related work and their characteristics regarding the
transformation from the EAV data model to the OMOP CDM.
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CHAPTER 4
Methodology

This chapter outlines the methodological framework applied in the development of the
generic ETL code base for transforming EAV-modeled data from the research database of
the MedUni Vienna to the OMOP CDM. It describes the structured approach to answer
the research questions defined in Section 1.3.

The chapter is structured in two parts. The first part provides an overview of the
methodology, including the relationship between the individual phases and the research
questions. The second part presents a detailed description of each phase, focusing on the
objectives, methods, and outputs associated with each phase.

4.1 Overview
The methodological approach of this thesis combines theoretical analysis, iterative system
design, prototypical implementation, and systematic evaluation to address the research
questions comprehensively. It is grounded in the principles of modern software engineering
and is structured into four interrelated phases: Analysis, Design, Implementation, and
Evaluation. These phases represent a development lifecycle that is both conceptually
robust and practically adaptable, in line with the demands of medium-scale software
projects [62]. An overview of the methodological process is shown in Figure 4.1.

The approach follows an evolutionary prototyping model [63], in which the system is
developed incrementally. Each phase builds upon the outcomes of the previous one while
also enabling feedback loops that allow for continuous adjustment of earlier decisions
based on insights gained during implementation and evaluation.

The Analysis Phase includes a literature review [64], focusing on ETL systems in the
healthcare domain, particularly regarding the transformation of data from the EAV
model to the OMOP CDM. It aims to derive functional and non-functional requirements
that serve as the conceptual and technical foundation for subsequent phases. This phase
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Figure 4.1: Graphical representation of the methodological approach.

primarily addresses research question RQ1 and partially informs research question RQ2
by shaping the system’s initial design constraints.

The Design and Implementation Phases follow the evolutionary prototyping methodol-
ogy [63]. An initial working prototype of the ETL system will be created and refined
through four iterative cycles. Each iteration will focus on progressively improving the
system, incorporating feedback, and making necessary adjustments based on practical
testing and evolving requirements. In the Design Phase, an initial conceptual model
for the ETL system is developed, which is refined based on added requirements and
in response to feedback from ongoing implementation activities. The Design Phase
addresses research question RQ2 by defining the structural and architectural blueprint
for the ETL process. In the Implementation Phase, the system design is translated into a
working prototype. Iterative development cycles focus on refining technical components,
addressing practical constraints, and enhancing system quality based on continuous
testing. Each iteration contributes to the progressive realization of a robust ETL system.
The Implementation Phase continues to address research question RQ2, particularly from
a technical realization perspective.

The process concludes with the Evaluation Phase, where the final prototype is assessed.
This phase includes applying the solution to specific use cases to examine its adapt-
ability (research question RQ3) and evaluating how well the system meets the defined
requirements (research question RQ4).

This structure ensures that theory and practice are continuously aligned and that design,
implementation, and validation are iteratively integrated [62].
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The detailed steps of each phase are described in the following sections.

4.2 Analysis Phase
The Analysis Phase lays the foundation for the ETL system by systematically examining
the current context and identifying the requirements for transforming healthcare data
from the EAV model into the OMOP CDM. It serves as a bridge between understanding
the problem and designing a suitable solution and is critical to ensuring that the resulting
system meets both technical and user-driven expectations.

This phase is divided into two core activities: a literature review and a requirements
analysis. The literature review is structured around three domains: ETL processes
targeting the OMOP CDM, ETL processes originating from EAV-based data models,
and general ETL methodologies. Each domain is examined with a focus on theoretical
foundations, process characteristics, and best practices, ensuring that the resulting system
requirements are grounded in current research and practical experience.

The primary objective of the literature review is to provide an in-depth understanding of
the landscape of ETL systems, with a particular focus on their application to healthcare
data transformation, the EAV data model, and the OMOP CDM. The review will examine
state-of-the-art ETL tools and frameworks, identifying how existing systems address the
challenges of transforming complex healthcare data. This thorough exploration informs
the development of the system’s requirements.

The first area explores ETL processes involved in transforming healthcare data into
the OMOP CDM. Existing research is reviewed to examine how systems map data
from diverse sources into the OMOP CDM. This section identifies data transformation
techniques for standardizing and harmonizing healthcare data, including schema mapping
and data quality management strategies.

The second area focuses on ETL processes for transforming data from the EAV model.
Given the model’s flexibility, techniques for handling sparse and dynamic attributes
in EAV-based data are explored. Literature is reviewed to identify pivoting methods
commonly used to transform EAV data into more structured formats, such as the OMOP
CDM. This section focuses on strategies for managing data inconsistencies and ensuring
data integrity during the transformation process.

The third area examines general ETL processes, focusing on the theoretical foundations
of the extraction, transformation, and loading stages. The core principles of ETL design
are reviewed, including data extraction techniques (e.g., batch processing, real-time
streaming), data transformation strategies, and best practices for loading data into target
models. Quality characteristics critical for ETL processes are also identified, particularly
in the context of healthcare data transformation.

From this foundation, a set of requirements is derived. The requirements are grouped into
functional requirements, which describe what the system must do (e.g., extract data, apply
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mappings, ensure referential integrity), and non-functional requirements, which describe
how the system should perform (e.g., performance, maintainability, scalability) [62].

The result of this phase is a baseline catalog of system requirements, which serves as a
reference point for the subsequent Design Phase. While iterative refinement is expected
during implementation, this structured baseline supports a controlled evolution of the
system, reducing the risk of misaligned expectations and costly redesigns.

4.3 Design Phase
The Design Phase focuses on creating both a conceptual and technical blueprint for the
ETL process that will transform healthcare data from the EAV model to the OMOP
CDM. Following the principles of evolutionary prototyping, this phase is not executed
strictly linearly but evolves iteratively in parallel with the Implementation Phase. This
parallel structure enables ongoing refinement of the system design based on practical
feedback and emerging requirements.

The process begins with the development of an initial conceptual architecture. This
architecture defines the primary components of the ETL pipeline: data extraction,
transformation, and loading. It outlines their high-level interactions and provides a
macroarchitectural view of the system’s structure that helps establish system boundaries
and responsibilities across components. The initial concept is broad, outlining key
components, but these elements are flexible and will evolve as the system is implemented.

Subsequent iterations refine this conceptual model. Each iteration integrates additional
requirements identified during implementation and adapts the design to reflect both
domain-specific constraints and practical considerations. Design decisions are guided
by internal evaluations as well as discussions with a domain expert who specializes
in electronic health records, interoperability, and health information management and
serves as a key stakeholder in the design validation process. During the discussions,
architectural choices and design alternatives were critically reviewed in iterative meetings,
and adjustments were made until consensus on the best approach was reached. These
design discussions help ensure that architectural decisions align with the project’s goals
and that evolving constraints are adequately addressed.

The output of the Design Phase is an evolving system specification that includes both
the architectural model and the technical strategy for implementation. It provides a solid
basis for the Implementation Phase while remaining adaptable to changes introduced
during prototyping.

4.4 Implementation Phase
The Implementation Phase focuses on transforming the theoretical and technical designs
from the Design Phase into a functional ETL prototype. Following the evolutionary
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prototyping methodology, development is carried out in iterative increments that support
ongoing testing, validation, and adaptation.

The process begins with the development of an initial prototype that reflects the core
structure of the ETL pipeline based on the initial concept established during the Design
Phase. This early version includes basic functionality such as data extraction, transfor-
mation logic, and loading routines. It primarily validates the feasibility of the conceptual
design and the correctness of the end-to-end data flow.

The development progresses incrementally, with each iteration introducing new features,
refining system behavior, and addressing issues identified during testing. Over time,
the system evolves through continuous integration of additional features, performance
improvements, and error-handling mechanisms. Design adaptations are informed by
practical experience during development and are discussed with the domain expert, who
guides system behavior and alignment with project objectives. This approach enables
continuous system refinement, ensuring that issues are addressed promptly and that
the system development remains aligned with both functional goals and non-functional
quality attributes.

By the end of the Implementation Phase, the prototype is refined into a fully functional
system capable of reliably transforming healthcare data from the EAV model into the
OMOP CDM. The implementation reflects the defined requirements and incorporates
flexibility for future adaptations, thereby providing a stable foundation for the subsequent
Evaluation Phase.

4.5 Evaluation Phase
The Evaluation Phase will assess the ETL system’s ability to meet the requirements
defined in the Analysis Phase. This phase involves two key activities: conducting
evaluation scenarios and analyzing the fulfillment of the requirements.

Two evaluation scenarios will be conducted to evaluate the flexibility and adaptability of
the ETL system. These evaluation scenarios will involve adapting the generic ETL code
base to two specific healthcare datasets that follow the EAV model but have different
structures and characteristics. The evaluation of each evaluation scenario will focus on
verifying that the system correctly transforms the data into the OMOP CDM format,
measuring performance metrics, and documenting any challenges encountered while
adapting the ETL process to the specific datasets.

Additionally, the evaluation will systematically examine the implementation against each
functional and non-functional requirement defined during the Analysis Phase. Each
requirement will be assessed to determine whether it is fully, partially, or not fulfilled.
This assessment will be based on the features of the system, including implementation
details, runtime behavior, and configuration capabilities. Justifications will be provided
for each assessment to ensure transparency and traceability.
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CHAPTER 5
Design and Implementation

This chapter presents the design and implementation of the generic ETL code base that
transforms healthcare data from the EAV model of the MedUni Vienna into the OMOP
CDM.

The chapter is organized into several sections, starting with the section “Requirement
Definition”, which outlines both the functional and non-functional requirements that
guided the design and development of the ETL process.

Next, the section “Implementation Concept” provides a high-level overview of the ETL
process, describing the transformations that facilitate the conversion of data from the
EAV model to the OMOP CDM. The Semantic Mapping section discusses the inclusion
of standardized terminologies in the source schema, a key aspect of data normalization.
A detailed description of the structural mappings between the source database and the
OMOP CDM is also provided.

The following section, “Prototypical Implementation”, explains the chosen technology
stack and tools used to implement the ETL process. This section also covers implemen-
tation details, including code structure, modularity, and functionality. The Setup of the
OMOP CDM section elaborates on how the OMOP CDM was configured to receive the
transformed data. Finally, the Data Transformation and Loading section outlines the
processes used to extract, transform, and load the data into the OMOP CDM.

5.1 Requirement Definition
Based on the insights from the literature review presented in Chapter 3, the functional
and non-functional requirements for the ETL process, designed to transform healthcare
data from the RDA platform of the MedUni Vienna, modeled in the EAV format, to the
OMOP CDM, are identified. These requirements form the foundation for the development
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and implementation of the ETL process, ensuring it meets both technical and business
objectives.

The functional requirements define the core capabilities of the ETL system, specifying
the processes of data extraction, transformation, and loading, while the non-functional
requirements address architectural characteristics. Both sets of requirements are outlined
in the following sections.

5.1.1 Functional Requirements
The functional requirements define the core capabilities and behaviors that the ETL
system must exhibit in order to successfully transform healthcare data from the RDA
platform of the MedUni Vienna, modeled in the EAV format, to the OMOP CDM.
These requirements are essential for ensuring that the ETL process operates efficiently,
accurately, and in alignment with the standards set by the OMOP CDM.

This section outlines the specific actions the system must perform, including identifying
and extracting relevant data, transforming it according to OMOP CDM conventions,
and loading it into the target database while preserving data integrity. The functional
requirements also address the flexibility of the ETL system, allowing for dynamic con-
figurations, error handling, and robust data transformation rules to accommodate the
diverse range of healthcare data.

The functional requirements presented in this section are derived from established
guidelines and best practices outlined in the Book of OHDSI [19], which defines the
structure and conventions of the OMOP CDM. Additional requirements are informed by
recent scientific literature that explores metadata-driven ETL approaches [65] and real-
world implementations of OMOP CDM transformations in clinical research settings [66].
These sources provide both theoretical foundations and practical insights to guide the
development of a robust and standards-compliant ETL process.

The following functional requirements, as presented in Table 5.1, serve as the foundation
for developing the ETL process for transforming healthcare data within the context of
the OMOP CDM.

ID Description Source
FR01 The ETL process must extract data from source systems. Thus, it

must connect to the RDA platform of the MedUni Vienna, which
is modeled in the EAV format, and it must support the extraction
of data from the RDA platform of the MedUni Vienna.

[19]

FR02 The system must map data from source tables to the appropriate
OMOP CDM tables. The attributes of the EAV model must be
mapped to the relevant columns of OMOP CDM tables.

[19]
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ID Description Source
FR03 The system must transform the data from the EAV model to the

OMOP CDM ensuring consistency between source data and OMOP
CDM schema.

[19]

FR04 The mapping rules for EAV to OMOP CDM transformations must
be loaded dynamically from a central repository or configuration
file, which supports customizable mappings to allow adaptation to
future changes in the data model.

[65]

FR05 The system must transform raw data to adhere to the OMOP
CDM’s data standards. It must ensure that all raw data values are
standardized according to the OMOP CDM conventions.

[19]

FR06 The ETL process must ensure that the data is loaded into the
appropriate OMOP CDM tables, maintaining the required schema
and table structure. Each OMOP CDM table must be populated
with data from the source system in the proper format.

[19]

FR07 The system must handle inconsistent or missing data in the source
EAV model according to predefined rules.

[19]

FR08 The system must dynamically load metadata from a central repos-
itory or configuration file, which contains detailed mappings of
which data should be extracted, transformed, and loaded into the
OMOP CDM schema.

[65]

FR09 The system must set up an empty OMOP CDM database with
the appropriate schema structure and relationships between tables
before starting the ETL process.

[66]

Table 5.1: Functional requirements for the ETL process.

5.1.2 Non-functional Requirements
In developing a comprehensive ETL process to transform healthcare data from an EAV
data model to the OMOP CDM, it is essential to define a set of specific goals that
guide the overall development. These goals should ensure the ETL system is not only
capable of handling complex healthcare data but also flexible, scalable, and efficient in
its operations. Each goal aligns with key quality characteristics, as defined by Theodorou
et al. [54]. The following goals outline the targeted attributes of the ETL process, with
each goal accompanied by its corresponding quality characteristic from Theodorou et al.’s
framework (noted in parentheses).

1. Performance Optimization (Performance)
Optimizing the performance of the ETL process is necessary to minimize processing
time and resource consumption. Techniques such as parallel and batch processing
should be utilized to enhance the efficiency of data transformations and ensure
timely results.
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2. Modularity and Reusability (Maintainability)
The ETL process should be modular, allowing for individual components to be
updated, maintained, or reused without impacting the entire system. This approach
facilitates both extensibility and maintainability of the code base over time.

3. Configurability, Adaptability, and Flexibility (Adaptability)
Given the variety and evolving nature of healthcare data, the ETL process must
be highly configurable and adaptable. It should allow for easy adjustments to
accommodate different data sources, formats, and schema changes without requiring
significant modifications to the underlying code. This flexibility is crucial for
ensuring that the system can handle diverse datasets and can be reused across
various use cases.

4. Scalability (Adaptability)
With the growing volume of healthcare data, scalability is a crucial goal. The
ETL process must scale efficiently to handle large datasets, ensuring consistent
performance even as data volumes increase.

5. Error Handling and Logging (Fault tolerance and Auditability)
Comprehensive error handling and logging mechanisms are required to ensure the
system can recover from failures, trace issues, and maintain a detailed audit trail
of ETL operations. These mechanisms will be critical for debugging, monitoring,
and ensuring data quality throughout the ETL pipeline.

6. Integration with the EAV Data Model (Data quality)
The ETL process must seamlessly integrate with the EAV data model. Handling
the specific characteristics of the EAV model, such as pivoting and managing sparse
data, is essential to ensure accurate transformation into the OMOP CDM.

7. Automation and Scheduling (Usability)
Automating the ETL process through scheduling tools is essential for ensuring
regular and consistent data updates without manual intervention. This goal ensures
that ETL tasks can be executed at scheduled intervals or triggered by specific
events.

To achieve these goals, a set of requirements has been defined, as presented in Table 5.2.
These requirements translate the overarching goals into specific, actionable criteria that
directly inform the ETL system’s development and implementation. Each requirement is
numbered to reflect its associated goal, with the first number indicating the goal and the
second serving as a counter within that goal.

ID Description
NFR1.1 Implement optimizations like indexing, caching, or efficient memory man-

agement to improve the overall performance of the ETL process.
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ID Description
NFR1.2 Leverage parallel and batch processing for data extraction, transformation,

and loading to reduce processing time.
NFR2.1 The ETL process must be broken down into independent modules, each

responsible for specific subtasks.
NFR2.2 Components like mapping functions and transformation logic should be

designed to be reusable across different datasets and transformations.
NFR2.3 Ensure that updates to individual modules do not require changes to the

entire ETL process, enabling maintenance and enhancements.
NFR3.1 Parameters, configuration files, or external sources should be used to

define ETL settings, such as data mappings, transformations, and schema
information, instead of hard-coding them.

NFR3.2 Attribute names and transformation rules should be loaded dynamically
from metadata repositories or configuration files to accommodate schema
changes and new datasets.

NFR3.3 The system should be capable of adapting to different schema structures
without requiring major modifications, ensuring its applicability across
various healthcare datasets.

