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Kurzfassung

Aufgrund der zunehmenden Technisierung der Landwirtschaft gewinnt die Viehhaltung
zunehmend an Bedeutung, und neue Methoden entwickeln sich rasant. In ldndlichen
Gebieten gestaltet sich die Viehverfolgung jedoch aufgrund von Herausforderungen
wie eingeschriankter Konnektivitdt und fehlender zentraler Speicherkapazitdten duflerst
schwierig.

Die fehlende Moglichkeit, grofle Datenmengen konsistent zu libertragen, erschwert die
Nutzung zentraler Datenspeicher und erschwert so das effektive Trainieren und Verteilen
von Modellen. Dariiber hinaus erschwert der Mangel an leistungsstarken zentralisierten
Verarbeitungslosungen das Trainieren und die Inferenz von Modellen zuséatzlich.

Bestehende Methoden zur Viehverfolgung nutzen meist nicht-maschinelle Lernmodelle
oder zentralisierte Deep-Learning-Losungen. Beide Methoden weisen jedoch unterschiedli-
che Nachteile auf. Nicht-maschinelle Lernmethoden, wie z. B. Modelle der ARIMA-Familie,
haben Schwierigkeiten, komplexere und dynamischere Bewegungsmuster der Tiere zu
erfassen. Zentralisierte Deep-Learning-Methoden hingegen sind zwar deutlich leistungs-
fihiger, bendtigen aber grofe Datensétze und deren Ubertragung auf einen zentralen
Server. Dies stellt in l&ndlichen Gebieten aufgrund zahlreicher Einschrankungen, wie z.
B. Bandbreitenbeschrankungen, eine erhebliche Herausforderung dar.

Um diese Einschrinkungen zu umgehen, schldgt diese Arbeit einen Ansatz vor, der
Federated Learning (FL) in Kombination mit Edge Computing zur Vorhersage von
Viehpositionen in ldndlichen Gebieten nutzt. FL erméglicht es mehreren lokalen Geréten
(Clients), ein gemeinsames globales Modell gemeinsam zu trainieren, ohne Daten an
einen zentralen Server senden zu miissen. Anstatt Daten zu sammeln, werden lediglich
Modellgewichte geteilt, was die Kommunikationskosten deutlich reduziert.

Empirische Ergebnisse zeigen, dass der FL-basierte Ansatz leistungsfidhiger ist. Der Ansatz
erreichte nach nur fiinf Runden Server-Client-Kommunikation eine durchschnittliche
Genauigkeit der Positionsvorhersage von ca. 52 Metern. Im Vergleich dazu zeigt dies eine
signifikante Verbesserung der Genauigkeit um fast 50% gegeniiber dem besten Nicht-ML-
Ansatz, ARIMAX (101 m), und eine zusétzliche Steigerung von tiber 10% im Vergleich zu
einem zentralisierten Deep-Learning-Ansatz. Die Ergebnisse zeigen, dass FL hochprézise
Vorhersagen liefert, ohne dass eine zentrale Speicherung erforderlich ist, und das Problem
der eingeschréankten Konnektivitat 10st.

X1
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Abstract

Due to increasing presence of technology in agriculture, livestock management has
become increasingly important and new methods are developing rapidly. However, rural
areas make it extremely hard to track livestock and due to challenges such as limited
connectivity and lack of centralized storage.

The inability to transfer large volumes of data in a consistent manner makes the usage of
a centralized data storage highly unfeasible, making it hard to effectively train models
and distribute them. In addition to this, the lack of powerful centralized processing
solutions further complicates the training and inference of models.

Existing solutions of livestock tracking methodologies mostly use non-machine learning
models or centralized deep learning solutions. The issue with those methods is that they
both have different drawbacks. Non-machine learning methods, such as ARIMA-family
models, have difficulty capturing some more complex and dynamic pattern movements
of the livestock. As for the centralized deep learning method, in spite of being much
more powerful, have a need for large datasets and their transfer to a central server. This
creates a significant challenge in rural areas due to many constraints such as bandwidth
limitations.

In order to get by these limitations, this thesis proposes an approach utilizing Federated
Learning (FL) in combination with Edge Computing for rural livestock position prediction.
FL gives the ability to multiple local devices (clients) to train a shared global model in
collaboration without a need to send data to a centralized server. Instead of collecting
data, only model weights are shared, which as a result significantly reduces communication
costs.

Empirically the results show that the performance of the FL-based approach is superior.
The approach achieved an average position prediction accuracy of approximately 52
meters after only five rounds of server-client communication. In comparison, this shows
a significant improvement with accuracy increasing almost 50% from the best non-ML
approach, ARIMAX (101m), and and additional increase of over 10% in comparison
to a centralized deep learning approach. The results show that FL is able to give high
accuracy predictions while eliminating the need for centralized storage and addressing
the problem of limited connectivity.

xiii
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CHAPTER

Introduction

With the increasing demand for precision agriculture and livestock management, various
technological solutions have been developed to meet this need. These include technologies
such as the Internet of Things (IoT), Distributed Machine Learning and edge computing.
These technologies enable smart livestock monitoring by using sensors and machine
learning prediction models. However, there are quite a few challenges that occur in
rural areas such as limited internet connectivity, lack of centralized storage, as well as
privacy concerns related to livestock data [Zhel5b]. In addition to this, edge computing
directly addresses these issues by processing the data locally, which as a result reduces
bandwidth usage and the latency. This decentralized nature of edge computing gives an
ideal foundation for a more advanced approach to machine learning, such as Federated
Learning [SCZ™16a].

This thesis contributes in the field of location prediction, specifically in the remote areas
of the Alpine region. Most of the research has focused on urban areas for location
prediction, where signal and connectivity issues are not a problem. The data accumulated
is much more consistent and less prone to outliers, which reduces the difficulty of the
mentioned task.

Additionally, the prediction for urban settings is much more predictable in comparison
to prediction of livestock movement, since the livestock is freely grazing without any
disturbances or limitation. For that reason, this thesis researches a different part of
location prediction realm and explains how to use it in such conditions.

Federated Learning (FL) addresses the existing issue of limited connectivity by allowing
decentralized model training, where only model updates are shared and the data from
devices remains locally stored [YLCT19al]. Although, the communication overhead of
Federated Learning can still be considerable in low-bandwidth environments, making
efficient communication protocols and compression techniques necessary [KMY™16].
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1.

INTRODUCTION

In spite of these advantages, deploying Federated Learning in rural areas for livestock
location prediction remains challenging due to resource constraints, dynamic environ-
mental conditions and the need for real time decision making [KYT'20|. For example,
limited connectivity and device heterogeneity, can make the communication difficult and
cause model updates to fail. In addition to this, dynamic environmental changes can
corrupt sensor data and cause the models to become less accurate over time.

This thesis aims to address the aforementioned challenges by developing a framework
using Federated Learning and Edge Computing for livestock prediction in rural areas.
Additionally, this thesis will contribute to research carried out in the light of the FFG
Virual Shepherd project which goal is the use of integrated satellite-based and terrestrial
communication and positioning methods as well as Geo-spatial Artificial Intelligence
& High Performance Computing for sustainable, safe and economical grazing in the
Alpine region [FFG24]. The mentioned framework will be developed with the focus on
optimization of model accuracy, while reducing communication overhead and ensuring
energy efficiency, additionally maintaining data privacy and adapting to the dynamic
nature of rural environments. The research will also explore the trade-offs between model
complexity, prediction accuracy, and resource usage in resource-constrained settings.

The results from this thesis confirm that a FL approach can significantly solve the
challenges which are normally present in the traditional methods. The FL model shows
good performance, comparable to that of centralized approaches, in addition to an
advantage of lower energy consumption and execution time, demonstrating that FL is a
more efficient solutions for edge devices.

In the first chapter, the problem of the thesis and the motivation behind it is explained.
After the introductory chapter, background and related work is investigated in order to
see where current research is and where this thesis fits.

Since this thesis doesn’t have a similar enough counterpart to be able to compare the
data, a baseline needs to be established in order to determine how effective the more
advanced methods are. After, the more complex method using deep learning will be
explained.

Next, concept of federated learning is explained in chapter 3, which outlines why it
has good application for this region where connectivity is limited. In addition to the
explanation of advantages, the core method od server and client communication is
explained and a pseudo code algorithm is covered.

In chapter 4, experimental setup is explained which mentions the data characteristics and
how it is prepared to be used to build prediction models. In addition to this, evaluation
metrics are given which will help determine how successfully and effective trained models
are, and whether there is a certain trade-off between them. Experiment Design is then
meticulously outlined, in order to make sure no details in the setup is missing and could
lead to incorrectness. Lastly, some implementation details are mentioned to ensure
reproducibility.
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Chapter 5 then covers the results and gives a discussion comparing them and determining
which approach was the most effective and performed best when looking at multiple
different factors. Lastly, chapter 6 covers the final discussion and the conclusion and also
gives some insight on potential future work that could be done on this topic.
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CHAPTER

Background and Related Work

2.1 Background

Location prediction has become a critical research area with its many application in-
cluding urban computing, transportation systems and different location-based services
[Zhel5D)[LWLT16]. Some recent advancements made using deep learning and spatial-
temporal data analysis have significantly improved the accuracy and efficiency of these
tasks [LWLT16].

Location prediction is a process of forecasting future position based on the historical
data of movement from a certain object or person. In this scenario, the goal is to forecast
future position of livestock, using the previous recorded location. Since the data is
scattered and the signal is weak, the best way to build a model and make a prediction is
to use a method where the model can be trained with less data transfer. For this reason,
Federated learning in combination with edge computing is the perfect use case for this
scenario and the topic of the thesis.

