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Kurzfassung

Automated Reasoning iiber quantifizierte Formeln mit linearer Arithmetik stellt ein
fundamentales Problem in der automatischen Verifikation von Hard- und Software, der
Programmsynthese, der Verifikation neuronaler Netze und vielen weiteren Anwendungs-
bereichen dar. Dennoch bleibt es aufgrund der Quantoren und arithmetischen Theorien
eine grofie Herausforderung. Diese Arbeit bietet einen umfassenden Uberblick sowie eine
detaillierte Literaturanalyse und vergleicht drei Familien von Ansétzen: superpositions-
basierte Kalkiile, instantiierungsbasierte Frameworks und algebraische Methoden der
Quantoreneliminierung. Die Ergebnisse zeigen, dass superpositionsbasierte Verfahren ins-
besondere bei Problemen, die Arithmetik mit uninterpretierten Funktionen kombinieren,
sehr effektiv sind, wahrend Instantiierungsmethoden bei wenigen Quantorenalternationen
besonders stark abschneiden. Approximative Quantoreneliminierung hingegen erreicht
eine gute Skalierbarkeit, allerdings auf Kosten der Vollstdndigkeit. Diese Erkenntnisse ver-
deutlichen, dass ein einzelner Ansatz nicht alle Problemklassen dominiert, weshalb hybride
Architekturen den vielversprechendsten Weg fiir zukiinftige Entwicklungen darstellen.
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Abstract

Automated Reasoning involving quantified formulas over linear arithmetic is a funda-
mental problem in automated verification of hardware and software, program synthesis,
neural network verification and many more other areas. Nevertheless it remains highly
challenging due to the interaction of quantifiers and arithmetic theories. This thesis
provides a comprehensive and detailed study with a thorough literature search and com-
parison between three families of approaches: superposition-based calculi, instantiation-
based frameworks, and algebraic quantifier elimination methods. The results show that
superposition-based lifting is particularly effective on problems involving arithmetic
with uninterpreted functions, instantiation methods perform strongly on few quantifier
alternations, and approximative quantifier elimination achieves good scalability at the
cost of completeness. These findings indicate that no single approach is outstanding
across all problem classes, and suggests implying that hybrid architectures offer the most
promising path forward.

xiii



“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Contents

Kurzfassung

Abstract

Contents

1

2

Introduction

Automated Reasoning

2.1 Overviewl . . . ..o L e e
2.2 Deduction Calculi for Automated Reasoning . . . . . . . .. . ... ..
2.3 Applications|. . . . . . ...

Linear Arithmetic

3.1 Overviewl . . . . ... e e e e
3.2 Challenges in Quantified Linear Arithmetic . . . ... ... ... ...
3.3 Reasoning Methods in Linear Arithmetic. . . . . . ... ... ... ..

Quantified Reasoning in Linear Arithmetic

4.1 Quantifier-Free Reasoning in Linear Arithmetic . . . . . ... .. ...
4.2 Superposition-Based Methods . . . . . ... ..o
4.3 Instantiation-Based Methodsl . . . . . . .. .. .. ..o
4.4  Quantifier Elimination in Computer Algebral. . . . . . . . .. .. ...
4.5 Further Works . . . . . . . . ..

Methodological Comparison

5.1 Superposition-Based Methods . . . . . ... ... ... ... ......
5.2 Instantiation-Based Methods . . . . . .. .. .. ... ... ......
5.3 Quantifier Elimination in Computer Algebra;. . . . . . . .. .. .. ..

Benchmarks and Experiments

6.1 Configuration| . . . . . . . ...
6.2 Benchmarking/. . . . . .. .. .
6.3 Resultsl. . . . . . . . . e

xi

xiii

XV

—

oo ot Ot

13

17
18
19

25
25
27
32
37
42

49
49
95
61

67
67
70
72

XV



77

79

81

|List of Figures|

83

85

Bibliography

“}aylolgig uaip\ NL Te uud ul sjgejrene si sisay SIUl Jo UoisiaA [eulblio panoidde ayl
JegBnuaA Yayiolgig usipn N1 Jap ue 1si nagrewoldiq Jasaip uoisiaAjeulBlO apjonipal ausiqoidde aig

qny a8pajmous| JNoA

Sayloiqie



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

CHAPTER

Introduction

Automated reasoning plays a central role in the verification, synthesis and analysis of
computational systems. There exist several logical theories that underlie this field, but
linear arithmetic (LA) stands out as one of the most frequently used. While LA is really
important, at the same time it is also one of the most challenging theories in the presence
of quantifiers and uninterpreted function symbols. In this context, LA involves mostly
Linear Real Arithmetic (LRA) and Linear Integer Arithmetic (LIA). Its expressive power,
combined with its numerical expressiveness in software and hardware systems, makes it a
foundation for modern Satisfiability Modulo Theories (SMT) solving and theorem proving.

Automated reasoning in LA is used across many applications in computer science,
engineering and applied mathematics. The most important applications are formal
verification of hardware and software, program synthesis, SMT solving, theorem prov-
ing, cryptographic protocol verification and neural network verification |[Cook, 2018§],

[Desharnais et al., 2022], [Distefano et al., 2019], [Armando and Compagna, 2004], [Ehlers, 2017],

[Sidrane et al., 2021], [So et al., 2019], [Nehai and Bobot, 2019

While the quantifier-free fragment of LA is well understood and can be efficiently solved
with modern SMT solvers, the introduction of quantifiers remains a big challenge. But
why do we even need quantified LA? It enables us to express much deeper and more
general properties. In general, quantifier-free formulas answer questions like ,Is there
a solution?“, but quantified formulas address much more deeper questions like ,,Does a
solution exist for all possible scenarios?“ or ,,Can we find a solution that works for some
critical case?“

Let us have a look at an example, why quantified LA is needed for practical applications.
Consider some blockchain platform (e.g. Ethereum), where smart contracts are used to

1
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1.

INTRODUCTION

manage token transfers, enforce financial constraints, and guarantee security properties.
Imagine a smart contract that implements a token transfer function. The function can
be modeled with the following constraints:

o Before transfer:
— balancefrom > amount
o After transfer:

— balance’ = balance — amount
from from

— balance}, = balance;, + amount

It is easy to observe what the constraints are stating. The balance of the user who
wants to do the transfer needs to be bigger or at least equal to the amount of the
transfer beforehand, and after the balance is reduced, the balance of the receiving
user has the new amount added. If we now want to automatically verify that no user
ends up with a negative balance, we could express this with the following formula:
vV from, amount(balance from > amount) = (balance fyom — amount > 0).

We can observe that the quantifier in the formula is really important, because with
it we can formally prove that for all users and transfer amounts, the contract maintains
safety. Without quantifiers, we need to test specific values, which would lead to an
explosion in formulas.

As we have seen, automated reasoning with quantified formulas in LRA and LIA is
really important in practice, but it is also really difficult. Although both theories are
decidable, existing quantifier elimination algorithms are often expensive due to their
worst-case exponential or even double- or triple-exponential complexity. And even fur-
ther, real-world quantified formulas frequently mix uninterpreted functions, arrays, or
non-linear constructs, resulting in even more complexity.

There exist a lot of methods to handle quantifiers with LA. This thesis presents a
comprehensive survey of approaches for automated reasoning in quantified LA, organized
according to the following three methodological pillars:

e Superposition-Based Methods

— These methods extend resolution by applying inference rules to equalities
and other logical clauses to derive conclusions or prove unsatisfiability. See
[Korovin et al., 2023|, [Baumgartner et al., 2015] or [Althaus et al., 2009].

o Instantiation-Based Methods:
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— These methods solve logical formulas by replacing quantified variables with
specific terms or values, turning general statements into simpler, concrete cases
that can be checked more easily. See [Reynolds et al., 2017], [Ganzinger and Korovin, 2006]
or [Niemetz et al., 2021].

¢ Quantifier Elimination Methods in Computer Algebra:

— These methods remove quantifiers from logical formulas by transforming them
into equivalent quantifier-free expressions, enabling easier analysis and decision
procedures. See [Schoisswohl et al., 2024], [Garcia-Contreras et al., 2023| or
|IBjgrner and Janota, 2015]|.

The thesis analyzes the complexity, soundness and completeness, practical use cases,
experimental results and limitations and future work of each approach. The goal is to
provide both a systematic overview and a critical comparison. Through this survey, the
thesis aims to clarify the current landscape of quantified reasoning in linear arithmetic
and to identify promising directions for future research and integration into automated
reasoning tools.

Furthermore, one could also mention Automata-Based Methods [Habermehl et al., 2024],
Boigelot et al., 2005], |Boigelot and Wolper, 2002], [Boigelot et al., 2001], [Boigelot et al., 199§],
where arithmetic constraints are encoded as automata and the numbers themselves are
represented as bitvectors, and then use automata-theoretic operations to reason about
quantified formulas. It is also important to mention that there also exist Hybrid Meth-

ods like [Nalbach et al., 2023], [Bromberger et al., 2020] or [Ge and de Moura, 2009] that
combine various approaches.
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CHAPTER

Automated Reasoning

2.1 Overview

The introduction section for automated reasoning is following the information from
[Portoraro, 2001]. Reasoning in theoretical computer science is defined as the ability to
make inferences. Inferences are all the steps which are required in order to move from
premises to logical consequences. A premise is a declarative statement that is true or
false in an argument. From premises, a logical consequence or also called entailment can
be drawn, so it describes the relationship between statements, and one statement follows
from one or more statements if they hold true. One of the most famous examples which
illustrate the definition of inferences is the following:

1. All humans are mortal.
2. All Greeks are humans.

3. All Greeks are mortal.

Other than checking that the premises and conclusion are true, inference asks if the
conclusion follows from the truth of the premises. In the context of this thesis and
mostly in this context in general, reasoning is identified with valid deductive reasoning,
where valid inferences are drawn. If the conclusion follows logically from its premises,
the inference is valid. So it is impossible for the premises to be true and the conclusion
to be false. This is also illustrated in the example above.

Automated reasoning can be defined as building computing systems that automate
the process of reasoning. With the definition of inference given above, automated reason-
ing in that sense is related to mechanical theorem proving. Automating the process of
reasoning means providing an algorithmic description to a formal calculus so that it can

5
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2.

AUTOMATED REASONING

be implemented on a computer to prove theorems of the calculus in an effective manner.
While designing such an algorithmic approach a few steps need to be done. First of all,
the class of problem which should be solved needs to be defined and also the language
which is used to represent information. After that, the mechanism which the approach
will use for deductive inferences need to be chosen and in the last step, how all of these
computations are performed needs to be defined.

An automated reasoning program’s main purpose is to solve problems. These prob-
lems consist of two items: the problem’s assumptions and the problem’s conclusion. The
assumptions are a collection of various statements, which express all the information
available to a program, one could also think about it as a knowledge base. The problem’s
conclusion is a statement indicating the questions asked to an automated reasoning
program. To get a better understanding of an automated reasoning program consider
the following example:

Problem conclusion: Do cats live on land?
Problem assumptions: Cats are mammals. and Mammals live on land.

The program uses logical deduction and evaluates that the conclusion is true. In this
example, cats are mammals and mammals live on land and therefore cats live on land.
But note that automated reasoning can not make predictions or generalizations. Consider
the following example:

Problem conclusion: Do all mammals live on land?
Problem assumptions: Cats are mammals. and Cats live on land.

In that case, human guidance is needed when performing the deductive reasoning task.

The problem domain of an automated reasoning program can be very large, as for
example for a general-purpose theorem prover for first-order logic. However, the domain
could also be a more specialised case, such as the modal logic K [Kripke, 1963]. Further-
more, how problems are presented to the reasoning program, represented internally, and
how solutions are found depend on the problem domain and the underlying deduction
calculus. Mostly first-order logic (FOL), typed A-calculus [Barendregt et al., 2013] or
causal logic [Pearl et al., 2000] is used as a formalism. In the context of this thesis, the
focus is on FOL, therefore the reader should be familiar with the basics of FOL.

For a program to be able to perform inferences, a deduction calculus needs to be
selected. This choice is also dependent on the problem domain. A deduction calculus
basically consists of a set of logical axioms and a set of deduction rules to derive new
formulas from previously derived formulas. Putting it all together and trying to solve
a problem in the problem domain means, in an abstracted way, to establish a formula
« (problem’s conclusion) from the set I' (problem’s assumptions), which consists of the
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2.1. Overview

logical and domain axioms and all assumptions. In particular, the automated reasoning
program needs to determine if I' entails «, which is denoted as I' F a. How the program
internally establishes this semantic fact depends on the implemented calculus. Some
programs do that by constructing a step-by-step proof of « from I', others try to do
that by showing that I' U {—a} is inconsistent, which is done by deriving a contradiction
from the set I' U {—a}. The former approach usually includes natural deduction systems
|Gentzen, 1935], [Prawitz, 2006], while the latter is based on resolution [Robinson, 1965b],
sequent deduction [Baumgartner et al., 1996] or matrix connection methods [Bibel, 1983].
A general overview can be found in [Robinson and Voronkov, 2001].

When talking about automated deduction, two properties should be considered: soundness
and completeness. Soundness is defined as: all rules of the calculus are truth preserving.
More formally, for a direct calculus, it states that if I' - o then I' E o and for an indirect
calculus, if ' U {-a} F L then I' F a. Furthermore, completeness is defined for direct
calculi as: if I' F « then I' F a. Loosely speaking, it could be seen as the converse of
soundness. For an indirect calculus, it is defined in terms of refutations, which means
I' E o implies I' U {—a} F L. Note that soundness is the most desirable property. If a
calculus is incomplete, it means that not all entailment relations can be established. In
the context of automated reasoning, it is the case that there are satisfiable statements
that the program cannot prove. Incompleteness is not that problematic, but lack of
soundness is, an unsound reasoning program would be able to generate false conclusions
from true assumptions. Also note that there is a difference between a logical calculus and
its implementation in an automated reasoning program. The calculi is mostly modified,
which results in a new calculus. That is, mostly a mechanization of its deduction rules,
which means the specification of the way in which the rules are applied is modified. By
doing so, it is important to preserve the metatheoretical properties of the original calculus.

Besides soundness and completeness also decidability and complexity is important for
automated deduction. If there exists an algorithm that, for any given I' and «, can
determine in a finite amount of time the answer: ,,Yes* or ,No“, to the question: ,Does
I' E a7 Of course, there also exist undecidable calculi, in that case, it needs to be
determined which decidable fragment is implemented. Complexity of a calculus talks
about time and space, which means how efficient its algorithmic implementation is. Many
calculi are not decidable and have really poor complexity measures, which forces, in the
context of automated reasoning, researchers to seek trade-offs between the efficiency of
an algorithm and deductive power.

Automated reasoning is used for a variety of problems. For example SAT-solving
[Biere et al., 2009], logic programming [Lloyd, 2012], mathematics or formal verifica-
tion for software and hardware [Robinson and Voronkov, 2001], [Grumberg et al., 1999,
[Huth and Ryan, 2004].
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2.

AUTOMATED REASONING

2.2 Deduction Calculi for Automated Reasoning

Deduction calculi can be viewed as formal systems that define rules and procedures
for deriving conclusions from premises in some logical framework. In the context of
automated reasoning, they provide the foundation that enables automated reasoning
programs to perform sound logical inferences.

Before introducing some basic deduction calculi, we need to review some basics about
logical formulas. A literal is the most basic building block, which is either an atom or
the negation of an atom. A clause is a logical formula, which is formed by combining a
finite set of literals using the logical "or" operator (disjunction). A clause is therefore
true if at least one of its literals is true.

2.2.1 Resolution

Robinson pioneered saturation-based theorem proving in its modern form [Robinson, 1965b]
as he introduced the resolution calculus. A detailed introduction and some more infor-
mation can be found in [Bachmair et al., 2001]. Resolution based calculi are the most
popular ones implemented in reasoning programs. The chain rule is the main component
of resolution, which is a special case of Modus Ponens. In essence, the rule states that
from pV q and —q V r one can infer p V r. To state the rule of ground resolution more
formally, assume that C; and Cy are ground clauses. Let Cy7 — l; denote the clause
C1 with the literal [; removed. Assume a positive literal /1 and a negative literal —ls,
such that [; and —ly are complementary. Then the rule states that resolving Cy and
Cs gives the result C7 — I3 V Cs — —ly. A significant result for automated deduction is
Herbrand’s theorem [Herbrand, 1930], which basically assures that ground resolution
can establish the non-satisfiablity of any set of clauses, whether they are ground or not.
That is important for automated deduction, because it tells us that it can be determined
in finitely many steps, whether a set I' is not satisfied by any of the infinitely many
interpretations. This is a great result, but a direct implementation of ground resolution
using Herbrand’s theorem is very inefficient, since it requires the generation of a large
number of ground terms. This problem was addressed by introducing the notion of
unification, where the ground resolution rule is generalized to binary resolution. With
unification, the instantiation of clauses happens at the moment when they are resolved.
Also, the resulting clauses may still contain variables. Note that binary resolution and
unification are two of the most important building blocks in the field of automated
reasoning.

A unifier of two expressions - terms or clauses - is a substitution that, when applied to
the expressions, makes them equal.

Example 2.2.1. The substitution o given by o := {z < b,y < b,z < f(a,b)} is a
unifier for R(z, f(a,y)) and R(b, z). When applied to both, the substitution makes them

equal: o(R(z, f(a,y))) = R(b, f(a,b)) = o(R(b, 2))
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2.2. Deduction Calculi for Automated Reasoning

Most general unifier (mgu) produces the most general instance shared by two unifiable
expressions.

The substitution in Example 2.3.1 is a unifier, but not a mgu. However the substi-
tution ¢’ := {x + b,z + f(a,y)} is. The process of unification is a central component of
most automated deduction programs.

Let € and C5 be two clauses containing, respectively, a positive literal [; and a negative
literal =l such that [y and Iy unify with mgu 6.

Cy Oy
(019 — 110) V (029 — —\l29) (2.1)

(C10 — 110) V (C20 — —l20) is called a binary resolvent of Cy and Cs.

If two or more literals occurring in a clause C' share an mgu 6 then C# is a factor
of C.

Example 2.2.2. Consider R(z,a)V—-K(f(x),b)V R(c,y), then with mgu {z < ¢,y < a}
the literals R(z,a) and R(c,y) unify and R(c,a)V =K (f(c),b) is a factor.

Let C7 and C5 be two clauses. Then, a resolvent obtained by resolution from C; and Co
is defined as:

1. a binary resolvent of C and Cs, or
2. a binary resolvent of C| and a factor of Cy, or
3. a binary resolvent of a factor of C; and Cj, or

4. a binary resolvent of a factor of C| and a factor of Cy

A resolution proof, or to be exact refutation, is created by deriving the empty clause | ]
from I' U {—a} using the resolution principle. If I' U {—a} is unsatisfiable, this is always
possible, since resolution is refutation complete |[Robinson, 1965b].

