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Kurzfassung

In der Praxis werden häufig verschiedene Modellierungssprachen eingesetzt, um unter-
schiedliche Blickwinkel auf ein Unternehmen abzubilden. DEMO legt den Fokus auf die
Verantwortung von Akteuren und deren gegenseitige Verpflichtungen, während BPMN
beschreibt, wie Prozesse im Detail ablaufen. Obwohl beide Modelle oft denselben Ge-
schäftsbereich betreffen, werden sie meist getrennt voneinander gepflegt. Das führt schnell
zu Inkonsistenzen und einem hohen manuellen Pflegeaufwand.

Ziel dieser Arbeit ist es, einen Ansatz zu entwickeln, der DEMO- und BPMN-Modelle
automatisch synchron hält. Anders als bei klassischen Modelltransformationen, die nur
in eine Richtung funktionieren, erlaubt das vorgestellte System eine Synchronisation in
beide Richtungen. Änderungen im einen Modell werden erkannt und - soweit möglich -
automatisch auf das andere Modell übertragen. Dafür wurde ein lauffähiger Prototyp in
der Simplified Modeling Platform umgesetzt. Das System verwaltet Modellinhalte und ihre
visuellen Darstellungen, erkennt Veränderungen und nutzt sogenannte Brückenelemente,
um die Verbindung zwischen den Modellelementen nachzuvollziehen. Klare Regeln sorgen
dafür, dass die Synchronisation nachvollziehbar und konsistent abläuft.

Während Änderungen im DEMO-Modell vollständig automatisch in BPMN übernommen
werden können, erfordert die Synchronisation in der umgekehrten Richtung die Inter-
aktion des Nutzers, um passende DEMO-Elemente auszuwählen und Mehrdeutigkeiten
aufzulösen.

Der Prototyp wurde auf Korrektheit, Laufzeitverhalten und Stabilität getestet. Die
Ergebnisse zeigen, dass sich kleine bis mittelgroße Modelle zuverlässig und effizient syn-
chronisieren lassen. Eine detaillierte Analyse der Komplexität und Benchmarks bestätigen
zudem die technische Skalierbarkeit des Ansatzes. Auch wenn sich die Arbeit auf DEMO
und BPMN konzentriert, bietet der gewählte Lösungsansatz eine gute Grundlage, um in
Zukunft weitere Modellierungssprachen miteinander zu verbinden.
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Abstract

In enterprise modeling, different languages are often used to capture different perspectives
of an organization. While DEMO focuses on actor commitments and coordination logic,
BPMN models the operational flow of processes. In practice, these models are often
maintained separately, even when they describe overlapping business behavior. This
leads to inconsistencies and manual duplication of effort.

This thesis presents a practical approach for keeping DEMO and BPMN models syn-
chronized over time. Unlike traditional one-way transformation approaches, this system
continuously synchronizes DEMO and BPMN models by identifying and applying changes
in both directions - automatically where rules are clear, and with user support where
ambiguity exists. We implemented a working prototype on top of the Simplified Modeling
Platform, which supports the creation, update, and deletion of model elements and
connections. To manage this process, the system uses bridge elements to track links
between models and applies clearly defined synchronization rules. The overall architecture
is designed to be modular and efficient, enabling smooth synchronization across multiple
modeling scenarios.

From DEMO to BPMN, changes are applied automatically using the semantics of the
DEMO transaction pattern. In the reverse direction, from BPMN to DEMO, the system
provides user guidance to resolve ambiguity.

The prototype was evaluated in terms of correctness, runtime performance, and robustness.
Results show that the system handles small to medium-sized models efficiently and
reliably. A detailed complexity analysis and benchmark study confirm the scalability
of the approach. While the implementation is tailored to DEMO and BPMN, the
methodology provides a foundation for extending synchronization to other modeling
language pairs in the future.
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CHAPTER 1
Introduction

1.1 Problem overview
Enterprises, such as commercial companies and government agencies, frequently use
multiple modeling languages simultaneously to document and analyze different aspects of
their business. For example, an enterprise may use DEMO to structure its transactional
workflows [1], BPMN to describe business processes [2], and ArchiMate to model the
enterprise architecture [3].

While each language serves a specific purpose and provides unique insights, the models
created with them are usually not connected. In practice, they are often maintained
separately, even if they describe similar parts of the organization. This can be inefficient
because changes in one model need to be manually copied into others, which can lead to
redundancy, inconsistencies, and a higher risk of misalignment [4].

In dynamic enterprise environments where models need frequent updates to reflect orga-
nizational changes or process improvements, interoperability becomes a key challenge [4].
Misalignment between models can lead to misunderstandings among stakeholders, hinder
collaboration, and reduce an organization’s agility.

A theoretical solution to this challenge is to unify all models under a single integrated
modeling language. However, this is impractical in most real-world scenarios. As France
and Rumpe point out, modeling languages often differ significantly in their abstraction
levels, intended purposes, and target audiences [5]. Trying to replace them with a common
language can lead to a loss of important meanings, and may encounter resistance from
existing tools and habits.

Instead of introducing yet another modeling language, a more practical approach is to
connect the ones that are already in use. By building bridges between existing languages,
we can synchronize overlapping parts of models. This allows each language to continue
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1. Introduction

serving its own purpose while maintaining overall alignment. In this way, the strengths
of the individual languages are not lost, and we avoid the time-consuming management
of completely separate models. Our goal is to make them work together in a clear and
traceable way [6].

This thesis follows that path. Rather than designing something new from scratch, we
focus on how two established but quite different modeling languages can be kept in sync.
We implement a working prototype to explore how such a bridge can function in practice,
and we examine the technical and conceptual challenges that come with trying to keep
these languages aligned over time.

1.2 Scope of the thesis
To keep the exploration clear and manageable, we focus on synchronizing models between
two specific modeling languages: DEMO (Design and Engineering Methodology for
Organizations) and BPMN (Business Process Model and Notation).

More precisely, we focus on synchronizing a subset of elements that represent business
transactions - a central construct in DEMO that reflects how coordination and com-
mitments occur in organizations. These transaction steps - such as Request, Promise,
Execute, and Accept - provide a semantically rich and stable basis for mapping between
languages. In BPMN, their counterparts are represented by activities, message events,
pools, and data objects.

The synchronization logic is defined at the metamodel level, meaning it is based on the
structure of the modeling languages themselves, not just on specific examples. This
makes the approach more robust and adaptable. It also means that, in the future, the
same method could be applied to other elements or even to other modeling languages [7].

The prototype developed in this thesis supports both directions: from DEMO to BPMN
and from BPMN back to DEMO. Because DEMO models typically provide clearer
semantics and a structured transaction logic, the transformation from DEMO to BPMN
can be done automatically. The reverse direction, from BPMN to DEMO, is more
complex. BPMN models tend to leave out some of the meaning that DEMO requires,
so this transformation sometimes needs user input to resolve ambiguities or reconstruct
missing information [8, 9].

To ensure the system remains manageable and reliable, the synchronization mechanism
is limited to the happy path, that is, to well-formed models that follow the normal
success flow. Special cases such as incomplete transactions, invalid modeling patterns, or
semantic conflicts outside the standard flow are explicitly excluded from the current scope.
Handling such exceptions would require additional logic and validation mechanisms, and
is left for future work.

The implemented system supports all major types of changes to the models: creating,
updating, or deleting elements, attributes, and connections. Where needed, conflict
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1.3. Research Questions

detection helps ensure that changes don’t overwrite each other in unintended ways.
The entire synchronization process has been implemented as a working prototype that
integrates with a model management platform and supports visualization of changes.

1.3 Research Questions
Based on the practical scope outlined above, we now define the key research questions
that specify the central challenges of this thesis. These questions shape the direction of
the work and provide a structured basis for its design, implementation, and evaluation.

Central research question

How can a metamodel-based synchronization mechanism be designed and
implemented to enable consistent, traceable, and partially automated trans-
formation between DEMO and BPMN models?

Sub-questions

To address this central question, we formulate the following sub-questions, which focus
on specific aspects of the problem:

1. Which transaction-related elements in the DEMO and BPMN metamodels can be
mapped to each other in a semantically meaningful and technically feasible way,
and what synchronization rules are needed to support this mapping?

2. How can model differences - such as added, removed, or modified elements, at-
tributes, and connections - be detected using a delta-based comparison approach
to support bidirectional synchronization?

3. How can detected changes be transformed and applied to the target model in a
way that updates semantics, visuals, and bridge mappings consistently?

4. Which types of changes can be synchronized automatically, and in which cases
is manual intervention required due to ambiguity or model-specific constraints
(particularly in BPMN-to-DEMO transformations)?

5. What is the complexity of the resulting synchronization mechanism?

1.4 Methodology Overview
This thesis follows a design-science research approach. The goal is to create and eval-
uate a working prototype that enables synchronization between DEMO and BPMN
models. To ensure that this process is scientifically grounded, the methodology com-
bines two perspectives: Hevner’fs Design Science Research (DSR) [10] and Algorithm
Engineering [11, 12].

3



1. Introduction

Hevner’s Design Science Research provides the overall structure for this kind of research.
It focuses on solving real-world problems by designing, building, and evaluating artifacts,
in our case, a synchronization mechanism. According to Hevner et al. [10], such research
should be relevant to practice, built on a solid knowledge base, and rigorously evaluated.
Our work follows this idea: we define a relevant modeling problem, design synchronization
rules based on existing modeling knowledge, implement a solution, and test it to ensure
it works reliably. While we do not follow every formal step of the DSR process [13], the
core principles are applied. Some steps were merged, for example, “define objectives” is
integrated into the problem analysis, and demonstration and evaluation are treated as a
single internal-testing phase, since external stakeholder evaluation was beyond the scope
of this thesis.

In addition, we adopt ideas from Algorithm Engineering [11, 12], a methodology that
focuses on building algorithms through repeated testing and refinement. This fits well
with how the synchronization prototype was developed: rather than being built all at
once, it was implemented in small, iterative steps. After each step, the behavior of the
prototype was tested, evaluated, and improved. This back-and-forth between theory and
practice helped us improve both the performance and correctness of the solution.

The research process followed in this thesis involved five main phases:

1. Problem Analysis and Requirements: We begin by analyzing the problem of
synchronizing DEMO and BPMN models. A review of existing approaches shows
that there is no clear solution for keeping models in sync across these languages.
Based on this, we define key requirements and select DEMO’s transaction pattern
as a stable structure for transformation.

2. Rule Design at the Metamodel Level: We then define synchronization rules
that describe how DEMO elements can be mapped to BPMN constructs such as
activities, events, or pools. These rules are designed to preserve meaning while
allowing flexibility.

3. Prototype Implementation and Iteration: We developed a prototype that
puts these rules into practice. It compares models, identifies differences, and applies
the correct synchronization. The prototype supports both directions, from DEMO
to BPMN and back. The implementation is carried out in small steps, with frequent
testing and improvements, following the principles of Algorithm Engineering.

4. Evaluation and Testing: The prototype is evaluated through internal testing.
We check whether the synchronizations are correct, whether the models remain
consistent, and how the system performs with increasing model size. This evaluation
helps us assess the quality of the solution and points to areas for future improvement.
It also satisfies the DSR requirement to rigorously evaluate the designed artifact [10].

5. Documentation and Contribution: All results are documented in this thesis.
The main contribution is twofold: a working synchronization prototype and a
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methodology that shows how structured design and iterative refinement can be
used to solve synchronization problems in model-driven engineering.

This methodology combines conceptual design with practical testing. It ensures that the
solution is not only rigorously grounded in existing knowledge but also works reliably in
practice.

1.5 Structure of the Thesis
The work is divided into ten chapters, each of which builds on the previous one and
leads the reader from the conceptual motivation to the technical implementation and
evaluation of the synchronization prototype.

Chapter 2 provides an overview of the two modeling languages involved in this work,
DEMO and BPMN, and summarizes relevant literature on bridging modeling languages.
It outlines the state of the art in DEMO-BPMN transformations and identifies the
research gap addressed by this thesis.

Chapter 3 introduces the Simplified Modeling Platform (SMP), which serves as the
technical foundation for the prototype. It explains how the platform supports custom
modeling languages and how it is used to manage and manipulate DEMO and BPMN
models in this work.

Chapter 4 presents the metamodels and modeling constructs relevant to the synchro-
nization logic. It explains the core elements and relationships of DEMO and BPMN as
they are implemented in SMP, and highlights how these definitions are used to structure
models and support synchronization.

Chapter 5 defines the functional and non-functional requirements for the synchronization
prototype. These requirements guide the development and evaluation of the system and
ensure that all relevant aspects, such as performance, traceability, and user interaction
are considered.

Chapter 6 describes the architecture of the prototype. It introduces the folder structure
used to organize original models, synchronized snapshots, and bridge mappings. It also
explains the delta-based synchronization logic and outlines the three main scenarios
supported by the system: initial model creation, DEMO-to-BPMN updates, and BPMN-
to-DEMO updates.