This chapter investigates the current state of the art methods in trajectory prediction,
spatial-temporal modeling, but also federated learning and edge computing in addition,
highlighting different key methodologies and challenges.

2.2 Approaches to Location Prediction

Location prediction can be split into multiple categories, such as trajectory prediction and
spatial-temporal predictions. Trajectory prediction has the aim to forecast the possible
future locations of moving objects that are based on their previous trajectories. The
traditional methods usually rely on some type of probabilistic models, such as Markov
chains and Hidden Markov Models (HMMs), to encapsulate movement patterns [Zhel5a).

5
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2.

BACKGROUND AND RELATED WORK

In spite of the methods working well on smaller data, they struggle with some long-
term dependencies and more complex spatial-temporal correlations [Zhel5al. Another
traditional method is family of ARIMA models, which are a probabilistic approach where
the goal is to forecasting.

2.2.1 Non-Machine Learning Approaches

Autoregressive Integrated Moving Average (ARIMA), with its wide extensions, namely
ARIMAX (ARIMA with the addition of exogenous variables) and SARIMAX (Seasonal
ARIMA with the addition of exogenous variables), are widely popular because of their
flexibility in capturing temporal dependencies when forecasting. This chapter provides
a comprehensive overview of these models, with the addition of their mathematical
formulations, the application in location prediction as well as some advantages and
disadvantages.

ARIMA Model

ARIMA model, introduced in 1970 by [BJ70], is a model that is fitted with timeseries
datasets. It is used to better understand the data and to make some predictions about
possible future values. It generalizes the data in order to make the predictions as good
as possible.

The model consists of several different parts, which all serve different function in order
to make sure the completed model works well considering all factors.

Components of ARIMA
The ARIMA((p, d, q) model consists of:

o AR(p): Autoregressive component of order p. Autoregressive would mean that
a model is able to predict possible future values that are based on past values.
Parameter p describes the number of lagged values in the model.

o I(d): Integration component of order d. By differencing the data, this part handles
the non-stationarity of the time series. The parameter d describes the number of
times the data is differenced before achieving stationarity.

o MA(q): Moving average component of order q. This parts handle the modeling
of the curret value of the time series as a linear combination of the past forecast
errors. The parameter q describes the number of lagged error terms.

The orders of each component (p, d, q) could be considered as hyperparameters that are
later useful for model optimization in the sense of making the model generalize better.
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2.2. Approaches to Location Prediction

Mathematical Formulation

In order to understand a bit better how the ARIMA model works, the mathematical
formulation is shown for time series data. If there is a current time ¢, the value for that
time is y¢. In order to show how the calculation of y; is done, there are some terms that
need to be explained to properly grasp the formulas.

The first term is the lag operator L. It helps with the notational convenience by
representing the previous or future time points (L¥y; = 3,_1). The second term is the
while noise error term ¢;, which is used to represent the represent random changes in the
data. It is drawn from the normal distribution and calculated as ¢; ~ N(0, 2).

Now, in order to formulate the whole ARIMA(p,d,q) model, the definition of the
Autoregressive(AR) and the Moving Average(MA) are necessary. The Autoregressive
part can be defined as following:

e = P(L)y (2.1)

where:

e 01,02,...,¢, are the autoregressive parameters that are trying to determine the
influence of past values on the current one.

* Yi—1,Yt—2,...,Yi—p are the previous values in the time series.

o ®(L)=1—¢1L— ¢oL? —--- — ¢,LP is the autoregressive polynomial.

Now for the Moving Average (MA), the formula is:

Yt = @(L)Gt (22)
where:
o 01,02,...,0, are the moving average parameters.
* Yi—1,Yi—2,.-.,Yi—p are the previous values in the time series.

o« O(L)=1+461L+60,L?+ ---+0,L9 is the moving average polynomial.

Since both necessary components are well defined, the full formula can be explained. For
yt, the ARIMA(p, d, q) model is formulated as following:

®(L)(1 — L)y, = ©(L)es (2.3)

where:
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2. BACKGROUND AND RELATED WORK
e L is the lag operator.
e d is the differencing parameter.
In this formula (1 — L)? is the Integration part (I). It differences the data d times. Here
is an example for different values:
e ford=1:(1~—L)'y =y — By = y¢ — y:—1. This repesents the first order
difference.
e ford=2:(1—-1L)%; = (1—-2L+ L)y = ye — 2Lyt + L*ys = yr — 2y1-1 + yi—2-
This represents the second order difference.
With this, every part of ARIMA is combined in order to get the best predictions for
timeseries data.
ARIMAX Model
As an extension for ARIMA, ARIMAX tries to incorporate different exogenous variables
in order to get even better predictions. Exogenous variables are independent variables
that most likely have an influence on the forecasting of the dependent variable, also called
endogenous variable.
The goal is to determine the relationship between them and to leverage it into making
better predictions, and there can be one or more exogenous variables incorporated in the
model.
Extension with Exogenous Variables
The exogenous variables can be represented in the following way: (X1, Xo4, ..., Xmy)
for m different variables. In order to include them in the formula, they can be represented
as the following part of the equation:
Bi(L) X1+ Bi(L) Xy + -+ + B (L) Xt (2.4)
where:
o Bi(L)=pi++ LBi1+ L2Bi,2 + .-+ L"p; p is the polynomial that represents the
impact of the i-th exogenous variable.
e n is the number of lags that are included for each variable.
8
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2.2. Approaches to Location Prediction

Now in order to get the formula for ARIMAX, the exogenous variables are incorporated
into the formula from ARIMA. The updated equation is:

®(L)(1 — L)%y = (Bi(L) X140 + Bi(L) Xoy + -+ B (L) Xmy) + O(L)er  (2.5)
where:

e [ is the coefficient for the i-th exogenous variable
e m is the number of exogenous variables
ARIMAX is mostly similar to ARIMA apart from the exogenous variables. But, ARIMAX

has the potential to understand and predict data better with the help of additional
information.

SARIMAX Model

In addition to the exogenous variables from ARIMAX, SARIMAX tries to incorporate
the seasonal changes that are appearing in the time series data and tries to leverage
them to make more accurate predictions. This is done by modeling the patterns that are
happening in the data at regular intervals.

Seasonal Extension

Seasonality can be immediately be introduced into the full formula, extending from the
previous ARIMAX formula. SARIMAX(p,d, q)(P, D, Q)s adds seasonal components:

(L)R(L*)(1—L*)P(1=L) "y = (Bi(L) X104 Bi(L) Xap+ 4B (L) Xom ) +O(L)O(L%)es
(2.6)

where:

e s is the seasonal period
e D is the seasonal differencing order
o (1— L*)P is the seasonal differencing operator

o ®(L?) is the seasonal autoregressive polynomial

O(L?®) is the seasonal moving average polynomial

Entering seasonality into the equation gives another way the data can be more closely
understood in order to give more precise predictions.
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Usability in Location Prediction

Since predictions need to happen for both longitude and latitude, there needs to be two
models for the predictions, since ARIMA-family models can only predict one feature at a
time [HA21]. This would mean that for ARIMA model, the predictions for the features
would have to be done separately, having no connections between them. This could effect
the predictions, and that is why the use of exogenous variables is crucial. When using
the ARIMAX model, the prediction can be done separately, but if the other feature is
given as an exogenous variable, it will make much more sense to capture the influence
one feature has over the other [BJRL15]. Lastly, since only a couple of months of data is
used, SARIMAX might not be utilized to its full potential, since not a lot of seasonality
is introduced into the data yet, making the ARIMAX most likely the best choice out of
the three models [BD16].

Advantages and Limitations

ARIMA-family models are a simple way to make predictions for time series data. Through
relationship in the data between different variables, patterns are established and the used
to make the best predictions possible. The models are light weight and don’t require
too much data, making them an easy choice for time series data predictions. But, they
can’t completely capture nonlinear patters that some deep learning models do. In the
next chapter in Table 2.2, the comparison between ARIMA-family models and the deep
learning approach is given, in order to fully grasp the advantages and disadvantages each
approach gives.

2.2.2 Machine Learning Approaches

Some more recent deep learning approaches try to address these limitations. Recurrent
Neural Networks (RNNs): RNNs, in particular Long Short-Term Memory (LSTM)
neural networks have been widely adopted for trajectory prediction as a result of their
ability to model sequential data. As an example, an LSTM-based model was proposed
by Liu et al. [LWL™16] in order to predict the next location by capturing temporal
dependencies in the trajectory data.

Attention Mechanisms: Even though attention mechanism was introduced for language
modeling and machine translation [VSPT17], they have been implemented in many
different type of models in order to improve their performance. This is why attention
mechanisms have been integrated into LSTM models in order to improve prediction
accuracy by giving additional focus on the most relevant parts of the input sequence.
Liang et al. [LKZT18| gave introduction to GeoMAN, a multi-level attention network
that captures both spatial and temporal dependencies in geo-sensory time series.

