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Abstract
An estimate of uncertainty is essential to understanding what information is conveyed by 
data and how it relates to the wider context of what one intended to measure. It can be diffi-
cult to know how to use uncertainty during the analysis of environmental data and the best 
way to present that information within a dataset. In many common uses, such as calculating 
statistical significance, it is easy to make mistakes due to incomplete or inappropriate use 
of the available uncertainty information. Uncertainty is itself uncertain, such that many 
practical or empirical solutions are available when a comprehensive uncertainty budget is 
impractical to produce. This manuscript collects actionable guidance on how uncertainty 
can be used, presented, and calculated when working with essential climate variables 
(ECVs). This includes qualitative discussions of the utility of uncertainties, explanations of 
common misconceptions, advice on presentation style, and plain descriptions of the essen-
tial equations. Selected worked examples are included on the propagation of uncertainties, 
particularly for data aggregation and merging. Uncertainty need not be off-putting as even 
incomplete uncertainty budgets add value to any observation. This paper aims to provide 
a starting point, or refresher, for researchers in the environmental sciences to make more 
complete use of uncertainty in their work.

Article Highlights

•	 Presents worked examples of propagating uncertainty through the coarsening or merg-
ing of data

•	 Discusses how to avoid several common misconceptions in the analysis of environmen-
tal data

•	 Outlines best practices in the presentation of data to accurately represent uncertainty 
information
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1  Introduction

Uncertainty is an essential component of any scientific measurement, indicating the range 
of values that are consistent with a reported value, be it directly measured or derived from 
some calculation. Formally, BIPM et al. (2024, a collection of documents outlining best 
practice in metrology, the science of measurement) defines uncertainty as a “non-negative 
parameter characterising the dispersion of [values] being attributed to a measurand, based 
on the information used”, where the ‘measurand’ is the “quantity intended to be meas-
ured” in order to distinguish what one intended to measure from what was actually meas-
ured. They posit that uncertainty is distinct from ‘error’, which is formally the difference 
between a measurement and its reference or (typically unknowable) true value. BIPM notes 
that uncertainty is colloquially synonymous with ‘doubt’ and aims to describe the expected 
statistical behaviour of errors.

Space agencies now request that per-pixel estimates of uncertainty are provided for all 
ECVs they fund (e.g. ESA 2024), recognising that such information is necessary to under-
stand complex systems with numerous natural and anthropogenic influences (Merchant et al. 
2017). Information about the uncertainty in environmental data, even when incomplete, pro-
vides a deeper understanding of the data provided and focuses development of ECV algo-
rithms (e.g. Rayner et al. 2014; Niro 2017; Popp and Mittaz 2022, Bulgin et al, 2025). Despite 
being included in any undergraduate course in the physical and life sciences, the treatment of 
uncertainty in environmental sciences literature can vary massively in complexity and rigour: 
from a simple calculation of the standard deviation of the difference between observations to 
fully characterised uncertainty trees rooted in fiducial reference measurements (e.g. Gal et al. 
2024; Fernandes et al. 2014; Bulgin et al. 2016a; Mittaz et al. 2019).

This paper emerged from discussions at the International Space Science Institute’s 
workshop “Remote Sensing In Climatology— ECVs and their Uncertainties”. A recurring 
feature of the presentations was that ECV data users often lack the knowledge or confi-
dence to utilise the uncertainty information available, mirroring the observations of ECV 
producers (such as aldred et al. 2023; Good et al. 2021). This manuscript aims to collect 
some practical advice on how uncertainty can be utilised when working with environmen-
tal data. These discussions are intended for researchers in the environmental sciences to 
complement the collection of examples of evaluating uncertainty, across all disciplines, 
that has been gathered in Part 5 of the Guide to Uncertainty in Measurement (BIPM et al. 
2024).

Section 2 begins with a qualitative consideration of how uncertainty information can 
inform the interpretation of environmental data through the example of spatial variability 
around ocean fronts. Examples of common uncertainty calculations are provided in Sec-
tion 3, including the aggregation of datasets. Factors that complicate data validation and 
assimilation are discussed in Section 4. Finally, Section 5 outlines several common mis-
conceptions and strategies to avoid them, followed by concluding remarks.

2 � Considering Uncertainty

This section is aimed at users of environmental data. We qualitatively illustrate through 
an example why uncertainties matter and how to use uncertainty information to achieve 
a deeper understanding of data to make better decisions.
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2.1 � Sampling Uncertainty when Examining Fronts

The European Space Agency (ESA) Climate Change Initiative (CCI) Sea Surface Tempera-
ture (SST) product provides not only a total uncertainty for each SST measurement but also 
a breakdown of this uncertainty value into its various components (Bulgin et  al. 2016a; 
Embury et al. 2024). When analysed appropriately, the uncertainty budget gives the user a 
deeper insight into the dataset’s construction, enabling them to make informed choices on 
how to use and filter the data. Our example (Fig. 1) shows SST values along the south-east 
coast of Greenland, to the west of Iceland. The data are SSTs retrieved from the Sea and 
Land Surface Temperature Radiometer onboard the Sentinel-3A platform (SLSTR-A) on 
19/07/2020 at 23:34. The data shown are Level 3 Uncollated (L3U), meaning that they are 
retrievals from a single satellite overpass, mapped onto a regular lat-lon grid (Embury et al. 
2024).

The total uncertainty in the SST is constructed from three different uncertainty com-
ponents and calculated by adding these in quadrature. These components are calculated 
independently in the product generation due to their different correlation length scales, 
ensuring correct propagation through the processing chain (Bulgin et al. 2016a), and are 
supplied as additional information to users. The first component is uncertainty that arises 
from error effects which are uncorrelated between pixels. For this product, these uncor-
related errors are primarily related to instrument noise (Bulgin et al. 2016a) and sampling 
uncertainty (Bulgin et al. 2016b). In the process of re-gridding the data from the instru-
ment grid to a regular lat-lon grid, sampling uncertainty arises as the ocean surface is not 
fully sampled; some data are missing due to the presence of cloud obscuring the satellite’s 
view of the ocean.

The second uncertainty component is uncertainty that arises from errors correlated 
over synoptic scales (Bulgin et  al. 2016a). The SST retrieval needs to account for the 

Fig. 1   Retrieved sea surface temperature and associated uncertainties for the ESA CCI SST v3.0 L3U 
product 20200719233416-ESACCI-L3U_GHRSST-SSTskin-SLSTRA-CDR3.0-v02.0-fv01.0.nc. Subplots 
show: a SST, b uncertainties from error effects unlikely to be correlated between pixels, c uncertainties 
from error effects likely to be correlated between pixels on synoptic scales and d uncertainties from error 
effects likely to be correlated between pixels over large spatio-temporal scales. Retrievals are only made 
over the ocean. Missing pixels in the data field have been masked due to the presence of cloud
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atmosphere (through which the ocean is viewed by the satellite), and this is represented 
using numerical weather prediction data that describe the surface temperature and total 
column water vapour. Errors in these prior values will lead to uncertainties correlated over 
synoptic scales (the scales on which the atmospheric conditions change). The third compo-
nent is the large-scale, systematic uncertainty that arises from error effects correlated over 
large spatio-temporal scales (e.g. instrument specific calibration error effects applicable to 
whole satellite missions) (Bulgin et al. 2016a). In this example, these large-scale system-
atic uncertainties are dominated by instrument calibration errors.

The user can evaluate these uncertainty components alongside the SST data to better 
understand the drivers in the uncertainty variability. In this example, colder waters are 
found over the shelf seas surrounding Greenland (whose coast is the ragged edge on the left 
of the figures), with warmer water where the ocean deepens over the Irminger Sea (Chafik 
and Rossby 2019). This results in a number of SST fronts (strong gradients in SST) both 
along the shelf-edge and in regions of turbulent mixing between the shelf-sea and deeper 
waters (Fig. 1a). These SST frontal structures are most evident in the uncorrelated uncer-
tainty component (Fig. 1b). This is because the magnitude of the sampling uncertainty is 
dependent on the underlying variability in the SST (Bulgin et al. 2016b). Where there are 
strong gradients in SST, calculating an area average in a gridded product containing some 
missing data gives a larger uncertainty than for regions where the SST is more homogene-
ous. The systematic uncertainty component (Fig 1c) is largest to the right of the image (just 
east of Iceland), with synoptic scale features evident in its variability. The large-scale sys-
tematic uncertainty component (Fig 1d) is consistent across the observed domain.