Chapter 7 defines the synchronization rules and mappings that govern how model
elements and connections are translated between DEMO and BPMN. These rules form
the conceptual core of the transformation logic and are expressed both as structured
mappings and procedural descriptions.

Chapter 8 details the internal implementation of the prototype. It presents the main
synchronization functions, their modular structure, and their computational complexity.

5



1. Introduction

Each function is analyzed in terms of runtime behavior and backend interaction, using
both theoretical and empirical benchmarks. This chapter also reflects on the algorithmic
complexity of the overall synchronization mechanism.

Chapter 9 evaluates the prototype in terms of performance, correctness, and robustness.
It presents benchmark results for all synchronization scenarios, test coverage for key
components, and a discussion of known limitations. The chapter also reflects on early
generalization insights and how the approach could be extended to other modeling
languages in future work.

Chapter 10 concludes the thesis by summarizing the main contributions and findings.
It reflects on the practical implications of the synchronization prototype and outlines
possible directions for future research, including improved scalability, extended language
support, and user interface integration.

6



CHAPTER 2
State of the Art

This chapter provides a structured overview of the two modeling languages used in
this thesis: DEMO and BPMN. After introducing each language individually, existing
research on bridging modeling languages in general is presented, followed by a focused
discussion on efforts to integrate DEMO and BPMN.

2.1 Design and Engineering Methodology for
Organizations

The Design and Engineering Methodology for Organizations (DEMO) is a modeling
method that focuses on the transactions between actor roles to reveal the essential
structure of an organization. It was introduced by Dietz as part of his theory of
Enterprise Ontology [14] and later developed into a more practical, human-centered
approach for understanding and designing organizations [1].

The main idea behind DEMO is to describe what an organization is, not just what it
does. It models how people make agreements, take on responsibilities, and communicate
in a structured way. These interactions are organized into transactions, which define who
agrees to do what, when, and under which conditions they apply.

A central component of DEMO is the so-called ψ-theory, which provides a theoretical
foundation for understanding social interactions in organizations. It formalizes communi-
cation and production acts and offers a consistent way to represent the commitments
made within an enterprise [14]. As a result, DEMO models are known for being complete,
coherent, consistent, and concise [1]. DEMO not only represents standard process flows
but also includes exceptions such as cancellations or reversals.

One of DEMO’s key strengths is that it separates essential business logic from technical
or IT-related details. This makes it easier to model organizational processes that remain
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2. State of the Art

valid even as supporting technologies change [15]. DEMO provides a highly abstract and
semantically rich view of workflow logic, focusing on coordination and production aspects
rather than implementation details [16].

This makes DEMO a helpful tool for projects where people from different backgrounds,
like business, architecture, and IT, need to work together; its formal structure reduces
misunderstandings and supports informed decisions [17].

However, DEMO also has some limitations. Because it does not include control flow or
detailed execution logic, DEMO models cannot be enacted directly in typical workflow
engines and usually have to be transformed into an executable notation such as BPMN
first [18]. DEMO can also be difficult to learn: stakeholders often require guidance
or tool support to interpret and use DEMO models [17]. These factors have limited
DEMO’s adoption, particularly in environments that favour practical, tool-supported
notations [19].

2.2 Business Process Model and Notation
Business Process Model and Notation (BPMN) is one of the most widely used standards
for modeling business processes. It was developed and is maintained by the Object
Management Group (OMG) to provide a common visual language that connects business
analysts and technical developers [2]. Its popularity comes from the fact that it is both
easy to understand for business users and detailed enough to support process execution
in technical systems.

At its core, BPMN uses a flowchart-like notation to describe how business activities are
carried out, how decisions are made, and how people and systems interact. It includes
modeling elements like tasks, events, gateways, and message flows, which help represent
workflows both within and across organizations. This makes it possible to show things
like parallel steps, alternative paths, subprocesses, and exception handling in a clear and
structured way.

One reason for BPMN’s widespread adoption is its flexibility. It can be used to create
simple overviews for managers or detailed process definitions for developers. Since the
introduction of BPMN 2.0, the standard also supports execution semantics, allowing
BPMN diagrams to be deployed into Business Process Management Systems (BPMS).
This capability has been adopted by several tools that generate executable models directly
from BPMN [20]. As a result, BPMN is not only used for documenting processes but
also for automating them in execution environments.

However, BPMN has some limitations, for example that it focuses on how processes are
executed, but not why they exist. It lacks a formal way to represent organizational com-
mitments or the deeper business semantics behind actions [1]. In contrast to conceptual
modeling approaches like DEMO, BPMN operates at a more technical level and often
leaves out the organizational context and actor responsibilities behind the process steps.

8



2.3. Overview of existing work in bridging Modeling Languages

From a methodological point of view, BPMN is typically used in a bottom-up way to
improve existing processes. DEMO, on the other hand, is used in a top-down way to
model the essential structure of an organization [14]. While DEMO focuses on stability
and conceptual clarity, BPMN supports flexibility and execution. This makes the two
languages complementary: DEMO helps define what an organization should do, while
BPMN shows how to implement those ideas in practice.

Although BPMN provides a standardized syntax, its diagrams are often modeled incon-
sistently without clear conventions [21]. DEMO defines a complete transaction pattern -
including steps such as Initial, Request, Requested, Promise, Promised, State, Stated,
Accept, Accepted - that make the internal logic and agreements behind organizational
actions explicit. In contrast, BPMN lacks a standardized way to capture such transaction
stages or formalize organizational commitments, which often leaves the rationale behind
process steps implicit. These differences have motivated research efforts to combine
the strengths of both languages. Several studies have explored how DEMO’s semantic
richness can be used to enhance BPMN models by clarifying roles, commitments, and
process intentions [22, 9]. Such approaches aim to make sure that the processes modeled
for execution still reflect the original business intentions, ensuring semantic traceability
between conceptual and operational layers.

To summarize the complementary nature of the two languages, Table 2.1 highlights key
differences in abstraction, use cases, and limitations.

Table 2.1: Comparison of DEMO and BPMN in terms of focus, strengths, and limita-
tions [23].

Aspect DEMO BPMN
Abstraction level High-level, ontology-based Operational, workflow-oriented
Primary focus Commitments, actor roles,

transactions
Control flow, activity execution

Typical use Top-down conceptual modeling Bottom-up process improvement
Strengths Semantic clarity, theoretical

foundation, model stability [1]
Tool support, expressiveness, simulation
and execution capabilities [24]

Limitations Steep learning curve, limited adoption,
abstract

Semantic ambiguity, missing commitments,
focus on implementation [21]

Scope representation Explicit via actor roles and composite
transactions

Often implicit unless documented
separately [2]

2.3 Overview of existing work in bridging Modeling
Languages

The challenge of connecting different modeling languages has been widely discussed in
research. Many organizations use more than one modeling approach, which often leads to
inconsistencies, misunderstandings, or extra effort to keep models aligned. To solve this,
several studies propose bridges that transform or synchronize models across languages.

One research direction focuses on connecting value modeling with enterprise architecture.
De Kinderen et al. presented a method that uses DEMO’s transaction patterns to bridge
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2. State of the Art

e3Value and ArchiMate [25]. Their idea is to translate the economic logic of e3Value into
operational structures in ArchiMate, with DEMO acting as the intermediate step. In a
follow-up study, they describe how this transformation can be formalized using metamodel
mappings to ensure semantic consistency across the different modeling layers [26].
Other approaches explore how BPMN can be transformed into formats that support
execution or simulation. Boukelkoul and Maamri developed a transformation framework
that converts BPMN models into DEVS (Discrete Event System Specification) models,
allowing formal verification and simulation of business processes [27]. Their method
defines clear transformation rules to ensure modularity and make the resulting models
easier to validate. Similarly, Barjis proposes translating BPMN into Petri nets to support
simulation and analysis of dynamic behavior in enterprise systems [28].
There are also efforts to generate workflows directly from conceptual models. Figueira
and Aveiro introduced DEMOBAKER, a transformation framework that converts DEMO
models into executable business process workflows [29]. Their approach introduces a
new action rule syntax for DEMO, enabling the automated generation of workflow logic.
This work demonstrates how conceptual enterprise models can serve as a foundation
for executable processes, bridging the gap between high-level design and operational
execution.
A few efforts go beyond one-way transformations and attempt true bidirectional synchro-
nization. For instance, Mazanek and Hanus [30] implemented a bidirectional mapping
between BPMN and BPEL using functional logic programming. Their approach enables
models to be updated in either direction while maintaining consistency, making it a rare
example of executable two-way synchronization in practice.
In the broader context of model-driven engineering, research on multi-view model syn-
chronization addresses the challenge of maintaining consistency between related models.
Grossmann et al. [31] propose a framework for detecting and resolving conflicts dur-
ing concurrent model evolution, highlighting the complexity of update propagation in
co-dependent models.
The next section will focus specifically on bridging DEMO and BPMN, and how their
complementary strengths can be combined.

2.4 Model Transformations between DEMO and BPMN
Several researchers have explored ways to integrate DEMO and BPMN, recognizing
that the two languages serve different purposes but can complement each other when
combined properly.
One of the earliest efforts was made by Caetano et al., who analyzed how DEMO’s
ontology-based structure can improve the consistency of BPMN models [32]. They
pointed out that BPMN often lacks clear constraints on transaction logic, which can lead
to incomplete or inconsistent process models. DEMO’s stricter semantics help ensure
that transaction logic in BPMN models is both complete and semantically precise.
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Heller [33] built on this idea in his master’s thesis by investigating how DEMO methods
can be used to generate BPMN models. He proposed a structured mapping approach
that preserves the semantic integrity of DEMO during the transformation process. The
thesis shows that using DEMO as a foundation can reduce ambiguity in BPMN models
and provide clearer links between business intentions and executable processes.

A more formal transformation method was presented by Mráz et al. [22], who introduced a
set of transformation rules for converting DEMO’s transaction pattern into BPMN. Their
method extends the ideas of Caetano and Heller, aiming to automate the transformation
process. However, their approach does not fully handle more complex structures such as
nested transactions or actor hierarchies.

To support such transformations in practice, Gray et al. [34] developed a DEMO modeling
tool on the ADOxx platform. The tool allows users to model DEMO structures and
partially transform them into BPMN collaboration diagrams. A key focus was on
translating the Organization Construction Diagram (OCD) from DEMO into BPMN
Pools and Message Flows, while maintaining semantic consistency.

The same authors later evaluated the tool in real-world modeling sessions [35]. Their
results showed that users could successfully create BPMN diagrams from DEMO models
and appreciated the tool’s usability. However, the study also revealed that more com-
plex constructs, such as nested transactions or exception handling, still require manual
intervention. Building on these results, De Vries and Bork [23] identified nine distinct
transformation scenarios that support converting DEMO’s Coordination Structure Di-
agram (CSD) and Process Structure Diagram (PSD) into BPMN. Their fine-grained
rule set improves coverage and consistency in BPMN diagrams derived from DEMO,
addressing earlier structural limitations.

Other authors have contributed method-oriented or tooling-related perspectives. For
example, Rodrigues [36] developed a modeling methodology for translating DEMO
transaction models into BPMN process diagrams. His thesis emphasized semantic
preservation and consistency, proposing practical guidelines rather than a tool-based
implementation.

Some researchers have taken a different approach by embedding DEMO concepts directly
into BPMN models to address BPMN’s semantic limitations. Van Nuffel et al. [8]
proposed an extension of the BPMN metamodel that integrates DEMO’s transaction
structure. Their goal was to give BPMN the formal expressiveness needed to represent
enterprise transactions explicitly, beyond just modeling activity sequences.

More recently, Guerreiro and Dietz [9] introduced a framework that aligns BPMN
process flows with DEMO’s transaction coordination structure. Their approach clarifies
the commitments and communication acts within a process, making BPMN models
more transparent and semantically precise. Building on this, Guerreiro and Sousa [37]
created SemantifyingBPMN, a tool that generates BPMN diagrams directly from DEMO
transaction patterns. The tool ensures that BPMN models include key coordination acts
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like request, promise, and acceptance - making business intentions traceable in technical
process models.

To evaluate the impact of DEMO on BPMN modeling in practice, Náplava and Pergl [18]
conducted an empirical study in an academic setting. Their findings confirmed that
BPMN models created with DEMO principles were more structured and less ambiguous.
The study concluded that DEMO can help improve the quality and consistency of BPMN
models, especially in contexts where process logic and actor commitments need to be
made explicit.

2.5 Research Gap
While previous studies have significantly advanced our understanding of model transfor-
mation, most approaches remain limited to one-way conversions or isolated tool support.
Several works focus on translating DEMO models into BPMN to improve process clarity
or to generate executable workflows. Others embed DEMO concepts into BPMN or use
DEMO to validate BPMN model consistency. These approaches usually stop at initial
model generation, once the models are created, they evolve independently.

None of the literature reviewed addresses the challenge of keeping DEMO and BPMN
models consistent over time as they change. No existing approach supports dynamic,
bidirectional synchronization where updates in one model are automatically propagated
to the other. Moreover, aspects such as conflict detection, semantic alignment during
model evolution, and traceable change propagation are not addressed in current tools or
frameworks.