Analysis of the spatial-temporal data always involves the understanding of the interplay
between the spatial and the temporal dimension in the data [CW15]. This is especially
significant for applications such as traffic flow prediction, urban mobility analysis and
environmental monitoring. Some of the key advancements in this particular area include:
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Spatial-Temporal Neural Networks: Some deep learning models, such as Convo-
lutional Neural Networks (CNNs) and Residual Neural Networks (RNNs) have been
combined to capture the essence of both spatial and temporal features. Zhang et al.
[ZZQ17) proposed a deep learning spatio-temporal residual neural network for citywide
flow prediction, which integrates both spatial and temporal information using residual
learning.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) have become a fundamental deep learning architecture
for sequential data processing. Introduced by [HS97], LSTMs address the vanishing
gradient problem through some of their sophisticated gating mechanisms, making them
much more effective for time series forecasting problems where long-term dependencies
are crucial.

LSTM is a special type of a recurrent neural network (RNN), which addresses the
vanishing gradient problem, which were common in more traditional recurrent neural
networks.

Recurrent neural networks are network which loop back from the output layer to the
input layer, creating a connection which allows for the information to stay relevant. But,
since those connections only occur from one step to the other, sometimes context is
forgotten in between and not a lot of long term dependencies are able to be carried on,
unabling the model to make a connection.

The way LSTM build up to the RNNs is that it remembers the information between

dependencies for a longer period of time, thus getting its name Long Short-Term Memory.

The most standard RNNs have only the most basic layers, while LSTMs consists of a
special LSTM cell which enables this great advantage.

In the next section, the architecture of the LSTM cell is discussed and its relevant
concepts, as well as the mathematical formulation of the LSTM unit.

Since LSTM was invented, it has seen many uses ranging from time series analysis, speech
recognition, robot control, and even video games, and is widely popular in research as
well with many different improvements.

LSTM Architecture

To fully understand the LSTM network architecture, core concepts are necessary to be
understood to later understand the mathematical formulation. LSTM network layers are
composed of LSTM cells and each cell has a state.

Each cell has two crucial components: Hidden state (h;) and Cell state (¢;). The
hidden state is basically the same concept from the regular RNNs and it has a purpose
of making the prediction at a current time step and has a task of being passed onto the
next one.

11



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

LAY Your knowledge hub

W Sibliothek,

2. BACKGROUND AND RELATED WORK

But, the cell state (¢;) is the core of the LSTM’s principle and what makes it work so
well. It is simply a vector which stores information, that runs through the cells in a
sequence. It stores relevant information from any time step, which is how the vanishing
gradient problem is mitigated. In Figure [2.1, the LSTM cell can be seen in a visual
representation.

h.

Figure 2.1: Visualization of LSTM cell architecture

In addition to the states, there are some input mechanisms which help regulate the
information flow inside of a cell. The first one is the forget gate, which is used do decide
whether the information from the previous cell state should be forgotten. The previous
cell state goes in coordination with the current input though the sigmoid function, and
dependent on the output, the information is either kept or completely lost.

The next one is the input gate, which is the deciding factor what new information will be
stored in the cell state from the current input. The whole process has two different parts,
the first one being the part where the updating parts are decided, and the second one
being a creation of the update part. The decision of the update part selection falls again
to the sigmoid function, and then an additional tanh function creates new information
that will be added to the cell state.

The last gate is the output gate, which has a task to decide which data of the current
cell state will be output in the hidden state. The way this gate work is that the sigmoid

12
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function determines which parts of the cell state will be output, and then that determined
cell state is given to a tanh function to output the values in the range between [-1, 1].

Since now the workings of the states and gates is known, in order to connect all of the
principles described, the information flow is shown in order to grasp how the gates and
the states are connected in the whole picture.

Mathematical Formulation and Information flow

Since the data in use here is timeseries data, every step is some time step ¢. During every
time step ¢, there is some current input z;, and a previous hidden state h;_1.

What happens then are the gate activations, given in formulas:

Jfo=0Wy - [hy—1,7¢] + by) (2.7)
’it = O'(WZ . [ht—17 l‘t] + bz) (28)
O = O'(WO . [htfl, xt] + bo) (29)

where:

e fi, 14, 0, are the forget, input, and output gate activations
o W are weight matrices for each gate respectively
e b are bias vectors for each gate respectively

e 0 is the sigmoid function

Now that the gates are activated, the cell state is updated in order to prepare it for the
next time step. That can be represented in the following formulas:

Cy = tanh(W¢ - [hy_1, x¢) + bc) (2.10)

Cr=f0C1+i00, (2.11)

where

o ()} is the cell state at time ¢

. C’t is the candidate cell state at time ¢

13
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e ( denotes element-wise multiplication

As shown in formulas above, fist the candidate cell state is calculated from the hidden
cell, and then in combination with the previous cell state and both forget and input
gates, the new cell state is calculated. Lastly, the new hidden state is calculated as:

hi =0 ® tanh(Ct) (212)

where:
e h; is the hidden state at time ¢

After the new hidden state is generated, it is passed forward to the next time step in the
combination with the cell state, creating a network of information.

Hyperparameters

In order to get the maximum out of a deep learning model, hyperparameter tuning is
necessary to be done. It sets the hyperparameters in such a way to that the model
training can be done in the most efficient way.

In Table 2.1} all hyperparameters that will be tested can be seen. The first hyperparameter,
clipvalue, makes sure to clip the gradient of each weight to be no higher than this value.
This makes sure that no gradient exploding occurs which could lead to problems when
training a model.

The number of epochs dictates how many rounds of training will be conducted. It is an
important value, since a little value would lead to weak generalization of data, and too
many epochs would lead to overfitting which is not preferred.

The learning rate dictates how fast the model learns, i.e. how fast the model weights
are updated. Fast learning does not always mean something positive, since the models
needs to learn at a steady pace to be able to capture all dependencies in the data. Lastly,
number of units determines how many LSTM cells does the layer have. This is an
important hyperparameter as well, since it determines the size of the hidden units as
well, which dictate how well the model can understand dependencies in the data.

Hyperparameter Optional Values

0.0, 1.0, 0.5]
10, 20, 50]
0.001, 0.0005]
64, 128, 256

clipvalue
epochs
learning_rate
units

Table 2.1: All Hyperparameters taken into consideration
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The hyperparemeter tuning is done using a simple grid search, where the best loss
determines the optimal hyperparameters. With that result, the models are later trained
according to the Experiment process in Chapter 6.

Applications in Location Prediction

Since the data used here is a timeseries data, it is important to use a model which can
efficiently capture the temporal dependencies and later present them in the location
predictions. That is exactly why LSTM is the best option for a task like this.

Combining this model with the federated learning approach to model training could be
the perfect combination tackle restrictions while delivering best results for the predictions.

Comparison with Traditional Methods

Now that both concepts of the ARIMA-family models and LSTM are known, it is
important to discuss the differences they have and what advantages and disadvantages
they bring to position prediction.

In Table 2.2, the comparison between the two methods can be clearly seen. It highlights
some of the more important features, and outlines how each methods performs against
them.

Feature ARIMA-family LSTM
Nonlinear patterns Limited Excellent
Long-term dependencies Requires differencing Native support
High-dimensional data Challenging Naturally handles
Training data required Moderate Large
Interpretability High Low

Table 2.2: Comparison of LSTM with ARIMA-family Models

There are clearly advantages and disadvantages to both methods, but it is just important
to understand what they are and to get the most out of both methods.

Challenges and Limitations

In addition to the comparison with ARIMA-family methods, other limitations and chal-
lenges of LSTM need to be addressed. One of them is high sensitivity to hyperparameters.
Even if a slight change occurs, a completely different result could be achieved, which
increases the possibility to not get the full potential of the model, making hyperparameter
tuning essential.

When working with edge devices, such as in this project, it is important to not have many
complex operations in order to save as much as possible on energy and on execution

15
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time. But when working with LSTM, a lot of computational complexity is introduced
which could be problematic. That is why only one layer of LSTM will be used, in order
to reduce the complexity and energy consumption as much as possible.

In spite of these challenges, LSTM offers much more advantages which will be helpful
when solving the problem of location prediction.

2.3 Computing on the Edge using Federated Learning

A foundation and a more serious introduction to Federated Learning was given by
IMMR"17], where the most commonly used algorithm, the Federated Averaging (FedAvg)
was introduced. Since then it has become the most used algorithm when employing
Federated Learning, and the go-to standard.

Federated Learning (FL) faces challenges such as system heterogeneity, characterized by
diverse client characteristics, and statistical heterogeneity, where data is non-identically
distributed (non-I1ID). To address these, [LSZ"20] introduced FedProx, a new FL algo-
rithm. FedProx modifies and generalizes FedAvg through re-parameterization, leading
to significantly improved results in heterogeneous environments and making it a more
robust algorithm for such use cases.

Further research has focused on enhancing Federated Learning’s already strong privacy
properties. This includes the development of protocols for secure aggregation of high-
dimensional data, such as the one developed by researchers at Google, which offers an
additional option for privacy preservation in a federated setting [BIK™17a).

Edge Computing, introduced by [SCZT16b], offers numerous advantages by addressing
concerns such as response time requirements, battery life constraints, bandwidth cost
savings, and enhanced data safety and privacy. The goal of Edge Computing is to move
the computation and data storage as close to the source as possible. It enables reduction
of latency and bandwidth usage. This paradigm also presents significant challenges,
which continue to drive research in the field.

Even though Edge Computing is a secondary part of the Thesis, it is still an important
topic to understand and also understand how it fits into the problem of Rural Area
position prediction. Federated Learning moves both storage and computing to edge
devices, i.e. closer to the source, and thus making the connection.

The inherent connection between Federated Learning and Edge Computing has led to
the development of Edge Intelligence. Research comprehensively reviewed by [XYT™21]
explores future opportunities in this combined domain.

