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Abstract

This thesis investigates the integration of Reinforcement Learning (RL), Answer Set Pro-
gramming (ASP), and Deontic Logic (DL) to embed normative reasoning in autonomous
agents operating in non-deterministic environments. Using an extended version of Ope-
nAI’s FrozenLake environment - with dynamic obstacles, conditional tiles, and modified
rewards - this study simulates real-world dilemmas where agents must balance norm ad-
herence with reward maximization. A framework is developed that combines Q-Learning
with ASP-based planning via Potassco’s Telingo, incorporating deontic operators. The
framework evaluates the agent’s ability to handle conflicting norms, particularly contrary-
to-Duty (CTD) obligations that emerge after norm violations. Experiments assess the
effectiveness of different norm-reasoning strategies, comparing internal planning models
with reward-shaping mechanisms. Our results show that while agents successfully learn
static norms, dynamic norms and CTDs present significant challenges. Planning-based
approaches accelerate learning but incomplete models struggle with dynamic aspects,
whereas reward shaping enhances norm adherence but risks suboptimal policies or slow
convergence. The findings suggest that a hybrid approach—integrating norm reasoning
within the agent’s model alongside reward shaping—offers a promising direction for
future research. This work contributes to the broader discourse on embedding ethical
and legal norms in RL systems, providing insights into the complexities of automated
norm reasoning and laying the foundation for further exploration in this interdisciplinary
field.
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CHAPTER 1
Introduction

1.1 Motivation
Reinforcement Learning (RL) is a subfield of machine learning that uses direct rewards
of actions in a given state to learn an optimal behavior policy achieving the highest
predicted reward across sequence of actions [SB98]. In Q-Learning, state-action values
are used to evaluate actions in all states and to propose the actions for the next steps.
Moreover, combining RL with planning components can accelerate the learning process
and cut off futile explorations. Non-monotonic logics, such as Answer-Set-Programming
(ASP) can be used to model the environment and their solvers can be incorporated
into the agent. In order to find solutions (answer set), models fulfilling the rules of the
program are used to define a Gelfond-Lifschitz reduct whose minimal model is the answer
set [BET11]. In RL, environmental challenges are modeled and solved to maximize
expected return at all costs. Nonetheless, there exist legal, ethically-sensitive, and socially
acceptable operations in any real-world domain, meaning that bots acting in the actual
world must adhere to a variety of different laws.To handle norm-reasoning, Deontic Logic,
in particular Standard Deontic Logic (SDL), also known as Monadic Deontic Logic, offers
syntax and semantics for reasoning about obligations. Specifically, there are three main
operators, namely obligatory O, permitted P = ¬O¬ and forbidden F = O¬ [GHP+13].
However, these rules are frequently ambiguous or contradictory, so a robot must deal
with quandaries while still attempting to maximize its reward. Making "just" decisions
in these situations is an unsolved research issue.

The challenge still lies in articulating complex norms in a way that computers can
understand, ensuring moral behavior while optimizing the benefits of an RL environment.
Furthermore, this thesis is backed by the WWTF project ICT22-023 - "Training and
Guiding AI Agents with Ethical Rules" (TAIGER)1.

1https://www.wwtf.at/funding/programmes/ict/ICT22-023/; accessed on May 2, 2025
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1. Introduction

1.2 Problem Statement
The purpose of this work is to conduct a case study on a non-deterministic RL-environment,
where the agent models its norms by approximating SDL in ASP such that its action-
planning considers deontic reasoning. By utilizing paradoxes, real dilemmas are simulated,
forcing the bot to decide which norms to violate and which to keep at all costs, while
still aspiring maximal rewards from the environment. The contributions are briefly
summarized as follows:

• Development of a unified framework that integrates components from RL, ASP,
and DL.

• Modification of the FrozenLake environment to support the testing of normative
constraints.

• Integration of complex normative rules into the system to evaluate their impact on
agent behavior.

• Extensive experimental analysis and discussion of the resulting learned policies.

This setup allows experiments to address various research questions, among them:

• Which norms were easy / hard to be learned?
• Which norms tend to be more often violated?
• Did the agent prioritize norm-adherence over reward-maximization?
• Were the actions of the agent consistent with the norms it learned to keep?
• Did the non-determinism lead to more violations?

The results of this work highlight various aspects and challenges involved in implementing
contradictory norms in an RL-framework. The learned behavior strategies will reveal
processing of norm-violations in a concrete domain, offering insights in practical automated
norm reasoning. Furthermore, multiple sets of deontic rules will be evaluated and
compared to each another, demonstrating the impact of various morals on the RL
framework. These results may be utilized in future works to offer insights into integration
of norms into RL.

1.3 Outline of the Contribution
The framework will be based on OpenAI’s non-deterministic reinforcement learning
environment "FrozenLake"2. In short, this is a discrete, non-deterministic environment,
in which the agent slides across a grid-lake to reach a goal while avoiding holes. Among
others, the following extensions will be applied on the original version:

• adding a second bot as a dynamic obstacle; called ’traverser’
• adding a new tile ’cracked’; becomes a hole if traverser and agent occupy it
2https://gymnasium.farama.org/environments/toy_text/frozen_lake/;

accessed on May 2, 2025
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1.3. Outline of the Contribution

• reward-changes
• update of slippery-probabilities

Concrete levels of the environment will be tailored to the experiments. The RL component
will follow an ϵ-greedy Q-learning approach, employing planning policies based on non-
monotonic logic. The planning is encoded in Potassco’s Telingo solver3, which is an
extension of the state of the art solver Clingo4 to handle ASP with temporal operators
such as previous state, next state, □ (always) and ⋄ (eventually). Notably, the model is
not a direct copy of the environment. For example, the perceived expected rewards may
differ from the actual ones, and the agent lacks knowledge of the traverser’s movement.
Deontic operators are included as predicates in Telingo, utilizing the temporal features
to represenent both permanent and conditional norms. The focus will be on conflict
resolutions and contrary-to-duty obligations (CTD). CTDs are norms that become a
necessity after a violation of another norm [Chi63].

As an example, let ’the agent must move towards the goal tile’ and ’the agent must not
be on the same tile as the traverser’ be norms. The conditional rule ’if the agent and
traverser occupy the same tile, then the agent must move straight’ is a CTD of the second
norm. Depending on the concrete environment-setup, the agent may sometimes need to
move across the traverser’s tile to reach the goal. To resolve these conflicts, evaluation
functions will be defined. However, the latter will be configured in different ways to
analyze the impact of various prioritization strategies.

Due to the non-deterministic nature of the environment and the assumption of fixed
transitions in planning, this framework offers various ways to push the agent into
dilemmas. Consequently, violations may occur beyond the agent’s control, even if
it model fully adheres to the rules. The experiments generate the target policies of
predefined configurations. They are evaluated using multiple criteria, including return,
rule violations, learned paths, and more.

1.3.1 Organization
This work is organized into seven chapters. The next chapter provides an overview of
the state-of-the-art of the three main components of the framework. Chapter 3 describes
the framework in detail, while Chapters 4 and 5 present and analyze the generated data.
Chapter 6 discusses related work, and finally, Chapter 7 summarizes the findings of this
study.

3https://potassco.org/labs/telingo/; accessed on May 2, 2025
4https://potassco.org/clingo/; accessed on May 2, 2025
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CHAPTER 2
Background

2.1 Reinforcement Learning
Machine learning is a subfield of artificial intelligence focusing on learning from data. Its
algorithms are designed to improve through experience ([Mit97], Chapter 1).
Machine learning can be broadly categorized into three main subfields, distinguished by
their learning strategies and training setups: supervised learning, unsupervised learning,
and Reinforcement Learning (RL).

Supervised learning involves using labeled training data to fit a model that approximates
a complex function. This approach is commonly applied to classification and regression
tasks. In classification, each input is associated with a class label, while in regression, the
data is labeled with a continuous numeric output value. The goal is to approximate the
underlying function by reducing the error across the data samples ([SB98], Chapter 9).
However, both the training process and the selected samples must be carefully evaluated
to avoid overfitting, learning unintended correlations, or introducing biases.

In unsupervised learning, the input data is typically unknown and not pre-analyzed. The
algorithms are designed to group, reduce, or organize the data in order to uncover hidden
patterns and generate insights. Common applications of unsupervised learning include
clustering, Principal Component Analysis (PCA), and Self-Organizing Maps (SOM).
Unlike supervised learning, there is no concrete model or function to evaluate. Instead,
the data is processed and presented in a more human-interpretable form, such as patterns,
groupings, and other visual representations ([Kub21], Chapter 14).

Reinforcement Learning (RL) is a subfield of machine learning focused on learning via
feedback. It is characterized by autonomous exploration of an environment to discover
states and feedback, with the goal of training the most efficient policy. More specifically,
RL uses the direct rewards associated with actions taken in a given state learn an optimal
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2. Background

behavior achieving maximal (expected) cumulative rewards over a sequence of actions
([SB98], Chapter 1).

The following subsections provide an overview of the basic setting of Reinforcement
Learning (RL), its challenges, Markov decision processes (MDPs), and relevant algorithms.

2.1.1 Goal and Elements of RL
RL is the process of training an agent within an environment. The agent observes and
interacts with the environment to receive direct feedback. Typically, a training episode
consists of a limited sequence of actions or a defined time window, with terminating
states potentially ending the episode prematurely. The goal of RL is to optimize the
agent’s behavior policy, such that the cumulative reward from all actions is maximized
[MKS+15].

Figure 2.1: Interplay between agent and environment ([SB98], Chapter 3.1)

The core elements of RL are agents, the environment and their interactions, which are
executed actions triggering state-transitions and feedback-return (see Figure 2.1). In a
discrete setting, the agent selects an action At triggering the transition to the next state
St+1 and feedback of the reward Rt+1 at time t. The reward is an objective feedback
provided by the environment, with punishments being represented as negative rewards.
A training episode generates a sequence of the actions, states, and rewards experienced
by the agent. These sequences are used to train the agent’s behavior policy. The policy is
composed of learned value functions, which are typically numeric values associated with
state-action pairs to quantify the expected reward. Without usage of models, the agent
generally selects the action with the highest value-function in that state. An optimal
policy, therefore, is a policy returning the highest amount of accumulated rewards. RL
algorithms are designed to iteratively approach this optimal policy by updating the
current value functions based on the rewards experienced during interaction with the
environment.

Additionally, models of the environment can be used within the agent to propose sub-
sequent actions. This enables the integration of various planning aspects and other

6



2.1. Reinforcement Learning

reasoning processes into the RL framework, a concept known as model-based RL methods
([SB98], Chapter 1.3).

2.1.2 Challenges of RL
An important aspect of RL, is the exploration-exploitation-dilemma ([SB98], Chapter
1.1). Effective exploration requires taking unknown actions and visiting new states,
whereas exploitation focuses on optimizing the best-known sequences. Relying solely
on exploration may prevent the agent from achieving its goal efficiently, while excessive
exploitation can lead to convergence at a local optimum, missing better alternatives.
Many RL-algorithms address this challenge (see Subsection 2.1.4), however, achieving a
perfect balance between exploration and exploitation remains an open problem ([SB98],
Chapter 2).

Many supervised learning approaches cannot be effectively applied to RL in general.
In supervised learning, labeled data inputs are typically static, independent, and often
easily classified by humans—making this approach particularly effective for tasks such
as image recognition. In contrast, RL involves an agent interacting with a dynamic
environment, where state transitions and action outcomes vary and are not associated
with predefined labels or straightforward predictions. As a result, the number of learned
state-action values grows exponentially, posing significant challenges ([SB98], Chapter
3). For example, training a robotic arm to stack blocks would require an extensive set
of labeled training examples, which would need to be created and annotated manually.
The positions of all joints can have millions of possible combinations, and the relative
positions of the blocks to the robotic arm introduce further variations. In this setting,
manually preparing such large amounts of input data is not feasible. Moreover, if the
algorithm were tested from a different starting position, an entirely new dataset would
be required. In the end, RL differs fundamentally from supervised learning and is better
suited for solving interactive, goal-oriented learning problems.

Nonetheless, advanced deep neural networks (DNNs) can be integrated into RL, which is
then called deep reinforcement learning (DRL). Convolutional neural networks (CNNs)
and long short-term memory networks (LSTMs) have proven highly successful in image
recognition and large language models. Their architectures enable them to process
temporal contexts and handle complex, high-dimensional input structures. Incorporating
these neural networks into RL enhances training efficiency in complex environments with
numerous state-action pairs.
As an example, in pixel-based video games, the current screen display can serve as the
state, while all possible controls represent the available actions. A DNN can process the
images as input and output the expected rewards in its final layer, with each output node
corresponding to a specific action. The actual rewards received from the environment
are then used to train the DNN through gradient backpropagation.
Although DRL has achieved significant success in vision-based applications, it also intro-
duces common neural network challenges into RL. These include overfitting, dependence
on precise feedback, and a lack of explainability. In summary, DRL presents both chal-
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2. Background

lenges and valuable insights for the development of general-purpose AI systems capable
of interacting with complex environments [ADBB17].

2.1.3 Markov Decision Processes
Most RL problems can be modeled as a Markov Decision Process (MDP) ([SB98],
Chapter 3). An MDP consists of a set of states, a set of actions, a reward function, and a
state-transition function. It can represent various environment characteristics, including
deterministic and stochastic dynamics. This work focuses on finite, discrete, and fully
observable environments. In contrast, MDPs used in partially observable environments
are typically referred to as Partially Observable Markov Decision Processes (POMDPs).

A MDP is a tuple ⟨S, A, P, R, γ⟩, where S is a set of states, A is a set of actions,
P : S × A −→ Π(S) is the state-transition function (Π(S) is a probability distribution
used for non-deterministic MDPs), R : S × A −→ R is the reward function and γ is the
discount factor, where γ ∈ R and 0 ≤ γ ≤ 1. All MDPs share the following equation for
each state S ∈ S and time-step t ∈ N:

P[St+1|St] = P[St+1|S1, ..., St] (2.1)

This is called the Markov Property and means that the future is independent from the
past given the present ([SB98], Chapter 3). In other words, the current state must
encapsulate all relevant information from previous states and actions. Consequently, the
future is determined solely by the present state. A model is considered Markovian if all
state transitions depend only on the current state and action, without influence from
past states or actions [KLM96].

Typically, in MDPs, the rewards represent the agent’s objectives. By summing the
rewards of subsequent states, the total gain of a given state can be computed. The return
Gt of an episode, starting from a given state, is the discounted sum of all rewards received
from the subsequent states:

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑︂
k=0

γkRt+k+1 (2.2)

Gt represents the total gain of all rewards following time-step t and the discount factor
0 ≤ γ ≤ 1 weakens the relevance of future rewards ([SB98], Chapter 3.3). This means
the agent prioritizes immediate rewards over future rewards, with the discount rate
determining the extent of the agent’s foresight. Finally, the agent has learned an optimal
policy if it maximizes the return starting from its initial state.

During training, the agent needs to estimate the returns of states. By using a value
function, either for states or for state-action pairs, the actual returns can be approximated.
This work focuses on value functions for state-action pairs, as this is the type of value

8



2.1. Reinforcement Learning

function used in our approach (the term action-value function is also used to refer to this
value function). The value function qπ(s, a) with state s, action a and policy π is defined
as follows:

qπ(s, a) .= Eπ[Gt|St = s, At = a] (2.3)

This equation can be simplified to the expectation of the immediate reward plus the
discounted return of the next state. It can be further reduced to the sum of the next
reward and a recursive call to the value function of the next state-action pair ([SB98],
Chapter 3). The resulting equation is shown below:

qπ(s, a) .= Eπ[Rt+1 + γGt+1|St = s, At = a] = Eπ[Rt+1 + γqπ(s′, a′)|St = s, At = a] (2.4)

Here s′ and a′ represent the state and action visited at time t + 1 under policy π, i.e.
the most rewarding action in the successor state according to the agent’s policy. The
value-function can then be used to calculate the expected return for each state-action
pair under a given behavior policy. The relationship between the value of state and
the values of its successor states is called the Bellman equation for this value-function
([SB98], Chapter 3).

However, in most RL-problems, the goal is to find an optimal policy, rather than evaluating
a given policy. Therefore, policies must be compared to each other. A policy π is superior
(or greater) than policy π′ if and only if the value-function qπ(s, a) is greater than qπ′(s, a),
i.e.,

π ≥ π′ ←→ qπ(s, a) ≥ qπ′(s, a) (2.5)

for all states s and actions a ([SB98], Chapter 3.6).

The optimal policy has consequently an optimal value-function q∗, which is the maximum
of all value-functions of all states and actions ([SB98], Chapter 3.6):

q∗(s, a) .= max
π

qπ(s, a) (2.6)

q∗(s, a) = E
[︃
Rt+1 + γ max

a′ q∗(St+1, a′)
⃓⃓⃓⃓

St = s, At = a

]︃
(2.7)

RL-algorithms use the Bellman optimality equation 2.7 to iteratively approximate q∗.

2.1.4 RL-Algorithms
Finite MDPs can be solved by three fundamental approaches, namely dynamic program-
ming, Monte Carlo Methods and temporal-difference learning [SB98].

9



2. Background

Dynamic Programming

First, dynamic programming (DP) uses the value function to structure and to search for
better policies. DP applies the Bellman equation to iteratively update the value function,
gradually approximating the optimal value function and thereby yielding the best policy.
This is done by policy iteration, whereby each iteration consists of two main steps: policy
evaluation and policy improvement ([SB98], Chapter 4).

Policy evaluation (also known as prediction) is the process of determining the value
function of a policy π. The Bellman equation (see equation 2.3) is used to compute the
value function for each state-action pair. Each iteration generates an updated version of
the value function, until it converges.

Policy improvement (also called control), on the other hand, enhances the policy found
obtained via the prediction by replacing it with a better one. By evaluating different
policies, their value-functions can be compared. If the value for a given state and action
is smaller than the value for the same state but with a different action, the behavior
in this state can be improved. In other words, policy π can be altered into a new and
greater policy π′:

π′(s) .= max
a

qπ(s, a) (2.8)

where maxa selects the a that yields the maximal value for the state s ([SB98], Chapter
4.2). This greedy policy π′ cannot be worse than the original policy π by definition. In
fact, the new policy will always be strictly better than the old one, unless the original
policy is already optimal, in which case the new policy will remain optimal as well. Most
learning methods use this greedy policy improvement and the following update rule:

NewEstimate = OldEstimate + StepSize × [Target − OldEstimate] (2.9)

The difference Target − OldEstimate is the error in the current estimation. By scaling
this error with a StepSize-parameter between 0 and 1 (also called the learning-rate), the
update approximates the real return value ([SB98], Chapter 2.4). The StepSize may
be dynamic with it’s own update function. However, finding the best StepSize for the
fastest learning on the environment is a considerable issue in RL-problems.

By combining prediction and control in each iteration, an iterative cycle of improving
policies and value functions can be achieved (see Figure 2.2). The policy evaluation
step requires a policy to derive a stable value function for that policy, while the policy
improvement step relies on the value function to derive an improved policy. For finite
MDPs, this cycle will converge to an optimal policy within a finite number of repetitions
([SB98], Chapter 4.3).

Although the time complexity is polynomial in the number of states and actions, even in
the worst case ([SB98], Chapter 4.7), this approach is not practical for complex problems.

10



2.1. Reinforcement Learning

π1 V1

π1 V1

π1 V1

π* V*

Figure 2.2: Combination of prediction and control

DP requires complete knowledge of the environment, including the full probability
distribution of stochastic ones. However, since such information is often unknown or
incomplete, alternative learning methods, such as Monte Carlo or Temporal Difference,
are used.

Monte Carlo Methods

Monte Carlo (MC) methods learn by experience, i.e. by sampling sequences of states,
actions and rewards ([SB98], Chapter 5). They are model-free and do not require complete
knowledge of the environment. In contrast, Model-based methods can use a simulated
environment to collect samples; dynamic programming is an example. Notably, policy
improvement can still be applied in MC.

The first-visit MC estimates the value function by the average of the returns of first
visits to each state s, where a first visit of the state s is the first encounter of that state
in each sample ([SB98], Chapter 5.1). The value function is updated by simply adding
the average difference of the returns received and the current value (see equation 2.10).
Let V (St) = maxa qπ(St, A) for all actions A in the state St; then the update rule is:

V (St)
.= V (St) + 1

visits(St)
(Gt − V (St)) (2.10)

Here visits(St) counts the first visits of this state in. The update rule for a value function
for state-action pairs is similarly constructed. Since the actual return Gt is used in the
update, the learning can only happen after an episode has finished.

11



2. Background

To achieve policy improvement, MC-methods generate a sample episode, update the
value functions, and improve the policy by greedily choosing the highest value in each
step according to the specific update method. Additional details about MC methods are
not covered here, as they are not relevant to this work.