Example 2.2.3. Show that the set I' := {Vz(P(x)vVQ(z)),Vz(P(z) = R(x)),Vz(Q(z) =

R(z))} entails 3z R(x).
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2. AUTOMATED REASONING
So 1 P(z)VvQ(x) Assumption
2 —P(z)V R(x) Assumption
3 —P(x)V R(x) Assumption
4 —R(a) Negate conclusion
S1 5 Qz)V R(x) Res 1 2
6 P(z)V R(x) Res 13
7 —P(a) Res 2 4
8 —Q(a) Res 3 4
Sy 9 Q(a) Res 17
10 P(a) Res 18
11 R(z) Res 2 6
12 R(a) Res 35
13 Q(a) Res 45
14 P(a) Res 4 6
15 R(a) Res 5 8
16 R(a) Res 6 7
Sz 17 R(a) Res 2 10
18 R(a) Res 2 14
19 R(a) Res 39
20 R(a) Res 3 13
21 [] Res 4 11
The resolution proof is deriving [ | successfully, but there are some drawbacks. The
21 steps are really long, because the proof uses a naive brute-force implementation.
Some formulas are redundant, as R(a) is derived six times here, a is a skolem constant.
The deduction process of resolution must be supplemented by strategies in order to
improve the efficiency. There exist a few resolution strategies. For an efficient deduction
calculus implementation in an automated reasoning program, search strategies that
reduce the search space are required. Furthermore, there are strategies which remove
redundant clauses or tautologies. Robinson introduced a process known as subsumption
[Robinson, 1965b|, where more specific clauses are removed in the presence of more
general ones. There are also strategies which prevent the generation of useless clauses
instead of removing redundant clauses. One of the most powerful strategies of this
kind is the set-of-support strategy |[Wos et al., 1965]. There is also a strategy called
hyperresolution [Robinson, 1965a], which reduces the number of intermediate resolvents
by combining several resolution steps into a single inference step. Linear resolution
Loveland, 1970| resolves a clause always against the resolvent which was recently derived.
The deduction then gets a linear structure for a straightforward implementation, and
linear resolution preserves refutation completeness. With linear resolution, the proof in
Example 2.3.3 is significantly shortened.
Example 2.2.4. Here, the empty clause is derived from clauses of Example 2.2.3 in
eight steps instead of 21.
10
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2.2. Deduction Calculi for Automated Reasoning

1 P(z)VQ() Assumption

2 =P(z)V R(x) Assumption

3 —P(z)V R(x) Assumption

4 —R(a) Negate conclusion
5 -P(a) Res 2 4

6 Q(a) Res 15

7 R(a) Res 3 6

8 [ Res 4 7

All strategies mentioned, except unrestricted subsumption, preserve refutation complete-
ness. As discussed before, efficiency is really crucial in automated reasoning, therefore
sometimes completeness is traded for speed. Two prominent refinements of linear reso-
lution are unit resolution and input resolution. In unit resolution, one of the resolved
clauses is always a literal. In input resolution, one of the resolved clauses is always
selected, to be refuted, form the original set. Both strategies are more efficient than
standard linear resolution, but neither of them is complete. There also exists an ordered
resolution, where clauses are not treated as sets of literals, but as sequences of literals.
This strategy is also not refutation complete, but very efficient.

Summing up, we can conclude that it is only possible to enhance certain aspects of
the deduction process, at the expense of others. This could be, for example, reducing
the size of the proof search space, but on the other hand, increasing the length of the
shortest refutations. A more detailed look at theorem-proving strategies can be found in
[Bonacina, 2001], complexity results can be found in [Buresh-Oppenheim and Pitassi, 2007]
and [Urquhart, 1987].

A very prominent automated reasoning program, based on resolution, is Vampire

[Kovacs and Voronkov, 2013]. There are also other programs like Otter (Prover4) [Wos et al., 1986].

2.2.2 Term Rewriting

One really fundamental logical relation within automated deduction is equality. Equality
logic, and more generally, term rewriting treat equality-like equations as rewrite rules.
These rules are also known as reduction or demodulation rules. Considering an equality
statement like f(c) = ¢ allows the simplification of a term like g(b, f(c)) to g(b,¢), but
note that the same equation also has the potential to generate an unboundedly large terms:
g(b, f(c),g(b, f(f())),g(b, f(f(f(c)))),... . There is a difference between equality logic
and term rewriting, as the latter equations are used as unidirectional reduction rules as
opposed to equality, which works in both directions. Generally, rewrite rules have the
form t; = to and the idea is to look for terms ¢ occurring in expressions e such that ¢
unifies with ¢; with unifier 8, such that the occurrence ¢16 in el can be replaced by to0.

Example 2.2.5. The rewrite rule 4+ 0 = x allows the rewriting of succ(succ(0) + 0) to
succ(suce(0)).

11
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The main ideas of term rewriting can be introduced with an example involving symbolic
differentiation, as in Chapter 1 of [Baader and Nipkow, 1998|. Let der denote the deriva-
tive with respect to x, let y be a variable different from x and let u and v be variables
ranging over expressions. Now it is possible to define the rewrite system:

1) der(x) =1

2) der(y) = 0

3) der(u + v) = der(u) + der(v)

4) der(u x v) = (u x der(v)) + (der(u) x v

- =y

(
(
(
(

This derivation system works as follows. Let’s consider the computation of the derivative
of z x x respect to x,der(z x x):

der(z x ) = (x x der(x)) + (der(z) x z) by R4
= (z x 1)+ (der(x) x z) by R1
= (xx)+(1xz by R1

As none of the rules (R1)-(R4) applies anymore, no further reduction is possible and the
rewriting process ends. The final expression is called a normal form. Now, an interesting
question arises: Is there an expression whose reduction process will never terminate when
applying the rules? Or: Under what conditions a set of rewrite rules will always stop,
for any given expression, at a normal form after finitely many applications of the rules?
This question is also known as the termination problem of a rewrite system.

It is also possible that when reducing an expression, the set of rules of a rewriting
system could be applied in more than one way. This is also the case in the presented
derivation system. In the reduction der(z x x), it is also possible to apply R1 first to the
second sub-expression in (z x der(x)) + (der(x) x x). If it is done that way, the reduction
also terminates with the same normal form as in the previous case. But note that this
should not be taken for granted. A rewriting system is said to be (globally) confluent if
and only if, independently of the order in which the rules are applied, every expression
always ends up in the same normal form. The presented system can be shown to be
confluent.

It is also possible to add more rules to a system in order to make it more practi-
cal, but note that it can also have some consequences. Adding for example a new rule to
the system results in losing confluency:

(R5) u+0=u
Now it is possible to show that der(x 4+ 0) has two normal forms:

der(z +0) = der(x) + der(0) by R3
= 1+ der(0) by R1
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der(x +0) = der(z) by R5
=1 by R1

Further, it is possible to add another rule to allow further reduction of 1 + der(0):
(R6) der(0) =10

And now, magically, confluence is restored. This raises another question: How can we
make a non-confluent system into an equivalent confluent one? There is an answer to this
question in [Knuth and Bendix, 1983], namely the Knuth-Bendix completion algorithm.

Of course, term rewriting needs strategies to direct its application, and there are a
lot of them. For the scope of this thesis, the most important one is the superposition
calculus, as this is used in the superposition-based approaches for quantified reasoning in
linear arithmetic. The superposition calculus is a calculus for reasoning in equational
first-order logic. The calculus has its origins in the early 1990s and was introduced
in [Bachmair and Ganzinger, 1994]. It combines notions from first-order resolution and
Knuth-Bendix ordering equality. Furthermore, it is also shown to be refutation complete
and is used in many theorem provers, most notably in Vampire. The calculus tries
to show the unsatisfiability of a set of first-order logic clauses. Due to its refutation
completeness, from any unsatisfiable clause set, a contradiction will eventually be derived
given unlimited resources and a derivation strategy that is fair.

2.2.3 Other deduction methods

There also exist other deduction methods like sequent deduction, natural deduction,
matrix connection method or mathematical induction. Further information for all these
methods can be found in [Portoraro, 2001].

2.3 Applications

2.3.1 Boolean Satisfiability Problem (SAT)

Determining satisfiability of logic formulas is one of the famous problems of computer
science, therefore, and also because of great interest from the industry, the automated
reasoning community has put a lot of attention on this. As a reminder, a formula is satis-
fiable if there is an assignment of truth-values to its variables that makes the formula true.
For example consider the formula (PV R) = @ where (P <« true, R < true, Q « false)
does not make the formula true, but (P <+ false, R + true, @ + true) does. The process
of determining whether a formula is satisfiable or not with any assignment is called the
Boolean Satisfiability Problem (SAT). For a formula with n variables to determine a
satisfiability assignment, one has to inspect each of the 2" possible assignments. This
method is complete as: if the formula is satisfiable, then we will eventually find an assign-
ment and also, if the formula is not satisfiable, we will also additionally be able to show

13
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this. But, as promising as this sounds, the search for such an assignment, in particular
in the non-satisfiable case, takes an exponential amount of time. A lot of problems such
as graph-theoretic problems, network design, scheduling or program optimization can be
expressed as SAT-instances, therefore, there is a big desire for more efficient algorithms.
SAT is NP-complete [Cook, 1971], so it is very unlikely that a polynomial algorithm will
be found, but for sure, there are efficient algorithms for some cases of SAT problems.

One of the first SAT search algorithms was the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [Davis and Putnam, 1960]. This algorithm is still considered to be one
of the best complete SAT solvers. DPLL algorithms are mostly extended by some strate-
gies in order to make them more efficient. These strategies are, for example, term indexing
[Graf and Fehrer, 1998], where the formula variables are ordered in an advantageous
way, chronological backtracking [Nadel and Ryvchin, 2018], where one backtracks to a
previous branching point if the process leads to a conflicting clause, or most prominent
conflict-driven learning [Lintao et al., 2001], which determines the information to keep
and where to backtrack. Of course, all these strategies and even more can be combined,
resulting in an even more efficient solver.

2.3.2 Satisfiability modulo theories (SMT)

Satisfiability Modulo Theory (SMT) is an approach of great interest in solving SAT
problems in FOL. As SMT is an important topic for this thesis, we will take some time
and introduce SMT carefully, mostly following [de Moura and Bjgrner, 2009], as this
introduction is readable and covers the most important topics. SMT is about checking
satisfiability of logical formulas over one or more background theories. The problem of
Boolean satisfiability is here combined with domains, and it also draws on the biggest
problems in the past century of symbolic logic, which are the decision problem, complete-
ness and incompleteness of theories and also complexity theory. Most SMT-problems
have a very high computational complexity. The challenge of integrating specialized
algorithms for different domains is just as complex and fascinating as developing new
algorithms that perform exceptionally well within such combinations. One prominent
theory, which we will introduce later on, is the theory of LA.

SAT is NP-complete, and it is well known that FOL is undecidable. It is really in-
feasible to come up with a procedure that can solve arbitrary SMT problems due to
their high computational complexity. Because of that, most work is focused on the more
realistic goal of solving problems that occur in practice efficiently. In the modern era of
theoretical computer science, there has been enormous progress in the scale of problems
that can be solved. This is due to innovations in algorithms, heuristics and data structures.
With modern, efficient SAT procedures, formulas with hundreds of thousands of variables
and millions of clauses can be checked. And also, SMT procedures had a similar progress
for the more commonly occurring theories. There is an annual competition for SAT
and SMT procedures, with the most recent one, "The 20th International Satisfiability
Modulo Theories Competition (SMT-COMP 2025)", where the most efficient procedures
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are ranked. That competition is also a driving force in the development of more efficient
procedures.

In the core, most automated deduction tools use case-analysis. SMT solvers rely mostly
on SAT procedures for doing so. Firstly, we analyze the basic techniques of state-of-the-art
SAT solvers and later how SMT specific solvers are combined with SAT solvers. Most
efficient SAT solvers are based on systematic search. The search space is built like a tree,
where each vertex represents a propositional variable and the outgoing edges represent
the two choices, true and false, for this variable. This results, for a formula containing n
variables, in 2" leaves in the tree. Every path from the root to a leaf is a truth assignment.
For checking truth assignments, a procedure is needed for a formula ¢, that is based
on systematic search. This procedure searches the tree for a truth assignment M that
satisfies . The majority of SAT solvers are based on the previously mentioned DPLL
approach. This algorithm takes a CNF formula and tries to build a satisfying truth
assignment using three operations: decide, propagate and backtrack. Decide chooses an
unassigned propositional variable using a heuristic and assigns it to true or false. This is
the so called case-splitting. Furthermore, propagate tries to deduce consequences using
deduction rules. If the algorithm comes up with a conflict, which indicates that some
earlier decisions cannot lead to a truth assignment, DPPL uses backtrack and tries a
different branch. If a conflict comes up and there is no decision to backtrack, then the
formula is unsatisfiable. There exist a lot of improvements to this procedure to enhance
efficiency.

SMT considers background theories. A theory can be defined as a set of sentences.
Formally, we can define a Y-theory as a collection of sentences over a signature . A
formula ¢, considering a theory T, is satisfiable modulo T if T'U {} is satisfiable. We
use M Er ¢ instead of M E {¢} UT. Consider the following example, where ¥ contains
the symbols 0, 1, +, - and <, and the structure Z interprets these symbols in the usual
way over the integers. The theory of LA is then the set of first-order sentences that are
true in Z. Denote  as the class of structures over a signature X, then we use Th(2), to
denote the set of all sentences ¢ over 3, where M E ¢ for every M in §2. The satisfiability
problem for a theory T is decidable if there exists a procedure that checks whether any
quantifier-free formula is satisfiable or not. In this case, the procedure is a decision
procedure for 7.

There are a lot of theories that are integrated with SMT solvers. For example LA,
difference arithmetic, non-linear arithmetic, free functions, bit vectors, arrays and many
others. In this thesis, the focus is set on LA.

2.3.3 SMT solvers

Back in the days, the most used approach for SMT solvers was to translate SMT instances
into SAT instances and pass them to a SAT solver. This approach is called eager approach
or bitblasting. For example see [Jha et al., 2009]. The approach has some drawbacks, as
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the high-level semantics of the theories are lost. These led to various other approaches
for SMT solvers.

SMT solvers determine the satisfiability of FOL formulas extended with background
theories. Many automated reasoning scenarios use SMT solvers for solving quantifier-free
formulas. These may be sufficient for most applications, but there also exist many
use case scenarios where complex first-order quantification is needed. Examples of such
scenarios would include expressing arithmetic operations over memory allocation and finan-
cial transactions, as discussed in [Alt et al., 2022], [Elad et al., 2021], |Gurfinkel, 2022]
and |[Passmore, 2021]. Quantifiers are handled in SMT solvers using heuristic instan-
tiation in domain-specific model construction. That approaches can be observed in
|[Bonacina, 2001], |de Moura and Bjgrner, 2007], |[De Moura and Jovanovi¢, 2013] and
IReynolds et al., 2017]. Instantiation is incomplete in most cases and requires instances
to be produced to perform reasoning. For quantifier-heavy problems, this can lead to
an explosion in work. Rather than that, for the above use cases, we need a reasoning
approach, which is able to handle both theories and complex applications of quantifiers.
A major challenge in both SMT and first-order theorem proving is combining quantifiers
with theories and doing so especially with arithmetic.

2.3.4 Theorem provers

Theorem provers are tools designed to establish the validity of logical statements by
constructing formal proofs. That means they can determine whether a given logical
statement /theorem is true based on a set of inference rules and axioms. There exist
automated and also interactive theorem provers. Automated theorem provers attempt
to find proofs with no human guidance or at least minimal. For these kinds of provers,
many algorithms such as resolution or rewriting are used. Interactive theorem provers,
on the other hand, require human guidance to construct proofs.

While theorem proving and SMT solving are closely related, they differ in their scope
and techniques. A SMT solver wants to determine if a logical formula is satisfiable
given a background theory. A theorem prover intends to prove that a statement follows
logically from a set of axioms. Therefore, a SMT solver returns if a formula is satisfiable,
unsatisfiable or even unknown, a theorem prover on the other hand, returns a proof or
counterexample. SMT solving can be very efficient for specific theories, and theorem
proving is more general. Note that a combination of both or even using SMT inside theo-
rem provers or using theorem proving inside SMT solvers is possible and very powerful,
as they complement each other’s strengths. For example see [Voronkov, 2014].
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CHAPTER

Linear Arithmetic

3.1 Overview

Linear arithmetic (LA) focuses on relationships expressed through linear equations and
inequalities. Considering the relationships, variables appear with a maximum degree of
one and are combined using operations like addition, subtraction, and multiplication by
constants.

Basically, LA deals with equations and inequalities of the form a1x14aszo+- - -4+anx, ~ b,
where x1,x9,..., T, are variables, a1, as9,...,a,,b are constants and ~ represents rela-
tional operators like =, >, <, >, <. As the name suggests, a key feature of LA is that the
relationships are strictly linear. This essentially means that variables are not multiplied
together or raised to powers greater than one. To make that clearer, consider the following
example.

Example 3.1.1. 3z + 2y = 6 is a linear equation, while 2 +y = 5 is a non-linear

equation due to the term 2.

The most prominent categoreis of LA are:

o Linear integer arithmetic (LIA) (aka. Presburger Arithmetic), where
variables are restricted to integer values.

o Linear real arithmetic (LRA), where variables can take any real value.

o Linear integer-real arithmetic (LIRA), which combines both integer and real
variables.

17
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It is important to define which category is considered, as each category has its unique
challenges and applications, depending on whether the solution space is discrete, continu-
ous, or a mix of both.

The first-order nature of the theories means that we can use:

o Universal and existential quantifiers over variables
e Boolean connectives like A,V, -, = , <=
e Linear inequalities like ax + by < ¢

e Variables ranging over the appropriate number domain

It is crucial to highlight the linear restriction as we can not have:

e Multiplication between variables

e Non-linear operations

LRA and LIA, which is also known as Presburger Arithmetic, are decidable. That was
shown in [Motzkin, 1936], and [Presburger, 1929]. The first-order formulation is what
makes automated reasoning feasible. LA is simple and versatile and therefore used in
different fields. For example, optimization for linear programming techniques, formal
verification, and of course, automated reasoning. In automated reasoning, LA is mostly
used in SMT solvers. For example, an SMT solver might prove that a program loop
terminates for all possible inputs by reasoning about the linear relationships governing
the loop’s variables.

3.2 Challenges in Quantified Linear Arithmetic

LA could be seen as really simple, but it also presents some challenges. Finding solutions
to LIA problems is computationally harder than solving problems in LRA, as integer
solutions require more complex algorithms. If quantifiers (V,3) are introduced, the
complexity is further increased, as reasoning about quantified formulas requires advanced
techniques like quantifier elimination. Additionally, the presence of uninterpreted function
symbols adds another dimension of difficulty, because the reasoning algorithm must know
all possible behaviors of these functions. Furthermore, scaling LA to handle large systems
with many variables and constraints can also be computationally expensive.
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3.3 Reasoning Methods in Linear Arithmetic

To reason in linear arithmetic, several methods could be used. Each method is designed
to handle specific aspects of linear equations and inequalities in various contexts. For
automated reasoning, methods aim to determine the satisfiability of formulas, verify
properties, and solve constraints within automated systems. We can divide the methods
into decision procedures including quantifier elimination, optimization-based methods,
heuristic and approximation methods, and also some specialized methods. We will only
focus on methods which are used for quantified LA.