NFR3.4 Implement a flexible, user-defined mapping mechanism for vocabulary
mapping, avoiding fixed, hard-coded mappings.

NFR3.5 Utilize a metadata repository to store information about attributes, con-
cepts, and relationships, ensuring this information can be easily updated
and reused.

NFR4.1 Ensure that the ETL process can handle large-scale datasets by incorporat-
ing batch processing, parallel processing, or distributed computing.

NFR4.2 Incorporate robust error-handling mechanisms that catch errors, log them,
and enable the process to resume or restart from failure points.

NFR4.3 Maintain detailed logs of ETL operations, including processing times, errors,
successes, and resource usage, for auditing and performance tracking.

NFR4.4 Implement automatic recovery mechanisms to resume operations from the
point of failure, reducing the need for manual intervention.

NFR5.1 The ETL process must be capable of processing EAV data, including the
ability to pivot and unpivot data as needed to transform it into the OMOP
CDM format.

NFR5.2 Handle specific EAV challenges, such as sparse data and multiple attribute
types, while ensuring accurate data representation in the target CDM.

NFR6.1 Integrate with scheduling tools to automate the execution of ETL tasks at
predefined intervals or in response to events.

Table 5.2: Non-functional requirements for the ETL process.
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Figure 5.1: Conceptual model of the master ETL job as BPMN model.

5.2 Implementation Concept
The Implementation Concept section outlines the core approach to the ETL process used
to transform healthcare data from the EAV model of the MedUni Vienna into the OMOP
CDM. This section provides an overview of the key design principles and the underlying
architecture that support the ETL pipeline.

This section will detail the specific transformations involved, the process flow, and the
architecture that supports the integration of healthcare data into the OMOP CDM,
providing a comprehensive understanding of how the generic ETL framework was con-
ceptualized and developed.

Throughout the design of the ETL process, input from a domain expert specializing in
electronic health records, interoperability, and health information management informed
design decisions. Architectural choices were iteratively reviewed and adjusted based
on expert feedback to ensure accuracy, compliance with clinical data standards, and
practical feasibility within the research database environment. This collaborative review
process helped align the ETL implementation with both functional objectives and domain-
specific constraints, ensuring that the prototype reflects best practices in healthcare data
integration.

5.2.1 Overview of the ETL process
The ETL process is organized into a single job, which coordinates multiple transformations.
This structure enables the entire ETL process to be executed in a single step. Separating
the different transformation steps among others by OMOP CDM table ensures that each
transformation can be implemented independently, preventing interference between them
and making the process easier to maintain and extend.

The master ETL job is the overarching job that manages the entire ETL pipeline.
Figure 5.1 shows a schematic representation of the master ETL job. It starts by setting
up the schema of the OMOP CDM and loading the vocabulary, followed by invoking the
individual transformations for each OMOP CDM table. The ETL job runs sequentially,
with each transformation executing in a predefined order.

Before any data transformation begins, the OMOP CDM schema is set up in the target
database. This step involves creating all the necessary tables and constraints required by
the OMOP CDM specification. A crucial step for OMOP CDM compliance is loading the
necessary vocabulary tables that standardize terminologies and codes used in healthcare
data. The vocabulary loading includes populating the vocabulary, concept_class, domain,
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relationship, concept, concept_ancestor, concept_relationship, concept_synonym, and
drug_strength tables with the vocabulary data provided by OHDSI. The vocabulary
must be loaded into the OMOP CDM database early in the process to ensure consistency
across the subsequent transformations. For the most part, custom vocabulary mappings
are not needed, as the required mappings are embedded in the source data. However,
a custom mapping is necessary for the gender of a person, as the specific mapping of
the RDA platform of the MedUni Vienna does not exist in the OHDSI standardized
vocabularies. These custom mappings are stored in the source_to_concept_map table.
They are loaded from a CSV file, along with the corresponding entries for the vocabulary
and concept tables after the OHDSI vocabularies have been loaded.

Each data transformation in the job handles a specific table within the OMOP CDM.
The order of the OMOP CDM tables is as shown in Table 5.3 to ensure the original entry
is created before it is referenced in a different table.

# Table Description Transf. Section
1 Care site Lists institutional (physical or or-

ganizational) units where health-
care services are provided (e.g.,
offices, wards, hospitals, clinics,
etc.) [27].

Fixed 5.2.2

2 Person Contains unique records for each
person, including key demographic
information, and serves as central
identity management for all Per-
sons in the database [27].

Fixed 5.2.2

3 Death Captures when and how a person
died, based on available clinical or
administrative data [27].

Fixed 5.2.2

4 Visit occurrence Records high-level healthcare en-
counters (e.g., outpatient visits,
hospital stays) [27].

Fixed 5.2.2

5 Visit detail Represents detailed parts of a
visit, such as ward movements or
claim lines, linked to a visit occur-
rence [27].

Fixed 5.2.2

6 Specimen Stores records of biological sam-
ples collected from persons [27].

Custom 5.2.3

7 Measurement Contains structured test results or
assessments (e.g., lab results, vi-
tals), often with numeric or cate-
gorical values [27].

Custom 5.2.3
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# Table Description Transf. Section
8 Observation Captures clinical facts not stored

elsewhere, such as lifestyle factors
or family history [27].

Custom 5.2.3

9 Condition occurrence Records diagnoses or symptoms in-
dicating the presence of a medical
condition [27].

Custom 5.2.3

10 Drug exposure Describes exposure to medica-
tions or vaccines, including both
prescribed and over-the-counter
drugs [27].

Custom 5.2.3

11 Procedure occurrence Tracks medical procedures per-
formed for diagnostic or therapeu-
tic purposes [27].

Custom 5.2.3

12 Fact relationship Defines relationships between
records across or within CDM
tables (e.g., procedure–device,
drug–condition) [27].

Fixed 5.2.2

13 Observation period Defines periods during which a per-
son’s clinical events are expected
to be recorded [27].

Fixed 5.2.2

Table 5.3: Order of the OMOP CDM tables in the ETL job.

The process begins by querying the source tables to extract the data needed for a specific
OMOP CDM table, which is typically stored in the EAV model. Data extracted in this
step is then mapped, transformed, and cleaned to align with the data types, constraints,
and standards defined by the OMOP CDM. Common transformations include

• Vocabulary lookups,
• Foreign key lookups,
• Date splitting,
• Adding of constants, and
• Data deduplication.

After the data has been transformed, it is loaded into the corresponding OMOP CDM
tables.

Load operations are performed in batch mode, ensuring high performance and minimal
impact on the target database.

Depending on the target OMOP CDM table, the transformation process can either
be fixed or custom. Table 5.3 summarizes for each table of the OMOP CDM if the
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transformation is fixed or custom. A fixed ETL process refers to a transformation
approach where the transformation logic is hard-coded and remains consistent across all
use cases, regardless of their data set. This approach is used for OMOP CDM tables
where the transformation is highly tailored to the target table, and the source data does
not vary between use cases. The transformation steps are predefined, and the rules do
not change based on the data processed or the specific use case.

The following tables allow a fixed ETL process.

• Observation_period
• Person
• Death
• Visit_occurrence
• Visit_detail
• Care_site
• Fact_relationship

In contrast, a dynamic ETL process introduces flexibility by adapting the transformation
logic based on metadata associated with the data being processed. The transformation
rules are not hard-coded; instead, they are influenced by metadata loaded from the
data source, which may vary depending on the specific use case. This metadata-driven
approach enables the ETL process to adjust the transformation logic to meet the unique
characteristics of each data set. The following tables need a custom ETL process.

• Specimen
• Measurement
• Observation
• Condition_occurrence
• Drug_exposure
• Procedure_occurrence

5.2.2 Fixed Transformations
In this section, the fixed ETL transformations are described in detail. In these transfor-
mations, the transformation logic is predefined and consistent across all use cases. These
transformations are designed to ensure that data is transformed regardless of the use case.
The following sections will provide a detailed description of each fixed transformation,
outlining the specific rules, logic, and steps involved in transforming the source data into
the target OMOP CDM tables.
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Figure 5.2: Conceptual model of the ETL process for the care_site table as BPMN
model.

Care_Site

The source data for the care_site table originates from the units table of the RDA
platform. This table contains information about operational sites of the AKH. It contains
the following relevant columns for this transformation:

• A unique identifier for each operational site.

• A name of the operational site.

• A code indicating the type of the operational site.

The transformation process involves mapping these source fields to their corresponding
target fields in the care_site table within the OMOP CDM.

Only records associated with the AKH, either at the overall level or at the level of specific
care units such as wards or operating rooms, are included in the transformation. These
categories were chosen because they represent physical locations where patient care is
delivered, which matches the intended semantics of the care_site table. Other types
of units, such as administrative departments, laboratories, or support services, do not
constitute direct care sites and are therefore excluded from the transformation.

The transformation process to populate the care_site table follows a well-defined workflow.
Figure 5.2 shows a schematic representation of the workflow.

1. Relevant records are extracted from the units table by filtering the data to include
only those representing the AKH, wards, or operating rooms.

2. The place_of_service_concept_id is added to each record.
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Figure 5.3: Conceptual model of the ETL process for the fact_relationship table as
BPMN model.

3. Before the data is inserted into the care_site table, it is validated to ensure that
each row is unique. This check ensures that no duplicates exist in the target table
and that each unit is correctly represented.

4. After validation, the transformed data is loaded into the care_site table.

The relationship between the wards/operation rooms and the AKH is added in a second
step. The records describing this relationship are stored in the fact_relationship table.

Fact_Relationship

The fact_relationship table holds the relationship between the wards/operation rooms,
and the AKH. For each record in the care_site table, two relationships are created to
describe the bidirectional relationship between the wards/operating rooms and the AKH.
The wards and operating rooms are part of the AKH, which in turn contains the wards
and operating rooms.

The transformation process to populate the fact_relationship table follows a well-defined
workflow. Figure 5.3 shows a schematic representation of the workflow.

1. Relevant records are extracted from the care_site table by filtering the data to
include only the wards and operation rooms and not the AKH.

2. For each ward or operating room, two records are created to represent the bidirec-
tional relationship. One record will describe the relationship where the wards and
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Figure 5.4: Conceptual model of the ETL process for the person table as BPMN model.

operating rooms are part of the AKH, while the second will describe the reverse,
where the AKH contains the wards and operating rooms.

3. The care_site_id corresponding to the AKH is assigned to each of the duplicated
records, with the correct care site identified through the care_site_source_value.

4. For each relationship record, the relevant domain_concept_id_1, domain_concept_
id_2, and relationship_concept_id are added.

5. Finally, the transformed data is loaded into the fact_relationship table.

Person

The source data for the person table is derived from the patient table in the RDA platform.
This table contains information about all patients, including demographic details such as
sex and date of birth. The relevant columns for this transformation are as follows:

• A unique identifier for each patient.

• The sex of the patient.

• The birth date of the patient.

The transformation process to populate the person table follows a well-defined workflow.
Figure 5.4 shows a schematic representation of the workflow.

1. Relevant records are extracted from the patient table, including the necessary fields.

2. The sex field is mapped to the corresponding concept ID in the OMOP CDM using
a predefined mapping.

3. The birth date field will be split into separate year, month, and day components.
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Figure 5.5: Conceptual model of the ETL process for the death table as BPMN model.

4. Because the patient table lacks information on ethnicity and race, while these fields
are required in the OMOP CDM, the transformation process assigns constant values
that explicitly denote the absence of mapped concepts.

5. Before the transformed data is inserted into the person table, a validation step is
performed to ensure that each row is unique. This validation prevents duplicate
entries in the target table and ensures that each patient is correctly represented in
the OMOP CDM dataset.

6. After validation, the transformed data is loaded into the person table.

Death

The source data for the death table is derived from the patient table in the RDA platform.
This table contains patient records, including details about their date of death. The
relevant columns for this transformation are as follows:

• A unique identifier for each patient.

• The death date of the patient.

The transformation process to populate the death table follows a well-defined workflow.
Figure 5.5 shows a schematic representation of the workflow.

1. Relevant records are extracted from the patient table, including the necessary fields.
Only records with a present death date are included.

2. The rows are mapped to the corresponding row from the person table. The
reference is achieved by locating the patient’s person_id in the person table via
the person_source_value field. The person_id is then used to link the patient’s
death information to the correct patient in the death table.
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Figure 5.6: Conceptual model of the ETL process for the visit_occurrence table as
BPMN model.

3. The death_type_concept_id is added. A predefined constant value will be used to
represent the type of death, as no specific categorization is available in the source
data.

4. The death_date is derived from the death_datetime.

5. The transformed data is loaded into the death table.

Visit_Occurrence

The source data for the visit_occurrence table is derived from the visits table in the
RDA platform. Only inpatient stays are considered. This table contains information
about hospital stays, detailing patient admissions and discharges. The relevant columns
for this transformation are as follows:

• A unique identifier for each hospital stay.

• A foreign key referencing the patient associated with the hospital stay.

• The admission date of the patient to the hospital.

• The discharge date of the patient from the hospital.

The transformation process to populate the visit_occurrence table follows a well-defined
workflow. Figure 5.6 shows a schematic representation of the workflow.
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1. Relevant records are extracted from the visits table.

2. The visit_start_date and visit_end_date are derived from the admission date and
discharge date, respectively.

3. The row is mapped to the corresponding person_id from the person table. The
reference is achieved by locating the patient’s person_id in the person table using
the person_source_value field. This person_id is then used to link the patient’s
visit information to the correct entry in the visit_occurrence table.

4. The visit_concept_id and visit_type_concept_id are added based on predefined
concepts that categorize the type of visit.

5. The care_site_id for the AKH is added to the records.

6. The transformed data is loaded into the visit_occurrence table.

Visit_Detail

The source data for the visit_detail table is derived from the movement table in the
RDA platform. Only inpatient ward movements are considered. This table contains
information about patient ward movements, such as admissions, transfers, and discharges.
The relevant columns for this transformation are as follows:

• A unique identifier of the ward movement record.

• A foreign key linking to the corresponding hospital stay.

• A classification indicating the type of movement, such as admission, transfer, or
discharge.

• The date of the movement.

• The ward where the movement occurred.

The transformation process to populate the visit_detail table follows a well-defined
workflow. Figure 5.7 shows a schematic representation of the workflow.

1. Relevant records are extracted from the movement table.

2. Since the source data only contains the dates of the movements and not the entire
duration of the stay, each transfer record is duplicated to serve as the end and start
date for a stay.

3. After duplication, the records are sorted in chronological order. Adjacent movements
(e.g., an admission followed by a transfer or discharge) are merged into a single
stay, and the visit_detail_start_date and visit_detail_end_date are derived from
the movement dates.
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Figure 5.7: Conceptual model of the ETL process for the visit_detail table as BPMN
model.

4. The corresponding visit_occurrence is derived.

5. The unit field is used to derive the care_site_id.

6. The visit_detail_concept_id and visit_detail_type_concept_id are added based
on predefined concepts that categorize the type of movement.

7. The transformed data is loaded into the visit_detail table.

Observation_Period

Each Person must have at least one Observation_Period record, representing a time
interval with a high likelihood of capturing Clinical Events [27].

In many ETL processes, the start date of the first occurrence or first high-quality
occurrence of a Clinical Event (such as Condition, Drug, Procedure, Device, Measurement,
or Visit) is used as the observation_period_start_date. Similarly, the end date of the
last occurrence of a Clinical Event, the last high-quality occurrence, or the end of the
database period is assigned as the observation_period_end_date for each Person [27].

Since Observation Periods are often not explicitly defined in source data, they must be
inferred. In such cases [27]:
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• The observation_period_start_date is set to the earliest available event date for a
given Person.

• The observation_period_end_date is set to the latest available event date.

According to the THEMIS convention, the observation_period_end_date should be
assigned as the earliest of the following [67]:

• Date of death + 60 days: This allows for post-mortem events (e.g., autopsy reports,
final notes).

• Last clinical event + 60 days: Based on the assumption that a patient would return
to the same healthcare provider in case of complications or unresolved conditions.

• Date of the data pull from the system

The source data for the observation_period table is derived from multiple clinical
tables, including death, visit_occurrence, specimen, measurement, condition_occurrence,
drug_exposure, and procedure_occurrence. The relevant attributes are person_id and
the associated event dates. The earliest and latest dates are identified and mapped to
the observation_period table in the OMOP CDM.

The transformation process to populate the observation_period table follows a well-
defined workflow. Figure 5.8 shows a schematic representation of the workflow.

1. All persons are retrieved from the person table.

2. If available, death records are extracted for each person.

3. The minimal and maximal dates from each clinical table are determined for every
person.

4. The minimal and maximal dates from the visit_occurrence table are extracted for
each person.

5. The final minimal and maximal dates are calculated based on the predefined rules.

6. The data is filtered to include only records where at least one of the date fields,
either the start date or the end date, is present. Like this, patients without any
recorded clinical events are excluded from the transformation.

7. The period_type_concept_id is assigned based on predefined concepts.

8. The transformed data is loaded into the observation_period table.
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Figure 5.8: Conceptual model of the ETL process for the observation_period table as
BPMN model.