Specifically within Mobile Edge Computing, the In-Edge Al framework was developed
by |[ZCL™19|. This framework intelligently utilizes collaboration among devices and
edge nodes for exchanging learning parameters, thereby improving model training and
inference.
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2.3. Computing on the Edge using Federated Learning

Current research also focuses on integrating Trustworthy Artificial Intelligence (TAI)
with federated learning, forming Trustworthy Federated Learning (TFL). This area aims
to guide the development of more fair, robust, and explainable TFL systems [m

Overall edge computing is an important paradigm in this scenario since it offers many
advantages that help blend in with the scenario of the thesis.

17
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CHAPTER

Federated Learning using an
LSTM Model

Federated Learning is a decentralized approach to model training which focuses on
privacy preservation. Not only is it used for privacy protection, but for reduction of
communication cost as well and it makes a centralized storage completely redundant.
Introduced by Google [MMR™17] in 2017, it has become widespread due to its many
advantages.

Federated Learning (FL) is a machine learning technique where multiple different devices,
usually referred to as clients, train a model in a decentralized way, rather than following
the usual paradigm and training it in a centralized manner.

While FL is mostly used for privacy concerns, this thesis has an unique approach that
leverages the communication reduction and distributed training capability in order to
address the critical challenge of livestock prediction, where the network connectivity is
very limited. The data from individual sensor is scarce and isn’t enough to train a model
using only that data. FL allows to train a model from all of these sensors without having
to collect and store that data centrally on the cloud which isn’t even possible due to the
extreme alpine environments. So instead of sharing/communicating raw data, only model
updates (much smaller in size) are transferred to train a model. This thesis looks at how
Federated Learning can achieve accurate location prediction while having minimal data
transmission from edge devices located on livestock.

Since it could sound pretty similar to distributed learning, it is important to understand
the difference between these two methods. Distributed learning has the goal to parallelize
training, while federated learning has the goal to train on different data in a decentralized
manner without sharing the details between clients.

The main goals are to cut the need to send data to one centralized place, making the
whole procedure of training a model much more safer considering the privacy. Since the

19
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data is not shared anymore, only model weights need to be sent to the server to train
the model iteratively until a same or a similar result is achieved as in the centralized
approach.

3.1 System Architecture

To explain the System Architecture in greater detail, it is important to define the different
participants in the whole process. The participants are:

e Clients: Clients are the devices that run the models locally, and only send the
updated weights, instead of all the data generated by that device. A client receives
the current model weights from the server, performs a client weight update, and
returns the newly updated weights to the server.

e Server: The server serves as a communicator between different clients. It receives
the weight updates from clients, stores them in the generalized model, an performs
different rounds of model training.

These participants described above can work in different architectures, the two most
usual ones being the the use of central server and also peer-to-peer.

The centralized architecture requires both aforementioned participants, since it relies on
the server to complete communication between clients. No communication occurs between
clients at all, and only point of connection is the server. This makes the handling of the
general model more easier since it is stored in one place. Even though the generalized
data storage is not necessary since they are stored on the edge devices, the handling of
the procedure of model training is much more easier. But, in case of no server available,
peer-to-peer Federated Learning is at disposal.
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3.1. System Architecture
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Figure 3.2: Visualization of the decentralized architecture
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In this case, clients are the only participants in the process, and they communicate
between each other. This approach, proposed by [CNS23|, tries to mitigate some flaws
in the original approach, such as data heterogeneity, partial device participation, and
infrequent communication with the server.

In addition to the explanations, the are visualizations of both architectures available
in Figure 3.1, where the centralized architecture is depicted, and Figure 3.2, where
decentralized architecture is shown.

For the FFG Virtual Shepherd project, a centralized architecture (3.1)) is more suitable
for the task and will be used. Even though decentralized approach offers a robust and
controlled environment, having a predefined set of livestock devices and a stable server
infrastructure makes the centralized approach a better choice for aggregation and global
model weights synchronization. In addition to this, the FFG project’s goal of having the
model later be used to make predictions available for the owners of the livestock aligns
with the role of the server of the prediction distribution.

3.2 Mathematical Formulation

Now that the server architecture is known, it is important to mathematically explain the
problem as well. The problem can be described as a minimization problem of a global
objective function, which is simply an aggregation of multiple local loss functions from
different clients.

The Federated Learning optimization problem can be expressed as:

min F(w) = Z %Fk(w) (3.1)

W
where:

e K is the total number of clients
e ny is the number of samples at client k
o« N = Zszl ny is the total number of samples

o Fj(w) is the local objective at client k

The objective is to find the global model weights that can minimize the following global
objective function:

w* = arg min F(w) (3.2)

Now that the goal of Federated Learning is clear from the mathematical perspective, the
algorithm used for weight updates needs to be defined as well.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.2. Mathematical Formulation

3.2.1 Federated Averaging (FedAvg)

The most common algorithm for weight updates for Federated Learning is Federated
Averaging, since it just averages the weights between all clients. This is also a method that
will be used in this thesis for running the experiments. This algorithm is chosen exactly

for this case, due to the specific application with an LSTM model for location prediction.

The ability of the FedAvg model to average the model weights is very beneficial, since
it allows the sequential nature of the LSTM'’s learned features to be combined across
different clients and allows for all of the patters to be captured.

The global model updates the global weights w as:

K
W(H—l) — Z %W](:) (33)
k=1
(t)

where w).” is obtained by client k performing 7 local optimization steps:

wi) =w® — 3" Ve(w; &) (34)
=1

In addition to the formulas above, the algorithm for Federated Averaging is given in
Algorithm (1, to further showcase how the principle of weights updates works.

23
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Algorithm 1 Federated Averaging (FedAvg)

Require: Global model parameters w(®)
Require: Number of clients K
Require: Client participation fraction C
Require: Number of local epochs F
Require: Local batch size B
Require: Learning rate n
Require: Total rounds T’
1: for roundt=0to 7T — 1 do
Sy + random subset of max(|C - K|, 1) clients
Broadcast w(®) to all clients in S,
for each client k € S; in parallel do
W](CH—I) < ClientUpdate(k, w(®)
end for
Aggregate updates: w(tl) « S o %w,&tﬂ)
where ng, = > e, Nk
end for
: return final global model w

ClientUpdate(k, w)
11: By < (split client k’s data into batches of size B)
12: for local epoch ¢ =1 to F do
13:  for batch b € By do
14: w < w —nV{(w;b)
15:  end for
16: end for
17: return w to server =0

(T)

—
o

The algorithm facilitates the training of a single global machine learning model across
multiple decentralized clients. It operates in the following rounds:

e Server Sends: The central server broadcasts its current global model to a randomly
selected subset of clients.

e Clients Train Locally: Each selected client trains this model independently on its
own private, local dataset for a few epochs.

o Clients Send Updates: Clients send their updated model parameters (not raw data)
back to the server.

e Server Aggregates: The server averages these received model updates, typically
weighted by the size of each client’s dataset, to create a new, improved global
model.
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3.3. Key Challenges

This iterative process leverages distributed computation to build a robust shared model.

3.3 Key Challenges

Even though Federated Learning is an approach which has many benefits, there are some
challenges that it meets. This section explores and explains some of them.

3.3.1 Statistical Heterogeneity

o Non-independent and identically distributed (IID) data distribution across clients:
Since the data comes from multiple devices, in an ideal case same number of points
would come from the devices. In the case of this thesis, there is likelihood of highly
localized data, due to natural movements of the livestock. Our approach will look
into the impact of such data skew and how it influences the model convergence and
its performance.

e Data skew: Since uneven data distribution is possible to happen, especially in data
where anomalies could happen, data skewness could cause problem when building
a prediction Federated Learning model. This is why removal of such data points
is crucial to making data less skewed and more suitable for location prediction.
Because of this, this thesis will also have a preprocessing step for all of the data in
order to filter out the outliers and build a model on more stable data.

3.3.2 System Heterogeneity

o Network connectivity issues: Many issues could occur from bad connectivity, the
main ones being failed or incomplete model updates, increased training time, or
client dropout during training. These issues could cause a lot of problem when
training a federated model, and is important to handle, Due to nature of the project,
many of the devices will have weak connection with the server. But, using newly
developed IoT protocols for wide range communication, this problem could be
mildly mitigated.

3.4 Proposed Innovations

Here is a quick summary of all of the key contributions made in this thesis in the context
of Federated Learning for location prediction in rural areas, in order to showcase the
contributions and innovations given in this chapter and thesis:

¢ Empirical Validation of FL for Communication Cost Reduction: Minimiza-
tion of communication overhead using Federated Learning’s paradigm for real-time
location prediction from edge devices on livestock, in a scenario where centralized
data transfer and storage are much more difficult to execute regularly.
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¢ Robustness Analysis of FedAvg with LSTM under System Constraints:
Combination of an LSTM model with Federated Learning in order to capture all
natural movements of livestock in a single global model without sacrificing accuracy
and performance.

¢ Preprocessing for Non-IID Location Data: A preprocessing pipeline of data
with the goal of handling data anomalies and outliers contained in the movement
data, directly enhancing model robustness and effectivity.