This thesis addresses this research gap by introducing a synchronization approach that
supports bidirectional updates between DEMO and BPMN models. The proposed
method goes beyond initial transformation and enables ongoing co-evolution of models -
an essential feature in real-world environments where business requirements and models
continuously change. By combining structural mappings with synchronization logic and
conflict-aware mechanisms, this work contributes a practical solution for maintaining
semantic and structural alignment between heterogeneous models. It also lays the
foundation for further research into cross-model consistency, tool interoperability, and
model-driven enterprise design.
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CHAPTER 3
The Simplified Modeling Platform

To implement and evaluate the synchronization prototype developed in this thesis, we rely
on the Simplified Modeling Platform (SMP), a model-driven development environment
developed in the context of enterprise engineering research [38]. SMP supports the
creation, visualization, and transformation of models and is particularly well-suited for
setups that involve multiple modeling notations.

Unlike traditional modeling tools that are tied to fixed languages such as BPMN or
UML, SMP is designed to be notation-agnostic. This means that modeling languages are
not hard-coded into the platform but can be defined externally and loaded dynamically.
In practice, languages like DEMO and BPMN are made available through declarative
configuration files, known as notation scripts, which describe the structure, semantics,
and appearance of model elements [39]. For the purposes of this thesis, we rely on existing
implementations of both DEMO and BPMN that are already defined within the platform
and publicly available as notation scripts in the official Simplified Modeling Platform
repository [40].

3.1 Platform Architecture and Capabilities
SMP is designed to be lightweight and extensible, offering both a graphical user interface
for manual modeling and a programmatic interface for automation. It is deployed as
a multi-layer web application and can be accessed directly through the browser. The
backend, built in Go, exposes a WebSocket-based API that enables model operations such
as creating elements, setting attributes, adding connections, and manipulating diagrams.

As illustrated in Figure 3.1, the platform is organized into a frontend (user interface),
an application server (containing notation and transformation logic), and a backend
database. Developers can add new transformation functionality, access stored models,
and connect to the application server through external scripts or services.
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Figure 3.1: Architecture of the Simplified Platform, adapted from [38].

Models in SMP are structured hierarchically. Each model is composed of one or more
folders, which contain semantic model elements, and each folder is associated with one or
more diagrams for visual representation. This separation allows for clear organization
of model content and makes it possible to maintain and compare different versions of
the same model. These structural features are crucial for implementing synchronization
mechanisms, which rely on tracking differences between model snapshots.

3.2 Use of SMP in This Thesis
SMP serves as the technical foundation for all modeling activities in this work. We
interact with the platform exclusively through its API to load, compare, and synchronize
DEMO and BPMN models. Because the platform already provides notation definitions for
both modeling languages, we are able to focus entirely on implementing and evaluating
synchronization logic, without needing to extend the modeling language definitions
themselves.

The prototype makes use of the platform’s hierarchical structure to store multiple model
versions (original and synchronized), and relies on its visual API to generate layouts
and update diagrams automatically. All changes to model elements, attributes, and
connections are performed programmatically, allowing for repeatable and traceable
synchronization operations.

By leveraging the flexibility, automation capabilities and internal model structure of
SMP, we are able to develop and evaluate a prototype for a bridge-based synchronization
mechanism in a real modeling environment. The implementation builds directly on the
platform’s backend API, and all the results presented in the following chapters were
achieved with this setup.
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CHAPTER 4
Meta-models and Modeling

constructs

This chapter introduces the metamodels that form the basis of the synchronization
prototype and describes how the DEMO and BPMN modeling languages are implemented
within the SMP. By working at the metamodel level, the synchronization logic can operate
on generic modeling constructs rather than specific instances.

4.1 DEMO
To support synchronization between DEMO and BPMN, it is important to understand
the foundational concepts of DEMO. DEMO is based on the principle that companies
can be modeled by their essential transactions - what people request, decide and produce.
To represent this, DEMO provides four interrelated aspect models: the Construction
Model (CM), the Process Model (PM), the Action Model (AM), and the Fact Model
(FM) [14]. In this thesis, the focus lies specifically on the CM and PM, as they provide
the necessary structural and behavioral elements for synchronization.

The Construction Model (CM) defines the static organizational structure of an
enterprise. It identifies which actor roles exist, what transaction types they are responsible
for, and how these roles and transactions are interconnected. In essence, it models who
does what within the organization. DEMO uses three key artifacts to visualize the
CM: the Organizational Construction Diagram (OCD), which shows actor roles and
their transaction links; the Transaction Product Table (TPT), which lists the services or
products delivered; and the Bank Contents Table (BCT), which outlines the types of
information produced during execution [1].

Figure 4.1 shows an example of a simplified Construction Model. Actor role A00 initiates
transaction type T01, which is executed by actor role A01. Initiators and executors are
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connected via solid lines, with a small black diamond marking the executor. Actor role
A07, which is connected via a dashed line, has access to the history of T01, indicating an
informational dependency rather than a responsibility.

Figure 4.1: Example of a DEMO Construction Model [1]

While the CM defines who is involved in which transactions, the Process Model
(PM) describes how these transactions are carried out over time. Each transaction in
DEMO is modeled as a structured interaction between two actors: the Initiator, who
expresses a need, and the Executor, who fulfills that need [14]. To ensure semantic clarity,
DEMO standardizes the structure of each transaction using the Complete Transaction
Pattern, which divides the process into three phases: the Order Phase, where the initiator
makes a request and the executor responds (e.g., by promising); the Execution Phase,
in which the executor performs the agreed-upon task; and the Result Phase, where the
result is communicated and accepted by the initiator. Each of these phases is modeled
by coordination acts and coordination events. Coordination acts (C-acts) represent
communicative intentions between actors, such as a promise or a request. Coordination
events (C-events), on the other hand, denote the observable results or conclusions of
these actions. Together, they form the semantic backbone of transaction modeling in
DEMO.

In this thesis, we focus only on the so-called happy flow, which represents the ideal course
of a transaction without any interruptions or exceptions. This flow follows a defined
sequence of C-acts and C-events [23, 9]:

(in) Initial → [rq] Request → (rq) Requested → [pm] Promise → (pm) Promised →
Execution → [st] State → (st) Stated → [ac] Accept → (ac) Accepted.

This path forms the foundation for our prototype implementation and guides the trans-
formation logic toward BPMN.

Figure 4.2 illustrates the Complete Transaction Pattern with the happy flow highlighted
in green. Although the happy flow serves as the primary reference for our mapping
and synchronization logic, DEMO also provides mechanisms to model exceptions. For
example, an executor may decline a request, or an initiator may reject the outcome of a
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transaction. In such cases, the process can be either retried or terminated. DEMO defines
four revocation patterns to handle these situations in a structured way. These patterns
extend the Complete Transaction Pattern to account for deviations and rollbacks, and
are also visualized in Figure 4.2 [1].

Figure 4.2: The Complete Transaction Pattern in DEMO, with the happy flow high-
lighted [1]

In DEMO’s Process Model diagrams, C-events are shown as circular nodes, while C-
acts are represented as rectangular boxes. A gray box containing a diamond marks a
production act, indicating that a product or service is being delivered. The direction of
arrows between elements indicates their semantic role: arrows from a disk to a box are
response links, meaning that the act is a response to a previous event; arrows from a box
to a disk are causal links, meaning the act triggers the event. Light-gray backgrounds
are used to group the steps that belong to the initiator or executor [1].

Beyond structure and behavior, DEMO also includes two additional aspect models: the
Action Model (AM) and the Fact Model (FM). The AM describes how actors should
behave during a transaction based on organizational rules. It distinguishes between action
rules, which define how to respond to certain coordination events, and work instructions,
which specify how to carry out concrete production acts. These elements help ensure
that transactions are executed in a consistent and policy-compliant manner [14].

The FM, on the other hand, focuses on traceability. It captures the facts and outcomes
of transactions over time, documenting what has occurred within the organization. This
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historical perspective supports auditing, compliance, and strategic analysis [14].

While the AM and FM are not directly used in the synchronization prototype, they
complete the DEMO methodology and provide important context for understanding its
broader modeling capabilities.

4.1.1 Implementation of DEMO in the Simplified Platform
The DEMO metamodel used in this thesis is implemented in the Simplified Modeling
Platform, which supports diagram-based modeling through customizable metamodel
definitions. In line with the theoretical foundations, the implementation focuses on two
aspect models: the CM and the PM. These are realized through two separate diagram
types within the platform, the Process Structure Diagram and the Transaction Process
Diagram.

The Process Structure Diagram (PSD) corresponds to the CM. It defines the static
structure of the organization and includes the following element and connection types, as
defined in the official DEMO metamodel [40]:

toolbox "PSD" ToolboxPSD37
on diagram (ProcessStructureDiagram37)
comment "Toolbox with all elements for the PSD diagram"
(

element TransactionKind37,
element ElementaryActorRole37,
element CompositeActorRole37,
connection WaitLink37,
connection ResponseLink37

)

Each element type is associated with specific attributes that reflect its role within
DEMO. The suffix “37” in the element and connection names refers to version 3.7 of the
DEMO methodology, which is the version implemented in the SMP and used throughout
this thesis. An ElementaryActorRole37 has a Name attribute and a boolean attribute
SelfInitiating, which indicates whether the actor can independently initiate transactions.
The CompositeActorRole37, which represents a group of elementary roles, includes only
the Name attribute. The TransactionKind37 element is shared across both the PSD and
TPD diagrams and includes several attributes such as Name, ProductKindIdentification,
ProductKindFormulation, and TransactionSort, which is an enumeration that classifies
the transaction, with the default value set to “Original”.

The Transaction Process Diagram (TPD) represents the PM and captures the
dynamic behavior of transactions. It includes both C-acts and C-events, modeled using
the following types:
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toolbox "TPD" ToolboxTPD37
on diagram (TransactionProcessDiagram37)
comment "Toolbox with all elements for the TPD diagram"
(

element TransactionKind37,
element TransactionProcessStepKind37,
connection WaitLink37,
connection ResponseLink37,
connection CasualLink37,
connection ReversionLink37

)

The central element in this diagram is the TransactionProcessStepKind37, which repre-
sents an individual transaction step. It includes attributes such as Name, Abbreviation,
and StepKind, where StepKind is based on the STEPKIND enumeration. This enu-
meration defines the various phases a transaction step can represent, such as C-acts
(Request, Promise, Execute, Accept) and C-events (Requested, Promised, Executed,
Stated, Accepted). Only the subset of step kinds relevant to the happy flow is used in
this prototype. The different connection types define relationships between steps. While
WaitLink37 and ResponseLink37 are used in both PSD and TPD to express temporal
or triggering dependencies, the CausalLink37 represents logical consequences, and the
ReversionLink37 models rollback behavior. All connections link two TransactionPro-
cessStepKind37 elements and are interpreted semantically based on the associated step
kinds. In addition to the connections defined directly in the PSD and TPD toolboxes,
we also include important actor-transaction links from the Organisation Construction
Diagram (OCD). These connections - Initiator37e and Executor37e - connect an Elemen-
taryActorRole37 to a TransactionKind37. Although these are technically defined in the
OCD, we use them in the prototype to specify which actors are responsible for which
transaction steps, and ultimately to support the role assignment logic during BPMN
model generation. This implementation enables the prototype to accurately model both
the static structure and dynamic behavior of transactions in accordance with the DEMO
methodology.

4.2 BPMN
Following the theoretical description and implementation of DEMO, we now turn to the
second modeling language used in this thesis: Business Process Model and Notation
(BPMN). BPMN focuses on the control flow of processes. It captures the order in which
activities are performed, the events that influence execution, and the communication
between participants. The language supports a wide range of scenarios, from simple
sequential workflows to complex parallel and collaborative processes.

At the core of BPMN are the Flow Objects, which define the most important behavioral
elements of a process. These include events, activities, and gateways. Events are used to
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indicate something that happens during the process. A Start Event marks the beginning
of a process, an End Event indicates its conclusion, and Intermediate Events represent
something that happens between the start and the end, such as a delay, a timer, or the
arrival of a message [2].

Activities represent the actual work being performed within a process. These can be
atomic tasks or larger sub-processes. In our implementation, we concentrate on simple
tasks that describe individual work units. Gateways are used to model decision points
and parallelism in the process. They define how the process can diverge into multiple
branches (splits) or converge from several paths into one (joins). BPMN supports various
types of gateways such as exclusive (XOR), inclusive (OR), and parallel (AND) gateways,
each with different execution semantics.

To define how elements are connected, BPMN uses three types of connections, which
include Sequence Flows, Message Flows, and Associations. Sequence Flows define the
execution order between flow objects within the same process. Message Flows connect
elements across different participants (e.g., between pools) and represent communication
or interaction. Associations are used to link artifacts such as text annotations or data
objects to the process elements without affecting the control flow.