Temporal Difference Learning

Temporal-difference learning (TD) combines MC and DP. TD updates its value function
using the immediate return plus the expected return (see equation 2.11). Like MC, TD
learns from samples, but it does not require a full episode to update its policy. TD uses
estimates to update other estimates of the policy, similar to DP, but does not require
complete models.

V (St)
.= V (St) + α(Rt+1 + γV (St+1) − V (St)) (2.11)

The discount factor γ from above is the same discount used in the return Gt. In particular,
this is referred to as TD(0) or one-step TD, because it only uses the immediate reward
of the next step. n-step TD can be expressed as TD(n − 1) or TD(λ), where the next
n rewards are used to update the value function. Let t be the current time-step. The
difference diff for TD(λ) can be approximated by:

diff = (
t+λ∑︂
k=t

γk−tRk+1) + γλ+1V (St+λ+1) − V (St) (2.12)

TD updates its estimation based on other estimations, thus TD bootstraps. While
MC-methods need one full episode for each learning iteration, TD can learn incrementally
during interaction with the environment, updating its estimates after each time-step.
Nevertheless, both methods can lead to optimal policies ([SB98], Chapter 6.2). Generally,
no method is universally superior to the other, but TD methods tend to converge faster
for most practical applications. Plus, as λ approaches infinity, TD(λ) becomes equivalent
to MC.

On-policy and Off-policy

All RL-methods must address the exploration-exploitation-dilemma ([SB98], Chapter
5.5). In order to learn an optimal policy, non-optimal paths must be explored. However,
exploration of these non-optimal paths requires a non-optimal policy. All methods
discussed so far are called on-policy-methods, where the same policy is used both for
learning optimal behavior and for interacting with the environment. So called off-policy-
methods have two policies, namely a target policy used to learn optimal behavior (to
satisfy exploitation) and a behavior policy used to investigate and interact with the
environment (to satisfy exploration). On-policy methods are simpler and faster, but
off-policy methods are more powerful and tend to converge slower ([SB98], Chapter 5.5).
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TD and MC methods can be used as both on-policies and off-policies. There are several
ways to handle off-policy methods. A common approach for the behavior policy is
to introduce randomness by occasionally selecting suboptimal actions. In ϵ-greedy
exploration, the behavior policy selects the greedy action with a probability of 1 − ϵ and
random action with a probability of ϵ-chance to choose a random action. This simple
approach facilitates general exploration. Similar alterations can be used to transfer any
on-policy method into an off-policy one.

Q-Learning

Q-Learning is one the most known RL-algorithms. It is typically an off-policy one-
step TD control algorithm, which often uses ϵ-greedy-exploration ([SB98], Chapter 6.5).
Q-Learning uses the value function of state-action-pairs:

Q(St, At) ← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a) − Q(St, At)] (2.13)

In tabular Q-learning, the state-action values are initialized in a Q-table of size |S| × |A|.
The target policy is defined by this table, while the behavior uses ϵ-greedy selection
from this table. Furthermore, Q-learning has many different variations. Most notably,
reversed Q-learning stores visited state-action-pairs with their rewards and updates them
in reversed order. This approach accelerates the back-propagation of goal rewards. While
normal Q-learning can only propagate each value one step at a time in a full episode,
reversed Q-learning can update the goal rewards all the way back to the starting state
within the first episode. However, reversed Q-learning must wait for the episode to end
before it can begin learning.

When dealing with high-dimensional sensory inputs like images, tabular Q-learning
becomes infeasible due to state-space explosion and memory limitations. Deep Q-learning
networks (DQN) address this challenge by using experience replay to store generated
samples, which are then randomly grouped into mini-batches to update the neural network
[MKS+13]. This relay stores a fixed amount of the most recent experiences and selects
random subsets to perform an update, helping to avoid oscillations and time-dependencies
in learning. Each output node corresponds to an action and the input is the full-state
representation. This structure turns the DQN into a state-function that outputs values
for all possible actions.
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2.2 Answer Set Programming
Answer set programming (ASP) is an alteration of first-order logic used to express and
to solve theories in default logic. The following subsections introduce default logic, the
syntax and semantics of ASP, as well as some of its frameworks.

2.2.1 Default Logic
Default logic is a subform of plausible reasoning, which combines nonmonotonic behavior
and premature inference to create new beliefs. However, the generated knowledge
is considered plausible within the context the given knowledge base and it may not
necessarily be correct [DM15].

Classical first-order logic is monotonic. For example, if A is a theory in first-order
logic and w is a formula implied by A, then any superset of A also implies w ([Rei80],
Section 1.2). In other words, any conclusion that can be inferred from the theory must
still be derivable if the background knowledge is extended. In contrast, nonmonotonic
behavior permits exceptions to this rule, making certain inferences impossible after
learning additional information. Nonmonotonic reasoning can also be employed to fill
gaps in knowledge bases by introducing consistency assumptions, such as the closed-world
assumption [Rei77].

Default logic [Rei80] expresses non-monotonicity by defaults. Default are rules that allow
"jumping" to conclusions, i.e. to create new plausible deductions. A default is a logical
rule that generally holds, but may have exceptions, or it holds as long as the opposite has
not been proven ([BK14], Chapter 8). Formally, a default (or default-rule) δ is defined as
follows:

δ = ϕ : ψ1, ..., ψn

χ
(2.14)

Here, ϕ is a first-order formula called the prerequisite, ψ1, ..., ψn are first-order formulas
called the justifications, and χ is the resulting conclusion called the consequent ([BK14],
Chapter 8.1). The horizontal line can be seen as an inference rule. A default applies, if the
prerequisite evaluates to true and all justifications can be consistently assumed, meaning
that ¬ψi is not derivable under the current knowledge, for all 1 ≤ i ≤ n. An applicable
default is fulfilled, if the consequent holds. However, adding new knowledge can prevent
the triggering of default rules and thereby allowing for the nonmonotonic behavior. A
default can be simplified by omitting components, which relates to replacement with ⊤.

A default theory Δ = (D, W ) is a pair of a set of defaults and a set of well formed
formulas. A closed formula E is an extension of a closed default theory, if it is a fixpoint
of closure operator Γ (E = Γ(E)) ([Rei80], Chapter 2.2), whereby Γ(S) for any closed set
S of formulas fulfills:

• W ⊆ Γ(S)
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• Cn(Γ(S)) = Γ(S)
• If (ϕ : ψ1, ..., ψn/χ) ∈ D and ϕ ∈ Γ(S), and ¬ψ1, ..., ¬ψn /∈ S, then χ ∈ Γ(S)

In other words, the extensions of default theories are deductively closed sets of formulas.
These extensions contain the formulas of the theory and satisfy all the applicable defaults.
An extension represents the set of conclusions that can be derived under the theory,
considering the default rules that are applicable in a given context.

2.2.2 Syntax of ASP
ASP can be seen as theories within nonmonotonic modal logics, and normal ASP is a
fragment of Reiter’s Default Logic [BET11]. It represents form of declarative programming
designed to solve difficult search problems and hard computational problems [Lif08].
Moreover, ASP provides an encoding of the problem itself and not a algorithm for its
solution ([Lif19], Chapter 1).
ASP-programs are collections of rules consisting of a head and optionally a body. The
most general rule is constructed as follows:

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn . (2.15)

Whereby all letters are literals, bi and cj are optional and k ≥ 1 , e.g. the body can
be empty, but the head has to exist [BET11]. This is a general or extended ASP-rule,
however, there are more restrictive rules, like the following:

Type Syntax Description
fact a. has no body

Horn a ← ¬b1, . . . , ¬bn, bm. has single head-literal and body contains
at most one positive literal with no default
negations

basic a ← b1, . . . , bm. has single head-literal and body contains
no default negations

disjunctive a1 ∨ · · · ∨ ak ← . . . head has multiple literals connected by
disjunctions

constraint ← b1, . . . , bm, not c1, . . . , not cn head is empty and body denotes states
that should not hold

Table 2.1: Common classifications of ASP-rules

If not specified otherwise, extended ASP-rules (2.15) can be expected. A logic program
can be classified by the most complex rule it contains, eg. a single disjunctive rule
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makes the program disjunctive as well. Although defaults and non-disjunctive ASP rules
correspond to one another, their semantics differ.

2.2.3 Semantics of ASP
A rule consisting only of a head is called a fact. For example, the rule ′employed ← .′

means the literal employed evaluates to true (the arrow of a fact is usually omitted).
Further, the not is interpreted as "not derivable" (also called default negation) and the
logically not (or strong negation in ASP) is expressed by ¬ in front of the atoms. All
cj-literals correspond to the logically negated version of the justifications from Default
Logic. An ASP-rule triggers and infers the head to the knowledge base, if the body is
satisfied, i.e. if all bi-atoms are derivable and all cj-atoms are not derivable, then the
head is inferred. As example, the program P with constant Tweety:

bird(Tweety).
canF ly(Tweety) ← bird(X), not unableToF ly(Tweety).

(2.16)

The first rule can be read as "Tweety is a bird" and the second rule states "All birds
that are not known to be unable to fly, can fly". Since unableToF ly(Tweety) is not
derivable and bird(Tweety) can be derived, the second rule can be applied to derive
canF ly(Tweety). However, if the fact penguin(Tweety) is added together with the rule
that penguins cannot fly, then canF ly(Tweety) is no longer inferable.

Extensions also called Answer Sets of a program P are defined on its ground version
grnd(P ) [BET11]. grnd(P ) is obtained by replacing all variables in the program with all
possible constants from its Herbrand Base HB(P ). Formally, HB(P ) of logic program P
is the set of all ground atoms that can be constructed from the predicate symbols of P
using the constants from P ’s Herbrand Universe U . For example, the program P consist
of:

{ p(1, 2). q(x) ← p(x, y), not q(y). } (2.17)

Then U = {1, 2}, and HB(P ) = {p(1, 1), p(1, 2), p(2, 1), p(2, 2), q(1), q(2)}
and grnd(P ) is (by replacement of x and y):

{ q(1) ← p(1, 1), not q(1).
q(1) ← p(1, 2), not q(2).
q(2) ← p(2, 1), not q(1).
q(2) ← p(2, 2), not q(2). }

(2.18)

In order to find an answer set, models fulfilling the rules of the program are used to
define a reduct (also known as Gelfond-Lifschitz reduct [GL88]) of that program under
this model. If the interpretation M is the minimal model of the reduct PM , than M is
an answer set of P [BET11]. The reduct PM is defined as the shortened version of all
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rules whose default-negated atoms are not satisfied by the model M . Concretely, the
reduct PM of an interpretation M and a program P is defined as:

PM = { a1 ∨ · · · ∨ ak ← b1, . . . , bm |
a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn ∈ P,
{c1, . . . , cn} ∩ M = ∅ }

(2.19)

To continue the example from above, an interpretation M = {q(2)} is chosen and the
reduct PM is:

{ p(1, 2). q(1) ← p(1, 1). q(2) ← p(2, 1). } (2.20)

However, the minimal model of this reduct is {p(1, 2)}, thus the model M = {q(2)} is
not an answer set of P . Similarly, it can be shown, that the model M = {p(1, 2), q(1)}
is an answer set of P [GL88]. The answer set of the Tweety-program (see 2.16) is
{bird(Tweety), canF ly(Tweety)}.

The stable model semantics can be reduced to fixpoint nonmonotonic formalisms, like
default logic [GL91]. Non-disjunctive ASP-programs can be described as default theories
where every justification and consequent is a literal, and every prerequisite is a conjunction
of literals. If disjunctions are included then the outcomes differ; for example:

a ∨ b. ⊤ : / a ∨ b (2.21)

Both formulas represent the disjunction of a and b, on the left side as an ASP-fact and
on the right as a fact in default logic. However, in ASP, there are two answer sets of {a}
and {b}, while the result of the default is the logical consequence of their disjunction, i.e.
Cn(a ∨ b).

The solving process can be automated by using Answer Set Solvers (ASP-solvers) [BET11].
These solvers can be enhanced by incorporating techniques from extensively researched
SAT solvers. However, most ASP solvers distinctly separate the grounding and solving
phases from each other.

The solving time depends on the complexity of the ASP-program. A Horn program
can be solved in linear time due to unit propagation, whereas deciding whether a
non-disjunctive logic program has a stable model is NP-complete [Tho93]. Regarding
disjunctive programs, checking the existence of answer sets is ΣP

2 -complete, and deciding
whether a given formula holds in all answer sets is ΠP

2 -complete.

2.2.4 ASP-Frameworks
Clingo1 is developed by the Potassco (Potsdam Answer Set Solvers Collective)2 group at
the University of Potsdam. It is a widely uses tool in the ASP community, combining
features from both the Clasp-solver3 and the Gringo-grounder.

1https://potassco.org/clingo/; accessed on May 2, 2025
2https://potassco.org/; accessed on May 2, 2025
3https://potassco.org/clasp/; accessed on May 2, 2025
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2. Background

Clasp is an answer set solver using concepts from conflict-driven clause learning and
satisfiability checking [GKNS07]. It takes a grounded logic program as input and returns
satisfying answer sets. Additionally, weak constraints are used to facilitate optimization.
Gringo is a grounder system for logic programs under answer set semantics combining
approaches of lparse and dlv [GST07]. It parses an input with free variables into a finite
grounded program. By using λ-restrictions the free variables in the body are bounded
to remove infinite and redundant instantiations. Gringo also employs a back-jumping
algorithm to efficiently handle cycles and irrelevant variables.

Clingo, however, is fusion of Clasp and Gringo to solve ASP while also offering unique
controlling options [GKKS19]. Its syntax is based on ASP rules, extended with simple
arithmetic operations, functions, and common aggregations.

Instead of disjunctions, Clingo uses a ’choice’-operation to handle all subsets of that
choice, as an example:

{p(a); q(b)}. (2.22)

The output will be four answers {∅, {q(b)}, {p(a)}, {p(a), q(b)}}. The choice operation
also allows specifying the size of the selected subsets, but its semantics still differ from
that in ASP. It can be used to generate selections:

action(move(B1, B2)) : − block(B1), block(B2), B1! = B2,

not fixed(B1), not fixed(B2).
{occurs(A, T ) : action(A)} = 1 : − T = 0..h − 1.

(2.23)

This first rule defines stacking of two blocks as a possible option, and the choice then
selects an occurring action at timestamp T . The second rule combines this with weak
constraints, allowing Clingo to generate solutions of combinatorial and planning problems
([Lif19], Chapter 8). There are other important ASP-solvers, like DLV [Nic02], but they
are not considered for this work.
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2.3 Norm Reasoning

Norms, rules, conventions, regulations, beliefs, and laws all share a common semantic
meaning of wishful or expected behavior. Normative reasoning involves analyzing and
evaluating actions to determine their acceptability or ethicality within a given set of
norms. More concretely, a normative system defines behavior constraints for agents,
corresponding to obligations [GMD07]. These systems are challenged by the complexity
and inconsistency of real-world norms, making classical logic in general inapplicable.

2.3.1 Deontic Logic

Deontic logic is a branch of modal logic that uses specialized operators to express norms.
Leibniz stated three fundamental deontic categories, namely the obligatory (debitum),
the permitted (licitum), and the prohibited (illicitum) ([GHP+13], Part 1). Obligations O
should hold in general, prohibitions F are forbidden and permissions P are allowed. These
deontic operators are interrelated, e.g. Fϕ = O¬ϕ, Pϕ = ¬Fϕ. Moreover, some deontic
logics distinguish between strong and weak permission, whereby weak ones encompass
everything that is not explicitly forbidden and strong permissions are explicitly stated in
the norm system [Gov18].

However, many norms generally hold but have exceptions, and certain norms are more
important than others. This results in overruling of certain laws. These aspects are
handled in defeasible deontic logic (DDL), an extension of defeasible logic incorporating
deontic operators, which exhibits non-monotonic behavior. A basic defeasible theory
is defined as a structure (F, R, ≺), consisting of a set of facts, a set of rules (i.e. the
norms) and a preference relation over rules [Gov18]. This system enables the derivation
of definitely provable or rejectable conclusions based solely on facts and strict rules,
as well as defeasibly provable or rejectable inferences, which are validated through
argumentative structures. In essences, the rules for deriving a formula are compared with
the counterarguments, and if the justifications for the inferences are more specific or more
preferable than the ones against it, the formula is defeasibly provable. For example, the
norm ’You should not enter private areas’ is defeasible by another norm ’If a person calls
for help from within a private area, you are allowed to enter’. The preference relation
assigns priorities to laws to resolve potential conflicts.

There are various types of deontic logic, each addressing different challenges. Although
they share the same deontic operators, they differ in structure, axioms, and semantics.
Dyadic deontic logic uses conditional structures to express norms [TÅ91], e.g. O(ψ\ϕ)
means that the ’best’ ϕ-states must be ψ-states or in other words it’s obligatory that ψ
follows ϕ. Other examples include Normative temporal logic [GMD07] and input/output
logic [MvdT00]. The former incorporates elements from temporal logic CTL, while the
latter models a ’blackbox’ reasoning system where norms are triggered by specific inputs,
allowing for different operational modes.
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2.3.2 Standard Deontic Logic

Historically, deontic logic has strong connections to alethic modal logic ([GHP+13], Part
1), leading early approaches to adopt the structures of necessity and possibility. Standard
deontic logic (SDL), also known as monadic deontic logic, is one of the earliest and most
extensively studied deontic frameworks.

Syntax of SDL

The language of monadic deontic formulas φ is defined using the following Backus-Naur
Form ([PvdT18], Chapter 1):

φ = ⊤ | p | ¬ φ | (φ ∧ φ) | Oφ (2.24)

In here, p represents an atomic proposition. This form is syntactically complete for all
classical and deontic operators in SDL. Deontic operators also have a defined scope, i.e.
O(φ) = Oφ, but Oφ ∧ ϕ and O(φ ∧ ϕ) are distinct formulas.

Depending on the choice of axioms, there are different proof systems for SDL. System D
contains the following axioms:

PL ⊢ φ, φ is tautology

MP If ⊢ φ and ⊢ φ → ψ then ⊢ ψ

O-K ⊢ O(φ → ψ) → (Oφ → Oψ)

O-D ⊢ Oφ → Pφ equivalent: ¬O⊥

O-Nec If ⊢ φ then ⊢ Oφ

RMD If ⊢ φ → ψ then ⊢ Oφ → Oψ

Table 2.2: Axioms of system D ([PvdT18], Chapter 1;[GHP+13], Part 1)

O-K and O-D are deontic analogues of the modal axioms K and D. System D is decidable,
sound and complete. Furthermore, some literature refers to this system by KD, as it
incorporates axioms from the Kripke system K. The distinctions between O and □
(respectively between P and ⋄) are often ambiguous. For instance, the O-Nec axiom can
be interpreted analogously to the □ -operator. Moreover, the Andersonian-reduction
[And58] formally proves that the deontic operators can be reduced to alethic ones. Many
stronger systems extend system D to include additional axioms, making them more
robust and expressive, but these extensions are not relevant to this work.
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Semantics of SDL

The semantics of SDL are defined using relational models, inspired by Kripke models.
A relational model M is a tuple (W, R, V ), where W is a non-empty set of states,
R ⊆ W × W is a binary relation over W , and V : P → 2W is a labeling function assigning
each atom p a set of states V (p) ⊆ W ([PvdT18], Chapter 1). Intuitively this means a
model is a directed graph where each note satisfies a set of atoms. If in addition R is
serial, i.e., satisfies the property

∀s ∈ W ∃t ∈ W : sRt (2.25)

then the model itself is serial.

M, s |= p iff s ∈ V (p)

M, s |= ¬φ iff M, s ⊭ φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= Oφ iff ∀t ∈ W (sRt =⇒ M, t |= φ)

Table 2.3: Satisfaction rules of SDL with relational semantics ([PvdT18], Chapter 1)

A state s satisfies a formula in model M under the conditions shown in Table 2.3. Notably,
an obligation Oφ holds if and only if all successor states of s fulfill the respective formula
φ. The notation s |= φ is a shortcut for M, s |= φ if the model is clear from context. If
all states s of M satisfy a formula φ, then the formula φ is valid in the model M .

s1

s3

s2p

p, q

q

Figure 2.3: Relational model A

s1

s3

s2p

p, q

q

Figure 2.4: Relational model B
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In Figure 2.3, there are three states with their corresponding relations and labels. The
formula p holds in s1 and s3, but Op only holds in s1, since s2 is a successor of s3 and it
does not model p. However, Pp holds in both s1 and s3. Because the relation is reflexive,
this is also an example of a serial model.

