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Kurzfassung

Stringgleichungen, treten in vielen Bereichen der Softwareentwicklung und formalen
Methoden auf. Sie spielen eine zentrale Rolle in Aufgaben wie Sicherheitsanalysen,
automatisiertem Schlieflen und Softwareverifikation, bei denen die Erfiillbarkeit einer
Bedingung wie xy ~ abc dariiber entscheidet, ob ein bestimmtes Programmverhalten
moglich ist. Eine Losung fiir eine solche Bedingung ist eine Belegung der Variablen mit
konkreten Zeichenketten, sodass die Gleichung erfiillt ist.

Diese Arbeit befasst sich eingehender mit der Nielsen-Transformation, einem verbreiteten
Ansatz zum Losen von Stringgleichungen. Die Nielsen-Transformation wendet systema-
tisch Umformungsregeln an, um Gleichungen zu reduzieren, bis sie trivial erfiillbar oder
unerfiillbar sind. Die dabei entstehenden Variablensubstitutionen kénnen mit Hilfe eines
Substitutionsgraphen organisiert und untersucht werden.

Ein weiterer bedeutender Ansatz ist Recompression, wo Gleichungen durch iteratives
Ersetzen von wiederholten Mustern durch neue Symbole vereinfacht werden. Dadurch
wird die Problemgréfle reduziert, wahrend die Erfullbarkeit erhalten bleibt.

Ein dritter hdufig verwendeter Ansatz nennt sich Stabilization. Solver modellieren dabei
Variablendoménen als reguldre Sprachen und verwenden Automaten, um diese Doménen
schrittweise zu verfeinern.

Wir erweitern die Menge der Regeln fiir die Nielsen-Transformations um eine parame-
trisierte Substitutionsregel, die unendliche Familien von Lésungen, die durch Zyklen im
Substitutionsgraphen entstehen, kompakt darstellt. Dies ermoglicht es, Zyklen durch eine
einzige Kante mit einer Potenzannotation zu ersetzen, wodurch Termination in Féllen
moglich wird, in denen das urspriingliche Verfahren divergieren wiirde.

Dartiber definieren wir das Konzept der Signatur fiir eine Gleichung, die ein gemeinsa-
mes strukturelles Préfix verschiedener Gleichungen erfasst. Gleichungen mit derselben
Signatur durchlaufen oft dieselbe Abfolge von Umformungsschritten, auch wenn sich ihre
verbleibenden Teile unterscheiden. Durch das Gruppieren solcher Gleichungen lassen sich
redundante Graphenerweiterungen vermeiden und der Suchraum verkleinern.

Durch die Signatur wird das Problem in Teilprobleme geteilt und es ergeben sich Teill6-
sungen. Zur kompakten Darstellung dieser Teillosungen verwenden wir EDTOL-Sprachen,
die einen formalen, sprachtheoretischen Rahmen bieten, um potenziell unendliche Mengen
von Lésungen strukturiert zu erfassen.

ix
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Abstract

String equations arise in many areas of software engineering and formal methods. They
play a central role in tasks such as security analysis, automated reasoning, and software
verification, where the satisfiability of a constraint like xy ~ abc determines whether a
program behavior is possible. A solution to such a constraint is an assignment of concrete
strings to variables that satisfies the equation.

This thesis takes a closer look at Nielsen transformation, a common approach to solving
string equations. Nielsen transformation applies systematic rewriting rules to reduce
equations until they become trivially satisfiable or unsatisfiable. The rules may lead to
variable substitutions, which can be organized and explored using a substitution graph.

Another prominent approach is recompression, where equations are simplified by it-
eratively replacing repeated patterns with fresh symbols, reducing problem size while
preserving satisfiability.

A third approach, often used by solvers, is called stabilization. Variable domains are
represented as regular languages and automata are used to iteratively refine these domains.

We extend the standard Nielsen transformation rule set with a parameterized substitution
rule that compactly represents infinite families of solutions arising from cycles in the
substitution graph. This allows cycles to be replaced by a single edge annotated with
a power expression and enabling termination in cases where the unmodified procedure
would diverge.

We define a signature for an equation, representing a common structural prefix of different
equations. Equations sharing the same signature evolve through the same repeating
sequence of rewriting steps, even if their trailing terms differ. By grouping such equations,
we avoid redundant graph expansion in certain cases and reduce the size of the search
space.

By using the signature the problem is divided into subproblems that lead to partial
solutions. To represent these partial solutions compactly, we use EDTOL languages,
which provide a formal language-theoretic framework to capture potentially infinite sets
of solutions in a structured way.

X1
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CHAPTER

Introduction

String data types are an omnipresent utility in software programs [HRS19]. However,
they impose certain challenges in software verification. The correctness of a program
might depend on the satisfiability of a string equation or another string constraint, such
as length constraints or membership in a regular language. For example when checking
passwords in distributed systems. A verification tool might have to check an assertion like
assert (concat (x,y)="abc"); where x and y are program variables of data type
string. The variable assignments that satisfy this assertion are x = "7 Ay = "abc”, x =
Ya” Ny ="bc”,x ="ab” Ay ="c”,x = "abc” Ay =7”. From a satisfiability standpoint,
these variable assignments are satisfying models for the string equation zy = abc. Note
that juxtaposition is concatenation and we always use a,b and c¢ for character constants
and z,y and z for string variables. We omit the double quotes around character constants
for simplicity.

The previous example shows that for solving these equations an alignment among string
variables is needed where the left-hand side matches the right-hand side. This assignment
problem becomes much harder if there are variables on both sides of the equation and if
the same variable occurs more than once.

Besides formal software verification [HRS19, IAACT14, ICHL"19] string solving is used
for various applications, including security analysis [EMS07, [ESM™ 23| [TCJ14, [WS0T],
and automated reasoning [Ama23l, Hag19]

1.1 State of the art

The SMT solver Z3 [dMB08a] has a string solver implementation that uses conflict
learning to gradually refine models. Other solvers like S3 [TCJ14] and Z3Str4 [MBK™21]
are built on top of Z3 to leverage the advantages of SMP theory solvers and support
multiple theories.
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1.

INTRODUCTION

Another SMT solver, cve5 [BBBT22|, has integrated reasoning over the theory of strings
together with length and membership in regular languages into its DPLL(T) frame-
work [LRT™14].

NOODLER [BCC™23| assigns regular membership constraints on variables and reasons
about the corresponding automaton to refine these constraints.

OSTRICH |CHL™19] has a similar approach using regular automatons. In its core it uses
backward propagation to repeatedly create pre-images of regular expression constraints.

1.2 Thesis Objective and Outline

The objective of this thesis is to provide an in-depth overview of approaches to solving
string equations, compared to our own contributions. In particular we exploit and expand
Nielsen transformation and power term manipulation in our work.

In chapter 3, we begin by reviewing three prominent approaches to string solving—namely,
Nielsen Transformation, recompression, and automata-based methods. This includes
a formal description of each method’s operational principles, supported by illustrative
examples.