BPMN also introduces structural constructs to represent organizational context. A Pool
denotes a major participant in the process (e.g., a company or department), while Lanes
subdivide Pools into internal roles or units. These Lanes help clarify who is responsible
for which part of the process.

In addition to control flow, BPMN allows for modeling information flow through Data
Objects and Data Stores. Data Objects represent transient information passed between
activities, while Data Stores represent persistent data repositories shared across the
process.

BPMN also provides artifacts such as Groups and Text Annotations, which are used for
documentation and visual grouping but do not influence execution behavior.

Figure 4.3 shows the subset of BPMN elements used in this thesis. These include specific
Flow Objects (such as Start Events, Activities, and Intermediate Message Events),
Connecting Objects (Sequence and Message Flows), structural elements (Pools and
Lanes), and data-related elements (Data Objects and Data Stores). The selected elements
are sufficient to model the so-called happy flow of a DEMO transaction in BPMN, without
involving branching or exception handling.

To support this targeted subset, we created a simplified metamodel. Figure 4.4 illustrates
the reduced BPMN metamodel. Flow-related elements such as Activities and Events are
highlighted in blue, and their connections via Sequence and Message Flows are highlighted
in yellow. All executable process steps (Activities and Events) are grouped under the
abstract superclass Flow Node, which inherits metadata from the abstract class Object
(orange). Structural and data-related components, such as Pool, Lane, and DataObject,
are shown in green.
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Figure 4.3: Visual representation of BPMN elements used in this thesis implementation.
The selected subset includes only those constructs necessary to represent the happy flow
of a transaction.

Flows in this model always connect two Flow Nodes through a source and target associa-
tion. Events are further classified by their type (Start, Intermediate, End), and Message
Events are treated as a specialized subclass that enables inter-participant communica-
tion. Each Pool must contain at least one Lane, and both Pools and Lanes can contain
Flow Nodes. DataObjects are associated with Activities to represent input and output
information relevant to task execution.

Figure 4.4: Simplified BPMN metamodel showing only the elements used in this thesis

By avoiding advanced constructs such as gateways, choreographies and compensation
events, the metamodel remains focused and aligned with the assumptions of the DEMO
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Happy Flow. The selected elements provide sufficient expressiveness to represent the
core logic of DEMO transactions in BPMN while maintaining the simplicity of the
implementation.

4.2.1 Implementation of BPMN in the Simplified Platform
As with DEMO, the BPMN concepts used in this thesis are implemented using the
modeling infrastructure provided by the Simplified platform. The platform supports the
definition of custom metamodels, including diagram types, model elements, attributes,
and connection rules [40]. For our prototype, BPMN modeling is supported through
a diagram type called Business Process Diagram. According to the metamodel, this
diagram formally contains only a limited set of element types:

diagram "Business Process Diagram" BusinessProcessDiagram
contains (

BusinessProcess,
DataObject,
Lane

)

While central BPMN elements such as Activity, Event, and Pool are not explicitly listed
here, they are still defined in the metamodel and can be created within this diagram. The
Simplified platform does not enforce strict validation of diagram structure at runtime,
meaning that modelers can freely include these elements in a Business Process Diagram
without triggering any errors. This flexibility allows us to build semantically complete
BPMN models, despite structural limitations in the metamodel definition.

Some semantic relationships defined in the official BPMN 2.0.2 [41] specification are only
partially supported in the Simplified metamodel. For example, there is no formally defined
containment or linking relationship between Activity elements and Pool or Lane elements.
To address this limitation, the Simplified development team extended the metamodel in
our environment by introducing a custom connection type called ActivityPoolLink, which
we use to connect Activity elements to Pool elements. We also apply this connection
to Event elements in the same way. Although this connection is not formally part of
the metamodel definition, the editor accepts it and allows it to function correctly. This
mechanism enables the prototype to determine which flow elements belong to which
actors and is essential for supporting automated role assignments during synchronization.
Similarly, Sequence Flows are formally defined only between Activity elements, which
would normally restrict flows between Event and Activity elements. In practice, however,
the modeling environment accepts these combinations, and they behave as expected,
despite lacking formal support in the metamodel schema.

The metamodel provides a variety of element types and attributes. Event elements include
attributes such as Flow Dimension (Start, Intermediate, End) and Type Dimension (e.g.,
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Message, None), allowing us to distinguish different event roles. Activity elements are
described using attributes like Task Type (e.g., User, Manual, Service) and behavioral flags
such as Ad-Hoc, Compensation, and Collapsed, which we do not use. DataObject elements
include a Data Object Type attribute, which can be set to DataObject, DataStore,
DataInput, or DataOutput. For our purposes, we only use DataObject and DataStore to
reflect transactional outputs.

In our implementation, we use only a subset of these constructs to capture the trans-
actional structure of the DEMO "happy flow". Pools and Lanes are used to represent
Initiator and Executor roles, and Activities reflect discrete transaction steps. We include
Start, Intermediate Message, and End Events to capture the temporal and commu-
nicative structure of the process. DataObjects and DataStores are linked to Activities
via Association flows, representing coordination facts (C-Facts) and production facts
(P-Facts). Finally, Sequence Flows and Message Flows model process logic and inter-
role communication. Although some of these links are not strictly supported by the
metamodel’s semantic constraints, they are accepted by the modeling environment and
function correctly in practice. This makes the Simplified platform sufficiently expressive
for the scope of this prototype.

In summary, the BPMN implementation in the Simplified platform provides the necessary
flexibility and modeling capabilities to support the transformation and synchronization
of DEMO transactions into BPMN process flows.
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CHAPTER 5
Prototype Requirements

To ensure that synchronization between DEMO and BPMN behaves as intended, a set of
functional and non-functional requirements has been defined. These requirements are
derived from the previously defined research questions, the methodological goals outlined
in Chapter 1, and the intended scope of the prototype. They specify what the system
must be capable of (functionally) and what qualities it should exhibit (non-functionally),
such as performance, stability, and extensibility. By making these expectations explicit,
the requirements serve as a basis for the implementation as well as a reference framework
for evaluating the success of the prototype. They also ensure that the system can be
maintained, adapted to future modeling languages, and reused in broader enterprise
modeling contexts.

5.1 Functional Requirements

• Model Synchronization: The prototype should be able to synchronize DEMO
and BPMN models in three practical situations: when no BPMN model exists
yet and needs to be created from a DEMO model; when the DEMO model has
changed and those changes need to be reflected in the BPMN model; and when the
BPMN model has changed and the DEMO model needs to be updated accordingly.
While these are treated as three distinct scenarios in the implementation, they
conceptually fall into two synchronization directions - from DEMO to BPMN and
from BPMN to DEMO. The first case (initial creation) is simply a special case of
the DEMO to BPMN direction, triggered when the target model is still empty.

• Detecting Changes: The prototype should be able to recognize what has changed
in a model since the last synchronization. This includes newly created elements,
deleted elements and elements whose attributes or connections have been changed.
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• Mapping Elements and Connections: When creating or updating models, the
system must apply clear synchronization rules that define how a DEMO element
corresponds to one or more BPMN elements and vice versa. This also includes the
handling of connections between elements and ensuring their correct representation.

• Handling Bridges Between Elements: The prototype should keep track of
which elements in DEMO are linked to which elements in BPMN. This is done
using bridge elements that must be automatically created and updated during
synchronization.

• Showing Elements Visually: Each element in the model must also have a visual
representation in the diagram.

• Dealing with Ambiguities: In cases where it is not obvious how a BPMN
element can be mapped to a DEMO step, the system should suggest a reasonable
option (based on the surrounding context), but also give the user the opportunity
to confirm or adjust this decision.

• Tracking Synchronization State: The prototype should record when the last
synchronization happened, so it can figure out whether anything has changed since
then.

• Conflict Detection: If both models have changed since the last synchronization,
the system should detect the conflict, notify the user, and abort synchronization to
avoid inconsistent updates.

5.2 Non-functional Requirements

• Performance: Synchronization should be fast and not cause unnecessary delays.
Especially for medium-sized models, the system should work smoothly without
noticeable lag.

• Code Structure and Maintainability: The prototype should be implemented
in a clean and structured way. Important functionality should be separated into
helper functions so that the code is easy to understand, test, and extend.

• Flexibility for Future Use Cases: Although the current focus is on DEMO
and BPMN, the architecture and logic should be able to support other modeling
languages or more advanced synchronization rules in the future without major
revision.

• Consistency and Reliability: The prototype must ensure that DEMO and
BPMN models remain consistent when synchronization is triggered by the user.
Synchronization does not happen automatically, but only upon explicit user action
(e.g. calling a function or pressing a synchronization button in future versions).
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Once synchronization has been triggered, the system should pass on changes to the
models correctly.

• Clarity for the User: All system output (e.g. logs or user prompts) should be
clear and helpful. When the system asks the user for input, it must do so in a way
that makes the decision understandable.

• Error Handling and Stability: The system should not crash if something goes
wrong (e.g., if an expected element is missing). Instead, it should log the issue and
continue running wherever possible.

Together, these requirements lay the groundwork for the architecture of the prototype,
which will be described in the next chapter.
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CHAPTER 6
System Architecture for Model

Synchronization

The architecture of the prototype is designed to support reliable, bidirectional synchro-
nization between DEMO and BPMN models. It is implemented on top of the Simplified
Modeling Platform (introduced in Chapter 3), which organizes modeling content into
models, folders, and diagrams. To enable version tracking, change detection, and transfor-
mation operations, the prototype defines a structured folder-based architecture within a
single model. In the context of the Simplified Modeling Platform, a folder is a structural
container used to group semantic model elements and diagrams. These folders allow
users to manage different model versions, organize content modularly, and compare
snapshots without interference. This folder-based organization plays a central role in the
synchronization logic of the prototype.

6.1 Folder Structure
To manage synchronization between DEMO and BPMN models, we define seven dedicated
folders within the prototype. Each folder serves a specific role in tracking changes,
storing snapshots, or connecting model elements across versions and metamodels. The
organization follows a two-layered architecture: the upper layer contains the user-editable
models, while the lower layer holds their synchronized snapshots and the internal bridge
elements.

The top layer includes the following:

• DEMO: This folder contains the original DEMO model created and maintained
by the user.

• BPMN: This folder contains the user-editable BPMN model.
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Beneath these, the lower layer supports version control and traceability:

• DEMO Synchronized: Stores a snapshot of the DEMO model at the time of its
last successful synchronization. This snapshot serves as a reference for detecting
subsequent changes.

• BPMN Synchronized: Analogously, this folder contains the last synchronized
version of the BPMN model.

• DEMO Bridge: Contains internal bridge elements that link elements in the
current DEMO model to their corresponding elements in the DEMO Synchronized
folder.

• BPMN Bridge: Contains bridge elements linking elements in the BPMN model
to their counterparts in BPMN Synchronized.

• Bridge: Serves as the cross-metamodel bridge folder. It stores bridge elements
that connect elements in the synchronized DEMO and BPMN models. These
mappings support traceability between languages and serve as the basis for executing
transformation rules.

This layered structure is illustrated in Figure 6.1. The screenshot shows how each
modeling language (DEMO and BPMN) is represented by a group of three folders:
the user-editable model, its synchronized snapshot, and a bridge folder for intra-model
mapping. In addition, the central Bridge folder connects elements across the two languages.
Diagrams are stored in the editable folders and serve as the interface for modeling.

Figure 6.1: Folder structure of the synchronization prototype in the Simplified Modeling
Platform

Each synchronization scenario follows the same general process. Changes are not directly
applied from one modeling language to the other. Instead, they always pass through a
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Figure 6.2: Synchronization Flow

series of intermediate snapshots to preserve traceability and enable delta-based comparison.
This flow can be summarized as follows:

Original → Synchronized → Synchronized (Other) → Original (Other)

This structure guarantees that all changes are first captured, transformed, and verified
before being reflected in the target model. The next section introduces the concept of
delta-based synchronization, which formalizes this transformation process.

6.2 Delta Calculation
Delta-based synchronization forms the technical foundation for Scenarios 2 and 3, where
existing models must be kept in sync after user changes. This section formalizes how
changes between versions of a model are detected, transformed, and applied.

Figure 6.3: Delta calculation

Figure 6.3 shows this concept of delta-based synchronization. Each row represents the
state of a model at a specific point in time. In the upper part of the diagram, the
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current (updated) version of the DEMO model is compared to its last synchronized
counterpart. The resulting difference is captured as a delta, denoted Δ(t)

DEMO, which
includes all additions, deletions, and attribute modifications that occurred since the last
synchronization.

Formally, the delta is defined as:

Δ(t)
DEMO ≡ M

(t)
DEMO → M

(t−1)
DEMO

where M t
DEMO represents the current model and M t−1

DEMO the last synchronized version.
The delta can be further divided into:

• Δ+
DEMO: newly created elements and connections,

• Δ−
DEMO: removed elements and connections,

• Δ◦
DEMO: modified attribute values.

The lower part of the diagram shows how this delta is used to update the target model.
The changes in DEMO are transformed according to predefined synchronization rules and
applied to the synchronized BPMN model, resulting in a corresponding delta Δ(t)

BPMN.
This transformed delta represents the changes that must be reflected in BPMN as a
result of the modifications in DEMO.