Moreover, O does not distribute over ∨. For example, in Figure 2.4 the formula O(p ∨ q)
holds, since all successors model either p or q. However, Op ∨ Oq does not hold in s3 and
thus is a counterexample for O(p ∨ q) → Op ∨ Oq. The natural sentence ’It’s obligatory
that A or B’ can be interpreted in these two formulas, but they are not equivalent.
This illustrates that the formulation of the problem affects the solutions. Especially the
scope of the deontic operators is crucial, as example O(p → q) is different to Op → Oq.
There are many other aspects that may behave in counterintuitive ways or even appear
paradoxical (see Subsection 2.3.3).

2.3.3 Deontic Paradoxes

Several deontic logics yield counterintuitive results because their formal properties
sometimes conflict with intuitive notions of normative reasoning. This discrepancy has
led to the emergence of deontic paradoxes, which have since been extensively studied.
While some deontic logics can circumvent certain paradoxes, they do so at the cost of
expressiveness. These paradoxes are not universally resolved but serve as sanity checks to
evaluate the adequacy of a deontic logic [HCE23]. In fact, SDL is riddled with paradoxes
and dilemmas.

In the following subsections, several deontic paradoxes are described, although they are
often concrete examples they reveal ’wrong’ derivations of their formulations in SDL.
Some paradoxes can be categorized based on their focus, for example on RMD (like
Ross, Prior, Åqvist, Good Samaritan), on O-K and O-D (Sartre, Plato), and on deontic
conditionals (Forrester, Fence, Chisholm).

The RMD-axiom (also called RM, see 2.2) enables the application of deontic operators to
logical conclusions. However, when combined with classical logical inferences, it can lead
to unintended obligations. Axioms O-K and O-D allow distribution of and implications
among the deontic operators, but they do not provide mechanisms for resolving situations
where multiple plausible obligations exist.

Deontic conditionals analyze the dependency of norms. An according-to-duty obligation
follows a normal obligation by requiring additional imperatives. However, norms can also
take the form of ’You ought to do A, but if you do not A, then you must definitely do B’
[Chi63]. These are so called contrary-to-duty obligations (CTD). CTDs serve two primary
functions: defining "acceptable" behavior in otherwise undesirable or critical situations
and specifying the consequences of norm violations. Another important aspect is the
type of detachment in conditional obligations of the form p → Oq and O(p → q). While
an obligation triggers the other, a fact triggers the first. More concretely, if p holds, the
factual detachment yields Oq, and if Op holds, the deontic detachment yields Oq. These
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correspond to the narrow and wide scopes of the deontic operator O, however there is no
general rule which type of detachment should be used in SDL ([GHP+13], Chapter 1).

Ultimately, deontic paradoxes highlight that while deontic logic offers a powerful frame-
work for reasoning about obligations, it falls short of fully capturing human moral
judgment. These paradoxes challenge logicians and ethicists to refine formal systems to
better account for the complexities of moral and legal reasoning while recognizing that
no formal system can entirely eliminate paradoxes.

Ross’s Paradox

Ross’s paradox reveals the differences between logical value-functions in context of
imperatives. The case of disjunction is particularly interesting:

A → A ∨ B

OA → O(A ∨ B)
(2.26)

In classical logic, A → A ∨ B is valid. Applying RMD-axiom allows both sides to be
wrapped in the O-operator. For example, if the imperative ’slip the letter into the
mail-box’ is satisfied, then the imperative ’either slip the letter into the mail-box or burn
it’ also holds [Ros44]. But burning the letter is contradicting the original obligation.
Notably, the second statement holds in all models of SDL because the combination of
OA and P (¬A ∧ ¬B) is unsatisfiable.

Prior’s Paradox (Paradox of Derived Obligation)

For Prior’s paradox, the material implication of classical logic was investigated in context
of conditional obligations. Although original focused on conditional omniscient rules
[Pri62], it reveals complications under the deontic operators.

¬A → (A → B)
O¬A → O(A → B)

(2.27)

The paradox is inspired by the ’ex falso quodlibet’-principle, but deontic logic allows
deriving any arbitrary obligation from a forbidden formula [Han08]. For example, from
’I shall not trespass private property, one could derive ’If I do trespass, then I must steal
everything’.

Paradox of the Good Samaritan

The paradox of the Good Samaritan reveals issues with conjuncted statements that
express good intentions but result in deriving bad obligations [Åqv67].

(A ∧ B) → B

O(A ∧ B) → OB
(2.28)
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If we formulate ’Smith helps Jones, who is being robbed’, i.e. ’Smith helps Jones and
Jones is being robbed’ as A ∧ B, then the obligation of robbing Jones can be derived.
The problem arises because the undesirable state (the robbery) is included in the good
obligation (helping Jones). Similar structures in this paradox consistently lead to the
undesirable state becoming a mandatory norm [Han08].

Åqvist’s Paradox of Epistemic Obligation

Sometime, certain norms are only triggered if the agent is fully aware of the situation
or knows necessary details. By extending SDL with a new ’knowledge’-operator K the
paradox of Epistemic Obligation might occur. Here, Kφ indicates that the agent knows
φ, and the additional axiom Kφ → φ holds [Åqv67]. This extended version of SDL is
also susceptible to other paradoxes; for example, the Good Samaritan paradox persists
even with the inclusion of the KK-operator.

A

OKA → OA
(2.29)

As example, let A be ’The bank is being robbed’ and OKA be ’The guard is obligated to
know that the bank is being robbed’. By applying the axiom Kφ → φ, OA is derivable,
i.e. ’The bank must be robbed’([GHP+13], Chapter 1). This paradox demonstrates that
incorporating aspects of epistemic logic into SDL generates even more paradoxes, as the
combination can lead to unintended and counterintuitive conclusions.

Paradox of Free Choice

The paradox of free choice analyzes the implications of permission combined with dis-
junctions. A typical form of this paradox involves the selection of the next action, where
it is permitted to choose a move from a set of possible actions.

P (A ∨ B) → PA ∧ PB

PA → P (A ∨ B) → PB
(2.30)

For example ’You may have cake or ice cream’ implies ’You may have cake and you may
have ice cream’ (but not necessarily both), and this seems to hold in general for all A and
B. However, from RMD we know that A → A ∨ B, so PA → P (A ∨ B) and using the
implication above this ends with PB. This means if anything is permitted, permission of
any formula can be concluded. This becomes especially problematic when B = ⊥. In this
case, the formula P⊥ would follow, meaning that a logically impossible or contradictory
action is permitted ([GHP+13], Chapter 1).

Sartre’s Dilemma

Norms can be conflicting each other, but a plausible resolutions is still desirable.
OA

O¬A
(2.31)
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Sartre’s Dilemma starts with the formulation of a conflict, as example ’I must meet Mary’
and ’I must not meet Mary’. By applying the O-D-axiom both norms become possible,
although they should be excluding each other ([GHP+13], Chapter 1).

Plato’s Dilemma

Often, several norms define the next expected move. While they may be logically
independent and not inconsistent, they present an issue for SDL:

OA ∧ OB

A ∧ B is not executable simultaneously
(2.32)

In here, A and B can be replaced by ’I’m obligated to meet you now for dinner’ and
’I’m obligated to rush my child now to the hospital’. Clearly, both cannot be satisfied
simultaneously and resolving involves preferences of concepts of defeasibility, which SDL
is lacking ([GHP+13], Chapter 1).

Forrester Paradox (The Gentle Murder Paradox)

The Forrester paradox analyzes CTDs and demonstrates how it is possible to conclude
an obligation that contradicts the original duty [For84].

O¬A ; A → OAB

if A and AB → A, then OA
(2.33)

Let A be ’killing someone’ and AB ’killing only gently’. The above example starts with
the CTD: ’You shall not murder’, but ’If you do murder, then you must do it gently’. If a
murder has happened, then you are obligated to do it gently. Because a gently kill is still
a kill, the O-K -axiom can be applied (O(AB → A) → (OAB → OA)). After that the
obligation ’You should kill someone’ can be derived, and thus leading to a contradiction.

Fence Paradox

The Fence paradox is related to CTDs and exceptions. This paradox focuses on concrete
states rather than evaluating the next actions, i.e. it deals with ’ought-to-be’ instead of
’ought-to-do’ [PS96]. It has several forms, but in general it reveals that obligations on
abstract states always involve expectations, CTDs or other defeasible structures:

there must be no fence
if there is a fence then it must be a white fence
if the cottage property includes a cliff edge, there may be a fence
there is a fence

(2.34)

The example above shows how oversimplified representations of norms can lead to
contradictions in legal reasoning or ethical deliberation. Especially when the norms
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are not abstract or consistent enough, the derived set of obligations differ significantly
([GHP+13], Chapter 1). For instance, questions arise such as: which rule applies for a
red fence? Is it permitted to have a fence around a cottage property near a cliff edge?

Chisholm’s Paradox

CTDs define norms following neglection of other duties. Chisholm analyzed the effects of
CTDs in SDL and defined the Chisholm’s paradox [Chi63]:

It ought to be that Jones goes to the assistance of his neighbors.
It ought to be that, if Jones goes to the assistance of his neighbors,

then he tells them he is coming.
If Jones does not go to the assistance of his neighbors,

then he ought not to tell them he is coming.
Jones does not go to the assistance of his neighbors.

(2.35)

All statements are mutually consistent and logically independent from each other, but
their formalization in SDL makes them mutually inconsistent or no longer independent
from each other ([PvdT18], Chapter 1). Since the O-operator can be in wide or narrow
scope, there are two options for the inner statements resulting in four formulations of
that paradox. As an example, the following SDL formulas represent two formulations
the paradox above:

Og

O(g → t)
¬g → O¬t

¬g

(2.36)

Og

O(g → t)
O(¬g → ¬t)
¬g

(2.37)

Both formulations 2.36 and 2.37 express Chisholm’s paradox, but they behave differently.
The left formulation is inconsistent, because any model must have a state with ¬g, its
successors must then have ¬t, but from Og and O(g → t), all successors must have t.
Because no successor can model both t and ¬t, a contradiction arises. In 2.37, we have
Og ⊢ O(¬g → ¬t) and thus those formulas are not independent of each other. All other
formulations exhibit similar issues and in fact Chisholm’s example cannot be represented
in a satisfactory way in SDL ([GHP+13], Chapter 1).

2.3.4 Expressing Deontic Logic in ASP
Since both ASP and defeasible deontic logic (DDL) contain non-monotonic aspects,
established ASP-solvers can substitute reasoners of deontic logic. Although it is not
possible to use ASP to compute proper extensions of a DDL theory, answer sets can
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still serve as a feasible solutions. As a result, DDL reasoning can be utilized as a meta-
program, whereby ASP serves as the programming language for implementing DDL and
its reasoning processes [Gov24].

ASP offers exception handling of weak and strong negation, allowing formulations and
handling of CTDs. Defeasibility, however, requires norm-preferences to resolve situations
where multiple contradicting rules may apply. In one approach, the norms are manually
ordered in a superior-inferior relation and predicates for defeasible, conflict and facts
are defined. This allows the ASP solver to prioritize the most superior rule in case of
dilemmas and simulate defeasible extensions [Gov24].

Another approach uses ASP’s weak constraints. While constraints cut the solution space,
weak constraints are used for optimization. Typically, ASP solver offer weight and level
for these weak constraints. By restricting their negated or violated form, norms can be
formulated as weak constraints [HCE23].

Both the O-K and RMD-axioms can be simulated in ASP by these approaches. However,
there is much more work done on deontic ASP, like [CCvdT23]. This and other papers
are described in more detail in Chapter 6 on related work.
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CHAPTER 3
Methodology

This Chapter describes the framework used for the experiments and elaborates on concrete
design choices of this work.

3.1 Framework
The framework combines an RL component with an ASP planner that considers deontic
norms in a specific environment called FrozenLake. It is implemented in Python and stored
on GitHub 1. Furthermore, it integrates OpenAI’s Gym2 to include the FrozenLake3,
and Potassco’s Telingo4 as the ASP solver.

The framework runs experiments based on dedicated configurations. In each experiment,
a behavior policy is trained, a target policy is evaluated, and the results of both training
and final evaluations are stored as outputs. Additionally, the behavior policy can utilize
the ASP planner to trigger a reasoning process that optimizes the path by minimizing
expected violations.

3.1.1 FrozenLake
Original Version

The FrozenLake is a non-deterministic environment composed of connected tiles, where
each tile can be either be a hole or frozen. It also includes a starting tile and at least one
goal tile. The agent attempts to cross the lake by moving to nearby tiles, but diagonal

1https://github.com/Gnosling/FrozenLake_DeonticASP; accessed on May 2, 2025
2https://gymnasium.farama.org/; accessed on May 2, 2025
3https://gymnasium.farama.org/environments/toy_text/frozen_lake/;

accessed on May 2, 2025
4https://potassco.org/labs/telingo/; accessed on May 2, 2025
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movements are not permitted. However, the environment may push the agent in a
different way based on probability of sliding.

OpenAI is an AI research and deployment company whose OpenAI Gym (also called
Gymnasium) is a toolkit for developing and comparing RL-algorithms (see [BCP+16]).
It is composed of various environments ranging from Atari games and text adventures to
virtual robotics and control. All environments are implemented in open-source Python
code and can be adjusted as needed. Furthermore, this collection was specifically designed
to support any RL research by providing predefined environments. However, we were
only using the "Toy Text"-environment FrozenLake.

The FrozenLake environment is represented using ASCII characters, and its source code
is available on GitHub5. The environment is a rectangle (or even a square) consisting
of atomic tiles. Each tile is either a hole or frozen, with one frozen tile serving as the
starting position and at least one other frozen tile designated as the goal. The tile types
are represented by letters: S means start, G means goal, H means hole, and F means
frozen. An example is shown in Figure 3.2.

Figure 3.1:
4x4_A (pixelated)
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Figure 3.2:
FrozenLake-Level: 4x4_A
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Figure 3.3:
FrozenLake-Level: 4x4_B

The agent begins at the starting tile and needs to reach the goal tile to successfully
complete the environment while avoiding holes. The episode ends when the agent enters
either a hole or the goal tile. There are four possible actions, namely left, down, right
and up encoded by number zero to three in that order. All four actions are possible in
each non-terminal tile. Although there is no option to wait, in some states actions can
result in no movement at all. For example, if the agent is on the upper edge of the grid
and attempts to move up, it remains on the same tile. The positions are represented by
numbers counting the tiles, e.g. for Figure 3.2 the first row is labeled 0, 1, 2, 3, the second
row 4, 5, 6, 7 and so on. Movements can then be computed by adding or subtracting
either 1 or the width of the level.

The FrozenLake environment can have arbitrary configurations of holes and frozen tiles;
extensions that allow for diagonal movements and/or multiple goals may be considered.
However, in this work we confine to a single goal and the four original actions.

5https://github.com/openai/gym?tab=readme-ov-file; accessed on May 2, 2025
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The rewards of the FrozenLake are simple. A reward of +1 is given only when the goal is
reached. All other states have a reward of ±0. Notably, falling into a hole or performing
a redundant action does not result in a negative reward.

This environment also exhibits non-deterministic behavior, as the lake is slippery. There
is a 1

3 chance that the chosen action will actually happen, while there is also a 2
3 chance

that the agent will slip 90° away from the intended direction. This slip can occur either
90° clockwise or 90° counterclockwise, each with a probability of 1

3 . Therefore, the agent
can only exclude one movement direction with certainty, while all other actions have
equal likelihood of occurring. Moving right, for example, has a chance of 1

3 to slip right,
down and up each, while sliding left is impossible. The slipperiness of the FrozenLake is
unknown to the agent though.

Furthermore, there may be safe tiles that do not border a hole tile in their 4-neighborhood.
For instance, in Figure 3.2 the first row consists only of two safe positions, namely the
starting tile and the third cell. If a safe path from start to goal exist, it would be
an optimal solution. Otherwise the path with the fewest unsafe tiles would yield the
highest return as it has the lowest change of sliding into a hole. Figure 3.3 illustrates a
FrozenLake level with no safe path, but moving along the left and lower edges forms an
almost completely safe path to the goal. Additionally, by choosing to move left along the
left edge, the agent can never fall into a hole, as the single adjacent hole can only be
reached by sliding right, which is impossible. This strategy allows the agent to continue
sliding along the left edge until it reaches the bottom-left corner, from where it can
repeatedly choose to move down. Although this may take many steps, the agent will
eventually reach the goal tile in a guaranteed safe manner.

Adjustments

To create more nuanced norms and fine-tune the training, several modifications were
made to the FrozenLake environment. First, the slipperiness was reduced to 20%, with
10% for turning left or right each. As a result, the expected probability of executing
the selected action is now 80%. This change significantly reduces the randomness in the
FrozenLake, allowing the agent to have more control over its movement.

Next, a dynamic obstacle called the traverser was added. This ’enemy’ does not harm the
agent or affect the rewards. The traverser moves independently across the FrozenLake
following a given deterministic pattern, which may include jumps to distant tiles. The
agent, however, is unaware of the next movement of the traverser and both are allowed
to occupy the same tile. Due to the hard-coded behavior, the traverser is not another
agent but rather an extension to the environment itself. Moreover, a new tile was added
called ’cracked’ (C). This tile can only support one object, i.e. either the traverser or the
agent. If both are simultaneously on the same cracked tile, then it snaps and becomes a
hole, thereby terminating the episode. If there is no traverser in the level, all cracked
tiles behave like frozen tiles. Furthermore, the cracks are visible to the agent.
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Lastly, another tile type called ’present’ (P ) was added. Presents serve as an optional
subgoal yielding one-time internal rewards, though the external rewards remain unchanged.
In other words, the agent has an internal motivation to collect the presents, but they
have no effect on crossing the FrozenLake. However, if the traverser reaches a present
before the agent, it vanishes and becomes a normal frozen tile. If both the agent and
the traverser land on the present tile at the same time, the agent always picks it up
first. Presents cannot be placed on hole tiles, cracked tiles, or the goal, and they do not
respawn. For example, Figure 3.4 contains cracked tiles and presents, that are not on the
traverser’s path.

S

HF
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C P
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F

F

F F

F F

FF
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Figure 3.4: FrozenLake-Level 4x4_C

3.1.2 MDP-Representation
For model-free approaches the framework is reduced to RL learning. In contrast, model-
based approaches can either use one model for representing the MDP and another model
for planning, or a single model for both aspects. For the latter, the MDP is encoded
in Potassco’s Telingo [CKMS19]. Telingo is an extension of Clingo (see 3.1.4). Various
strategies are available for triggering the planning component, such as random activation
or activation only on first visits. While the planning component alone could solve the
environment, the RL component should not be permanently overruled, as adaptive
learning is necessary in dynamic environments, and exploration may lead to the discovery
of more economic behaviors. Note, that the planning is also more time-consuming than
the used RL-algorithms.

The MDP is composed of several Telingo files, each serving a specific purpose. One file
handles the general interface of all MDPs used, while another represents the universal
FrozenLake. Additional files define the specific level configuration, the deontic norms,
the evaluation of violations and rewards, and the insertion of dynamic parameters. At
the top, general predicates such as choosing an executable move are defined, and the
Frozenlake-reasoner contains the allowed movement and expected transitions with internal
rewards. Moreover, the evaluation file compares the violations and rewards to optimize
the action-path. By separating these layers into their own files, the framework can use
the same ASP process for various instances.

The transition itself is an ASP-solving process, whereby current states are inputted and an
optimal path is computed whose first action is returned. Furthermore, a planning-horizon
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Algorithm 3.1: Q-Learning
Input: learning-rate α (0 ≤ α ≤ 1), discount-factor γ (0 ≤ γ ≤ 1), step-limit sl

(1 ≤ sl), starting-state initial_state, markov decision process mdp
Output: Estimation of π ≈ π∗

1 π ← initialisation dictionary;
2 Q(s, a) ← initialisation dictionary;
3 St ← initial_state;
4 mdp.set_state(St);
5 while sl > 0 and not terminal(St) do
6 sl ← sl − 1;
7 At ← π(St);
8 St+1, Rt ← mdp.transition(At);
9 Gt ← Rt + γ arg maxa Q(St+1, a);

10 Q(St, At) ← Q(St, At) + α(Gt − Q(St, At));
11 π(St) ← arg maxa Q(St, a);
12 St ← St+1;
13 end
14 return π;

parameter is used to plan up to the next n steps allowing configurations for long-term
and for short-sighted planning.

3.1.3 RL-Learning

The framework uses tabular Q-learning with full state-action pairs. Depending on the
initialization strategy, all values are filled with a default value, e.g. 0 or random. Q-
learning is an off-policy, one-step TD control algorithm (see Chapter 2.1.4). A value
function Q(s, a) is used to estimate the return of taking action a in state s. The update
is done iteratively, using the intermediate reward and the estimation for the next state
(see Equation 2.13 and Algorithm 3.1). This algorithm uses a constant learning rate to
scale the update of the value function, a discount-factor to weaken the influence of future
rewards, a MDP to perform a transition, e.g. to interact with the environment, and also
a step-limit-parameter used to define maximum length of a training-episode.