3.5 Advantages of the approach

The combined strength of Federated Learning and LSTM model provides a good solution
that directly addresses the challenges that were identified. The capability of federated
learning to average a model and combine it into a single global one is nicely complemented
with LSTM’s ability to predict sequences, erasing the need of multiple individual models,
making it easy to maintain and scale. As such, the model can be applied to any number
of cows on an already established server from the FFG Virtual Shepherd project. In
addition to this, the privacy property of federated learning, which keeps the data on
local devices, perfectly aligns with the paradigm of edge computing, making sure that
communication costs are kept low and ensuring the movement patterns are never centrally
exposed. This combination showcases a very robust and efficient way to approach and
tackle this particular issue of location prediction in a remote environment.
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CHAPTER

Experimental Setup

This chapter covers all necessary steps in the experimental setup which ensure correct
production of results. Methods from chapters 2 and 3 will be used and tested in order
to determine which method performs best. The setup consists of multiple steps, which
consist of first and foremost data characteristics and its preparation. After that, different
evaluation metrics are discussed.

4.1 Data Characteristics

This real-world dataset has been collected from actual livestock movement, since it is part
of the FFG Virtual Shepherd project, which goal is the use of integrated satellite-based
and terrestrial communication and positioning methods as well as Geo-spatial Artificial
Intelligence & High Performance Computing for sustainable, safe and economical grazing
in the Alpine region [FFG24].

The dataset is collected from collar sensors, which are attached to the livestock. The data
is sent periodically, where the period is dependent of the time of the day. On average,
every 20 minutes new information is sent from the sensor, increasing to at most 2 hours
in the night, where the data is sent less frequently. This could lead to some problems
when training the prediction models, and it will be addressed in the Data Preparation
chapter.

The data consists of the features explained in Table 4.1. The features here are helpful for
multiple different topics in the Virtual Shepherd project, but not all of them are suitable
for position prediction. That is why only some of them are picked, and the reasoning is
explained in Table [4.2.
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4. EXPERIMENTAL SETUP
Field Type Unit/Format Description
altitude numeric meters Height above sea level
battery numeric volts Remaining battery voltage
customerID  string - Unique customer identifier
deviceEUI string hex Extended Unique Identifier
devicelD string - Device identification code
deviceName  string - Human-readable device name
deviceStatus string - Current operational status
distance numeric meters Measured distance
gatewaylD string - Gateway identifier
latitude numeric decimal degrees GPS latitude coordinate
logtime timestamp ISO 8601 Time of log creation
longitude numeric decimal degrees GPS longitude coordinate
paddock string - Agricultural field identifier
rssi numeric dBm Received signal strength
snr numeric dB Signal-to-noise ratio
temperature numeric °C Ambient temperature
time timestamp ISO 8601 Measurement timestamp
Table 4.1: Sensor Device Data
Feature Rationale for Selection
time Temporal patterns help identify movement trends and
periodicity. Enables time-series analysis of trajectory
data.
devicelD Unique identifier for tracking individual devices. Essen-
tial for multi-device analysis and comparison. Allows
device-specific behavior modeling,.
latitude/longitude Primary geospatial coordinates for position determi-
nation. Fundamental for mapping. Enable distance
calculations between points.
altitude Provides vertical position component. Helps distin-
guish positions with similar lat/long but different
heights.
Table 4.2: Selected Features for Position Prediction
After the specific geo-spatial features were selected, it is important to explore the data
to see what information needs to be further processed and which is already prepared.
Overall, there are 21192 data points in the dataset, which are a combination of data
from all devices. As for the number of devices, there are 8 of them in the dataset, where
28
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4.1. Data Characteristics

the number of samples varies per device. In Table 4.3, number of samples per device is
shown. Since one of the devices has just a single data point, it is omitted since that is
not enough to make a decent prediction. Additionally, not all of the devices provided
the same number of data points, which could lead to unequal representation in the later
performance of the model. Although, there are enough points to represent all of the
devices, which means each device will be represented enough in the model predictions
later on.

Device ID Value

1174
3950
1355
3912
4044
3911
2322

1

O N3 TR W

Table 4.3: Device Data

The geospatial data can be simply visually presented on a map, which can be seen in
Figure 4.1 Each point represents latitude and longitude, where the legend represents
when the data point was captured in time. As for where the location is more specifically,
it is on the border between Austria and Germany, near the Konigsee in Germany. The
area where the livestock is tracked covers about 10km?.

The area consist mostly of a combination of a forest and a meadow. That means that
livestock has very little natural obstacles for movement, apart from trees. Since the
altitude can’t be represented on an image with the data points, it is shown additionally
in Figure 4.2. The 3D representation shown nicely the altitude difference and how the
livestock has to navigate the terrain.

There seems to be quite a lot of elevation differences which are noticeable in the grazing
area of the livestock, after carefully examining Figure 4.2 This could be an additional
obstacle for livestock movement, since it represents a natural border between different
parts of the whole grazing area.

On the other hand, it could make the livestock movement much more predictable, since it
could be more likely that the position won’t change that much on the daily basis. Looking
again at Figure 4.1, there are obvious two bigger clusters of points, with a gap between
them. Again inspecting that same gap in Figure [4.2] there seems to be a significant
altitude difference which prevents the livestock from crossing it.
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4. EXPERIMENTAL SETUP
Figure 4.1: Visualized all data points of all of the livestock
Rothbach Watertall @
Figure 4.2: Visualized grazing area to represent the altitude differences
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4.2. Data Preparation

4.2 Data Preparation

Data preparation will consist of multiple steps, in order to ensure that the data that
will be used to train prediction models is properly processed. First, data formatting is
done in order to bring the data into the preferred format, especially when working with
timeseries data. Anomaly detection is the next natural step, since limited connectivity
could lead to falsely reported data, which could possibly skew the prediction models.
With the anomalies removed, data intervals would wary too much in terms of time
interval difference, so data interpolation is necessary to make sure that time intervals are
identical between all data points. The interval is set to 1 hour, so that the model can
predict for up to two days, by predicting 48 future data points. After interpolation, one
more round of anomaly detection is done in order to detect any possible anomalies left in
the data.

4.2.1 Data Formatting

Fist step is to remove the unwanted features and only leave the ones necessary for position
prediction. This means only latitude, longitude and altitude, with the addition of time
stamps and device ID are used and the rest are removed.

Since there are no missing values, no data filling techniques needs to be applied. Just
setting the correct data formats is necessary in order to later perform other preparation
methods.

4.2.2 Anomaly detection

Due to weak connectivity, sometimes the reported livestock positions are not entirely
correct. They could wary from being a few meters wrong to being few hundred meters
wrong, which could significantly hinder the prediction models. As seen in Figure [4.1]
there are single data points which are over the lake, which would not be physically
possible for a single cow to traverse by itself. If kept in the dataset, these points could
significantly skew the prediction models.

This is why it is important to check if and how many anomalies there are in order to
ensure clean data. There are many ways how anomaly detection can be done, some
being more complex and some being simple. Since this is not the focus of the thesis, the
standard method for anomaly detection is done which is usage of z-score.

Data considered to calculate the z-score is divided per cow per day. That means only
movement from one day and one cow is considered, which helps to see anomalies more
clearly, since if more data was considered at the same time, the anomalies would become
less obvious and blend in with the rest of the real data. There is an example of the data
that is considered each day per device shown in Figure 4.3.
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== | eaflet | Google Earth

Figure 4.3: Visualized daily movement of one cow

Calculation of z-score

Based on the selected data, speed, acceleration and distance from mean are calculated as
the metrics to then calculate the z-score. These metrics help to determine if the data
points are considered anomalies, since they can be a good indicator for when the irregular
movement is occurring.

Z-score is calculated using the following formula:

Li —
o

fori=1,2,...,n (4.1)

Z; =

where x; is either speed, acceleration or distance from the mean on the daily basis (for
one cow considering one day). Multiple z-scores are calculated for different metrics and
then the average is taken to make sure that only real anomalies are detected.

If the z-score crosses a certain value threshold, in this case that value was set to 1, it will
be detected as an anomaly, and then properly handled.

Manual handling of anomalies

Due to data being visually easy to interpret, looking at the data and understanding it
is important since it can lead to discoveries of irregularities. Since the data includes
locations of livestock from their farm, shown in Figure [4.4, it could easily lead to false
predictions since the models will be used to predict positions in the forest, since the
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4.2. Data Preparation

distance from these two locations is around 10 kilometers. This is why manual removal
from these data points is necessary, and it leads to removal of 2145 data points from the
data set.

= Leaflet | Google Earth

Figure 4.4: Visualized data points of cows in their farm

In addition to this, there is one point located in Styria, Austria. Since it has a distance
of around 200 kilometers from all other data point, removing it also essential since it
could move the mean for quite a significant amount.

Automatic Handling of anomalies

After concluding first round of anomalies using the technique described above, there are
2916 found out of 18647 data points left in the dataset. this presents a 15.63 percentage
of the data, which is not insignificant. These points are simply removed from the data,

since there are more than enough points in the dataset to build the prediction models.

Since the current time interval average is around 20 minutes, and the desired interval is 1
hour, concluding that the removal of the selected data points is still beneficial.

4.2.3 Data Interpolation

Now that the first round of anomaly detection is done, data interpolation is performed in
order to fill the gaps created by removed anomalies and to set the time interval to one
hour. This is done using a pandas function merge__asof, which is similar to a left-join
except that the nearest keys are matched rather than equal keys [pdt24]. It is performed
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like this since not all daily time intervals are completely same, especially from different
devices, creating a slight difference in the time stamps.