5.2.3 Custom transformations

In this section, the custom ETL transformations are described in detail. Unlike the
fixed transformations, the logic in the custom transformations is metadata-driven and
adaptable across diverse use cases. These transformations enable flexible mapping of
source data to OMOP CDM tables using template-specific configurations. The following
sections detail each step of the custom transformation process, including how metadata
guides the logic, the transformation rules, and the loading of the data into the target
OMOP CDM structures.

Central to this approach is the concept of template-based transformation, where each input
attribute is associated with a template representing a specific OMOP CDM record type.
These templates define the structure of the target record and are stored in a dedicated
mapping table. This setup allows the transformation logic to adapt dynamically to
different record types at runtime without relying on hardcoded rules.
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This metadata-driven strategy significantly reduces implementation complexity and
enhances maintainability. New data sources or changes in data structure can be accom-
modated by simply updating or extending the mapping table, eliminating the need to
modify the underlying transformation logic.

The structure and function of the mapping table are described in the following subsection.

Structural Mapping

To facilitate the structural mapping of data from the RDA platform to the OMOP CDM,
an additional mapping table is introduced. This table defines the structural relationship
between fields in the source data and their corresponding attributes in the OMOP CDM.

The mapping table serves as a central configuration resource for the custom transforma-
tions. It specifies, for each field in a source form, where its data should be placed within
the OMOP CDM and how it contributes to a target record. This structural mapping
includes identifying the correct OMOP CDM table and column, as well as grouping
related source fields into coherent target records.

The structure of the mapping table includes the following fields, as shown in Table 5.4.

Template ID Unique identifier for the template used to process the
current part of a form.

Source form ID Foreign key to the source form that provides the data.
Source attribute ID Foreign key to the specific form field (attribute) within

the source form.
Source field Identifier of the field in the source data that contains

the value. The source fields are possible:
• The original value stored in the RDA platform.
• The concept ID of the code associated with the

value set entry corresponding to the original value
stored in the RDA platform.

• The standard concept associated with the value set
entry corresponding to the original value stored
in the RDA platform.

• The value associated with the value set entry cor-
responding to the original value stored in the RDA
platform.

• The original attribute stored in the RDA platform.
• The concept ID of the code associated with the

attribute.
• The standard concept associated with the at-

tribute.
• The original unit stored in the RDA platform.
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Source field Contin.
• The concept ID of the code associated with the

unit corresponding to the original value stored in
the RDA platform.

• The standard concept associated with the unit
corresponding to the original value stored in the
RDA platform.

• Use the fixed value specified in the structural
mapping table.

Target table The OMOP CDM table where the data will be inserted.
Target field The target field in the OMOP CDM table where the

data will be inserted.
Fixed value A constant that should be assigned to the attribute in

the target instead of a value-specific semantic mapping
based on the source data.

Use default mapping A flag indicating if the default mapping should be used
for this form position.

Referenced template ID Foreign key to the template ID from which the related
record originates and to which this record should be
linked (for record linking via event fields).

Table 5.4: Structure of the mapping table for the custom transformations.

The following constraints are enforced to ensure the integrity and clarity of the mappings:

• All rows describing the same target record need to have the same template ID.

• Within a single template, each target field may only occur once. The template ID
and target field are unique in combination.

• Within a single template, the target table has to be the same for all records.

• Within a single template, the source form has to be the same for all records.

• The target table has to match an OMOP CDM table name.

• The target field has to be a column of the OMOP CDM table specified in the target
table.

• If a fixed value is assigned for the semantic mapping, the column source field needs
to indicate that the fixed value should be used. Otherwise, the fixed value column
needs to be empty.

• The following columns have to be not null: template id, source form id, source
attribute id, and target table.
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This structured approach to mapping enables a clear separation of transformation logic
and mapping configuration. It enables flexible adaptation to new data structures and
supports the automated validation of mapping rules.
In addition to explicitly defined mappings, a set of default mappings is defined for the
standard case. These defaults represent common and recurring field mappings that apply
across most forms and use cases. The column “use_default_mapping” is used to indicate
whether the default mapping should be used for a specific form position. In this case,
only the target table needs to be specified.
This mechanism ensures that the mapping table only needs to capture exceptions or
custom mappings, significantly reducing its size and complexity. At the same time, it
allows flexibility as any default behavior can be overwritten by adding a corresponding
entry to the mapping table, giving precedence to explicitly defined mappings when both
exist. Additionally, the default mappings can be extended by custom mappings to fit the
specific use case.
This layered mapping strategy combines scalability and customizability, streamlining the
transformation process while maintaining complete control over specific edge cases.
In the default case, the mapping logic relies on the metadata associated with the form
field to derive the necessary target values for the OMOP CDM.
The terminology code linked to the form field is used to determine the appropriate
concept_id for the specimen, measurement, observation, condition_occurrence, or proce-
dure_occurrence. The concept id associated with this terminology code is also stored in
the source_concept_id column to preserve the original semantic identifier. The human-
readable label of the form field, which provides a descriptive name from the source system,
is stored in the source_value column.
The document date is used to populate the date and datetime fields for the record. The
type_concept_id is set to the standard concept representing “EHR”.
For fields with numeric or quantitative values, the unit is derived using the standardized
terminology code associated with the form field’s unit definition. This value is used
to determine the unit_concept_id, while the concept id associated with the original
unit code and the label are stored in unit_source_concept_id and unit_source_value,
respectively.
The person_id is resolved via the patient identifier, which is recorded in the per-
son_source_value.
If the OMOP CDM table includes a value field, the value_as_number is derived from the
numerical value column of the document field. The value_source_value is derived from
the textual value column of the document field. In cases where a value_as_concept_id
is needed, the form field must be linked to a value set. This set contains standardized
terminology codes for each possible value of the form field, which are then mapped to
concept IDs. Further details on how values are semantically mapped are provided in the
following subsection.
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To capture visit context, the visit_occurrence_id and visit_detail_id are derived based
on the inpatient stay and ward stay associated with the document. If no explicit ward
stay is linked, the correct stay is inferred by comparing the document date with the date
range of available ward stays.

Semantic Mapping

To enable semantic interoperability between the RDA platform and the OMOP CDM,
data elements from the RDA platform must be aligned with standardized terminologies
such as SNOMED CT, LOINC, or ICD-10. Since the RDA platform does not natively
rely on standardized vocabularies, an additional semantic mapping layer is introduced.
This mapping layer defines how various RDA platform elements correspond to OHDSI
standard concepts and enables consistent, automated transformation into the target
CDM.

A key advantage of this approach is that mappings are stored directly within the source
database. As a result, no separate mapping step is required during data integration into
the OMOP CDM, which significantly reduces the complexity of the ETL process and
improves efficiency by shifting terminology alignment to the source level rather than
embedding it in transformation logic.

To store the semantic mapping in a structured and maintainable way, a set of dedicated
mapping tables is introduced into the RDA platform. Each table references a specific type
of RDA platform database object, such as form fields, value sets, or units, and associates
each entry with a standardized terminology code and its corresponding vocabulary.

Instead of storing this semantic information directly in the existing core tables, it is
stored in separate mapping tables. This design offers several advantages. First, it ensures
a clear separation of concerns: structural definitions remain in the core tables, while
semantic information is encapsulated elsewhere. It also supports the association of
multiple vocabularies with the same source element, enabling more flexible mappings.
Furthermore, semantic mappings can evolve independently of the structural metadata,
allowing updates or extensions without requiring modifications to the core schema. The
separation also improves validation and maintainability, as constraints, data quality
checks, and indexing can be applied more easily.

Separate mapping tables are preferred over a unified table because they offer a more
transparent structure and allow for simpler validation, indexing, and extension. By
assigning each object type to its table, the mapping remains clear, semantically accurate,
and easier to maintain over time.

Each record in the mapping tables contains a foreign key to the corresponding RDA
platform object, along with a standardized terminology code and the vocabulary it
belongs to. The value and valueVocabulary fields are used together to determine the
concept_id from the OHDSI standardized vocabularies. The vocabulary must be a valid
OHDSI vocabulary (e.g., SNOMED CT, LOINC, ICD-10). In the context of this ETL
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process, the necessary semantic mapping tables are for the form positions, value sets,
and units.

For form fields linked to a value set, the value assigned in the document is matched
against entries in that set. The matching also includes synonyms, which are defined in
the attributes column of the value set item. This design enables robust handling of typos
and alternative spellings.

In some cases, semantic meaning is not expressed explicitly but inferred, e.g., the presence
of a microorganism may be implied by a single entry without an explicit "positive" flag.
Such implicit mappings are handled using the mapping to a second value stored in the
attributes of a value set entry. This additional data allows the system to resolve the
combined semantic meaning from minimal data.

As part of a proposed extension, the semantic metadata for value sets will be stored
using JSON in the attributes column of the value set entries. This approach has not yet
been implemented, but is planned to support a wide range of use cases in a flexible and
extensible manner. By adopting a structured JSON format, the system will be able to
represent rich semantic details, such as synonyms, vocabulary codes, and context-specific
mappings, within a single column, without requiring additional schema changes.

To ensure data quality, the proposed JSON structure will be validated using a defined
JSON Schema. This validation guarantees that the structure and data types conform to
expected formats, that all required fields are present, and that records remain consistent
across the dataset. Additionally, the schema serves as self-documentation, supporting
both developers and maintainers in understanding and managing the data structure.

A typical JSON object may include the relevant fields “synonyms”, “value”, and “val-
ueVocabulary”, and can be extended by use-case-specific fields that are ignored by the
standard ETL logic. The "synonyms" field is optional and may contain a list of alternative
terms or spellings. The "value" and "valueVocabulary" fields can be used to represent
an associated result concept, such as positive or negative outcomes in the case of a
measurement. An exemplary JSON document for the attributes column is provided
below in Listing 5.1.

Listing 5.1: Sample data Microorganisms.
1 {
2 "synonyms": [
3 "E. coli",
4 "Colibacillus",
5 "Bacterium coli"
6 ],
7 "value": "260373001",
8 "valueVocabulary": "SNOMED"
9 }

Listing 5.1: Sample data Microorganisms.
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To validate this structure, the following JSON Schema is applied, as shown in Listing 5.2.

Listing 5.2: Schema Microorganisms.
1 {
2 "$id": "http://meduniwien.ac.at/microorganism.schema.json",
3 "$schema": "https://json-schema.org/draft/2020-12/schema",
4 "title": "Microorganism",
5 "type": "object",
6 "properties": {
7 "synonyms": {
8 "type": "array",
9 "description": "A list of synonyms for the organism.",

10 "items": {
11 "type": "string"
12 },
13 "minItems": 0,
14 "uniqueItems": true
15 },
16 "value": {
17 "type": "string",
18 "description": "The unique code for the value concept."
19 },
20 "valueVocabulary": {
21 "type": "string",
22 "description": "The vocabulary for the value.",
23 "const": "SNOMED"
24 }
25 },
26 "required": [
27 "value",
28 "valueVocabulary",
29 "isCSC"
30 ],
31 "additionalProperties": false
32 }

Listing 5.2: Schema Microorganisms.

This approach ensures that terminology metadata is not only semantically aligned with
the OMOP CDM but also structurally validated and future-proof. By combining JSON
and JSON Schema, the RDA platform achieves a balance of flexibility, standardization,
and maintainability in its semantic mapping strategy.

In situations where the correct concept depends on the combination of two form values,
an external mapping file is used. This file defines valid value combinations and their
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fomu fopo text fopo-x fopo-x-text target target-vocab
105 2 Blut 3 Kultur 446131002 SNOMED CT
105 2 Blut 3 Bakterielle

Breitspektrum-PCR
119297000 SNOMED CT

Table 5.5: Example for a semantic mapping where the correct concept depends on the
combination of two values.

associated standardized codes. During the ETL process, both input values are evaluated
together to determine the correct concept_id. An example is provided in Table 5.5.

ETL process

For the ETL process, the following assumptions are made regarding how the relevant
data is stored in the RDA platform.

1. If the semantics of a form field are needed in the ETL process, associated stan-
dardized terms and their corresponding vocabularies are stored in the semantic
mapping tables for the form fields. There are standardized terms for both the
semantic meaning and the unit of a numeric value (if applicable).

2. Each form field containing textual values is associated with a value set that defines
a set of acceptable values for that field.

3. Each value in the value set is, in turn, associated with standardized terms and
vocabularies stored in the mapping table for value sets, analogous to the form field
itself.

4. If applicable, synonyms are stored in the attributes column of the value set entry
to cover typos and alternative spellings.

5. If the value in the value set also requires a mapping to a value, for example, for
measurements where the value in the value sets describes both the measurement
and the result, but the data needs to be split in the OMOP CDM, the value to
which this concept is mapped is also stored in the attributes of the value set entry.

6. Each form field references an item representation, which references an item type.

The input to the custom transformation is the template ID, which references a correspond-
ing OMOP CDM record. For each template ID, the same sequence of transformation
steps is executed. These steps are configured based on metadata retrieved using the
template ID. Figure 5.9 illustrates the transformation steps performed for each template.
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Figure
5.9:

BPM
N

m
odelofa

custom
transform

ation.
T

he
input

to
the

custom
transform

ation
is

the
tem

plate
ID

,w
hich

represents
a

corresponding
O

M
O

P
C

D
M

record
type.

For
each

tem
plate

ID
,the

sam
e

sequence
oftransform

ation
steps

is
executed.

T
hese

steps
are

configured
based

on
m

etadata
retrieved

using
the

tem
plate

ID
.

70



5.2. Implementation Concept

1. The form fields, documents, values, and OMOP_Mapping tables are joined. Rel-
evant records are selected from the joint tables by filtering the data using the
template ID.

2. For each form position associated with a value set, the standardized code is extracted
from the attributes column of the corresponding value set item. The correct record is
identified by comparing the value assigned to the document position to all values in
the value set, including any defined synonyms. Once a matching record is identified,
the associated standardized code is retrieved. In cases where the mapping depends
on a combination of two form positions, the value sets are not used to provide
the semantic mapping. The mapping is provided in a separate CSV file. This file
specifies combinations of values from both form positions and the corresponding
target code. Finally, the concept_id for each assigned standardized code is derived.

3. If the attributes of the value set also include a mapping to a value, its corresponding
concept_id is also derived.

4. The concept_id linked to the standardized code associated directly with the form
field is derived.

5. The concept_id for the unit associated with the form field is derived.

6. If the derived concept IDs are not standard concepts, the associated standard
concepts are derived.

7. The data is pivoted according to the mappings defined in the OMOP_Mapping
table, along with the default mappings applicable to the target OMOP CDM table.

8. Identifiers such as person_id, visit_occurrence_id, and visit_detail_id are derived.

9. The date field is extracted from the datetime field by removing the time component.

10. To populate event fields, such as measurement_event_id or observation_event_id,
related records are identified using the referenced template ID from the mapping
table and the document ID of the current document. During the transformation
process, a temporary lookup table is created containing the target OMOP CDM
table, template ID, document ID, and primary key of each transformed record.
This table is used to find and assign the correct related record to the event field of
the current row.

11. A default type_concept_id is added, representing the provenance as “EHR”.

12. Columns required by the OMOP CDM but not present in the data are added and
filled with NULL values.

13. The transformed data is loaded into the designated OMOP CDM target table.
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The metadata required for the custom transformation process is queried based on the
provided template ID and then injected into the respective transformation steps. This
metadata provides the necessary configuration, allowing the ETL process implementation
to remain generic and adapt the transformation logic to different templates and OMOP
CDM record types without requiring hardcoded rules for each OMOP CDM table. The
metadata includes:

• Structural mapping of form fields to the corresponding OMOP CDM fields, ensuring
each source field is correctly aligned with its target.

• Default mappings for the target OMOP CDM table to fill in values when no custom
mapping is defined.

• Source field identifiers, such as form field IDs, to locate the correct values in the
source data.

• Data type information of the source data to determine how to interpret and process
each field’s value.

• The target OMOP CDM table and column names, specifying the schema for loading
the transformed data.

• Value set references that link form fields to a predefined list of possible values,
which are then semantically mapped to standardized concepts.

• Unit mappings that associate form fields with units and the corresponding stan-
dardized codes.

By organizing all this information in metadata, the system supports a highly flexible,
reusable, and scalable ETL process that can adapt to new forms, templates, or mappings
without manual intervention.

5.3 Prototypical Implementation
The following section presents the prototype developed to demonstrate and evaluate
the ETL approach proposed in Section 5.2, which transforms healthcare data from the
EAV-based research database of the MedUni Vienna into the OMOP CDM. Workflow
sequences were implemented according to the design principles established in collaboration
with the domain expert, ensuring alignment with functional objectives, clinical data
standards, and domain-specific constraints. The section begins by outlining the selected
technology stack, highlighting the rationale for choosing specific tools and frameworks
in the context of the project’s requirements. Subsequently, a detailed description of the
implementation is provided. The prototype serves as a proof of concept to validate the
feasibility of the generic ETL solution.
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5.3.1 Technology Stack
As described in Section 3.5, this thesis focuses on open-source ETL tools due to licensing
considerations facilitating the reuse and extension of the developed prototype. Opting
for an existing ETL tool over developing an in-house tool also minimizes development
overhead and reduces resources needed for performance optimization and long-term
maintenance. Using a pre-existing ETL tool also facilitates the reuse of the developed
prototype. The accessible and user-friendly nature of ETL tools makes it easier for non-
technical users, such as healthcare professionals or researchers with limited programming
skills, to leverage and reuse the prototype. This capability is crucial for fostering broader
adoption and integration of the solution, as it lowers the barrier to entry and allows
teams without coding expertise to benefit from the developed system.