In this thesis, the focus will be on three specific approaches in quantified LA:

e Superposition-Based Methods
o Instantiation-Based Methods

¢ Quantifier Elimination for Computer Algebra

These three categories cover the widely used reasoning methods for quantified formulas in
LA. Superposition-based methods use mostly saturation algorithms. These can be found in
[Cruanes, 2015], [Kovacs and Voronkov, 2013] and [Schulz et al., 2019]. Essentially, the
process begins with an initial set of clauses generated by preprocessing the input formulas
(the starting search space). Inference rules, such as superposition, are then repeatedly
applied to the clauses within this search space, and their resulting consequences (which
are often non-ground) are added back into the search space. For Instance-based methods,
repeatedly ground, quantifier-free, instances of quantified formulas are generated, and
decision procedures are used to check satisfiability of the resulting set of ground formulas.
These methods can be found in [Bonacina et al., 2017], |[de Moura and Bjgrner, 2007]
and [Reynolds et al., 2017]. The two classes of methods are very different and can be
seen as complements to each other. Further, we also need to mention an approach
where quantifiers are eliminated ,algebraically”. In the context of this thesis, such
approaches will be called quantifier elimination for computer algebra, and are available
in [Brown, 2003]

3.3.1 Quantifier Elimination

An algorithm for quantifier elimination removes all quantifiers of a formula ¢ until the
quantifier-free formula v is equivalent to ¢. Note that it could be enough that ¢ is
equisatisfiable to 1, that is ¢ is satisfiable if and only if 1) is satisfiable. We can say that
a theory T admits quantifier elimination if there is an algorithm that given X-formula
returns a quantifier-free >-formula ¢ that is T-equivalent. To get a better understanding,
let’s look at the following easy example.

Example 3.3.1 (Quantifier elimination). Consider the formula Ja(a =~ x A f(a) > 3).

The quantifier-free formula f(x) > 3 is a result of a quantifier elimination of the formula.
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Note that, for example, the formula Jz(f(x) > 3) has no quantifier elimination, since it
is not possible to restrict f to have at least one value in its range that is greater than 3
without a quantifier.

Why do we need quantifier elimination? Simplification of logical formulas, by removing
existential and universal quantifiers results in expressions that are often easier to analyze
and also easier to solve. Complete quantifier elimination, even when possible, is com-
putationally expensive. Therefore, most quantifier elimination methods approximate it,
these approximations are often called quantifier reduction. If we approximate quantifier
elimination, it is possible that some free variables may be left in the formulas after the
transformation.

The first algorithm for quantifier elimination is called cylindrical algebraic decomposition
(CAD) [Arnon et al., 1984], which is worst case doubly exponential in the number of
variables. Quantifier elimination in applications outside of pure mathematics was fairly
limited due to the practical complexity of the implemented methods for a long time. Some
of these methods have been able to solve problems of interesting size in various fields, but
most importantly in pure science. Due to the increase in computational power, mostly
theoretical work contributed to that development. CAD has gone through numerous
improvements, resulting in partial CAD and on the other hand, it has also been shown
that real quantifier elimination is really hard for some problem classes, which turned
the attention to certain problem classes and no standard procedures. Most approaches
cope with formulas, where quantified variables are restricted to low degrees. For an
introduction and more insight into CAD, we refer to [Jirstrand, 1995]. Further approaches
for quantifier elimination and also some applications can be found in [Sturm, 2017].

There also exist many more techniques for quantifier elimination besides CAD. Variable
elimination, for example, substitutes bound variables with terms or expressions. Also,
skolemization is used for quantifier elimination, where existential quantifiers are replaced
with function symbols. Resolution-based methods and term rewriting are also worth men-
tioning. There also exist virtual substitution methods. Furthermore, a quite prominent
method is the Fourier-Motzkin elimination.

3.3.2 Fourier-Motzkin Elimination

Fourier-Motzkin Elimination (FME) [Fourier, 1827] is an algorithm used for solving
systems of linear inequalities. The algorithm is used primarily in the context of LRA.
Variables are eliminated to reduce a high-dimensional problem to a lower-dimensional
one. At the core of it, FME uses variable projection. It removes one variable at a time
from a system of inequalities, projecting the feasible region onto a lower-dimensional
space, resulting in an equivalent system of inequalities in fewer variables.

The algorithm operates on a system of linear inequalities X7_a;5x; > b, i =1,...,m
where a;;,b; € R for i = 1,...,m and j = 1,...,n. It eliminates x; for some
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ke {1,...,n} with the following steps:

1. For each j € {1,...,m},

o if ajp > 0, multiply the j-th inequality by a]%c

o if aj; <0, multiply the j-th inequality by _a%k
2. Following, form a new system of inequalities:

o take over all the inequalities in which the coefficient of x, is 0

o for every inequality, where x; has a positive coefficient and for every inequality,
where zj, has a negative coefficient, obtain a new inequality by adding them
together

The first step is to guarantee that all nonzero coefficients of x; are 1 or -1. In the second
step, a new system is formed, which does not contain the variable z,. Following, if
we have z7,...,; as a solution to the original system, z7,..., 2} _|, 2} (..., 7, is a
solution to the new system. Furthermore, if x7,..., 2} 1,2}, ,..., 2}, is a solution to
the new system, then there exists 7, such that z7,...,z; is a solution of the original
system. Well, this states that the original system has a solution if and only if the new
system has a solution. The FME should be applied repeatedly to get a system with at
most one variable such that it has a solution if and only if the original system has one.
Solving systems of linear inequalities with at most one variable is simple, so we can come
up with whether or not the original system has a solution.

SMT solvers use FME for reasoning about LRA. The big advantage of FME is the
simplicity of implementation, and it provides precise results for systems of linear in-
equalities. But, FME also has some limitations, as the number of inequalities can grow
exponentially with each elimination step, and of course, FME only applies to linear
inequalities in LRA.

3.3.3 Superposition Calculus

The Superposition Calculus is a refutationally complete inference system, which is used for

automated reasoning in FOL with equality. It was introduced in [Bachmair and Ganzinger, 1994]

and is more or less the foundation of saturation-based theorem proving. The calculus
extends ordered paramodulation by integrating rewriting and simplification techniques to
handle equational reasoning efficiently. Ordered inference rules with selection functions
are used for controlling derivation. The Superposition Calculus is refutationally complete,
which means that it can derive a contradiction if the clause set is unsatisfiable. Saturation
can be seen as a key property, as it ensures that all non-redundant inferences are generated.

The calculus is, in some forms, implemented in modern theorem provers like E, Vampire
and SPASS. There exist several extensions of the Superposition Calculus to enhance its
reasoning capabilities.
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3.3.4 Coopers Algorithm

Coopers algorithm is a quantifier elimination procedure for Presburger arithmetic (PA).
PA is a decidable theory, focusing on FOL of natural numbers N with addition and
equality as operations. Mojzesz Presburger introduced it in 1929 [Presburger, 1929].
We can define PA as the set of those sentences that are true in the interpretation
with the structure of non-negative integers, including the constants 0, 1, and the ad-
dition of non-negative integers. Note that multiplication of variables is not included in PA.

Cooper introduced a decision procedure for PA in [Cooper, 1972]. It eliminates ex-
istential quantifiers one by one, while logical equivalence is preserved. Consider a formula
JzF(x), where F' is quantifier-free. The idea of the algorithm can be generally described
in the following steps:

1. Put formula on negation normal form (NNF), getting Fj(x)

2. Normalize F(z) to use < as the only comparison operator, getting Fs(z)

3. Normalize F5(z) so that atomic formulas have one occurrence of z, getting F3(z)
4. Normalize F3(x), such that the coefficients of x is 1, getting Fy (')

5. From the formula Fy(2’) a quantifier free formula Fj can be produced, which is
equivalent to 3z F(x)

The algorithm itself is not very efficient, as it runs in doubly exponential time in the
worst case. For large formulas, the algorithm is really inefficient, such that in practice
often alternatives are used, however it is theoretically important as a complete decision
procedure for PA.

3.3.5 Counterexample-Guided Instantiation

Counterexample-Guided Instantiation (CEGI) is a quantifier instantiation technique
used in SMT solving and automated reasoning, particularly for quantified formulas over
theories like LIA and LRA.

Instead of just randomly generating all possible instances of a quantified formula, with
CEGI, one can choose instantiations based on counterexamples from a model that violates
the current partial approximation of the formula. That process happens in a feedback
loop-like manner. First of all, a candidate model is guessed and then a check happens
whether the current model violates any quantified formula or not. If it violates the
formula, the quantified formula is instantiated with the values from the model. In the
end, the loop is repeated and the set of instances is refined until the formula is proven
valid or a counterexample is found.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.3. Reasoning Methods in Linear Arithmetic

CEGI may fail to terminate if it is not guided carefully or if the theory itself is undecidable,
but if it terminates, it avoids combinatorial explosion of full quantifier instantiation. An
advantage of this approach is that it works very well with LA and uninterpreted functions.
The performance depends on heuristics, where one needs to use effective term selection
functions and so on. Further, it can also be used to extract witnesses for models.

3.3.6 Syntax-Guided Instantiation

Syntax-Guided Instantiation (SyGI) is a quantifier instantiation technique used in SMT
solving, where quantified formulas are instantiated by generating terms whose syntax
matches expressions seen in the formula or the current model. This is in contrast to just
trying all possible values (mostly impossible). SyGI uses the formulas’ syntax itself to
guide which values to try and which might be useful.

3.3.7 Virtual Substitution

Virtual Substitution [Weispfenning, 1997] is a technique for eliminating quantifiers from
logical formulas. Other than computing a full quantifier-free equivalent formula like
Fourier-Motzkin or CAD, Virtual Substitution works by substituting expressions for the
quantified variables. The technique simulates the effect of quantification without full
enumeration.

The candidates for the substitution are most of the time called test terms. These
expressions need to be identified by Virtual Substitution in the first step and could be
roots of polynomials, infinitesimals or numeric constants. Virtual Substitution substitutes
each test term into the formula, and each substitution gives a case that has to be checked.

This approach is really efficient for LA and avoids heavy computation efforts, which are
needed for example for CAD. Note that Virtual Substitution can only be used for LRA
and not for LIA.

3.3.8 Model-Based Projection

Model-Based Projection (MBP) [Komuravelli et al., 2014] eliminates existentially quanti-
fied variables from a formula using models. The models are used to guide the simplification
of the formula. Instead of computing a full quantifier elimination, MBP uses models to
identify a satisfying assignment of a formula. Further, MBP extracts a simpler formula,
which over-approximates quantifier elimination. MBP can be used both in LRA and LIA.
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CHAPTER

Quantified Reasoning in Linear
Arithmetic

Reasoning in quantified linear arithmetic is a key challenge in automated reasoning. In
the following sections, background information and important papers in three major
approaches for reasoning in quantified linear arithmetic are summarized and compared.

If a logical statement is evaluated with quantifiers over variables constrained by linear
relationships, such as linear equations and inequations, we refer to that as quantified
reasoning in LA. With quantifiers, it is possible to express more complex properties
and constraints. We use quantified reasoning in LA for various applications like formal
verification, model checking and constraint solving. To solve most of these problems in
practice, we need to transform formulas into equivalent quantifier-free forms with some
specific techniques and approaches.

4.1 Quantifier-Free Reasoning in Linear Arithmetic

LA involves equations and inequalities where variables appear with at most degree
one. When quantifiers, such as V and 3 are absent, reasoning methods can focus on
directly determining the satisfiability constraints without using computationally expensive
quantifier elimination. In the following, some background information and alternative
approaches are presented. Note that the quantifier-free fragment is not the main focus of
this thesis, and therefore, these approaches are not introduced in detail.

4.1.1 Integrating Linear Arithmetic into Superposition Calculus

The paper [Korovin and Voronkov, 2007] introduces the Linear Arithmetic Superposition
Calculus (LASCA). The authors extend the superposition calculus with rules for rational
LRA with equality and Fourier Motzkin Elimination for reasoning with inequalities. The
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extension works with rules similar to superposition and ordered chaining rules in first or-
der reasoning. Existing approaches have some limitations that rely on approximations or
incomplete methods when dealing with LRA, which the authors wanted to address. These
approaches are mostly based on an approximation of arithmetic reasoning by considering
an axiomatisable theory [Godoy and Nieuwenhuis, 2004} [Stuber, 1998| [Waldmann, 2001},
Waldmann, 2002]. The biggest challenge in integrating LRA with superposition calculus
is the computational complexity of handling rational numbers (Q) and the interaction
between theory terms and other non-theory terms. Unlike previous approaches, which
rely on approximations or incomplete methods, LASC A operates directly with the theory
Q and therefore avoids abstraction techniques that introduce additional variables, leading
often to inefficiencies.

The LASCA calculus extends the traditional superposition calculus by introducing
rules tailored for LA. One rule considers Gaussian Elimination, with handling equations
by substitution of one variable in terms of others. Another rule addresses Fourier Motzkin
Elimination, where inequalities are chained to eliminate variables and to simplify con-
straints. Also, Inequality Factoring is a rule, where combined inequalities are simplified
in order to identify contradictions or refinements. There is also a rule for Ordering and
Normalization, which ensures that clauses are in a canonical form for efficient comparison.
The LASC A calculus for ground clauses is sound, which is shown by derivation rules that
maintain consistency with the theory Q. LASCA completeness is conditional, because a
saturated set of clauses needs to satisfy additional constraints to ensure that satisfiability
is decidable.

For handling non-ground clauses, i.e. clauses with variables, the LASCA calculus
introduces lifting techniques. To prevent undecidable interactions between theory and
other non-theory terms, variables are restricted to ,safe sorts*. The calculus incorporates
rules for managing variable occurrences, using normalization and associativity and com-
mutativity unifiers (AC-unifiers). In order to work with non-ground terms, Gaussian and
Fourier Motzkin Elimination are generalized, to ensure soundness of the lifted rules.

To ensure termination, Q-Knuth-Bendix ordering (Q-KBO) is introduced. This ordering
is based on the Knuth-Bendix ordering and it is also AC-compatible, monotonic and also
satisfies finiteness conditions, which are crucial for proving completeness. Furthermore,
the authors prove that the general validity problem for FOL with LA is IIi-complete.
This result implies that no complete calculus exists without finiteness constraints, and
therefore, the existence of practical limitations of reasoning systems for LRA with non-
theory functions is highlighted. The paper itself serves as a foundation for combining
FOL with arithmetic reasoning, which is then further picked up by [Korovin et al., 2023]
to introduce the ALASC A calculus, and also shows the potential for practical theorem
proving tasks.
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Other approaches

Quantifier-free reasoning in LA is a well-studied area, and several standard approaches
and algorithms are known and implemented in automated reasoning tools. For LRA
and LIA there exist several specialized decision procedures that efficiently determine the
satisfiability of quantifier-free formulas. Examples of procedures are the Simplex Method,
Cutting Plane Methods, Branch and Bound Methods, Fourier—-Motzkin Elimination,
Presburger Arithmetic Decision Procedures, CDCL(T) + Theory Propagation and Differ-
ence Logic Solvers, which can be found in following works: [Dutertre and de Moura, 2006],

[Stansifer, 1984], [Ferrante and Rackoff, 1975], [Reddy and Loveland, 1978|, [Nelson and Oppen, 1979].

4.2 Superposition-Based Methods

4.2.1 ALASCA: Reasoning in Quantified Linear Arithmetic

Due to the efficient superposition calculus, first-order theorem provers perform very
well on quantified problems, but support for arithmetic reasoning is limited to heuristic
axioms. The authors introduce in [Korovin et al., 2023] the ALASCA calculus, which
lifts superposition reasoning to the LA domain. They also show that ALASCA is both
sound and complete with respect to an axiomatisation of LA, while proving first-order
quantified LA properties.

The superposition calculus is a refutationally complete calculus for first order logic
with equality. A natural solution to the inefficieny of theory reasoning via superposi-
tionr is, to try to eliminate some theory axioms, but this is very difficult in theory and
practice. The LASCA calculus [Korovin and Voronkov, 2007] replaced several theory
axioms of LA, including transitivity of inequality, by a new inference rule inspired by
Fourier-Motzkin elimination and also some additional rules. LASCA is complete for
the ground case, however LASC A was not implemented. This is due to its lack of
clear treatment for the non-ground case, and of course, also complexity. The authors
of [Korovin et al., 2023] introduce a new non-ground version of LASC' A, which is called
ALASCA. The ALASC A calculus comes with new abstraction mechanisms, inference
rules and orderings, which together are proven to yield a sound and complete approach
with respect to a partial axiomatisation of LA. This is done by introducing a novel
variable elimination rule within saturation-based proof search, an analogue of unification
with abstraction needed for non-ground reasoning, and a new non-ground ordering and
powerful background theory for unification, which is not restricted to arithmetic but
can be used with arbitrary theories, resulting in, that ALASC A does work and scales.
Therefore, ALASC A improves LASC A by ground modifications and lifts LASCA in a
finitary way. Furthermore, ALASC A is implemented in Vampire, and it is shown that it
solves overall more problems than existing theorem provers.

ALASCA extends LASCA with unification with abstraction (uwa). Uwa is needed
because first-order arithmetic reasoning requires establishing syntactic difference among
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terms (e.g. 4= and x — 1), while deriving, there are some instances that are semantically
equal in models of a background theory £. This problem can be addressed in a naive way
by using an axiomatisation of the background theory £ and then using this axiomatisation
for proof search in uninterpreted FOL. That approach can be very costly and therefore, to
circumvent such inefficient handling of equality reasoning, one can use unification modulo
& [Kapur and Narendran, 1992 Reger et al., 2018, Waldmann, 1998]. The authors of
[Korovin et al., 2023] made some adjustments towards unification modulo &, introducing
unification with abstraction. Furthermore, they also show how a complete superposition
calculus using unification modulo £ can be turned into a complete superposition calculus
using unification with abstraction.

To put it simply, unification modulo £ finds substitutions ¢ that make two terms
s,t equal in the considered background theory. More formally, this means £ E so = to.
But there are some inefficiencies, most importantly, there is no unique most general
unifier mgu(s,t) when unifying modulo &, but only minimal complete sets of unifiers
mecug(s,t), which can be very large. The presented uwa method can be seen as a lazy
approach of full abstraction from [Waldmann, 1998]. The abstracting unifiers uwa(s, t)
= <o,C> are computed to replace unification modulo £ by unification with abstraction.
These results are then used to introduce the ALASC A calculus for reasoning in quantified
arithmetic, by combining superposition reasoning with Fourier-Motzkin type inference
rules [Korovin et al., 2023].

There is also an altered ground version ALASCA?, that can be efficiently lifted to
the quantified domain. ALASC A? operates on clauses and employs a partial axiomatisa-
tion Ag of rational number models (Q-models). This divides axioms into two categories:
equality axioms (A¢q) and inequality axioms (Ajneq). Following, the key inference rules
in ALASCA? are listed:

o Fourier-Motzkin Elimination (FM): Chains inequalities by eliminating variables.

o Tight Fourier-Motzkin Elimination (FM=): Similar to FM, but handles cases where
inequalities include equalities.

o Inequality Factoring (IF): Simplifies combinations of inequalities with the same
term.

o Superposition (Sup): Extends standard superposition techniques to arithmetic
terms, replacing terms based on axioms or previously derived equalities.

ALASC A? relies on a normalization technique, which is called Aeq-normalization. Terms
are simplified into a canonical form to reduce the search space during inference. During
proof construction, an A.,-compatible ordering ensures a consistent prioritization of terms.
The main advantages of ALASCAY are that it simplifies proof search by eliminating
redundant or non-ground instances and it efficiently integrates arithmetic reasoning with
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general-purpose theorem proving.

Lifting ALASC A? to the quantified domain involves extending its reasoning to handle
clauses containing quantifiers and non-ground terms. The main challenge here is: dealing
with variables that appear as top-level terms, called unshielded variables. To address
this, ALASC A introduces a Variable Elimination rule (VE), which converts any clauses
containing such variables into an equivalent set of clauses without these variables. Lifting
to the quantified domain also integrates unification with abstraction (uwa). With ground
completeness and also the lifting to the quantified domain, ALASC A is complete, namely
refutationally complete with respect to Ag for sets of clauses without unshielded variables.
ALASCA was implemented in the theorem prover Vampire [Kovéacs and Voronkov, 2013].