Understanding the uncertainty budget construction is of relevance to the user in decid-
ing how to use and filter the data. Many users like to filter data on the basis of quality levels 
or thresholds and have a tendency to treat uncertainty estimates in the same way. However, 
large uncertainties are not indicative of bad data. If the user were to place a threshold on 
the total uncertainty to filter the data used in this example, they would exclude all areas of 
SST fronts from their analysis. In this example, where we plot an individual scene, this is 
perhaps obvious, but if users are interrogating a large dataset and placing a threshold on 
the total uncertainty, they may unwittingly introduce a bias in their results by preferentially 
screening out regions with greater SST variability.

Rather than a filter, an appropriate use of uncertainty is to weight inputs to a compu-
tation or analysis as uncertainty expresses the extent of doubt on a measurement. Basic 
methods to do so are outlined in Sect. 3. Data assimilation, a formal framework to weight 
data and its uncertainty against a model, is introduced in Sect. 4.3. Elsewhere in this issue, 
Formanek et al. (2025) discusses how to judge when uncertainty information may help or 
hinder various analyses and Gruber et  al. (2025) introduces a framework for translating 
uncertainty into a form more useful for decision making.

2.2 � Ways of Representing Uncertainty

Uncertainty can be represented in either a parametric or in a nonparametric way. If the 
errors can be assumed to follow a probability distribution that is fully characterised by one 
(or more) parameter, that parameter can be used to represent the uncertainty. For exam-
ple, ‘standard uncertainty’ is the most common representation of uncertainty when errors 
are assumed to be normally distributed, with zero mean, such as 16 ± 2 cm. The uncer-
tainty, being the value after the ± sign, gives the standard deviation ( � ) of that distribution. 
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This implies that, if a measurement x ± � were conducted repeatedly, 68% of observations 
would fall within the range [x − �, x + �].

If the probability distribution underlying the errors is more complex, non-symmetric, or 
unknown, a nonparametric representation of uncertainty may be needed, e.g. specifying a 
range of values that correspond to certain probabilities. Such ranges are commonly referred 
to as confidence intervals, such as 9.3 (9.1 − 9.8) yr (see Sect. 3.2 for details on their cal-
culation). The range provided in the brackets indicates a range that is associated with a 
certain confidence level �% that should be explicitly stated (typically 68, 90, or 95%). If 
the experiment was repeated many times, the true value would fall within �% of the ranges 
so calculated (though any particular confidence interval either contains the true value or it 
does not).

It is crucial to understand that these two representations of uncertainty convey subtly, 
yet fundamentally, different information. Parametric uncertainty estimates are derived from 
calculations that involve prior knowledge about (at least partially) known error sources, 
whereas nonparametric interval estimates are derived from purely empirical sampling. In 
a very rough sense, confidence intervals are a frequentist representation of uncertainty and 
standard uncertainty is Bayesian (see Woolliams et al, in preparation, section‘Differingvie
wsabouttheGUManditsapplication’).

It should be noted that this manuscript largely avoids the terms ‘random’ and ‘system-
atic’ as descriptions of error effects, for reasons discussed in Sect. 5.2. This diverges from 
the nomenclature of projects such as FIDUCEO (Mittaz et  al. 2019) but is consistent in 
their intent. Further discussions concerning the communication of uncertainties and their 
different representations are provided in Sect. 5.3.

3 � Calculating Uncertainty

This section provides several quantitative examples of calculating the uncertainty on 
data or working with a provided uncertainty and discusses relevant practical issues and 
common misconceptions.

3.1 � Propagation of Uncertainty

The propagation of errors is widely taught in undergraduate courses, though it would be 
more accurately described as the propagation of uncertainties. This can be presented as 
‘rules’ for sums, products, etc., but these derive from a general formula (Eq. 10 of JCGM 
100:2008(E) BIPM et al. 2024) for the uncorrelated uncertainty of a variable y that is a 
function of a set of variables x = (x1, x2,… , x

N
),

Here, �(z) is the standard uncertainty on a variable z (which may itself be a function of 
other variables).

(1)�2[y(�)] =

N
∑

i=1

(

�y

�xi

)2

�2(xi)
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Application of this formula is straightforward, if not necessarily simple, for elemen-
tary functions. For example, the normalised difference vegetation index (NDVI) is a 
popular measure of the health and density of vegetation defined as,

where � are reflectances measured by a satellite in an infrared ( �ir ) or red ( �red ) channel. If 
those measurements are assumed to be uncorrelated and suffer only measurement sources 
of error, the standard uncertainty on NDVI can be calculated as,

When the measurement equations cannot be expressed in terms of elementary functions 
(i.e. are difficult to write down comprehensibly), it is common to use finite differences to 
calculate the derivatives in (1),

where � is an arbitrary number that is small relative to the variables xi but large compared 
to the precision of the computer (and could vary with i if desired). More advanced approxi-
mations are available (e.g. Mickens 2015).

In practice, there will likely be some correlation between the radiances due to cross-
talk, commonalities in the calibration method, stray light, or other imperfections in the 
measurement process (e.g. Mittaz et  al. 2019; Holl et  al. 2019; Ventress and Dudhia 
2014). This tends to be overlooked when quantifying the correlation is difficult or 
impossible. Mittaz et al. (2019) explains that, when correlations are known, (1) can be 
generalised to,

where �2(xi, xj) is the covariance of xi with xj and the second line expresses the sum as a 
product between the Jacobian k (a column vector for which ki =

�y

�xi
 ) and the covariance 

matrix S (for which Sij = �2(xi, xj) ). The matrix formulation of this problem can be 
extremely useful when considering multiple error effects with different correlation length 
scales (Merchant et al. 2019). For the example of NDVI, (3) is amended to,

(2)NDVI =
�ir − �red

�ir + �red
,

(3)

�2(NDVI) =

(

�NDVI

��ir

)2

�2(�ir) +

(

�NDVI

��red

)2

�2(�red)

=

[

2�red
(

�ir + �red
)2

]2

�2(�ir) +

[

−2�ir
(

�ir + �red
)2

]2

�2(�red)

= 4
�2
red
�2(�ir) + �2

ir
�2(�red)

(

�ir + �red
)4

.

(4)�2[y(�)] ≈

N
∑

i=1

[

y(x1,… , xi + �,… , xn) − y(x1,… , xn)

�

]2

�2(xi),

(5)�2[y(�)] =

N
∑

i=1

N
∑

j=1

�y

�xi

�y

�xj
�2(xi, xj)

(6)≡ kTSk,
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Above, the correlation between the two error sources in the NDVI estimate reduces the 
estimated uncertainty, but this is not a general result. While it may be well-meaning to 
neglect the correlations in order to “avoid underestimation” in cases such as this, such 
uncertainties will be incorrect. Where it is impractical to write down the equations of a 
processing chain, or they are not susceptible to differentiation, Monte Carlo methods are 
available (see Supplement 1 of BIPM et al. 2024).

3.2 � Sampling Uncertainty and Confidence Intervals

Confidence intervals are an alternative means of representing the range of values consist-
ent with a measurement. They are particularly useful where the distribution of an error 
is unknown or non-Gaussian. An example of this is estimation of trends or skill metrics, 
as these are subject to sampling uncertainties due to the difference between the spread of 
values in the sample and that of the population of all possible measurements. It is com-
mon practice to apply statistical tests to determine whether such a trend or skill estimates 
are ‘statistically significant’ (i.e. worthy of consideration or note). As will be discussed in 
Sect. 5.1, one should avoid such dichotomous and easily misinterpreted tests, if possible, 
and instead quantify the actual magnitude of the sampling uncertainties using confidence 
intervals.

Following Gruber et al. (2020), there are two methods for calculating a confidence inter-
val. When the distribution of the measurand is not known, bootstrapping has been sug-
gested as a nonparametric method for obtaining confidence intervals (Efron and Tibshirani 
1986). Bootstrapping is a means of constructing empirical probability density functions 
(PDFs) by repeatedly resampling some original dataset, with replacement to preserve the 
sample size. In simple terms, 

1.	 Resample the dataset of n data points by selecting m values from it at random, on each 
occasion selecting from all of the original data (a.k.a. with replacement so that a single 
value may appear repeatedly in the resample). Typically, n = m but m can be less than 
n when it is impractically large.