What is also important to mention is this interpolation is done per device since livestock
movement could wary from animal to animal, because they are not strictly moving
together. This leads to a creation of a new table with the new timestamps, where they
are one hour apart from each other, to create equal timestamps. Then the existing data
is sorted, since the function requires the data to be sorted to be able to work properly.
After the two tables are ready, function is executed and the result is a table with the
equally spaced timestamps, and geo-spatial data belonging to that time. This process
can be seen visually in Figure 4.6/

CREATED INTERVALS PREVIOUS DATA RESULT TABLE
time time { It ) (len ait time b ! len

2023-08-17 14:00:00 2023-08-1713:63:12 47.548072 12.007622 2023-08-1714:00:00 | 47.548872 1.007622

2023-08-1917:00:00 [* 2023-08-1714:13:21 47.543048 13.007782 2023-08-1917:00:00  47.55208 1.012689

2023-08-20 12:00:00 2023-08-18 16:55:01 47.85288 13.012688 2023-08-2012:00:00 || 47.580388 13005488
2023-08-1817:19:39 47.554808 12.0998

2023-08-20 :84:17 47.550388 11.006486

Figure 4.5: Visualized merge_asof function

After each devices’ data is interpolated, they are merged with again with each ID from the
devices before in order to keep the feature for later use. Before the whole interpolation
process there were 15731 data points for all devices. After the process, since the time
intervals have decreased, there are now 10099 data points across all devices.

4.2.4 Train/validation/test Split

As previously discussed, since models need to predict for up to 48 hours, and with the
time interval set to one hour, 48 points need to be given for position prediction, in order
to properly asses their performance.

This would mean that there only needs to be 48 data points in both validation and in
test set. Since it is timeseries data, it needs to be properly sorted, from the first point in
time to the last one.

After that a split is made, meaning everything but 96 points remains in the test set,
where the number depends on the subdataset used.

4.2.5 Subdatasets

Since the dataset is a combination data from multiple devices, it is also important to
consider different subdatasets that could be used for the prediction models. Of course
the full dataset will be used as well, but looking at different approaches is important as
well due to the nature of the dataset.
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4.2. Data Preparation

In addition to the description of the subsdatasets, number of data points each one has
will be given in a form of a table or text, to give a representation of how the data is split
in terms of numbers as well.

Full data Subdataset

The full subdataset will use all the available data points in the dataset across all the
devices. This means data has all of the movement patterns from all the cows. This could
make it a bit harder for the model to predict, but it is much more practical since only
one model is necessary to cover all the data.

The number of data points after all preparation steps are done is 9969. This does include
the data from all devices, and the individual distribution will be seen in the following
table.

Day/Night Subdataset

The Day/Night Subdataset is a variation of the full dataset where the data is split in
two parts: the data collected during the day and the data collected during the night.
Since the movement of animal does vary during the whole 24 hours of one day, it could
lead to more accurate predictions depending on the time of the day. The Day data is
from 6 in the morning to 6 in the night, whereas the rest of the data belongs to the night
datasubset.

In Table 4.4, the number of points per device can be seen.

Time of Day Data points

Day 4940
Night 5029

Table 4.4: Number of data points in each subset

Per device Subdataset

Per device Subdataset will use the data from each device individually in order to determine
the future position of livestock individually. This could lead to better results than the
general dataset, since the movements from each individual member of the livestock varies,
and the models learns the movements of only one of them per model. Although, this

does mean that more models are necessary to be trained, more specifically one per cow.

In Table 4.5, the number of points per device can be seen.
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Device ID Number of points

1915
1911
1911
1909
1090

655

978

N OO W N

Table 4.5: Number of points per device in the dataset

Now that the data is properly explored, prepared and divided other parts of the experiment
design can be done. Next step would be to determine which metrics would be the most
useful for the used dataset. After that, only experiment design and implementation
details are discussed in this chapter.

4.3 Evaluation Metrics

In order to properly evaluate the models, it is necessary to use appropriate metrics. The
most important one is probably the error metric, which evaluates the performance of
the model on how far from the target value the prediction is. Another one is energy
consumption, which tells how much electricity a model consumes during training and
inference time. Lastly, execution time of again training and inference is evaluated, which
is important due to limited resources.

4.3.1 FError metric

Since location prediction is a regression task, regression metrics need to be used, the
most standard one being Mean Squared Error (MSE). But, due to the nature of the data,
MSE is hard to apply in this scenario. It is best to shown this using an example. Taking
two points in account, shown in Table 4.6, it is easy to calculate both metrics to compare
them.

Point | Latitude | Longitude
Point 1 | 47.563776 | 12.992347
Point 2 | 47.562288 | 12.992175

Table 4.6: Coordinate Points

First, looking the the both points, they might seem almost the same. And looking at the
Mean Squared Error from Table 6.5, it is exactly so. If this was used as an error metric,
the deep learning model would not learn as much since the error seems so insignificant.
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4.3. Evaluation Metrics

But looking the the value of Haversine Distance from the same table, that error now
seems much more significant, not only to the naked eye but the model as well.

Metric Value Unit
Haversine Distance 166.75 meters
Mean Squared Error | 0.00000114 | -

Table 4.7: Difference Between Two Coordinate Points

This is why it is important to use an appropriate error metric for the used data. As for
why Haversine metric is more suitable, it is essential to know what it is and how it is
calculated.

Haversine Distance Formula

The Haversine formula that is used here calculates the great-circle distance between two
selected points on a sphere with their longitudes and latitudes. If there are two points,
Ly(laty,lony) and Lo(late,lonsy) in radians with their given coordinates, and R is the
radius of the sphere (in our case R is the radius of the Earth). Then the formula of the
Haversine distance is:

. 9 <lat2 — lat1

a = sin
2

) + cos(laty) cos(latg) sin? (long—lonl>

2

c=2-arctan2(v/a,v1 — a)

where:

Ly — laty,lony: Latitude and longitude of the first point (in radians).

o Ly — latg, longy: Latitude and longitude of the second point (in radians).
e R: Radius of the sphere.

e a: Intermediate value.

e ¢ Angular distance in radians.

o d: Haversine distance.
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Figure 4.6: Haversine distance shown on the sphere

4.3.2 Model error metrics

For each model, there are three different metrics that show how well that model performs.
The first one is the mean of error of the predicted points, where simply the average of
the error of the predicted points is taken to showcase what the error is on the span of 2
days. Mean is calculated as following:

The second one is the standard deviation, which represents the amount of variation of
the values of the variable about its mean. In simpler terms, just the average of all the
points from the mean. If the values are smaller, that means most of the points are near
the mean, which could indicate that the predictions are more consistent in precision.
Standard deviation is calculated as following;:
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4.3. Evaluation Metrics

The last one is Root Squared Mean Error, which is an extension of the mean error, and
it calculated like following;:

1 N

— _ .52
RMSE = |+ >~ (5 — )

=1

The advantage of RMSE over the mean is that bigger errors contribute much more that
smaller errors do. This gives a more accurate insight into the results and combined
with the mean and the standard deviation, gives a much fuller picture when comparing
performances.

4.3.3 Energy consumption

Due to multiple constraints, such as processing power of the devices the location is
communicated from and also power they have, it is important to limit the energy
consumption from the prediction models and have them use the least possible amount of
electricity. That is why this metric is really important in addition to the error metric,
since even if two models perform similarly, the one which consumes less electricity is
prioritized due to the conditions.

One way to measure this metric is using the Running Average Power Limit (RAPL). This

technology was developed by Intel and it estimates power consumption of a CPU [Cor23].

Its aim is to manage the power consumption withing specified limits over different time
windows.

There is not a single, universal formula for RAPL, but rather it is a power management

framework which is defined by configurable parameters and some internal processor logic.

It is important to mention that all measurements will be done in Joules, so that the
results will be comparable between different models.

4.3.4 Training and inference execution time

As the last metric, training and inference execution time will be used to determine how
fast a model performs.

Again, due to the limited performance available, it is important for models to complete
training and inference as soon as possible. Running a long time is not possible on an
edge device such as these used in FFG Virtual Shepherd project, so choosing models
with an acceptable runtime is crucial.

This is why this third and last metric is important to give a full picture of the model
performance and help in the model evaluation.
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4.4 Experiment Setup and Design

The crucial question of this work is which subdataset is best suitable for the task of
position prediction and using which model is the best result achieved. Also, whether
federated learning model is able to perform as well as the other more conventionally
trained models.

All model combinations will be performed with all subdatasets, in order to test all possible
scenarios and to later compare every possible outcome.

Baselines will give a basic picture of how each subdataset compares to the other, and
then the more advanced approach with deep learning will determine the best results
based on the metrics discussed above.

Federated Learning is applied with the per device subdataset, since it can only be
effectively used there, due to the nature of the technique. Still, this doesn’t affect the
other subdatasets since they are still relevant to see if any other methods could be a
more efficient and better approach.

All of the experiments that were described above were implemented using Python version
3.9.21 and on Linux Mint 22.1 Cinnamon using 6.4.8 Cinnamon version. The machine has
a AMD Ryzen 7 4800H with Radeon Graphics x 8 core processor paired with NVIDIA
Corporation TU116M [GeForce GTX 1660 Ti Mobile] graphics card with an addition of
24 GB of RAM. The graphic cards takes the advantage of CUDA cores, using them to
train deep learning models such as LSTM more efficient and faster.

As for hyperparameter optimization which is necessary for deep learning models, it was
done by cross validation implemented from scratch. Only LSTM models from different
data subsets need it, and it was done to improve the performance of them. Different
models will be used for different techniques if necessary, since the goal should be to utilize
the flexibility of the parameters for each different occasion, in this case different subsets
that the models will be trained on.

For the models itself, baseline models were used from the Statsmodels, which come
already fully implemented. The LSTM model is used from Tensorflow, and using their
implementation the model was programmed layer by layer.