However, Algorithm 3.1 shows only one policy (mainly for simplification purposes). In
standard Q-learning, there is typically a target policy used for training and a behavior
policy used for exploration, whereby π(St) defines the next proposed action. In our work,
we also used both policies with different strategies. The target is a simple greedy policy
always returning the best learned action, while the behavior is an ϵ-greedy policy with a
chance of ϵ to execute a random action.

Furthermore, we also used reversed Q-learning (see Algorithm 3.2). Reversed Q-learning
stores each visited state-action-pair, its return, and its successor-state, allowing the value

33



3. Methodology

Algorithm 3.2: reversed Q-Learning
Input: learning-rate α (0 ≤ α ≤ 1), discount-factor γ (0 ≤ γ ≤ 1), step-limit sl

(1 ≤ sl), starting-state initial_state, markov decision process mdp
Output: Estimation of π ≈ π∗

1 π ← initialisation dictionary;
2 Q(s, a) ← initialisation dictionary;
3 St ← initial_state;
4 mdp.set_state(St);
5 memory ← empty list;
6 while sl > 0 and not terminal(St) do
7 sl ← sl − 1;
8 At ← π(St);
9 St+1, Rt ← mdp.transition(At);

10 memory.append(St, At, Rt, St+1);
11 St ← St+1;
12 end
13 for St, At, Rt, St+1 in reversed(memory) do
14 Gt ← Rt + γ arg maxa Q(St+1, a);
15 Q(St, At) ← Q(St, At) + α(Gt − Q(St, At));
16 π(St) ← arg maxa Q(St, a);
17 end
18 return π;

function to be updated in reverse at the end of an episode. Because the FrozenLake
only has a single feedback when reaching the goal-tile, this method enables a faster
backpropagation of the final reward. For instance, in normal Q-learning, the goal reward
can only be updated to its predecessor in one episode, whereas in reversed Q-learning,
this reward can be propagated all the way back to the initial state in a single episode
(although the reward will shrink due to the discount factor and learning rate).

The possible actions are the four movement options already described. However, the
states must include more than just the agent’s current position due to the dynamic
aspects of the environment. In our framework, a state is represented as a tuple composed
of the agent’s current position, the traverser’s current position, and a sorted list of the
remaining presents. The Q-table stores values for all actions in each state. With n being
the number of tiles, the state space consists of n options for the position of the agent, n
options for the position of the traverser, and 2n options for the locations of presents (as
they are a subset of the tiles). However, by limiting the maximum of presents to three
and because the majority of experiments do not include presents, the state space remains
polynomial, i.e. in O(n2 · c) with c < 8 being a constant.

Lastly the Q-Table can be initialized according to different strategies. In our experiments,
we used all_zero, random, distance, safe and so-called potential functions as initial-
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ization methods. The distance strategy sets state-action pairs to the value of difference
of distances of current state and successor state. safe initialization gives benefits to
actions leading into safe tiles (i.e. tiles with no hole next to it). The potential functions
are defined in Section 3.1.5 and can be applied to the state-action pairs to retrieve values
that represent their norm compliance.

3.1.4 ASP-Planning

This component uses ASP to model the environment and plan the next actions. It
searches for an optimal path by maximizing internal rewards, minimizing violations of
norms and by comparing and resolving conflicting norms (see Chapter 3.1.5). The planner
outputs the first action of the optimal path and is triggered according to a given planning
strategy. It plans up to the next n actions to yield the expected ’best’ path, whereby
n is the planning_horizon parameter defined by the experiment configuration. Ideally,
this planning should provide the agent with a start bonus and positively influence the
learning speed. However, the planning component only serves to boost the RL learning,
and it is not used to solve the MDP though.

The integration of the planning-model is similar to the MDP model as discussed earlier,
consisting of models for the abstract MDP, the general environment, the concrete level-
data, the deontic reasoning, etc. However, the environment and the planned model vary
from each other, such as by having different rewards, restricting certain moves and by
employing slipperiness. By using an internal reward of −1 for any action, the agent is
penalized for taking redundant steps. Dynamic aspects are inputted in the model at each
step, as example, the current position of the agent, of the traverser, and the remaining
presents are stored in a temporary file. While the observable layout is fully represented,
the agent remains unaware of the sliding probabilities and the traverser’s path. Thus,
the model is incomplete.

Telingo6 is an extension of Clingo with temporal operators over finite linear time, that
uses multi-shot solving for unfolding solutions over sequential states [CKMS19]. It allows
for planning in dynamic situations with temporal conditions. Moreover, formulas can be
grouped into active sections:

#program always. rules apply in all states

#program initial. rules apply in first state

#program final. rules apply in last state

#program dynamic. rules apply everywhere, except first state

Table 3.1: Program parts of Telingo

6https://potassco.org/labs/telingo/; accessed on May 2, 2025
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Telingo supports typical boolean operators and advanced time-constructs and bounded
operators, like dynamic ranges, until φ, eventually, etc. It can also refer to successor and
predecessor states of predicates. For instance, ′p(X) is the value of p in the last state
and p′(X) is used to refer to values of the next state. In this work, Telingo is primarily
used to express the state transitions and previous moves within the FrozenLake.

The general-reasoning file selects the next action (see Listing 3.1).

1 #program always.
2 {act(move(X)) : executable(move(X)), allowedAction(move(X))} = 1 :-

not terminalStateReached.

Listing 3.1: Excerpt from general_reasoning.dl

Dynamic parameters are inputted as facts into a special file, as example:

1 #program initial.
2 currentState(4).
3 currentStateOfTraverser(7).
4 lastPerformedAction(move(down)).

Listing 3.2: Excerpt from dynamic_parameters.dl

The actual planning model therefore only needs to represent the environment. See Listing
3.3:

1 #program always.
2
3 % define possible actions
4 executable(move(left)) :- currentState(L), frozen(L-1), not leftEdge(

L), not terminalStateReached.
5 executable(move(down)) :- currentState(L), frozen(L+width), not

lowerEdge(L), not terminalStateReached.
6 executable(move(right)) :- currentState(L), frozen(L+1), not

rightEdge(L), not terminalStateReached.
7 executable(move(up)) :- currentState(L), frozen(L-width), not

upperEdge(L), not terminalStateReached.
8
9 % assume traverser stays

10 currentStateOfTraverser(X) :- ’currentStateOfTraverser(X).
11
12 % define transitions
13 currentState(L-1) :- ’act(move(left)), ’currentState(L), not leftEdge

(L).
14 currentState(L) :- ’act(move(left)), ’currentState(L), leftEdge(L).
15 currentState(L+1) :- ’act(move(right)), ’currentState(L), not

rightEdge(L).
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16 currentState(L) :- ’act(move(right)), ’currentState(L), rightEdge(L).
17 currentState(L-width):- ’act(move(up)), ’currentState(L), not

upperEdge(L).
18 currentState(L):- ’act(move(up)), ’currentState(L), upperEdge(L).
19 currentState(L+width) :- ’act(move(down)), ’currentState(L), not

lowerEdge(L).
20 currentState(L) :- ’act(move(down)), ’currentState(L), lowerEdge(L).
21 :- currentState(X), currentState(Y), X != Y.
22
23 % define termination
24 goalStateReached :- currentState(S), goal(S).
25 failedStateReached :- currentState(S), hole(S).
26 failedStateReached :- currentState(S), currentStateOfTraverser(S),

cracked(S).
27 terminalStateReached :- goalStateReached.
28 terminalStateReached :- failedStateReached.

Listing 3.3: Excerpt from frozenlake_reasoning.lp

As already mentioned, the states of FrozenLake are represented by the current position,
and the tiles are expressed as positive integers in a grid-array (see Subsection 3.1.1). Thus,
state-transitions can be computed. For example moving left corresponds to subtracting 1
from the current position. Additionally, specific data such as the goal, current position,
holes, and edges are added dynamically. Because all rules are within # program always,
they apply to every state.

Furthermore, this model prevents movement against edges, e.g. moving up is prohibited,
if the agent is on the upper edge of the FrozenLake. It also does not model the slipperiness
of the lake, as all actions are modeled fully deterministic. While the FrozenLake only
has a reward of +1 on the goal-tile, this model has a negative reward of −1 for each
move, −100 for falling into a hole, +100 for reaching the goal, and +30 for picking up
a present. These rewards are defined in dedicated files. However, the rewards in the
planning model are not utilized in the RL component, as the primary objective remains
successfully crossing the lake. Additionally, the agent assumes that the traverser remains
on its current tile, as it cannot reliably predict its movement.

Next, the planning-strategies define the triggering of the planner. When activated, the
planner’s output overrides the proposal from the Q-table. There are five strategies,
namely:

• no_planning (model-free)
• full_planning (triggers always)
• plan_for_new_states (only plans on first visits of states)
• delta_greedy_planning
• delta_decaying_planning

The parameter delta is specified by the configuration and is used to compute the proba-
bility of triggering. Specifically, δ represents the probability in the greedy strategy, while
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the decaying strategy uses the function decay_value(n) = e−δ·n, where the decay starts
initially with value 1 and n is the number of previous steps.

Lastly, the planner operates as a dedicated subprocess that generates all shortest paths
for each step-size up to the planning_horizon within a time limit of 60 seconds. During
postprocessing, the optimal action for each solution length is extracted from the output
and returned to the policy class.

3.1.5 Deontic-Integration
The deontic aspects are handled by Telingo as additional inputs. The norms are organized
into distinct files, and the evaluation strategies are also stored separately.

There are 10 norms being used in the experiments and they are tracked as their negation,
i.e. their violation (see Table 3.2).

notReachedGoal the agent did not end the episode on the goal tile

occupiedTraverserTile the agent moved on the current tile of the traverser

turnedOnTraverserTile the agent was on the traverser-tile and did not
repeat its last performed action

stolePresent the agent entered a tile with a present

missedPresents the agent did not collect all remaining presents
before the episode finished

movedAwayFromGoal the agent moved to a tile strictly further away from
the goal

didNotMoveTowardsGoal the agent did not move to a tile strictly closer to
the goal

leftSafeArea the agent moved from a safe tile to an unsafe one

didNotReturnToSafeArea the agent was on an unsafe tile and did not move
on top of a safe one

Table 3.2: Norms as violations

notReachedGoal is a simple ’success’-norm. Because the FrozenLake has a single
reward of +1 at the goal, this norm corresponds to the return of the episode. The
traverser is a dynamic obstacle affecting the norms occupiedTraverserTile and turne-
dOnTraverserTile, where the latter is a CTD of the first one. The norms related to
presents are in conflict with each other and will influence the internal rewards of the
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planning component. Specifically, the agent must evaluate whether the benefit of picking
up a present outweighs the violation of stealing it. Furthermore, there are two norms
affecting progress towards the goal. Both movedAwayFromGoal and didNotMove-
TowardsGoal are rules to get closer to the goal, however the first one permits no real
movements (like sliding into the same position on edges), whereas the second one does
not. Finally, some tiles can be considered safe, where a tile is safe if it and its four
adjacent neighbors are not hole tiles. If the agent moves only on safe tiles, then all holes
are completely avoided. leftSafeArea instructs the agent to remain on safe tiles and
didNotReturnToSafeArea is thus a CTD.

The set of norms are stored in separate files. Each norm is represented as a deontic
operator containing a derivable atom. If the atom is inferred, then it is added as a
currentV iolation(. . . ) into the respective step of Telingo. The CTDs use information
about the last performed action, which is inserted dynamically. Note that the performed
action refers to the movement executed, which may differ from the intended one. Ad-
ditionally norms are assigned a level, which is used in the evaluation to prioritize and
weight rules. The higher the level, the more important the norm is. An example is shown
in Listing 3.4, which defines occupiedTraverserTile, turnedOnTraverserTile and
notReachedGoal.

1 #program always.
2
3 % The agent must not be on the same tile as the traverser
4 forbidden(occupiedTraverserTile).
5 occupiedTraverserTile :- currentState(X), currentStateOfTraverser(Y),

X=Y.
6 currentViolation(forbidden(occupiedTraverserTile)) :- forbidden(

occupiedTraverserTile), occupiedTraverserTile.
7 level(occupiedTraverserTile,2).
8
9 % If the agent and traverser occupy the same tile, then the agent

must move straight
10 forbidden(turnedOnTraverserTile).
11 turnedOnTraverserTile :- occupiedTraverserTile, act(move(X)),

lastPerformedAction(move(Y)), X != Y.
12 currentViolation(forbidden(turnedOnTraverserTile)) :- forbidden(

turnedOnTraverserTile), turnedOnTraverserTile.
13 level(turnedOnTraverserTile,3).
14
15
16 % The agent must reach the goal tile
17 obligatory(reachedGoal).
18 level(reachedGoal,4).
19 #program final.
20 currentViolation(obligatory(reachedGoal)) :- not reachedGoal.

Listing 3.4: Excerpt from deontic_norms_2.lp
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The active norms and their level are defined by the respective file stated in the experiment
configuration. All norms with their default settings can be found in the Appendix (see
Listing 7.1).

The model is designed to find an optimal path for solving the level, which involves simulta-
neously maximizing rewards and minimizing violations. To configure this multi-objective
optimization, different evaluation strategies are employed. The most commonly used
setting applies weak constraints to prioritize by weight (see Listing 3.5). Other evaluation
strategies are also available, including optimizations focused on either rewards or norms,
or a scaling function that quantifies both rewards and violations into a single objective
(see Listing 3.6).

1 benefits(E) :- rewards(R), E = 1 * R.
2
3 #program final.
4 #maximize {E@1 : benefits(E)}.
5 #minimize {V@L : violationsOfLevel(V,L)}.

Listing 3.5: Excerpt from evaluations_4.lp

1 penaltyPerLevel(X,L) :- X = #sum { V * U : violationsOfLevel(V,U), U=
L}, violationsOfLevel(_,L).

2 penalty(P) :- P = #sum { X, L : penaltyPerLevel(X,L) }.
3 benefits(G) :- rewards(R), G = 1 * R.
4
5 eval(E) :- penalty(P), benefits(G), E = G - P.
6
7 #program final.
8 #maximize {E@1 : eval(E)}.

Listing 3.6: Excerpt from evaluations_2.lp

Telingo optimizes the objective with the highest level first for each step size, regardless of
the lower-level objectives. Each violation is counted at most once per step. If a norm has
a level of 1, its violation will be evaluated against a reward of 1, meaning the violation
results in a penalty of −1 into the benefits. Furthermore, other evaluation strategies
focus exclusively on rewards, only violations, or use an objective function that translates
both violations and rewards into a numeric value.

The output of the planning component is an optimal path for each step size up to the
value of planning_horizon. A post-processor is applied to identify the best path size and
extract its corresponding action as the agent’s selection. The optimal path is the shortest
path with the highest value based on the highest optimization criteria. In addition, a
cache is implemented to store past computations. If the inputs are identical, the cache
directly outputs the planned action without triggering the actual solving process.
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3.1.6 Norm-Enforcing
The deontic integration enables the agent to use planning to follow norms during the
training phase, with the expectation that it will learn lawful behavior in the final Q-
table. However, additional enforcements can be employed to further improve the agent’s
behavior. These deontic reinforcers can be applied at different stages of the RL cycle
(see Figure 3.5).

Action-
Suggestion

Action-
Execution

Env

Interact Observe

              Propose Action

Figure 3.5: RL-cycle with markings for enforcements

In this work, three enforcement strategies were tested, namely guardrailing of allowed
actions, fixing of proposed actions and shaping of rewards. These strategies can be
combined and activated both during and after training. During training, the enforcement
is applied on the behavior policy, whereas after training, the target policy is evaluated
first without and then with enforcement. Moreover, the enforced norms may differ from
the ones used in learning. Depending on the strategy, enforcing the most critical norms
or all norms will yield different results.

Action-Guardrailing is a restriction of the allowed actions before they are passed to
the agent. The expected next state for each action is constructed, the violations are
computed, and then a set of actions with minimal violations is returned. The component
does not use planning and checks only the next step. However, these restrictions could
potentially cut off optimal paths and limit explorations.

Next, Policy-Fixing triggers the planning component after the agent made its suggestion
for the next action. It constructs a suggested path of a given length from the state-action
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pairs in the Q-Table. For instance, the first action, ’down’, has an expected successor
state, and the highest action value in that state determines the next action. The fixing
then uses planning to validate this path and in case of violations, a fix is planned, with
the first action of the fixed path executed instead of the original suggestion. Unlike
the normal planning, this approach can enforce different norms and also use separate
horizons for checking and fixing. As example, it may check the next three steps and
construct fixed paths of greater length. Nonetheless this component overrules the policy
and should therefore only be used for the most critical steps. Otherwise it would replace
the full reinforcement learning process, rendering the Q-Table obsolete.

Lastly, Reward-Shaping directly changes the rewards from the environment to incorpo-
rate feedback of norms. The agent itself is not changed or enforced, instead an optimal
policy should be learned that will remain optimal in the original environment. However,
not all environment-changes are policy-invariant, and thus rewards cannot be altered
arbitrarily. To avoid learning sub-optimal policies, a potential-based reward shaping
function can be used to modify the rewards [NHR99]. A function F is potential-based if
its defined by the difference of potential values between states. This function F can be
added to the original rewards to get the changed rewards R′:

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′)
F (s, a, s′) = γΦ(s′) − Φ(s)

(3.1)

In 3.1 rewards are defined based on the current state s, the executed action a, and the
successor state s′. Additionally, Φ represents the potential function of states, which is
used to determine the lawfulness of all states. The less violations occur in a state, the
higher its value. Since the original rewards are +0 for almost all states, the shaped
rewards will essentially define the learned policy. A state on the Frozenlake is represented
as a tuple (pA, pT , pP ) of the agent’s position pA, the traverser’s position pT and the
positions pP of presents. Thus this state-function can be defined for the simple norms as
in Listing 3.7:

1 elif norm == "missedPresents":
2 if terminated and len(state[2]) > 0:
3 value += -len(state[2]) * (scaling_factor**(

level_of_norms[norm]-1))
4
5 elif norm == "movedAwayFromGoal" or norm == "

didNotMoveTowardsGoal":
6 value += (-distance_to_goal(state[0], goal, width, height) /

0.8) * (scaling_factor ** (level_of_norms[norm] - 1))
7
8 elif norm == "leftSafeArea":
9 if _tile_is_safe(state[0], env):

10 value += 1 * (scaling_factor**(level_of_norms[norm]-1))

Listing 3.7: Excerpt from get_state_value(· · · )

42



3.1. Framework

The value is increased with each fulfilled norm and the increment is scaled exponentially
with the level of the norm. Thus, Φ returns a positive numeric value for the norm
adherence. Furthermore, the difference between the successor-value and the state-value
guides the agent towards better states, while also preventing positive feedback loops.
Despite that, the CTDs cannot be evaluated by considering just a single state, as
they need information from previous states and actions. For example, the violation
didNotReturnToSafeArea is triggered by two consecutive states that are both not
safe.

Although the potential-based function guarantees the optimality of the learned policy,
this approach is unsuitable for expressing the CTDs. However, by using a state-action
penalty the rewards can be shaped to punish violations:

R′(s, a, s′) = R(s, a, s′) + F (tn)
F (tn) = γΦ′(tn) − Φ′(tn−1)

(3.2)

In 3.2, Φ′ takes as input the trail tn of previous states and actions, with s′ being the latest
state. The function evaluates the full history of the trail and checks for violations. Instead
of positive values, penalties are computed and summed up, and the norms are scaled
according to their level, similar to the state-function. Nonetheless, there is no guarantee
that rewards shaped by Φ′ will yield an optimal policy of the original environment.

Although Φ adds positive rewards and Φ′ negative ones, both functions punish moving
to worse states. In fact, Φ′ is never going to return a positive reward, since each tn

contains at least all violations from tn−1. Moreover, the discount factor γ < 1 gives a
slight punishment, even if the violations in inputs are the same. This essentially penalizes
every action by default.

1 norms = _check_violations(norms, trail, terminated, env)
2
3 penalty = 0
4 for norm, violations in norms.items():
5 if violations > 0:
6 penalty += violations * (scaling_factor**(level_of_norms[

norm]-1))
7 penalty = -penalty /100 # Note: this is to scale all rewards

down, penalties are negative

Listing 3.8: Excerpt from get_state_action_penalty(· · · )

Furthermore, both shaping functions can be used as initialization strategies for the
Q-Table. That means either Φ(s) or Φ′({s, a, s′}) is added to Q(s, a), where s′ is the
expected successor. However, the norm turnedOnTraverserTile cannot be considered
in the initialization of state-action pairs, since two consecutive actions need to be checked.
The CTD didNotReturnToSafeArea, on the other hand, can be checked with s and
its expected successor though.
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For discrete-states environments, rewards shaping in the environment and during ini-
tialization are equivalent, if potential-based functions are used [Wie03]. The function
for state-actions penalties can be expected to perform similar between shaping and
initialization as well. By using this approach, the expected best path is implemented in
the Q-Table before any learning is applied. Although the RL-cycle is not directly affected
by this, it can be assumed to significantly speed up the learning process.