4.2.2 Superposition Modulo Linear Arithmetic SUP(LA)

The paper [Althaus et al., 2009] introduces SUP(LA), a hierarchic superposition based
theorem proving calculus for FOL with LA. This approach instantiates the hierarchic
theorem proving approach SUP(T) for any theory T|[Bachmair et al., 1994] to SUP(LA).
This offers an abstract completeness result for the combination via a sufficient complete-
ness criterion that goes beyond ground problems, which is needed for DPLL(T). It also
enables the handling of LA in a modular way and could be implemented via efficient off
the shelf solvers. The approach can even decide satisfiability of first-order theories with
universal quantification modulo LA.

The SUP(LA) calculus operates within a many-sorted logical framework with a base
sort, which is reserved for LA terms over the rationals and other kinds, which represent
non-arithmetic terms. Function symbols are divided into function symbols interpreted
in the base theory LA and free function symbols for non-arithmetic operations. The
SUP(LA) calculus has a hierarchical specification where FOL over free function symbols
is combined with a base theory over LA. Note that this allows reasoning to be modular,
where base constraints are solved using LA decision procedures and first-order literals
are handled by superposition rules. The authors defined a clause form that separates
base constraints and first-order literals. A clause is represented as A||l' — A, where
A contains base constraints from LA and ', A contains first-order literals using free
function symbols. To extend the calculus for the general case of a hierarchic specification
[Bachmair et al., 1994], any given disjunction of literals can be transformed into a clause
of the form A||I' — A. If a subterm ¢, whose top symbol is a base theory symbol, occurs
immediately below a non-base symbol, it is replaced by a new base sort variable u, and
this is added to A. Also, if a subterm ¢, whose top symbol is not a base theory, occurs
immediately below a base operator symbol, it is replaced by a general variable x and is
added to I'. These transformation steps are repeated until all terms in the clause are

pure, which results in all base literals being in A and all non-base literals being in I", A.

Note that I', A is defined as sequences of atoms where A holds theory literals. Clauses
need to be ,purified* only once before saturating the clauses, and if the premises of an
inference are abstracted clauses, then the conclusion is also abstracted. SUP(LA) uses
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hierarchic superposition rules extended to handle LA constraints. The main inference
rules are the following:
e Superposition Left

— A left-hand side term in an equation is replaced with its right-hand side in
another clause.

— This ensures most general unification and maximality criteria for efficiency.
e Superposition Right

— This is more or less similar to Superposition Left, but applies to the right-hand
side of an equation.

o Equality Factoring
— This rule simplifies equalities by combining multiple equations.
¢ Ordered Factoring
— Combines two equal literals in a clause by unification.
o Equality Resolution
— If both sides unify, this rule eliminates equations.
o Constraint Refutation

— That rule checks for unsatisfiability of clause constraints in the base theory
LA.

With these inference rules, first-order reasoning is combined with LA constraint solving
and allowing for modular reasoning in the hierarchical setting. Furthermore, effective
redundancy criteria specific to SUP(LA) are introduced, where hierarchical redundancy
is mapped to linear programming problems for satisfiability subsumption and implication
tests. A sufficient completeness criterion ensures that ground instances are sufficiently
complete for the base sort. Most importantly, if the base theory is compact, then SUP(LA)
is refutationally complete. This ensures completeness for SUP(LA).

The paper [Althaus et al., 2009 also discusses efficient algorithms for constraint solving
in LA with three specific tasks: Satisfiability Checking, Implication Test and Sub-
sumption Test. These tasks are mapped to linear programming problems. For that,
Farkas’ Lemma and its extensions to strict and non-strict inequalities
are needed. Farkas’ Lemma is a fundamental result in linear algebra and optimization
theory that provides a condition for the feasibility of linear inequalities. Farkas’ Lemma
initially applies to non-strict inequalities. To handle strict and non-strict inequalities,
the lemma is extended using transformations. For more information, see for example
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[Matousek and Gértner, 2007]. The implication test checks, given two sets of constraints
A1 and Ao, if: Ay C A;. The subsumption test checks, given two clauses with constraints
A1 and Ao, if A; subsumes Ay. All tests can be reduced to linear programming feasi-
bility problems and can therefore be solved using existing linear programming solvers.
The SUP(LA) calculus is implemented as an extension of the SPASS theorem prover,
SPASS(LA). SUP(LA) preserves quantifiers through the reasoning process and enables
quantified reasoning.

4.2.3 Beagle — A Hierarchic Superposition Theorem Prover

The paper [Baumgartner et al., 2015] describes the automated theorem prover Beagle.
Beagle itself implements the hierarchic superposition calculus. This calculus is used
for automated reasoning in a hierarchic combination of FOL and a background theory.
The background theories implemented are LIA and LRA. The prover features new sim-
plification rules for theory reasoning and also implements calculus improvements such
as weak abstraction, and determining satisfiability and unsatisfiability with respect to
quantification over finite integer domains.

Beagle extends the hierarchic superposition calculus [Bachmair et al., 1994]. The hi-
erarchic superposition calculus implements hierarchic superposition in a hierarchic com-
bination of FOL and background theories (BG). A BG is defined by a BG signature
Yp = (Ep,Qp) where Ep is defined as BG sorts, which would be for example int for LIA
and €2, defines BG operators. Then there are BG clauses that use BG sorted variables and
are passed to the BG prover to check for satisfiability. Further, there is also a Foreground
theory FG, which is defined as ¥ = (2,Q), where Zp = =\ Zp and Qp = Q\ Qp. FG
terms themselves contain at least one FG operator or FG sorted variables. The intended
semantics are conservative extensions of BG specifications, preserving the interpretation
of BG sorts and operators. Weak abstraction abstracts out BG terms other than variables
and number constants that occur as subterms of FG terms. With the inference rules of
hierarchic superposition, the FG prover saturates the set of ¥-clauses. This happens, for
example, with negative superposition, which only applies to the FG parts of clauses and
uses weak abstraction for the conclusion. A requirement for the refutational completeness
of hierarchic superposition is sufficient completeness. That means that every ground BG
sorted term is equal to some BG term. To ensure sufficient completeness, the define rule is
used, which introduces a new parameter for BG sorted FG terms, and therefore maintains
refutational completeness. BG reasoning is represented in Beagle as theory specific
modules, which are called solvers, and they implement a specific interface. B-Satisfiability
is the satisfiability of a clause constraint in the BG, which means that the BG literals in
the constraint are satisfiable under the interpretation of the background theory.

In Beagle, every solver needs to provide a decision procedure for B-satisfiability of
sets of BG clauses. The solver interface supports quantifier elimination for eliminating
variables occurring only in BG literals. It also supports the splitting of BG clauses
into variable disjoint subclauses and simplification with cautious and aggressive rules,
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resulting in sufficient and refutational completeness. Beagle implements solvers for LIA
and LRA. For LIA, quantifier elimination is implemented using Cooper’s algorithm with
some performance improvements. Further, simplification and arithmetic terms normaliza-
tion is used. Cautious simplification preserves refutational completeness and aggressive
simplification optimizes performance, but as a trade off risks completeness. For LRA,
the solver implements a Fourier-Motzkin style quantifier elimination procedure. The
decision procedure uses the Simplex algorithm [Dutertre and de Moura, 2006], which is
further extended to strict inequalities. Also, here, cautious and aggressive simplification
is supported.

The proof procedure of Beagle uses standard techniques, but treats BG formulas in
a specific way. The prover uses two translators to convert formulas into CNF. For
existentially quantified variables, skolemization is used, and integer variables are handled
by applying quantifier elimination when possible. For universal BG formulas over inte-
gers, Skolem functions are not introduced. The main loop of Beagle uses the Discount
saturation loop. The loop maintains two clause sets: Old and New. New contains
clauses that have not yet been expanded, and Old contains clauses that have already
been processed. Simplified, the prover picks a clause from New, moves it to Old, and
applies inference rules to expand it while keeping background constraints and preserving
quantifiers. Further, new clauses are simplified.

4.3 Instantiation-Based Methods

4.3.1 Solving Quantified Linear Arithmetic by
Counterexample-Guided Instantiation

The framework presented in the paper [Reynolds et al., 2017] introduces instantiation-
based decision procedures for verifying the satisfiability of quantified formulas. These
procedures work for LIA and LRA with one quantifier alternation. The authors use a
unique strategy to address quantified formulas, and these techniques can be integrated
into standard SMT solvers.

The conventional method for determining constraints over quantified theories is quantifier
elimination, which aims to convert arbitrary quantified formulas with free variables
into an equivalent form without quantifiers. Nevertheless, the complexity of performing
quantifier elimination is really high. SMT solvers frequently adopt instantiation-based
approaches because, even if they are incomplete, they perform strongly on handling
undecidable fragments of FOL. The authors introduce a novel method for verifying
the satisfiability of formulas in quantified LA through a fresh quantifier instantiation
framework. Quantifier instantiation in this context is used because:

o Techniques that rely on lazy quantifier instantiation can check satisfiability signifi-
cantly faster than their theoretical computational complexities suggest
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o Using quantifier instantiation for decidable fragments enables seamless integration
and synergy with existing instantiation-based methodologies, which are used by
state-of-the-art SMT solvers

o A big subset of synthesis problems can be formulated as quantified formulas featuring
one quantifier alternation

Recent efforts showed that leveraging quantifier elimination in a more efficient and
practical manner, focusing on generating equisatisfiable ground formulas, is sometimes
more efficient. The use of quantifier instantiation with decidable fragments in quantified
LA not only speeds up satisfiability checks but also enables a good incorporation of
existing instantiation-based frameworks.

The introduced framework operates based on instantiation, meaning it involves substitut-
ing specific values (instantiations) for quantified variables within the formulas to evaluate
the satisfiability of those. The goal of the framework is to develop decision procedures that
can effectively determine whether a given quantified formula is satisfiable within the given
constraints of the specified theory. The idea is to incrementally instantiate quantified
variables with concrete values, guided by counterexamples or selection functions. The
general high level workflow for instantiation-based procedures can be seen as follows:

1. Start with a quantified formula.

2. Initialize an empty set of instances.

3. Use a selection function to select candidate values for quantified variables.

4. Use these values to instantiate the formula to convert it to a quantifier-free form.
5. Check the quantifier-free formula using a standard SMT solver.

6. Refine the instances using counterexamples until no new instances are needed.

The approach avoids full quantifier elimination by lazily instantiating only relevant
quantifiers. The general procedure is proven sound by maintaining logical equivalence
between the original quantified formula and its instantiated versions. Termination is
guaranteed when the selection function is finite, monotonic and model-preserving. For
LRA and LIA with one quantifier alternation, the paper presents selection functions
Srra and Spra that are finite and monotonic, ensuring the completeness and termi-
nation of the instantiation-based procedure. These selection functions play a crucial
role in the instantiation-based procedure and are inspired by the Loos-Weispfenning
[Loos and Weispfenning, 1993] or Ferrante-Rackoff [Ferrante and Rackoff, 2006] meth-
ods for quantifier elimination, but avoid the need for computing virtual terms. The
key aspects are the finiteness and monotonicity of these selection functions, which are
fundamental for ensuring both completeness and termination of the procedure. The
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finiteness of the functions implies that there exists only a finite number of possible tuples
that the functions can return for any given interpretation, set of formulas, variables, and
additional parameters. Further, this property is essential for the computational efficiency
of the instantiation-based procedure and guarantees that the procedure will not get stuck
in an infinite loop. In contrast, monotonicity is important for ensuring that the selections
made during the runtime do not violate a certain order or constraint relationships. A
selection function is considered monotonic if it preserves certain relationships between
the input formulas and the selected terms during each iteration. Monotonicity is needed
for soundness of the instantiation-based decision procedure. To instantiate LRA, the
selection function St r4 uses a distinguished constant § to instantiate real variables. That
ensures that all possible values within an interval are covered by choosing boundary points
and infinitesimal shifts. Unlike Fourier-Motzkin Elimination or Ferrante-Rackoff, which
need explicit case splitting, this method is more efficient because it lazily instantiates
only relevant cases. On the other hand, to instantiate LIA, the selection function Spra
uses integer division rounding to handle integer constraints. The instances themselves are
chosen by rounding up and down to the nearest integers and using congruence modulo
constraints to ensure all classes are covered. Lazy instantiation is combined with modulo
reasoning and so, the number of necessary instances is reduced. One could think of
extending Cooper’s algorithm in that case, but other than explicit case splitting, all
disjuncts are enumerated. The selection functions are sound and complete for both LRA
and LITA with one quantifier alternation. Furthermore, also instantiation for LIRA is
discussed. Therefore, conversion functions are introduced for rounding real numbers to
integers. The selection function itself is kind of a hybrid. It firstly instantiates real and,
after that, integer variables and ensures compatibility and consistency between real and
integer constraints. In practice, this method is helpful, but note that completeness is
not guaranteed in this case. Furthermore, the framework is extended to handle arbitrary
quantifier alternations. In that case, the method does not require the formulas to be
in prenex form. Also, nested instantiation loops are used to incrementally instantiate
quantifiers while preserving the logical structure. The introduced instantiation-based
approach is also integrated within the SMT solver CVC4 [Barrett et al., 2011].

4.3.2 Theory Instantiation

The paper [Ganzinger and Korovin, 2006] explores the concept of theory instantiation,
which can be described as the process of applying a general theory to a specific case or a
specific instance. The authors develop a method for integrating theory reasoning into an
instantiation-based framework.

For integrating theory reasoning into a logical calculus, two approaches are mostly
used: black-box and glass-box approaches. For the glass-box approach, theory reason-
ing is integrated with specific inference rules. The resulting calculus is very efficient
for a specific theory, but one needs to come up with rules for each theory, which
can make completeness arguments for the calculus non-trivial. For integrating var-
ious theories into the resolution based framework, there is a lot of literature, but
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for the case of integration into the instantiation framework beyond the integration
of equality reasoning, not really much is known. More information can be found in
|Ganzinger and Korovin, 2004, |Baumgartner and Tinelli, 2003, |Letz and Stenz, 2002].

The paper |Ganzinger and Korovin, 2006] introduces theory instantiation, which is closely
related to theory resolution and can be seen as a black-box approach. The approach
differs from others in a way that it allows to employ off-the-shelf satisfiability solvers for
ground clauses modulo theories. Such reasoners are used for many important theories,
and some very efficient implementations are available [Barrett et al., 2005].

|Ganzinger and Korovin, 2006] introduce an instantiation-based inference process for
reasoning modulo a universal theory T'. The process starts with a given set of first-order
clauses S and then all variables in all clauses in S are mapped into the distinguished
constant |, obtaining a set of ground clauses S L. If S| is T-unsatisfiable, then S is also
T-unsatisfiable, and the process stops. If that is not the case, a literal in each clause gets
selected non-deterministically. From that set of literals £ is obtained. If £ is T-satisfiable,
then S is also T-satisfiable and the process stops. Otherwise, relevant instances of clauses
from S are generated, witnessing T-unsatisfiability of £ at the ground level. This is
all done based on the Unit Calculus (UC). To obtain refutational completeness of the
process, it needs to be ensured that sufficiently many instances of clauses are generated.
For that, UC is required to be answer-complete. In the end, all obtained instances of
clauses are added to S.

The theory reasoner itself needs some requirements, which will be done in terms of
UC. The calculus is used for proving T-unsatisfiability of sets of literals and that also
provides substitutions to generate relevant instances witnessing T-unsatisfiability. Fur-
ther, the authors introduce the notion of answer-completeness, which is needed for overall
completeness of the instantiation process. To put it simply, answer completeness ensures
UC can generate substitutions to detect inconsistencies in sets of literals modulo a theory
T.

The main contribution of |Ganzinger and Korovin, 2006] is the instantiation calculus
TInst-Gen. The authors show that if a set of clauses S is saturated with respect to
TInst-Gen, either S_L is already T-unsatisfiable and a theory reasoner for ground clauses
can detect the unsatisfiability, or otherwise S is T-satisfiable. The inference system will
be guided by a selection function sel. This function is used on clauses which will be based
on a model for the ground clauses S L. Further, the semantic notion of redundancy from
[Ganzinger and Korovin, 2003] is adapted. The authors state that a set of clauses S is
called TInst-saturated up to redundancy with respect to a selection function sel if all
inferences in TInst-Gen with premises from S are T-redundant in S. It is also shown how
TInst-Gen saturation of a set of clauses can be achieved as a limit of a fair saturation
process.
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Furthermore, the approach of [Ganzinger and Korovin, 2006] to theory reasoning is
also suitable for combining the instantiation calculus with other calculi. This is really
interesting. The goal is to divide the set of input clauses into two classes. One class can
be taken as theory clauses and a specialized procedure is applied to them. The other
classes is the set of clauses, which are treated with the instantiation calculus. The theory
reasoner can be a logical calculus itself.

A big contribution of [Ganzinger and Korovin, 2000] is a theorem, which implies that
if the theory reasoner satisfies the requirements, then any fair instantiation process
is complete for reasoning modulo the theory. The shown process can be guided by
information on models for ground clauses. Also, the presented framework allows to justify
redundancy elimination based on a notion of redundant clause and inference.

4.3.3 Syntax-Guided Quantifier Instantiation

The paper [Niemetz et al., 2021] presents an approach for quantifier instantiation in SMT.
In detail, syntax-guided quantifier instantiation is used for various theories, most interest-
ingly for LIA and LRA. The authors mention as motivation that current approaches lack
generality, as they require theory-specific selection functions. Furthermore, this challenge
increases, considering reasoning over combined theories. Syntax-guided synthesis is
also introduced, which is used to select instantiation terms through a grammar-based
approach. As stated before, this works with LIA or LRA but also for floating point
arithmetic and fixed-size bit-vectors.

The presented approach combines counterexample-guided quantifier instantiation with
enumerative syntax-guided synthesis. This relies on grammar-based instantiation. Each
quantified variable needs to be associated with a syntax-guided synthesis grammar based
on its type (LIA, LRA, etc). The grammar itself defines the set of terms for instantiation.
The paper introduces an algorithm for syntax-guided quantifier instantiation that tries
to synthesize a term ¢ for a variable z in a given formula Yz P(z) such that —P(¢) holds.
The idea of the algorithm can be seen as follows:

1. For each quantified variable, a datatype grammar is created.
2. Counterexamples need to be considered, which falsify the quantified formula.

3. Using smart enumerative syntax-guided synthesis terms are enumerated from the
grammar.

4. Lemmas are generated incrementally, where quantified formulas are instantiated
with the generated terms and therefore, consistency between the datatype grammar
and the term interpretations is ensured.

The authors of [Niemetz et al., 2021] show that the algorithm is sound and therefore
guarantees, if unsat is returned, the quantified formulas are unsatisfiable, and also if
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sat is returned, the formulas are satisfiable. The algorithm continuously refines the
model, ensuring progress toward a solution. For the grammar construction itself, syntax-
guided quantifier elimination provides default grammars for all supported types. As
traditional approaches use mostly ,,pattern matching“ or ,model-based instantiation®,
here a ,, grammar-based approach® is used. Each quantified variable is associated with a
datatype grammar, which defines the set of terms for instantiation, and it is also possible
to use custom grammars. Terms are selected for grammar construction based on two
strategies: scope-based and size-based. Scope-based strategies determine the origin of
terms used for instantiation. Syntax-guided quantifier elimination defines three scopes:
in, out and both. To select terms from the quantified formula, in is used. To select
terms from the set of ground formulas, out is used, and to combine terms from both
sets, both is used. Size-based strategies prioritize terms based on their syntactic size, and
therefore allow for a step-wise exploration of the term space. Here, min, maz and both are
considered. To select minimal subterms, focusing on constants or variables, min is used.
To select maximal subterms, exploring complex terms first, maz is used and further, to
combine minimal and maximal subterms for a balanced exploration, both is used. It is
possible to come up with any combination of scope-based and size-based strategies. For
example in-both, in-min, out-max or both-both. Syntax-guided quantifier elimination also
introduces two types of lemmas: instantiation lemmas and evaluation unfolding lemmas.
Instantiation lemmas are derived from the quantified formula by substituting terms
generated from the grammar. Evaluation unfolding lemmas ensure that the instantiated
terms are correctly interpreted according to the datatype grammar. Also, lemmas need
to be selected using a procedure. There exist three selection techniques: interleave,
priority-inst, priority-eval. To alternate between instantiation lemmas and evaluation
unfolding lemmas, interleave is used. To prioritize instantiation lemmas, as the name
suggests, priority-inst and to prioritize evaluation unfolding lemmas, priority-eval is used.