2.	 Use that resample to calculate the desired variable, such as a mean or a trend.
3.	 Store that value and repeat a large number of times to create an empirical PDF of the 

variable. A minimum of 1000 resamples is recommended (Efron and Tibshirani 1986).
4.	 Use that PDF to determine the confidence intervals.

•	 The most straightforward evaluation would be, for the 90% confidence level, to eval-
uate the 5th and 95th percentiles of that PDF (varying the values for other confi-
dence levels as appropriate).

•	 That is only accurate to first order. Gilleland (2010) provides practical examples of 
the implementation of several other methods, aimed at the forecasting community.

If the variable of interest is believed to conform to some statistical distribution, f, only 
step 4 is necessary as the function can be used to evaluate the desired percentiles. For 

(7)

�2(NDVI) =4
�2
red
�2(�ir) + �2

ir
�2(�red)

(

�ir + �red
)4

+
�NDVI

��ir

�NDVI

��red
�2(�ir, �red)

= 4
�2
red
�2(�ir) + �2

ir
�2(�red) − �red�ir�

2(�ir, �red)
(

�ir + �red
)4

.
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example, Gruber et al. (2020) defined the bias between two measures of soil moisture as 
bxy = ⟨x⟩ − ⟨y⟩ , where ⟨⟩ denotes the mean of a dataset. The difference between two differ-
ent estimates of the mean of a population is known to be distributed by Student’s t func-
tion, which has inverse cumulative distribution function T−1

n−1
(a) giving the ath percentile of 

bxy that averages n measurements. Thus, the 90% confidence interval is,

where � is an estimate of the uncertainty such as the root-mean square deviation (RMSD).

3.3 � Coarsening Datasets for Comparison with Other Data Sources

One of the most common manipulations of Earth observation datasets by data users is to 
apply some form of coarsening to relatively high-resolution data either to look at larger-
scale averages (e.g. city-wide, regional or country-level values) or to enable comparison 
with other datasets (e.g. model outputs). The propagation of uncertainties through the 
coarsening step is often neglected, but should be applied to each uncertainty component in 
an uncertainty budget, with close attention paid to the correlation length scales of the vari-
ous components. This section illustrates best practice for the procedure using land surface 
temperature (LST) data.

LST products from the Sea and Land Surface Temperature Radiometer (SLSTR, 
described in Sect.  2.1) are provided at a resolution of 0.01°, an example of which is 
shown in Fig. 2 for a section of an orbit covering northern Africa and western Europe on 
12/03/23. These datasets are provided with a full breakdown of uncertainty information 
into four different components: uncorrelated, locally correlated uncertainties on atmos-
pheric scales, locally correlated uncertainties on surface scales, and large-scale correlated 
uncertainties. The per-pixel total uncertainty is also provided. Note that the uncertainty 
components (panels b-e) are all plotted on the same colour scale to highlight the difference 
in magnitude. The total uncertainty is the sum of the components (with the summation 
done in variance space).

Consider the case where we want to coarsen these data to a resolution of 0.05°. To illus-
trate this, we will focus on a small area in northern Germany of size 1°x1° (Fig. 3). Look-
ing more closely, we can see differences in the spatial structure of the uncertainty compo-
nents, reflecting their sensitivity to factors that govern their correlation length scales. For 
example, the atmospheric component is more smoothly varying than the surface compo-
nent as the latter is correlated with land cover (biome).

To propagate the uncertainties, we require equation 5:, which can be expanded as:

The first term relates to the propagation of the uncertainties that are uncorrelated (see also 
Eq. 1), the second term relates to the correlated uncertainties (see also Eq. 6), and n is the 
number of measurements combined in this grid cell.

(8)CIbxy =

�

bxy +
∈
√

n
T−1
n−1

(0.05), bxy +
∈
√

n
T−1
n−1

(0.95)

�

,

(9)�2[y(�)] =

n
∑

i=1

(

�y

�xi

)2

�2(xi) + 2

n−1
∑

i=1

n
∑

j=i+1

�y

�xi

�y

�xj
�2(xi, xj).
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Fig. 2   LST 0.01° daytime data product from Sentinel-3A SLSTR for 12/06/2023 showing a LST, b the 
uncorrelated uncertainty component, c the systematic uncertainty component correlated over atmospheric 
scales, d the systematic uncertainty component correlated over surface scales, e the large-scale system-
atic uncertainty component and f the total per-observation uncertainty. Data are taken from product file: 
ESACCI-LST-L3C-LST-SLSTRA-0.01deg_1DAILY_DAY-20230612000000-fv4.00.nc

Fig. 3   Subset of data from Fig. 2 located over northern Germany (52.4–53.4N, 11.5–12.5E). Panels show 
a LST, b the uncorrelated uncertainty component, c the systematic uncertainty component correlated over 
atmospheric scales, d the systematic uncertainty component correlated over surface scales, e the large-scale 
systematic uncertainty component and f the total per-observation uncertainty
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To coarsen the data to 0.05°, we apply an arithmetic average to the retrieved LST under 
the assumption that the LST is variable over the coarser domain and all observations carry 
equal weight:

Differentiating this equation with respect to LST shows that the sensitivity is 1
n
 . Inserting 

this into Eq. 9 yields:

For the uncorrelated uncertainty component, �2(xi, xj≠i) = 0 and this equation simplifies to:

The 1
√

n
 scaling is applied under the assumption that the input uncertainty is a constant 

value and the uncertainty is uncorrelated between pixels. The uncertainties are channel 
specific, specified in brightness temperature space and then propagated through the LST 
retrieval equation. Dependencies of coefficients within this retrieval equation on land 
cover, fractional vegetation and total column water vapour mean that the resultant �2

uncor
(xi) 

values are not constant, and n is added to the denominator of 12 on the right hand side to 
take the average. For the fully correlated case, �2(xi, xj≠i) = �(xi)�(xj) and Eq. 11 simplifies 
to:

This applies to both the large-scale correlated component and the component that is locally 
correlated on atmospheric scales. This is because the given spatial correlation length scale 
for the atmospheric component is 5 km (Steinke et al. 2015; Vogelmann et al. 2015), which 
is equal to the resolution of the new grid (and so the uncertainty is fully correlated over this 
domain).

Propagation of the surface component is more complex as the correlation differs 
between observation pairs. The information provided with the product states that the 
uncertainties are correlated for pixels of the same biome, with a spatial correlation length 
scale of 5 km (Ghent et al 2017). The propagation is done using the matrix form of the 
equation, explicitly constructing the covariance matrix for each 0.05° grid cell according 
to the biome distribution. The propagated uncertainties for each component are shown in 
Figure 4.

The total uncertainty is the sum of the components, in quadrature:

(10)⟨LST⟩ =
1

n

n
�

i=1

LSTi.

(11)�2[LST(�)] =

n
∑

i=1

(

1

n

)2

�2(xi) + 2

n−1
∑

i=1

n
∑

j=i+1

1

n

1

n
�2(xi, xj).

(12)
�uncor[LST(�)] =

1
√

n

�

�

�

�

�

n
∑

i=1

�2(xi)

n
.

(13)
�cor[LST(�)] =

�

�

�

�

�

n
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i=1

�2(xi)

n
.

(14)�[LST(�)] =
√

�2
unc

(�) + �2
atm

(�) + �2
surf

(�) + �2
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Coarsening of any dataset should be approached in this way, taking into account the cor-
relation length scale of each component of the uncertainty budget. Note that this example 
uses complete data, e.g. there are no missing observations due to cloud. If sampling was 
incomplete, an additional sampling uncertainty term should also be calculated.

3.4 � Merging Datasets with Robust Uncertainty

When multiple measurements of the same quantity are available, it may be desirable to 
merge them into a single estimate. For example, Gruber et al. (2017) merge 11 soil mois-
ture products into a single time series using the standard uncertainty as a weighting factor 
to average m observations of the same measurand x by,

This is an application of weighted least squares, currently used in the generation of the 
ESA CCI soil moisture climate data records (Gruber et al. 2019). Triple collocation analy-
sis (e.g. Virtanen et  al. 2018; Gruber et  al. 2016) is applied to obtain robust and mutu-
ally consistent estimates of the standard uncertainties (and hence weights) of different sat-
ellite soil moisture products (an outline of the method can be found at https://​pytes​mo.​
readt​hedocs.​io/​en/​latest/​examp​les/​triple_​collo​cation.​html; last accessed 4 March 2025). 
Note that this method neglects any correlation within and between errors and assumes that 

(15)xagg =

∑m

i=1
xi∕�

2(xi)
∑m

i=1
1∕�2(xi)

(16)�2(xagg) =

(

m
∑

i=1

1

�2(xi)

)−1

.