This transformation process can be described mathematically as:

Δ(t)
BPMN = T (Δ(t)

DEMO), M t
BPMN = M t−1

BPMN ⊕ Δ(t)
BPMN

Here, T denotes the transformation function that maps changes from DEMO to BPMN,
and ⊕ represents the application of the transformed delta to the model.

This approach improves performance by processing only the actual changes and ensures
traceability and semantic consistency between DEMO and BPMN over time. The
following section explains how this delta-based logic is applied in practice through three
synchronization scenarios.

6.3 Synchronization Scenarios
The prototype’s synchronization logic is built around three different scenarios. Each
scenario reflects a specific direction and trigger for synchronization and follows the general
transformation flow presented above. Together, these scenarios ensure that updates across
DEMO and BPMN models are handled in a consistent and traceable way.
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6.3.1 Scenario 1: Creating BPMN from DEMO

This scenario applies when a DEMO model has been created, but no corresponding
BPMN model exists yet. In this case, the prototype initiates a one-time synchronization
to generate the initial BPMN model based on the DEMO structure and semantics. The
process begins by copying the current DEMO model to the DEMO Synchronized folder
to create a reference point for future comparisons. Based on this snapshot and using
predefined synchronization rules, the system then generates a new synchronized BPMN
model in the BPMN Synchronized folder. Finally, this generated model is copied into
the user-editable BPMN folder, allowing the user to continue working with the BPMN
representation. This scenario establishes the initial link between DEMO and BPMN
models and defines the basic state for the subsequent delta-based synchronization.

6.3.2 Scenario 2: Updating BPMN from DEMO Changes

In this scenario, both DEMO and BPMN models already exist, but the user has updated
the DEMO model. The prototype must now detect and propagate these changes to
keep the BPMN model consistent. The process starts by comparing the current DEMO
folder with the DEMO Synchronized folder to determine which elements and connections
have been added, removed, or updated. Before applying any updates, deletion changes
are first propagated to the BPMN Synchronized model to remove outdated elements
and maintain the validity of existing bridge connections. Once deletions are handled,
the updated DEMO model is copied into the DEMO Synchronized folder. Based on
the calculated delta and the synchronization rules, the prototype then updates the
BPMN Synchronized model accordingly. In the final step, the system compares the
updated BPMN Synchronized model with the BPMN folder and applies the resulting
delta, ensuring that the user-editable BPMN model reflects the latest DEMO changes.
This scenario enables unidirectional synchronization from DEMO to BPMN, ensuring
that changes in the source model are accurately mirrored in the target.

6.3.3 Scenario 3: Updating DEMO from BPMN Changes

This scenario mirrors Scenario 2 but applies in the reverse direction. When the user
modifies the BPMN model, the system ensures that corresponding updates are reflected
in the DEMO model. As in the previous case, synchronization begins with a comparison
between the current BPMN model and its last synchronized version. The resulting delta
is used to identify removed, updated, and newly created elements. Deletion changes are
first applied to the DEMO Synchronized model to eliminate any DEMO elements that
correspond to removed BPMN elements. Next, the updated BPMN model is copied into
the BPMN Synchronized folder to reflect the current state. Using the synchronization
rules, the system then applies the transformed changes to the DEMO Synchronized
model. Finally, the prototype compares this updated DEMO Synchronized folder with
the DEMO folder and applies any necessary changes so that the DEMO model remains
aligned with BPMN.
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6.4 Software Architecture Overview
Having described the folder-based model structure, the synchronization flow, and the
delta-based logic, we now turn to the internal software architecture that implements this
behavior. Figure 6.4 illustrates the main components of the prototype and how they
interact with the Simplified Modeling Platform (SMP).

At the core of the system is the Synchronization Controller, which determines the active
synchronization scenario and orchestrates the end-to-end process. It invokes the Model
Loader to retrieve model data from the SMP via WebSocket API calls and populate an
in-memory structure known as the BridgeContext. This context stores all relevant data
needed for synchronization - including model elements, visual representations, semantic
connections, and bridge mappings.

Once the models are loaded, the Delta Calculator compares the current and synchronized
versions to identify created, deleted, or updated elements and connections. Detected
changes are then passed to the Change Applier, which applies them to the target model,
updates visual representations, and maintains bridge consistency.

All logic for translating DEMO to BPMN (and vice versa) is encapsulated in the
Synchronization Rules Engine. This module ensures that semantic transformations respect
the modeling constraints of each language. In cases where mappings are ambiguous
or incomplete, the system consults the User Interaction Module to involve the user in
resolving the decision.

Together, these components form a modular and traceable architecture that supports
efficient, conflict-aware synchronization across two modeling languages.
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Figure 6.4: Software architecture of the synchronization prototype. The system interacts
with the Simplified Modeling Platform via API calls and organizes synchronization logic
into modular components that operate on a shared in-memory context.
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CHAPTER 7
Synchronization Rules and

Mappings

This chapter introduces the synchronization rules that translate DEMO model elements
into their BPMN counterparts and vice versa. These rules build on the architectural
framework and synchronization scenarios described in the previous chapter 6 and form
the core logic used during model creation, update, and deletion. They also directly
address Research Questions 1 and 2, which focus on defining conceptually valid mappings
and enabling consistent, traceable, bidirectional synchronization between DEMO and
BPMN models.

7.1 Mapping Rules Between DEMO and BPMN Elements
The mapping rules in this chapter are partly inspired by prior work on DEMO to BPMN
transformations [33, 22, 23]. However, unlike these approaches, we formalize the rules
to support continuous synchronization in both directions, including change detection,
attribute propagation, and consistent connection updates. The formalization consists of
structured rule templates that define how each DEMO element type (e.g., Transaction
Step Kind or Actor Role) is translated into one or more BPMN elements, including logic
for visual placement and semantic connections. Table 7.1 shows the main mappings,
while the remaining cases are explained individually in the text. These rules are applied
consistently during both initial model generation and incremental updates, depending on
the active synchronization scenario.

7.1.1 Element Mapping Rules

The following table 7.1 summarizes the refined mappings used throughout the system.

37



7. Synchronization Rules and Mappings

DEMO Element BPMN Element(s) Attributes
TransactionProcessStepKind37:
Step Kind = Initial

Start Event - Flow Dimension = Start

TransactionProcessStepKind37:
Step Kind = Request

Activity + DataObject - Activity: Task Type = User
- DataObject: Data Object Type = DataS-
tore (C-Fact)

TransactionProcessStepKind37:
Step Kind = Requested

Intermediate Message Event - Flow Dimension = Start,
Type Dimension = Message

TransactionProcessStepKind37:
Step Kind = Promise

Activity + DataObject - Activity: Task Type = User
- DataObject: Data Object Type = DataS-
tore (C-Fact)

TransactionProcessStepKind37:
Step Kind = Promised

Intermediate Message Event - Flow Dimension = Intermediate,
Type Dimension = Message

TransactionProcessStepKind37:
Step Kind = Execute

Activity + DataObject - Activity: Task Type = Manual
- DataObject: Data Object Type =
DataObject (P-Fact)

TransactionProcessStepKind37:
Step Kind = State

Activity + DataObject - Activity: Task Type = Service
- DataObject: Data Object Type = DataS-
tore (C-Fact)

TransactionProcessStepKind37:
Step Kind = Stated

Intermediate Message Event - Flow Dimension = Intermediate,
Type Dimension = Message

TransactionProcessStepKind37:
Step Kind = Accept

Activity + DataObject - Activity: Task Type = User
-DataObject: Data Object Type = DataS-
tore (C-Fact)

TransactionProcessStepKind37:
Step Kind = Accepted

End Message Event - Flow Dimension = End,
Type Dimension = Message

ElementaryActorRole Pool - Name = Identification

Table 7.1: Mapping rules between DEMO and BPMN elements

7.1.2 Naming Strategy for BPMN Elements
To ensure consistency, the prototype uses a hybrid naming strategy when creating BPMN
elements from DEMO elements. Instead of copying the DEMO identification directly,
each BPMN element receives a name based on the Step Kind and the Identification
attribute of the corresponding DEMO element.

This guarantees that BPMN models remain semantically clear and understandable on
their own, that element names correspond to their functional roles, and that traceability to
the original DEMO model is maintained. For example, a DEMO element with Step Kind
"Promise" and identification "Order123" results in a BPMN Activity named "Order123
(Promise Product)" and an associated Data Object named "Promise C-Fact".

The following table 7.2 summarizes the naming conventions for each supported Step
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Kind:

DEMO Step Kind/Element Naming Convention for BPMN Elements
Initial <Identification> (Start Transaction)

Request <Identification> (Request Product),
Request C-Fact

Requested <Identification> (Receive Request)

Promise <Identification> (Promise Product),
Promise C-Fact

Promised <Identification> (Promise Sent)

Execute <Identification> (Execute Product),
P-Fact Product

State <Identification> (State Product),
State C-Fact

Stated <Identification> (State Sent)

Accept <Identification> (Accept Product),
Accept C-Fact

Accepted <Identification> (Accepted)

ElementaryActorRole Name taken from the Name attribute (used as Pool name)

Table 7.2: Naming conventions for BPMN elements generated from DEMO elements

Reverse Mapping (BPMN to DEMO)

When BPMN elements are transformed into DEMO elements, the naming strategy is
applied in a simplified and consistent way. For BPMN Pools, the Identification of the Pool
is directly reused as the Identification of the corresponding DEMO ElementaryActorRole.
For example, a BPMN Pool named "Sales Department" will result in a DEMO actor with
the same name.

For BPMN Activities and Events, the prototype reuses the BPMN element’s Identification
as the identification of the corresponding DEMO element. However, the semantic meaning,
such as whether the element represents a Request, Promise, or Accept step is stored in
the Step Kind attribute. The Identification is therefore kept clean and free of semantic
prefixes, avoiding redundancy and improving clarity.

This approach ensures that BPMN-to-DEMO synchronization produces models that are
readable, structurally consistent with the DEMO methodology, and traceable to their
original BPMN sources.
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7.2 Connection Rules
In addition to element mappings, the system applies a set of rules to synchronize
connections:

• Message Flow: Created between a BPMN Activity and a Message Event when
the corresponding DEMO connection is between a C-Act and a C-Event.
For example, a connection between a Request (C-Act) and Requested (C-Event)
leads to a Message Flow from a BPMN Activity to a Message Start Event. Similarly,
a connection from Declare to Declared is mapped to a Message Flow from a Service
Task to an Intermediate Message Event.

• Sequence Flow: Used between BPMN Activities or between BPMN Events when
the corresponding DEMO connection is between two C-Acts or two C-Events.
For example, a connection from Promise (C-Act) to Execute (C-Act) results in a
Sequence Flow between the corresponding User Task and Manual Task. Likewise,
a connection between Promised and Declared (both C-Events) is translated into a
Sequence Flow between their respective Intermediate Message Events.

• Response Link: When a new BPMN Message Flow is created between an Activity
and a Message Event that are both bridged to distinct DEMO elements, the system
creates a Response Link between the corresponding C-Act and C-Event.

• Follow Link: When a new BPMN Sequence Flow is added between two Activities
(or two Events) that are bridged to valid consecutive DEMO steps, the prototype
creates a Follow Link connection between them.

Deleted connections are handled symmetrically when synchronizing from DEMO to
BPMN: if a connection between two DEMO elements is removed, the corresponding
BPMN connection is also deleted. When synchronizing in the other direction (from
BPMN to DEMO), the system checks whether the source and target BPMN elements are
bridged to different DEMO elements. Only if this is the case, the corresponding DEMO
connection will be removed. Otherwise, no change is made, as both BPMN elements may
represent parts of a single DEMO element (e.g., a DataStore and an Activity linked to
the same transaction step).

7.2.1 Actor-Role Assignment Connections
In addition to message and sequence flows, the system also synchronizes actor-role
assignments between DEMO and BPMN models.

In the DEMO metamodel, actor-role assignments are explicitly represented through
semantic and visual connections: Initiator37e and Executor37e, linking a TransactionKind
to either an Elementary or Composite Actor Role. These connections are visible in the
diagram and form a key part of the model structure.
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In contrast, BPMN represents actor assignments implicitly via ActivityPoolLink con-
nections, which associate Activities or Events with Pools. These connections are purely
semantic in the current metamodel implementation and are not visually represented in
the diagram. However, they are used internally by the synchronization logic to track
pool assignments.

When synchronizing from DEMO to BPMN, the system uses the Initiator37e and
Executor37e links to determine which Pool each Activity or Event should be placed in.
This ensures that the resulting BPMN elements appear in the visually correct pool based
on the actor-role semantics of the DEMO model.