4.5 Implementation Considerations

When implementing the Federated Learning approach, there are some considerations
that need to be mentioned such as which Global model update algorithm will be used
and in which Framework the approach will be implemented.

e Global model update algorithm: The most common one will be used, which is
Federated Averaging (FedAvg). This algorithm matches the goal perfectly, since
every device should give an equal weight to the general model. And by averaging
it, it makes it a perfect candidate for this particular use case.
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4.5. Implementation Considerations

o Frameworks: There are many frameworks as well which allow for models to be
trained in a federated manner, one of them being TensorFlow Federated. This
would make perfect sense since it continues on the models already trained using
TensorFlow. Even though the deep learning models will be implemented using
TensorFlow, due to the flexibility of the Flower.io, it will be used over TensorFlow
Federated. It gives a lot of flexibility when working with Tensorflow models and
easy setup with the Federated Averaging update algorithm. As for the non ML-
Approaches, they are implemented with the help of the statsmodels library. All
three baseline approaches are there (ARIMA, ARIMAX and SARIMAX), with
the availibility to change parameters when necessary. This gives a lot of flexibility
when using these types of models and thus makes a great choice for this particular
use case.
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CHAPTER

Results

This chapter discusses results of the experiments that were ran as described in the
previous chapter. The results cover all methods that were mentioned, including three
baseline methods, a deep learning approach and a federated learning method.

The results are split based on the subdataset that they were ran on, meaning each
subdataset has their own section where the results are shown. The metrics will be shown
in Tables in order to clearly communicate the results from different methods. In addition
to this, different Figures will be shown which give additional insight into the results such
as the visualized prediction versus true value and distance change over time.

What is also important to mention for Federated Learning is that due to the nature
of how the technique works, only results for the per device subdataset is available. As
already discussed, since the system works with the data on devices and only the model
weights shared, this is the only subset which works with Federated Learning. Why other
methods are tested as well is to see whether other methods where Federated Learning is
not used are viable to give good results in comparison.

Additionally, for every subdataset a hyperparameter tuning was done for the LSTM deep
learning model, in order to determine the best parameters for this scenario, and apply
them to get the best results.

It is important to mention that the focus is one the per device dataset, since there a full
potential of federated learning can be seen. The other two subdatasets are more of a
baseline and comparison approaches, since they would need centralized storage, and are
more complicated approach due to the remote position of the livestock.

5.1 Full dataset

In this section, the results using the full dataset are shown. First, LSTM hyperparameters
are shown to see which parameter combination is used for this subdataset. After, initial
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5. RESULTS
metric used to show how well the models perform is distance error metric, followed with
energy consumption and execution time for training and inference. Lastly, the visual
representation of the results is shown and also the performance of different methods is
intuitively shown to highlight which methods performed better than others.
5.1.1 Hyperparameter tuning
In Table 5.1, the hyperparameters that showed best performance on the dataset are
shown.
Hyperparameter Value
clipvalue 0.0
epochs 50
learning_rate 0.001
dropout__rate 0.0
units 64
layers 1
Table 5.1: Optimal Hyperparameters after Tuning TEMPLATE
Using these hyperparameters, the LSTM deep learning model will be trained to show the
results in the following subsections.
5.1.2 Distance error metric
In Table 5.2 the distance Error metrics for all baseline and deep learning models is
shown.
Model Mean SD RMSE
ARIMA 183.6821 234.7211 298.0488
ARIMAX 101.0661 96.6107 139.8141
SARIMAX  253.7625 89.1968  268.9823
LSTM 120.7768 107.6015  161.7564
Table 5.2: Performance Metrics of Time Series Models for the Full dataset
Looking at all three metrics together, the best performing model in the case for the full
dataset is ARIMAX. This is normally unusual, since the more advanced method of LSTM
takes more time to train and is more complex normally produces much better results.
The only metric where ARIMAX is not performing the best is the Standard Deviation,
and the only model that has a lower deviation is SARIMAX. However, the Mean and the
RMSE are both much higher for SARIMAX, and thus not making it the best option for
this dataset.
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5.1. Full dataset

5.1.3 Energy consumption and execution time for training and
inference

In table 5.3, Energy consumption and execution time are shown for all models used to
predict using the full dataset.

Model Type Energy (J) (CPU) Execution time (s)
ARIMA Training 26.6384 0.6321
ARIMA Inference 0.2277 0.0062
ARIMAX  Training 2.1569 0.0793
ARIMAX  Inference 0.1320 0.0074
SARIMAX Training 123.2973 2.6795
SARIMAX Inference 0.8218 0.0196
LSTM Training 780.9036 40.0756
LSTM Inference 3.4700 0.2290

Table 5.3: Performance Metrics of Different Time Series Models

Again looking at all the metrics together, ARIMAX uses the least amount of energy and
completes training the fastest. As for Inference, execution time is slightly slower from
ARIMA, but insignificantly. Efficiency wise, it is the best method, even for both training
and inference.

On the other hand, LSTM uses significantly more energy and execution time than any
other model for the full dataset, making it not the ideal choice for the best model. Even
though distance wise it was a close second to ARIMAX, the consumption doesn’t justify
the distance metrics.

5.1.4 Visualization of predictions

Since the results can be easily visualized on a map, it is a very good way to see how the
results are different between two different methods.

In the case of the full dataset, the best two models are ARIMAX and LSTM, and the
results can be seen in Figures |5.1] and 5.2l The red triangle represents the predicted
points, and the green circles represent the actual points.

Looking at the actual points, there are three different clusters where the points are
concentrated at. In comparison, the predicted points for LSTM are much more closer to
the true values than the predicted values for ARIMAX in two clusters. Although, the
third one overlaps much more for ARIMAX, and is probably the reason why the metrics
show that ARIMAX is overall better.

The performance could be most likely explained that the model can’t fully comprehend
the natural movements of livestock when training with combined data, since the patters
are combined and not easily extracted by the model.
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Figure 5.1: Predictions of ARIMAX model against the true values
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5.2. Per device subdataset

5.2 Per device subdataset

5.2.1 Hyperparameter tuning

In Figure 5.3, the hyperparameters that showed best performance on the dataset are
shown. These are the hyperparameters for LSTM, and for Federated learning version of
the model is shown also in Figure 5.3l

Federated model has an additional parameters of rounds, which described as mentioned
in Chapter 3, is a number of times weights are updated in the global model. Using these
hyperparameters, the LSTM deep learning model and Federated model will be trained to
show the results in the following subsections.

Hyperparameter Value

Hyperparameter Value

clipvalue 0.0
epochs 1
learning_rate 0.001
dropout_ rate 0.0
units 64
rounds 5

clipvalue 0.0
epochs 50
learning_rate 0.001
dropout_ rate 0.1
units 64

Figure 5.3: Optimal Hyperparameters for LSTM and Federated Learning LSTM Models.

5.2.2 Distance error metric

In Figure |5.4] are the results of all distance error metrics. In the first table are the results
of three baseline methods, while in the second are the advanced approaches of LSTM
and Federated Learning.

When comparing baseline methods with the previous approach, the results are slightly
worse performing. On the opposite side, the advanced approaches of LSTM and Federated
learning are performing much better than any other method up to now.

This could be due to the fact that the deep learning model is able to learn individual
pattern movements from livestock, and convey them better in the predictions. This
does not mean that the baseline approaches have bad results, only that the advanced
approaches have better enough results to discuss the runtime trade-offs.

Next step is to look at energy consumption and execution time to determine the best
model between the LSTM and Federated Learning one.
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5. RESULTS

ARIMA ARIMAX SARIMAX

Mean SD RMSE Mean SD  RMSE | Mean SD RMSE

1 183.55 136.37 228.67 | 189.09 128.44  228.59 | 339.21 151.57 371.54
2 617.24 302.29 68729 | 143.11 104.56 177.24 | 465.50 179.16 498.78
3 549.90 225.90 594.49 93.69 59.28 110.87 | 205.30  54.96 212.53
4 203.58  97.50 225.72 | 177.25 88.18 197.97 | 402.89  78.59 410.48
5 945.72 302.01 992.77 66.37  45.64 80.55 | 166.52  13.92 167.10
6 469.61 176.02 501.51 | 62.80 44.57 77.00 | 130.61 65.69 146.20
7 548.34 240.04 598.58 | 230.55 153.37  276.90 | 661.48 291.79 722.98

Avg | 502.56 211.45 547.00 | 137.55 89.15 164.16 | 338.79 119.38 361.37

LSTM Federated
Mean SD RMSE | Mean SD RMSE
1 40.82 33.39 52.74 | 39.62 35.07 52.91
2 51.50 130.60 140.39 | 41.48 135.00 141.23
3 74.60 85.45 11343 | 76.22 86.09 114.99
4 77.65 135.45 156.13 | 67.02 138.89  154.21
5
6
7

29.20 88.09 92.81 | 38.57 86.34 94.57
56.73 125.64 137.85 | 52.08 129.52  139.60
75.71  134.43 154.29 | 53.58 140.70  150.56
Avg | 58.03 104.72 121.09 | 52.65 107.37 121.15

Figure 5.4: Performance Metrics of Time Series Models by Device 1D.

5.2.3 Energy consumption and execution time for training and
inference

In table 5.4 Energy consumption and execution time are shown for all models used to
predict using the full dataset.