These techniques are then extended by insights gained during the development of a new
string solver within the Z3 framework, as documented in our publication [ESBK25]. The
thesis presents techniques that proved effective in practice, as well as those that could
not be successfully leveraged.

1.3 Contributions

The main contributions of this thesis are:

« Extending Nielsen transformation with power substitution (section 4.2)
A new rule is added that introduces power terms of the form w* to avoid repeatedly
applying the same rule in a loop and can improve termination behavior.

o Handling of power terms in equations (section 4.2)
The formalism is extended to deal with those newly introduced power terms,
allowing direct manipulation of repeated patterns and enabling constraint-based
branching on integer exponents.

« Using signatures to compress substitution graphs (section 5.2)
A method for grouping equations with the same signature (structural prefix) is
proposed, reducing infinite graph expansions in some non-terminating cases.

o Representation of variable constraints in EDTOL grammars. (section 5.3))
Partial solutions that arise from substitution graphs using signatures are expressed
as a language generated by a EDTOL (Extended Deterministic Table O-interaction
Lindenmayer) grammar [DJK16].
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CHAPTER

Preliminaries

2.1 Basic Definitions

Let X be a finite and non-empty alphabet. The elements of ¥ are called characters and
are denoted by the lowercase letters a, b and c. We assume all character constants are
pairwise distinct, i.e., a # b, a # ¢, and so on.

Let V be a finite set of string variables, whose elements are denoted by the lowercase
letters x, y and z. A token is either a character a € ¥ or a string variable z € V.

The concatenation of two terms is denoted by the operator -. Concatenation is associative
but not commutative. The empty string is denoted by e, which acts as the neutral
element for concatenation:

A string term is defined inductively as:

e a token,
o the empty string e,
e or the concatenation of two string terms.
By associativity, a term can be viewed as a sequence of tokens. We write
u=1tg 11 ... tp_1

and refer to this syntactic token sequence as (u). The syntactic length of u, written |(u)|,
is the number of tokens in wu.

When clear from context, we omit the angle brackets and write concatenation as simple
juxtaposition: u = toty ...tx_1. Concatenations with ¢ are omitted. Only when [(u)| = 0,
we write u = €.




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

Power expressions with integer exponents are used to denote consecutive occurrences of
the same term and are defined inductively as v® = ¢ and uF*! = u* - w.

A string equation is an expression u ~ v, where u is the left-hand side (LHS) and v is
the right-hand side (RHS), and u,v are string terms. Two different symbols are used for
equality. The symbol = is used for equality on a meta level as well as for definitions. The
symbol ~ is used for string equations.

A substitution o is a mapping from variables to string terms. We write 0 = [z/u] to
denote a substitution where o(x) = u, and o(y) = y for all other variables y # =x.
Substitutions apply homomorphically to terms and equations:

x (x) for variables,

[o]
alo]
(u-v)lo]
u == v)[o]

(u~v

g

for characters,

g

ulo] - vlo],
o] = ufo] ~

[

vlo].

A substitution o1 o 09 denotes function composition, where

(01 009)(x) = o1(x)[oe] forall x € V.

A substitution o is a model or satisfying interpretation of the equation uw ~ v if the
evaluated terms are syntactically equal: (u[o]) = (v[o]). A set of equations is called
satisfiable if there exists a substitution that is a model for all equations in the set.
Otherwise, the set is unsatisfiable.

We define the constants T and | to represent trivially true and false equations, respec-
tively.

A string term is called ground if it contains no variables.

In addition to syntactic length, we define the string length of a term, written |u|, as the
number of characters in the fully evaluated ground string. That is, unlike syntactic length,
which counts tokens (variables and constants), string length counts actual characters in
the interpreted string. The string length of variables or string expressions containing
variables might be unknown during the solving process.

A graph is defined as a tuple (N, E) where n € N are the vertices and (ng,e,n;) € E
are the edges.

2.2 Core Principles of String Solving

The fundamental result by Gennadiy Semenovich Makanin [Mak77] established that
satisfiability of existential quantified word equations is decidable. Subsequent work refined
this result, showing that the problem lies in PSPACE [Pla99|, and further algorithmic
improvements have made the problem more practical in constrained settings [Gut98].
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2.2. Core Principles of String Solving

The set of satisfying models may be infinite, and solvers often aim describe the solution
set, or at least a subset, symbolically. This can be done using variables in a solution
representation which may be unrestricted or restricted by additional constraints. Solutions
can also be represented using regular expressions or even more involved languages using
for example an EDTOL grammar [DJK16].

As discussed by Day [Day22], the general problem of string solving can be viewed through
the interaction of two dimensions:

e Syntactic structure of the equation including the number of variables, repeated
occurrences, and the ordering of constants and variables.

o Additional constraints such as string lengths (e.g., |z| = 3), regular membership
(e.g., © € (ab)*), or string functions (e.g., replaceAll, reverse).

Length constraints naturally arise from string equations as an equations v ~ v implies
that |u| = |v|. On the other hand solvers often allow user input to include length
constraints.

In the absence of additional constraints, word equations are solved purely by structural
reasoning. In practice, however, string solvers combine structural unification with
auxiliary theories (e.g., arithmetic or regular languages) to guide and prune the search

space |[DKM™20).

Several major solving strategies exploit different aspects of the problem structure. Three
main approaches are presented in |chapter 3:

o Nielsen Transformation applies rule-based substitutions based on the first tokens

on both sides [Niel7].

o recompression simplifies equations through compression of character pairs and

blocks [Jez16].

o Automata-based solvers [BCCT23, (CHL™19]) use regular constraints to refine
variable domains and reason about satisfiability through language inclusion.

A key observation in is that many real-world string constraints encountered
in verification problems fall into decidable and tractable fragments. Examples include
the quadratic fragment, where each variable occurs at most twice, and fragments that
disallow mutual recursion or looping in substitution graphs which will be described in
subsection 3.1.3.

Modern string solvers are often included in Satisfiability Modulo Theories (SMT) engines.
These solver frameworks combine different theories like integer arithmetic, bit vectors,

strings and quantifiers via DPLL(T) [BBB*22, [dMB08D, Riim08]. Integer arithmetic is

especially interesting in a string solving context dealing with length constraints.
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CHAPTER

Existing Approaches to String
Solving

3.1 Nielsen Transformation

3.1.1 Standard Rules

Nielsen Transformation is a set of rules to transform the equation [Niel7]. There are
various different formulations of these rules, and we present our own extended set in
chapter 4. The rules here can be seen as a kind of common ground in literature and
are necessary and sufficient to cover all possible cases. The first six rules simplify the
equation in a straightforward way; therefore, they are called simplifying rules.

ex~e~ T (3.1)
au ~ e~ L (3.2)
au ~bv~ L (3.3)
au >~ qu~ U XU (3.4)
TU N TV~ UV (3.5)
TU~ e~ ulx/e] ~e (3.6)

Two cases are not yet covered by these rules. The first is zu ~ av. For the assignment of
the variable = in any satisfying model, there are two possibilities. Either x is empty and
we can replace every x with € or x starts with a in which case z can be replaced by az’.
Since z’ is a fresh variable and z does not appear after its replacement, we can reuse the
symbol z. So we replace x with either ax or with . We get a new rule.