Conversely, when synchronizing from BPMN to DEMO, the system determines the
relevant actor-role assignment by analyzing the vertical position (Y value) of the new
Activity or Event and matching it to the correct Pool. Based on this, it infers the correct
actor role and creates the corresponding Initiator37e or Executor37e connection in the
DEMO model. The decision is also guided by the inferred Step Kind (e.g., Request,
Promise, Execute): for example, a Promise step leads to an Executor37e connection
from the TransactionKind to the actor, while a Request step leads to an Initiator37e
connection from the actor to the transaction.

If an ActivityPoolLink is missing in the BPMN model at the time of synchronization, the
system generates it automatically based on the element’s position, maintaining semantic
consistency even though the link is not visually rendered.

7.3 Handling Updates and Special Cases
Attribute Updates

When an element’s attributes change (e.g., name or task type), these changes are
propagated directly to the corresponding elements. If an attribute does not yet exist in
the BPMN/DEMO counterpart, it is created.

Step Kind Change in DEMO

If the “Step Kind” attribute is changed in a DEMO element, the prototype treats the
element as deleted and recreated. This avoids inconsistencies in synchronization logic
since a change in step kind often implies a completely different BPMN structure.

New BPMN Elements

When a new BPMN element is added by the user (e.g., an Activity or Message Event),
the system analyzes its incoming and outgoing connections to infer a likely DEMO step
kind. Because BPMN itself does not encode the organizational commitments that DEMO
makes explicit, this inference can be ambiguous; the user is therefore asked to confirm
or override the suggestion to ensure conceptual validity. By default, if the element is a
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BPMN Activity with no connections, the prototype proposes the Step Kind Request; if
it is a Message Event, it is proposed as an Initial step.

Deletion in BPMN

If BPMN elements such as Activities or Message Events are deleted, the corresponding
DEMO elements are removed as well. If only a DataObject or DataStore is deleted, the
corresponding DEMO element is preserved and only the bridge is removed.
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CHAPTER 8
Prototype Implementation and

Performance analysis

This chapter presents the internal implementation of the implemented prototype. Key
data structures, such as the BridgeContext, are introduced along with the core
synchronization algorithms used. Each major function is analyzed with respect to time
and space complexity, and its performance is empirically validated through benchmark
tests. To isolate computational performance, all benchmarks in this chapter are executed
using mocked backend calls, to avoid real API requests during testing. This approach
ensures that the internal efficiency of the synchronization logic can be evaluated without
external influences. In addition, the number of required API calls per function is analyzed.
The next chapter 9 evaluates the overall runtime behavior of the three scenarios using
real API calls, as well as the system’s correctness, robustness, and limitations.

The full implementation of the prototype, is part of the repository [42].

Benchmark Setup

All benchmarks were executed on a local development machine with the following
configuration:

• CPU: Intel Core i5-8250U @ 1.60GHz (4 cores, 8 threads)

• RAM: 16 GB

• OS: Windows 11

• Go Version: 1.24rc2
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8.1 BridgeContext
To support efficient and consistent synchronization between DEMO and BPMN models,
we introduce a central coordination structure called the BridgeContext. This shared
in-memory structure contains all model elements, visual representations, connections,
and bridge mappings required for bidirectional synchronization across both modeling
languages and their respective synchronized copies.

The BridgeContext fulfills several key purposes. Most importantly, it significantly
improves performance by avoiding repeated backend calls. Instead, all relevant model
data is preloaded into structured maps and lists, allowing comparisons, synchronizations,
and updates to be performed entirely in memory.

It also simplifies the implementation. Rather than passing multiple identifiers, element
lists, or lookup maps to every function, most operations just accept the shared ctx object
(BridgeContext instance). Since it is passed by reference, all updates, such as creating or
deleting elements, are visible system-wide without requiring additional reloading.

Before any synchronization logic can run, the prototype loads all relevant model data
into the BridgeContext. The BridgeContext stores data such as:

• CopyDemoMap: ID → DEMO Copy element

• BpmnToDemoMap: BPMN ID → DEMO ID (bridge mapping)

• ConnectionsBySourceID: Element ID → []Connection

• VisualsByID: Element ID → Visual Representation

This includes both semantic and visual elements, connection data, and bridge mappings
from all involved folders - originals, synchronized versions, and bridges - for DEMO and
BPMN. Because all synchronization steps operate entirely in memory, the quality and
completeness of this initial loading phase directly affect the responsiveness and scalability
of the system.

To avoid unnecessary memory usage, only the data needed for the current synchronization
scenario is loaded. For example, to detect Scenario 1 the prototype only requires the orig-
inal DEMO model and its diagram, while Scenarios 2 and 3 additionally require elements
from the synchronized folders, bridge mappings, connection metadata, and visuals. The
loading logic is implemented in scenario-specific functions like LoadForComparison,
LoadForSyncFromDemo, and LoadForSyncFromBPMN, ensuring that no redundant
data is retrieved.

By centralizing access to the model state and managing all updates through a single struc-
ture, the BridgeContext plays a critical role in keeping the synchronization architecture
modular, efficient, and maintainable.
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Time Complexity

Let n be the number of model elements, m the number of connections, and b the number
of bridge elements.

Operation Complexity Notes
Element parsing and mapping O(n) Populate lists and maps
Connection parsing and indexing O(m) Fill source/target index maps
Bridge construction O(b) Build and reverse bridge mappings
Visual mapping O(n) Assign visuals to elements
Total O(n + m + b) Linear in input sizes

Table 8.1: Time Complexity of BridgeContext Initialization

Space Complexity

All data is loaded and stored in memory via lists and maps inside the BridgeContext. Since
the structure holds the full set of elements, connections, and bridges, space complexity is
also linear:

O(n + m + b)

Backend/API Performance

The following table 8.2 summarizes the estimated number of API calls required to initialize
the BridgeContext:

API Call Frequency
GetModelElement ∼ 7 (DEMO, BPMN, synchronized versions, bridges)
GetModelVisualElement ∼ 1
GetModelConnection ∼ 1
GetModelVisualConnection ∼ 1
GetNotationMetaSet ∼ 2 (DEMO + BPMN)
Total API Calls ≈ 12

Table 8.2: Estimated Frequency of API Calls for BridgeContext Initialization

8.2 Overall Synchronization Function
The central coordination logic of the prototype is implemented in the SyncModels
function. It manages all three synchronization scenarios: generating a BPMN model
from DEMO (Scenario 1), updating BPMN based on DEMO changes (Scenario 2), and
updating DEMO based on BPMN changes (Scenario 3). It also includes logic to handle
conflicts (when both sides have changed) and to detect when no synchronization is needed
at all.
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The function receives an initialized BridgeContext as input and populates it with only
the model data required for the current synchronization step. It begins by loading only
the original DEMO and BPMN elements to determine whether the BPMN model exists.
If it does not, Scenario 1 is triggered. Otherwise, it loads the rest of the elements and
compares the original and synchronized versions of each model using bridge mappings to
detect added, removed, or updated elements and connections.

If changes are detected on both sides, the system aborts the synchronization to prevent
unintentional overwriting. In such cases, the user must manually resolve the conflict
by editing one of the models until only one side contains changes. If changes are
found only on one side, the function applies the appropriate synchronization scenario
using specialized helper functions. For instance, Scenario 2 applies DEMO-side changes
to BPMN using functions like ApplyCreateAndUpdateChangesToBPMN(), while
Scenario 3 performs the reverse.

Because the BridgeContext provides centralized, in-memory access to all model
elements, the system ensures consistency and avoids redundant API calls. Each helper
function involved in the process is described in detail in the following sections, along
with its performance characteristics.

The following pseudocode summarizes the logic implemented in the SyncModels func-
tion:
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Algorithm 8.1: Synchronization Logic (SyncModels)
Input : Model and diagram IDs for DEMO and BPMN
Output : Synchronized state between DEMO and BPMN models

1 Initialize BridgeContext with model identifiers;
2 LoadMinimalModelData() to load original DEMO and BPMN elements;
3 if BPMN has no elements and DEMO has elements then
4 // Scenario 1: Generate BPMN model from DEMO;
5 LoadForScenario1() to fetch DEMO visuals and connections;
6 CopyAllElementsAndConnections() from DEMO to CopyDEMO;
7 CreateBPMNFromDEMO() using CopyDEMO as input;
8 CopyAllElementsAndConnections() from BPMN Copy to BPMN;
9 return

10 end
11 LoadForComparison() to load copies, bridges, and connections;
12 CompareFolders() for DEMO and BPMN to detect changes;
13 if both DEMO and BPMN have changes then
14 Log conflict and abort synchronization;
15 return
16 end
17 if only DEMO has changes then
18 // Scenario 2: Apply DEMO changes to BPMN;
19 LoadForSyncFromDemo() to load required visuals and bridges;
20 ApplyConnectionDeletionsToBPMN();
21 ApplyDeletionChangesToBPMN();
22 CopyChangesToFolder() with DEMO changes to CopyDEMO;
23 ApplyCreateAndUpdateChangesToBPMN();
24 ApplyConnectionCreationsToBPMN();
25 CompareFolders() for BPMN and apply final changes to BPMN;
26 return
27 end
28 if only BPMN has changes then
29 // Scenario 3: Apply BPMN changes to DEMO;
30 LoadForSyncFromBPMN() to load required visuals and bridges;
31 ApplyDeletionChangesToDEMO();
32 CopyChangesToFolder() with BPMN changes to CopyBPMN;
33 ApplyCreateAndUpdateChangesToDEMO();
34 CompareFolders() for DEMO and apply final changes to DEMO;
35 return
36 end
37 Log: No changes detected - models are already synchronized;

The execution time and memory consumption of SyncModels depend entirely on which
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scenario is triggered and which functions are invoked. For instance, Scenario1 is typically
the most expensive, as it involves full model generation. Scenario 2 and Scenario 3 operate
incrementally based on detected deltas. The performance characteristics and estimated
API interactions of each function involved are analyzed in the subsequent sections. A
detailed performance analysis and benchmark comparison of the three synchronization
scenarios is provided in Chapter 9.

8.3 Scenario 1

Below we discuss the functions that are required for scenario 1.

8.3.1 CopyAllElementsAndConnections

The CopyAllElementsAndConnections function duplicates all model elements, attributes,
visuals, and semantic connections from a source folder into a target folder. In Scenario 1,
it is used twice: first to copy the original DEMO model into a synchronized DEMO Copy,
and then to copy the BPMN Copy into the final BPMN folder. Each copied element is
linked to its source via bridge elements, and all created elements and visuals are registered
in the BridgeContext for subsequent synchronization.

Algorithm 8.2: CopyAllElementsAndConnections
Input: Source folder, target folder, diagram ID, bridge folder, direction flag,

context ctx
1 foreach element in source folder do
2 Create new model element in target folder;
3 Copy attributes from original to new element;
4 Create bridge element and connect original to copy;
5 Register new element, bridge and connections in ctx;
6 end
7 foreach visual in source folder do
8 Create new visual for copied element;
9 Register visual in ctx;

10 end
11 foreach connection in source folder do
12 Map source and target elements to copied IDs;
13 if mapped source and target exist then
14 Create new connection in target folder;
15 Create visual connection in diagram;
16 Register connection in ctx;
17 end
18 end
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Time Complexity

Let n be the number of model elements, k the average number of attributes per element,
and m the number of semantic (non-bridge) connections.

Operation Complexity Notes
Element creation O(n) One call to SaveModelElement per element
Attribute copying O(n · k) Each attribute saved via SaveModelAttribute
Visual creation O(n) One SaveModelVisualElement call per visual
Connection creation O(m) One SaveModelConnection call per connection
Visual connection creation O(m) One call per connection
Bridge creation O(n) For each element, we create a bridge element with 2 con-

nections (One from source to bridge, one from bridge to
target)

Total O(n · k + m) Linear in model size

Table 8.3: Time Complexity of Copy Operation

As shown in Table 8.3, the function scales linearly with the number of elements and
connections. Since most real-world models have moderate k and m, performance is
suitable even for large diagrams.

Space Complexity

All elements, attributes, visuals, and connections are stored in memory via maps and
lists inside the BridgeContext. Therefore, space complexity is O(n + m), with additional
O(n) for bridge elements and connections.

Empirical Benchmarking

To empirically validate the expected linear complexity, benchmarks were run for varying
model sizes. As shown in Table 8.4, the observed runtime increased approximately linearly
with the number of elements and connections, supporting the theoretical complexity.

Each benchmark was executed using mocked save functions to isolate computation and
memory effects from I/O delays. The input consisted of synthetic model elements with a
moderate number of attributes and associated visual and semantic connections.