The choice of PDI [59] as the ETL tool for this prototype was guided by several critical
factors that ensured its suitability for the project’s objectives. One of the key consid-
erations was user accessibility, as the tool offers a highly intuitive graphical interface,
making it especially advantageous for users with limited experience in data integration or
ETL processes. This feature was essential because the ETL process implemented in the
prototype was intended to be easily customizable and reusable for future projects. PDI’s
user-friendly design allows new users to quickly design, execute, and troubleshoot ETL
workflows, reducing the learning curve typically associated with more complex tools.

In addition to its ease of use, PDI provides a comprehensive set of functionalities that
address the full scope of the ETL process. The tool supports various connectors for
different data sources and sinks, enabling complex transformations and including robust
error-handling capabilities. These features ensured the seamless integration of diverse
data formats and sources in the prototype, particularly those based on structured,
relational data. Furthermore, PDI’s open-source nature and active community provide
valuable resources for resolving issues and sharing best practices, which can be particularly
beneficial in a development and prototyping environment.

The decision to use an ETL tool rather than manually implementing data integration
was driven by the need for an automated and scalable solution to handle data extraction,
transformation, and loading. ETL tools offer significant advantages over manual processes,
including built-in features for automation, data quality control, logging, and monitoring,
all of which are essential for ensuring the integrity and efficiency of the data pipeline.
Without such a tool, the ETL processes would have required extensive manual effort,
increasing the likelihood of errors and introducing unnecessary complexity. By selecting
PDI, the project benefited from a reliable, flexible, and extensible data integration
platform that streamlined the entire process, allowing for a greater focus on the core
objectives of the prototype.

SQLite [68] was selected as the development database due to several advantages. As a
lightweight, serverless, self-contained database engine, it requires minimal setup, making it
ideal for the development phase of the prototype. Its small footprint and simplicity allow
for rapid testing without the overhead of more complex database systems. Additionally,
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Figure 5.10: Architecture of the Prototype.

SQLite offers fast performance for small-scale datasets, which is well-suited for the scope of
the test data. Its file-based nature makes it easy to store, share, and transfer the database
while consuming minimal system resources compared to larger database management
systems. Furthermore, SQLite fully supports SQL, enabling efficient querying and data
manipulation, essential for the ETL process [69]. These factors made SQLite a practical
and efficient choice for managing test data and facilitating the development of the
prototype.

The technical architecture of the prototype follows a layered architecture model. This
model is structured into three main layers: Control Layer, ETL Process Layer, and Data
Storage Layer. The Control Layer is responsible for orchestrating the ETL processes
by initiating data loads and managing configurations. The ETL Process Layer contains
the core logic for data extraction, transformation, and loading. The Data Storage Layer
manages the storage of both the source data and the transformed data. Figure 5.10
illustrates the architectural design of the prototype ETL system.

5.3.2 Implementation Details
The Data Integration perspective of PDI allows the creation of two primary file types:
transformations and jobs. Transformations define the data flows for the ETL process,
including data extraction from a source, applying transformations, and loading the
processed data into the target location. Jobs orchestrate these ETL activities by managing
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Figure 5.11: UML Component Diagram of the prototype architecture. The ETL Trans-
formations subsystem is displayed as placeholder for all ETL Transformations.

the execution flow, handling dependencies between transformations, and incorporating
control logic such as conditional execution, file existence checks, or table validation.

The ETL process in this prototype is governed by a master job, which orchestrates
the entire pipeline in a modular and structured manner. This master job coordinates
individual transformations, each responsible for specific sub-tasks. Such a modular design
enhances maintainability and reusability by encapsulating discrete logic units within
separate transformations. Figure 5.11 illustrates the component-based architecture of
the prototype.

The master job initiates the process by setting up the OMOP CDM schema in the target
database and executing the transformations for each OMOP CDM table in a sequential
order. Each table-specific transformation is implemented in an independent transforma-
tion invoked in a predefined order to ensure data integrity and correct referencing. For
example, core entities, such as Person, are created before dependent entities, like Visit
Occurrence or Death. A screenshot of the implemented master job in PDI is provided in
Figure 5.12.

To validate the functionality and test the prototype of the system, synthetic test data
was generated to simulate real-world scenarios while adhering to the structure of the
OMOP CDM. The administrative data was generated with the support of the generative
AI chatbot ChatGPT [70], developed by OpenAI. Prompting ChatGPT with the required
DDLs and table semantics enabled the creation of semantically consistent datasets that
matched the expected data structure of the RDA platform. The clinical data were created
in a guided process: candidate values were proposed with ChatGPT, curated, and, where
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necessary, manually adjusted to reflect realistic clinical scenarios while ensuring validity
against the target OMOP CDM tables. Additionally, clinical data was manually created
based on real-world use cases and the structure of the OMOP CDM tables targeted
in the transformation process. The data includes representative examples of common
clinical scenarios, covering a range of medical observations, procedures, and measurements.
Although synthetic, the data was designed to reflect plausible clinical content and to
support the end-to-end testing of the ETL pipeline. Mock-ups of the corresponding input
forms are provided in Appendix A to illustrate the documentation structure and field
definitions. The focus was not on building a statistically representative population but on
providing sufficient coverage of typical cases to test the system end-to-end. This approach
ensured the creation of synthetic yet semantically valid data, allowing the system to be
tested against realistic data structures without using the real-world data intended to
evaluate the ETL process.

Data was generated for all key tables in the RDA platform, as outlined below:

Patients: Data was generated for 25 unique patients, each with an ID, sex, birth date,
and, where applicable, a death date. This patient data is designed to represent
a diverse population, which is necessary for testing the system’s performance
and handling different patient characteristics. 25 patients were created to ensure
variation across characteristics such as sex, presence or absence of a death date,
and different combinations of inpatient and outpatient stays.

Wards: Data for 26 wards, including IDs, names, and types (e.g., standard wards
labeled "st" and operating wards labeled "op"), were generated. The hospital was
also included as a special ward within the data set. 26 wards were included to
provide both standard and operating wards as well as the hospital entity itself,
allowing transfer and movement data to be meaningfully represented.

Inpatient and Outpatient Stays: For each patient, both inpatient and outpatient
stays were generated. Each stay received a unique ID and included attributes such
as start and end dates, minimum and maximum dates, and the type (inpatient or
outpatient). Inpatient stays were further enriched with an admission type. Each
patient was linked to at least one inpatient and one outpatient stay, ensuring both
pathways could be validated.

Movement Data: In addition to the stay data, movement data was generated to track
patient admissions, discharges, and transfers within the hospital. This movement
data includes unique IDs, links to the corresponding stay, the type of movement (e.g.,
admission, discharge, transfer), the date, and the ward involved in the movement.

Form positions: Data for form positions was created to define the structure and content
of various clinical forms used in the test data. Each form position consisted of
the form ID, form position ID, item display ID, form position name, and linked
value set. The fields were designed to reflect realistic documentation requirements
commonly found in clinical practice.
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Documents: Clinical documents were generated to simulate filled-out forms for indi-
vidual patients and cases. Each document includes a unique key, has a date, a
reference to the corresponding form, and is associated with a specific patient and
stay.

Document positions: For each document, document positions were created to record
the values entered into individual form fields. Each entry includes the document
reference, the form reference, the field reference, the patient reference, and the
captured value.

Value set entries: Value set entries were created to define the accepted values for
categorical fields within the form positions. Each value consists of a unique key,
a reference to the value set, the value, and an attributes column holding a JSON
object.

Item types: The available item types were created.

Item displays: The available item displays were created.

This deliberate coverage created a diverse but not overly complex test population,
sufficient to validate data flows. The number of individual records was not driven by
statistical requirements but rather by the need to cover a variety of combinations.

Setup of the OMOP Common Data Model

Before any data transformations occur, the PDI master job creates the OMOP CDM
schema in the target database. This includes creating all the required tables and
constraints according to the OMOP CDM specification. The schema setup is executed
conditionally only if a predefined condition variable is set to true. This setup process
is encapsulated in a separate job, which is then referenced by the master ETL job to
ensure a clean and modular pipeline.

The OMOP CDM schema setup is executed through SQL scripts provided by the OHDSI
GitHub repository [71]. These scripts define the database structure, including tables,
relationships, and constraints, essential for organizing healthcare data in the OMOP
format.

A critical component of the schema setup is loading the OHDSI standardized vocabulary,
which is essential for standardizing the terminology and concepts used across the CDM.
The vocabulary loading is handled in a separate job, which is called from the setup job.
This separation ensures that the process remains clear and manageable. The vocabulary
tables are loaded in the following order:

1. Vocabulary
2. Concept class
3. Domain
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4. Relationship
5. Concept
6. Concept ancestor
7. Concept relationship
8. Concept synonym
9. Drug strength

For each vocabulary table, a separate transformation exists that extracts the vocabulary
data from CSV files exported from Athena [72] and loads them into the OMOP database.

Data Transformation and Loading

After the setup, the tables of the OMOP CDM that do not contain the vocabulary are
truncated to ensure that in consecutive runs of the job, no old data is mixed with the new
data. The Truncate statements are executed via an SQL script. Next, the transformations
for the separate OMOP CDM tables are executed. First, the fixed transformations are
executed. The transformations handle the OMOP CDM tables in the following order:

1. Care site
2. Fact relationship
3. Person
4. Death
5. Visit occurrence
6. Visit detail
7. Observation period (after custom transformations)

The custom transformation is executed for each template ID listed in the list of templates
to be transformed.

Care site. The implementation of the care site transformation follows the conceptual
workflow described in Section 5.2.2. In PDI, relevant records are extracted from the
source table of clinical units, assigned the appropriate place_of_service_concept_id,
and deduplicated to ensure uniqueness. The resulting dataset is then written into the
CARE_SITE table.

Fact relationship. The implementation of this workflow in PDI follows the conceptual
design described in Section 5.2.2. The relevant data is extracted from the care_site table
and then split into two branches to represent the “is part of” and “contains” relationships.
In each branch, the care_site_id is renamed to represent the respective fact id, and the
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appropriate concept ID for the hierarchical relationship is assigned as a constant. After
that, the care site ID of the AKH is added as the other fact to each row. After adding
the AKH’s care_site_id to each row, the two branches are merged, and the resulting
records are written into the FACT_RELATIONSHIP table.

Person. Patient data is processed according to the mappings introduced in Section 5.2.2.
In PDI, the gender attribute is converted into standardized concept IDs, the birth date
is split into year, month, and day, and race/ethnicity fields are added as constants. A
deduplication step prevents duplicate patient records before the data is inserted into the
PERSON table.

Death. The transformation of death-related information is implemented as described
conceptually in Section 5.2.2. Patient identifiers are mapped between source and target
systems, the date of death is derived from available datetime fields, and a constant value
is used to assign the death-type concept ID. The records are then loaded into the DEATH
table.

Visit occurrence. Visit information is processed in accordance with the rules described
in Section 5.2.2. In practice, visit periods are derived from datetime fields. Concept IDs
representing visit type and setting are assigned, and the care site of the AKH is added.
The processed records are stored in the VISIT_OCCURRENCE table.

Visit detail. The patient movement data is transformed as outlined conceptually in
Section 5.2.2. In PDI, movement timestamps are grouped to construct visit intervals,
linked to their corresponding visit occurrence and care site IDs, and enriched with the
appropriate concept IDs. Invalid rows without a matching visit occurrence are filtered
out before loading the data into the VISIT_DETAIL table.

Observation period. Observation periods are generated following the approach de-
scribed in Section 5.2.2. In the implementation, start dates are derived from the first
available clinical or visit events. In contrast, end dates are determined by either the
death date, the last clinical activity, extended by 60 days, or the extraction date. Invalid
entries are filtered out, and a constant period type concept ID is added before inserting
into the OBSERVATION_PERIOD table.

Custom transformations. The custom transformations of the ETL process are based
on a transformation template executed for each template ID. A CSV file stores the list of
template IDs that should be processed. Each row in this file corresponds to a distinct
transformation run for a given data configuration.

To execute the same transformation logic for each template ID dynamically, the pattern
based on PDI “Copy rows to result” step [73] is applied. This step allows transferring rows
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in memory from one transformation to another, eliminating the need for intermediate
disk or database storage.

The setup consists of a parent job with two sequential transformations. The first
transformation reads the template IDs from the CSV file and passes them via “Copy
rows to result.” The second transformation consumes this in-memory data by enabling
“Copy previous results to parameters” and “Execute for every input row.” This causes
the transformation to be executed once per input row (i.e., once per template ID),
effectively implementing loop-like behavior analogous to a “for each loop” in conventional
programming.

This pattern enables modular and efficient processing, particularly in scenarios that
require repeating the same logic for multiple configurations while maintaining a clear
separation between control flow and data transformation logic.

To support custom transformation behavior, the implementation leverages PDI’s “ETL
Metadata Injection” step [74]. This feature allows transformation steps to be parameter-
ized at runtime using metadata derived from external sources such as files or database
queries. Instead of creating static, hardcoded transformations for each input structure, a
single template transformation is defined. The actual behavior and configuration of this
template are controlled via metadata injected at runtime.

After reading the CSV file with template IDs, the transformation responsible for injecting
metadata into the template transformation is executed. This intermediate transformation
performs several queries to gather the required metadata from the RDA platform and
the OHDSI standardized vocabularies. It contains five distinct branches, each preparing
a specific part of the metadata:

• A branch that retrieves and merges default and custom structural mappings, enriches
them with data types.

• A branch that determines the name of the datetime column.

• A branch that retrieves all column names for the target OMOP CDM table.

• A branch that determines the appropriate name of the date and type_concept_id
columns.

• A branch that combines the name of the date column with the name of the column
for the calculated visit_detail_id.

These metadata fragments are injected into the template transformation via the Metadata
Injection step. The template transformation then performs the actual transformation of
the source data to the OMOP CDM.

Within the template transformation, data is extracted from the clinical data source tables
and from the OMOP_Mapping table that specifies the structural mapping.

The relevant value sets are retrieved, and the attributes of the value set items stored in
JSON format are decoded into individual columns. The values in the source data are
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matched with the value set items. The standardized codes from the value set, form field,
and units are resolved to concept IDs using the OHDSI standardized vocabularies. The
transformed data is subsequently pivoted according to the structural mapping. Foreign
keys are derived for the person_id, visit_occurrence_id, and visit_detail_id. If the data
is not directly linked to a visit detail, the appropriate visit_detail_id is calculated based
on the record dates and ward movements.

The date is extracted by truncating the time component from the datetime. A type_
concept_id is assigned, and missing columns (based on the complete column list of
the OMOP CDM target table) are appended with NULL values to ensure schema
compatibility.

Finally, the transformed data is written into the respective OMOP CDM table.

This dynamic and metadata-driven approach allows the ETL system to flexibly adapt to
new datasets or changes in data structure without requiring changes to the underlying
transformation logic.

82



CHAPTER 6
Evaluation

This chapter presents two evaluation scenarios that demonstrate the practical application
of the generic ETL code base developed in this thesis. These evaluation scenarios were
selected to highlight the system’s flexibility, effectiveness, and performance in transforming
heterogeneous healthcare data stored in the EAV model of the RDA platform at the
MedUni Vienna into the standardized OMOP CDM.

The first evaluation scenario focuses on the automated surveillance of hospital-onset
bacteremia and fungemia (HOB), a clinical quality and infection control use case that
relies on timely and accurate data. The second evaluation scenario, breast cancer
benchmarking (BCB), is part of a broader initiative aimed at evaluating and comparing
treatment quality across institutions.

Each evaluation scenario follows a consistent structure:

• The background section outlines the clinical or research motivation and the intended
use of the data-driven system.

• The data section describes the relevant datasets and their sources within the RDA
platform of the MedUni Vienna.

• The transformation results section presents the outcome of the ETL process into
the OMOP CDM in terms of data accuracy and completeness.

• Performance metrics evaluate the runtime efficiency of the transformation.

Together, these evaluation scenarios illustrate the practical relevance, adaptability, and
generalizability of the developed ETL framework across different clinical use cases.

To support the execution of the evaluation scenarios in a production-like setting, the
architectural design differs slightly from the development environment. While the
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Figure 6.1: Architecture of the Prototype for the Evaluation.

development of the generic ETL code base was carried out using a lightweight SQLite
database to ensure portability and rapid prototyping, the evaluation scenarios operate
entirely on an Oracle-based infrastructure. Both the source data in the RDA platform
and the target OMOP CDM database are hosted on Oracle databases provided by the
MedUni Vienna. Oracle was selected for its richer set of features and better alignment with
existing clinical systems, ensuring compatibility, performance, and production readiness.
Figure 6.1 illustrates the adjusted architecture used for the evaluation scenarios.