Tu >~ av~ (zu~ av)[z/azx] V (zu ~ av)[x/e] (3.7)

7
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3.

EXISTING APPROACHES TO STRING SOLVING

The last case to consider is zu ~ yv. One or both of the variables might be empty.
Otherwise, either z is longer or equal to y and therefore starts with y or y is longer or
equal to z and starts with x. Similarly to the previous rule, if x starts with y we replace
x by yz and vice versa.

zu ~ yv ~ (zu >~ yv)[z/yz] V (zu ~ yo)[y/zy] V (zu ~ yo)[z/e] V (xu ~ yv)[y/e] (3.8)

After the substitution z/az from rule (3.7) we can always apply rule (3.4). And after
x/yx or y/xy from rule (3.8) we can apply rule (3.5). In later examples, we will implicitly
apply these simplification rules immediately after the splitting rule.

For example for the equation = = ay the rule (3.7) will give € ~ ay V az ~ ay. This can
immediately be simplified to z ~ y.

For rules (3.7) and (3.8)) the algorithm has to split on which branch to take, and if the
branch fails it has to backtrack and try another branch, we call them splitting rules. They
are deliberately formulated in a way that for every case there is exactly one substitution
that is applied to the whole equation and nothing else is done. This allows us to say for
rule (3.6) that the equation xu ~ av suggests the substitutions z/azx and x/e and for
rule (3.7) that zu ~ yv suggests x/yx,y/zy, z/c and y/e.

Note that the rules (3.2), (3.6) and (3.7) have symmetric versions where the left and
right hand side are swapped.

To illustrate the concept, consider the example xx ~ aa. We apply rule (3.7) which,
when we apply it to the equation, gives us xx ~ aa ~ (zx ~ aa)[z/ax] V (xx ~ aa)|z/c].
We perform the replacements and get xx ~ aa ~ axazr ~ aa V € = aa. For the equation
e ~ aa rule (3.2) is applicable, which immediately gives us L. Only the equation
arar ~ aa remains. Rule (3.4) simplifies it to xaz ~ a. Applying this to rule (3.7) gives
us rar >~ a ~ araar ~ aV a >~ a. Note that the term u from the general rule is here
¢ and omitted. We can immediately see that we have the trivially satisfiable equation
a ~ a. Nielsen Transformation will simplify this to T after applying rule (3.4) and then
rule (3.1).

3.1.2 Reusing Variables

In rule (3.7) we have the case that we replace x by ax. We call this fixing the prefix
of x because in every solution that follows after this replacement, the interpretation
of the original x starts with an a. We reused the variable = instead of introducing a
fresh variable z’. This might seem haphazard and prone to confusion, but it has a good
algorithmic justification. The same holds for rule (3.8) when we replace x by yx as well
as the symmetric case.

We take a look at another simple example. Consider the equation xb ~ ax. This is
obviously unsatisfiable no matter what = is. There is one more a on the left hand side
than on the right. If we used Nielsen Transformation to solve this we would apply rule
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3.1. Nielsen Transformation

(3.7) and get two cases. The second case is easier so we start here. We get b ~ a which is
unsatisfiable so we backtrack to the case distinction. After applying the first case we
again get the equation xb ~ ax. We have the same equation as at the start, so we can
repeatedly apply the first case of rule (3.7). However, whenever we apply the second case
we get b ~ a, so we will never find a solution.

Whenever we detect that we have the same equation as before we can stop, to avoid
running in a loop. If we had introduced fresh variables, the new equation in our example
would have looked like 2'b ~ ax’. We cannot immediately see that it is the same as
before. We would have to check if the equations are equivalent modulo variable renaming,
which becomes increasingly difficult with every new variable we introduce.

3.1.3 Substitution Graph

Proofs using rule systems are typically illustrated using proof trees. However, if some
substitutions lead to a loop (i.e. cyclic rewriting), this should be represented in the
graph as a cycle. A more general directed graph, called substitution graph, is used that
allows cycles. The nodes of the substitution graph are labeled by equations, and the
edges are labeled by substitutions. An edge is defined as a triple (n1,0,ng2) where ny is
the outgoing node, o a substitution and ng the ingoing node. This can be interpreted as
applying the substitution ¢ to the equation at n; gives us the equation at ns.

The substitution graph is constructed as follows. We start with a root!| node and label
it with the input equation. As long as simplifying rules can be applied, we apply these
rules directly to the label of the node. As long as we have an unprocessed node ng where
a splitting rule is applicable, we create a new node n; and an outgoing edge (ng, o, n;)
for every substitution o; that is suggested by the equation. We immediately apply all
possible simplifying rules to the new n;. If n; is equivalent to an existing node n; we
remove n; and the edge to it and instead create an edge (ng, o;,nj). The node ng is then
marked as processed.

A node can be labeled with one of three types of equations. It can be an equation where
a splitting rule is applicable. The node will have outgoing edges after it is processed and
is called an inner node. It can be L; the node is then called a conflict node. Or it can be
T and the node is a witness node. Any other equation could be further simplified. Both
witness nodes and conflict nodes are terminal nodes.

If there is a witness reachable from the root node, we have shown that the equation is
satisfiable. If all inner nodes are processed and all terminal nodes are conflict nodes, we
have shown unsatisfiability. This is, in general, not a terminating decision procedure,
as we could create infinitely many nodes. In our examples, the labels of the terminal
nodes are not simplified to T or L. Instead, witness nodes are marked with a star * and
conflict nodes are marked with a dagger . This is to better show why the equation is
satisfiable or unsatisfiable.

LAlthough the graph is not a tree, it still makes a lot of sense to use the term root. The node is
uniquely defined with the input equation and all other nodes can be reached from it.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.

EXISTING APPROACHES TO STRING SOLVING

10

=

x/ax /b /e
Z N
x/e
|

Figure 3.1: Substitution graph for xab ~ bax

Figure 3.1 shows an example of a substitution graph for the equation zab ~ bax. There
are two nodes where rule (3.7)) is applicable, so they have two outgoing edges. Applying
substitution z/ax to xab ~ abx gives, after simplification, the equation xab ~ bax. There
already is such a node, the root node, so the edge points to this existing node. After
adding this edge the graph contains a cycle. We also have one conflict node and one
witness node showing that the equation is satisfiable. We can also determine models
from the substitution graph. This is done by chaining all substitutions on a path from
the root node to a node with label T. For the shortest path from zab ~ bax to T we get
o = [z/bx] o [x/e] = [x/b]. So one possible solution is o(x) = b. Using different paths, by
going a certain number of iterations in the cycle, we can get different models. In fact,
the substitution graph gives us all satisfying models [LM21].