The new syntax-guided synthesis based instantiation approach combines counterexample-
guided quantifier instantiation with smart enumerative syntax-guided synthesis techniques
to synthesize terms for quantifier instantiation. Further, the syntax-guided quantifier
instantiation was implemented by the authors in CVC4 [Barrett et al., 2011].

4.4 Quantifier Elimination in Computer Algebra

4.4.1 VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real
Arithmetic

The paper VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic
[Schoisswohl et al., 2024] introduces the so called VIRAS method, a quantifier elimina-
tion procedure for LIRA. The authors address challenges in solving quantified problems
in LIRA, as traditional approaches struggle with efficiency and scalability for LIRA
problems. VIRAS itself combines virtual substitutions, conflict-driven proof search and
Cooper’s method to deliver exponential speed-ups over existing approaches.
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The VIRAS approach generalizes Cooper’s method for LIA to LIRA. Virtual substitutions
in VIRAS make the systematic replacement of variables in the problem with complex
expressions involving other variables possible, allowing to transform the original problem
into a more tractable form. With the conflict-driven proof search mechanism, it is possible
to explore all possible substitutions and constraints, needed to identify contradictions or
conflicts that can lead to efficient problem solving. The generalization of Cooper’s method
for LIRA enhances the precision and effectiveness of handling integer constraints within
the problem. The primary contribution of VIRAS is its ability to offer an exponential
speedup to existing methods for quantified arithmetic reasoning. By combining the
three key components, VIRAS demonstrates performance in solving complex quantified
arithmetic problems that are beyond the capabilities of traditional SMT-based techniques.

The VIRAS method translates a quantified formula Jz¢ into an equivalent quantifier-free
formula ¢’, where if all variables in ¢ are bound, ¢’ is ground and can easily be evaluated.
Universal quantifiers are expressed in terms of existential ones, and existential quantifiers
can be distributed over disjunctions. Note that this work considers fixed dz¢ formulas,
where ¢ is a conjunction of literals containing free variables considered parameters. The
basic idea of VIRAS is to compute a finite but sufficient number of witnesses for 9x and
convert the quantified formula Jx¢ into an equivalent finite disjunction. This involves
substituting x with a virtual term ¢ that does not include x and identifying the elimination
set of ¢, denoted as elim®(¢). A virtual term itself is a sum ¢ 4+ ee + 2Z + ioco. The
new symbols €,7Z, 0o do not occur in the result of applying virtual substitution. Instead,
the virtual substitution function eliminates these auxiliary symbols. VIRAS shows how
every literal in ¢ defines solution intervals with the lower bounds of these intervals being
crucial for forming the elimination set elim®(¢). To identify lower bounds of solution
intervals, the paper expands on the properties of LIRA terms. The concepts of virtual
terms, virtual substitutions, outer slope, bound distances, and segment slopes are defined
to make the process of finding elimination sets easier. The difference between Cooper’s
method and VIRAS is that VIRAS extends the method to solve full LIRAS formulas.
Cooper’s method itself splits formulas into lower bounds, upper bounds and divisibility
constraints, in comparison, VIRAS handles equivalence classes over Z-terms to capture
proper real numbers. The generalization for Cooper’s method is not straightforward
due to differences in bounds and equivalence classes over R and Z. VIRAS does this by
computing equivalence classes using elim over Z-terms and core intervals, allowing for
solutions that capture real numbers. VIRAS also introduces optimizations that enhance
the efficiency of solving formulas, which are not present in Cooper’s method.

A complementary approach to VIRAS comes with conflict- driven proof search for
arithmetic reasoning, which is described in [Jovanovié¢ and de Moura, 2013]. The ap-
proach is limited to elimination sets with plain virtual terms, that is to virtual terms
not containing € or +oo, but this is essential for VIRAS. VIRAS generalizes lemma
learning from |Jovanovi¢ and de Moura, 2013|, allowing to handle proper virtual terms
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and improve VIRAS with conflict-driven proof search. The paper introduces CD-VIRAS
by incorporating e-lemmas, co-lemmas and Z-flattening into VIRAS with conflict-driven
proof search, resulting in a useful calculus. Adjusting two rules from the previous frame-
work, INNER CONFLICT and LEAF CONFLICT, the VIRAS calculus uses the
lemma function lemmag, which is defined to ensure soundness and completeness of the
system. Soundness and completeness of the CD-VIRAS calculus is guaranteed. The
function lemmay satisfies properties related to soundness and completeness, ensuring that
the VIRAS calculus operates effectively and accurately in its proof search mechanism.

4.4.2 Fast Approximations of Quantifier Elimination

The paper |[Garcia-Contreras et al., 2023] introduces a new quantifier reduction algorithm.
As quantifier elimination is really costly, most of the time doubly exponential in the
number of variables [Collins, 1976] or doubly exponential in the number of quantifier
alternations, one can approximate it to get better performance for some specific cases.
These approximations are called quantifier reductions. Note that when talking about
quantifier reductions, there is a significant difference from full quantifier elimination. It
might be possible that there are some free variables left after the reduction. The goal
of |Garcia-Contreras et al., 2023] was to introduce a new quantifier reduction algorithm

(QEL)

Traditional algorithms are implemented by a series of syntactic rules, operating di-
rectly on the syntax of an input formula. The key idea in this approach is to use the
e-graph data-structure. QEL is based on the substitution rule (3z = =~ tAp) = plz — t].
With e-graphs, it is possible to eliminate multiple variables together, ensuring that a vari-
able is eliminated if it is equivalent. E-graphs are data-structures to compactly represent
a set of terms and an equivalence relation on those. Originally, e-graphs were proposed
as a decision procedure for EUF. In QEL, e-graphs are used for quantifier reduction by
selecting ground representatives. Nodes in an e-graph are labelled by function symbols
or variables, and equivalence classes are formed using congruence closure. For more
information on e-graphs, see [Willsey et al., 2021].

A big topic in |Garcia-Contreras et al., 2023] is the extraction of terms and formulas
from e-graphs. To extract terms from e-graphs, a function called node-to-term is used.
This function recursively constructs terms using a representative function that chooses
one representative for each equivalence class. For formula extraction, term extraction is
extended to full formulas by selecting representatives that maximize ground terms. The
representative functions themselves are crucial for term extraction, as they contribute
to the terms and variables that appear in the final reduction formula. By choosing
representatives for ground nodes, ground terms are maximized. These nodes could be
ground terms or could be built from ground terms.

The main contribution of [Garcia-Contreras et al., 2023| is the quantifier reduction algo-
rithm QEL. This algorithm takes as input a formula ¢ with free variables v and outputs
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a quantifier reduction of ¢. The idea and the key steps of the algorithm can be described
as follows:

1. Generating an e-graph from the input formula ¢ with free variables v.
2. Computing a representative function by finding ground definitions.

3. Finding additional non-ground definitions.

4. Finding a core to eliminate variables.

5. Produce a quantifier reduction from the generated e-graph.

The presented algorithm is relatively complete. This means that it eliminates a variable
if it has a ground definition or can be represented by other variables.

Furthermore, the work |Garcia-Contreras et al., 2023| introduces Model-Based Projection
(MBP) on top of QEL, to handle incomplete quantifier reductions. Specifically, MBP-rules
for the theory of arrays and the theory of algebraic data-types are used to approximate
quantifier elimination. MBP was first introduced for the SPACER CHC solver for LIA
and LRA [Komuravelli et al., 2014]. And in the following extended to other theories. An
MBP of a formula ¢, with free variables v, relative to M is a quantifier-free formula )
such that ¥ =7 and M is a model of ¢. To build an MBP-algorithm on top of QEL,
algorithms to project variables that can not be eliminated cheaply are used. To implement
the algorithm, model and theory specific projection rules are used. The presented algo-
rithm is efficient and relatively complete, but does not guarantee to eliminate all variables.

The QEL and MBP-QEL approaches of |Garcia-Contreras et al., 2023| are implemented
in Z3. The big key invention for these algorithms is that they work directly on the
e-graph data structure, resulting in easier and faster procedures.

4.4.3 Playing with Quantified Satisfaction

The work presented in [Bjgrner and Janota, 2015] introduces algorithms for satisfiability
and quantifier elimination of quantified formulas. They showed how the algorithms handle
theories that admit quantifier elimination, such as LIA, LRA and also other theories, for
example, the theory of algebraic data-types. The presented algorithm itself is based on
past progress in solving Quantified Boolean Formulas.

As a starting point, the algorithm Qesto [Janota and Marques-Silva, 2015] is gener-
alized for non-propositional formulas. There exist several approaches for solving QBF
formulas, for example, Lintao Zhang’s scheme for combining DNF and CNF [Zhang, 20006],
which was also extended to finite domains in [Bordeaux and Zhang, 2007], but there is
no extension to infinite domains, which is needed for example, for LA. Qesto builds
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on top of this scheme and also tracks dependencies between universally and existen-
tially quantified variables and carefully encodes extra variables to capture these de-
pendencies. The work of [Bjorner and Janota, 2015] came up with methods that, at
the highest level, solve quantifier elimination as a game between two quantifiers and
show how this could be implemented with a general algorithm. There are also other
methods developed in QBF and SMT that connect with the presented approach, like
[Goultiaeva et al., 2013], |Goldberg and Manolios, 2014}, [Pugh, 1992 [Janota et al., 2016].

The main contribution of [Bjgrner and Janota, 2015] is QSAT, a general algorithm that
views satisfiability of a quantified formula as a two-player game between existential and
universal quantifiers. The algorithm alternates the moves at each quantifier level and
then refines the constraints until the formula can be proven true or false. The algorithm
takes a formula G := Jx1Vzodxs...F, which is closed and F' is quantifier-free. Such a
formula can be treated like a game between two players. The existential player, who
tries to make the formula true by choosing values for x1, x3, ... and the universal player,
who tries to refute it by choosing values for xo, 24, .... This is achieved by alternating
between the formula F' and its negation —F', which depends on the level of quantifier
nesting. At odd levels, it works with F' and at even levels with —F. With that idea, the
authors set up a game-like structure for existential vs universal quantifiers. Further, all
atomic subformulas are identified and tracked to come up with suitable models and also
check the roles of each variable in the quantifier structure. Each atomic formula, or atom,
is annotated with two levels: levelV(a), which is the highest index of any universally
quantified variable appearing in atom a, and level3(a), which is the highest index of any
existentially quantified variable in atom a. The overall level of an atom is defined as
the maximum of these two values. This should help the algorithm know how deep down
an atom is in the quantifier hierarchy. Also, a function level; is defined, which adapts
to the current quantifier level. If j is odd, then it uses the existential level of atoms

and if j is even, the universal level. Furthermore, two helper functions are introduced.

The first one is strategy(M, j), which builds a conjunction of atoms that are determined
by a previous model M, or to put it more simply, it encodes what the other player has
already fixed in earlier moves. The other function is called tail(j) and is used when
applying quantifier elimination or model based projection. It refers to the sequence of
quantifier blocks starting from the previous one and including the current and all later
ones. The introduced algorithm QSAT starts at the outermost quantifier level and checks

at each step if the formula at level F} is satisfiable combined with the current strategy.

If it is satisfiable, the model is updated and the algorithm proceeds to the next level by
incrementing j. If not and j = 1, the formula is unsatisfiable, but if j = 2, the universal
player has no winning move and the formula is satisfiable. Otherwise, the algorithm
has to analyze the failure by extracting a minimal set of conflicting literals, compute a
model-based projection to refine the strategy and jump back to an earlier level to retry
with updated constraints. In the end, the loop is guaranteed to terminate, because each
projection or refinement eliminates a possible model, and since there are only finitely
many possible atoms and models, the search has to end eventually. Partial correctness
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and termination of the algorithm is shown with the help of invariants.

The QSAT algorithm can be adapted to eliminate quantifiers. The key idea is just
instead of deciding whether a formula is satisfiable, to construct an equivalent quantifier-
free formula. Therefore, a modified version of QSAT is introduced. All in all, it works
almost the same way as the described algorithm above, but it saves all the information
learned from the solver. Each time the algorithm finds a conflict, it learns a little more
about what the answer must exclude, and it also uses model-based projection to eliminate
inner variables, so only free variables appear in the final answer. In the end, the learned
constraints are combined in a way that eventually fully characterizes the input space,
where the original formula is valid.

4.5 Further Works

There also exist other approaches for quantified reasoning. The focus of this thesis is
on the three explained methods, but one also has to mention some other possibilities.
In the following, some approaches are mentioned in more detail, while others are briefly
mentioned.

4.5.1 Quantified Linear Arithmetic Satisfiability via Fine-Grained
Strategy Improvement

In [Murphy and Kincaid, 2024] an approach for solving satisfiability of quantified LA
formulas is introduced, which is similar to the approach in [Bjgrner and Janota, 2015].
The improvement to previous approaches is based on game semantics. The used game
semantics is based on FOL and gives meaning to a formula as a two-player game
[Hintikka, 1982]. The paper overcomes some shortcomings of previous works by not
only checking satisfiability but also synthesizing winning strategies for quantified sat-
isfiability games. To give an overview, these games consider two players against each
other, SAT and UNSAT, where SAT aims to prove satisfiability and UNSAT aims to
disprove it. The goal of the games is not only to check satisfiability, but also to construct
winning strategies applicable in tasks like invariant generation or program synthesis.
The presented approach gives a recursive decision procedure that improves the strategy
for both players incrementally, while avoiding transformations that can alter the game
semantics. An example of such a transformation could be the prenex normal form.
The focus of [Murphy and Kincaid, 2024] is on quantified LRA and LIA domains. The
resulting decision procedure for checking satisfiability of quantified LA formulas develops
a fine-grained structure of a formula to produce a winning strategy for SAT or UNSAT
for both quantifiers and Boolean connectives.

The technique uses the fine-grained structure of LA formulas, which results in a re-
cursive procedure that iteratively improves a candidate strategy via computing winning
strategies to induce subgames. The fine-grained game semantics interpret formulas as
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two-player games. Existential quantifiers (3) and disjunctions (V) are controlled by SAT,
while universal quantifiers (V) and conjunctions (A) are controlled by UNSAT. If SAT has
a winning strategy, the formula is satisfiable. This strategy is a mapping of moves, which
ensures victory regardless of the response of UNSAT. A big point made by the authors is
that fine-grained semantics maintain the structure of the original formula. With that,
one avoids transformations and can introduce more quantifier alternations and , changing
the meaning of the games. To capture multiple potential strategies, the concept of fine
grained strategy skeletons is introduced. Skeletons are tree-like structures which map
game states to possible moves. The fine grained strategy improvement algorithm uses
these skeletons and refines them iteratively with counter-strategies, which should exploit
weaknesses in the current strategy. This could be like the following scenario: if UNSAT
can consistently counter the moves of SAT, the skeleton of SAT is adjusted to address
these failures.

The main result of [Murphy and Kincaid, 2024] is the fine grained strategy improve-
ment algorithm, which recursively refines strategies for quantified linear arithmetic games.
In the initialization step, the algorithm starts with an initial skeleton for SAT. In the
next step, UNSAT identifies counter strategies that exploit weaknesses in the skeleton of
SAT. The algorithm solves subgames induced by these counter strategies and improves
the skeleton of SAT if UNSAT fails to find a winning strategy. This whole process runs
until one player has a definitive winning strategy. The presented iterative refinement
avoids exhaustive quantifier elimination and is computationally efficient. The algorithm
uses a model-based term selection to generate counter-strategies. Terms are selected
based on if they satisfy quantifiers conditions in the current model. To approximate
winning moves, for example for LRA, terms are used like bonds or symbolic averages.
After the algorithm determines satisfiability, it constructs a winning strategy from the
refined skeleton. Using constraint Horn clauses (CHCs), guards are computed for each
move, ensuring they stick to the winning skeletons’ rules. For practical applications, this
step is really important, as it enables extracted strategies to inform tasks like program
synthesis.

4.5.2 A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic

In [Rummer, 2008], a constraint sequent calculus is introduced, designed to combine FOL
and LIA. The presented calculus aims to address challenges in reasoning about quanti-
fied formulas that combine logical and arithmetic constraints. Essentially, it combines
two existing approaches: free-variable tableaux with incremental closure [Giese, 2001]
and the Omega quantifier elimination procedure [Pugh, 1991], which decides Presburger
arithmetic (PA) [Presburger, 1929]. The paper |[Riimmer, 2008] discusses the complexity
of integrating FOL reasoning with theories, here LIA, and states that while most SMT
solvers handle ground problems efficiently, support for quantified formulas remains limited.
With the presented sequent calculus, [Rummer, 2008] addressed this problem by enabling
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systematic treatment of quantifiers alongside LA reasoning. The calculus itself is shown
to be complete for function-free FOL with uninterpreted predicates, and it should also
be able to decide the validity of PA formulas.

Firstly, a restricted calculus for pure FOL is introduced to illustrate how the framework
of constrained sequents is related to normal free-variable tableau calculi. The introduced
rules handle quantifiers and propositional connectives. To instantiate quantifiers, fresh
constants are used to come up with free-variable reasoning. To ensure consistency, proofs
propagate constraints generated by closing branches.

Following the restricted version, the calculus is extended to handle LIA. Therefore,
new rules are introduced. For generating constraints by unifying complementary pred-
icates with arithmetic terms, the pred-unify rule is introduced. Another rule needed
is the close rule, which synthesizes constraints for proving sequents that involve lin-
ear inequalities and also divisibility. To ensure that all branches are closed with valid
approximations, the constraints are passed through the proof tree. The presented cal-
culus is sound and complete for fragments of FOL combined with the theory of LIA.
In principle, this calculus is usable, but practically, it has a number of shortcomings.
Therefore, built-in rules for handling LIA are defined that can be interleaved with the
previous rules. That also yields a decision procedure for PA, which can be used to decide
constraints. The rules for handling ground arithmetic constraints efficiently are: Omega
Elimination, Fourier-Motzkin Elimination and Divisibility Rules. Omega Elimination
replaces inequalities with simpler cases, which is essentially inspired by the Omega test
for integer programming. Fourier Motzkin Elimination reduces complexity by handling
variable eliminations for inequalities. Divisibility Rules convert divisibility constraints
to equivalent arithmetic equations. With these rules for handling ground arithmetic
constraints, performance could be improved. To ensure completeness, the concept of ex-
haustive proofs is introduced, where proofs are annotated with sets of universal constants.
These sets represent the variables to eliminate. With this concept, the presented calculus
guarantees that every provable formula is transformed into a closed, quantifier-free form,
resulting in decision procedures for PA.