Elements Connections Avg. Time (ms) Growth factor
100 50 2.24 1.0×
500 250 12.76 5.7×

1000 500 25.45 11.4×
2000 1000 58.43 26.1×

Table 8.4: Empirical runtime of the copy function across increasing input sizes

The results confirm the theoretical complexity of O(n · k + m).
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API Call Approximate Frequency
SaveModelElement n elements + b bridge elements
SaveModelAttribute n · k
SaveModelVisualElement n element visuals
SaveModelConnection m semantic connections + 2b bridge links
SaveModelVisualConnection m visual connections
Total API Calls ≈ (2n + n·k) + (2m + 3b)

Table 8.5: Estimated frequency of API calls for CopyAllElementsAndConnections

Backend/API Performance

8.3.2 CreateBPMNFromDEMO
The CreateBPMNFromDEMO function transforms the copied/synchronized version of the
DEMO model into a corresponding BPMN Synchronized model. It performs a full forward
mapping of all Transaction Process Step Kind (TPSK) elements, Elementary Actor Roles,
and their semantic connections. The function follows the synchronization rules defined
in Chapter 7 and creates the appropriate BPMN elements, including Pools, Events,
Activities, and DataObjects. Each element is registered in the shared BridgeContext
for future synchronization.
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Algorithm 8.3: CreateBPMNFromDEMO
Input: Bridge context ctx with loaded DEMO Copy model

1 Sort all DEMO Transaction-Process-Step-Kind (TPSK) elements into
sortedSteps;

2 foreach element in ctx.CopyDemoMap do
3 if element is a DEMO Actor then
4 Create a BPMN Pool and bridge it to the actor;
5 end
6 end
7 foreach element in sortedSteps do
8 Determine Step Kind;
9 switch Step Kind do

10 case Initial do
11 Create Start Event;
12 end
13 case Request, Accept do
14 Create User Activity and C-Fact;
15 end
16 case Promise do
17 Create User Activity and C-Fact;
18 end
19 case Execute do
20 Create Manual Activity and P-Fact;
21 end
22 case State do
23 Create Service Activity and C-Fact;
24 end
25 case Requested, Promised, Stated do
26 Create Intermediate Message Event;
27 end
28 case Accepted do
29 Create End Message Event;
30 end
31 end
32 Bridge and register created BPMN elements;
33 end
34 foreach connection between DEMO steps do
35 if both ends are bridged then
36 Create and register a Sequence or Message Flow;
37 Link each Activity/Event to its corresponding Pool;
38 end
39 end
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Time Complexity

Let n be the number of DEMO elements, k the number of TPSK steps, and m the
number of semantic connections.

Operation Complexity Notes
Element separation O(n) Filter pools and TPSK steps
TPSK sorting O(k · log k) For layout and order enforcement
Pool creation O(p) Typically one per actor role
BPMN element creation O(k) Multiple elements per TPSK step
Attribute setting O(k) Per element, usually one per at-

tribute
Connection creation O(m) Includes ActivityPoolLink creation
Visual creation O(k) One per BPMN element
Total O(n+p+k ·log k+m) Efficient for structured flows

Table 8.6: Time Complexity of BPMN Creation from DEMO

As shown in Table 8.6, the function scales efficiently. The only non-linear factor is the
sorting step, which arranges TPSK steps based on a fixed ordering. In practice, k remains
moderate, and the function performs well even for large models.

Space Complexity

Each generated BPMN element, connection, and visual is stored in memory within the
BridgeContext. Space complexity is therefore linear:

O(k + m)

Empirical Benchmarking

To empirically validate the performance and confirm the expected time complexity of
O(n + k · log k + m), we ran benchmarks with increasing numbers of TPSK steps and
corresponding DEMO connections. Each synthetic input included realistic payloads,
visual representations, and actor mappings. All save operations were mocked to isolate
the algorithm’s logic and memory consumption from backend overhead.

TPSK Steps Connections Avg. Time (ms) Growth factor
100 99 8.00 1.0×
500 499 124.77 15.6×

1000 999 279.29 34.9×
2000 1999 881.54 110.2×

Table 8.7: Empirical performance of BPMN creation from DEMO model

The results confirm that the implementation scales as expected. The runtime increases
linearly with the number of TPSK elements, though with higher constant factors because
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each step produces multiple BPMN constructs (e.g., activities, events, data objects, and
bridge links). Nevertheless, the growth remains predictable and well within acceptable
limits. For instance, creating a BPMN model from 2000 TPSK steps with nearly 2000
connections took under 1 second on average. This confirms that the transformation can
be executed interactively even for large-scale models.

Backend/API Performance

API Call Approximate Frequency
SaveModelElement n BPMN elements + b bridge elements
SaveModelAttribute n · k
SaveModelVisualElement n element visuals
SaveModelConnection m semantic connections + 2b bridge links
SaveModelVisualConnection m visual connections
Total API Calls ≈ (2n + n·k) + (2m + 3b)

Table 8.8: Estimated API-call frequency for CreateBPMNFromDEMO

8.4 Scenarios 2 and 3

For scenario 2 and 3 we need following functions:

8.4.1 CompareFolders

The CompareFolders function compares two versions of a model (original and syn-
chronized) and identifies all structural and attribute-level differences. It supports both
DEMO and BPMN models and works in either synchronization direction. The comparison
includes both model elements and semantic connections. The result is a list of Change
objects representing created, deleted, or updated elements and connections. It serves as
the central mechanism for identifying deltas in both synchronization directions.
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Algorithm 8.4: CompareFolders
Input: Preloaded maps from ctx: original/copy elements, bridges, and all

connections
Output: List of Change objects (Created, Updated, Deleted)

1 Initialize empty list changes;
2 Initialize sets for matchedOriginal, matchedCopy, createdElementIDs,

deletedElementIDs;
3 // Step 1: Compare Model Elements;
4 foreach mapped element pair (original → copy) do
5 if element type is not Diagram then
6 Mark both elements as matched;
7 Compare attributes using CompareAttributes;
8 if any attribute differs then
9 Add Updated change with list of modified attributes;

10 end
11 end
12 end
13 foreach element in copy map do
14 if element is unmatched and not a Diagram then
15 Add Deleted change for element;
16 end
17 end
18 foreach element in original map do
19 if element is unmatched and not a Diagram then
20 Add Created change for element;
21 end
22 end
23 // Step 2: Compare Semantic Connections;
24 Filter out bridge-related connections from ctx.AllConnections;
25 Build map of valid connections in original and copy models;
26 foreach connection in original model do
27 Map source and target to copy IDs using bridge map;
28 if corresponding connection is missing in copy then
29 Add Created change for connection;
30 end
31 end
32 foreach connection in copy model do
33 Map source and target to original IDs using bridge map;
34 if corresponding connection is missing in original then
35 Add Deleted change for connection;
36 end
37 end
38 return changes
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To enable consistent and traceable synchronization between DEMO and BPMN models,
we introduce a unified way of representing detected differences: the Change struct. Every
change found between models is encapsulated in one of these Change objects. This
approach standardizes the way differences are handled throughout the synchronization
logic.

Each Change describes what type of element was affected (ModelElement or Model-
Connection), what kind of change occurred (Created, Deleted, or Updated), and which
specific model object was involved. It also includes the Identification of the Element
or the Connection. If the change involves a connection, the struct includes information
about the connection type, source and target IDs. For updates, a list of attribute-level
differences is included via the Changes field, which holds all modified name-value pairs.

This uniform structure allows update functions to process all changes in the same way,
whether they’re updating elements, attributes, or connections. It also serves as the basis
for analyzing the complexity of the entire synchronization mechanism, since the number
of Change objects directly reflects how many model modifications need to be processed.

Time Complexity

Let n be the number of model elements, k the average number of attributes per element,
and m the number of semantic (non-bridge) connections.

Operation Complexity Notes
Element comparison O(n · k) Includes attribute differentiation and iden-

tity checks
Connection comparison O(m) Filters, indexes, and compares connections
Total O(n · k + m) Linear in structure and size of the model

Table 8.9: Time Complexity of Folder Comparison

Space Complexity

Temporary maps for matched IDs and attributes, as well as connection maps, are built in
memory. Thus, the space complexity is linear in the number of elements and connections:

O(n + m)

Empirical Benchmarking

To empirically validate the performance and scalability of the CompareFolders function,
we conducted again a benchmark using synthetic DEMO models of increasing size.

As shown in Table 8.10, the runtime increases in line with model size. Although the
complexity includes both O(n · k) for attribute comparisons and O(m) for connection
mapping, the function completes the comparison of 2,000 elements with 1,000 semantic
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TPSK Steps Connections Avg. Time (ms) Growth factor
100 50 0.29 1.0×
500 250 1.73 6.0×

1000 500 3.89 13.4×
2000 1000 11.12 38.3×

Table 8.10: Empirical performance of the CompareFolders function

connections in under 12 milliseconds on average. This confirms that the function performs
efficiently and is suitable for interactive use even with large models.

Backend/API Performance

This function performs all comparisons in-memory and does not trigger any API calls.
All model data is assumed to be preloaded via BridgeContext.

8.4.2 CopyChangesToFolder
The CopyChangesToFolder function applies the list of detected changes to the target
model folder (DEMO or BPMN, original or synchronized version). It is used in both
Scenario 2 and Scenario 3, depending on which model serves as the source. For each
change, the function creates or deletes model elements, updates attributes, handles visual
representations, and ensures that all bridge connections and internal maps within the
BridgeContext are kept consistent.
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Algorithm 8.5: CopyChangesToFolder
Input: BridgeContext ctx, list of Change objects, target folder ID
Output: Model folder updated with all changes (create, update, delete)

1 // Step 1: Delete Connections
2 foreach change in changes do
3 if change is a deleted ModelConnection then
4 Delete connection from backend;
5 Remove it from all context maps and lists in ctx;
6 end
7 end
8 // Step 2: Apply Element Changes
9 foreach change in changes do

10 if change is a deleted ModelElement then
11 Delete element and visual;
12 Clean up bridge mappings and remove from maps;
13 else if change is a created ModelElement then
14 Create element and visual from original;
15 Create bridge and update context maps;
16 end
17 else if change is an updated ModelElement then
18 Update attributes and save changes;
19 Replace or update context entries;
20 end
21 end
22 // Step 3: Create New Connections
23 foreach change in changes do
24 if change is a created ModelConnection then
25 Resolve mapped source and target elements;
26 Create semantic and visual connection;
27 Register in context maps;
28 end
29 end

Time Complexity

Let n be the number of changed elements, k the average number of attributes per updated
element, and m the number of changed connections.

The complexity is driven by the number of changes rather than full model size. Efficient
use of maps ensures fast lookup and insertion operations.
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Operation Complexity Notes
Element creation O(n) One call to SaveModelElement per element
Visual creation O(n) Only if a corresponding visual exists
Element deletion O(n) Lookup + removal from model and maps
Attribute updates O(n · k) Set each changed value via API
Connection updates O(m) Created or deleted connections + visuals
Bridge creation O(n) One bridge per created element (if needed)
Total O(n · k + m) Depends on number of deltas

Table 8.11: Time Complexity of Applying Changes

Space Complexity

All comparisons and changes operate in-memory, assuming that all elements, visuals, and
connections are preloaded into the BridgeContext. No on-demand fetches are performed.
Space complexity is O(n + m), reflecting temporary storage of change results.

Benchmark and Runtime Behavior

To evaluate the performance and scalability of the CopyChangesToFolder function,
we conducted a benchmark using synthetic change sets of varying sizes. Each run applied
a realistic mix of model changes, including element creation, updates, and deletions, on a
pre-initialized context containing a base model with mapped elements and visuals.

For each model size, the change set consisted of:

• 60% newly created model elements,

• 20% updated elements (e.g., identification changed),

• 20% deleted elements.

All benchmark executions used mocked save and delete functions to simulate backend
interaction while preserving realistic computational overhead (e.g., context updates, ID
mapping, bridge handling).

Changes Applied Base Elements Avg. Time (ms) Growth factor
100 50 1.01 1.0×
500 250 7.18 7.1×

1000 500 16.63 16.5×
2000 1000 40.98 40.6×

Table 8.12: Empirical runtime performance of CopyChangesToFolder on mixed change
sets
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The results demonstrate that the function exhibits predictable scaling behavior consistent
with its theoretical complexity of O(n · k + m). Even for 2,000 mixed changes, the
operation completes in under 41 milliseconds on average, confirming that the function is
suitable for incremental synchronization in large models.

Backend/API Performance

The following API calls are triggered when applying each type of change, depending on
its operation. Table 8.13 summarizes the estimated frequency of each call:

API Call Approximate Frequency
SaveModelElement nc created elements
SaveModelAttribute nu · k updated attributes
SaveModelVisualElement nc element visuals
SaveModelConnection mc created connections
SaveModelVisualConnection mc visual connections
DeleteModel nd + md deletions (elements and connections)
Total API Calls ≈ 2nc + nu k + 2mc + nd + md

Table 8.13: Estimated API-call frequency for CopyChangesToFolder

Here, nc is the number of created elements, nu is the number of updated elements, nd
is the number of deleted elements, k is the average number of updated attributes per
element, mc is the number of created connections, and md is the number of deleted
connections.

8.4.3 Apply DEMO Changes to BPMN
This synchronization step applies changes from the DEMO Copy model to the BPMN
Copy model. It handles newly created, updated, and deleted elements and connections,
and ensures the BPMN model remains consistent. The following core functions are
executed in sequence to apply the detected changes:

• ApplyCreateAndUpdateChangesToBPMN

• ApplyConnectionCreationsToBPMN

• ApplyConnectionDeletionsToBPMN

• ApplyDeletionChangesToBPMN

• CreateBPMNElementFromDemo

• deleteBPMNElementAndConnections
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Together, these functions form the logic for propagating structural and behavioral changes
across the models.