3.1.4 Generalization to Multiple Equations

The substitution graph with Nielsen Transformation can be easily generalized to accept
multiple equations as input. Every node is now labeled by a set of equations EQ; the
root node is labeled by the set of input equations. Simplification rules are applied to
every equation in EQ until no simplification rule is applicable at any equation. The
order in which they are applied is irrelevant. Whenever rule (3.6)) it is applicable to one
equation, the substitution x/e has to be applied on all equations.

A node is a witness if all equations are T. If at least one equation is 1, the node
is a conflict node. Otherwise, the node is an inner node. An inner node ng might
have equations that are T. For every other equation, there is one splitting rule that is
applicable. For every substitution o; that is suggested by any of these equations a new
node and an outgoing edge (ng, 0y, n;) are created. The substitution o; is applied to all
equations. Similar to before, n; will be replaced by an existing node n; if the labels — in
this case, the set of equations — are equal.
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3.1. Nielsen Transformation

Txa ~ brx

x/bx x/e
x/bx x/e

[ zbbaa i babba |
m/‘bx z/e

-

Figure 3.2: Substitution graph for xxa ~ bxz

3.1.5 Termination on the Quadratic Fragment

In [subsection 3.1.3| we have seen that a substitution graph can tell us if an equation
is satisfiable and, in case it is, also gives us all models. However the algorithm for
constructing the substitution graph is not always terminating. Consider the equation
xxa = bxx in Figure 3.2. After applying rule (3.7) we have a new node with the equation
xbra = brbx and after another application of rule (3.7) a node with zbbza = bxbbxr. We
can start to see a pattern. We generate longer and longer equations but the first token
on both sides is always the same so we always apply the same rule. The branches where
we apply the substitution z/e will always be labeled with L since there is no variable
and there is an a on the left hand side and not on the right hand side.

However, we can guarantee termination if we restrict the input to the so-called quadratic
fragment. A set of input equations is in the quadratic fragment if every variable appears
at most twice in total over all equations from the set.

To prove this, we first state the following lemma.

Lemma 3.1.1 Let EQ be a quadratic set of equations. If o is a substitution suggested
by one of the splitting rules (3.7)-(3.8) for an equation eq € EQ, then there exists a
simplification rule m; (3.1)-(3.6) such that m;(EQlo]) is still quadratic and contains no
more tokens than EQ.

There are three types of substitutions that can be suggested by a splitting rule:

o The substitution z/e removes all occurrences of the variable z from every equation

in EQ. It introduces no additional tokens and strictly decreases the token count.

11
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No new variable appearance is introduced, so the set of equations EQJo] is still
quadratic.

o The substitution x/az introduces at most two additional tokens (two occurrences
of the constant a), since z occurs at most twice in EQ due to the quadraticity
assumption. This substitution is suggested by an equation of the form xu ~ av.
Therefore, such an equation must exist in EQ, and in EQJo] we find the transformed
equation azulzr/azx] ~ av|x/az].

This equation can be simplified using rule (3.4), yielding zu[z/az] ~ v[z/azx]. The
simplification removes two occurrences of a. As a result, the overall number of
tokens is either reduced or left unchanged, and the number of variable occurrences
remains the same. Thus, m;(EQ[o]) is still quadratic.

o The substitution z/yx introduces at most two additional tokens y, again because x
occurs at most twice. This substitution is suggested by an equation of the form
zu ~ yv, handled by rule (3.8). In EQ[o], the substitution results in an equation
of the form yzu[z/yx] ~ yv]x/yz], which can then be simplified using rule (3.5) to
eliminate two occurrences of y.

As in the previous case, the simplification cancels out the additional tokens intro-
duced by the substitution, resulting in no net increase in token count. The variable
count remains bounded, and the system remains quadratic.

In all three cases, the simplification reduces or maintains the number of tokens and
preserves quadraticity.

From this lemma follows via induction over the construction of the graph that if a root
node is labeled by a quadratic set of equations all other nodes are quadratic and the
number of tokens in any node is smaller than or equal to the number of tokens in the
root. Since the number of tokens is limited, there are only finitely many possible different
equations. Also, the number of equations per set is limited since we only replace equations
and do not introduce new ones. With finitely many equations to choose from and a
limited set size, there are only finitely many different sets of equations. Since the nodes
of the substitution graph are labeled by unique equation sets the graph is finite. This
means eventually every node will be processed and the algorithm terminates.

3.2 Recompression

Recompression is a powerful technique for solving word equations, introduced by Artur Jez
in [Jez16]. The core idea is to simplify the structure of the equation through systematic
compression of repeated patterns in the words. The technique is based on two operations:

e Pair compression: All occurrences of a pair of distinct letters ab € ¥2 are replaced
by a fresh symbol ¢ ¢ 3.
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3.2. Recompression

e Block compression: Maximal blocks a’ of the same letter a € ¥ are replaced by a
fresh symbol ay.

Given a word equation u ~ v, a solution is a morphism S: V — ¥* such that both S(u)
and S(v) are ground terms and S(u) = S(v).

Both pair and block compression are applied simultaneously to all eligible substrings
in S(u) and S(v). Recompression distinguishes three types of occurrences of substrings
w € YT in the expression u ~ v:

o Ezplicit if w occurs directly as a substring of u or v (i.e., outside of variables).

o Implicit if w appears as a substring entirely within the image S(z) of some variable
x.

o Crossing if w straddles a boundary between variables and/or constants, e.g., one
letter comes from S(x) and the other from elsewhere in the equation.

A key challenge in recompression is dealing with crossing appearances. For example, a
crossing occurrence of a pair ab may arise if:

e A variable x ends with a, and the next symbol in the equation is b, or
e A variable x starts with b, and the preceding symbol is a, or

o Two adjacent variables z and y are such that S(z) ends with a and S(y) starts
with b, and xy appears in u.

Crossing appearances cannot be directly replaced, so the algorithm modifies the structure
of u to make the critical characters explicit. If  ends with a, and the following symbol is
b, then every occurrence of z in the equation is replaced by 2’ = za, and the trailing a is
removed from S(z). If = starts with b, and the preceding symbol is a, then z is replaced
by ' = bx, and the leading b is removed from S(z).

This process is referred to as left-popping and right-popping, respectively, depending on
whether the letter is moved out of the start or end of the variable. Once all crossing
appearances of a pair ab are converted to explicit ones, they can be safely replaced during
pair compression.

Block compression operates similarly. For a maximal block af, if part of the block
is hidden inside a variable z, left-popping and right-popping are applied repeatedly
to extract all consecutive a’s from the boundary of S(x) until a different symbol is
encountered. This makes the block explicit and it can now be compressed.

13
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The recompression procedure repeatedly applies pair and block compression steps, trans-
forming the equation into a simpler form. Additionally, if the variable x has the solution
S(x) = e, x is removed from the equation.

The algorithm continues until the equation becomes trivial. That is when both sides
reduce to the same constant string.