3.2 Design Choices

3.2.1 Non-deterministic Environment and Deterministic Planning
It might seem unusual to use a deterministic planner for a non-deterministic environment,
but we intentionally employed deterministic planning to analyze the agent’s learned
behavior. However, adjusting the slipperiness of the FrozenLake was necessary to ensure
this planning is suitable. While the original chance of 1

3 for moving straight, sliding
left, or sliding right respectively is too unpredictable to apply a deterministic planner,
the adjusted sliding-probabilities are relatively compatible with the planning. Moreover,
the model is not supposed to solve the environment in the first place, instead it should
accelerate learning and offer deontic reasoning. Because the slipperiness and optimal
paths are learned though RL, the agent does not require a stochastic planner to solve
the FrozenLake.

Although the agent recognized all positions, the environment is effectively partly observ-
able. Additionally to the real distribution of transitions, the movement of the traverser is
unknown to the model and is assumed to be stationary. This setup challenges the agent
with varying movement patterns of the traverser, requiring it to potentially detour from
a previously planned path. Despite the possibility of including a trail of the traverser
into the model to predict its next position, this was not implemented intentionally. The
goal was to observe what happens when the agent must reliably learn norms that are
influenced by other actors who are ’unpredictable’.

3.2.2 Integration of RL, ASP and SDL
We chose a simple environment with an obvious success path to analyze the impact on
the learning if norms were added. The raw planning is a speed up of the RL-Learning and
yields a model in which norms can be represented. Because ASP has connections to SDL
and since it can effectively be used for problem solving and modeling, it was selected as
the planning formalism. The RL cycle and the discrete environment are also compatible
with RL enhanced by an ASP-model. Initially, we did not modify the environment to
include norms. The norms are part of the internal model, allowing for testing of agents
with different moralities on the same MDP. However, integrating norms directly into
the rewards is an alternative approach worth analyzing (i.e. rewards shaping). If the
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environment itself contains all the norms in its feedback or possible actions, then the
optimal solution would already be lawful.

The norms could potentially conflict with the original rewards. The planning component
needs to quantify and to evaluate not only rewards against violations, but also the
norms amongst themselves. Because there is no universal solution, different evaluation
strategies were developed. The norms are grouped into distinct sets to exhibit how
dedicated combinations may affect the learning. These constellations are inspired by
some of the deontic paradoxes (see Section 2.3.3). The defined norms include CTDs and
contradictions, which will be used in the main experiments. While many classical deontic
paradoxes are formulated in natural language and rely on implicit uncertainty or context,
ASP is based on the non-monotonic behavior and the closed world assumption. This
makes direct reproduction of some paradoxes difficult or even impossible in ASP. Rather
than capturing their full natural-language ambiguity, ASP often resolves many paradoxes
deterministically due to its formal semantics and avoids common pitfalls of SDL. However,
there is a part of the experiments that focuses on exploring different representations of
the deontic aspects and simulations of expected behaviors under paradoxical norms in
ASP within the context of the FrozenLake.
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CHAPTER 4
Experiments

This Chapter provides an overview of the experiments and generated charts, outlines the
experimental hypotheses, presents the results, and includes a brief summary for each
experiment suite.

4.1 Overview
The experiments are defined by configurations. An example of such a configuration is
shown in Listing 4.1.

1 "A1": {"repetitions": 100, "episodes": episodes_3x3,
2 "max_steps": max_steps_3x3, "evaluation_repetitions": 100,
3
4 "frozenlake": {"name": "FrozenLake3x3_A", "traverser_path": "3

x3_A", "slippery": True},
5
6 "learning": {"norm_set": None, "epsilon": epsilon, "

initialization": "distance", "reversed_q_learning": True, "
discount": 0.99, "learning_rate": 0.3, "learning_rate_strategy
": "constant", "learning_decay_rate": None},

7
8 "planning": {"norm_set": 1, "delta": None, "strategy": "

no_planning", "planning_horizon": None, "reward_set": 2},
9

10 "deontic": {"norm_set": 0, "evaluation_function": None},
11
12
13 "enforcing": None,
14 }

Listing 4.1: Configuration: A1
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The parameters in Listing 4.1 are grouped into blocks. The first one contains general
data, like number of repetitions of the experiment, number of episodes and number of
evaluation repetitions, which are the amount of tests done for each final target episode,
such that the average values can be evaluated. The FrozenLake is defined by the level,
slipperiness, and the movement pattern of the traverser (which is for our experiments
always a path). The learning-section contains typical RL-parameters, such as discount
and epsilon, as well as specific configurations, e.g. the strategies for the learning rate
and initialization. The parameters for the planning and deontic sections are described in
Subsections 3.1.4 and 3.1.5 respectively. Different norm sets are configured for different
purposes within these blocks. While the norms in the learning-block are only used if the
potential function is chosen as the initialization strategy, the norms in planning for the
planning component, and the norms in the deontic-block are used the evaluation. If not
specified otherwise, all norms are considered for evaluation.

Certain parameters are fixed across all experiments, while others vary based on level
sizes. In general the most important parameters are the norm sets and the strategies. All
configurations can be found in src/configs.py, all results files and all plots are also on
Github1. In addition, all level structures are contained in the Appendix (see Chapter 7).

There are five suites of experiments, labeled A − E, each of which containing multiple
experiments with different focuses.

• Suite A tests learning-parameters;

• Suite B analyzes the planning-parameters;

• Suite C focuses on investigating norms-sets and CTDs;

• Suite D experiments with deontic conflicts, alternative formulations of the norm-
reasoning component, and also with simulations of some paradoxes in ASP;

• Lastly, Suite E analyzes the enforcing aspects.

Both Suite A and Suite B have additional results from Bayesian optimizations. Each has
their own hypotheses and builds on previous suites.

4.2 Chart-Types
Each experiment produced plots based on data collected during training across the
episodes (labeled ’training-results’) and afterwards during evaluation (called ’final-results’).
The plotted data is averaged over the repetitions. There are twelve chart types, namely:

1. returns_training
2. returns_final

1https://github.com/Gnosling/FrozenLake_DeonticASP; accessed on May 2, 2025
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3. runtimes_training
4. runtimes_final
5. steps_slips_explorations_plannings_training
6. steps_slips_final
7. violations_training
8. violations_final
9. states_training

10. states_final
11. states_enforced
12. overview_tables

The plotted data is collected from the target policy, with the exception of explorations
and plannings; these values track how often the exploration or the planner was triggered.
Because the target does neither use a planner nor behaves ϵ-greedy, this data origins
from the behavior policy. Depending on the chart type, the plots are line-plots, box-plots,
heat-maps or violin-charts. For example, Figure 4.1 shows the evolution of the returns of
the target policy across the training episodes.

Figure 4.1: Returns of A8 (training)

Moreover, the paths explored by the target policy are collected and displayed in heat-maps
(see Figure 4.2). Here each cell corresponds to a respective tile of the FrozenLake level,
and the action chosen most often is written down. The action labeled None indicates
that no actions was performed in this state. All holes and the goal have None, because
they terminate the episode. The number in each cell shows the average number of visits
of that tile; the number on the goal tile equals the expected return. The map highlights
the areas that were explored based on the number of visits, and the learned path is
displayed through the action sequence starting from the initial tile. For reference Figure
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Figure 4.2: Explored states of B7_newstates_states_final
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Figure 4.3: FrozenLake-Level: 7x4C (used in B7)

4.3 displays the structure of this level.

The final violations are plotted as a violin charts (see Figure 4.4). These violations are
collected from 100 target policies that are evaluated 100-times each, resulting in 10000
entries for every norm. This data is assumed to be normally distributed, except for the
norm notReachedGoal because it contains only binary values. The final violations can
be mirrored by the violations experienced after the post-training enforcement. The chart
uses both distributions as one half of the ’violin’ for each norm. Although the values are
discrete, the area is smoothed into curves for better representation.

Furthermore, the distributions are tested for significant differences. Because the pop-
ulation variance is unknown and only sample variances can be computed, t-tests were
applied. A t-test is used to determine whether there is a significant difference between
the means of two groups, assuming that the data is approximately normally distributed.

In particular, Levene’s test with median-center is performed to check the homogeneity of
variances between the two groups [BF74]. Levene’s test evaluates the equality of variances
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making it suitable for testing whether the variability in each group is homogeneous or
consistent. If the variances are not homogeneous, a two-sampled t-test is applied, which
compares the means of the two independent groups assuming unequal variances. On the
other hand, if the variances are homogeneous, Welch’s t-test is used [Bl47].

The norm notReachedGoal is tested by the chi-squared test due to its binary structure
[Yat34]. The chi-squared test compares the observed frequencies in each category with
the expected frequencies under the null hypothesis of no association between the variables.
Given that the norm notReachedGoal represents a binary outcome (either the goal
was reached or not), this test is well-suited for categorical data. If the respective test
indicates significant differences between the groups, the label of the respective norm is
highlighted in red. An alpha-value of 0.001 is used for all tests. Since the data size is
large, a small alpha value helps to highlight only the most interesting differences and
reduces the chance of false positives.

For example, in Figure 4.4, the distributions for norm occupiedTraverserTile and
others are significantly different according to the t-test, whereas notReachedGoal,
leftSafeArea, and didNotReturnToSafeArea are not.

Figure 4.4: Violations of E2_traverser_guard_violations_final (final+enforced)
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4.3 A*
These experiments tested the RL-parameters and yielded an initial baseline. Before
defining specific configurations, the parameter values were improved using Bayesian
optimization, with the goal of maximizing the expected return after evaluating the final
target policies. As previously mentioned, all results, including detailed data and plots,
can be found within the GitHub repository.

4.3.1 Hypotheses
By testing RL-parameters on the FrozenLake, we can make some predictions about their
expected values. For instance, when the number of episodes and steps is fixed, the results
on larger levels tend to be worse than those on smaller ones. Additionally, the reverse
Q-learning method is better suited for environments where rewards are only given at the
goal. For A∗, there are five hypotheses:

H1 discount and learning-rate have little impact due to the reward structure
H2 reverse q-learning dominates normal q-learning
H3 the learned paths prioritize safer routes
H4 target policies do not yield solutions for larger levels
H5 suitable initialization strategies speed up learning

4.3.2 Results
The Bayesian optimizations were performed on three different levels, namely 4x4_A,
6x4_A and 8x8_A. Initially, the experiments focused on episodes, the use of reverse
Q-learning, discounts, and a constant learning rate for the first two levels. Afterward,
dynamic learning rate techniques were tested, followed by the evaluation of different
initialization strategies. For each experiment, 20 repetitions and 50 evaluations per
target policy were conducted. For instance, Listing 4.2 shows the expected returns of
testing some parameters on 4x4_A. The best 20 trials all used reversed q-learning,
while the discount and learning-rate varies around plausible means. The same can be
observed from the other levels. Additionally, a constant learning-rate dominated both the
linear_decay and exponential_decay for level 4x4_A. Lastly, the initialization strategy
distance outperformed the others and yielded returns up to 0.7.

1 Top trials and their parameters:
2 Trial 25; Value: 0.496; Parameters: {’episodes’: 252, ’discount’:

0.8395475115779703, ’reversed_q_learning’: True, ’learning_rate’:
0.18815556046386858};

3 Trial 132; Value: 0.475; Parameters: {’episodes’: 279, ’discount’:
0.8466259397519311, ’reversed_q_learning’: True, ’learning_rate’:
0.20397812380507369};

4 Trial 162; Value: 0.473; Parameters: {’episodes’: 249, ’discount’:
0.8422325222133493, ’reversed_q_learning’: True, ’learning_rate’:
0.43197792671208635};
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5 Trial 86; Value: 0.468; Parameters: {’episodes’: 251, ’discount’:
0.9189617029401612, ’reversed_q_learning’: True, ’learning_rate’:
0.13530255045951342};

6 Trial 902; Value: 0.465; Parameters: {’episodes’: 246, ’discount’:
0.9357989284024836, ’reversed_q_learning’: True, ’learning_rate’:
0.11970478397839024};

Listing 4.2: Excerpt from
bayesian_result_of_objective_for_RL_params_L4_1_· · ·

For level 6x4_A, the results generally yielded low returns of less than 0.1. However,
initialization strategy safe boosted even the returns noticeable from the other strategies.
The safe-strategy also had a positive effect on the values of the level 8x8_A.

Considering the results of the Bayesian optimizations, default configurations were de-
signed on levels without norm-specifics. All experiments used a constant learning-rate
of 0.3, a discount of 0.99, reversed q-learning, no panning, 100 repetitions and 100
evaluations per final target policy. An example is given in Listing 4.3.

1 "A3": {"repetitions": 100, "episodes": episodes_4x4, "max_steps":
max_steps_4x4, "evaluation_repetitions": 100,

2 "frozenlake": {"name": "FrozenLake4x4_A", "traverser_path": "4
x4_A", "slippery": True},

3 "learning": {"norm_set": None, "epsilon": epsilon, "
initialization": "distance", "reversed_q_learning": True, "
discount": 0.99, "learning_rate": 0.3, "learning_rate_strategy
": "constant", "learning_decay_rate": None},

4 "planning": {"norm_set": 1, "delta": None, "strategy": "
no_planning", "planning_horizon": None, "reward_set": 2},

5 "deontic": {"norm_set": 0, "evaluation_function": None},
6 "enforcing": None,
7 }

Listing 4.3: Configuration: A3
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Config Level Return Episodes Episode of
Satisfaction

Initialization

A1 3x3_A 0.75 30 7 distance
A2 4x4_A 0.17 50 - zero
A3 4x4_A 0.59 50 35 distance
A4 6x4_A 0.01 150 - safe
A5 6x4_B 0.01 150 - distance
A6 7x4_A 0.2 175 - safe
A7 7x4_A 0.18 175 - zero
A8 7x4_C 0.25 175 - zero
A9 8x8_A 0.42 400 350 safe
A10 8x8_A 0.2 400 - zero

Table 4.1: Overview of results from A*

The most relevant results of suite A are displayed in Table 4.1. Only configurations A1,
A3 and A9 reached a satisfaction point and yielded average returns of more than 0.4,
whereas all others failed to learn their respective level. By comparing A2 with A3 and
A9 with A10 the usage of good initialization strategies significantly benefits the results.
However, if the strategy does not completely define a successful path of the level, it yields
no significant improvement or worse even a decrease in the returns. For example, configs
A6 and A7 have nearly the same results and only differ by expected randomness.

In more detail, the configurations of level 4x4_A (see A3) did produce different results.
The received returns of A2 (see Figure 4.5) show a slow but steady increase over the
episodes, whereas the ones from A3 (see Figure 4.6) have a higher starting point and
a strong increase in the early episodes, which stagnates around episode 20. Moreover,
the state-visits of both are shown in Figure 4.7 and Figure 4.8. Based on the visits, no
clear path was learned for A2. Although on average many target policies tend towards
the solution, they failed to stabilize individually. As a result, the path constructed by
most preferred actions beginning from the start tile, does reach the goal. However, the
number of visits reveals that single policies did not follow this path. In contrast to that,
the heat-map of A3 is consistent with preferred actions and state-visits, showing that the
policies did indeed learn the optimal path individually.

Some levels failed to learn a successful policy. A4 on level 6x4_A (see A6) yielded final
returns of almost 0. The heatmap of both training and final policies (Figure 4.9 and
Figure 4.10) failed to reach the goal tile. Although exploration during the training phase
discovered the beginnings of the right path, the final target policies did not learn these.
Moreover, the initialization strategies influenced the learned path in a few configurations,
such as A9 and A10 on level 8x8_A (see A12). A9 used the safe-strategy and A10
used zero-initialization. The first one yielded a path across the diagonal that completely
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Figure 4.5: Training returns of A2 Figure 4.6: Training returns of A3

Figure 4.7: Final state visits of A2 Figure 4.8: Final state visits of A3

avoids the cracked tiles in the traverser-area, whereas the latter one learned a page along
the edges through the area of the traverser, leading to lower returns.
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Figure 4.9: Training state visits of A4 Figure 4.10: Final state visits of A4

Figure 4.11: Final state visits of A9 Figure 4.12: Final state visits of A10
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4.3.3 Summary
The A∗ experiments showed the impact of the RL-parameters. Some had negligible
impact and others were significant for the learning process. Additionally, increasing
complexity in the levels yielded lower returns, and for many configurations pure RL was
not sufficient to solve the level. These experiments offered suitable parameter values for
the subsequent experiment suites—for instance, reverse Q-learning is now fixed as part
of the baseline configuration.

Based on the produced data, the hypotheses can be assessed:

H1 discount and learning-rate have little impact due to the reward structure
→ Confirmed, the experiments showed no significant difference.

H2 reverse q-learning dominates normal q-learning
→ Confirmed, learning speed was tremendously increased in all experiments.

H3 the learned paths prioritize safer routes
→ Rejected, many experiments did not yield any feasible solution, while others

learned shortest paths that might be less safe. Only a minority learned safer routes.

H4 target policies do not yield solutions for larger levels
→ Partially confirmed, complexity is a larger obstacle than level-size, since 8x8_A

was still learned.

H5 suitable initialization strategies speed up learning
→ Confirmed, learning speed was significantly increased if the strategy is suited for

the respective level.
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4.4 B*

These experiments tested the ASP-parameters and refined the previous baseline. Similar
to A∗, the parameters values were improved using Bayesian optimization. Moreover, all
planning processes were designed to avoid violating notReachedGoal, ensuring a focus
on successfully solving the environment.

4.4.1 Hypotheses

The hypotheses for B∗ reflect expectations about the effectiveness of planning in RL.
H1 assumes that incorporating planning will outperform purely model-free approaches,
as planning can anticipate future states more effectively. H2 builds on this, expecting
that increased planning effort leads to better outcomes by reducing uncertainty. H3
states that the main benefits during learning will happen right at the beginning and
later planning will be ineffective, as the state-action values would be already sufficiently
learned. Lastly for H5, we expect that planning with good initializations will yield the
best outcome. For B∗, there are five hypothesis:

H1 planning dominates model-free RL
H2 the more planning is done, the better the outcome will be
H3 early planning will suffice to improve learning
H4 full_planning and plan_for_new_states will not yield significantly different

results
H5 planning with suitable initialization will yield the best results

4.4.2 Results

Like in A∗, the Bayesian optimizations were performed on levels 4x4_A, 6x4_A and
8x8_A. Initially, learning rates were tested without planning but with ϵ-greedy ex-
ploration. Next, different planning strategies with varying deltas were evaluated. For
example, delta_greedy_planning has a chance of delta to trigger. Lastly, combina-
tions of initialization and planning strategies were examined. All tests used at least
5 repetitions and 50 evaluations per target policy, with the planning horizon fixed for
each level to be at least the size of the minimum path. For example, Listing 4.4 shows
the expected returns for different parameter settings on 6x4_A. Out of the best 20
trials, 8 used full planning, 7 planning for new states, 4 delta_decaying_planning, and
1 delta_greedy_planning.

Similar to the results of the Bayesian optimization from A∗, different learning rate
strategies showed no significant impact on the outcomes. Additionally, the value of ϵ was
not particularly relevant within a plausible range. The values of delta were optimized
towards more planning, i.e. for greedy planning high delta’s were preferred and lower
values for decay-planning. Initialization strategies had an underwhelming influence when
combined with planning. The best results often contained a mix of both effective and
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ineffective initialization strategies for the given level. High planning generally overruled
initializations during training, thus the strategy became less relevant for optimization.

Based on these results, the values of ϵ, discount and learning rate remained unchanged,
while all strategies were tested on the configurations from A∗.