Fig. 4   Data from Fig. 3 coarsened to a resolution of 0.05°. Panels show a LST, b the uncorrelated uncer-
tainty component, c the systematic uncertainty component correlated over atmospheric scales, d the sys-
tematic uncertainty component correlated over surface scales, e the large-scale systematic uncertainty com-
ponent and f the total per-observation uncertainty

https://pytesmo.readthedocs.io/en/latest/examples/triple_collocation.html
https://pytesmo.readthedocs.io/en/latest/examples/triple_collocation.html
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all measurements are samples from the same distribution (neglecting error effects such 
as sampling). These would add terms to the uncertainty budget (c.f. Eq. 13 vs. Eq. 12). 
Despite the absence of robust estimates of potential error covariances, this weighted least 
squares implementation was shown to yield merged soil moisture time series that perform 
better than the individual input products, and those obtained from a more simplistic ordi-
nary least squares implementation (i.e. an unweighted average), highlighting how even 
incomplete uncertainty budgets can add value to data and its analysis.

3.5 � Merging Datasets with Inconsistent Uncertainty Budgets

The methods of previous sections rely on the uncertainty estimates of the input variables 
being fit-for-purpose (i.e. accurate and precise), although it is still possible for there to be 
aspects of an uncertainty budget that it is difficult to fully quantify (Mittaz et  al. 2019). 
The following discussion is adapted from Popp et al. (2024), which outlines the creation 
of a merged dataset of aerosol optical depth (AOD) for the Copernicus Climate Change 
Service. AOD is the integral of extinction and absorption due to aerosols through a vertical 
column of the atmosphere. This adaptation is intended as a demonstration of the practical 
considerations involved in the use of uncertainty and is not an endorsement of this specific 
method for dataset merging. The fitness of a dataset’s uncertainty can be judged by com-
parison against reference observations, and a detailed review of methods to achieve such 
evaluation is provided elsewhere in this issue by Verhoelst et al. (2025).

AERONET (Aerosol Robotic Network, Holben et  al. 1998) is a network of sun-pho-
tometers that automatically locate the sun and measure AOD from the attenuation of direct 
illumination. This is assumed to have an uncertainty of �(�a) = 0.01 , which is about an 
order of magnitude smaller than the uncertainties typically reported by satellite AOD prod-
ucts. Once AERONET observations are co-located with the satellite data, there will be N 
pairs of observations �s(i) and �a(i) . From those, the ‘expected discrepancy’ ux(i) and the 
‘bias-corrected difference’ dx(i) are calculated as,

A correction factor is then applied to the satellite uncertainties to ensure that their distribu-
tion (i.e. the spread of expected discrepancies) matches the distribution of observed errors 
(i.e. the spread of bias-corrected differences),

For a practical example, consider a synthesised set of six observations by three unbiased 
instruments: 

0.	 An AERONET sun-photometer with error of 0.01;
1.	 A satellite imager with error 0.06 that is accurately represented by the uncertainty; and
2.	 A second imager with similar error but incorrect uncertainty estimate of 0.03.

(17)ux(i) =

√

�2[�s(i)] + �2[�a(i)]

(18)dx(i) = �s(i) − �a(i) −
1

N

N
∑

j=1

�s(j) − �a(j).

(19)�2
∗
(�s) =

�

⟨�dx�⟩

⟨�ux�⟩

�2

�2(�s).
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From this information, �2(�a) = 10−4 , �2(�1) = 3.6 × 10−3 , and �2(�2) = 9 × 10−4 . Hence, 
u1 = 0.061 and u2 = 0.032 . Table 1 then presents simulated data from the sun-photometer 
(column �a ), the well-characterised imager (column �1 ), the poorly characterised imager 
(column �2 ), and the application of Eq. 15 to those data. For example, in the second row,

By construction, each instrument provides an accurate estimate of the mean of the complete 
set of six observations. Hence, columns d1∕2 are simply the difference between columns 
�1∕2 and �a . Then, the correction factor for satellite 1 is ⟨�d1�⟩∕u1 = 0.060∕0.061 = 0.948 
and for satellite 2 it is ⟨�d2�⟩∕u2 = 0.060∕0.032 = 1.91 . (The corrected uncertainties are 
coincidentally both �∗(�1∕2) = 0.057.)

We quantify the precision of the two merged datasets using a RMSD against the known 
‘true’ value in the bottom row. The aggregated dataset �agg somewhat improves upon each 
individual dataset (RMSD of 0.055 compared to 0.065 or 0.063), while the corrected 
aggregation �′

agg
 is an improvement upon all three (RMSD 0.051). The process to cor-

rect these uncertainties, being based on noisy data, is only approximate—the ‘accurate’ 
uncertainties are improperly reduced by 5% while the ‘inaccurate’ uncertainties are only 
increased by 90% when they should be doubled. A sample of thousands of data points 
would be preferable to provide greater resilience against outliers.

To repeat, this is only one way of utilising imperfect uncertainties. Popp et al. (2024) 
goes on to consider correction factors that vary with ux , expecting the errors to increase 
for larger signals. Further, the corrections could have been applied to variances rather than 
standard deviations. A more metrological approach would use this validation of the uncer-
tainties to revise the estimates themselves, but empirical correction factors of this form can 
be useful when confronted with practical realities.

(20)

�agg =
�1∕�

2
1
+ �2∕�

2
2

1∕�2
1
+ 1∕�2

2

=
0.002∕3.6 × 10−3 + 0.031∕9 × 10−4

1∕3.6 × 10−3 + 1∕9 × 10−4

= 0.0252.

Table 1   Demonstration of the calculation of a weighted mean for six simulated observations by a sun pho-
tometer ( �

a
 ) and two satellite products ( �1,2 ). If the uncertainty on the second satellite is underestimated, 

�agg gives the weighted mean of the observations. After correcting the uncertainties, a new aggregation �′
agg

 
provides a more precise estimate as measured by the RMSD (bottom row)

True value �
a

�1 �2 �agg |d1| |d2| �′
agg

0.04 0.024 0.088 0.098 0.096 0.064 0.074 0.093
0.06 0.067 0.002 0.031 0.025 0.065 0.036 0.016
0.08 0.096 0.108 0.017 0.035 0.012 0.079 0.063
0.10 0.097 0.167 0.053 0.076 0.070 0.044 0.110
0.16 0.151 0.043 0.129 0.112 0.108 0.022 0.086
0.22 0.225 0.252 0.332 0.316 0.027 0.107 0.292

Mean 0.11 0.110 0.110 0.110 0.110 0.058 0.060 0.110
RMSD 0.011 0.065 0.063 0.055 0.051
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4 � Using Uncertainty

This section discusses the role of uncertainty in the comparison of different measurements 
of the same measurand.

4.1 � Comparing Single Datum

The most elementary use of uncertainty information is to determine if two measurements 
of the same quantity are consistent with each other. Physical science textbooks that use the 
term ‘consistent’ appear to avoid defining the term (e.g. Hughes and Hase 2010), but usage 
appears similar to “likely to be of the same value”. Statisticians reserve the term for 
describing estimators that converge to a single value as the sample size increases (Dodge 
2003). In the former sense, a pair of observations x1 ± �1 and x2 ± �2 are said to be consist-
ent if their difference is smaller than the combination of their uncertainties, namely if 
|x1 − x2| <

√

𝜎2
1
+ 𝜎2

2
 . A similar comparison can be made using confidence intervals (i.e. 

two results are consistent if their confidence intervals overlap). While possibly having qual-
itative value, comparisons of this form both misrepresent the uncertainty information avail-
able and are liable to misunderstanding.

Comparisons of confidence intervals are common for metrics that summarise a complex 
system, particularly in the comparison of climate models. An example is reproduced from 
Smith et al. (2021) in Fig. 5, which compares trends in aerosol radiative forcing between 
different models and a distribution of that variable estimated with a statistical model. The 
authors complement the set of intervals by aggregating them into a PDF at the bottom 
of the figure, which combines the individual uncertainty estimates into useful and easily 
understood information.