Importantly, the recompression process operates under the assumption of a length-minimal
solution. However, since the actual solution is not known in advance, decisions regarding
popping letters and removing empty variables are inherently non-deterministic. The
algorithm explores different branching choices in a fair way, ensuring that a correct
solution path will eventually be discovered, if one exists.

3.3 Automata-Based Methods

String equations as well as many string constraints can be expressed using regular
languages. Many solvers use automata to represent and reason over regular languages.
One approach, using automata, is called stabilization and is used in state of the art
solvers like NOODLER [BCC*23, |CCH"24]. This method combines word equations
with regular language constraints, leveraging automata to represent and refine possible
solutions.

In this approach, each variable x € V is initially assigned a regular language, which
represents the set of all possible strings that x may take. If a variable is unrestricted
by any additional constraints, it is initially assigned the language »*, where X is the
alphabet. The language of concatenated terms is defined via language concatenation:

Ll-LQZ{U'I}‘UGLl,'I}GLQ}.

An assignment of languages to variables is stable if for every equation u ~ v, the languages
of the two sides coincide:
Lang(u) = Lang(v),

which means
Lang(u) C Lang(v) and Lang(v) C Lang(u).

When the inclusion Lang(u) C Lang(v) is violated for some equation u ~ v, the language
assignment is refined to restore stability. The refinement is performed by intersecting the
languages Lang(u) and Lang(v) using the product construction on their corresponding
automata.

A key feature in this process is how variable boundaries within w are represented. In the
automaton recognizing the language that will be refined Lang(u), edges labeled with €
mark the borders between occurrences of variables. These e-edges are preserved in the
product automaton to maintain the separation of variable segments.
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3.3. Automata-Based Methods

Using these e-edges, the product automaton is split into subsequences, each corresponding
to a single occurrence of a variable within . When a variable appears multiple times,
the languages corresponding to its occurrences are intersected to enforce consistency.
Because multiple ways to split the automaton may exist, the procedure may need to
branch over the different possible decompositions.

If the resulting language assigned to a variable becomes empty in any branch, that branch
is discarded. Otherwise, the language assignment is refined by updating the variable’s
language accordingly.

b b b

(0 0 (1

qo0 a q1 a q2

b b b

no, 0 o, 0
a,b C Dpo P090 =—=——= P91 —— DP0G2
€ € €

a a

a,bC D1 P10 —— D191 —— D142

U U U

b b b

Figure 3.3: Product automaton illustrating stabilization

Consider the example with the equation

and the regular constraint
x € b*ab*ab”,

where ¥ = {a, b}.

Initially, there are no constraints on y, so y € X*. Thus,

Lang(z) = b*ab*ab*, Lang(yy) = (a,b)*.

Applying stabilization requires checking the subset relations:

Lang(z) C Lang(yy) and Lang(yy) C Lang(x).

The first inclusion is satisfied since language concatenation does not preserve the infor-
mation that the both occurrences of y have to be equal. The second inclusion is not
satisfied, so we refine Lang(yy) by intersecting it with Lang(z).

15
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3. EXISTING APPROACHES TO STRING SOLVING
To do this, we construct the product automaton of Lang(z) and Lang(yy) as shown in
Figure 3.3. In similar illustrations are used to demonstrate different examples.
Since yy is a concatenation of two occurrences of y, the e-edges that mark the boundary
between the two occurrences of y are preserved in the product automaton.
The automaton shows three distinct e-edge paths from the initial to the final states,
highlighted in red, blue, and green. Each path represents a possible way to split the
language between the two y variables.
e Green path: The first y corresponds to language b*, and the second y to b*ab*ab*.
Intersecting these gives
y € b*Nb*ab*ab* =,
so this branch is discarded.
¢ Red path: Symmetrical to the green path, this yields
y € b*ab*ab* Nb* =0,
which is also discarded.
¢ Blue path: The first y corresponds to b*ab*, and the second y also corresponds to
b*ab*. Their intersection is
y € b ab”,
which is non-empty and therefore constitutes a valid refinement.
Thus, the stabilization process refines y to the language b*ab*.
16
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CHAPTER

Extending Nielsen Transformation

4.1 Power Substitutions

In subsection 3.1.3| it was shown that the substitution graph can contain cycles. One
class of equations where such cycles occur are equations of the form wzu ~ zv, with
w € X1, To guarantee that we can introduce a cycle and the algorithm will not diverge
u and v must not contain the variable x. With this restriction, we have the nice property
that u[x/w;] = u and v[z/w;] = v. Later, we will relax this restriction. This particular
class is amenable to a specialized additional rule that complements the existing ones.
By applying this rule, the introduction of cycles in these cases can be avoided while
preserving the set of solutions. This leads to a more compact representation of the
solution space and improves overall performance.

o
—
x/e

J

(a) Explicit path with loop. (b) Compact representation using oy.

Figure 4.1: Two representations of the substitution graph for the equation azxu ~ zv.

To motivate the additional rule, consider a special case of the class of equations of the
form wxu ~ xv, specifically when w = a, as illustrated in Figure 4.1a. In this case, the
equation axu =~ xv is not a terminal node in the substitution graph, and it has a unique
successor node, namely au ~ v. For every solution of axu ~ xv, the corresponding path
in the substitution graph necessarily includes an edge labeled x/¢ leading to au ~ v.
Prior to this edge, the path consists of £ > 0 consecutive applications of the edge labeled

17
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x/az. In other words, each such path includes k transitions of the form z/az, followed
by a single transition of the form z/e. These paths can be compactly represented by
introducing a parameterized edge from azu ~ zv directly to au ~ v, labeled with the
substitution o, where oy = 2/axox/axo...ox/axox/e = x/a* as shown in Figure 4.1b

This construction replaces the multiple-step paths with a single edge, simplifying the
graph structure while preserving the semantics of the substitutions.

abexu ~ v — /€ =] abcu ~ v abcxu >~ xv

=/ax x/(abc)* x/(abc)*ab

)
e [zl o] [
o/t
ofe ~[cabu=1]

(a) Explicit path with loop. (b) Compact representation.

Figure 4.2: Two representations of the substitution graph for the equation abczu ~ zv.

To generalize this to equations where |w| > 1, we take a look at another example when
w = abc. As shown in [Figure 4.2| the circle consists of three nodes and there are three
edges that lead out of the loop and to a node where x is eliminated. After k iterations in
the loop, the original x starts with (abc)*. Depending on which edge out of the loop the
path takes, x can have an additional a or ab at the end.

Generally equations of the form wzu ~ zv, with with w € £F, have oy (x) = (wyws)*w;
where w = wywy and |wy| > 0. Note that the case where wy = w, |ws| = 0 is not consid-
ered since the same solution can be expressed with wy = w, |w1| = 0 and incrementing k
by one. Also note that w = wiws is not a substitution or an equation but a syntactic
equivalence and all three symbols w,w; and wy are just representations of a sequence
of characters. wj can be any proper prefix of w, including the empty prefix, so the
algorithm will split into |w| branches, where in every branch w; is a different prefix of w.
This yields a new rule. Given w € ¥T

TU 2 WLV~ \/ (zu ~ wav)[z/ (wiws ) w;] (4.1)
wiwa=w,|wz|>0
After the substitution x/(wiws)*w; is applied the new equation is (wiws)*wiu ~
wyws (wyws)*wyv. This can be simplified to u ~ wowqv.