1 Top trials and their parameters:
2 Trial 6; Value: 0.572; Parameters: {’planning_strategy’: ’

full_planning’};
3 Trial 47; Value: 0.556; Parameters: {’planning_strategy’: ’

full_planning’};
4 Trial 64; Value: 0.552; Parameters: {’planning_strategy’: ’

delta_decaying_planning’, ’delta_decaying’: 2.6413502688454443e
-05};

5 Trial 12; Value: 0.536; Parameters: {’planning_strategy’: ’
plan_for_new_states’};

6 Trial 36; Value: 0.536; Parameters: {’planning_strategy’: ’
full_planning’};

Listing 4.4: Excerpt from
bayesian_result_of_objective_for_ASP_params_L6_2_· · ·

Config Level Return Episodes Episode of
Satisfaction

Diff-Return to
no planning

B1_newstates 3x3_A 0.76 30 7 + 0.01

B2_greedy 4x4_A 0.62 50 25 + 0.45
B2_decay 4x4_A 0.62 50 15 + 0.45
B2_newstates 4x4_A 0.63 50 15 + 0.46
B2_full 4x4_A 0.63 50 15 + 0.46

B3_greedy 4x4_A 0.63 50 20 + 0.04
B3_decay 4x4_A 0.62 50 15 + 0.03
B3_newstates 4x4_A 0.62 50 15 + 0.03
B3_full 4x4_A 0.62 50 15 + 0.03

B4_greedy 6x4_A 0.45 150 45 + 0.44
B4_decay 6x4_A 0.37 150 20 + 0.36
B4_newstates 6x4_A 0.47 150 30 + 0.46
B4_full 6x4_A 0.48 150 25 + 0.47

Continued on next page
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Config Level Return Episodes Episode of
Satisfaction

Diff-Return to
no planning

B5_greedy 6x4_B 0.09 150 - + 0.08
B5_decay 6x4_B 0.27 150 60 + 0.26
B5_newstates 6x4_B 0.32 150 100 + 0.31
B5_full 6x4_B 0.32 150 60 + 0.31

B6_greedy 7x4_A 0.56 175 30 + 0.36
B6_decay 7x4_A 0.55 175 15 + 0.35
B6_newstates 7x4_A 0.61 175 20 + 0.41
B6_full 7x4_A 0.61 175 15 + 0.41

B7_greedy 7x4_C 0.41 175 60 + 0.16
B7_decay 7x4_C 0.43 175 120 + 0.18
B7_newstates 7x4_C 0.15 175 20 - 0.1
B7_full 7x4_C 0.15 175 10 - 0.1

B8_greedy 8x8_A 0.58 400 250 + 0.16
B8_decay 8x8_A 0.48 400 200 + 0.06
B8_newstates 8x8_A 0.57 400 100 + 0.15
B8_full 8x8_A 0.58 400 100 + 0.16

B9_greedy 8x8_A 0.58 400 150 + 0.38
B9_decay 8x8_A 0.54 400 50 + 0.34
B9_newstates 8x8_A 0.54 400 60 + 0.34
B9_full 8x8_A 0.54 400 50 + 0.34

Table 4.2: Overview of results from B*

The most relevant results are shown in Table 4.2. The last column compares the return
to the respective value from A∗. The configuration B1 has similar yields as A1. B2 − B6
outperformed A2−A7 significantly and (with exception of B5_greedy) managed to learn
the shortest paths on all levels. On the one hand greedy and decay improved the results
of B7, on the other hand full planning and planning for new states did not increase the
success. Lastly B8 − B9 has increased returns compared to A9 − A10 but the learned
paths are equal.

Configuration B2 used no initialization and B3 used distance. However, the results are
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indifferent. For instance, Figures 4.13 and 4.14 have similar learning curves. The initial
values had no noticeable impact for any planning strategy. Furthermore, the differences in
returns of B1 with A1 and B3 with A3 are very little, indicating that good initializations
can produce optimal results.

Moving on, exponential decay approximates no triggering of the planning component in
later episodes. Figure 4.15 shows how often plannings, explorations and slips were done.
The decay increases and planning decreases as the episodes go on, while exploration
increases as a result of more Q-table lookups. Furthermore, the learned path of the target
policy initially becomes shorter, stagnates, but eventually increases again. This indicates
that the learning process diverges, leading the agent to learn a less optimal path. Figure
4.16 reveals a consistent decrease of returns on all repetitions for later episodes. There
are also other configurations (like B6), where decaying planning produced comparable
results.

Figure 4.13: Training returns of B2 (greedy) Figure 4.14: Training returns of B3 (greedy)

Figure 4.15: Steps B4 (decay) Figure 4.16: Training returns of B4 (decay)

On level 6x4_B (see Figure 4.19), the planning component learned a suboptimal path
with an extra step. In Figure 4.17, the first action is moving right, but the next one is
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moving left and then down. Because the traverser starts on a frozen tile, the planner
initially computes the shortest path across the cracked tiles. However, in the subsequent
step, the traverser moves up onto the cracked tile, prompting the planner to revise the
path and detour onto a longer route. This behavior is learned by all final target policies
of B5.

Furthermore, the planning component failed to avoid cracked tiles on level 7x4_C (see
Figure 4.20). The traverser moves along the first row from right to left, while the agent
moves from left to right. However, both players would meet in the middle on a cracked
tile, thus failing the level. An optimal policy would involve spending one extra step
before reaching the crack to avoid the collision. The planner, however, prioritizes shortest
paths and thereby falls into this trap. Moreover, since greedy and decaying planning are
triggered less often, they managed to solve the level and yielded higher returns than no
planning.

Figure 4.17: Final state visits of B5 (newstates) Figure 4.18: Final state visits of B7 (full)
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Figure 4.19: FrozenLake level 6x4_B
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Figure 4.20: FrozenLake level 7x4_C

4.4.3 Summary
The B∗ experiments demonstrated the impact of ASP-planning on learning the policies.
In general, the planning significantly boosted the learning and prioritizes shortest paths.
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High usage of plannings overruled any exploration, whereas too little planning resulted
in suboptimal policies. Even worse, decaying planning lost its benefits once the chance
to trigger became too low, leading to a decrease in the quality of target policies during
learning. Additionally, the planner faced difficulties in handling dynamic objects (i.e. the
traverser). In each step the traverser’s position is assumed to be stationary, causing the
planning to overlook potential risks in approaching it. This suggests that the used model
may be too simplistic to effectively solve the levels.

Based on the produced data, the hypotheses can be assessed:

H1 planning dominates model-free RL
→ Confirmed, in general the planning boosted both the speed and quality of learning

to reach optimal polices much faster. It can be expected that a more sophisticated
model will yield even better results.

H2 the more planning is done, the better the outcome will be
→ Partially confirmed, increasing planning does increase results, but only up to a

certain threshold after which more planning becomes less effective.

H3 early planning will suffice to improve learning
→ Rejected, the decaying planning has frequent activation in the beginning, yet it

underperformed compared to other strategies on most levels.

H4 full_planning and plan_for_new_states will not yield significantly different
results

→ Confirmed, although full_planning tends to converge slightly faster, there were
no significant differences.

H5 planning with suitable initialization will yield the best results
→ Confirmed, these combinations had the best policies, but the impact of planning

on good initialization was relatively low.
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4.5 C*
This suite focuses on testing different norm-sets and evaluations (see 3.1.5). The con-
figurations of B∗ are used with plan_for_new_states as a baseline. Unlike before,
Bayesian optimization is not applied here, as these experiments optimize violations at
different levels alongside the return.

4.5.1 Hypotheses
By incorporating deontic reasoning into the framework, we expect the agent to successfully
learn and apply CTDs (H1), resulting in a reduced number of norm violations compared
to agents without norm-awareness (H2). When the shortest path conflicts with relevant
norms, we assume the agent will instead learn to follow a longer but norm-compliant route
(H3). Moreover, we expect the agent to learn to avoid the traverser when appropriate
norms are used (H4). Finally, the framework is expected to prioritize the most critical
norms, keeping their violations to a minimum (H5).

For C∗, there are five hypothesis:

H1 the agent learns CTDs successfully
H2 the violations of trained norms are lower than the violations without norm-reasoning
H3 if the shortest path is violating relevant norms, then a more lawful and longer path

is learned
H4 avoidance of traverser is learned if the respective norms are used
H5 the most important norms have minimum violations

4.5.2 Results

Config Level Returns

B1_newstates 3x3_B 0.24 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 n.a. n.a.

C1_traverser 3x3_B 0.75 ± 0.0 0.25 ± 0.0 0.02 ± 0.13 0.02 ± 0.13 0.98 ± 0.12 n.a. n.a.

C1_present 3x3_B 0.75 ± 0.0 0.25 ± 0.0 0.86 ± 0.53 0.86 ± 0.53 0.15 ± 0.35 n.a. n.a.

C1_traverser_with_presents 3x3_B 0.75 ± 0.0 0.25 ± 0.0 0.01 ± 0.1 0.01 ± 0.1 0.99 ± 0.1 n.a. n.a.

C2_normless 4x4_B 0.61 ± 0.0 0.39 ± 0.0 0.18 ± 0.48 0.1 ± 0.39 n.a. 2.76 ± 0.95 1.38 ± 0.8

C2_traverser 4x4_B 0.61 ± 0.0 0.39 ± 0.0 0.22 ± 0.53 0.11 ± 0.41 n.a. 2.72 ± 0.97 1.34 ± 0.83

C2_safe 4x4_B 0.85 ± 0.0 0.15 ± 0.0 0.89 ± 0.92 0.34 ± 0.9 n.a. 2.29 ± 0.79 0.32 ± 0.59

C2_traverser_with_safe 4x4_B 0.84 ± 0.0 0.16 ± 0.0 0.85 ± 0.82 0.26 ± 0.79 n.a. 2.28 ± 0.77 0.37 ± 0.64

C3_rewards 4x4_C 0.58 ± 0.0 0.42 ± 0.0 0.18 ± 0.51 0.11 ± 0.4 0.16 ± 0.37 n.a. n.a.

C3_scaling 4x4_C 0.58 ± 0.0 0.42 ± 0.0 0.13 ± 0.57 0.09 ± 0.43 0.15 ± 0.35 n.a. n.a.

C3_violations 4x4_C 0.57 ± 0.0 0.43 ± 0.0 0.12 ± 0.55 0.09 ± 0.43 0.15 ± 0.36 n.a. n.a.

C3_weakconstrains 4x4_C 0.56 ± 0.0 0.44 ± 0.0 0.14 ± 0.63 0.1 ± 0.48 0.16 ± 0.36 n.a. n.a.

Not
Reached

Goal

Occupied
Traverser

Tile

Turned
On

Traverser
Tile

Missed
Presents

Left
Safe
Area

Did Not
Return To

Safe
Area

0.76 ± 0.0

Figure 4.21: Overview of C1, C2, C3
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4.5. C*

An overview of the results is provided in Figures 4.21, 4.22, and 4.23. Each C-group is
compared based on the trained norms and the expected rewards. If the normless variant
was already in B∗, it is included in the comparison. Norms that are not included in the
configuration are marked as ’not applicable’. The experiment names include suffixes that
indicate the norms used or their assigned priorities. For example, C5_safe used the
safeArea-norms, whereas C5_moving_first indicates that the movingTowardsGoal-
norm has the highest evaluation priority. The numbers shown are averages and standard
deviations from all evaluations, and the norm-columns list the amount of violations. The
returns are contrasted with violations of notReachedGoal, and their sum must be close to
1 (small rounding errors might prevent perfect match). Cells marked in yellow represent
the lowest value in the column, while those marked in blue represent the highest. In
general, if the returns are equal, but the violations differ, then the learned paths were
optimized to fulfill more norms, but share similar structures. However, if the returns
differ, entirely new paths were likely learned.
On level 4x4_B (see Figure A4), the experiments of C2 tested traverser avoidance
with preference of safe areas. Configurations C2_normless and C2_traverser yielded
similar results and also learned the same path, with no significant differences. In con-
trast, C2_safe learned a different path along the edges, which also resulted in higher
returns. Lastly, C2_traverser_with_safe used all four norms with equal levels, i.e.
level(occupiedTraverserT ile, 2), level(turnedOnTraverserT ile, 3), level(leftSafeArea, 2)
and level(didNotReturnToSafeArea, 3). However this configuration produced results
similar to those of C2_safe. Figures 4.24, 4.25, 4.26, and 4.27 display the learned path of
C2 and highlight the differences. Notably, the safer path was the most norm-compliant.
For C4, all configurations learned similar policies, except for C4_traverser and
C5_traverser_with_moving. These configurations performed worse than the normless
variant B5_newstates. When the traverser blocks the path to the goal of level 6x4_B
(see 4.19), the planner advises the agent to backtrack every time, whereas the other
setups would only go back if there is a cracked tile. However, this overcaution led to
worse policies with significant stalling. Although the learned path on average is the same
on all norm-sets, the violations in Figure 4.28 and 4.29 show these differences in the
moving violations.
The decision between reaching the goal quickly, staying in safe areas, and avoiding
the traverser leads to different policies. C5 can be grouped into two categories, namely
policies that learned the shortest path and those who learned a safer path. Only C5_safe
and C5_safe_first used safer paths. Moreover, the top level norm decides the behavior
of the agent, for instance C5_moving and C5_moving_first produced nearly identical
results. However, the different paths of safer and faster routes are shown in Figures 4.30
and 4.31.
Similar observation regarding safe paths (as seen C5) and traverser overcautions (as in
C4) can be observed in C6 on level 7x4_B (see A9) via Figures 4.32 and 4.33. Although
the learned path in the latter configuration does not reach the goal, the individual policies
may have a solvable path in their behavior, and the averages merge them into the one
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4. Experiments

Figure 4.24: Final state visits of C2 (norm-
less)

Figure 4.25: Final state visits of C2 (tra-
verser)

Figure 4.26: Final state visits of C2 (safe) Figure 4.27: Final state visits of C2 (tra-
verser with safe)

shown in the figure. Additionally, the slips prevent the agent from getting stuck in a loop
(life-locking). Furthermore, configuration C7_traverser_with_moving learned to avoid
the traverser, while all other settings failed to learn the detour. Nonetheless, the greedy
planner from B7 outperforms all configurations in C7. Figures 4.34 and 4.35 show the
policy behaviors.

Because the presents are handled in the internal rewards, the agent favors to collect them.
Level 8x8_B (see A13) contains three presents, whereby the one on the right is in a
safe area, the one in the left bottom corner has one hole near it, and the present in the
middle is next to three holes. They can be seen as safe, moderate and risky subgoals
respectively.
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4.5. C*

Figure 4.28: Final violations of B5 (new-
states)

Figure 4.29: Final violations of C4 (tra-
verser)

Experiment C10 illustrates the different paths the agent learned when using the present
and safe-area norms. On the one hand, C10_normless and C10_presents learned a path
across all presents, although the final returns were lower (see Figure 4.36). On the other
hand, C10_safe and C10_safe_with_presents_1 followed a safer path along the edges,
collecting only one present (see Figure 4.37). There are two sets with all three norms (i.e.
C10_safe_with_presents_1 and C10_safe_with_presents_2), whereby the first has
level(leftSafeArea, 2),level(didNotReturnToSafeArea, 3), level(missedPresents, 2) and
the latter level(leftSafeArea, 2), level(didNotReturnToSafeArea, 3), level(missedPresents, 3).
By increasing the level of missedPresents, the training resulted in a path along three
edges that picks up two presents (see Figure 4.38). Thus, three distinct paths were
explored with different set of norms, whereby the riskier one pick up more presents and
yield less return, while the safer ones pick up less presents and complete the level with a
higher chance.
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Figure 4.30: Final state visits of C5 (moving) Figure 4.31: Final state visits of C5 (safe)

Figure 4.32: Final state visits of C6 (safe first) Figure 4.33: Final state visits of C6 (traverser first)

Figure 4.34: Final state visits of B7 (greedy) Figure 4.35: Final state visits of C7 (traverser with
moving)
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Figure 4.36: Final state visits of C10 (presents) Figure 4.37: Final state visits of C6 (safe)

Figure 4.38: Final state visits of C7 (safe with
presents 2)
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4.5.3 Summary
The Suite C∗ experiments tested different sets of norms used for planning to alter the
agent’s behavior. The norms are prioritized by level, and the experiments demonstrated
that the most important norm dictates the agents behavior. If multiple norms share the
highest priority, the planner optimizes the path by reducing the norm that has the higher
chance of being violated. Grouping many norms together without carefully configuring
their priorities can lead to unintended side effects, such as completely discarding a
high-priority norm to fully reduce the violation of another high-priority norm, rather
than balancing both equally. We expand more on this in the Discussion (Chapter 5) and
in the reviews of the results for Suite E∗.

Without any norms, the planning component favors the shortest path with most internal
subgoal (i.e. the presents). If this is already lawful, then the norm-reasoning did not
change the final policy. However, if the generated paths violate norms, the final policies
will differ. Depending on the priorities and evaluation strategies, the agent can be pushed
to take riskier or more lawful actions. Too lawful behavior can hinder the agent’s ability
to solve the level and may lead to live-locking due to overcautions. On the other hand,
overly risky behavior can distract the agent from his long-term goal and might lead to
unnecessary violations. Ultimately, no single strategy is optimal across all level instances.

Based on the produced data, the hypotheses can be assessed:

H1 agent learns CTDs successfully
→ Partially confirmed, if the levels of CTDs are high enough, then this hold in the

experiments.

H2 the violations of trained norms are lower than the violations without norm-reasoning
→ Partially confirmed, trained norms resulted overall in less violations. Only the

notReachedGoal-norm could become more violated in some experiments.

H3 if the shortest path is violating relevant norms, then a more lawful and longer path
is learned

→ Confirmed.

H4 avoidance of traverser is learned if the respective norms are used.
→ Partially confirmed, although the agent learned a stronger avoidance, in some

experiments the traverser-tile was still occupied.

H5 the most important norms have minimum violations
→ Partially confirmed, if many norms have highest priority than only the overall

sum is minimized and not individual norms.
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4.6 D*
The Suite D∗ experiments was concerned with deontic conflicts, alternative formulations
of the norm-reasoning component, and also with simulations of some paradoxes in ASP.
However, they are not the focus of this work.

The framework is expected to resolve normative conflicts by favoring one interpretation or
side (H1). It should treat semantically equivalent formulations interchangeable, without
altering behavior (H2). For example, replacing OA with F¬A should yied the same
result. Moreover, some textbook paradoxes will not cause issues (H3), and lastly in the
absence of progressing norms, the agent is expected to be disincentivized from reaching
the goal (H4).

For D∗, there are four hypothesis:

4.6.1 Hypotheses
H1 conflicting norms will favor one side and solve the level
H2 different formulations of equal normative aspects are not going to have an impact
H3 the ASP-planner can resolve Sartre’s Dilemma and Ross’s Paradox
H4 restrictive norms without ’progress’-norms can hinder the agent to learn the level

4.6.2 Results

Config Level Returns

D1_present 3x3_B 0.74 ± 0.0 0.26 ± 0.0 n.a. 0.84 ± 0.37 0.16 ± 0.37 n.a. n.a.

D1_no_present 3x3_B 0.75 ± 0.0 0.25 ± 0.0 n.a. 0.01 ± 0.08 0.99 ± 0.08 n.a. n.a.

D1_both 3x3_B 0.75 ± 0.0 0.25 ± 0.0 n.a. 0.85 ± 0.36 0.15 ± 0.36 n.a. n.a.

D2_normal 4x4_A 0.63 ± 0.0 0.37 ± 0.0 n.a. n.a. n.a. n.a. n.a.

D2_ross 4x4_A 0.62 ± 0.0 0.38 ± 0.0 n.a. n.a. n.a. n.a. n.a.

D3_factual 4x4_B 0.6 ± 0.0 0.4 ± 0.0 n.a. n.a. n.a. n.a. n.a.

D3_deontic 4x4_B 0.61 ± 0.0 0.39 ± 0.0 n.a. n.a. n.a. n.a. n.a.

D4_F(R)_F(M) 7x4_A 0.59 ± 0.0 0.41 ± 0.0 0.85 ± 1.46 n.a. n.a. n.a. n.a.

D4_O(R)_F(M) 7x4_A 0.59 ± 0.0 0.41 ± 0.0 0.73 ± 1.12 n.a. n.a. n.a. n.a.

D4_F(R)_O(M) 7x4_A 0.6 ± 0.0 0.4 ± 0.0 0.81 ± 0.98 n.a. n.a. n.a. n.a.

D4_O(R)_O(M) 7x4_A 0.62 ± 0.0 0.38 ± 0.0 0.79 ± 0.97 n.a. n.a. n.a. n.a.

D5_newstates 8x8_B 0.6 ± 0.0 0.4 ± 0.0 n.a. n.a. n.a. 1.74 ± 1.84 0.33 ± 0.71

D5_full 8x8_B 0.31 ± 0.0 0.69 ± 0.0 n.a. n.a. n.a. 0.75 ± 0.84 0.14 ± 0.44

Not
Reached

Goal

Moved Away
From Goal

Stole
Present

Missed
Presents

Left
Safe
Area

Did Not
Return To

Safe
Area

Figure 4.39: Overview of D1, D2, D3, D4, D5

An overview of the results is given in Figure 4.39. In D1, there are two possible paths,
one with the present and one without. D1_no_present learned the path avoiding the
present, while D1_both produced similar results to D1_present, both learned the path
with the present (see Figures 4.40 and 4.41). No significant differences were found in
experiments D2, D3 and D4. These experiments tested out different formulations in ASP;
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4. Experiments

e.g. D2 tries to simulate Ross’s Paradox and D4 formulated its norms as prohibitions F
and as obligations O in all combinations.