By graphically representing uncertainties with error bars, the most intuitive interpreta-
tion is that the ‘true’ value of the measurand is within the ranges of both measurements. 
The danger is that where the ranges barely overlap (corresponding to small certainty in 
their combination), the apparent range for the true value is small (corresponding to high 
certainty). Further, for confidence intervals, overlap can be achieved simply by increasing 
the confidence level, which disguises the decreased certainty in the comparison. As such, 
this qualitative comparison is easier to understand if the name is inverted—testing incon-
sistency. If a pair of observations differ by more than the combination of their uncertainties, 
they are inconsistent and additional information will be needed to assess the measurand.

To comment on the agreement of observations requires formally testing the hypothesis 
that two measurements are drawn from the same sample. If an analysis merely comments 
on the consistency of observations, rather than merging the data into a single estimate (see 
Sect. 3.4), it may imply that the uncertainties provided are considered to be incomplete or 
incompatible in some way, such that only a qualitative statement is possible.

4.2 � Comparing Data

When multiple data points are available, the above comparisons can be generalised. Called 
‘validation’, this is an essential step in the creation of an ECV record, demonstrating the 
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utility of the data by comparison against independent observations. The essential compo-
nents of a validation are to: 

1.	 Co-locate the datasets;
2.	 Collect sufficient data to achieve statistically robust results; and
3.	 Create a scatter plot and summary statistics.

Each of these steps involves a number of practical and statistical considerations, with 
numerous common misapprehensions. Loew et al. (2017) is recommended for a compari-
son of methodologies across different ECVs. The validation process can also be applied to 
uncertainty estimates themselves (e.g. Bulgin et al. 2016a; Sayer et al. 2020), and the meth-
ods of that process (and how they differ to that outlined below) are reviewed elsewhere in 
this issue by Verhoelst et al. (2025).

4.2.1 � Co‑locate Datasets

Co-location is a procedure to harmonise datasets, identifying sets of observations of the 
same circumstances (Merchant et al. 2017). The most straightforward case would be two 
identical sensors stationed side-by-side that record with the same periodicity. In that simple 
experiment, co-location would simply involve applying quality control to each dataset (i.e. 

Fig. 5   Trends of linear aerosol forcing for 1980–2014 in various CMIP6 models (coloured whiskers), with 
90% confidence intervals (reproducing Fig. 7 of Smith et al. (2021)). The histograms summarise the output 
of Monte Carlo simulations of the same trend with two different weightings



	 Surveys in Geophysics

removing spurious or contaminated results) and pairing the observations that are closest in 
time. Things are rarely that simple in practice.

Consider two identical radiometers observing the same patch of ground in order to 
determine its temperature. The instruments will view slightly different scenes as they are 
in different positions —a tree may shade more of the patch seen from one vantage caus-
ing that instrument to consistently report a lower temperature. This will result in differ-
ences between the observations in addition to those that the experiment is attempting to 
estimate, introducing additional uncertainty into the validation (e.g. Ermida et al. 2014). 
Anisotropy of the surface can produce similar effects when seemingly minor changes in 
viewing geometry result in substantial differences in (say) emissivity of the patch observed 
by each instrument. It will not always be possible to minimise these uncertainties, such as 
when the instruments have different spectral responses. Like the shade of the tree before, if 
some aspect of the scene emits light in a part of the spectrum only detected by one instru-
ment, there will be a difference between the observations. This may be consistent over time 
(such as a rock) or not (such as a transient puddle). Hence, it is important to carefully con-
sider precisely what is measured by each instrument when designing co-location. It may 
be necessary to apply corrections to the data to avoid conducting an ‘apples-to-oranges’ 
comparison of different measurands.

That example is still simpler than most validations conducted on ECVs. More typi-
cally, a satellite swath is compared to a surface station, aircraft track, or other satellite. This 
requires matching data in both time and space, which results in multiple possible pairings. 
Is it better to compare observations that occurred simultaneously but with a large spatial 
separation, coincident measurements separated in time, or to average all of the available 
data? That question would ideally be resolved by considering the spatio-temporal covari-
ance expected in the quantity being measured to determine comparison scales over which 
there is a reasonable expectation that the two observations are representative of each other. 
For example, a grassland may be fairly homogeneous when viewed at a resolution of hun-
dreds of metres but exhibit sharp discontinuities at metre-scales that can resolve shrubs. 
Equivalent issues may occur in the time domain. For example, nitrogen dioxide concen-
trations exhibit a diurnal cycle, which might imply that observations should be closely 
matched, but if the cycle can be measured then a correction may provide sufficient accu-
racy to permit validation (e.g. Compernolle et al. 2020).

When data on the spatio-temporal covariance are unavailable or incomplete, models can 
provide valuable insight. Schutgens et al. (2017) used high-resolution simulations of aero-
sol loading to determine that the difference between two simulated observations is mini-
mised when they are within 4–6 hr, depending on the size of the model grid. The precise 
values will depend on the variable being assessed and exactly what information is sought. 
In practice, co-location tends to select thresholds (such as 30 min and 25 km), average all 
observations within those limits, and then compare those aggregated data points between 
instruments. This approach is largely practical —a straightforward way to reduce the vol-
ume of data to be handled —but will reduce the impact of stochastic error sources (which 
may be an advantage or a disadvantage, depending on the intent of the validation). As 
covariances are rarely characterised at sufficient scale, thresholds are determined by trial-
and-error, such that re-using the parameters of a previously published validation is accept-
able for a small or preliminary study.
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4.2.2 � Collect Sufficient Data

A major concern of validation is completeness and representativeness —are the data pro-
vided by co-location an unbiased sample of all possible circumstances? The essential 
requirements are that (i) sufficient observations are considered such that an additional one 
is unlikely to substantively change the results, and (ii) the observations are a representative 
sample of the circumstances one intends to observe. These concepts do not have consistent 
terminology in the environmental sciences.

If one searches the internet for “minimum sample size”, there are numerous posts and 
calculators that recommend between 30 and 100 values. This inflexible approach has been 
repeatedly critiqued (e.g. Sertdar et al. 2020; Wutich et al. 2024) and, though far from the 
only discussion of this misconception, Chakrapani (2011) outlines how such calculations 
assume independent, normally distributed sampling with replacement. For realistic data 
(in his case survey responses, but the argument applies to any somewhat correlated data, 
including most ECV data products), a larger sample is necessary to achieve normality. 
Thus, during validation there is no specific number of observations that achieves robust 
results. The goal is collect sufficient data that it is believed unlikely that the results of the 
analysis would change if more data were added (i.e. the statistical definition of ‘consist-
ency’, Dodge 2003).

It is necessary to consider the distribution of ‘errors’ realised during the experiment, i.e. 
to plot a histogram of “measurement – reference” for the co-located data to inspect their 
distribution. In our opinion, it is not necessary to achieve strict normality (for which many 
tests are available in Yap and Sim 2011) but merely to have a distribution that is qualita-
tively symmetric and peaked around a central value such that the standard deviation is a 
useful representation of the majority of the data (even if not necessarily representative of 
the tails of the error distribution). Where this is not the case, the validation should identify 
auxiliary variables with which to subdivide the co-located data in order to achieve symmet-
ric distributions within each division. These variables are expected to represent processes 
that introduce error into either dataset (or their comparison), such as the zenith angles of 
the sun and sensor, ambient humidity, cloud fraction, or wind speed.

Validation should include observations across as much of the domain as possible for 
the measurand and any parameters important to its derivation. This involves considering 
sampling across:

•	 the full range of the measurand, capturing the expected minima, maxima, and mode;
•	 different times of day, seasons, or the solar cycle (as appropriate);
•	 the oceans and continents of the Earth;
•	 surface types such as deep or shallow ocean, snow- or ice-covered land, prairie, forest, 

desert, urban areas, and so on; and
•	 observation conditions or confounders such as viewing zenith angle, sea-surface rough-

ness, or loading of stratospheric aerosols.