4.5.3 Ramsey Quantifiers in Linear Arithmetics

Another interesting approach is the work in [Bergstrafier et al., 2024]. For eliminating
Ramsey quantifiers in LTA, LRA and also LIRA. With Ramsey quantifiers, one can assert
the existence of cliques (complete graphs) in a graph induced by some formula. The
approach works very well, but only for formulas with existential quantifiers. With such
formulas, it runs in polynomial time and produces a formula of linear size. The algorithms
of [Bergstrafler et al., 2024] lead to applications in proving termination/non-termination
of programs, as well as checking variable dependencies (monadic decomposability) within
a given formula. These results improve over older, more complex algorithms, which had
triply exponential complexity. For evaluating the approach, a prototype was implemented
for the Ramsey quantifier elimination algorithms for LIA, LRA, and LIRA in Python



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.5. Further Works

using the Z3 interface Z3Py.

4.5.4 A Quantifier Elimination Algorithm for Linear Real Arithmetic

The paper [Monniaux, 2008| introduces a quantifier elimination algorithm for the theory
of LRA. The presented approach works by combining SMT solving for model finding and
also polyhedral projection for quantifier elimination, and it works with both existential
and universal quantifiers. The SMT solver tests satisfiability of formulas with linear
inequalities and returns models, and the projection Project(C,v) eliminates variables v
from the conjunction C using polyhedral projection. The introduced approach can be
seen as an improvement over the approach of converting to DNF through ALL-SAT and
performing projection, because it avoids exponential blow up. Compared to symbolic
quantifier elimination like [Loos and Weispfenning, 1993|, this approach is simpler to
implement and more practical. Furthermore, the algorithm is also sound and complete.

4.5.5 Quantified Linear and Polynomial Arithmetic Satisfiability via
Template-based Skolemization

In [Chatterjee et al., 2025], a new quantifier elimination method combining Skolemization
for quantified LRA but also non-linear real arithmetic (NRA) is introduced. The approach
is sound and also provides witnesses for existential quantifiers, but only semi-complete.
The authors state that the complexity is in subexponential time and polynomial space.
The following methods were introduced. A new method for quantifier elimination based
on a novel template based Skolemization approach. Efficient satisfiability checking for
LRA and NRA, which runs in subexponential time and polynomial space, parametrized
by the size of Skolem function templates and is sound and semi-complete. Moreover, it
also provides witnesses of satisfiability for the existentially quantified variables in the
quantified formulas. The approach was also implemented as a prototype tool built with
Python, which uses PolyHorn, Z3 and MathSAT5. The implementation showed really
strong practical performance and a considerable improvement in the number of successful
satisfiability checks, runtime and also unique satsfiability checks over Z3 and CVCS5.
The prototype is called QuantiSAT. All in all, the approach gives some advantages over
other approaches, which have doubly-exponential time and at least exponential space
complexity.

4.5.6 Yices-QS, an extension of Yices for quantified satisfiability

YicesQS, introduced in [Graham-Lengrand, 2021], is an extension of Yices 2, specifically
designed to handle quantified formulas across several theories. It brings quantified
reasoning into Yices 2 by integrating an advanced algorithmic framework called QSMA
(Quantified Satisfiability Modulo Assignment) [Bonacina et al., 2023 and its optimized
version, OptiQSMA. The QSMA algorithm formulates quantified solving as a kind of two-
player game between V and 3 and generalizes the known and widely used CEGQI technique.
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OptiQSMA further optimizes the algorithm with model-based over approximation and
model-based under-approximation.

4.5.7 The Vampire Diary

The paper [Bartek et al., 2025] provides a historical and technical retrospective covering
Vampire’s evolution since 2013. It highlights technical innovations, design choices,
implementation details, and community contributions that shaped Vampire into one
of the most advanced first-order theorem provers based on the superposition calculus.
The authors highlight that Vampire is not just a theorem prover but a living research
platform that represents the progress of automated reasoning.

4.5.8 Quantifier Instantiations: To Mimic or To Revolt?

In [Jakubuv and Janota, 2025], a novel instantiation approach that dynamically learns
from existing instantiation techniques during solving is introduced. The authors want to
adress the question if a new instantiation strategy should mimic existing successful ones
or generate different new ones? The approach introduces a new probabilistic instantiation
module (ProbGen) with the idea to treat existing instantiations (from other modules
like CEGQI) as samples from a latent language. Further on, Probabilistic Context-
Free Grammars (PCFGs) are used to model the generated language of instantiations.
New candidate terms are generated using two modes: mimicking and revolt. With
mimicking, terms are produced statistically similar to previously used ones, and with revolt
probabilities are inverted to generate different terms. The authors found that probabilistic
instantiation can boost solver performance beyond standard deterministic strategies, but
mimicking alone is not enough, a balance between mimicking and revolt works best.
Note that the method is complementary and does not replace existing techniques. The
authors also conducted experiments in CVC5, which showed it consistently outperforms
the baseline.

4.5.9 FMplex: A Novel Method for Solving Linear Real Arithmetic
Problems

The authors introduce in [Nalbach et al., 2023] the idea of combining complementary
solvers under one umbrella with a portfolio approach, which can leverage their strengths.
With FMplex, they presented the first portfolio SMT solver dedicated to quantified
LRA. Really interesting about this approach is that it uses several reasoning techniques:
instantiation-based via CVC5, superposition-based via ALASCA /Vampire and quantifier
elimination via Redlog [Dolzmann et al., 1999]. FMplex can be seen as a wrapper. It
translates logical input into suitable formats for backend solvers and then runs each solver
either in parallel or sequentially. After that, it collects answers and resolves inconsistencies,
where FMplex relies on more complete solvers. The authors evaluated the approach
with SMT-LIB quantified LRA examples against single solvers. The experiments showed
that no solver dominates across all benchmarks, but a portfolio system like FMplex can
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achieve better results overall. This also highlights the practical importance of hybrid

approaches.
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CHAPTER

Methodological Comparison

In the following, we take a closer look at the introduced approaches to compare them and
give a complexity analysis, have a look at soundness and completeness, check practical
use cases, summarize experimental results and provide an outlook for future work. We
also state possible limitations.

5.1 Superposition-Based Methods

5.1.1 ALASCA: Reasoning in Quantified Linear Arithmetic
Complexity Analysis

The complexity of ALASCA [Korovin et al., 2023] is influenced by the handling of
quantifiers, the integration of LA and of course the use of the superposition calculus.
Quantified linear arithmetic with uninterpreted functions is IT{-complete, which means
that there is no sound and complete calculus in general. ALASC A tackles the challenge
of being practical and does not focus in detail on theoretical complexity. Through
unification with abstraction, variable elimination and theory-specific rules, the search
space is reduced and unnecessary inferences are avoided. The performance itself depends
on the structure of the input formulas and the number of quantifiers.

Soundness and Completeness

The inference rules of ALASC A are proven to be sound with respect to the partial
axiomatization Ag of LA. To put it simply, this means that any conclusion derived by
ALASCA is valid under Ag. Further, unification with abstraction and the variable
elimination rule is sound.

For ground clauses, ALASC A is complete with respect to Ag. Due to the I1}-completeness,
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ALASCA is not complete for quantified formulas in general. But ALASC A is refutational
complete for sets of clauses without unshielded variables.

Practical Use Cases
The presented approach can be used in many real world scenarios: Program Verification,

Formal Verification, Mathematical Reasoning, Financial Transactions and Web Security.

Experimental Results

The authors of [Korovin et al., 2023] state that the ALASCA approach outperforms
state-of-the-art solvers using standard approaches like CVC5 and Vampire. The calculus
itself is implemented in an extension of the Vampire theorem prover. Six sets of bench-
marks, resulting in 6374 examples, are used. Benchmarks from the SMT-LIB repository
|Barrett et al., 2016] are considered, which involve real arithmetic and uninterpreted
functions. The sets are called LRA, NRA and UFLRA in SMT-LIB. Also, Sledgehammer
examples generated by [Desharnais et al., 2022], which involve real arithmetic but do not
use any other theories. This set is called SH. Further, two new sets of benchmarks are
used, called TRIANGULAR and LIMIT, which contain reasoning challenges about trian-
gular inequalities and continuous functions and problems that combine various limitation
properties of real-valued functions. The benchmarks are compared with the solvers CVC5H
IBarbosa et al., 2022], Vampire [Reger et al., 2022], Yices [Graham-Lengrand, 2022], UL-

TELIM [Barth et al., 2022, SMTINT [Hoenicke and Schindler, 2022] and VERIT |Andreotti et al., 2022

The table of the results can be found in section 6 of [Korovin et al., 2023]. ALASCA
achieves the overall best performance. It can be observed that ALASC A outperforms
the two best arithmetic solvers of SMT-COMP 2022. The approach solves 118 more
problems than CVC5, 159 more problems than Vampire and 213 more problems than
Yices.

Limitations and Future Work

ALASCA currently focuses on LRA, extending it to handle LIA is a future direction to
go. The authors discuss how more precise abstraction predicates could improve future
proof search. Further, also improving literal/clause selections within ALASC A is a future
topic.

5.1.2 Superposition Modulo Linear Arithmetic SUP(LA)
Complexity Analysis

In general, the combination of superposition calculus and LA reasoning in SUP(LA)
|Althaus et al., 2009] is undecidable. The performance in practice depends on the struc-
ture of the input formulas and the number of quantifiers.
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Soundness and Completeness

The inference rules of SUP(LA) are all sound with respect to LA. Further also the
redundancy criteria ia sound and the LP-based constraint solving is sound.

For ground clauses, SUP(LA) is refutationally complete. In the quantified case, SUP(LA)
is not complete. However, for sufficiently complete clause sets, the calculus is refutation-
ally complete. The paper also introduces the notion of sufficient completeness, meaning
that the calculus is complete for certain classes of problems.

Practical Use Cases

The presented approach can be used in many real world scenarios: Program Verification,
Formal Verification, Mathematical Reasoning and Financial Transactions.

Experimental Results

The authors implemented the calculus in SPASS. It is shown that the implementation
SPASS(LA) outperforms state-of-the-art solvers like Z3 on certain classes of problems.
Note that the authors also mentioned that they did not do enough experiments to come up

with a final conclusion, as the usage of solvers in SPASS(LA) differs from SMT scenarios.

The experiments focus on transition systems and data structures. The comparison is
only done with Z3, and it is easy to see that the new approach should outperform the
basic solver.

Limitations and Future Work

SUP(LA) currently focuses only on LRA, an extension to handle also LIA would be a

future direction. The approach can right now only be used for really specialized problems.

Expanding the benchmark tests and testing SPASS(LA) on a broader range of problems
should also be a future direction.

5.1.3 Beagle — A Hierarchic Superposition Theorem Prover
Complexity Analysis

As the combination of the hierarchic superposition and background theory reasoning
in Beagle [Baumgartner et al., 2015] is undecidable in general, it is only possible to
obtain refutational completeness for the calculus for sufficiently complete clause sets. In
practice, the complexity is manageable for most cases, however performance depends on
the structure of the input formulas and the number of quantifiers.

Soundness and Completeness

With respect to LTA and LRA, the inference rules of the hierarchic superposition calculus
and the redundancy criteria are sound. Further, also the background theory solvers are
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sound.

Beagle is in the ground case refutationally complete. Due to the ITi-completeness,
for quantified formulas, Beagle is not complete, but the calculus itself is refutationally
complete for sufficiently complete clause sets. Sufficient completeness is ensured by
adding definitions for BG-sorted terms, because this ensures that every ground BG-sorted
FG term is equal to some BG term.

Practical Use Cases

Beagle can be used for: Program Verification, Formal Verification, Mathematical Reason-
ing and Financial Transactions.

Experimental Results

Beagle was tested on first-order problems from the TPTP-v6.1.0 problem library [Sutclitte, 2009].

It tried 972 problems and solved 781 of them. Most interestingly, Beagle performed really
well on the ARI (arithmetic) category, solving 531 out of 539 problems and also 41 out of
43 problems were solved in the number theory category. Beagle performs well on smaller
problems with clear arithmetic constraints.

The prover was also tested on the 2014 release of the focusing on log-
ics with arithmetics. Here, only problems indicated as unsatisfiable were selected. Beagle
solved 89 problems that SMT solvers were unable to solve. Interestingly, Beagle strug-
gled with problems that were marked trivial, and it also performed poorly on some
quantifier-free problems. Note that many problems could not be parsed, and therefore,
the conclusions are very vague.

Beagle also participated in the CASC-J7 competition [Sutcliffe, 2015] in the division of
typed first-order arithmetic theorems. The prover solved 173 out of 200 problems and

placed third in terms of overall problems solved. The winner of the competition was
CVC4.

Limitations and Future Work

Beagle has some limitations, especially with large quantified problems and complex
quantifier structures. Interestingly, the experiments also showed that Beagle struggles
with a lot of trivial, quantifier-free problems. Therefore, improving integration with SMT
solvers could be a future direction.
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5. METHODOLOGICAL COMPARISON
5.1.4 Comparison Table
Strengths Limitations
ALASCA: Reason- | ¢  Effective  quantifier | ¢ Completeness is re-
ing in Quantified | handling stricted to Ag
Linear Arithmetic | ¢ Variable Elimination | ¢ Requires specialized
[Korovin et al., 2023] (VE) and Fourier-Motzkin | orderings and constraints
(FM) rules for handling of non-ground
e Replaces costly unifica- | terms
tion modulo theory with | e Limited to LRA
lazy abstraction
e Integrated into Vampire
e Complete and Sound
o [Effective for LRA +
uninterpreted functions
Superposition Mod- | e Refutationally complete | # Manual adjustments are
ulo Linear Arith- | for sufficiently complete | needed for not sufficiently
metic SUP(LA) | clause sets complete clause sets
[Althaus et al., 2009 e Decides satisfiability of | ¢ Does not support com-
first-order theories with | bined theories
universal  quantification | ¢ Current SPASS(LA)
modulo LA implementation lacks full
e Applied to verify safety | equality reasoning
properties of transition
systems
Beagle — A Hierar-| e Built-in solvers for LIA | e Struggles with large for-
chic Superposition | and LRA with optimiza- | mulas
Theorem Prover | tions e Simplification and certain
[Baumgartner et al., 2015] | e Introduces new simplifi- | strategies may break refu-
cation rules for theory rea- | tational completeness
soning e Built-in rules are hard
e Implements calculus im- | coded
provements like weak ab-| e No good performance on
straction and determin- | quantifier-free problems
ing (un)satisfiability w.r.t.
quantification over finite in-
teger domains
e Automatically enforces
sufficient completeness via,
the Define rule for certain
classes of problems
Table 5.1: Comparison of  [Korovin et al., 2023], [Althaus et al., 2009],
) [Baumgartner et al., 2015]




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.2. Instantiation-Based Methods

5.2 Instantiation-Based Methods

5.2.1 Solving Quantified Linear Arithmetic by
Counterexample-Guided Instantiation

Complexity Analysis

The selection function for LRA, named Spr4 in [Reynolds et al., 2017] is inspired by the
Loos-Weispfenning quantifier elimination method [Loos and Weispfenning, 1993]. This
method has a worst case complexity of O(22") for formulas with n variables. The authors
came up with a lazy instantiation strategy, which avoids enumerating all possible cases
and therefore reduces the complexity. The selection function for LIA, named Srja,
is related to Cooper’s algorithm. The worst case complexity of Cooper’s algorithm
is doubly exponential. The function uses model-guided term selection to prioritize
relevant instantiations, and therefore, the complexity is reduced in practice. For LIRA,
the complexity is the same as quantifier elimination for LIRA, which is in general
exponential in the number of variables. The worst-case complexity for counterexample-
guided instantiation depends on the instantiation depth. The number of instantiations
generated is lower than theoretical bounds, as experiments have shown.

Soundness and Completeness

The introduced procedure returns unsat if the formula is T-unsatisfiable and sat if T-
satisfiable, respectively, and so the procedure is sound. The generated instance preserves
the model properties and ensures that a satisfying model implies the model of the original
formulas.

The authors of [Reynolds et al., 2017] prove that counterexample-guided instantiation
is complete for one quantifier alternation in LRA and LIA. For multiple quantifier al-
ternations, the completeness depends on the selection strategy. For arbitrary quantifier
alternations, the procedure may not always terminate. All in all, the termination of
the instantiation procedure is guaranteed if the selection function satisfies the finite and
monotonic selection criteria.

Practical Use Cases

Counterexample-guided instantiation can be used for: Formal Verification and Program
Synthesis.

Experimental Results

The procedure was implemented in the SMT solver CVC4 [Barrett et al., 2011]. The
implementation was tested on quantified benchmarks over six classes in LRA and LIA of
the SMT library. The 6 classes are: keaymaera, scholl, psyco, uauto, tpt and sygus. The
experiments compare multiple configurations of CVC4 with state-of-the-art solvers. The
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important configurations are: CVC4+LW (Loos-Weispfennig virtual term substitution),
CVC4+FR (Ferrant-Rackoff with interior-point instantiation) and CVC4+NVT (Avoids
virtual terms, substituting concrete values). Further, also the solvers Z3, Vampire, VeriT,
Princess are used in the experiments. For the LRA benchmarks, the Yices solver was
also used, and Beagle for LIA benchmarks.

The three benchmark classes for LRA were: keymaera, scholl and tpt. CVC4+LW
solves 616 benchmarks out of 621 and therefore outperforms Z3 (615) and Yices (567).
This is explainable because the approach does not require that quantified formulas must
be in prenex normal form. Yices version 2.4.1 does not support nested quantification and
therefore can not be used in the scholl category. CVC4+LW solved 100% in the scholl
category, which tests the ability to handle alternating quantifiers and Boolean combina-
tions. CVC4 also solves the same instances as CVC4+LW, but is slightly slower. The
best LRA automated theorem prover, Vampire, solves only 347 benchmarks, compared
to 616 solved by CVC4+FR

For the LIA benchmarks the classes were: psyco, sygus, tptp and uauto. CVC4 and Z3
solved all 461 benchmarks. The best LIA automated theorem prover was also Vampire,
which solves only 284 benchmarks and it scored 100% only in the class uauto.

Limitations and Future Work

The authors of [Reynolds et al., 2017] introduced an approach for LIRA, but completeness
has not yet been proven. This would be a topic for future work. Also, in some cases,
deeply nested formulas may require more instantiations. In the future, new theories could
also be added and the authors also want to focus on further heuristics for quantified
LA with arbitrary quantifier alternations. For LIA, large coefficients can lead to many
instantiations, this should also be looked at for future work. The long term goal of
the authors would be to develop an approach that is effective in practice for quantified
formulas involving background theories and also uninterpreted functions.

5.2.2 Theory Instantiation
Complexity Analysis

In general, complexity of the theory reasoning backend depends on the efficiency of the
SMT solver or ground reasoner for the given background theory T'. For instantiation
in |Ganzinger and Korovin, 2006, the process can involve many instantiations, which
can cause a combinatorial explosion in worst case. The fair saturation process either
stops after a finite number of steps, detecting satisfiability or unsatisfiability of the initial
clause set, or if the limit of a saturated set is obtained, and hence the initial clause set is
satisfiable.
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Soundness and Completeness

Because of the black-box style integration of theory reasoning and by grounding literals
before instantiation, the introduced framework is sound. That means that any derivation
of unsatisfiability corresponds to actual unsatisfiability modulo the theory T'.

In order to achieve refutational completeness, the theory reasoner must be answer-
complete for Unit Calculus and also complete for ground clauses. In the paper, a theorem
establishes that if the saturation process is T'Inst — fair then it is complete. That means
it does not ignore valid inference opportunities.

Practical Use Cases

Theory instantiation can be used for: SMT-solving and also Verification of Software and
Hardware.