Using this new rule, there is no need to have the loop anymore. This means the restriction
that u and v must not contain x can be relaxed. However when applying the rule the
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4.2. Handling Power Terms within Equations

substitution for z is now relevant for v and v and the equation will simplify to v’ ~ wowyv’
where v/ = uf[z/(wiws)*w1] and v = v]z/(wiws)Fw].

4.2 Handling Power Terms within Equations

An expression like w” is not a formal string term but a set of string terms {e, w, ww, - - - }.
Since there is a compact representation for that set, it is still reasonable to treat it as a
term. To this end, extended string terms are introduced. A power term is a term of the
form w* where w € £ is called the base and k > 0 is called the exponent. An extended
string term can be a string term, a power term or a concatenation of two extended string
terms. An extended string equation is an equation u ~ v: C' where u and v are extended
string terms and C' is a set of integer constraints over the exponents appearing in « and
.

To generalize the Nielsen transformation that it works with extended string equations a
few additional rules are required. All existing rules are kept. It is only noted that the
integer constraints are left unchanged by these rules. Thus, all cases where neither side
starts with a power term are already covered. So in this section, only the rules where
one side starts with a power term are presented.

whu = whv: C~u=v:C (4.2)

whu ~e: C~uo~e: CU{k =0} (4.3)

Rule (4.3) can be applied if one side is a power term w* and the other side is empty.

Since w is required to at least contain one element from ¥ the only possibility for w* to
be empty is when k£ = 0.

The case where one side starts with a power term w* and the other with a constant a

requires a split. The exponent k could be zero, then the power term can be removed.

If k is greater than zero, the term wF is rewritten to ww”*~!. Rewriting where the first

sequence w is pulled out of the power term is called unwinding. Immediately after this,
either rule (3.3) or rule (3.4) can be applied.

whu ~ av: C~ u~av: CU{k=0}Vww" lu~a: CU{k>0} (4.4)

If there are two power terms and they have the same base, it is possible to eliminate one

power term. The rule splits which exponent is higher and then rewrites the higher one.

Immediately after this rule (4.2)) can be applied.
whu ~ whu: O~ whwf TRy ~ wke: C Uk > ke) v

4.5
whty ~ wFwh2 kg, CU{ky > k1} (4:5)

If the two power terms have different bases one or both of them could have zero as
exponent. Otherwise, the bases have to be compared. This is done via unwinding.

19
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wiu ~ whv: C~ou~v: CU{k; =0,k =0} V
we~ who: CU{k; =0,k >0} V
wilu ~v: CU{k; >0,k =0} V

wiwy' " u ~ waws? v CU Lk > 0, ke > 0}

(4.6)

If one side starts with a power term and the other with a variable x, there are two
possibilities. If z is longer or equal to the power term w*! a substitution is applied to
to fix that x starts with w”'. If x is shorter than w*' the variable x is substituted by a
prefix of w*! which can only be of the form (wjws)*2w; where ko < ki and wiws = w.
It is necessary to branch on what w; and ws are. To make the branches distinct wy is
forced to be non-empty.

whu ~ v C~ (W ~ zv)[z/whz]: CV
\/ (w2 Wk =*2y ~ o) [z /ww ] C U {ki — ko > 0} (4.7)

wiwe=w,|wz|>0

There are equations where rule (4.4) would be applicable but not beneficial. For example
equation (ab)® ~ a(ba)*?. The case where k; = 0 is a conflict. The other case gives
b(ab)*1~! ~ (ba)*? after simplification. The same rule is applicable again and it gives
(ab)s1=1 ~ a(ba)*>~1. The exponents changed, but no real progress was made if k; and
ko are not bound. The power terms can be unwound infinitely. If the term a(ba)*?
is replaced by the equivalent term (ab)*2a, rule (4.5) can be applied. The resulting
equations (ab)¥1=*2 ~ g and e ~ (ab)*2~*1q will both quickly lead to a conflict.

The problem in this example was that there are different extended string term repre-
sentations that are equivalent, and depending on the representation, a different rule is
applicable. Generally, the expressions should be in a form that rule (4.5)) is preferred over
unwinding. Therefore equivalence replacements are introduced that bring the equation is
such a form.

wy (wgwl)k ~ (wlwg)kwl

wwk ~> ’LUk’UJ

w! ~ w (4.10)

Simplification rules are still prioritized so these replacements are done after no simpli-
fication is applicable but before any other rule. An equivalence replacement creates a
new node with an edge labeled rewrite. The new node is processed like any other node,
starting with the application of simplification rules.
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4.2. Handling Power Terms within Equations

To integrate the new rules into the substitution graph, it is necessary to categorize the
new rules. Rule (4.1) and rule (4.7)) are splitting rules and rule (4.2) as well as rule (4.3)
are simplification rules. The rules (4.4) and (4.5) are similar to splitting rules however
there are no substitutions. Instead each brach is characterized by integer constraints that
are added to the set. Consequently we say they suggest integer constraints. Rules (4.4)
and (4.5) are thus called constraint splitting rules and the edges on the graph are labeled
with the suggested integer constraints.

The nodes now contain extended string terms thus their label also shows the constraints.

If the constraints in the node are not consistent the node is a conflict node.

’xbx:abma: (Z)‘

(4.1) z/(ab)¥ z/(ab)*a
— .
(ab)kb(ab)* ~ ab(ab)ka: 0 (ab)kab(ab)*a ~ ab(ab)*aa: 0
\ \
(4.9) rewrite rewrite
| |
(ab)kb(ab)F ~ (ab)kaba: O T (ab)fa ~ aa: O
{
(4.4) k=0 k>0
— !
a~aa: {k=0}"1 b(ab)rla~a: {k>0}1

Figure 4.3: Example substitution graph with power introduction.

The example zbr ~ abxa in Figure 4.3| is unsatisfiable. It is not quadratic so Nielsen
transformation is not guaranteed to terminate. And in fact rules (3.1)-(3.8) will only
terminate on this example if rules (4.1)-(4.10) are used. The power is already introduced
in the first step. The base is ab and there are two possibilities for the prefix w; namely ¢
or a. So there is a two way split. There is no simplification possible so both branches
are rewritten using an equivalence replacement such that (ab)* moves to the start of the
right hand side. The left branch simplifies to L since after the first (ab)* the characters
b and a clash. The right branch simplifies to (ab)¥a ~ aa. Since no further simplification

rules and no equivalence replacement is applicable, an unwinding rule has to be applied.