It will be infeasible to sample across all of these in any one dataset. Regardless, a valida-
tion that neglects an important dimension (such as the common example of only evaluat-
ing over a single city, region, or country) may omit a significant portion of the uncertainty 
budget. The important consideration is the domain over which the validation is needed—a 
local validation does not provide confidence in a global product. The impacts of sampling 
and representativeness errors are complex (Bulgin et al. 2022), but empirical estimates can 
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often provide a useful first guess before a more detailed assessment is performed, such as 
preparing an uncertainty tree (Mittaz et al. 2019). As validation datasets are increasingly 
used to train machine learning algorithms, it is vital that co-location datasets capture a 
more complete summary of the measurand’s domain as users may not be aware of the lim-
ited domain of preliminary validation. Otherwise, the outputs are liable to ‘out-of-training 
data’ errors, whereby an empirical model behaves unpredictably when presented with cir-
cumstances beyond those that were used in its creation.

The inability to observe all relevant conditions introduces a representativeness error into 
both the validation and the datasets themselves. A widespread example is ‘clear-sky bias’. 
Remote sounding of the Earth’s surface can typically not be done in the presence of cloud. 
ECVs where cloud is expected to impact the value, such as surface temperature in the infra-
red, where direct sunlight provides a substantial input of energy (Ermida et al. 2019), will 
therefore be biased to only describe clear-sky conditions relative to the all-sky population 
that would be seen using data at microwave wavelengths or by an in situ reference sensor.

Another limitation is the availability of reference observations. Reference sites are much 
more common in the northern hemisphere for most ECVs, with regions such as the South-
ern Ocean systematically undersampled, making it difficult to characterise processes con-
centrated in the global south. The poles are typically difficult to work in during winter, 
such that reference observations of (say) sea ice thickness are concentrated in the spring 
despite being known to be unrepresentative of other times of year (e.g. Rostosky et  al. 
2018). These and more examples (e.g. Dorigo et al. 2021), as well as methods to alleviate 
the uncertainties, are discussed in section 3 of Langsdale et al. (2025).

4.2.3 � Statistical Summary

Once data have been co-located and its representativeness assured, they are statistically 
assessed to determine the nature of agreement between the datasets (Loew et  al. 2017). 
Though many types of analysis are available (such as triple collocation, see Stoffelen 
1998), the most common presentation of validation results in the environmental sciences 
is a linear regression. An exemplary form of this is shown in Fig. 6, reproducing the vali-
dation of stratospheric NO2 column density from Verhoelst et al. (2021). Panel (a) shows 
a time series of the two datasets, helping the reader to easily identify temporal properties 
such as instrument drift or seasonal influences. While time series are useful for qualita-
tively illustrating a product’s performance (as they can be produced without co-location), 
they are more of a verification than a validation, in the terminology of Loew et al. (2017) 
as they do not provide a quantitative assessment of a dataset’s utility. In addition, this plot 
could be improved by scaling the lengths of the crosses to show the uncertainty in the data, 
though this would produce a cluttered figure for large datasets. Panel (c) provides the his-
togram requested in the previous section, presenting a sufficiently symmetrical distribution 
of discrepancies despite a long negative tail. The choice of bin size is usually ad hoc, but 
objective methods are available to select the number of evenly spaced bins (e.g. Freedman 
and Diaconis 1981). (An informal discussion of several options can be found at https://​
numpy.​org/​doc/​stable/​refer​ence/​gener​ated/​numpy.​histo​gram_​bin_​edges.​html; last accessed 
4 March 2025.)

Panel (b) provides the traditional scatter plot, with the ‘reference’ observation plotted 
along the x-axis. Such figures provide a simple illustration of the dataset for the avoidance 
of, for example, Simpson’s Paradox (whereby two correlated datasets will appear uncor-
related if combined; Simpson 1951). There are several simple choices that can improve 

https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
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the accessibility and utility of such a plot. As before, it could scale the crosses to express 
the uncertainty on each dataset, but this can rapidly make it impossible to distinguish data. 
Once the number of observations exceeds a hundred or so, it is advisable to switch from 
plotting each datum separately to either a hex-plot, two-dimensional histogram, or other 
diagram that uses shading to convey the distribution of data among the variables. Oth-
erwise, it is possible to mask the presence of a significant bias where data overlap (e.g. 
Fig. 12 of Hirschi et al. 2023). (The rainbow colour map should not be used in such plots 
to reduce the risk of over-interpretation of the data and to increase accessibility to colour-
blind (or other) readers, see Crameri et al. 2020)

The figure also summarises the linear correlation between the datasets, with the slope 
and intercept of a linear regression on panel (b). As both datasets have uncertainty, this 
should be performed using orthogonal distance regression rather than elementary linear 

Fig. 6   a Time series of stratospheric NO2 column data from the TROPOMI instrument (red) co-located 
with ground-based measurements zenith-scattered light differential optical absorption spectroscopy (ZSL-
DOAS, blue). Solid lines represent 2-month running medians. b Scatter plot and c histogram of the differ-
ences between them, superimposed with several statistical measures of the agreement between data. Repro-
duces Fig. 4 of Verhoelst et al. (2021)
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regression (e.g. scipy.odr rather than numpy.polyfit or scipy.stats.linre-
gress). Quantitative metrics of the goodness of fit should also be included, such as the 
linear correlation coefficient R and RMSD (though error is sometimes used in place of 
deviation and this is suboptimal; see Sect.  5.2). The variables plotted should be chosen 
to spread the data as evenly as possible across the domain. For example, a log-normally 
distributed variable should be plotted on a log-scale to conform with the assumptions of 
the regression method (Sayer and Knobelspiesse 2019). The importance of both visualis-
ing the co-location data and providing summary statistics is humorously illustrated by ‘The 
Datasaurus Dozen’, a set of twelve datasets with identical regression statistics but wildly 
different distributions (Matejka and Fitzmaurice 2017).

4.3 � Data Assimilation

The term ‘data assimilation’ describes methods whose aim is to optimally integrate imper-
fect model simulations with observations that are subject to errors (Lahoz and Schneider 
2014). One can think of it as using real-world observations to “pull model simulations in 
the right direction”, but also as using model simulations to interpolate between discontinu-
ous observations. Either way, all data assimilation methods are based on weighted aver-
aging, aiming to create a merged estimate with uncertainties lower than any single input 
(Gelb 1974). To achieve this, weights need to be derived from the model and observational 
uncertainties following least-squares theory.

Data assimilation techniques differ in what assumptions they make about error (correla-
tion) structures, and how these structures are taken into consideration. The most relevant 
distinction is that between ‘variational data assimilation’ (Le Dimet and Talagrand 1986) 
and ‘sequential data assimilation’ (Bertino et al. 2003), which will be explained in the fol-
lowing subsections, followed by a discussion of common difficulties when using uncer-
tainty information contained in ECV data products for data assimilation purposes.

4.3.1 � Variational Data Assimilation

Variational data assimilation assumes no spatial and/or temporal dependency between 
neighbouring model estimates and thus can update multiple model estimates simultane-
ously by minimising a cost function J of the form:

where xb is the model state (‘background’) vector; y is the vector of the observations that 
are mapped into the model space using the observation operator H ; and P and R are the 
model and observation error covariance matrices, respectively. The diagonals of those 
matrices summarise the uncertainties in xb and y , while their off-diagonals give estimates 
of error covariance.

Variational data assimilation is widely used in numerical weather prediction, espe-
cially for re-analysis problems to obtain the best possible state of the atmosphere (Bannis-
ter 2017). It is common to distinguish between three-dimensional (3D-Var; Courtier et al. 
1998) and four-dimensional (4D-Var; Lorenc 2003) variational data assimilation problems. 
The former simultaneously updates horizontal and vertical model fields at a single updat-
ing time step, whereas the latter considers observations taken over an extended period of 
time to create a complete spatial and temporal reanalysis of the model forecasts.
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4.3.2 � Sequential Data Assimilation

Sequential data assimilation accounts for cases where the uncertainty of a model simula-
tion at time t depends on the forecast uncertainty of the previous time step t − 1 . In such 
cases, the ‘optimal’ weight for assimilating an observation at time step t changes after 
another observation at time step t − 1 has been assimilated. Consequently, to maintain opti-
mal uncertainty reduction, state updating has to be done sequentially, accounting for the 
change in model uncertainty at each time step.