Experimental Results

In the paper |Ganzinger and Korovin, 2006[, the approach was not implemented yet, but
moving forward, there is an implementation of the approach in iProver, and there are

also some experiments [Korovin, 2008].

The authors of [Ganzinger and Korovin, 2006] evaluated the approach on the standard
benchmark for first-order theorem provers — TPTP library v3.2.0. In the FOF division,
iProver was in the top three provers and also in the EPR division, iProver was very good.

Limitations and Future Work

There are some limitations to the approach of |[Ganzinger and Korovin, 2006]. First
of all, not all theory reasoners satisfy answer completeness, which is needed. Further,
the framework is general, so there is no theory specification. For certain specific the-
ories, the approach might be less efficient. For future work, the authors would like
to extend the approach to theories with particular properties, like Shostak theories
|[Ganzinger et al., 2003]. This is essential for integrating reasoning with fragments of
arithmetic. Also, the authors would like to study the relationship between the presented
approach and hierarchical reasoning [Bachmair et al., 1994].

5.2.3 Syntax-Guided Quantifier Instantiation

Complexity Analysis

The approach of [Niemetz et al., 2021] integrates syntax-guided synthesis into quantifier
instantiation, which involves enumerating terms from a grammar. The grammar size
influences the complexity. Larger grammars increase the search space, but smart enumer-
ation with symmetry breaking makes it less complex. The number of terms generated
depends on the expressiveness of the grammar. Each iteration of syntax-guided quantifier

o7
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instantiation (SyQI) performs two SAT/SMT checks. These checks are computational
expensive. Further, the cost of generating lemmas depends on the size of synthesized
terms and the theory reasoning which is required. The paper itself does not provide
explicit asymptotic bounds. But it is worth mentioning that similar approaches have
theoretical exponential complexity in the worst case, and SyQI is competitive with other
methods.

Soundness and Completeness

SyQI has refutational soundness, as if it returns unsat, the input formula is T-unsatisfiable.
This holds because the added lemmas are entailed by the input. SyQI has also model
soundness, as if SyQI returns sat, the input formula is T-satisfiable. This could be
explained by the fact that no counterexample exists, so the model satisfies all universal
formulas.

Progress for SyQI is ensured by adding new lemmas in each iteration, thereby preventing
infinite loops. The authors of [Niemetz et al., 2021] show that SyQI is refutationally
complete if the provided grammars are complete. This holds for theories admitting
quantifier elimination, like LA. For theories without quantifier elimination, completeness
is not guaranteed. SyQI is not guaranteed to terminate for satisfiable formulas, but it is
sometimes possible to find models when grammars include sufficient terms.

Practical Use Cases

SyQI can be used for: Software Verification, Automated Theorem Proving and Synthesis.

Experimental Results

SyQI is implemented in the SMT solver CVC4 [Barrett et al., 2011]. The approach
was evaluated on all configurations and on all quantified logics in [SMT-LIB, | that do
not contain uninterpreted functions. Logics with uninterpreted functions are excluded,
as such logics are not expected to be more efficient than heuristic instantiation tech-
niques, such as E-matching. There are a lot of logics included, for the scope of this
thesis, most importantly LIA and LRA. The benchmark set consists of 15746 benchmarks.

The first experiment was to determine the best combination of scope-based and size-based
ground term selection strategies for grammar construction. Here, the strategy both for
the scope performs best, and all size-based strategies perform equally well.

The second experiment was to determine the best lemma selection strategy out of
the three strategies priority-inst, priority-eval and interleave. The best strategy overall
was interleave. Prioritizing evaluation lemmas over instantiation lemmas performed worse
than the other configurations.
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Finally, the new approach SyGuS was compared to other techniques implemented in
CVC(C4, the state-of-the-art SMT solvers Z3, Boolector, and the superposition-based
theorem prover Vampire. Boolector implements counterexample-guided model synthesis,
but only supports the logic BV, while Vampire supports LIA, LRA, NIA and NRA. The
following configurations of CVC4 are used: ematch (with E-matching enabled), CEGQI
(with LA and bit vectors enabled), enum (with enumerative instantiation enabled) and
syqi (with the presented SyGuS instantiation approach enabled). For term selection,
the strategy both-both is used, and for lemma selection, interleave is used. E-matching
performs very poorly on the benchmark sets, which was more or less expected, as it
is designed with a focus on problems with uninterpreted functions. Enumerative in-
stantiation also performs poorly, this could be because it is not designed for inputs
without uninterpreted functions. SyQI solves 556 more benchmarks than enumerative
instantiation. This enhances the need for a syntax-guided approach to instantiation
for inputs rich in background theories. SyQI is also competitive compared to CEGQI,
which uses the best known instantiation strategies. Interestingly, counterexample-guided
instantiation outperforms SyQI on logics such as LIA and LRA. For LRA, syntax-guided
techniques are ineffective, since it is often important to construct specific real constants
based on solving sets of linear equalities and inequalities.

CVC4 with counterexample-guided instantiation outperforms Z3 and Vampire in LIA,
but for example in LRA, Z3 performs best. To summarise, theory-specific approaches
outperform SyQI in categories such as LIA and LRA. But it is also worth mentioning
that the presented approach performs very well on quantified floating-point arithmetic.

Limitations and Future Work

As we have seen before, SyQI underperforms against theory-specific methods in logics
like LIA and LRA. Further, completeness relies on the grammar’s ability to generate
all necessary terms and also termination is not guaranteed for satisfiable formulas in
undecidable theories. For future work, an automated grammar refinement would be a
good way to go. Further, it would be nice to provide an interface that allows users to use
their own grammars in SyQI. Also, the authors want to use their approach as a baseline
for quantified logics in recent and new theories.
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Solving Quantified
Linear Arithmetic
by Counterexample-
Guided Instantiation

[Reynolds et al., 2017]

e Sound and complete for
LRA and LIA with one
quantifier alternation

e Non-Prenex Handling

e Integrates easily with
SMT solver architectures
e Outperforms state-of-the-
art solvers

e Incomplete for LIRA

e Requires finite and mono-
tonic selection functions

e Performance may slow
down for formulas with
many variables due to expo-
nential growth in possible
instantiations

Theory Instantiation
[Ganzinger and Korovin, 20

e Black-box integration of
Dheories, only a theory rea-
soner that is complete on
ground clauses and answer-
complete on unit clauses is
needed

e Combination of different
theories possible

e Guaranteed completeness

e Underlying Unit Calculus
must be answer complete
e Ground solver must be
fully complete on finite
ground sets

e Deep quantifier alterna-
tions are expensive

e Only works for theories
specified as universal ax-
ioms

Syntax-Guided Quan-
tifier Instantiation
[Niemetz et al., 2021]

e Works across multiple
theories and combinations
without requiring theory-
specific instantiation rules
e [teratively refines models
using synthesized terms

e Reduces redundancy by
avoiding equivalent term
variants

e Effective for quantified
floating-point arithmetic

e  Underperforms  for
theory-specific methods

e Completeness is based
on grammar quality

e No guarantee of termina-
tion for satisfiable formulas
in undecidable theories

e No possibility for user-
provided grammars

[ 3ibliothek,
Your knowledge hub

Table 5.2: Comparison of [Reynolds et al., 2017],
[Niemetz et al., 2021]

[Ganzinger and Korovin, 20006],
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5.3 Quantifier Elimination in Computer Algebra

5.3.1 VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real
Arithmetic

Complexity Analysis

First of all, it is to mention that the authors of [Schoisswohl et al., 2024] state that
finding actual complexity bounds for the presented method remains for future research.
However, there could be some characteristics of complexity. VIRAS avoids exponential
blow-up by overcoming the trouble of arithmetic normalizations. The authors showed in
an example that VIRAS reduces the elimination set size to O(n?) instead of O(3"), by not
using external quantifier elimination procedures but operating directly on LIRA terms.
Conflict-driven VIRAS reduces the search space by avoiding redundant assignments,
thereby reducing complexity.

Soundness and Completeness

The VIRAS method is proven to be sound, meaning that if the quantifier elimination
procedure comes up with a quantifier-free formula equivalent to the original quantified
formula, then this equivalence holds in the theory of LIRA. The construction of elimina-
tion sets and the virtual substitution function are designed in a way that no solutions
are missed and no wrong solutions are introduced, which ensures soundness.

VIRAS is also complete, meaning that if the original quantified formulas have an existing
truth assignment, then also the quantifier-free formula resulting from VIRAS will be
true.

Further, also the conflict-driven proof search CD-VIRAS is both sound and complete.

Practical Use Cases

VIRAS could be used for: Formal Verification of Software and Hardware and Security
Analysis.

Experimental Results

At the time of writing this thesis, VIRAS has not been evaluated as the implementation
is still ongoing.

Limitations and Future Work

The VIRAS method relies on intricate virtual substitutions and, therefore, an imple-
mentation is complicated. VIRAS supports arbitrary quantifier alternations, but deeply
nested quantifiers could require recursive quantifier elimination steps, which increases
the complexity. For future work, computing tighter bounds distY* is a topic, and also

61



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

S5.

METHODOLOGICAL COMPARISON

62

computing more accurate discontinuity sets. Also, implementing VIRAS in the theorem
prover Vampire is a challenge for future work.

5.3.2 Fast Approximations of Quantifier Elimination
Complexity Analysis

Traditional quantifier elimination is computationally expensive, as its doubly exponential.
The quantifier reduction method of [Garcia-Contreras et al., 2023] avoids full elimination
by reducing the number of variables using an efficient e-graph-based method. The
approximation is sufficient in most cases and is not as computationally expensive.

Soundness and Completeness

The introduced quantifier elimination approximation QEL and MB-QEL are semantically
sound, because every transformation preserves logical entailment.

QEL is relatively complete with respect to some semantic properties of the input formula.
If a variable is equal to a ground term, QEL will eliminate it. QEL is unaffected by
variable orderings and syntactic rewrites, since it is relatively complete. MBP-QEL is
not complete, but provides under-approximations of QEL by a model.

Practical Use Cases

QEL/MBP-QEL could be used for: SMT-Solving, Model-Checking, CHC-Solving or
Program Synthesis and Formal Verification.

Experimental Results

QEL and MBP-QEL were implemented in Z3. The implementation itself is referred to as
Z3EG and evaluated using two tasks.

The first evaluation is on the QSAT algorithm, which is also discussed in [Bjgrner and Janota, 2015|,

for checking satisfiability of formulas with alternating quantifiers. Three QSAT implemen-
tations are compared: the existing version in Z3, Z3EG and the QSAT implementation in
YicesQS. Benchmarks are used in the theory of quantified LIA and LRA from SMT-LIB
[Barrett et al., 2016], with alternating quantifiers. Further, also two modified variants of
the LIA and LRA benchmarks are used, where some non-recursive ADT variables are
added. Considering LIA, Z3EG, and Z3 solve all benchmarks in under a minute, while
YicesQS is unable to solve all instances. For LRA, YicesQS solves all instances, Z3 only
some and Z3EG performs similarly to Z3. In LRA, the new algorithms are not being used
as there are not many equalities in the formula, and no equalities are inferred during the
run of QSAT. For the mixed ADT and arithmetic, YicesQS could not be used as it does
not support ADTs. The benchmarks show that Z3EG solves many more instances than Z3.
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The second evaluation shows the efficacy of MBP-QEL for arrays and ADTs for CHC-
solving inside the SPACER solver. Here, Z3 and Z3EG are compared with ELDARICA
[Hojjat and Riimmer, 2018]. Two sets of benchmarks are used to test MBP-QEL. The
first set is for the verification of Solidity smart contracts [Alt et al., 2022], which nest
ADTs and arrays and is suitable to test MBP-QEL. Z3EG solves more instances than
73, and it could be observed that MBP-QEL makes a significant impact on SPACER.
Interestingly, Z3EG also solves almost as many instances as ELDARICA. The second set
is from the Array benchmarks from the CHC competition [Gurfinkel et al., 2018]. Z3EG
solves two additional safe instances and almost as many unsafe instances as 73, and both
Z3EG and Z3 solve more instances than ELEDARICA.

Limitations and Future Work

In general, QEL is not a full quantifier elimination method as it is only an approximation.
MBP depends on the guiding model, and the quality of the result may vary. QEL may
produce some redundancies in the final formula. The approach requires integration into
e-graph-based solvers, otherwise, it will not be usable. For future work, QEL could be
extended with more theories. Also MBP rules could be optimized to work better across
combined theories. Another topic could be to explore smarter variable elimination orders
and representations.

5.3.3 Playing with Quantified Satisfaction
Complexity Analysis

The authors of [Bjgrner and Janota, 2015] did not explicitly give a formal complexity
bound for the QSAT algorithm, but based on the design, it is possible to give a theoretical
complexity. The complexity of the algorithm increases exponentially with the number
of quantifier alternations. For the propositional case, QBF is PSPACE-complete, but
extended to LRA or LIA, the complexity is becomes even higher. The key subroutine is
model-based projection, which depends on the theory. For LRA, quantifier elimination

via model-based projection can be doubly exponential due to quantifier alternations.

For LIA, elimination procedures can be triple exponential in worst case. Each time the
algorithm refines a strategy, it adds a new constraint to the formula, the number of
refinements is bounded by the number of distinct projections, which in LRA and LIA
can be exponential or more.

Soundness and Completeness

The introduced QSAT algorithm is sound, as it is shown that whenever it terminates, it
returns the correct truth-value of the quantified input formula. This is established by a
theorem, which states that the algorithm is partially correct, which means that when it
terminates, it correctly determines if the input formula is true or false. This also applies
to the variant of the QSAT algorithm that constructs a quantifier-free formula. Although
there is no theorem given, the correctness proof can be established by induction on the
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quantifier depth.

QSAT is not guaranteed to terminate on all theories, but under LIA and LRA, all
conditions for termination are fulfilled, and the algorithm terminates. This is achieved
under a special requirement, which states that each model-based projection operation
must produce a finite set of possible projections and must cover the quantified elimination.
Therefore, QSAT is complete for LIA and LRA. This also holds for the variant of QSAT
for quantifier elimination.

Practical Use Cases

The introduced approach can be used for: Formal Verification of Software and Hardware
and Program Synthesis.

Experimental Results

The QSAT algorithm is evaluated against the algorithm QT [Phan et al., 2012]. All in
all, the new QSAT algorithm is an improvement over QT. The algorithms were evaluated
using a benchmark from [Phan et al., 2012]. The task was to solve 64 quantified LIA
benchmarks. Here, QSAT solves all benchmarks almost instantaneously, while QT has
10 timeouts and takes much longer for the benchmarks. Further, the algorithms were
also evaluated using benchmarks from the SMT-LIB2 suite for LRA. The authors of
[Bjorner and Janota, 2015] mention that many of the benchmarks have been randomly
generated and that this is reflected in overall fluctuations in the number of Simplex
pivoting steps taken to check satisfiability. But the QSAT algorithm performs much better
overall, as QT times out for 42 benchmarks, QSAT only times out for two benchmarks.

Limitations and Future Work

The approach of [Bjgrner and Janota, 2015 relies heavily on the ability to compute
model-based projection to eliminate quantifiers, which could be seen as a limitation, as
not all theories support model-based projection (note that LIA and LRA do) and also,
the projection may generate infinitely many distinct projections. The approach is also
very sensitive to quantifier alternations, as performance may drop with deeply nested
quantifiers. Also, there is no guarantee for minimality in quantifier elimination. The
authors state a lot of future work directions. They would like to extend the algorithms
to use more powerful strategies that can be very useful in the Boolean case. They also
want to extend this approach to other theories for model-based projection, and also state
when and how one can combine theories with projection. Further, the approach should
also be extended to solve reachability games.
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5.3.4 Comparison Table

Strengths

Limitations

VIRAS: Conflict-
Driven Quantifier
Elimination for Integer-
Real Arithmetic

[Niemetz et al., 2021]

e Handles arbitrary quanti-
fier alternations over LIRA
e Combines Cooper’s
method for LIA-QE and
virtual substitution for full
LIRA support and avoids
exponential blowup

e Works directly on orig-
inal LIRA terms and so
its elimination sets grow
only polynomially in many
cases

e Finding actual complex-
ity bounds is challenging

e Complex implementation
effort

Fast Approximations of
Quantifier Elimination

|Garcia-Contreras et al., 201

e QEL eliminates any vari-
able that is provably equal
2do a ground term in the
original formula due to the
e-graph data-structure
e Good in handling of im-
plicit equalities
e Integrated model-based
projection for combined
theories

e QEL/MBP-QEL may
leave some variables un-
eliminated when there is
no ground or congruence-
derived definition

e Extraction depends on
finding an admissible rep-
resentative function

e Overall precision of MBP-
QEL is only as good as the
underlying rewrite rules

Playing with Quan-
tified Satisfaction
[Bjorner and Janota, 2015]

e Works for propositional
QBF and also first-order
theories that admit quan-
tifier elimination (LIA,
LRA)

e Two-player game alter-
nating quantifiers, which
reduces wasted search

e Sound and, under
model-based  projection
assumptions, complete

e Completeness and termi-
nation relies on background
theory providing a finite
model-based projection

e Deep quantifier alterna-
tions still have exponential
blowup

e (Quantifier elimination
output could be very large

Table 5.3:

[Bjorner and Janota, 2015]

Comparison of [Schoisswohl et al., 2024], [Garcia-Contreras et al., 2023,
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CHAPTER

Benchmarks and Experiments

6.1 Configuration

To compare the various approaches, we implemented our own benchmarks on our own
notebook. All benchmarks and experiments were conducted on a Lenovo ThinkPad E495
laptop equipped with an AMD Ryzen 5 3500U quad-core processor, 8 GB of DDR4 RAM,
a 256 GB NVMe SSD, and integrated AMD Radeon Vega 8 graphics. The benchmarks
are from the 20th International Satisfiability Modulo Theories Competition (SMT-COMP
2025) [Preiner et al., 2025]. The dataset can be found here: https://zenodo.org/
records/15493090. For the evaluation, the non-incremental benchmarks for LIA and
LRA were used. They are designed so that each benchmark is a self-contained problem,
and the solver is expected to process each one from scratch, without relying on any state
or learned information from previous problems. We use it in that way so we can focus
on the core reasoning capabilities. For the benchmarks, 100 examples were randomly
selected from LIA and LRA. The selected files are as follows:

LRA/scholl-smt08/RNDPRE/RNDPRE_3_22.smt2
LRA/2010-Monniaux-QE/mjollnir3/formula_167.smt2
LRA/scholl-smt08/RNDPRE/RNDPRE_4_36.smt2
LRA/2010-Monniaux-QE/mjollnirl/formula_027.smt2

5 LRA/2010-Monniaux-QE/mjollnir5/formula_271.smt2

) LRA/scholl-smt08/RNDPRE/RNDPRE_4_52.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_050.smt2

3 LRA/2010-Monniaux-QE/mjollnir3/formula_092.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_276.smt2
LRA/2010-Monniaux-QE/mjollnirl/formula_277.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_150.smt2
LIA/tptp/ARI572=1.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_069.smt2
LIA/UltimateAutomizer/recHanoi03_true-unreach-call_true-termination.c_847.smt2
LIA/20250213-Frobenius/fcp_269_271_277.smt2
LIA/UltimateAutomizer/nested9_true-unreach-call.i_755.smt2
/ LRA/keymaera/water_tank-node31000.smt2