Both the branch where k = 0 and the branch, where the first sequence is unwound from
the power term, simplify to L. All inner nodes are processed and all terminal nodes are
conflict nodes. Thus unsatisfiability was shown.
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CHAPTER

Beyond Nielsen Transformation

5.1 Beyond Simple Loops

There are equations where the substitution graph has loops that can not be replaced
by a power introduction rule from section section 4.1. Take a look at the following
example xabyu ~ ybaxv where u and v do not contain the variables x or y. A part of

the substitution graph for this equation is shown in [Figure 5.1.

byu ~ ybv: ()

x/e

‘ zabyu ~ aybxv: () ‘

x/bx

/

‘ zabyu ~ bayzv: ‘

|
x/e
J
abyu ~ bayv: O 1

x/ax

x/yx

’abyu ~ ybav: () ‘

x/e

‘ xabyu ~ ybaxv: () ‘

y/e

’ xabu ~ baxv: () ‘

y/by

y/ry

7

y/e
|

‘ brayu ~ ybaxv: () ‘

y/ay

‘ abxyu ~ ybaxv: ()

|
y/e

’abxu:baazv: @T‘

Figure 5.1: Example substitution graph with a bow tie.
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The subgraph marked in green is a strongly connected component consisting of two loops.
Because of its form, the subgraph is called bow tie. The black nodes are called base cases.
A node is called base case if the first edge that points into the node is a substitution of
the form z /e for some x € V. In each base case, one variable is eliminated making the
equation easier. This also guarantees that there can be no back-edge from one of the
base cases to the bow tie. Similar to section 4.1, there is a strongly connected component
and some edges that lead out of it. Like with the loop, it would be beneficial to contract
the bow tie into a single node. There would be one edge per base case node with a
parameterized substitution o representing all paths that lead to that node. This would
then also work for cases where u or v contain the variables x or y. The only difference
would be that in the base case u and v are replaced by o(u) and o(v) respectively.

To see why this is not possible we track the substitution for some possible paths in
our example. Starting from zabyu ~ ybazxv the path takes ki iterations on the loop
y/xy,y/ay,y/by and the resulting substitution is o1(x) = z,01(y) = (zab)*1y. After
ko iterations in the loop x/yz,x/bx, z/ax the substitution is oa(x) = (yba)*2x, oo (y) =
((yba)*2zaby)¥*. The path may loop m times alternatingly on the two loops and the
resulting substitutions will be increasingly complex nested power expressions. The set of
possible substitutions that loop back to the root node is |J,;~gom. It is not possible to
represent this set by a single parameterized substitution since the number of parameters
depends on m and m can arbitrary high.

5.2 Using Equation Signatures to Identify Patterns

Note how in the example from the previous section the sub-terms w and v did not affect
which rules were applied within the bow tie. This holds even if v and v contain the
variables x and y.

zabyy ~ ybaxz: 0 }— z/yx

’ xabyy ~ bayryx: 0 }—— x/bx

N
/j zabyy ~ aybrybx: )

x/ax

J—
rabyy ~ ybaxybax: () }—— y/zy

’ abryxy ~ ybarzybax: () }-—- y/ay
N
J brayzray ~ ybaxxaybazx: ()

y/by

rabyzaby ~ ybarzrabybaz: () ‘

Figure 5.2: Substitution graph with reoccurring prefixes.
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5.2. Using Equation Signatures to Identify Patterns

In the example of [Figure 5.2, u is replaced by y and v by x. In this example, we
could infinitely cycle with the substitutions z/yx, z/bx, z/ax as well as y/xy,y/ax,y/bx.
The first four tokens (in red) will always repeat themselves and are the same as in
Figure 5.1. These tokens are called signature and determine which rules will be applied.
The remaining part will get increasingly longer and prevents that there are loops in the
substitution graph. In this example, it would be beneficial to combine the nodes where
the signature equal. This way, the graph would have a bow tie, and we would avoid
adding infinitely many new nodes.

For any equation u ~ v, the signature is defined as sig(u ~ v) = u; ~ v; if and only if
there are uy, uo,v; and vo such that u; and vy are minimal w.r.t. length and satisfy the
following conditions:

o U= ujus and v = Vv
e wuj and vy are non-empty
e Any variable in u; also occurs in v; at least once or v; = v

e Any variable in v; also occurs in u; at least once or u; = u

If there are no such uy, ug,v; and vy, the signature is defined as sig(u ~ v) = u ~ v.

Often the signature will be the whole equation. In these cases the algorithm defaults
back to the originally described steps from |subsection 3.1.3|

The construction of the substitution graph is divided into two steps. In the first step
base case nodes are left unprocessed. At the edges that point to a base case all variables
except the one that is replaced by e are replaced by a fresh variable. Thus a substitution
x /e is replaced by o; where o;(z) =¢,0,(y) =y for all y € Vy # x.

In this step substitutions, including the modified substitutions that lead to a base case,
are only applied to the signature. This makes the remaining parts of both sides irrelevant
for the equality check between nodes.

After all other nodes are processed the base case nodes are handled the second step.

The sub-terms that were not part of the signature can contain variables that should
have been changed by substitutions but where the substitutions were not applied. These
variables can not occur in the signature, since all variables in the signature are replaced
immediately before the base case node. The remaining variables are now restricted to a
language that is defined by the substitutions at any of the paths from the root node to the
base case. For every variable z € V' it must hold that © € Lang({o(x) | 0 = g10---00.,})
for any path oy --- o, from the root node to the base case. This must be one distinct
path that is the same for all variables.

The base case node is now solved separately. It is the root node of a different substitution
graph. If a solution is found it will be intersected with the restriction on the variables
from before to get a solution to the original equation.
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by'y ~ y'bx:
T
zfeoy/y
|

‘ xabyy ~ aybrx: () ‘

x/ax
x/bx

x/yx

zabyy ~ bayzrx: )
‘
z/eoyly
l
aby'y ~ bay'z: O 1

aby'y ~ y'bax: 0

z/eoy/y

/

‘ xabyy ~ ybazz: () ‘

/

yleox/x

x'aby ~ bazx'x:

y/by

y/zy

2ay ~ax'x: ()
T
yJeoa/d
|

‘ brayy ~ ybaxx: () ‘

y/ay

abxyy ~ ybazxx: ()
{
y/eox/a!
!

abx'y ~ bax'z: O 1

Figure 5.3: Substitution graph using the signature

If no solution is found or the intersection is empty the base case node is a conflict node
in the original substitution graph.

5.3 EDTOL Grammars for Capturing Variable Languages

To formalize the variable restrictions a language L is defined as set of tuples where each
element (z1,...,z;) € (VUX)*) x -+ x ((VUZX)*) corresponds to one solution.

To describe this language we use EDTOL grammars [DJK16, SY02, [Asv76]. Let G =
Vg, X¢q, S, H) be a EDTOL grammar where Vg is a finite set of non-terminals, ¥ is a
finite alphabet of terminals, S € V" is a n-tuple of starting non-terminals and H is a set
of tables. A table h € H is a set of morphisms x — w where z € V and w € (V U X)*.
Starting from S a table from H will be applied since no non-terminal occurs in the
resulting tuple. A table is applied by applying all morphisms to all occurrences of
non-terminals of all elements in a tuple.