The most common method to do this is the Kalman Filter (Evensen 2003), which calcu-
lates optimal merging weights for state updating (the ‘Kalman gain’) whenever an observa-
tion is available and then applies the law for the propagation of uncertainty (see Sect. 3.1) 
to calculate the impact of the state updates on model background uncertainty. This is typi-
cally written as:

Here, P−
t
 is the model background uncertainty and Kt is the Kalman gain, which is equiva-

lent to the observational weight derived according to generalised least squares theory, used 
to update the model background state vector x−

t
 as:

where x+
t
 is the updated model state vector. The updated model uncertainty P+

t
 follows by 

applying Eq. (6) to Eq. (23) as:

Finally, P+
t
 has to be evolved through the model to calculate the model background uncer-

tainty at the next updating time step:

The function f depends on the functional form of the used model, which is often difficult 
to calculate given the complex, nonlinear nature of many common Earth system models. 
Therefore, a modification to the Kalman filter is often used, most commonly the Extended 
Kalman Filter (De Rosnay et al. 2013), which uses local approximations to the modelling 
functions, and the Ensemble Kalman Filter (Evensen 2003), which uses Monte Carlo simu-
lations to evolve model uncertainty.

4.3.3 � Practical Issues when Using Uncertainty in Data Assimilation

Whatever the method, data assimilation always applies some sort of weighted averaging 
where the weights should be inversely proportional to the uncertainties of the estimates 
that are being integrated (i.e. the model simulations and the observations). When assimilat-
ing ECVs, one should thus be able—in theory—to use the uncertainty estimates that are 
provided with the ECV data as input to the assimilation system (provided, of course, that 
the uncertainty estimates are a realistic representation of the ECV errors).

This is not commonly done. Most published approaches ignore the uncertainty esti-
mates provided and do one of the following: (i) manually tune the data assimilation param-
eters until they achieve satisfactory improvements (e.g. by evaluating the data assimilation 

(22)�t = �
−
t
(�−

t
+�t�t�

T
t
)−1.

(23)x+
t
= x−

t
+Kt(yt −Htxt),

(24)P+
t
= (I −KHt)P

−
t
.

(25)P−
t+1

= f (P+
t
).



	 Surveys in Geophysics

performance against reference data, Heyvaert et  al. 2023; ii) estimate model and obser-
vation estimates themselves from reference data (Crow and van den Berg 2010); or (iii) 
optimise the assimilation system using internal diagnostics, i.e. variables of the system that 
should follow an expected behaviour if the uncertainties were parametrized correctly, such 
as the time series of the differences between model forecasts and observations (Desroziers 
et al. 2005). Correlations between observations are removed by thinning the dataset (Hoff-
man 2018).

Note that the disregard of ECV uncertainty estimates in these approaches is not a result 
of ignorance but of an unavoidable issue: ECV uncertainty estimates characterise the errors 
of the observations with respect to a measurand that is different from that of the model 
into which the observations should be assimilated. That is, ECV uncertainties describe the 
deviations from the true state of the observed variable within the satellite footprint and a 
wavelength-dependent signal penetration depth, while the assimilation requires the devia-
tions from the true state averaged across the modelling grid cell with an arbitrarily cho-
sen modelling layer depth. It is common to resample observations to the modelling grid 
before assimilation, but the observational uncertainties are not usually updated to account 
for this as it would require estimates of representativeness uncertainties, which are usually 
not available and can be difficult to obtain.

A second important issue is that data assimilation weights are derived from the rela-
tive magnitude of the uncertainties in the observation to the model simulations. That is, 
even if ECV uncertainties were known exactly, the uncertainties in the model simulations 
need to be known as well in order to calculate optimal weights. Unfortunately, estimating 
uncertainties for models simulations is considered even more difficult than for observations 
(Kumar et al. 2022). This is because most models used in Earth system science are highly 
complex, and predicting uncertainties in their simulations would require not only reliable 
estimates of the uncertainties in all model forcing variables and model parameters, but also 
estimates of error correlations across space, time, and model variables, and estimates of 
representation uncertainty, i.e. the uncertainty associated with the inaccurate physical rep-
resentation of the real world as well as the uncertainty related to the spatial and temporal 
scale mismatch between the model forcing and the model output grid.

As a consequence, instead of attempting to obtain rigorous estimates of model and 
observation uncertainties that account for error correlations and representativeness errors 
with respect to the modelling grid, it is usually more fruitful to derive empirical approxi-
mations of model uncertainties and then calibrate simplistic observation uncertainties to 
achieve satisfactory performance in the data assimilation system when evaluated against 
real-world reference data.

This does not mean that one should give up on detailed uncertainty modelling. In fact, 
it suggests that it is even more important to properly understand all relevant sources and 
interactions of errors in order to determine simple yet robust uncertainty representations 
that account for the most relevant uncertainty components, correlation length scales, and 
representativeness.
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5 � Communicating Uncertainty

While most researchers have been exposed to uncertainty throughout their education, 
a number of misconceptions and misunderstandings are widespread. This section dis-
cusses several of these of relevance to providers of data in the environmental sciences 
and makes recommendations on how to avoid them.

5.1 � Hatching, Trends, and Significance

The concepts of Sect. 4.1 can also be applied to the comparison of a dataset with itself, 
for example, to assess the presence of trends within a time series. The calculation of 
trends and their uncertainties is covered in detail by Gobron et al. (2025) in this issue 
and so will not be discussed here. However, significance and the associated p-values are 
a widely misinterpreted and misused concept, to the extent that the American Statistics 
Association (ASA) was moved to state six principles of best practice in the use of p val-
ues (Wasserstein and Lazar 2016). The first of these, “p values can indicate how incom-
patible the data are with a specified statistical model”, is pertinent to a widespread use 
of significance in the environmental sciences and the use of hatching on plots.

When presenting trends on a map, it is common practice to add hatching to direct the 
reader’s attention to ‘significant’ trends (i.e those for which the p-value is below some 
threshold). For example, the quasi-biennial oscillation (QBO) is a mode of variability in 
the stratosphere. Fig. 7 reproduces a plot from García-Franco et al. (2023) showing the 
difference in sea-surface temperature between the extremes of that teleconnection. In 
panel (a), the hatching emphasises the negative values over the southern Pacific while 
de-emphasising the positive values over the tropical Pacific.

As indicated by the second ASA principle (“p values do not measure the probability 
that...the data were produced by random chance alone”), areas without hatching are not 
noise to be ignored. In this example, the p value gives the plausibility of the statistical 
model “data that shares a single mean”. As Greenland et  al. (2016) discusses, (i) this 
calculation relies on several assumptions, such as independence of observations, that 
tend to be violated by ECV data; (ii) the calculation tests a single, stated hypothesis (i.e. 
no change in a time series) as opposed to rejecting a set of plausible hypotheses (e.g. 
linear change, quadratic change, step change) as is the goal of exploratory data analysis; 
and (iii) it is possible to directly evaluate the hypothesis of interest (e.g. the measurand 
changes linearly with time) and doing so would be more useful as it requires the inves-
tigator to clearly state what they aim to find. They state, “Any opinion offered about the 

Fig. 7   Differences between the west and east modes of the quasi-biennial oscillation (QBO) in annual mean 
sea-surface temperature (in K) from a the HadSST dataset and b a pre-industrial control simulation of the 
Unified Model GC31-LL pi. Hatching denotes significance at the 95% confidence level. Reproduces Fig. 1 
of García-Franco et al. (2023)
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probability, likelihood, certainty, or similar property for a hypothesis cannot be derived 
from statistical methods alone. In particular, significance tests and confidence intervals 
do not by themselves provide a logically sound basis for concluding an effect is present 
or absent with certainty or a given probability."

The intention of hatching is to direct attention to regions for which the reported 
trend is inconsistent with the uncertainty reported on the data (or with natural vari-
ability where that is considered to be more substantial, such as Fig. 14 of Swaminathan 
et al. 2022). In other words, the hatching should indicate the detection limit for trends in 
those observations. This distinction is subtle—that ‘insignificant’ trends are not neces-
sarily non-existent but merely excessively uncertain. Conversely, ‘significant’ trends are 
not necessarily real, particularly when drawn from data with an incomplete uncertainty 
budget (see also Gobron et al, 2025), or may be negligibly small but merely known to 
be so with great confidence. García-Franco et  al. (2023) avoided this mistake in their 
discussion of Fig. 7, which described how the observational record (panel a) resembles 
an El Niño response due to aliasing between two teleconnections in recent years. (An El 
Niño response is a dipole over the western Pacific, half of which is not hatched in the 
diagram).

Regardless, it would be more useful to base hatching on, for example, trends that are 
larger than two standard uncertainties of the underlying data or for which the confidence 
interval does not include zero. Uncertainty directly relates to the intention of the figure, 
examines the limitations of the data rather than a statistical model, and sidesteps the exten-
sive argument about significance tests.