3 LRA/2010-Monniaux-QE/mjollnir3/formula_166.smt2
LRA/2010-Monniaux-QE/mjollnirl/formula_182.smt2
LRA/scholl-smt08/RNDPRE/RNDPRE_3_21.smt2
LRA/2010-Monniaux-QE/mjollnirl/formula_006.smt2
LIA/UltimateAutomizer/nested9_true-unreach-call.i_775.smt2
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6. BENCHMARKS AND EXPERIMENTS

23 LRA/scholl-smt08/RNDPRE/RNDPRE_4_33.smt2

24 LRA/2010-Monniaux-QE/mjollnir6/formula_191.smt2
25 LRA/2010-Monniaux-QE/mjollnir2/formula_178.smt2
26 LRA/2010-Monniaux-QE/mjollnir6/formula_028.smt2
LIA/psyco/049.smt2

LIA/tptp/ARI032=1.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_038.smt2
LRA/2010-Monniaux-QE/mjollnir2/formula_135.smt2
LRA/scholl-smt08/RNDPRE/RNDPRE_4_26.smt2
LRA/2010-Monniaux-QE/mjollnir2/formula_201.smt2
LRA/scholl-smt08/model/model_5_26.smt2
LIA/psyco/034.smt2

LIA/tptp/ARI045=1.smt2
LRA/2010-Monniaux-QE/mjollnird/formula_137.smt2
LRA/2010-Monniaux—-QE/mjollnir5/formula_121.smt2
LRA/2010-Monniaux-QE/mjollnir3/formula_178.smt2
LRA/2010-Monniaux-QE/mjollnirl/formula_132.smt2
LRA/scholl-smt08/RND/RND_4_19.smt2
LRA/keymaera/intersection-example-simple.proof-node431299.smt2
LIA/20250213-Frobenius/fcp_179_181_191.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_022.smt2
LRA/scholl-smt08/RNDPRE/RNDPRE_3_13.smt2
LRA/keymaera/intersection-example-simple.proof-node44393.smt2
LRA/2010-Monniaux-QE/mjollnird/formula_139.smt2
LRA/2010-Monniaux-QE/mjollnirl/formula_238.smt2
LRA/2010-Monniaux-QE/mjollnir3/formula_048.smt2
LRA/2010-Monniaux-QE/mjollnir6/formula_141.smt2
LIA/psyco/158.smt2
LRA/2010-Monniaux-QE/mjollnir2/formula_115.smt2
LIA/20250213-Frobenius/fcp_5_7_11.smt2
LIA/20250213-Frobenius/fcp_167_173.smt2
LRA/keymaera/intersection-example-simple.proof-node409496.smt2
LRA/2010-Monniaux-QE/mjollnird4/formula_114.smt2
6 LRA/scholl-smt08/RNDPRE/RNDPRE_4_55.smt2

7 LRA/2010-Monniaux-QE/mjollnir2/formula_040.smt2
8

9

51

[S1 e

ot
Y UL W N

ot ot ot

LRA/keymaera/water_tank-node5020.smt2
LRA/2010-Monniaux-QE/mjollnir5/formula_254.smt2

60 LRA/2010-Monniaux-QE/mjollnir3/formula_220.smt2

61 LRA/2010-Monniaux-QE/mjollnirl/formula_155.smt2

62 LIA/UltimateAutomizer/recHanoi0O3_true-unreach-call_true-termination.c_1757.smt2
63 LRA/2010-Monniaux-QE/mjollnir4/formula_187.smt2

64 LRA/2010-Monniaux-QE/mjollnirl/formula_017.smt2

65 LRA/2010-Monniaux-QE/mjollnirl/formula_185.smt2

66 LRA/scholl-smt08/RNDPRE/RNDPRE_4_3.smt2

67 LRA/2010-Monniaux-QE/mjollnir6/formula_086.smt2

68 LRA/2010-Monniaux-QE/mjollnir2/formula_274.smt2

69 LIA/psyco/018.smt2

70 LRA/2010-Monniaux-QE/mjollnirl/formula_206.smt2

71 LRA/scholl-smt08/RND/RND_3_18.smt2

72 LRA/2010-Monniaux-QE/mjollnir6/formula_060.smt2

73 LRA/2010-Monniaux-QE/mjollnir2/formula_233.smt2

74 LIA/psyco/154.smt2

75 LRA/2010-Monniaux-QE/mjollnir2/formula_035.smt2

76 LRA/2010-Monniaux—-QE/mjollnirl/formula_255.smt2

77 LRA/2010-Monniaux-QE/mjollnir6/formula_192.smt2

78 LRA/2010-Monniaux-QE/mjollnir3/formula_245.smt2

79 LRA/2010-Monniaux-QE/mjollnird4/formula_050.smt2

80 LIA/psyco/037.smt2

81 LRA/2010-Monniaux-QE/mjollnir4d/formula_012.smt2

82 LIA/psyco/160.smt2

83 LRA/2010-Monniaux-QE/mjollnir5/formula_186.smt2

84 LRA/scholl-smt08/RND/RND_4_18.smt2

85 LRA/keymaera/water_tank-nodel6055.smt2

86 LRA/2010-Monniaux-QE/mjollnirl/formula_114.smt2

87 LRA/2010-Monniaux-QE/mjollnir2/formula_254.smt2

88 LRA/2010-Monniaux-QE/mjollnir3/formula_234.smt2

89 LRA/scholl-smt08/model/model_6_37.smt2

90 LIA/UltimateAutomizer/Primes_true-unreach-call.c_127.smt2
91 LRA/2010-Monniaux-QE/mjollnir2/formula_241.smt2

92 LRA/keymaera/intersection-example-simple.proof-node404096.smt2
93 LIA/psyco/039.smt2

94 LIA/20190429-UltimateAutomizerSvcomp2019/jain_2_true-unreach-call_true-no-overflow_false-
termination.i_12.smt2
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6.1. Configuration
LRA/2010-Monniaux-QE/mjollnir2/formula_231.smt2
LIA/UltimateAutomizer/nested9_true-unreach-call.i_927.smt2
LRA/scholl-smt08/RND/RND_3_10.smt2
LIA/UltimateAutomizer/recHanoiO3_true-unreach-call_true-termination.c_287.smt2
LRA/2010-Monniaux-QE/mjollnir2/formula_186.smt2
LRA/2010-Monniaux—-QE/mjollnirl/formula_107.smt2
For the benchmarks, the following program was constructed:
import os
import subprocess
import csv
import time
# Configuration
SOLVER = ""
SOLVER_OPTS = [""]
TIMEOUT =
ROOT_DIR = ""
RESULTS_DIR = ""
def main () :
summary_rows = []
with open ("selected_benchmarks.txt") as f:
benchmark_files = [line.strip() for line in f if line.strip()]
for file_path in benchmark_files:
if not file_path.endswith(".smt2"):
continue
file_path = ROOT_DIR + "/" + file_path
os.makedirs (RESULTS_DIR, exist_ok=True)
base = os.path.splitext (os.path.basename (file_path)) [0]
out_file = os.path.join (RESULTS_DIR, f"{base}.out")
metrics_file = os.path.join(RESULTS_DIR, f"{base}.metrics")
print (f"Running solver on {file_path} ...")
start_time = time.time ()
# Build command: /usr/bin/time -v timeout TIMEOUT SOLVER SOLVER_OPTS file_path
cmd = ["/usr/bin/time", "-v", "timeout", str (TIMEOUT), SOLVER] + SOLVER_OPTS + [file_path]

with open (out_file, "w") as out, open(metrics_file, "w") as metrics:
proc = subprocess.run(cmd, stdout=out, stderr=metrics)

end_time = time.time ()
result = None

with open (out_file) as f:
for line in f:

line = line.strip()
if line.lower() in ("sat", "unsat", "unknown"):
result = line
break
wall _time = user_time = sys_time = max_mem = None

with open (metrics_file) as f:
for line in f:
if "Elapsed (wall clock) time" in line:

wall time = line.split(":", 1)[1l].strip()
elif "User time (seconds)" in line:

user_time = line.split(":", 1) [1].strip()
elif "System time (seconds)" in line:

sys_time = line.split(":", 1)[1].strip()
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57 elif "Maximum resident set size" in line:
58 max_mem = line.split(":", 1) [1l].strip()
59
60 summary_rows.append ({
61 "file": file_path,
62 "result": result if result else "no_result",
63 "exit_code": proc.returncode,
64 "wall time": wall_ time,
65 "user_time": user_time,
66 "sys_time": sys_time,
67 "max_mem_kb": max_mem,
68 "start_time_epoch": start_time,
69 "end_time_epoch": end_time,
70 })
71
72 os.makedirs (RESULTS_DIR, exist_ok=True)
73 summary_csv = os.path.join (RESULTS_DIR, "summary.csv")
74 with open (summary_csv, "w", newline="") as csvfile:
75 fieldnames = ["file", "result", "exit_code", "wall_time", "user_time", "sys_time", "
max_mem_kb", "start_time_epoch", "end_time_epoch"]
76 writer = csv.DictWriter (csvfile, fieldnames=fieldnames)
77 writer.writeheader ()
78 for row in summary_rows:
79 writer.writerow (row)
80
81 print (£"\nBenchmarking complete. Summary written to {summary_csv}")
82
83 if _ _name__ == "_ _main__":
84 main ()
Listing 6.1: Benchmark python code
6.2 Benchmarking
For benchmarking the approach of [Korovin et al., 2023], the implementation from
https://github.com/vprover/vampire/tree/alascal was used. The config-
uration was as follows:
1 SOLVER = "vampire"
2 SOLVER_OPTS = ["--mode", "portfolio", "--output_mode", "smtcomp", "-alasca", "on", "-uwa", "
alasca_main", "-to", "gkbo"]
3 TIMEOUT = 61
4 ROOT_DIR = "non-incremental"
5 RESULTS_DIR = "results_ ALASCA"
Listing 6.2: Configuration for ALASCA
The approach of [Althaus et al., 2009] was implemented in the SPASS theorem prover,
but the implementation itself is not public, and therefore, benchmarks are not possible.
The approach of [Baumgartner et al., 2015] was implemented in the Beagle theorem
prover, which can be found here: https://bitbucket.org/pebal23/beagle/
src/master/L The configuration was as follows:
1 SOLVER = "beagle"
2 SOLVER_OPTS = []
3 TIMEOUT = 61
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6.2. Benchmarking

ROOT_DIR = "non-incremental"
RESULTS_DIR = "results_BEAGLE"

Listing 6.3: Configuration for Beagle

The approach of |[Ganzinger and Korovin, 2006] was implemented in the iProver theorem
prover, which can be found here: https://gitlab.com/korovin/iprover. The
configuration was as follows:

SOLVER = "./iproveropt-multi-core.sh"
SOLVER_OPTS = []

TIMEOUT = 61

ROOT_DIR = "non-incremental"
RESULTS_DIR = "results_iProver"

Listing 6.4: Configuration for iProver

The implementation of the approach of [Reynolds et al., 2017] was implemented in CVC4,
can be found here: https://github.com/pysmt/CVC4 and is tested with the fol-
lowing configuration:

SOLVER = "cvc4"

SOLVER_OPTS = ["--cegqgi"]

TIMEOUT = 61

ROOT_DIR = "non-incremental"
RESULTS_DIR = "results_cvcé4_cegqgi"

Listing 6.5: Configuration for CEGQI

The approach of |[Niemetz et al., 2021] was implemented in CVC4, can be found here:
https://github.com/pysmt/CVC4| and is tested with the following configuration:

SOLVER = "cvc4"

SOLVER_OPTS = ["--sygus"]

TIMEOUT = 61

ROOT_DIR = "non-incremental"
RESULTS_DIR = "results_cvc4_sygic"

Listing 6.6: Configuration for SyQI

The approach of [Schoisswohl et al., 2024] is not implemented to date, and therefore,
benchmarking is not possible.

The approach of |[Garcia-Contreras et al., 2023] was implemented in Z3, can be found here:
https://github.com/Z3Prover/z3 and is tested with the following configuration:

SOLVER = "z3"

SOLVER_OPTS = []

TIMEOUT = 61

ROOT_DIR = "non-incremental"
RESULTS_DIR = "results_QEL"

Listing 6.7: Configuration for Z3 QEL

The approach of [Bjgrner and Janota, 2015] was implemented in Z3, can be found here:
https://github.com/Z3Prover/z3and is tested with the following configuration:
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SOLVER = "z3"

SOLVER_OPTS = []

TIMEOUT = 61

ROOT_DIR = "non-incremental"
RESULTS_DIR = "results_QSAT"

Listing 6.8: Configuration for Z3 QSAT

6.3 Results

Note that each approach has its own strengths, and some methods are more tailored
to LRA and others to LIA. Take also into account that no benchmarks for LIRA were
performed.

The following bar charts show the results of the benchmarks; each benchmark was
run with 61 seconds timeout. For simplicity and because this is not the main topic of
the thesis, the results were interpreted by checking only how many instances they solved
and how often they timed out. We also generated tables, such that we can see how each
of them performed in the LRA and LIA categories.

ALASCA achieved strong results on quantified LRA benchmarks, and as it was im-
plemented in Vampire, we can clearly see the strengths of the theorem prover. Beagle,
on the other hand, performed as expected, as it is a rather old approach. Instantiation-
based methods, such as CEGQI and SYQI, consistently performed well on all sorts of
problems, but that is expected as CVC4 and further CVC5 are among the strongest
SMT-solvers. The instantiation approach implemented in iProver did not perform as well
as, for example ALASCA in Vampire. Quantifier elimination techniques, such as QEL
and QSAT, implemented in Z3 performed best overall, as they only timed out for 12,
respectively 11 problems.

Results CEGQI Results SYGQI

_H

W unsat ([ no_resul sat . st

Figure 6.1: Results for CEGQI

_w

Figure 6.2: Results for SYQI
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Results Z3 QEL Results Z3 QSAT
53
result 34 result 35
13 "
o 10 20 30 40 50 o0 0 10 20 30 40 50
solved solved
W unset @ sst no_result W unset [ sat no_result
Figure 6.3: Results for Z3 QEL Figure 6.4: Results for Z3 QSAT

Results Beagle
Results ALASCA

result

result

o [

:: b a = 0 20 40 60 80
solved
. usat [ ro_tesut solved

@ no_result [ unsat
Figure 6.5: Results for ALASCA
Figure 6.6: Results for Beagle
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Results iProver
result
0 10 20 30 40 50 60 70 80
solved
@ no_result [ unsat
Figure 6.7: Results for iProver
LRA LIA LRA LIA
sat 23 6 sat 23 6
unsat 40 13 unsat 40 13
no_ result 14 4 no_ result 14 4
Table 6.1: Results for CEGQI Table 6.2: Results for SYQI
LRA LIA LRA LIA
sat 27 7 sat 28 7
unsat 43 10 unsat 44 10
no__result 7 6 no__result 5 6
Table 6.3: Results for Z3 QEL Table 6.4: Results for Z3 QSAT
LRA LIA LRA LIA
sat nan nan sat nan  nan
unsat 41 9 unsat 7 12
no_ result 36 14 no__result 70 11
Table 6.5: Results for ALASCA Table 6.6: Results for BEAGLE
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CHAPTER

Conclusion

This thesis addressed the challenge of automated reasoning for quantified formulas over
LA, which is a problem central to verification, synthesis and constraint solving due
to the expressive power of quantifiers over linear constraints. We have summarized
various approaches for three categories of quantified reasoning in linear arithmetic. The
quantifier-free fragment of LA is well understood and is efficiently addressed, however,
the introduction of quantifiers remains a significant challenge. While handling quantifiers
in LA is a significant challenge, it is also very important, as it enables us to address
much deeper questions and solve more general problems that are necessary for practical
use cases. Most of the problems involve LRA and LIA. Both theories are decidable,
but quantifier elimination methods are often costly due to their worst-case complexity,
which is double- or even in some cases triple-exponential. And on top, in real world
applications, quantified formulas mostly involve also uninterpreted functions, arrays or
non-linear constructs, which even enhance the complexity by a lot.

After giving an introduction to automated reasoning and its applications, and also
LA and its reasoning methods, we analyzed and surveyed various approaches in three
categories: superposition-based methods, instantiation-based methods and quantifier elim-
ination methods in computer algebra. In each category, we looked at three methods. For
superposition-based methods they were: [Korovin et al., 2023], [Baumgartner et al., 2015|,

[Althaus et al., 2009]. For instantiation-based methods: [Reynolds et al., 2017], [Ganzinger and Korovin, 2006],
[Niemetz et al., 2021] and for quantifier elimination methods in computer algebra: [Schoisswohl et al., 2024],

[Garcia-Contreras et al., 2023], [Bjorner and Janota, 2015]. The comparison included a
complexity analysis, soundness and completeness results, practical use cases, experimental
results, as well as limitations and future work. In addition, some benchmarks were per-
formed as well as possible, but note that these were not the main contribution of the thesis.

The study of the introduced approaches demonstrates that each family of methods

7
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has distinct strengths, and each one has individual limitations. Our comparison shows
that superposition-based lifting, in particular ALASCA, performs very well on many
LRA problems with uninterpreted functions and yields strong solver performance in prac-
tice. Its ability to avoid instantiation as often as possible while preserving completeness
allowed it to outperform related calculi such as SUP(LA) and Beagle. Instantiation-based
methods, on the other hand, showed their greatest advantage in fragments with limited
quantifier alternation. Counterexample-guided instantiation demonstrated strong perfor-
mance, producing instances without the combinatorial explosion that other approaches
exhibit. Syntax-guided instantiation performed really well on arithmetic fragments
where syntactic patterns could be exploited. Overall, these approaches offer a good
balance between theoretical limits and solver performance in practice, therefore, they are
really suitable for applications in program verification and synthesis. Classic quantifier-
elimination techniques such as Fourier—-Motzkin are complete but rarely scale and are
effective in practice. Model-based projection and conflict-driven elimination showed that
controlled incompleteness can in fact be a practical advantage. By trading completeness
for scalability, these approaches solve many instances quickly and offer efficient ways to
integrate algebraic reasoning into SMT workflows. All in all, it is evident that no single
approach offers a universal solution. Each method itself can be viewed as optimized for a
particular application.

As a result, we have no universal winner, each approach dominates in a different category
of problems and also in a different way. That suggests that a single approach cannot
solve quantified reasoning in LA. Instead, we could see hybrid architectures that combine
all approaches. In recent years, solvers have evolved a lot, and nowadays, they can
already solve many non-trivial quantified benchmarks that were out of reach a decade
ago. However, note that truly deep alternations and mixed-theory problems are still one
of the most challenging open challenges.

As the field of artificial intelligence has evolved significantly in recent years, this progress
is also promising for future modern SMT-solvers and theorem provers. Nevertheless,
this thesis has shown that while significant progress has been made in reasoning about
quantified formulas in LA, the landscape remains fragmented across different methods.
The absence of a universal method is not a weakness, but rather an indication that
quantified reasoning is a topic with numerous facets, as well as numerous possibilities,
and is not trivial by any means. This requires solvers to adapt their strategies to the
structure of the input problem. The observation of this thesis implies that the most
promising direction lies not in hunting a single perfect calculus, but rather in designing
hybrid architectures that can dynamically combine all possible approaches. Intelligently
doing that is a big topic for future research. Such systems would not only address the
current limitations of scalability and some completeness results, but also expand the
applicability of automated reasoning to verification, synthesis, and constraint-solving
tasks of increasing complexity, and many more.
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Overview of Generative Al Tools
Used

In this thesis, generative Al tools were utilized to support both the writing and coding
aspects of the work. Specifically, ChatGPT was employed to assist with formulating clear
and coherent text, helping to refine explanations and improve overall readability. For
programming tasks, GitHub Copilot was used to generate and suggest code snippets.
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