After presenting the evaluation scenarios, this chapter discusses the technical, semantic,
and practical challenges encountered during the implementation of the ETL process, along
with the strategies used to address them. The challenges are organized into three sections:
challenges common to both evaluation scenarios, highlighting general implementation
challenges, and those specific to each evaluation scenario, reflecting context-dependent
challenges and solutions.

The subsequent section evaluates the developed ETL prototype against the functional
and non-functional requirements defined in Section 5.1. This evaluation draws on both
the implementation results and the insights gained from the two evaluation scenarios.
Each requirement is assessed individually and marked as fulfilled, partially fulfilled, or
not fulfilled.
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6.1 Evaluation Scenario 1: Automated Surveillance of
Hospital-onset Bacteremia and Fungemia

This evaluation scenario demonstrates the application of the generic ETL code base to
support the automated surveillance of HOB, a critical task in hospital infection control
and quality assurance. The focus lies on transforming routine clinical data from the RDA
platform of the MedUni Vienna into the OMOP CDM to enable standardized analysis
and comparison. The following subsections describe the medical background, underlying
data, transformation outcomes, and performance metrics.

6.1.1 Background
Healthcare-associated infections (HAIs) are among the most common adverse events
in medical care [75]. Patients acquire these infections while receiving treatment for
other conditions in healthcare facilities [76]. The infections are not limited to hospitals
but can occur in all healthcare facilities, such as long-term care facilities, rehabilitation
centers, or doctors’ offices [77]. The most common HAIs include surgical site infections
(SSIs), ventilator-associated pneumonias (VAPs) in intensive care units (ICUs), catheter-
associated urinary tract infections (CAUTIs), and HOBs [78]. This evaluation scenario
will focus on HOBs.

HAIs are a significant cause of prolonged morbidity and increased mortality in patients
receiving medical treatment and care in healthcare institutions [79], [80]. They also
cause prolonged LOSs and increased medical and nursing workload. Therefore, HAIs
not only burden the patients themselves due to the associated pain and discomfort but
also lead to increased healthcare costs [81]. For these reasons, surveillance of HAIs is
a global standard for infection prevention and control in hospitals. It enables targeted
implementation and monitoring of interventions to reduce the number of HAIs [82].

In most institutions, the surveillance is performed through a manual review of medical
records. This traditional surveillance method is performed by infection control practi-
tioners (ICPs) or infection control nurses (ICNs), who review the records to determine if
the definition of an HAI is met. The problem with this type of surveillance is that it
is time-consuming, labor-intensive, and costly. It is also prone to subjectivity. Suppose
the ratio of ICPs or ICNs to patients is disproportionate. In that case, the surveillance
may be limited in scope to cover only high-risk areas due to resource constraints or to
include only some patients, or it may have a delayed response. These problems should
be reduced by automated surveillance [83]. The increased availability of data stored in
EHRs provides opportunities to (partially) automate the surveillance of HAIs.

The aim is to facilitate surveillance to identify outbreaks, enable early interventions, and
reduce the burden on ICPs and ICNs by reusing existing routine care data to detect and
document HAIs. It also enhances the efficiency of the surveillance through automated
data extraction and analysis. It provides real-time or near-real-time monitoring of
HAIs, ensuring timely identification and addressing of clusters of infections. Automated
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surveillance ensures consistency by applying standardized criteria for identifying and
reporting HAIs. It also offers comprehensive coverage by enabling surveillance of the
entire patient population rather than focusing solely on high-risk areas. A distinction
is made between semiautomated and fully automated surveillance. In semiautomated
surveillance, an algorithm divides the cases into those with a high probability of an HAI
and those with a low probability of an HAI. Only cases with a high probability of an
HAI are subject to manual chart review. With fully automated surveillance, the system
automatically classifies the cases as to whether an HAI is present or not [84].

The EU project PRAISE (Providing a Roadmap for Automated Infection Surveillance
in Europe) is leading the way in developing methodologies for automated HAI surveil-
lance to advance automated multicenter HOB surveillance from research to large-scale,
real-world implementation. The project focuses on creating standardized definitions
and algorithms for HAI detection, ensuring interoperability across different healthcare
institutions. Several recommendations for implementing automated surveillance are
being developed within this project, resulting in several guidelines, e.g., for governance,
technical requirements, etc. [85], [86], [87]. Now, members of this group have reconvened
and started to discuss automated surveillance with a focus on automated surveillance of
SSIs and HOBs. The PRAISE network developed an algorithm for automated surveillance
of HOB. Figure 6.2 shows a schematic representation of the algorithm. In this algorithm,
a HOB is defined as a positive blood culture with a recognized pathogen two or more days
after hospital admission. For Common Skin Commensals (CSCs), two positive cultures
within two days are required [88].

The HOB algorithm was applied retrospectively to data from four European hospitals,
demonstrating its feasibility and reproducibility. The results showed consistent HOB
rates across different hospitals. The study suggests that automated HOB surveillance
can be an actionable tool for infection control [88].

A significant challenge in developing automated surveillance systems is the integration
of heterogeneous healthcare data sources and their transformation into a standardized
format that ensures semantic interoperability. Such standardization is essential for
seamless data integration and enables scalable, reproducible epidemiological research
across institutions [89]. The OMOP CDM addresses this challenge by harmonizing
data from diverse healthcare systems into a common structure. Moreover, it promotes
reusability of analysis workflows, as consistent data structures eliminate the need for
site-specific adaptations [30].

6.1.2 Data
The PRAISE network defined a Minimal Data Set (MDS), specifying the minimally
needed data elements for the application of the HOB algorithm as well as the required data
structure to support validation and further deployment in different settings. The MDS
describes the minimum input to achieve the algorithm output and enabling reporting.
The following sections describe the essential data elements and their definitions.
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Figure 6.2: Schematic representation of the HOB algorithm [88].
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Patient Demographics

1. Patient ID: A unique identifier for each patient to track their medical records
without revealing personal information.

2. Sex: The patient’s sex.

3. Birth Date: The patient’s birth date.

4. Death Date: The patient’s death date (only if the patient died in the hospital).

Blood Culture Results

Only positive blood cultures are considered.

1. Blood culture ID: A unique identifier of each microorganism in a blood culture, for
example, a combined sample ID and isolate number.

2. Sample ID: A unique identifier for each blood culture sample. One sample can have
multiple isolates.

3. Patient ID: Reference to the patient.

4. Sample Date: Date when the blood culture was taken.

5. Sample Ward: The ward where the blood culture was taken.

6. Isolate Number: Sequential identifier of the microorganism in the blood culture.

7. Microorganism: Microorganism identified in the blood culture.

8. Attributable Ward: Ward where the patient was two days before the blood culture
was taken.

9. Hospital Admission Date: Date when the patient was admitted to the hospital.

Ward Classification

For reporting purposes, the wards are classified according to the European Centre for
Disease Prevention and Control (ECDC) ward specialty [90]. Data providers/hospitals
may also perform analyses by ECDC patient specialty [90] or a local ward classification
system.

1. Ward ID

2. ECDC ward specialty classification

3. ECDC patient specialty classification

4. Local classification
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Microorganism Classification

The algorithm runs on the local microorganism representations. The microorganisms
may be mapped to the CSC list by SNOMED CT code or manually.

1. Local microorganism ID

2. SNOMED CT Code of the microorganism

3. SNOMED CT label or local label of the microorganism

4. Indicator whether the microorganism is a CSC as per National Healthcare Safety
Network (NHSN) classification [91]

OMOP CDM tables

Based on the MDS of the PRAISE network, the following tables of the OMOP CDM are
needed:

• Observation_Period

• Person

• Death

• Specimen

• Measurement

• Care_site

• Visit_occurence

• Visit_detail

The structural mapping only needs to be specified for the care_site, specimen, and
measurement tables. The other tables follow the default implementation. For the care_
site table, the mapping of the care site to the ECDC ward specialty needs to be added.

6.1.3 Transformation Results
Following the execution of the ETL pipeline, the transformed care site and microbiology
data were analyzed within the OMOP CDM to evaluate completeness and consistency.

A total of 520 care sites were recorded. Thirteen care sites lacked an assigned ECDC
ward specialty due to missing mapping information.
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A total of 2,819 specimens were recorded, with the number of specimen records matching
the original microbiology documents, confirming a one-to-one correspondence between
source records and OMOP entries. Of these, three specimens were assigned a specimen_
concept_id of 0. These correspond to documents related to non-blood culture specimens,
which fall outside the current mapping scope and therefore lack a defined standard
concept.

Regarding temporal completeness, 409 specimens lacked a recorded specimen_datetime.
In these cases, only the document creation date was available in the source system. As a
fallback, the transformation pipeline preserved the date portion and left the time element
null to avoid introducing false precision.

Anatomic site information was partially incomplete. For 106 specimens, the anatomic_
site_concept_id was set to 0 due to the absence of a valid concept mapping. In an
additional 138 cases, the anatomic site information was not present in the source data,
resulting in both the anatomic_site_concept_id and the corresponding anatomic_site_
source_value being empty.

A total of 3,213 measurements were recorded, matching the number of original organisms
in the microbiology documents and confirming a one-to-one correspondence between
source and OMOP records. Two measurements were assigned a measurement_concept_
id of 0. These originated from non-blood culture documents outside the mapping scope
and were also assigned a value_as_concept_id of 0.

Regarding temporal completeness, 803 measurement records lacked a recorded measure-
ment_datetime. As with specimens, only the document creation date was available in
these cases. The transformation pipeline retained the date and omitted the time portion
to avoid false precision.

A total of 2,284 measurements lacked an assigned visit_detail_id. Since microbiology
documents in the source system were not consistently linked to encounter details, visit
matching had to be performed based on the available date information.

6.1.4 Performance
The performance of the ETL pipeline was evaluated based on execution time under
different configurations. The core ETL process, excluding setup and with caching
enabled, executed in 7.5 minutes, demonstrating efficient runtime for standard use.
Caching avoided redundant lookups for vocabulary mappings and concept relationships.

Among the transformation steps, the fixed transformations were executed in 1 minute,
while the custom transformations took 2.5 minutes. The setup of custom vocabularies
was completed in 4 minutes.

To assess end-to-end deployment time, a second benchmark included the setup phase,
such as schema generation, constraint application, and vocabulary loading. In this
configuration, the total runtime increased to 29.5 minutes, reflecting the overhead
introduced by database configuration and vocabulary loading.
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The setup of the OMOP CDM took 22 minutes, with most of this time spent loading the
OHDSI standardized vocabularies.

All ETL executions were performed on a Windows 10 Enterprise edition machine with a
64-bit Intel Core i9 3.20 GHz CPU and 32 GB of RAM.

6.2 Evaluation Scenario 2: Breast Cancer Benchmarking
This evaluation scenario demonstrates the application of the generic ETL code base to
support the benchmarking of breast cancer care quality indicators. The focus of this
evaluation scenario lies in transforming routine clinical data from the RDA platform of
the MedUni Vienna into the standardized OMOP CDM, thus enabling the execution of
systematic analyses using shared and reproducible analytical routines. The following
subsections describe the clinical background, source data characteristics, transformation
results, and performance metrics.

6.2.1 Background
Breast cancer is the most frequently diagnosed cancer among women in the European
Union (EU). According to Eurostat, in 2021, an estimated 84,800 people died from breast
cancer in the EU, of whom the vast majority (approximately 83,900) were women. Breast
cancer accounted for 7.4% of all cancer-related deaths in the EU population and 16.5%
of all cancer-related deaths among women [92], [93].

In terms of overall mortality, breast cancer was responsible for 1.6% of all deaths in the
EU in 2021, and 3.2% of all deaths among women. The age-standardized death rate for
breast cancer among women was 30.6 per 100,000 inhabitants, though this rate varied
substantially between member states, from a high of 37.4 per 100,000 in Hungary to a
low of 22.2 per 100,000 in Spain. These variations indicate potential differences in cancer
care delivery, early detection, and treatment outcomes across the EU [92], [93].

Breast cancer also places a substantial burden on health services. In 2021, EU hospitals
reported 447,100 inpatient discharges for breast cancer. Austria had the highest discharge
rate, exceeding 200 discharges per 100,000 inhabitants, while most countries reported
rates below 100 per 100,000. The average length of hospital stay for breast cancer patients
ranged from 1.9 days in the Netherlands to over 9 days in Germany and Malta [92], [93].

Given its high prevalence and burden, breast cancer represents a critical focus area
for efforts to improve care quality and outcomes through structured data analysis and
inter-institutional collaboration. In response to this challenge, the European University
Hospital Alliance (EUHA) initiated a collaborative benchmarking project focused on
breast cancer care. Nine leading university hospitals across the EU have partnered
to develop a minimal yet clinically relevant set of indicators that allow retrospective
comparison of care processes and outcomes in female breast cancer patients. These
indicators are derived from established international standards, including those developed
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by the European Society of Breast Cancer Specialists (EUSOMA) and the International
Consortium for Health Outcomes Measurement (ICHOM) [93], [94].

The primary aim of this project is not to produce a definitive benchmarking report,
but to demonstrate that clinically meaningful benchmarking across EUHA hospitals
is feasible within a short time frame and with sustainable effort. The project serves
as a proof-of-concept for federated benchmarking using harmonized electronic health
data. Each participating institution maps its local data to the OMOP CDM, enabling
decentralized calculation of indicator values using a standardized algorithm developed
by University Hospitals Leuven’s Management and Information Reporting team. Only
anonymized, aggregated metrics are shared centrally to ensure compliance with the
General Data Protection Regulation (GDPR) [93], [94].

This approach facilitates trust among institutions and enables benchmarking without
transferring patient-level data. By demonstrating the viability of this methodology in
breast cancer, a high-burden care program, the project aims to lay the groundwork for
broader benchmarking efforts across other diseases and care domains within the EUHA
network [93], [94].

Additionally, the project is aligned with broader European initiatives such as the Health
Outcomes Observatory (H2O), which seeks to integrate patient-reported outcomes with
clinical data across multiple diseases and jurisdictions. Within this context, participating
institutions like the MedUni Vienna are contributing data for various disease areas,
including breast cancer, further reinforcing the push toward data-driven, patient-centered
care across Europe [93], [94].

6.2.2 Data
The BCB project relies on a predefined set of key clinical and process indicators derived
from established frameworks such as EUSOMA and ICHOM. The indicators cover aspects
such as diagnosis, treatment cycles, and patient outcomes. The following sections describe
the essential data elements and their definitions.

Patient Demographics

1. Year of birth: The patient’s year of birth.

Diagnosis Information

1. Date of histological diagnosis (in case of metachrone metastasis): The initial date of
histological diagnosis of the local regional tumor (in case of metachrone metastasis).

Tumor Characteristics

1. Histological type: Indicate histologic type of the tumor (select all that apply).
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2. Tumor grade: Indicate tumor grade of DCIS component of tumor: (Bloom-
Richardson classification system).

3. Clinical tumor stage: Clinical tumor stage (per AJCC 8th Ed.).

4. Pathological tumor stage: Pathological tumor stage (per AJCC 8th Ed.).

5. Size of invasive tumor: Indicate the size of the invasive component of the tumor (in
mm).

6. Lymph nodes involved: Number of lymph nodes involved according to the TNM
stage (per AJCC 7th Ed.).

7. Estrogen receptor status: Indicate if the estrogen receptor status is positive.

8. Progesterone receptor status: Indicate if the progesterone receptor status is positive.

9. HER2 receptor status: Indicate if the HER2 receptor status is positive.

Surgical Interventions

1. Risk-reducing surgery before diagnosis of metastases: Indicate if the patient received
surgical removal of organs at high risk of developing cancer (e.g., removal of the
breasts) prior to metastases.

2. Surgery: Indicate whether the patient received surgery during the last year.

3. Surgery date: Provide the date of surgery.

4. Surgery on primary site: Whether the patient received surgery on the site of the
primary tumor.

5. Surgery on metastatic lesions: Whether the patient received surgery on metastatic
lesions.

6. Number of lymph nodes resected: Number of lymph nodes resected.

Treatment

1. Chemotherapy: If the patient received chemotherapy during the last year, please
indicate the intent of chemotherapy.

2. Radiotherapy: If the patient received radiotherapy during the last year, please
indicate the intent of radiotherapy.

3. Hormonal therapy: If the patient received hormonal therapy during the last year,
please indicate the intent of the hormone therapy.

4. Targeted therapy: Indicate what type of targeted therapy.
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5. Treatment 0: Indicate whether the patient received no initial treatment for the
primary tumor.

6. Start date of new treatment of metastases: Date when new treatment line (in case of
chemotherapy or hormonal therapy) or treatment modality (in case of radiotherapy
and surgery) was started.

7. Radiotherapy start date: Please provide the start date of radiotherapy.

8. Radiotherapy stop date: Please provide the stop date of radiotherapy.

9. Chemotherapy start date: Please provide the start date of chemotherapy.

10. Chemotherapy stop date: Please provide the stop date of chemotherapy.

11. Treatment status (treatment of metastases): Status of treatment of the metastases.

12. Treatment status (treatment of metastases) change date: Date of change in treat-
ment status.

13. Standard therapy versus experimental/clinical trial therapy: Whether treatment
was received according to the guidelines, standard therapy other than guideline, or
as part of a clinical trial.