Lastly, D5 was trained on level 8x8_B without the reachingGoal-norm, causing the
agent to prioritize staying in safe areas. However, in order to solve the level it needed to
move at least past one hole. The full planner failed to learn an optimal path, whereas
planning for new states yielded better results, but still performed worse than C10_safe
(which included avoidance of notReachedGoal). The agent in D5 ended up cycling within
a safe area; the learned paths can be seen in Figures 4.42 and 4.43.

Figure 4.40: Final state visits of D1 (no present) Figure 4.41: Final state visits of D1 (both)

Figure 4.42: Final state visits of D5 (new states) Figure 4.43: Final state visits of D5 (full)

4.6.3 Summary
These experiments tested edge cases and the stability of norm-reasoning within the
framework. While some paradoxes were simulated, the main CTDs are covered in C∗. The
planning component successfully resolved the tested paradoxes and dilemmas, remaining
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4.6. D*

consistent across different formulations. However, it struggled to learn successful paths
when the reachingGoal-norm was excluded.

Based on the produced data, the hypotheses can be assessed:

H1 conflicting norms will favor one side and solve the level
→ Confirmed.

H2 different formulations of equal normative aspects are not going to have an impact
→ Confirmed, the experiments showed no significant differences.

H3 the ASP-planner can resolve Sartre’s Dilemma and Ross’s Paradox
→ Confirmed, the ASP planning managed to resolve conflicts and to avoid deriving

unintended norms.

H4 restrictive norms without ’progress’-norms can hinder the agent to learn the level
→ Confirmed, the learned paths cycle in lawful areas.
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4.7 E*
The final experiments of Suite E∗ were applying the enforcing strategies (see Subsection
3.1.6). Based on the configuration from C∗, different enforcing methods are applied to
generate new policies.

The enforcement strategies are expected to reduce the number of norm violations (H1).
Applying them to the final target policies may prove more effective than enforcing them
only during training (H2). From the discussed strategies, guardrailing could restrict
the agent from achieving best long-term results (H3), while policy fixing might fail to
enforce the agent to avoid the traverser entirely (H4), and since only full rewards shaping
considers all norms, it is expected to result in better norm compliance than the optimal
reward shaping (H5). Lastly, norm-based initialization strategies are expected to yield
the best outcomes overall, as it provides the agent with a form of moral grounding before
training begins (H6).

4.7.1 Hypotheses
H1 Enforcing strategies improve violations, but might harm the returns
H2 Applying enforcings after the training phase yields better result than the enforcings

during training
H3 Action-Guardrailing might generate worse returns due to its short term restric-

tions
H4 Policy-Fixing fails to avoid traverser completely (similar to the planning compo-

nent)
H5 Full Reward-Shaping has better norm-compliance, whereas the optimal one has

better returns
H6 The norm-based initialization strategies produce the best results with a high returns

and low violations

4.7.2 Results
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4. Experiments
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4.7. E*
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4. Experiments

The results are shown in Figures 4.44, 4.45, and 4.46. Note that the initialization
strategies do not require post-training enforcement; therefore, the corresponding columns
are marked as ‘not applicable’. E1 and E2 used the same sets of norms for planning and
enforcing, but tested different enforcement strategies. E1 applied enforcing during the
training, i.e. directly in the behavior policy, whereas in E2. enforcing was applied to the
target policies after the training was completed. In both groups, only the ’policy-fixing’
strategy produced different results and all other enforcings yielded similar outputs. There
was no significant difference between training-enforcement and post-enforcement. The
fixing strategy changed the agent’s path and increased the expected return, but it did
not improve the encountered violations (see Figures 4.47, 4.48, and 4.49).

All configurations of E3 produced nearly identical results. The planning component
already determines the optimal path for level 6x4_B and the enforcings did not change
the policy in any significant way. The generated data is almost identical to that of
B5_newstates.

E4 − E6 tested different norms during planning while enforcing only the CTDs together
with reaching the goal. More concretely, E4 had no planning at all, E5 incorporated the
simple norms occupiedTraverserT ile and leftSafeArea, and E6 employed all norms
related to the traverser and safe areas in the planner. E4 generally resulted in low
returns and failed to learn the level. Although E4_init_action_penalty and E4_fix
learned feasible paths, the agent failed to avoid the traverser and ultimately crashed
on the cracked tile (see Figures 4.50 and 4.51). Furthermore, E4_guard generated a
policy in which the agent stalls before crossing the section with the traverser, preventing
it from reaching the goal (see Figure 4.52). Although E5 and E6 used planning, the
guardrailing and fixing strategies led to similar issues, disrupting the already learned
paths. Additionally, compared to E5, E6 achieved generally lower returns but less
violations, with E6_init_action_penalty having the best tradeoff with high returns and
low violations.

Figure 4.47: Final state visits of E2_post_fix Figure 4.48: Enforced state visits of E2_post_fix

Next, groups E7 − E10 were all tested on level 8x8_A (see Appendix A12) with the
traverser and safe area norms. Specifically, E7 used simple norms for planning and
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Figure 4.49: Violations of E2_post_fix

Figure 4.50: Enforced state visits of E4 (action-
penalty)

Figure 4.51: Enforced state visits of E4 (fixing) Figure 4.52: Enforced state visits of E4 (guard)

enforced the CTDs, E8 planned for all and enforced CTDs, E9 used all norms for both
planning and enforcing, and lastly E10 is the same as E9 with adding the moving-towards-
goal norm in the enforcing. In all setups, there were no turnings on a traverser-tile
and the fixing disrupted the already learned paths, leading to overall worse policies,
similar to the previous experiments (see Figure 4.55). Guardrailing decreased violations
of CTDs, but not significantly for simple norms, and the learned paths remained similar
to those from the planning. For example, Figures 4.53 and 4.54 show the differences in
paths, where the guarding has lower visits in not relevant areas. Moving on, full reward
shaping yielded the highest returns and the lowest occupation of traverser-tiles, but did
not produce a new path structure. Because the level contains cracked tiles, policies that
avoid the traverser are more successful in reaching the goal. The violations are shown in
Figure 4.56. Furthermore, the shaping approach overall outperforms the initialization
with action-penalty in both rewards and violations. Although it slightly decreases the
violations of meeting the traverser, the initialization is insufficient to learn an avoidance.
Additionally, this setup misled the agent during trainings into local optimas in early
episodes, for example Figure 4.57 highlights a wrongly explored path on the left middle
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part of the level which was abandoned by the final policies (Figure 4.58).

Figure 4.53: Final state visits of E7 (guard) Figure 4.54: Enforced state visits of E7 (guard)

Figure 4.55: Violations of E8 (fix) Figure 4.56: Violations of E9 (full-shaping)
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Figure 4.57: Training state visits of E10
(action-penalty)

Figure 4.58: Final state visits of E10
(action-penalty)
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4.7.3 Summary
The last group of experiments demonstrated the impact of different enforcement strategies
on the policy. The enforcement stages had no noticeable distinctions between the enforcing
during the training phase and afterwards. Enforcing an already optimal policy neither
improved nor worsened the behavior. When the policy is not optimal, there is an interplay
between planning and enforcement. Generally, using more norms in both planning and
enforcement results in the agent acquiring more lawful behaviors, though certain setups
can lead to worse outcomes.

The guardrailing of actions produced mixed results. On some levels, it had no significant
impact, on others it led to overcautious behavior causing the agent to fail the level, and
in certain environments the guard resulted in a noticeable improvement in violations.
This enforcement type appears to be highly dependent on the applied norms and the
structure of the level.

Furthermore, policy fixing overall significantly worsened the policies. Certain issues
mentioned in B∗ regarding full planning were repeated when using the fixing strategy.
Because this enforcement still relies on the same planner and is activated every time a
violation is detected, it may completely overrule the RL-component.

Next, shaping of rewards never decreased the returns, in fact a slight increase was
consistently generated in the experiments. However, the results for violations were
mixed. The optimal shaping ignored the CTDs (as explained in Section 3.1.6) but still
enforced the ’reachingGoal’-norm, but the difference between the two versions seems to
be insignificant though. Full shaping managed to learn and avoid the traverser path and
yielded the highest return on level 8x8_A compared to all other experiments on that
level.

Lastly, the norm-based initialization strategies generally increased returns and mostly
decreased violations, with the action-penalty dominating the state-values. However, they
might misled the agent during training into local maxima. As the training continued,
the agent used planning and exploration to correct these insufficient initializations.
Nonetheless if the strategy is suitable, it can speed up learning and potentially yield
better results.

Based on the produced data, the hypotheses can be assessed:

H1 Enforcing strategies improve violations, but might harm the returns
→ Partially confirmed, this generally holds for the majority of strategies, but it

does not hold for policy-fixing at all and a few other setups also worsened violations.

H2 Applying enforcings after the training phase yields better result than the enforcings
during training

→ Inconclusive, these experiments showed no significant differences, but more data
is needed to assess this thesis.
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H3 Action-Guardrailing might generate worse returns due to its short term restric-
tions

→ Confirmed, overcautious behaviors were generated by the guard.

H4 Policy-Fixing fails to avoid traverser completely (similar to the planning compo-
nent)

→ Confirmed.

H5 Full Reward-Shaping has better norm-compliance, whereas the optimal one has
better returns

→ Inconclusive, these experiments had mixed results of the shaping variants, but
more data is needed to assess this thesis.

H6 The norm-based initialization strategies produce the best results with high returns
and low violations

→ Partially confirmed, in some experiments the action-penalty initialization domi-
nates, while in others the full-shaping of rewards is superior. However both generally
yield good results across the experiments.
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CHAPTER 5
Discussion

The experiments utilized different components and strategies to learn several levels of the
extended FrozenLake. To recap, A∗ is pure RL, B∗ combined RL and ASP, C∗ added
norm-reasoning, D∗ tested stability of the framework, and lastly E∗ explored enforcement
strategies for norms.
The pure RL-component was unable to learn larger FrozenLake levels. Because the
FrozenLake only provides a reward of +1 on the goal tile, there is effectively no feedback
for any other action, causing that the agent is exploring aimlessly until it by coincidence
reaches the goal tile. Additionally, RL-parameters such as learning rate and discount
factor had no significant impact either. The usage of reverse Q-learning significantly
boosted learning. It updates all state-action pairs along any path reaching the goal within
a single episode, immediately propagating the solving reward to all relevant actions.
Furthermore, proper initialization strategies greatly accelerated learning. However, these
strategies generated the best results if they already solved the environment and created
an optimal policy without any further training. Misleading strategies, on the other hand,
might hinder or delude the agent.
After adding planning, the results were overwhelmingly improved, but the internal model
of FrozenLake lacks knowledge of the traverser’s movement. Because no prediction
rules are defined, the model assumes the traverser remains fixed. This was intentionally
designed with the hope that explorations and learning will mitigate this limitation.
However, B∗ revealed that the policies failed to avoid the traverser. Thus the model
is insufficient for efficiently solving some levels, and a more sophisticated model would
likely produce better results for these configurations. Different prediction strategies could
improve the situation, such as a memory to store previous visited tiles by the traverser to
which it could cycle back, or assuming the traverser repeats its last movement. Regarding
non-determinism, the model did not face major issues, only favoring shortest paths
distracts the planner from safer routes. Nonetheless, as long as the expected outcome
has the highest probability, the model can be used to plan a suitable path.
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Both the ASP-planning and the RL-components suggest actions in current states, with
the planning strategies defining which suggestion should be used. Full planning could
immediately define and stabilize the optimal policy, but it might fall into the pitfalls
of the insufficient modeling and favors full exploitation over exploration. On the other
hand, no planning increases the training time required for RL to stabilize the policy and
aims for full exploration in the FrozenLake, although dynamic aspects can be learned.
The mixed approaches of δ-greedy, δ-decaying and new_states-planning balanced both
extremes differently. The first and last methods seemed to be the most consistent.
Although, more planning led to better results, there is a threshold beyond which it
becomes less effective or even negligible. In our experiments, planning for new_states
generally yielded the best results. Moreover, δ-decaying planning failed to balance ASP
with RL. During training, the policies improved initially but eventually worsened as
the chance of using planning approached zero. This indicates that planning dominates
in the beginning , while learning takes precedence at the end of the training However,
due to the increasing exploration and the lack of rewards in FrozenLake, this results
in losing the benefits of early planning. Using more strategies with different values of
parameter δ could also generate additional insight into the interaction of ASP-planning
and RL-Learning.
Norm reasoning was added in the planning component by using weak constraints of
varying priorities, with the relevant norms and their levels injected into the model
according to the specific setup. The planner optimizes the highest priority first, and the
most important norm dictates the agents behavior. If multiple norms share the highest
priority, the planner optimizes the path by reducing the norm that is more likely to be
violated. However, all of these priorities must be manually configured. Using all norms
with equal weights would not yield usable results, as the semantic meaning would be lost,
and the agent would simply minimize the overall sum. Even with different priorities,
instead of reducing individual violations of norms with the same relevance, the agent
focuses only on reducing the sum of violations for each group, without balancing individual
norms. Furthermore, using all norms together could misrepresent some intensions. Even
if the priorities and evaluations are properly configured, there is no guarantee that the
agent will consider all intended moral aspects during optimization.
The pure planning component favors the shortest paths with most internal subgoals,
without considering safer alternatives. The norm reasoning impacts these paths if
violations occur. The used norms and their levels influence the agent to behave more
risky or safer. Excessively lawful behavior could hinder the agent in solving the level and
might lead to live-locking due too overcautions. Conversely, overly risky behavior could
distract the agent from his long-term goals and may result in unnecessary violations
of norms. This trade-off cannot be universally solved across all levels, and typically, a
balanced approach yields the best results in terms of both returns and violations.
Moreover, adding norms to avoid the traverser had only an underwhelming impact. The
agent learned to not approach the traverser when not necessary, but the movement of the
traverser was still not learned due to the already discussed limitations of the planning
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model. Norms regarding the safe areas were generally learned but the agent might become
overcautious if no completed safe path to the goal exists. Progress-related violations (i.e.
didNotMoveTowardsGoal, movedAwayFromGoal, didNotReachGoal) are necessary
to prevent the agent from life-locking in lawful areas that do not lead to the goal. These
norms have different semantics from simply not moving back, focusing on not moving
closer, or not reaching the goal by the end of the episode. The moving norms did not
impact planning, but they did yield different results. Due to the slipping mechanic, the
agent might slide into the current tile. For instance, moving up on the upper edge of the
level would not change the agent’s position. The agent’s model, however, is unaware of
this movement and cannot plan for not moving at all, and thus both norms generated the
same plans. The reaching-goal norm might mislead the agent and fail to resolve stalling
situations consistently. For example, consider tow paths, A and B, both are leading to
the goal. If the agent is on path A and the dynamic obstacle is blocking path A but B is
feasible, the agent plans to go to B. In the next step, if the traverser moves also to B
as well, the agent plans to return to A. Although the didNotReachGoal-violation has
higher priority, it fails to resolve this situation, because it is only violated at the last
step of the planning. The norms related to the subgoals (i.e. the presents) functioned as
expected. The planning model already has internal rewards for collecting presents, so
the law of taking all presents did not influence the agent’s default behavior. However
forbidding the agent from taking or missing some presents allowed these subgoals to be
compared with other norms. Depending the chosen evaluation and priorities, the agent’s
desire for presents can be adjusted in any direction.

Although complex norms or morals cannot be fully quantified by values or categorized
into priority groups, simple rules and CTDs can be expressed using these approaches in
a planning model. However, hard-coding these rules is not feasible for abstract morals
due to numerous potential triggers. For example, a norm like ’Be nice to other players’
would need to account for for all possible cases in any model, specifying exactly what
actions are considered unfriendly. The norms used in the FrozenLake experiments are
straightforward, but the framework limits their complexity. More abstract norms were
not tested in our experiments due to this restriction. Furthermore, the first experimental
groups did not explore different treatment of certain norms or using RL to learn the
norms directly. Thus additional norm-reasoning strategies, i.e. the enforcements, were
developed at a later stage and tested in E∗.

The D∗ experiments are not the primary focus of this work, and their main purpose
was to test stabilization of the framework, to briefly explore simulations of alternative
formulation of deontic operators and some minor paradoxes. However, more detailed
studies on these aspects can be found in other papers. In this work, these experiments
revealed that Telingo, within our framework, indeed behaves as expected in integrating
deontic reasoning into ASP-solvers as described in Section 2.3.4.

The idea behind the enforcing strategies was to improve policies concerning critical norms.
The different enforcements can be applied on behavior and target polices independently
(see Section 3.1.6). In the experiments this is referred to as enforcing during training
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or post training. However, on the tested levels, no significant differences were observed
between the two approaches. Since the enforcements were originally intended to alter
already trained policies, there are only few experiments directly comparing their active
phases. There would be potential for more configuration to analyze differences though.
Moreover the smaller levels are too simple to efficiently test the enforcements. Larger
levels provided more interesting data to analyze, whereas enforcing did not alter already
optimal policies on simpler levels.

The guardrailing of actions had mixed results, with varying impacts on returns and
violations. The aim of this strategy is to restrict actions in critical states, while still
allowing the agent to choose from the remaining options. Depending on the configuration,
the guard generated outcomes ranging from excessive caution to minor reductions in
violations. Furthermore, it lacks long-term checks and sophisticated evaluations of norms
(it simply allows actions with the fewest violations). Thus optimal paths might become
restricted, especially if many norms are enforced. The guard produced better result
in experiments, where fewer norms were considered and where the norms did not lead
to overly cautious behavior. Although the setup determines its quality and positive or
negative impacts, guardrailing is a straightforward norm-enforcing component that can
be integrated into any interaction cycle of agent and environment.

The next enforcing type, fixing of policy, did not work as intended. Nearly all policies were
downgraded by this strategy. It essentially acts as a planer that checks for any violation
and, upon detection, triggers the planning component to output a corrected action.
However, when using many norms, there is a high chance that some norm will always be
violated, triggering the planning process every time and completely overriding the learned
policies. Additionally, the fixing strategy suffers from the same issues as full planning due
to the insufficient model (e.g. overcaution, failure to avoid traverser). Using distinct sets
of norms for checking and for fixing could improve this approach, for instance, by checking
for violations of critical norms only, while planning the correction with consideration of
all relevant norms. Furthermore, this approach significantly increased the inference time
of the polices. While other setups perform look-ups in the Q-table, this one triggers the
ASP-solver after training is complete. Although this did not create major issues in our
experiments, due to the implemented caches and simplicity of the FrozenLake, policy
fixing becomes increasingly inefficient as the environment scale increases.

Reward shaping uses violations to either define the lawfulness of a position by the optimal
shaping or penalizes state-action-pairs via full shaping. In our experiments, these were
employed to modify the feedback from the environment and as initialization of the
Q-Table. Optimal shaping cannot express CTDs, so the experiments used it either for
a collection of norms or only to enforce the goal-reaching norm. Both variants slightly
increased returns, but the experiments on smaller levels did not reveal major differences
between them. Initially, it was expected that the optimal shaping would yields better
returns, while the full shaping would result in fewer violations. Although CTDs cannot
be expressed with the state structure used in our experiments, and the optimal shaping
only considered simple norms, the full shaping did not result in significantly lower returns.
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However, further configurations are needed to investigate this in more detail. Moreover,
unlike all other tested norm-reasoning approaches, shaping does not dictate which norms
the agent is supposed to learn. Instead, the feedback is an evaluated sums of adhered-to
norm or their violations. The evaluation is manually configured based on the level of
norms, but the agent does not posses any inherent norm-reasoning itself. Since the
feedback comes directly from the environment, there are no internal model errors, and
the previously described issues do not arise. In fact, full shaping succeeded in learning
dynamic environments, yielding the best traverser-avoidance among all other experiments.

By using the rewards functions as initialization-strategies, the agent was expected to
behave more lawfully from the beginning. However, by blindly following this setup,
the agent might be mislead into local maxima. Eventually, the agent will break free
due to planning exploitation, learning exploration, and non-determinism. In general
the initializations produced the best policies only if their computed values resulted in
an optimal path. Similar to the non-norm-based initializations, no strategy solves all
levels optimally. The agent can be sped up or slowed down during learning, and its
resulting behavior may comply with different norms than those used to preset the Q-table.
Furthermore, pre-computing state-actions pairs is only feasible in discrete environment
with limited states and actions. Without sophisticated optimizations, this approach
becomes increasingly inefficient with higher scalability. In continuous environments
with comprehensive actions (such as robots with full joint movements), norm-based
initializations could be unmanageable.
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CHAPTER 6
Related Work

This chapter presents related experiments, frameworks, and key insights into the integra-
tion of RL, ASP, and deontic reasoning. Several of the reviewed works directly inspired
aspects of our methodology, while others highlight possible extensions and enhancements
to our framework.