Comparing the two deep learning methods, even though they both have similar results,
the federated learning approach has much faster both training and inference times while
consuming a significantly smaller amount of energy. The additional advantage of federated
learning over all other models for this subset is that only one model is necessary for
making predictions. All other approaches need one model for each device, while a general
model is built with federated learning. While for seven devices this is not a big problem,
when scaling the number of devices makes using all different methods harder, the general
model for federated leaning just becomes even better at predicting.
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5.2. Per device subdataset

Ener J Execution time (s
Model Type Total gypir—)device Total per—de\Eige

ARIMA Training | 131.3544 | 18.7649 3.3842 | 0.4835
ARIMA Inference | 0.9826 0.1404 0.0291 0.0041
ARIMAX Training | 19.6972 | 2.8139 0.8464 | 0.1209
ARIMAX Inference | 0.8679 0.1240 0.0403 | 0.0058
SARIMAX Training | 1180.4381 | 168.6340 27.4270 | 3.9181
SARIMAX Inference | 4.9667 0.7095 0.1197 | 0.0171
LSTM Training | 2148.7064 | 306.9580 128.393 | 18.3418
LSTM Inference | 23.5800 3.3685 1.269 0.1812
Federated_ LSTM | Training | 365.28 52.1828 11.16 1.59
Federated LSTM | Inference | 29.4279 4.2039 1.385 0.1978

Table 5.4: Performance Metrics for per Device subset

5.2.4 Visualization of predictions

In order to see the another advantage of the federated approach, in Figures 5.5/ and
5.6/ is the comparison on the visualized results. The results are almost identical, once
again showing not only is the performance not lost using the federated approach, but the
method performs quite well.

== |eaflet | Google Earth

Figure 5.5: Predictions of LSTM model against the true values
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5. RESULTS

== Leaflet | Google Earth

Figure 5.6: Predictions of Federated model against the true values

5.3 Day/Night subdataset

5.3.1 Hyperparameter tuning

In Table 5.1, the hyperparameters that showed best performance on the dataset are
shown.

Hyperparameter Value

clipvalue 0.0
epochs 50
learning_ rate 0.001
dropout_ rate 0.0
units 64

Table 5.5: Optimal Hyperparameters after Tuning TEMPLATE

Using these hyperparameters, the LSTM deep learning model will be trained to show the
results in the following subsections.
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5.3. Day/Night subdataset

5.3.2 Distance error metric

In Figure 5.7 are the results of all distance error metrics. In the first table are the results
of three baseline methods, while in the second is the advanced approach of LSTM.

Comparing the last data split to the previous ones, the results are worse over all three
metrics over all methods. The best one out of them is again the baseline ARIMAX
approach where it beats the LSTM methods over all three metrics.

Set ARIMA Set ARIMAX
Mean SD RMSE Mean SD RMSE
Day 764.19 268.55 810.00 Day 272.59  95.34  288.78
Night | 333.61 330.64 469.70 Night | 135.83 100.84 169.17
Avg 548.90 299.60 639.85 Avg 204.21 98.09 228.98

SARIMAX LSTM

Set Set

Mean SD RMSE Mean SD RMSE
Day 766.17 199.83 791.80 Day 267.88 140.94 302.70
Night | 259.57 85.23 273.20 Night 224.34 147.79 268.64
Avg 512.87 142.53 532.50 Average | 246.11 144.37 285.67

Figure 5.7: Performance Metrics by Set (Day/Night) for ARIMA, ARIMAX, SARIMAX,
and LSTM Models.

Comparing the two different parts of the dataset, the day and night, on average the
night part has better performance, even though that the data comes in more regularly
during the day while at night the data is received less frequently. This is probably due
to the fact that naturally, livestock moves less at night, making it easier to make correct
predictions.

The results still don’t compare to the other two approaches, however, the energy analysis
still remains.

5.3.3 Energy consumption and execution time for training and
inference

Even though the performance is not up to par to the other splits of the data, the energy
consumption and execution time for training and inference can still outperform them. In
table [5.6, the energy consumption and execution time are shown for all models used to
predict using the Day and Night data split.
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5. RESULTS

Model Type Energy (J) (CPU) per subset Execution time (s) per subset
ARIMA Training 69.9471 34.9736 1.7482 0.8741
ARIMA Inference 0.3876 0.1938 0.0101 0.0051
ARIMAX  Training 6.4926 3.2463 0.2784 0.1392
ARIMAX  Inference 0.2233 0.1117 0.0113 0.0057
SARIMAX Training 251.9471 125.9736 5.9560 2.9780
SARIMAX Inference 1.8420 0.9210 0.0447 0.0224
LSTM Training 948.5259 474.2630 45.3156 22.6578
LSTM Inference 8.6778 4.3389 0.4765 0.2383

Table 5.6: Performance Metrics per Sub-dataset

Compared to the alternative two methods, the metrics are better than the per device
dataset, while it is slightly worse than the full dataset. Since the full dataset has better
performance metrics, it is then a definitively better option since it beats the current
approach on both ends.

Overall the approach has the worst metrics of all, and second best energy consumption
and execution time, making it the least viable option to be used. However, it was a
logical step to try due to the nature of the livestock movement.

5.4 Discussion and Limitations

To sum up, this chapter showed the results of the experiments of efficiency of location
prediction in rural areas. Three different data split approaches were taken, where the
focus is on the second one, since it has a real application in federated learning and edge
computing.

The baselines, the full dataset and day/night split, showed two different results. The full
dataset showed promising results, where the best model was ARIMA | even outperforming
a deep learning approach LSTM. As for the day/night split, there were no methods that
showed any promise, but it was a worthy try.

Lastly, the per device split gave the best results especially using the federated learn-
ing approach. It is the best method not only performance wise, but considering the
convenience of the edge computing and general model aggregation.

A comprehensive analysis of the performance metrics across all models reveals substantial
differences in efficiency and accuracy. The federated learning approach showed the lowest
error metrics while having one of the best execution times and energy consumptions.
While ARIMAX and LSTM had good performance federated learning’s robustness makes
it the most suitable solution for the target application.

Even though the experiments have been successfully ran and decent results have been
achieved, there have been certain limitations that were impacting the work. The most

52



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.4. Discussion and Limitations

obvious and the most influential one is the data used. Since FFG Virtual Shepherd is
still a project in development, there is not a whole lot of data, only for one season so far.
Using multiple seasons would certainly give more information to the models and help
them understand data better, and with that improve the performance even more.

Not only that, but since the devices used for location tracking are still in development,
leading to often inaccurate locations. This can be mitigated through anomaly detection,
but having more accurate positions will be beneficial since there won’t be a need to locate
anomalies and correct them. With time, this will certainly be improved which will in the
end most likely lead to much better results.

Lastly, since anomaly detection was not the topic of the thesis, it was done in a very
simple way just to mitigate the effect of very big anomalies that would badly skew the
results. A more sophisticated method could immediately change the results for the better,
since the data the models would be trained on would be much cleaner and would showcase
true patterns that the livestock leaves in the movement.

Even though there certainly are limitations that have had a negative effect on the whole
project, overall the experiments were successfully ran and the results are pretty good
considering the difficulties.
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CHAPTER

Conclusion and Future Work

To summarize and conclude, the thesis showed a combination of a deep neural network
and federated learning to get the best results possible for location prediction.

The best results overall came from the per device subsdataset, especially from the deep
learning methods, followed by the baseline ARIMAX. Even though Federated LSTM
performs slightly better when considering only performance metrics of the models in
comparison to only using LSTM, there are also even more important advantages to the
method.

First, the execution time and energy consumption are much lower, while not only keeping
the performance, but having and even better one as mentioned. This makes the utilization
of federated learning highly effective, and very convenient as well. This is because there
is only one global model when training in a federated manner, but when using only
a LSTM deep learning model, one model per device is necessary in order to make all
predictions. In case of many livestock devices, the models become hardly managed and
not easy to maintain. In addition to having to keep track of all models, a central storage
system is necessary to store all of the data and train all the models, while the federated
approach only needs a central system to communicate between models during training,
significantly cutting on communication costs. In this case the data is stored on devices
locally, which in rural area is quite an advantage since it disrupts the need of sending the
new position every 20 to 40 minutes.

Managing only one global model while cutting out a need for central storage and heavy
communication, but still keeping decent energy consumption and execution time and
having the best performance metrics is what federated learning helped achieve here in
this project. Having many advantages while having virtually zero downsides is one more
testament of why federated learning became such a popular method in such a short
amount of time.
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6.

CONCLUSION AND FUTURE WORK

56

This thesis also showed that it is not only effective in environments where privacy is the
biggest concern, but also it is a great addition to edge computing environments in order
to cut costs while keeping the necessary performance of the models.

Work so far is a very strong basis for some future work not only in this FFG Virtual
Sherpherd project but in this field. There are things that could be done to directly
expand this project but also do similar things in the spirit of the FFG project.

Starting with anomaly detection, a more advanced direction could be taken, for example
using an Autoencoder on the data and to see if some values stand out. As previously
mentioned, this would dramatically improve the results immediately for the thesis, and
that is why it could be considered as a direct expansion to the current work.

In addition to this, an even more advanced neural network than LSTM could be used, in
order to understand data patterns even better and thus improve the predictions. For
example, a model with an attention mechanism could do this job very well, and thus
would be a great choice for exactly that task.

A combination of these two improvements would surely give visible improvements to the
current state of the project, and would surely be a great next step.
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Overview of Generative Al Tools
Used

In this work, Al tools were used for formatting tasks, such as LaTeX table modification
and mathematical expression formation based on the inputs by the author. All conceptual
development and writing was done by the author.
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