14. Time from diagnosis to treatment: Time between the date of diagnosis of metastasis
(based on histological diagnosis on biopsy, and otherwise the date of diagnosis on
imaging) and the start date of first treatment.

15. Treatment of metastases: Chemotherapy (with or without targeted therapy):
Whether the patient received chemotherapy, neoadjuvant or adjuvant, for the
primary tumor.

16. Lines of Chemotherapy (with or without targeted therapy): Indicate the current line
of chemotherapy: 1st, 2nd–3rd, or 4th and beyond. Only applicable for systemic
therapy.

17. Treatment of metastases: Hormonal therapy (with or without targeted therapy):
Whether the patient received hormonal therapy, neoadjuvant or adjuvant, for the
primary tumor.

18. Lines of hormonal therapy (with or without targeted therapy): Indicate the current
line of hormonal therapy: 1st, 2nd–3rd, or 4th and beyond. Only applicable for
systemic therapy.

19. Treatment of metastases: Radiotherapy: Whether the patient received radiotherapy
during the last year for the primary tumor.

20. Localisation of (stereotactic) radiotherapy: The localisation of the (stereotactic)
radiotherapy.
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Outcomes

1. Vital Status: Indicate if the person has deceased, regardless of cause.

2. Date of death: Date of death.

3. Death attributable to breast cancer: Indicate if death is attributable to breast
cancer.

4. Progression Free Survival/duration of response: Time between initiation of treat-
ment for metastases and documented progression or change in treatment due to
lack of response.

5. Objective response: Response to treatment, categorized as complete response,
partial response, or no response.

OMOP CDM tables

Based on the data, the following tables of the OMOP CDM are needed:

• Observation_period

• Person

• Death

• Condition_occurrence

• Measurement

• Procedure_occurrence

• Drug_exposure

• Observation

• Care_site

• Visit_occurence

The structural mapping only needs to be specified for the condition_occurrence, mea-
surement, procedure_occurrence, drug_exposure, and observation tables. The other
tables follow the default implementation.
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6.2.3 Transformation Results
Following the execution of the ETL pipeline, the transformed care site, visit, and oncology
data were analyzed within the OMOP CDM to evaluate completeness and consistency.
A total of 7 care sites were recorded, matching the number of different care sites associated
with the source documents.
A total of 10,935 visit occurrences were recorded, matching the original oncology doc-
uments, confirming a one-to-one correspondence between source records and OMOP
entries. All visit occurrences had an assigned care site.
A total of 25,759 condition occurrences were recorded, matching the number of original
records in the RDA platform and confirming a one-to-one correspondence between source
and OMOP records. Of these, 365 records were assigned a condition_concept_id of 0.
For those records, the mapping was missing because the value was from an outdated
version of the value set and was not considered during the semantic mapping.
Regarding temporal completeness, 404 condition occurrences lacked a recorded condition_
start_datetime. In these cases, only the document creation date was available in the
source system. As a fallback, the transformation pipeline preserved the date portion and
left the time element null to avoid introducing false precision.
A total of 42,340 measurements were recorded, matching the number of original records
in the RDA platform and confirming a one-to-one correspondence between source and
OMOP records.
Regarding temporal completeness, 1,295 measurements lacked a recorded measurement_
datetime. In these cases, only the document creation date was available in the source
system. As a fallback, the transformation pipeline preserved the date portion and left
the time element null to avoid introducing false precision.
A total of 41,582 measurement records were eligible for linkage to a corresponding
condition occurrence. Of these, 39,178 include an actual reference. The remaining records
could not be linked because the corresponding condition occurrence was missing in the
source data, likely due to documentation inconsistencies or omissions.
A total of 47,218 procedure occurrences were recorded, matching the number of original
records in the RDA platform and confirming a one-to-one correspondence between source
and OMOP records. Of these, 777 records were assigned a procedure_concept_id of 0.
For those records, the mapping was missing because the value was from an outdated
version of the value set and was not considered during the semantic mapping.
Regarding temporal completeness, 5,197 procedure occurrences lacked a recorded pro-
cedure_datetime. In these cases, only the document creation date was available in the
source system. As a fallback, the transformation pipeline preserved the date portion and
left the time element null to avoid introducing false precision.
A total of 1,036 drug exposures were recorded, matching the number of original records
in the RDA platform and confirming a one-to-one correspondence between source and
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OMOP records. Of these, 139 records were assigned a drug_concept_id of 0. For those
records, the term was mapped to a non-standard concept, which is not mapped to a
standard concept. Therefore, no standard concept was assigned during the ETL process.

Regarding temporal completeness, 362 drug exposures lacked a recorded drug_exposure_
start_datetime. In these cases, only the document creation date was available in the
source system. As a fallback, the transformation pipeline preserved the date portion and
left the time element null to avoid introducing false precision.

A total of 30,092 observations were recorded, matching the number of original records
in the RDA platform and confirming a one-to-one correspondence between source and
OMOP records.

Regarding temporal completeness, 173 observations lacked a recorded observation_
datetime. In these cases, only the document creation date was available in the source
system. As a fallback, the transformation pipeline preserved the date portion and left
the time element null to avoid introducing false precision.

A total of 8,302 observation records were eligible for linkage to a corresponding condition
occurrence. Of these, 6,156 include an actual reference. The remaining records could not
be linked because the corresponding condition occurrence was missing in the source data,
likely due to documentation inconsistencies or omissions.

6.2.4 Performance

The performance of the ETL pipeline was evaluated based on execution time under
different configurations. The core ETL process, excluding setup and with caching enabled,
executed in 4 hours 29 minutes, reflecting the increased data volume and complexity
of the BCB dataset. Caching avoided redundant lookups for vocabulary mappings and
concept relationships.

Among the transformation steps, the fixed transformations were executed in 2 minutes,
while the custom transformations took 4 hours 23 minutes, indicating that the large
number of different templates was the main performance driver. The setup of custom
vocabularies was completed in 4 minutes.

To assess end-to-end deployment time, a second benchmark included the setup phase,
such as schema generation, constraint application, and vocabulary loading. In this
configuration, the total runtime increased to 4 hours 52 minutes, reflecting the overhead
introduced by database configuration and vocabulary loading. The setup of the OMOP
CDM took 23 minutes, with most of this time spent loading the OHDSI standardized
vocabularies.

All ETL executions were performed on a Windows 10 Enterprise edition machine with a
64-bit Intel Core i9 3.20 GHz CPU and 32 GB of RAM.
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6.3 Challenges of the Evaluation Scenarios
During the implementation of the evaluation scenarios, several challenges emerged. These
challenges arose from different aspects of the ETL process, including data modeling,
semantic mapping, configuration management, technical constraints, and performance
optimization. Some issues were inherent to the general task of adopting the prototype
to a specific use case, while others were specific to the characteristics of the individual
evaluation scenarios.

To provide a structured discussion, the following section first highlights challenges that
were common across both evaluation scenarios and then examines scenario-specific
difficulties in more detail. In each case, the description of the problem is followed by the
strategies adopted to mitigate or resolve it.

6.3.1 Common Challenges across both Evaluation Scenarios
Several challenges were not tied to the specifics of a single evaluation scenario but
emerged consistently across both evaluation scenarios. These overarching issues relate to
fundamental aspects of the ETL process, such as metadata management and technical
limitations. This subsection presents the key challenges and the strategies used to address
them.

Incomplete Concept Coverage in the RDA platform. Not all required concepts
for the transformation of data from the RDA platform to the OMOP CDM were directly
available in the existing RDA platform implementation. For instance, the attributes
for value sets in JSON, as well as the semantic and structural mapping tables, had not
yet been implemented. As a workaround, these tables were added in a personal schema
within the RDA platform database, enabling their integration into the transformation
pipeline.

Primary Key Handling after Database Migration. Initial development was carried
out using SQLite for simplicity, with PDI connecting to the database via JDBC. However,
after migrating to Oracle and connecting via OCI, it was not possible to retrieve the
automatically generated primary keys of inserted rows. This limitation affected the ability
to reference those keys in subsequent transformation steps. To resolve this, a sequence
was introduced and used to explicitly generate primary key values for all OMOP CDM
tables affected by the custom transformations. Generating the identifiers in advance
ensured that identifiers could be set and reused consistently throughout the ETL process.

Constraint Implementation after Database Migration. Initial development was
carried out using SQLite for simplicity. Although temporary workarounds were introduced
to mitigate real-world testing challenges like file locking, the pipeline was ultimately mi-
grated to an Oracle database to take advantage of its robust performance and concurrency
capabilities. This switch also enabled the use of relational constraints such as foreign
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keys, which SQLite does not support via ALTER TABLE. As a result, the setup process
had to be adapted to define constraints during schema creation and transformation steps
explicitly. While this increased the complexity of the deployment process, it significantly
improved data integrity and consistency checks across related tables.

Data Type Incompatibilities. The RDA platform uses generic SQL types such as
NUMBER for primary and foreign keys. To prevent join errors and imprecision, all such
fields were explicitly cast to the appropriate data types during transformation.

Scalability and Database Engine Constraints. Initial development was carried
out using SQLite for simplicity. However, real-world testing revealed file locking and
concurrency issues under increased data volume. Although temporary workarounds
were introduced (e.g., wait until the output step has written all data), the pipeline was
ultimately migrated to an Oracle database to take advantage of its robust performance
and concurrency capabilities.

6.3.2 Automated surveillance of hospital-onset bacteremia and
fungemia

During the implementation of the ETL pipeline for the automated surveillance of HOB,
several challenges were encountered. These spanned semantic mapping, filtering logic,
technical limitations, and performance concerns. This section outlines the key issues and
the strategies used to address them.

Semantic Mapping. Local codes were mapped to the OHDSI standardized vocabu-
laries using Athena as a reference. Microorganism mappings were created using Usagi,
covering both organism identifiers and detection status. Where direct matches were
unavailable, broader concepts were manually selected. To ensure clinical accuracy, these
mappings were reviewed and validated by domain experts with a microbiology background.

Structural Mapping. The lack of established THEMIS conventions for microbiology
data necessitated the definition of custom structural mappings. While effective for
this study, such institution-specific adaptations may lead to inconsistencies across sites,
potentially affecting data comparability in multicenter analyses. The THEMIS convention
for microbiology data is still a work in progress in the OHDSI community without a
preferred concept yet.

Care Site Mapping to ECDC Ward Specialty. The default implementation of
the ETL process for the care_site table did not include a mapping to the ECDC ward
specialty, which is needed in this use case for classifying care settings in line with
epidemiological surveillance standards. To address this, the transformation logic for the
care_site table was extended to include additional mapping metadata. Local unit codes
were manually mapped to the corresponding ECDC ward specialties based on clinical
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documentation and hospital organizational data. The mapping was stored in a reference
file and loaded during the transformation, enabling correct population of the care_site
and location tables with standardized specialty classifications.

Selective Document Filtering. Not all microbiology documents were relevant for
this transformation. Only blood culture results were needed, while other findings had to
be excluded. Two strategies can be used to address this:

• Predefining restricted database views to include only the relevant subset.
• Duplicating the generic transformation definition with injecting use-case specific

metadata and adding filters to narrow selection criteria.
In this scenario, the dataset was already based on a database view, which was updated to
include only the relevant documents. This approach ensured that the ETL pipeline only
processed relevant documents without adding additional filtering logic in the transforma-
tion steps. While the second strategy provides greater flexibility, it was not necessary
for the HOB scenario, as the database views already provided an effective and efficient
filtering mechanism.

Missing Data. Missing values in key fields, such as timestamps, posed additional
challenges. When no timestamp was recorded for a microbiology result, the fallback was to
use the document creation date. In such cases, only the date portion is preserved, reducing
temporal granularity. While this approach ensures completeness, it may introduce
temporal imprecision, and including time fields could misleadingly suggest accuracy
where none exists.

Internal Bugs and Fixes. An issue was discovered in the handling of attributes
recorded multiple times per document. Only the first occurrence correctly received
associated data, while subsequent instances lacked shared single-entry attributes. The
query logic was revised to ensure all instances were populated with the necessary values.

6.3.3 Breast Cancer Benchmarking
During the implementation of the ETL pipeline for the BCB, several challenges were
encountered. These spanned mainly the structural mapping. This section outlines the
key issues and the strategies used to address them.

Template-Specific Transformation Logic. Certain templates required transforma-
tion behavior beyond what was supported by the default implementation. About half
of the templates required filtering the records based on the value of a specific attribute.
In other cases, conditional logic dictated whether one or two OMOP records needed to
be created based on the value of a single attribute, or the correct datetime had to be
selected using a fallback chain: if the primary date attribute was missing, alternative
fields were checked in a specific order until a valid date was found. These variations
required extending the transformation framework with template-specific logic.
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Structural Mapping Deviations for Core Tables. The transformation of the fixed
OMOP tables, care_site and visit_occurrence, required adjustments to the structural
mapping. The format and relationships in the breast cancer data differed from assump-
tions in the generic ETL, prompting targeted updates to ensure correct integration.

Handling of Missing Mandatory Attribute Values. In some instances, the source
data did not provide values for attributes that were mapped to mandatory fields in
the OMOP CDM, such as measurement_concept_id. Without these values, it was not
possible to create valid records, as the target schema requires concept identifiers to be
present. To maintain data integrity, affected rows were excluded during transformation.
The pipeline logged each excluded entry to ensure transparency and allow for further
investigation if necessary.

Adapted Drug Exposure Duration Logic. The standard ETL logic assumes identi-
cal start and end dates for drug exposures, following the THEMIS convention. However,
the breast cancer data modeled treatment duration explicitly as 29 days. To reflect this
correctly, the transformation was updated to calculate the drug exposure end date as 29
days after the start date.

6.4 Evaluation of the Requirements
This section evaluates the developed ETL prototype in terms of the functional and
non-functional requirements defined in Section 5.1. The objective of this evaluation is
to determine to what extent the prototype fulfills the requirements and thus the goals
of transforming healthcare data from the EAV-based research database of the MedUni
Vienna into the OMOP CDM.

The evaluation is based on the implementation results and the findings from the evaluation
scenarios detailed in Chapter 6. Each requirement is assessed individually and marked
as fulfilled, partially fulfilled, or not fulfilled. Accompanying comments provide further
details on how each requirement is met, highlight any limitations, and indicate areas for
future improvement.

By systematically evaluating both functional and non-functional aspects, this section
demonstrates the robustness, flexibility, and readiness of the ETL process for real-world
applications and future extension.

6.4.1 Evaluation of the Functional Requirements
To assess how well the prototype fulfills the defined functional requirements, each require-
ment is evaluated based on the implemented functionality. The evaluation distinguishes
between fulfilled, partially fulfilled, and not fulfilled features. The results are presented
in Table 6.1.
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ID Requirement Summary Fulfilled Evaluation Comments
FR01 Extract data from RDA plat-

form
Yes Connection to the RDA plat-

form and data extraction from
EAV tables were successfully im-
plemented and tested in the eval-
uation scenarios.

FR02 Structural mapping of source at-
tributes to OMOP CDM

Yes Standard mappings from source
EAV attributes to the respec-
tive OMOP CDM columns were
defined for all relevant tables.
These mappings were applied,
extended, or replaced as needed
during the evaluation scenarios.

FR03 Transform EAV modeled data
to OMOP CDM

Yes The data transformation logic
was fully implemented and vali-
dated during the evaluation sce-
narios.

FR04 Load structural mapping dy-
namically

Yes Structural mapping rules are
loaded from a mapping table at
runtime, enabling dynamic and
flexible configuration.

FR05 Standardize raw data to follow
OMOP CDM conventions

Partially The ETL process is capable of
transforming raw data to the
OMOP CDM following the con-
ventions. The process was ap-
plied to the data required for
the evaluation scenarios. How-
ever, not all possible domains or
vocabularies are covered yet.

FR06 Load data into OMOP CDM ta-
bles

Yes The loading logic is fully imple-
mented and was verified through
the evaluation scenarios. Data
is inserted into the correct tar-
get tables according to the
OMOP CDM.

FR07 Handle missing or inconsistent
data

Partially Missing date values are handled
by falling back to the document
date. Missing values in optional
fields are tolerated, while rows
missing required concept IDs are
excluded and logged as errors.
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ID Requirement Summary Fulfilled Evaluation Comments
FR08 Load metadata for data selec-

tion and scope dynamically
Yes The selection of data elements

to be transformed is config-
urable and loaded at runtime
from an external configuration
file.

FR09 Set up empty OMOP CDM
schema

Yes Database setup scripts prepare
an empty OMOP CDM instance
with the correct table structure
and vocabularies prior to data
transformation and loading.

Table 6.1: Evaluation of the functional requirements for the prototypical implementation
of the ETL process.

Overall, the evaluation demonstrates that the implemented prototype fulfills all core
functional requirements. The requirements related to standardizing raw data and error
handling are partially implemented. They are sufficient for the use cases covered in this
thesis, but leave room for future enhancement. The results confirm that the prototype
offers a solid and extensible foundation for a robust ETL process tailored to the OMOP
CDM.