5.2 � Error and Uncertainty

When communicating uncertainty, it is important to avoid using the term ‘uncertainty’ 
in a manner synonymous with ‘error’ because they are two distinct concepts. Recall that 
the definitions of the terms in Sect. 1: an error is the deviation of an actual measurement 
from the unknown true state of the measurand, whereas the uncertainty describes the dis-
tribution of all possible errors associated with the measurement. This matters because one 
can estimate uncertainties but not errors. Language thus needs to be chosen accordingly: 
while averaging measurements really does reduce errors, we can only predict how much it 
reduces the uncertainty. For example, it is meaningful to evaluate uncertainty components, 
but not error components. And, probably most commonly misused, one can propagate 
uncertainties, but not errors.

Special attention also needs to be given to the distinction between ‘random’ and ‘sys-
tematic’ errors, which is often made in elementary statistics. As elegantly discussed in the 
‘Handling error correlation’ section of Woolliams et  al (in preparation), these are rather 
limiting descriptions of real behaviours. Random errors are usually considered entirely 
independent (e.g. thermal noise), whereas systematic errors are considered to follow a 
common, predictable pattern (e.g. the result of an incorrect calibration constant). In real-
ity, the degree of dependence between errors will often be a combination of both due to, 
e.g. correlated errors. This determines, for example, by how much the uncertainty can be 
reduced upon averaging (see Sect. 3). Moreover, sources of uncertainty that are ‘random’ 
at one point (say stochastic noise on a radiance measurement) can become ‘systematic’ at 
another (such as when that measurement is used to calibrate a sequence of observations by 
another sensor). Hence, while ‘random error’ or ‘systematic error’ are phrases likely to be 
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recognised by the reader, it is more informative to emphasise the source of the errors (e.g. 
stochastic versus systematic effects), and the expected degrees and dimensions of error 
correlation.

Finally, a point of semantics. It is correct to speak of correlated errors but not of corre-
lated uncertainties because the term ‘uncertainty’ refers to a probability distribution (in one 
manner or another) and the value of uncertainty is some parameter of that distribution (e.g. 
‘standard uncertainty’ refers to a normal distribution and its value is the standard devia-
tion of that distribution). The correlation exists between the realisation of an error effect 
through a course of measurements, not between the parameters used to describe those 
errors. Unfortunately, the distinction between realised errors and descriptive uncertainties 
has not been extended to the terminology for covariance such that ‘correlated uncertainty’ 
is typically used as a shorthand for ‘the component of uncertainty that arises from cor-
related error effects’ despite the inconsistency of applying an adjective which describes an 
error effect to an uncertainty.

5.3 � Notation

Recall from Sect. 2.2 that uncertainty may be represented in a parametric (e.g. standard 
uncertainty) or nonparametric (as confidence intervals) way. Recent reports of the Inter-
governmental Panel on Climate Change (IPCC 2023) make extensive use of confidence 
intervals due to the asymmetric distribution of the errors associated with many metrics of 
climate change. That report often uses a 95 % confidence interval, which would be simi-
lar to a width of 2� for the Gaussian standard uncertainty (e.g. 16 (12 − 20) cm for the 
value given at the start of this section) only if the source of error is normally distributed. 
Hence, it is important to check the conventions being used when comparing printed results 
to avoid apples-to-oranges comparisons.

An illustration of the potential difficulty in comprehending data comparisons is 
Table 6.2 of Szopa et al. (2021), which compares various methane lifetimes (reproduced 
here as Table  2). An inattentive reader may assume the table provides confidence inter-
vals, but the caption states that the ranges are actually minimum and maximum (and so 
not conveying formal uncertainty information). A hint to this comes from the mixture of 
intervals with standard uncertainties and the lack of a per cent sign within the caption. This 

Table 2   Methane lifetime due to chemical losses, soil uptake and total atmospheric lifetime based on 
CMIP6 multi-model analysis, and bottom-up and top-down methane budget estimates, reproducing 
Table  6.2 of Szopa et  al. (2021). Values in parenthesis show the minimum and maximum range while 
uncertainties indicate a ±1 standard deviation

Study Total chemical lifetime 
(years)

Soil lifetime (years) Total atmos-
pheric lifetime 
(years)

Stevenson et al. (2020) 8.3 (8.1–8.6) 160 8.0 (7.7–8.2)
Bottom-up 8.3 (6.2–9.8) 166 (102–453) 8.0 (6.3–10.0)
Top-down 9.7 (9.4–10.5) 135 (116–185) 9.1 (8.7–10.0)
AR6 assessed value 9.7 ± 1.1 135 ± 44 9.1 ± 0.9
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emphasises both the importance of clearly stating what uncertainty information is provided 
(as done in this example) and reading that statement when first encountering data.

The interface between uncertainty and the colloquial meaning of ‘confidence’—the cer-
tainty one has in a course of action—is discussed in Gruber et al. (2025). The need for a 
more consistent use of statistical and metrological terminology within the Earth sciences is 
presented in Strobl et al. (2024).

6 � Conclusions

Uncertainty provides the context necessary to understand and utilise data. Without uncer-
tainty, observations cannot be appropriately compared, combined, or propagated into sub-
sequent calculations. Even incomplete uncertainty budgets can provide value to both users 
and producers of data. Large uncertainties, either relatively or absolutely, are not an indica-
tion of suspect or unusable data, and this paper has outlined how removing data from an 
analysis based on the magnitude of uncertainty can errantly remove regions of interest.

The uncertainty in most ECVs is itself uncertain and being open, honest, and compre-
hensive in the measurement, analysis, and quality assurance procedures applied to a data-
set is essential in ensuring that uncertainty can be communicated, utilised and improved. 
Evaluations of uncertainty should consider empirical methods to assess unquantified terms. 
A commonly overlooked term is measurand differences (colloquially called ‘apples-to-
oranges’ comparisons), being the distinctions between ostensibly equal variables caused 
by differences in resolution, timing, spectral range, etc. They can be approximated through 
modelling. These methods are of particular importance to data assimilation, where input 
uncertainties should be defined with respect to the model’s definition of measurand rather 
than the measurand definition in the assimilated observations.

The assessment of the covariance structure of ECVs is too often overlooked. It sup-
ports the selection of collocation criteria during validation, trend analysis, change detec-
tion, assimilation, aggregation, and more. Covariance can be determined from modelling 
studies, climatology captured by long-term observations, and targeted in situ sampling.

Several errant statistical shorthands and rules-of-thumb remain in use and this paper 
joins the many calls to improve statistical literacy and practice. Uncertainty is a measure of 
doubt, such that two observations with non-overlapping error bars can be said to be incon-
sistent with each other but evaluating their consistency requires additional information or 
analysis. Significance does not comment on the probability that a result was produced by 
chance and, more generally, does not signify scientific relevance. We reflect that the crea-
tors of such tests considered them but one of many tools from which a statistical argument 
should be crafted.

Best practices in the presentation of uncertainty information were discussed to ensure 
accurate and effective communication. Foremost, data producers should liaise with each 
other and their user communities to identify the expected lexicon for uncertainty. Where 
practical concerns limit the ability to follow their advice, short user guides should explain 
the presentation in plain language. Validation studies should illustrate that data are drawn 
from a single population by accounting for confounding variables. Where that is imprac-
tical and errors are unknown, confidence intervals provide a sensible first estimate of 
uncertainty. When researchers wish to focus attention on some subset of a noisy data field, 
hatching should be based on uncertainty or a clearly stated hypothesis test rather than the 
significance level. As environmental data are rarely compared to a laboratory-standard 
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reference, analyses of linear regression should account for uncertainty in all inputs, specifi-
cally avoiding simple linear regression. Validation should strive to include as many real-
world conditions as practical to demonstrate that data are fit for any purpose to which a 
reasonable user might apply it.

This work’s central thesis is that uncertainty need not be off-putting. Uncertain data are 
not bad. To extend the examples presented here, readers are encouraged to consult Part 5 
of BIPM et al. (2024). While comprehensive uncertainty budgeting may appear to require 
immense resources or delicate knowledge across all areas of science, a practical approach 
of honesty and best effort can achieve most of what uncertainty is attempting to communi-
cate while laying the foundations for future improvement. Remember that to err is human; 
to measure, uncertain.
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