6.1 Norm Compliance in RL
Schiehl [Sch23] introduced a framework that integrates normative compliance within Lex-
icographic Multi-Objective Reinforcement Learning (LMORL) agents. In their approach,
the objectives are prioritized lexicographically, with the most critical goal, such as nor-
mative compliance, optimized first, followed by secondary objectives like task completion
or efficiency. The framework incorporates a norm satisfaction score to evaluate how well
the agent’s actions align with established norms. This score is then included as one of
the key objectives in the lexicographic hierarchy. Additionally, reward shaping is applied
through penalties for norm violations. While the technical implementation differs, both
this framework and ours emphasize the comparison and evaluation of violations to each
other and to the rewards.

While RL acquires policies through interaction with the environment and trial-and-error,
planning relies on explicit models to compute optimal action sequences. DARLING
integrates ASP-planning with RL to enable efficient and robust decision-making [LIS16].
The core idea is to use high-level planning to guide low-level RL, thereby combining
the strengths of both paradigms. In DARLING, planning serves as a prior that steers
the agent’s behavior during early learning phases or when uncertainty is high. This
integration allows the agent to explore more effectively and avoid suboptimal behaviors
typically caused by sparse rewards or large state spaces. The planner is invoked selectively
when the agent’s policy lacks confidence or encounters unfamiliar situations. The system
was evaluated in robotic navigation tasks where it showed improved learning speed and
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policy robustness compared to pure RL. Similar to our approach, DARLING shows that
the careful integration of planning and learning is essential for model-based reasoning,
and the observed benefits align with our own findings regarding the balance between
normative guidance and adaptive behavior.

The paper by Hatschka et al. (2023) [HCE23] utilizes ASP to represent SDL by formalizing
deontic operators. This framework allows for the simulation of deontic paradoxes and of
CTDs. Additionally, the authors employ weak constraints to assess violations of norms,
a method that aligns closely with the approach in our own framework. The use of weak
constraints offers a more flexible and nuanced evaluation of norm compliance, which is
particularly valuable in environments where strict adherence to norms may not always be
practical or desirable. This framework serves as a valuable reference for how ASP can be
used to effectively model norms and highlights its potential for enhancing norm-guided
behavior in reinforcement learning agents, ultimately facilitating the integration of more
complex normative reasoning into agent-based systems.

Deontic Equilibrium Logic with eXplicit negation (DELX) is a formal framework that
extends ASP for deontic reasoning by integrating the logic KD with both default and
explicit negation [CCvdT23]. DELX builds on Deontic Equilibrium Logic (DEL), which
itself extends equilibrium logic — a generalization of stable model semantics — to handle
deontic modalities like obligation and permission. The key innovation in DELX is the
ability to explicitly express the absence of facts while distinguishing it from classical
default negation, which is essential for accurate normative modeling in scenarios involving
contrary-to-duty (CTD) obligations or normative exceptions. The framework allows the
encoding of deontic statements into logic programs in a way that supports reasoning
under inconsistency and norm conflict. DELX theories can be compiled into deontic logic
programs, making them executable under ASP solvers. It captures nuanced normative
behavior such as soft constraints, defeasible norms, and hierarchical norm structures.
This makes DELX particularly useful for simulating and analyzing normative systems
where obligations may conflict, and compliance needs to be interpreted under ambiguity
or partial observability.

Norm conflict resolution in stochastic environments can be addressed by combining Linear
Temporal Logic (LTL) with probabilistic decision-making. Conflict Resolution Determin-
istic Rabin Automaton (CRDRA) deals with potential norm conflicts in non-deterministic
environments [KS17]. This approach translates each norm into a deterministic automaton,
and the agent’s behavior is evaluated against these automata during policy optimization.
Additionally, in situations where strict compliance is infeasible or undesirable norms
can become suspended. Suspended norms are not discarded entirely but instead yield a
penalty in the evaluation function, which decreases the importance of the norm. The
resolution process involves computing an optimal policy that maximizes expected utility
while balancing norm adherence and the cost of suspension. This allows the agent to act
flexibly in uncertain and dynamically changing environments. The CRDRA-framework’s
combination of formal logic, probabilistic planning, and normative flexibility yields
interesting configurations that could also be applied on the FrozenLake.

94



6.1. Norm Compliance in RL

Moreover, LTL can be enriched with deontic operators, one example is deontic dynamic
linear time temporal logic (DDLTL) [GMD13]. This framework utilizes ASP and extends
traditional LTL by incorporating deontic operators to reason about normative concepts
such as obligations, permissions, and prohibitions over time. DDLTL defines norms
not only in terms of their temporal structure but also in relation to agent actions
and contextual dynamics. Through its ASP-based implementation, the framework
can compute so-called deontic answer sets, which represent consistent models of agent
behavior that account for both temporal evolution and normative constraints. Moreover
the framework can formally detect and classify norm violations. Specific logic formulas can
be constructed to check both full compliance (hard compliance) and tolerated deviations
(weak compliance). Weak compliance reflects practical considerations in normative
reasoning, where enforcement is neither always possible nor desirable.

In [THM23], moral decision-making in multi-agent reinforcement learning is analyzed by
utilizing philosophical theories of ethics into reward structures. The authors develop a
framework in which agents have intrinsic reward functions defined by different normative
ethical theories, such as consequentialism (outcomes-based reasoning), deontology (duty-
based constraints), and virtue ethics (character-driven behavior). These moral models
influence agent behavior independently of extrinsic environmental rewards and allow
the embedding of value-driven policies that uphold general norms in social dilemmas.
The framework supports heterogeneous moral agents operating in shared environments.
This creates interactions that reflect real-world complexities, such as cooperation, moral
disagreement, or exploitation. For instance, selfish agents which optimize only for personal
gain may take advantage of agents following altruistic or duty-based policies. Additionally,
the approach accounts for social outcomes by considering optimal outcome not only for
the individual agent but also for others, which aligns with broader goals of fairness or
collective welfare.

Pure logic programming can define norms with weights or orderings used to resolve
potential conflicts. In the framework proposed by Berreby et al. [BBG17], norms are
encoded with explicit conditions for their activation, deactivation, and violation, enabling
both dynamic and temporal reasoning. Rather than treating norms as static constraints,
the system models them as context-sensitive elements that evolve based on actions, events,
and interactions between agents. Ethical evaluation is performed through a modular
pipeline that integrates several complementary models, including a ’model of the good’
(consequentialist evaluation), a ’model of the right’ (duty-based reasoning), and a ’model
of causality’ (linking actions to outcomes). Alternative actions are evaluated in pairs and
ranked according to how well they satisfy the active ethical principles. The framework
omits the use of formal deontic operators, instead relying on explicit normative state
transitions. The evaluation methods applied could be adapted to our environment to
enrich policy interpretation and introduce more ethical post-evaluation mechanisms.

Furthermore, some norms in real-world applications are not always continuously active
but can change their status. Considering the full lifecycle of norms is essential for realistic
and context-sensitive normative reasoning. The framework proposed by Panagiotidi et al.
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[PNV09] implements norm dynamics using ASP. In this framework, norms are represented
as rules with temporal and contextual conditions that determine their lifecycle. A norm
can be activated by specific events or conditions in the environment, remain active while
its conditions hold, be deactivated once those conditions no longer apply, or be marked
as violated if agents perform prohibited actions while the norm is active. The framework
allows predictions when certain norms are likely to be triggered or rendered inactive, and
adapt its strategy accordingly.

Although not directly applied in our experiments, the foundational work compiled in
[AGNvdT13] provides a thorough account of norm representation, enforcement, and
reasoning in symbolic agent systems. It establishes key conceptual and formal principles,
including the use of deontic logic, sanctioning mechanisms, and institutional frameworks
to govern agent behavior. While our approach integrates norms into learning-based
agents through reinforcement learning, this work offers valuable background, emphasizing
the importance of formal norm structures even in adaptive systems and supporting the
case for hybrid models that combine logical reasoning with data-driven learning.

6.2 Norm Enforcing in RL
Action selection in reinforcement learning can be regulated by normative supervisory
systems that evaluate the lawfulness of possible executions against a formalized body of
norms. In [NBCG22], the authors implement such a supervisor using SPINdle, a theorem
prover for defeasible deontic logic, to constrain the agent’s behavior. The supervisor
filters out norm-violating actions in each decision step, enforcing deontic constraints
dynamically. If no fully compliant actions are available, the system utilizes a graded
violation strategy, selecting the action with the lowest normative infraction based on
a priority-based scoring function. This approach parallels the guardrail mechanism we
employ, which similarly enforces norm constraints at runtime. However, both systems are
lacking long-horizon planning. As a result, they are susceptible to suboptimal behavior
in sequential settings, often converging to local optima that satisfy immediate constraints
but neglect longer-term ethical objectives.

Deterministic action restrictions often fail to handle the uncertainty of non-deterministic
environments. In contrast, probabilistic shields offer a more suitable approach by leverag-
ing formal verification to act as runtime filters over agent actions [JKJ+20]. These shields
are constructed from probabilistic models and specifications, ensuring that only actions
satisfying safety constraints with a high probability are permitted. Unlike traditional
hard constraints, the shields allow for some risk but quantify it probabilistically, bal-
ancing safety and performance. Compared to the Guardrail framework, which used the
expected successor deterministically, probabilistic shields offer a more robust and formally
grounded alternative ensuring compliance based on formal probabilistic guarantees.

An ASP-based decision-making framework can be utilized to retroactively integrate
normative considerations into reinforcement learning policies, especially when such norms
emerge after policy training. In this approach, a dedicated ASP component can be
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invoked to generate emergency plans that resolve norm violations by providing compliant
action alternatives in critical states [AE25]. This mechanism enables k-step planning in
non-deterministic environments, allowing the agent to reason about norm-conforming
paths under uncertainty. While the framework supports complete models, it requires
several optimization strategies—such as rule pruning, incremental solving, and domain-
specific heuristics—to maintain tractable execution times. In our work, we adopted
this planning mechanism but with incomplete modeling to reduce complexity while still
enabling normative interventions during runtime.
In norm-guided reinforcement learning (NGRL), non-compliance functions serve as pun-
ishments that guide agents toward morally desirable behavior by explicitly penalizing
violations of predefined norms [Neu22]. This approach integrates normative constraints
directly into the learning process through reward modification, enabling agents to balance
instrumental goals with ethical considerations. Their framework enables norm penal-
ties within multi-objective Q-learning (MORL), allowing for flexible trade-offs between
normative adherence and task performance. While their implementation is tailored to
moral scenarios, it overlaps conceptually with the reward-shaping mechanism used in
our work, where extrinsic value signals are similarly adapted to influence agent behavior
under complex social dynamics.
Restraining bolts serve as an external normative control mechanism for reinforcement
learning agents by encoding specific prohibitions or obligations as constraints associated
with punishment signals [NCT24]. Each bolt represents a distinct normative rule and
assigns a numerical penalty to its violation, enabling the agent to learn behavior that
minimizes cumulative punishment. This allows for the simultaneous enforcement of
multiple norms and supports fine-grained control over agent compliance. Unlike traditional
reward-shaping methods, restraining bolts work as an overlay architecture that can
be modularly applied without altering the core learning objective. This makes them
particularly suitable for dynamic or evolving norm systems. Compared to our framework,
restraining bolts offer greater flexibility by allowing each norm to be independently
defined, monitored, and activated as needed during training or deployment.
Zhao et al. [ZLA+18] integrated action norm penalties into a deep reinforcement learning
framework to address fraud in e-commerce platforms. Their approach augments the
standard reward function with norm-based penalty terms that discourage non-compliant
actions, thereby guiding the policy towards legitimate and socially acceptable behaviors.
In reward shaping, the inclusion of domain-specific knowledge is essential for ensuring
that the agent aligns with real-world constraints and expectations. In healthcare, where
RL is increasingly applied to predict outcomes and recommend optimal treatments, the
definition of what constitutes "optimal" is heavily context-dependent and often governed
by ethical, legal, and normative frameworks. As discussed by Yu et al. [YLNY23],
particularly in Section VII.B, multiple approaches have been proposed to integrate
such constraints into the learning process. For example, preference-based reinforcement
learning (PRL) can incorporate patient values or subjective well-being into decision-
making, tailoring recommendations to individual preferences rather than relying solely

97



6. Related Work

on clinical indicators. MORL allows for the optimization of multiple objectives, such as
treatment efficacy, side-effect minimization, and compliance with medical regulations or
ethical standards. Moreover, expert-in-the-loop methods introduce human oversight to
further refine reward functions. Long-term reward considerations are also emphasized, as
many medical decisions have delayed effects that may not be immediately observable but
are crucial for evaluating treatment efficacy and safety. Unlike function-based formulations
of rewards, these approaches acknowledge the subjective, uncertain, and context-sensitive
nature of real-world environments. In such cases, strict guarantees of optimality may be
less important than ensuring that the learned policies are interpretable, ethically sound,
and aligned with stakeholder values.

Learned norms can be extracted from a deep RL policy. The LEGIBLE framework
(PoLicy Evaluation GuIded By ruLEs) is a method for integrating symbolic rule
extraction and normative reasoning into the reinforcement learning process to improve
policy performance and interpretability [TLTB25]. It operates in three main phases.
First, it extracts behavioral rules from a trained deep reinforcement learning policy,
identifying regularities and patterns in agent behavior that can be expressed as symbolic
norms. Next, these rules are then generalized using external domain knowledge, enabling
abstraction beyond individual state-action pairs and making the norms applicable across
broader contexts. In the final phase, these generalized rules are used to guide further
policy evaluation and improvement, allowing the system to reinforce compliant behaviors
or correct violations through targeted policy updates. LEGIBLE does not merely shape
rewards post hoc but introduces a loop where symbolic understanding of behavior feeds
back into learning. This bridges the gap between black-box learning and explainable, norm-
driven decision-making. The approach shows that structured rule guidance considering
learned policies can yield policies that are both effective and interpretable. In contrast to
architectures where norms are explicitly encoded from the beginning, LEGIBLE enables
a data-driven pathway for discovering and refining norms, making it particularly useful in
environments where such norms are not predefined but need to be inferred from behavior.
While tabular Q-learning is typically more interpretable, integrating a rule-extraction
mechanism like LEGIBLE could enhance our framework by analyzing and formalizing
emerging normative patterns.
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CHAPTER 7
Conclusion

In this work, we introduced a framework combining reinforcement learning, answer set
programming and deontic reasoning to solve the FrozenLake-Environment of OpenAI
gym under consideration of different norms.

We used several norms in our experiments which can be grouped into progress norms,
simple norms, and contrary-to-duty (CTD) norms. They revolve around reaching the
goal, both static and dynamic aspects of the level structure, and are faced with non-
deterministic transitions of the environment. The progress norms and static norms were
learned successfully by the agent in most setting, however, the dynamic norms and CTDs
were harder to learn.

The experiments tested different application of norm-reasoning, namely within the agents
planning model or as enforcing modules incorporated in the agent’s interaction cycle.
The results are mixed. For example, the internal planning-model accelerated learning
and computes norm-adherent paths. However, it lacks awareness of the dynamic aspects,
and the produced policies frequently failed to uphold the respective norms or to complete
the task in more difficult levels. On the other hand, learning with full reward-shaping
managed overall to learn all norms successfully, can be applied post-training to reprogram
the moral of the agent, but without guided planning this approach might delude and
mislead the agent into local maxima. Additionally, norm-based initialization strategies
yielded also good results.

To conclude, the effectiveness of learning norms depends on their nature. Some are
best acquired through planning with deontic reasoning, while others benefit from reward
shaping and reinforcement learning. We anticipate that combining norm reasoning
within the agent’s model with a reward-shaping mechanism between the agent and
the environment offers a promising approach for successfully learning diverse norms.
Although our model was insufficient, the planning component remains highly beneficial
and should not be discarded entirely.

99



7. Conclusion

As an outlook, future work should focus on refining the integration of norm reasoning
within both planning and rewards. The limitations of the current model highlight the
need for further investigation and the adoption of more sophisticated planning approaches.
Reward shaping can be enhanced by utilizing different evaluation methods and improving
state representation, ensuring that optimality guarantees are maintained for CTDs.
Additionally, exploring combinations of the enforced strategies would provide deeper
insights into their interplay and potential synergies.
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Overview of Generative AI Tools
Used

Generative AI tools were used exclusively to assist with language refinement and grammar
correction during the writing process. The tools used include ChatGPT, Deepseek,
QuillBot, Writefull, and Grammarly.

No AI tools were employed in the design, implementation, or analysis of the research
methodology.
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7 % movedAwayFromGoal
8 % didNotMoveTowardsGoal
9 % leftSafeArea

10 % didNotReturnToSafeArea
11 % stolePresent
12 % missedPresents
13
14 #program always.
15
16 % The agent must not move away from the goal
17 forbidden(movedAwayFromGoal).
18 movedAwayFromGoal :- Y > X, ’distanceFromCurrentStateToGoal(X),

distanceFromCurrentStateToGoal(Y).
19 currentViolation(forbidden(movedAwayFromGoal)) :- forbidden(

movedAwayFromGoal), movedAwayFromGoal.
20 level(movedAwayFromGoal,1).
21
22 % The agent must move towards the goal
23 forbidden(didNotMoveTowardsGoal).
24 didNotMoveTowardsGoal :- Y >= X, ’distanceFromCurrentStateToGoal(X),

distanceFromCurrentStateToGoal(Y).
25 didNotMoveTowardsGoal :- act(move(left)), currentState(L), leftEdge(L

).
26 didNotMoveTowardsGoal :- act(move(right)), currentState(L), rightEdge

(L).
27 didNotMoveTowardsGoal :- act(move(up)), currentState(L), upperEdge(L)

.
28 didNotMoveTowardsGoal :- act(move(down)), currentState(L), lowerEdge(

L).
29 currentViolation(forbidden(didNotMoveTowardsGoal)) :- forbidden(

didNotMoveTowardsGoal), didNotMoveTowardsGoal.
30 level(didNotMoveTowardsGoal,1).
31
32 % The agent must not be on the same tile as the traverser
33 forbidden(occupiedTraverserTile).
34 occupiedTraverserTile :- currentState(X), currentStateOfTraverser(Y),

X=Y.
35 currentViolation(forbidden(occupiedTraverserTile)) :- forbidden(

occupiedTraverserTile), occupiedTraverserTile.
36 level(occupiedTraverserTile,2).
37
38 % If the agent and traverser occupy the same tile, then the agent

must move straight
39 forbidden(turnedOnTraverserTile).
40 turnedOnTraverserTile :- occupiedTraverserTile, act(move(X)),

lastPerformedAction(move(Y)), X != Y.
41 currentViolation(forbidden(turnedOnTraverserTile)) :- forbidden(

turnedOnTraverserTile), turnedOnTraverserTile.
42 level(turnedOnTraverserTile,3).
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43
44 % The agent must not leave the safe area
45 forbidden(leftSafeArea).
46 leftSafeArea :- currentState(X), not safe(Y), tile(Y), X=Y, ’

currentState(U), safe(V), U=V.
47 currentViolation(forbidden(leftSafeArea)) :- forbidden(leftSafeArea),

leftSafeArea.
48 level(leftSafeArea,2).
49
50 % If the agent left the safe area, it must return to a safe tile
51 forbidden(didNotReturnToSafeArea).
52 didNotReturnToSafeArea :- currentState(X), not safe(Y), tile(Y), X=Y,

’currentState(U), not safe(V), tile(V), U=V.
53 currentViolation(forbidden(didNotReturnToSafeArea)) :- forbidden(

didNotReturnToSafeArea), didNotReturnToSafeArea.
54 level(didNotReturnToSafeArea,3).
55
56 % The agent must not take any present
57 forbidden(stolePresent).
58 stolePresent :- takePresent(S).
59 currentViolation(forbidden(stolePresent)) :- forbidden(stolePresent),

stolePresent.
60 level(stolePresent,3).
61
62 % The agent must take all available presents
63 forbidden(missedPresents).
64 level(missedPresents,3).
65
66 % The agent must reach the goal tile
67 obligatory(reachedGoal).
68 reachedGoal :- goalStateReached.
69 level(reachedGoal,4).
70
71 #program final.
72 currentViolation(obligatory(reachedGoal)) :- not reachedGoal.
73 currentViolation(forbidden(missedPresents(S))) :- forbidden(

missedPresents), presentMissed(S).
74 level(missedPresents(S), L) :- level(missedPresents,L), presentMissed

(S).
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