6.4.2 Evaluation of the Non-functional Requirements
To assess how well the prototype fulfills the defined non-functional requirements, each
requirement is evaluated based on the implemented functionality. The evaluation dis-
tinguishes between fulfilled, partially fulfilled, and not fulfilled features. The results are
presented in Table 6.2.

ID Requirement Summary Fulfilled Evaluation Comments
NFR1.1 Apply optimizations (e.g., in-

dexing, caching, memory man-
agement) to improve ETL per-
formance.

Partially The prototype uses caching to
avoid redundant lookups for
vocabulary mappings and con-
cept relationships. Addition-
ally, the default indexes of the
OMOP CDM and the RDA
platform are used. However,
additional optimization strate-
gies, such as specific indices
and memory management, re-
main to be implemented.
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ID Requirement Summary Fulfilled Evaluation Comments
NFR1.2 Use parallel or batch process-

ing to reduce ETL execution
time.

Partially Batch inserts are implemented,
and downstream transforma-
tions begin as soon as up-
stream data becomes available.
However, true parallel or dis-
tributed execution is not yet in
place.

NFR2.1 Structure the ETL as modular
components, each handling a
distinct subtask.

Yes The ETL process is com-
posed of modular transforma-
tions, each targeting a specific
OMOP CDM table or transfor-
mation task.

NFR2.2 Ensure transformation and
mapping components are
reusable across datasets.

Yes The fixed transformations are
reusable and adaptable for
standard cases. Custom trans-
formations are adapted based
on the configuration and run-
time. If this is not sufficient,
the transformation with in-
jected metadata can be dupli-
cated and modified to fit the
use case.

NFR2.3 Allow updates to individ-
ual modules without requir-
ing changes to the entire ETL
pipeline.

Yes Each transformation is inde-
pendent and can be executed
standalone, allowing modular
updates without disrupting the
full pipeline.

NFR3.1 Use external configuration files
or parameters instead of hard-
coded ETL settings.

Partially Some configuration settings,
such as the data scope, are
stored in external configura-
tion files and loaded at run-
time. However, certain param-
eters, such as the initial flag for
rebuilding the OMOP CDM
database, are still embedded
directly in the implementation.

NFR3.2 Dynamically load attribute
names and transformation
rules from metadata/config
files.

Yes For custom transformations,
attribute names and rules are
loaded dynamically from the
RDA or mapping tables embed-
ded in the source data.
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ID Requirement Summary Fulfilled Evaluation Comments
NFR3.3 Enable the system to adapt

to different schema structures
with minimal modifications.

Yes The system handles schema
variations by loading necessary
metadata at runtime, minimiz-
ing required code changes.

NFR3.4 Provide user-defined, flexible
vocabulary mapping instead of
fixed mappings.

Yes Vocabulary mappings are
stored in the RDA and
loaded dynamically, avoiding
hard-coded mappings.

NFR3.5 Use a metadata repository for
storing and updating attribute
and concept information.

Yes Metadata about attributes is
stored in the RDA. OMOP
CDM concept data is accessed
directly from the OMOP CDM
database during execution.

NFR4.1 Ensure the ETL process can
scale to large datasets using
batching, parallelism, or dis-
tributed computing.

Partially Batch inserts are implemented,
and downstream transforma-
tions begin as soon as up-
stream data becomes available.
However, full parallel or dis-
tributed execution is not imple-
mented, although supported by
PDI.

NFR5.1 Implement robust error han-
dling and logging with the abil-
ity to resume or restart ETL
after failures.

Partially Logging is implemented, and
some error handling is in place
(e.g., missing values). How-
ever, recovery from intermedi-
ate failures may require man-
ual cleanup.

NFR5.2 Maintain detailed logs of ETL
performance, processing status,
and errors for auditing and
monitoring.

Yes The system logs processing
steps, timestamps, and encoun-
tered errors.

NFR5.3 Provide automatic recovery
mechanisms to resume the
ETL process after failure with-
out manual intervention.

Partially The ETL process resets the
OMOP CDM database. How-
ever, recovery from intermedi-
ate failures may still need man-
ual intervention.

NFR6.1 Enable EAV data processing,
including pivoting/unpivoting
to fit OMOP CDM format.

Yes The prototype processes EAV-
modeled data through pivoting
during the custom transforma-
tions.
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ID Requirement Summary Fulfilled Evaluation Comments
NFR6.2 Handle EAV-specific chal-

lenges such as sparse data and
heterogeneous attribute types.

Yes The ETL dynamically loads at-
tribute metadata at runtime to
handle EAV characteristics.

NFR7.1 Integrate with scheduling tools
to support automated or event-
driven ETL execution.

Partially PDI supports scheduling, but
automated execution was not
yet implemented in the proto-
type.

Table 6.2: Evaluation of the non-functional requirements for the prototypical implemen-
tation of the ETL process.

The evaluation demonstrates that the implemented prototype satisfies a broad range of
non-functional requirements. Key aspects such as modularity, maintainability, adaptabil-
ity, and data quality are fully supported. Several performance- and fault-tolerance-related
features are partially implemented, providing a foundation for further optimization.
Although automation, parallelism, and robust recovery mechanisms are not yet fully
realized, the prototype establishes a solid and extensible base for a reliable ETL process
to the OMOP CDM.

6.5 Conclusion
The evaluation demonstrated that the developed ETL prototype is capable of transforming
heterogeneous EAV-based healthcare data from the research database of the MedUni
Vienna into the standardized structure of the OMOP CDM. Across both evaluation
scenarios, the transformation framework demonstrated reusability, while dataset-specific
adaptations were handled through use case-specific extensions. At the same time, the
scenarios highlighted common challenges that are likely to recur in future applications.
These included limitations in metadata handling and technical constraints of the execution
environment. Such issues emphasize the need for continued refinement of the framework.

The two scenarios also underscored how the characteristics of the source data directly affect
performance. The microbiology HOB dataset, with fewer attributes and a narrower clinical
scope, could be processed efficiently with little custom logic. In contrast, the oncology
BCB dataset involved broader patient trajectories, more heterogeneous attributes, and
higher data volumes, which led to substantially longer runtimes and a greater reliance on
template-specific transformations. These differences illustrate that the scalability of the
prototype is not only a matter of technical performance but also of managing diversity.

Overall, the evaluation confirms that the prototype fulfills its functional and non-functional
requirements. At the same time, the findings stress the importance of continued work
on performance optimization and metadata support. In sum, the prototype provides a
strong foundation for reusable healthcare data transformation, while pointing to clear
directions for future enhancement.
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CHAPTER 7
Discussion

This chapter discusses the key findings of the thesis in the context of the research
objectives and questions outlined earlier. The aim is to reflect on the development, design,
and evaluation of a generic ETL framework capable of transforming healthcare data from
the EAV data model of the MedUni Vienna into the OMOP CDM.

The analysis is structured around the research questions, focusing on the design decisions
that enabled a generic ETL architecture, as well as the practical outcomes observed in
the two evaluation scenarios: HOB and BCB. Special attention is given to the system’s
handling of structural variability, mapping completeness, and performance across different
datasets.

Beyond the technical aspects, the discussion also addresses the broader implications of
standardizing EAV-modeled healthcare data, the trade-offs inherent in developing generic
transformation logic, and the limitations that may inform future improvements.

7.1 Research Questions

7.1.1 Research Question RQ1 – ETL requirements

What are the specific requirements for the ETL process to ensure the successful
transformation of healthcare data from the EAV model into the OMOP CDM?

This research question was addressed through an extensive literature review, presented in
Chapter 3, which identified a set of functional and non-functional requirements essential
for designing a generic, reusable ETL system tailored to transforming data from the
EAV-based source at the MedUni Vienna into the OMOP CDM. These requirements,
discussed in detail in Section 5.1, reflect both the technical constraints of the source and
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target data models, as well as the quality attributes expected of modern ETL systems
used in healthcare data integration.

The functional requirements focus on the core operations the ETL process must support,
including:

• Accurate extraction and interpretation of EAV-modeled data,

• Dynamic application of mappings for attribute and vocabulary standardization,

• Support for OMOP CDM-specific constraints (e.g., referential integrity, domain-
specific table structures),

• Automation, validation, and logging throughout the transformation process.

These requirements ensure that the ETL system can transform structurally flexible,
sparse, and semantically rich EAV data into a standardized, relational format without
loss of critical meaning. The emphasis on dynamic mapping and validation further
ensures adaptability and data quality, which are prerequisites for downstream use in
clinical research and analytics.

The functional requirements were systematically implemented in the prototype and later
evaluated against real-world use cases. The evaluation confirmed that all functional
requirements were fulfilled or partially fulfilled, with some areas, such as error recovery
and advanced mapping logic, offering room for future enhancement. Nevertheless, even in
its prototypical form, the ETL system demonstrated the ability to transform EAV-based
data into OMOP CDM-compliant outputs reliably.

The non-functional requirements, on the other hand, capture architectural qualities such
as modularity, reusability, configurability, scalability, and fault tolerance. These were
derived by synthesizing recommendations from existing ETL tools, OHDSI community
guidelines (e.g., the Book of OHDSI), and design principles from related research. For
instance, requirements such as dynamic configuration loading (NFR 3.1–3.5) and module
independence (NFR 2.1–2.3) are critical to achieving a generic system that can be adapted
across multiple projects with minimal changes.

The derived non-functional requirements were validated during implementation and
systematically evaluated. The evaluation showed that all non-functional requirements
were fulfilled or partially fulfilled. Notably, the system’s architecture supported key
quality attributes such as reusability, configurability, and extensibility, confirming the
validity of the requirement set.

The identification and operationalization of these requirements directly influenced the
system design and implementation strategy. Rather than building a fixed ETL process for
a specific dataset, the prototype was designed to generalize across use cases by supporting
metadata-driven transformations, modular architecture, and adaptable configuration.
This approach was crucial for ensuring that the system could be reused for multiple
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clinical domains, as demonstrated in the evaluation scenarios on HOB surveillance and
BCB.

In conclusion, the requirements identified through the literature review provided a
robust foundation for designing a generic ETL framework for EAV to OMOP CDM
transformation. Their implementation and evaluation confirm the practical relevance and
effectiveness of these approaches in guiding the development of interoperable, high-quality
data transformation processes in healthcare informatics.

7.1.2 Research Question RQ2 – ETL process design

How can an effective and generic transformation of healthcare data from the
EAV model into the OMOP CDM be achieved?

This research question aimed to explore how a scalable, maintainable, and conceptually
sound ETL process can be developed to transform healthcare data stored in the EAV
model of the MedUni Vienna into the structure defined by the OMOP CDM.

To address this challenge, a layered ETL architecture was designed that integrates both
fixed and dynamic transformation strategies. The dual approach accommodates the
heterogeneous nature of the source data and supports consistent, reproducible mapping
to the OMOP CDM. The architecture is built around modularity and metadata-driven
logic, enabling flexibility and maintainability. The detailed concept of the architecture is
discussed in Section 5.2.

The fixed transformations are predefined, rule-based mappings for OMOP CDM tables
with predictable and stable structures, such as person, visit_occurrence, care_site, or
observation_period. Since these tables reflect structural or administrative data that
do not follow the EAV pattern, a hardcoded approach was sufficient and appropriate.
The transformation logic here is consistent across use cases and explicitly tailored to the
data source. In contrast, the custom transformations were designed to handle clinical
data captured in the EAV model (e.g., measurements, observations, procedures). This
component uses template-driven mapping and relies on metadata tables that define how
each form field or value set in the EAV schema maps to a target OMOP CDM record.
This architecture enables the transformation process to be generalized and reused across
use cases without requiring new code to be written for each data element. Instead, adding
new mappings or supporting new data requires only updates to the metadata tables.

Crucially, this design introduces a semantic mapping layer, where form fields and value sets
are linked to standardized terminologies (e.g., SNOMED CT, LOINC). These mappings
are maintained in dedicated semantic mapping tables in the source system, enabling a
separation of structure and semantics.

One of the core advantages of this approach is its generality and scalability. The dynamic
transformation framework enables the ETL pipeline to support new data structures
without requiring modifications to the transformation logic itself. Only updates to the
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mapping metadata are required, which reduces implementation effort and enables the
system to evolve in line with clinical documentation practices.

This design also significantly improves maintainability. Since transformation rules are
externalized into metadata tables, updates can be made without requiring code changes.
This separation simplifies governance and allows semantic experts to participate in
configuration and mapping, provided they understand the OMOP CDM data model and
vocabulary standards.

Another key benefit is semantic interoperability. Through the use of standardized
vocabularies such as SNOMED CT, LOINC, and ICD-10, the system ensures that clinical
meaning is preserved and aligned with the OHDSI standardized vocabularies.

Lastly, the architecture promotes a clear separation of concerns. Transformation logic,
metadata, and terminology mappings are handled in distinct layers. This modular design
facilitates easier validation, as well as improved long-term maintainability. Semantic
mappings can evolve independently of structural changes.

While the architecture addresses the transformation problem effectively, its success relies
heavily on the completeness and correctness of the structural and semantic mappings.
Inconsistencies or missing codes in the metadata layer can lead to inaccurate or incomplete
OMOP CDM records. Moreover, the flexibility of the EAV model means that edge cases,
complex data structures, and non-standard usage of form fields still require careful
consideration during the mapping process. As a result, ongoing validation and quality
control processes are essential to ensure data reliability.

In summary, research question RQ2 is addressed through the development of a modular
ETL architecture that leverages both fixed and dynamic transformation strategies. By
combining metadata-driven mapping, template-based logic, and a semantic enrichment
layer, the approach offers a flexible yet rigorous solution for transforming healthcare data
from the EAV model of the MedUni Vienna into the OMOP CDM. This architecture
lays the foundation for scalable and semantically aligned secondary use of clinical data.

7.1.3 Research Question RQ3 – Use of the generic ETL code base
system

To what extent can the developed ETL process for the transformation of
healthcare data from the EAV model into the OMOP CDM be extended or
adapted to specific use cases?

This research question was addressed through the application of the developed ETL
framework to two evaluation scenarios: HOB surveillance and BCB, which are described in
detail in Sections 6.1 and 6.2. Both datasets originated from the EAV-based source system
used at the MedUni Vienna, but they differed significantly in terms of data structure,
complexity, and scope. This diversity provided a robust foundation for assessing the
system’s generalizability and flexibility.
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The ETL framework was designed to be generic and reusable, aiming to decouple use-case-
specific logic from the underlying transformation mechanics. The successful application
of the same code base across both evaluation scenarios confirms that this objective
was largely achieved. Core components of the pipeline, including the interpretation of
structural and semantic mappings, the integration of standard vocabularies, and the
management of concept relationships, were reused without modification. The shared code
base could ingest new templates and configurations defined via metadata tables without
requiring changes to the underlying logic, demonstrating a high degree of configurability.

The evaluation scenarios validated that custom transformation rules could be introduced
at the template level, enabling localized adaptation without affecting the global trans-
formation logic. For example, both use cases relied on custom template definitions and
mapping configurations tailored to the clinical context. However, these were managed as
metadata and did not necessitate structural changes to the pipeline itself.

Despite the general success in applying the system generically, several extensions and cus-
tomizations were required to accommodate case-specific requirements. These adjustments
did not undermine the integrity of the core system but instead highlighted areas where
domain-specific logic was necessary. Notably, in the BCB use case, several transformation
templates required enhancements to support:

• Conditional row generation, where the number of OMOP records created depended
on attribute values within a source template.

• Fallback mechanisms for date derivation, where the absence of a primary date field
requires the use of secondary fields in a defined cascade.

• Structural mapping adjustments, particularly for fixed transformations, which
differed in structure from the assumptions encoded in the default transformation
logic.

• Handling of incomplete data, including the exclusion and logging of rows where
mandatory fields such as *_concept_id were missing.

These extensions were made possible through the system’s modular architecture, which
separates reusable components (e.g., caching, data type casting, vocabulary lookup) from
configurable transformation steps. Importantly, these adaptations were localized and
maintainable, indicating that the framework is not only extensible but also robust to
evolving use-case requirements.

The two evaluation scenarios also differed significantly in terms of data volume and
transformation runtime. While the HOB use case involved relatively compact and ho-
mogeneous data, the BCB use case featured a larger dataset with greater structural
heterogeneity. The increased data volume and complexity in the BCB use case resulted in
longer transformation times, particularly for custom transformation steps. The increase
in runtime, especially in the BCB case, underscores the importance of performance tuning
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and highlights potential limitations when scaling to large datasets or when processing a
high number of templates. Nevertheless, caching mechanisms and a structured deploy-
ment process contributed to maintaining manageable execution times even in the more
demanding scenario.

These performance differences do not diminish the adaptability of the framework but
rather point to areas for future improvement, such as optimizing transformation logic,
supporting parallel execution, and refining caching strategies for large-scale deployments.

Overall, the evaluation demonstrates that the ETL framework provides a solid foundation
for transforming EAV-based clinical data into the OMOP CDM. The separation of
configuration (e.g., mappings, templates, metadata) from transformation logic allows for
flexible reuse and adaptation across multiple projects. Although each use case required
some degree of customization, these changes were handled within the framework’s
extensibility model, indicating that the core system does not need to be rewritten or
restructured for new applications. The use of metadata-driven templates, semantic
mapping tables, and modular transformation steps makes the system applicable to a
wide range of EAV-modeled datasets.