Let (N, E) be a substitution graph where all occurring variables are given by V =
Veq U V' where Vg, is the set of variables that occur in the input equation and V' the
set of fresh variables. Then let n € N be a base case node. We define a grammar
Gn = (Va, X, S, Hy). There is a non-terminal for every variable in V., and every non
base case node Ny C N in the graph Vg = {X; | (x,pi) € Veqg X Nr}. The terminals
Yo = X UV’ are the characters from the alphabet and the fresh variables. The starting
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5.3. EDTOL Grammars for Capturing Variable Languages

non-terminals are S = (Xo, Yo, Zo, ...) where {z,y, z,...} = Vg and pp € N is the root
node.

Only edges within the connected component and the edge leading into the base case are
considered. For every such edge (n;,o,n;) where n; € Ny and n; € Ny U {n} there is
a table h € H,. The table is constructed as h = {X; — node;j(c(x)) | x € Veq} where
node; replaces every variable y € V., with the non-terminal Y.

For any base case n of a substitution graph (N, E) all variables must be in the language
defined by the corresponding grammar (z1, ..., z;) € L(Gy,).

The grammar that corresponds to [Figure 5.3 for the base case n = 2'ay ~ ax’z is

Gn - ({X[)u X17X2a X37X4)}/07}/17 Y27}/T37Y4}7 {(I, b7 $/, y/}7 (X07 YO)a Hn}

H, ={{Xo— Y1 X1, Yy — Y1},
{X1 — bXo, Y] — Yo},
{X2 — aXo, Yo — Yo},
{Xo — X3, Yy — X3Ys},
{X3 = Xy, Y3 — aYy},
{X4 — Xo, Yy — bYo},
{X4 — 2, Yy — et}

In the tables in H,, we can reproduce the loops from the graph. We start with the tuple
(X0, Yp). While in theory every table can be applied only the tables {X¢ — Y1X;, Yy —
Y1} and {Xy — X3,Y) — X3Y3} will change the tuple. We choose the first one and
get the new tuple (Y1X1,Y7). Now only table {X; — bX5,Y; — Y5} is sensible and it
will give the tuple (Y2bX2,Y>). Again only one table, namely { Xy — aXg, Y2 — Yj} is
sensible, it gives (Yoba Xy, Yp). Since these three tables can only be applied in this exact

sequence they can be replaced by one table that combines them: Xy — Ypba Xy, Yo — Yp.

This corresponds to one loop in the substitution graph.

Similarly a table {X, — XYy — XoabYyp} can be introduced for the second loop
Combining {XO — Xg,Yb — X3Y3 }, {Xg — X4,Y3 — CLY4} and {X4 — Xo, Y, — bifg}

The sequence {Xo — X3,Yy — X3Y3 }, {X3 — X4, Y5 — aYy} and { Xy — 2/, Yy — ¢}
is the only sequence of tables that will not lead to a loop but results in a state where all

symbols are terminals. This can also be combined to one single table { Xy — 2'Yy — 2/a}.

With these three newly introduced combined tables all other tables as well as the
intermediate non-terminals X7 to X4 and Y] to Y3 were rendered needless. We can define
a new grammar G, that expresses the same language as G,,.

G = ({Xo, Yo}, {a,b,2",y'}, (Xo, Yo), Hp }
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H), = {{Xo — YobaXo, Yy — Yo},
{Xo — Xo, Yo — XoabYy},
{Xo — 2/, Yo — 2'a}}

5.4 Towards a Final Solution to the Equation

Continuing on the example from [Figure 5.3 we try to find a solution for the base case
2'ay ~ azr’z. After applying rule (4.1) the equation simplifies to x ~ y giving us the
two equivalent solutions o1(z) = y,01(y) =y and 01(y) = y,01(x) = y. This means an
interpretation satisfies the base case if and only if o(z) = o(y). For the original equation
zabyy ~ ybazxz there is the additional condition that (o(x),0(y)) € L(G,). For any
pair (o(x),0(y)) € L(G),) the derivation starts by applying some table hg € Hy,. A case
distinction is made on which table in H,, is hyg.

If hyg = {Xo — YobaXyp, Yy — Yo} it follows that o(z) = ubav and o(y) = u where u
and v are some string terms that are derivable from Yy and X respectively. No matter
what u and v are ubav # u. For the case hy = {X¢ — Xo, Yo — XoabYy} a symmetric
argument can be made. The last case hg = {Xy — 2/, Yy — 2’a}} gives o(x) = 2/a and
o(y) = a2’ where again o(z) # o(y).

For all three cases there is no solution o such that (o(x),0(y)) € £ and o(z) = o(y).
Thus the base case x’ay ~ az’x is a conflict node. Similar arguments can be made to
show that the remaining base cases are also conflict nodes and consequently show that
the equation zabyy ~ ybaxx is unsatisfiable.

In general the solution for a base case can be a regular language or another EDTOL
language. To get a solution for the original equation the intersection of two EDTOL
languages or the intersection between an EDTOL language and a regular language is
needed. To our knowledge there is no algorithm to compute these intersections without
restoring it back to a string equations.
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CHAPTER

Conclusion

In this thesis we presented the basic idea of solving string equations as well as three
prominent approaches. We saw Nielsen Transformation with a set of rules that we
extended with our own rules. Using these set of rules we demonstrated how a substitution
graph can be used to systematically find models for string equations or prove them
unsatisfiable.

We also looked at recompression that simplifies equations systematically by compressing
pairs and blocks of characters until the equation is trivially solvable. Many solvers use
regular automata to represent and solve string equations and other string constraints.
We reviewed one approach using automata called stabilization.

The biggest drawback of Nielsen Transformation is that it might not terminate on
unsatisfiable instances outside the quadratic fragment. We successfully used power
introduction to overcome this drawback at least in some instances. With these power
terms we could represent all solutions, a cycle in the graph would generate, in the form
of one parameterized term.

In an attempt to extend our improvements in handling loops to other strongly connected
components we introduced signatures. Using these signatures, the problem was split into
solving the part of the equation in the signature and, depending on the base case, solving
the rest of the equation. With EDTOL grammars we found a fitting representation for
these partial solutions.

We think the concept of signatures and the transformation from a substitution graph to
an EDTOL grammar are useful tools for devising new approaches to string solving.

This collection of techniques provides a broad insight into the fundamentals of string
solving and offers value for solver developers seeking to implement or extend string
solvers.
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Ubersicht verwendeter Hilfsmittel

Fiir diese Arbeit habe ich keine Textpassagen von KI-Tools tibernommen. Die KI-
Text-Korrektur von Scribbr in der Version vom 15.08.2025 habe ich verwendet um
Grammatik, Rechtschreibung und andere sprachliche Fehler zu finden. ChatGPT mit dem
Sprachmodell GPT-4 wurde verwendet, um sprachliche Fehler und unklare Formulierungen
aufzuzeigen. Die entsprechenden Stellen habe ich dann ohne KI Hilfsmittel korrigiert.
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