In conclusion, the developed ETL system effectively supports the transformation of
heterogeneous healthcare data from an EAV model into the OMOP CDM. The results
from both evaluation scenarios demonstrate that the system is not only reusable but also
adaptable to a broad spectrum of data contexts. While use-case-specific logic must be
expected in real-world deployments, the existing architecture supports such extensions
cleanly and maintainably. These features position the framework as a promising candidate
for further institutional adoption and broader applications in clinical data standardization
initiatives.

7.1.4 Research Question RQ4 – Evaluation of the ETL process

How does the developed generic ETL code base perform regarding data quality
and adaptability?

This research question was addressed during the Evaluation Phase of the thesis (see
Chapter 6), where the implemented ETL prototype was systematically assessed against
the functional and non-functional requirements defined in the Analysis Phase. In addition
to the formal evaluation of the requirements, two evaluation scenarios were conducted to
examine the system’s ability to transform real-world datasets. This combined approach
allowed the evaluation to cover both technical conformance and practical usability.

The evaluation confirms that the prototype is capable of producing high-quality trans-
formations from the flexible, sparse, and semantically rich EAV data model into the
structurally strict and standardized OMOP CDM. Several design features contributed to
this outcome:
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• Vocabulary and concept mappings are dynamically loaded from external metadata
sources rather than hard-coded, ensuring flexibility and maintainability and allowing
mapping logic to be reused across datasets without changes to the implementation.

• Constraint validation mechanisms are integrated into the OMOP CDM database.
These include checks for mandatory fields, correct data types, and referential
integrity via foreign keys. Such safeguards prevent invalid or incomplete records
from being entered into the target schema.

• Logging and error handling are built into the pipeline. The system records both
operational steps and transformation issues (e.g., rows with missing mandatory
values), providing transparency and aiding debugging efforts.

These features were evaluated using a combination of implementation review and practical
testing. During development, the implementation was continuously checked against the
intended architectural principles to ensure compliance with the design goals. In addition,
the evaluation scenarios verified that all relevant OMOP CDM tables were populated,
concept mappings were applied correctly, and structural constraints were upheld.

Adaptability was demonstrated through the prototype’s application to two clinical
domains: the HOB evaluation scenario (microbiology data) and the BCB evaluation
scenario (oncology data). Both datasets were sourced from the same institutional EAV
data model but differed significantly in scope, attribute richness, and semantic structure.
The HOB dataset included a limited, well-defined set of attributes, while the BCB
dataset featured greater structural variety and heterogeneity. Despite these differences,
the ETL system adapted to both scenarios without modifying the core logic. Case-specific
requirements, such as specialized date handling, conditional row generation, or structural
mapping differences, were addressed through metadata configurations or customized
transformations, without affecting the overall pipeline.

Several architectural decisions supported this flexibility:

• A modular design, where each transformation step targets a specific OMOP CDM
table or logical unit, which promotes reusability and simplifies maintenance.

• Dynamic configuration loading, allowing mapping rules, attribute definitions, and
transformation parameters to be defined externally and injected at runtime.

The evaluation confirmed that the system is reusable across clinical domains with only
minimal adaptation. In both evaluation scenarios, most of the ETL logic was reused,
requiring only limited modifications. However, some manual effort was still required
to prepare mapping metadata, align terms with the OHDSI standardized vocabularies,
and verify domain-specific assumptions. While these tasks are manageable within the
current framework, additional tools, such as metadata editors or vocabulary alignment
aids, could further reduce preparation time and configuration effort for new datasets.
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In summary, the evaluation demonstrates that the developed ETL prototype effectively
meets its core objectives: high data quality and strong adaptability. Its ability to pro-
duce consistent, standards-aligned OMOP CDM transformations across diverse datasets,
without duplicating transformation logic, underscores the success of its design. The com-
bination of modular architecture, external configuration, and integrated validation makes
the system a practical and extensible solution for transforming EAV-based healthcare
data into the OMOP CDM.

7.2 Limitations
While the developed ETL framework demonstrated strong adaptability and reusability
across two distinct healthcare datasets, several limitations were identified during the
design, implementation, and evaluation phases. These limitations highlight both the
current boundaries of the system and opportunities for future refinement.

Manual Effort for Mapping Preparation. A central feature of the framework is
its reliance on metadata-driven structural mappings and semantic standardization using
controlled vocabularies. However, creating and maintaining these mappings required
manual curation and domain knowledge. In both evaluation scenarios, substantial effort
was invested in preparing semantic and structural mappings, particularly for the oncology
dataset, which included diverse and specialized clinical concepts. The initial configuration
effort can be a barrier to adoption, especially in projects with limited informatics or
clinical coding resources.

Limitations in Transformation Metadata and Configuration Tooling Although
the use of metadata-driven configuration significantly reduced the need for custom
code, the process of creating, validating, and maintaining mapping tables was still
manual and error-prone. The absence of dedicated tooling for authoring and validating
metadata (e.g., template editors, mapping GUIs, or terminology alignment aids) posed
challenges, particularly when adapting the system to complex forms such as those in the
BCB evaluation scenario. Manual configuration also increased the risk of introducing
inconsistencies or omissions.

Incomplete Concept Coverage in the RDA Platform. Although the transfor-
mation framework was designed to integrate with the RDA platform, not all required
structural components were available in its existing implementation at the time of devel-
opment. This lack of concept coverage constrained the ability to perform transformations
purely within the native RDA platform environment. As a result, necessary mapping
tables had to be implemented within a personal schema in the RDA platform database.
These additions enabled the integration of required metadata into the transformation
pipeline. This workaround introduces additional implementation overhead when the ETL
code base is reused, as the tables need to be provided until the RDA platform supports
the full range of mapping elements needed for the ETL process to the OMOP CDM.
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Distinction Between Generic Logic and Use-Case Specificity. A key design
goal of the framework was to maintain a clear separation between generic transformation
logic and use-case-specific adaptations. While this goal was largely achieved, in practice
it was challenging to define a consistent boundary between what should be handled
generically and what should be treated as custom logic. Specific recurring patterns,
such as more elaborate fallback rules for missing dates or filtering records based on a
specific value, might arguably warrant inclusion in the generic framework. However, due
to their tight coupling with clinical context or form structure, they were implemented as
template-specific extensions. This tension indicates that further abstraction or pattern
generalization may be possible.

Execution Environment and Operational Constraints. The pipeline was executed
locally on a developer’s machine using ad hoc job scheduling methods. This setup,
while sufficient for prototyping and evaluation, limits reproducibility, automation, and
scalability. Without integration into a formal scheduling or orchestration framework
(e.g., cron-based automation), the system cannot be reliably deployed in a production
environment or operated by non-technical users. Moreover, local execution hinders
long-term monitoring. Future iterations of the system would benefit from integration
into institutional ETL infrastructure.

Scalability and Performance Overhead. While performance was generally accept-
able for moderate-sized datasets, the transformation of larger and more complex datasets
(as in the BCB case) introduced noticeable overhead. In particular, execution time
increased significantly when many custom transformation steps or large template sets
were involved. Although caching strategies mitigated some of these effects, further opti-
mization would be needed for high-throughput environments. Additionally, parallelism
or distributed processing is not currently supported, which could limit scalability in
data-intensive applications.

Dependence on Data Quality and Stability in the Source System. The effec-
tiveness of the ETL process is heavily dependent on the quality and completeness of the
source data. Issues such as missing values resulted in the exclusion of certain records.
Although logging and validation mechanisms are in place to catch and record such issues,
the framework cannot compensate for poor data quality in the source system. Beyond
data quality, the stability of the source system’s structure is equally critical. Changes
in the data model of the source system or in upstream systems from which it ingests
data must be communicated promptly. Otherwise, such changes risk breaking parts
of the transformation pipeline or, more critically, may lead to the silent production of
incorrect results, undermining the reliability of downstream analyses. This limitation is
particularly relevant when considering deployment in heterogeneous or evolving clinical
databases.
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Indirect Access to Source Data. The ETL process developed in this thesis does not
extract data directly from the clinical routine system of the AKH. Instead, it operates on
the research database of the MedUni Vienna, which is derived from the routine system.
Consequently, the data has already undergone at least one transformation before entering
the pipeline. Such intermediate processing inevitably carries the risk of information loss
or reduced granularity, which cannot be recovered downstream. While direct access to
the routine system would mitigate this issue, it is rarely feasible in practice. Routine
systems are primarily designed to support clinical workflows rather than research, and
introducing additional extraction processes can pose operational and regulatory risks.
As a result, the framework inherits potential limitations of the research database, which
must be considered when interpreting results or deploying the system in other settings.

Data Not Yet Used in Downstream Analyses A primary motivation for transform-
ing healthcare data into the OMOP CDM is to enable secondary uses such as population
health studies, quality improvement, or federated research. In this thesis, however, the
transformed data were not yet used for downstream analytical tasks such as cohort
characterization or outcome analysis. As a result, the completeness and analytical utility
of the transformed data could not be fully assessed. Without empirical validation through
real-world research scenarios, it remains uncertain whether the current mappings and
transformation rules are sufficient for reliable and reproducible analytics. This limitation
is partly mitigated by a preceding project in which patient cohorts for the HOB evaluation
scenario were defined and validated in Atlas using data generated by a hardcoded ETL
process based on the same source dataset. While the new generic pipeline produces
structurally equivalent outputs, cohort definitions have not yet been re-executed on the
updated dataset. Full empirical validation in real-world research scenarios, therefore,
remains an open area for future work.
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CHAPTER 8
Conclusion and Future Work

This thesis presented the design, implementation, and evaluation of a generic ETL
framework for transforming healthcare data modeled in the EAV data model of the
MedUni Vienna into the standardized OMOP CDM.

The work was motivated by the need to bridge the structural and semantic gap between
a flexible research database system and the highly normalized, concept-driven OMOP
CDM, a cornerstone for achieving semantic interoperability and large-scale observational
research.

To address this challenge, a modular and metadata-driven ETL prototype was developed.
The system was designed to be extensible, configurable, and reusable across diverse
datasets, allowing for the transformation of heterogeneous EAV-based datasets into the
OMOP CDM. The system supports dynamic configuration through external metadata,
ensuring extensibility across use cases. These design choices were guided by functional
and non-functional requirements identified through literature review, domain expert
input, and practical considerations. The domain expert contributed during the design
phase through iterative discussions of architectural decisions, data mapping strategies,
and workflow organization, ensuring that the resulting system aligns with domain-specific
constraints and best practices in healthcare data integration.

The prototype was evaluated through two real-world evaluation scenarios: a HOB
surveillance project and a BCB initiative. These studies illustrated the system’s ability to
handle different types of EAV-modeled data, including microbiology results and oncology
care trajectories. Despite substantial differences in data structure, vocabulary use, and
volume, the ETL system successfully transformed both datasets into the OMOP CDM
with minimal changes to its core logic.

The evaluation demonstrated that the ETL framework fulfills its primary goals: producing
high-quality, standards-compliant OMOP CDM data from EAV sources and supporting
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reuse across heterogeneous use cases. The findings also underscore the benefits of metadata
abstraction and modular architecture in facilitating adaptability and maintainability.

Nonetheless, several limitations were identified, including incomplete integration with the
RDA platform, performance bottlenecks during large-scale transformations, and manual
mapping work. These limitations point to promising avenues for future work, including
improved infrastructure for job scheduling, enhanced support for complex mappings,
better metadata tooling, and performance optimization.

In conclusion, this thesis contributes a practical and extensible approach to standardizing
healthcare data using the OMOP CDM, offering a foundation for further development
toward automated, reliable, and scalable ETL processes. As healthcare institutions
increasingly seek to harmonize their data assets for research, the methods and insights
presented here can support broader adoption of OMOP CDM-based architectures and
foster collaboration within the global OHDSI community.

Future Work
While the developed ETL prototype demonstrates flexibility across two use cases, several
areas offer opportunities for further refinement.

Identification and Generalization of Recurring Transformation Patterns. A
promising area for future work is the systematic identification of recurring transformation
patterns that currently require use-case-specific implementation. During the evaluation
scenarios, certain logic, such as conditional filtering based on attribute values, appeared
in multiple templates. Currently, this needs to be implemented as a custom extension.
By analyzing these repetitions across different use cases, it might be possible to extract
generalizable patterns and incorporate them into the core ETL framework. Incorporat-
ing such patterns would reduce duplication, simplify future adaptations, and improve
maintainability.

Automation of Metadata Preparation and Validation. To reduce manual effort
and improve reliability, tools could be developed to assist with the creation, validation,
and management of structural and semantic mapping. Features could include automatic
extraction of attributes, validation against vocabulary standards, and visual interfaces
for configuration.

Performance Optimization and Parallel Execution. The BCB evaluation scenario
revealed long execution times, particularly for the custom transformations. Optimization
efforts should focus on reducing bottlenecks and carefully investigating whether paral-
lelization can help accelerate transformation times and better utilize available system
resources.
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Incremental Loading. Currently, each ETL run rewrites the complete dataset in
the target schema. Rewriting the entire dataset simplifies implementation and avoids
potential inconsistencies, but may become inefficient as data volumes grow. In scenarios
where the source database accumulates large amounts of data over time, incremental
loading, i.e., transferring only new or modified records since the last run, would be more
scalable and resource-efficient. Designing robust incremental strategies requires reliable
change tracking in the source system and careful handling of updates and deletions,
which were not necessary in the present evaluation setup. Nevertheless, developing such
mechanisms would be an important step toward ensuring the framework’s scalability in
larger deployments.

Increased Fault Tolerance. The ETL pipeline could be made more robust against
data inconsistencies, unexpected value formats, or missing entries. Adding mechanisms
for effectively handling such issues without halting execution, while still logging warnings,
would make the system more suitable for use in diverse and less curated data environments.

Near-Real-Time Data Transformation. An extension of the current framework
could involve enabling near-real-time data transformation, where newly generated records
are directly ingested into the OMOP CDM. While this approach would ensure that
analytical datasets remain continuously up to date, it introduces significant complexity
with respect to system integration, monitoring, and error handling. Moreover, in many
research and surveillance contexts, near-real-time access to transformed data may not be
strictly necessary, as periodic batch loading (e.g., nightly) can provide sufficient timeliness
while reducing operational overhead. Future work should therefore assess whether the
use cases at hand justify the additional effort and system load required for near-real-time
pipelines.

Vocabulary Updates and Mapping Maintenance. As the OHDSI standardized
vocabularies are updated regularly, future work should explore strategies for handling
vocabulary changes. These strategies include detecting changes that affect existing
mappings, identifying obsolete or remapped concepts, and updating transformation
metadata accordingly. Tooling to support this process could help ensure long-term
compatibility and semantic correctness.

Data Privacy and Pseudonymization. To comply with data protection regulations
and facilitate broader data sharing, pseudonymization mechanisms could be integrated
into the ETL process. Integrating such mechanisms would involve removing identifiable
information while preserving analytical utility.

Data Quality and Plausibility Checks. Additional data quality measures tailored
to specific clinical domains could further improve the reliability of the transformed data.
For instance, hospitalization records often follow predictable temporal patterns, such
as a discharge date not preceding the admission date, which are not yet enforced by
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the general ETL logic. Incorporating domain-specific plausibility checks, informed by
clinical workflows and medical logic, would help detect anomalies early and prevent the
propagation of implausible records into the OMOP CDM. Embedding such checks into
the pipeline would not only enhance data quality but also increase trust in the data for
downstream analytical use.

User Authentication and Access Control. If the transformed data is exposed
through analytical platforms such as Atlas, access control mechanisms must be imple-
mented to ensure security and privacy. Future extensions should support user authen-
tication and fine-grained access control to ensure data privacy and compliance with
institutional policies and regulations.

Ultimately, this thesis demonstrated that the transformation of healthcare data from
an EAV -based model into the OMOP CDM can be addressed through a generic,
reusable ETL framework. By combining modular design with metadata-driven logic, the
developed prototype demonstrated adaptability across different datasets while maintaining
compliance with technical and semantic requirements. At the same time, the evaluation
highlighted limitations and areas where further refinement is needed. Taken together, the
work establishes a foundation for future research and development, while contributing a
concrete step toward enabling interoperable, large-scale use of healthcare data.
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APPENDIX A
Mock-Ups of Forms

Figures A.1 to A.6 show mock-ups of the clinical documentation forms used to generate
synthetic test data for the ETL prototype. The forms were designed to simulate realistic
clinical input and are grouped by the OMOP CDM table each form is intended to
populate.

Figure A.1: Mock-up of forms for the prototype development targeting the drug_exposure
table.
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A. Mock-Ups of Forms

Figure A.2: Mock-up of forms for the prototype development targeting the specimen
table.
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Figure A.3: Mock-up of forms for the prototype development targeting the measurement
table.
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A. Mock-Ups of Forms

Figure A.4: Mock-up of forms for the prototype development targeting the condi-
tion_occurrence table.
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Figure A.5: Mock-up of forms for the prototype development targeting the proce-
dure_occurrence table.
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A. Mock-Ups of Forms

Figure A.6: Mock-up of forms for the prototype development targeting the observation
table.
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