Algorithm 8.6: ApplyDEMOChangesToBPMN(ctx, demoChanges)
Data: BridgeContext ctx, list of DEMO-side demoChanges

1 ApplyConnectionDeletionsToBPMN(ctx, demoChanges);
2 ApplyDeletionChangesToBPMN(ctx, demoChanges);
3 CopyChangesToFolder(ctx, demoChanges, ctx.CopyDemoFolderId);
4 ApplyCreateAndUpdateChangesToBPMN(ctx, demoChanges);
5 ApplyConnectionCreationsToBPMN(ctx, demoChanges);

This composite update pipeline ensures that all structural and attribute-level modifications
are propagated to the BPMN model in a consistent and conflict-free manner.

Time Complexity

Let n be the number of changed elements, k the average number of updated attributes
per element, and m the number of changed connections.

Operation Complexity Notes
Mapping and creation of BPMN elements O(n) Includes visual creation and bridge registration
Attribute updates (SetSingleAttribute) O(n · k) Per changed attribute
BPMN element deletion O(n) Includes visual and connection cleanup
Connection creation/deletion O(m) Per semantic + visual connection
Total O(n · k + m) Linear in number of changes

Table 8.14: Time Complexity of BPMN Update Logic

Space Complexity

The space requirements are minimal as updates work in-place within the BridgeContext.
Each created or modified element is registered in existing maps and lists. Overall space
complexity: O(n + m).

Benchmark and Runtime Behavior

To evaluate the performance and scalability of the BPMN update logic, we conducted
a benchmark using synthetic DEMO change sets of varying sizes. Each run applied a
realistic mix of model modifications, including element creation, updates, and deletions,
on a pre-initialized context with 1:1 mapped DEMO and BPMN elements, including
bridge connections and visuals.

For each input size, the change set consisted of:

• 50% updated DEMO elements (e.g., Identification or Attribue value changed),

• 25% deleted elements,
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• 25% newly created elements.

All benchmark executions used mocked save and delete functions to isolate backend
performance and simulate realistic in-memory synchronization behavior (e.g., bridge
cleanup, attribute handling, visual and connection management).

Changes Applied Base Elements Avg. Time (ms) Growth factor
100 50 0.43 1.0×
500 250 3.32 7.7×

1000 500 8.20 19.0×
2000 1000 17.82 41.5×

Table 8.15: Empirical runtime of BPMN update from DEMO changes under mixed
workloads

The results confirm that the implementation scales consistently with the expected
complexity of O(n · k + m). The total runtime increases linearly with the number of
elements, but with higher constant factors due to the fixed set of operations required
per element (e.g., multiple attribute updates, bridge links, visuals, and connections).
Since all benchmarks used mocked backend functions, the results isolate internal logic
performance. Still, the overall trend supports the correctness of the calculated complexity
class.

Backend/API Performance

API Call Approximate Frequency
SaveModelElement nc + nu elements (created + updated)
SaveModelAttribute nu · k updated attributes
SaveModelVisualElement nc visuals for created elements
SaveModelConnection mc created connections
SaveModelVisualConnection mc visuals for created connections
DeleteModel nd + md deletions (elements + connections)
Total API Calls ≈ (︁

2nc + nuk
)︁

+
(︁
2mc

)︁
+

(︁
nd + md

)︁
Table 8.16: Estimated API-call frequency for Apply DEMO Changes → BPMN

This update pipeline forms the core of Scenario 2, ensuring that the BPMN model remains
synchronized with changes made to the DEMO model, while maintaining consistency
across semantic and visual representations.

8.4.4 Update of DEMO based on BPMN Changes
This synchronization scenario ensures that structural and behavioral changes made to
the BPMN Copy model are accurately propagated to the DEMO Copy model. It handles
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creation, update, and deletion of both elements and connections based on the calculated
delta. The following core functions are responsible for this behavior:

• ApplyCreateAndUpdateChangesToDEMO

• ApplyDeletionChangesToDEMO

• createDEMOFromNewBPMNElement

• createActorFromPool

• promptAndCreateTPSK

Each function is responsible for a specific change type, and together they ensure all
structural and behavioral changes from the BPMN Copy are consistently propagated to
the DEMO Copy.

Algorithm 8.7: UpdateDEMOFromBPMN(ctx, bpmnChanges)
Data: BridgeContext ctx, list of BPMN-side bpmnChanges

1 ApplyDeletionChangesToDEMO(ctx, bpmnChanges);
2 CopyChangesToFolder(ctx, bpmnChanges, ctx.CopyBpmnFolderId);
3 ApplyCreateAndUpdateChangesToDEMO(ctx, bpmnChanges);

This algorithm ensures a complete cycle from change detection to application, including
both forward and reverse synchronization steps within the Synchronized-Original model
pair.

Time Complexity

Let n be the number of created or deleted BPMN elements, k the average number
of attributes inferred or updated per DEMO element, and m the number of changed
connections.

Operation Complexity Notes
BPMN → DEMO element creation O(n) Includes inference, visual, and bridge creation
Attribute inference and application O(n · k) e.g., Step Kind, Name, Task Type
DEMO element deletion O(n) Includes visual and bridge cleanup
DEMO connection creation/deletion O(m) Per visual + semantic connection
Total O(n · k + m) Efficient handling of user-validated inference

Table 8.17: Time Complexity of DEMO Update Logic

Space Complexity

All elements, visuals, and connections are updated in-place within the BridgeContext.
Intermediate maps for bridging and lookup are reused throughout the update cycle.
Overall space complexity: O(n + m).
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Benchmark and Runtime Behavior

To evaluate the performance and scalability of the DEMO update logic (Scenario 3),
we conducted a benchmark using synthetic BPMN change sets of varying sizes. Each
run applied a realistic mix of model modifications on a pre-initialized context with 1:1
mapped BPMN and DEMO elements, including bridge connections and visuals.

For each input size, the change set consisted of:

• 50% updated BPMN elements,

• 25% deleted elements,

• 25% newly created elements.

All benchmark executions used mocked save and delete functions to isolate backend
performance and simulate realistic synchronization behavior, including attribute inference,
pool-to-actor mapping, bridge management, and visual layout computation.

Changes Applied Base Elements Avg. Time (ms) Growth factor
100 50 0.65 1.0×
500 250 4.12 6.4×

1000 500 9.83 15.2×
2000 1000 20.01 30.8×

Table 8.18: Empirical runtime of DEMO update from BPMN changes under mixed
workloads

The results confirm that the DEMO update logic performs efficiently and scales as
expected with the number of changes. Even when applying 2,000 mixed changes, the
update completes in just over 20 milliseconds on average. This confirms that interactive
synchronization from BPMN to DEMO remains feasible even for large-scale models.

Backend/API Performance

Since all model updates are persisted through the Sirius Web backend, each creation,
deletion, or modification triggers API calls. The following table summarizes their expected
frequency per update cycle:
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API Call Approximate Frequency
SaveModelElement nc + nu elements (created + updated)
SaveModelAttribute nu · k inferred or modified attributes
SaveModelVisualElement nc visuals for new elements
SaveModelConnection mc created connections
DeleteModel nd + md deletions (elements + connections)
Total API Calls ≈ (︁

2nc + nuk
)︁

+
(︁
mc

)︁
+

(︁
nd + md

)︁
Table 8.19: Estimated API-call frequency for UpdateDEMOFromBPMN
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CHAPTER 9
Evaluation

In this chapter, we evaluate the performance and scalability of the three synchronization
scenarios in the prototype based on the implemented logic presented in Chapter 8.
While the design aims to support efficient and maintainable bidirectional synchronization
between DEMO and BPMN models, it is important to empirically validate how the
system works under realistic conditions. This includes measuring real runtime behavior
(including the correct API calls), identifying potential bottlenecks, and discussing the
system’s current limitations.

9.1 Performance Benchmarks
9.1.1 Benchmark Scenarios
To evaluate the overall performance of the synchronization prototype under realistic
conditions, we defined three benchmark tests, one for each synchronization scenario.
Unlike the function-specific benchmarks in Chapter 8, which were executed using mocked
backend calls to isolate internal computation, these tests were performed against the
actual SMP backend. This setup provides a more accurate picture of end-to-end runtime
behavior, including the full overhead of API interactions.

• Scenario 1: Generate BPMN from DEMO

• Scenario 2: Update BPMN based on DEMO changes

• Scenario 3: Update DEMO based on BPMN changes

For each scenario, we used models of different sizes, from small (around 10 transaction
steps) to medium (50 steps) and large (about 100 steps). The runtime was measured
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using the built-in timing tools in Go, and each test was run multiple times to reduce
fluctuations. These measurements help us understand how well the system scales and
whether performance remains acceptable even with growing model sizes.

9.1.2 Runtime Measurements
Table 9.1 summarizes the measured execution times for each scenario. All runtimes in
this table are measured in seconds (s).

Model Size Scenario 1 (s) Scenario 2 (s) Scenario 3 (s)
10 TPSK steps 22.5499 17.5479 14.5501
50 TPSK steps 101.1064 81.587 48.3815
100 TPSK steps 209.3951 131.6153 86.2833

Table 9.1: Synchronization Runtime by Scenario and Model Size

Figure 9.1: Measured runtime of each synchronization scenario across increasing model
sizes.

As the results in Table 9.1 and Figure 9.1 show, the runtime increases consistently across
all three scenarios as the number of elements and changes in the model grows. For
each case, the original model contained 10, 50, or 100 transaction steps (TPSK steps),
and for Scenario 2 and 3 the same number of changes were randomly applied before
synchronization. This setup allows us to observe how the system behaves as both model
complexity and update workload increase.

Scenario 1, in which a completely new BPMN model is generated from a DEMO model,
shows the highest runtime in all test cases. For example, generating a BPMN model
from 100 DEMO steps takes over 209 seconds. This is expected, as this scenario always
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creates all elements, visuals, and connections from scratch, including setting attributes
and generating bridge mappings. The effort scales with the total size of the DEMO
model.

Scenario 2, where BPMN is updated based on changes in DEMO, performs slightly better
but still shows significant runtime growth. Here, the system compares the original and
modified DEMO models, detects the changes, and applies updates to the BPMN model
accordingly. For 100 changes, the process takes around 131 seconds. Although only part
of the model is modified, each change can involve multiple BPMN elements (e.g., tasks,
message events, data objects) and may require removing and recreating elements, which
makes this scenario relatively expensive.

Scenario 3, which updates DEMO based on changes in the BPMN model, performs
best across all sizes. Even for 100 changes on 100 elements, the runtime stays below 90
seconds. This is mainly due to the more compact and stable structure of DEMO models.
Since multiple BPMN elements can correspond to a single DEMO step, each change on
the BPMN side typically affects only one DEMO element - or in some cases, none at all.
For instance, if a BPMN DataStore is deleted, this does not require any update in the
DEMO model. As a result, fewer operations are needed during synchronization.

Overall, the runtime results show that the system handles small to medium-sized models
well, but synchronization costs grow noticeably with the number of elements and changes,
especially in scenarios involving BPMN generation or updates. From a scalability
perspective, Scenario 1 and Scenario 2 exhibit roughly linear growth (O(n)) in runtime as
the number of elements or changes increases, while Scenario 3 scales more efficiently due
to fewer element reconstructions and simpler transformation logic on the DEMO side.

9.2 Correctness and Robustness
Beyond performance, it is also important to evaluate whether the prototype consistently
delivers correct and reliable synchronization results across the tested scenarios. This
includes verifying that elements are transformed according to the defined rules, that
bridge connections remain consistent and that the system behaves predictably even with
repeated or complex change processes.

During testing, the system consistently maintained the intended one-to-one or one-to-
many mappings between DEMO and BPMN elements. In Scenario 1, all BPMN elements
generated from DEMO models were complete, visually placed and correctly linked to their
source elements. For example, Request and Promise steps reliably led to corresponding
tasks and data objects, and pools and events were correctly created and positioned based
on actor roles and transaction contexts.

Scenario 2 showed that changes in the DEMO model were accurately transferred to the
BPMN model. The system correctly transformed new steps into their BPMN equivalents,
updated existing elements based on attribute changes and removed elements and visual
representations when they were deleted. Semantically, the synchronization matched
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the defined synchronization logic. Visually, most elements were placed in the correct
locations, especially when contextual connections were present. In some cases, however,
the placement was less precise.

Scenario 3 also provided correct results when synchronizing BPMN to DEMO. All
created, updated and deleted BPMN elements were mapped to their DEMO equivalents
as intended. The resulting DEMO models were semantically valid and structurally
consistent across all test cases. As with Scenario 2, visual placement generally followed
the expected order when connections provided sufficient context, while isolated elements
were added in default positions. Nevertheless, no semantic inconsistencies were observed
in any of the test runs.

In terms of robustness, the system proved stable on repeated runs and supported different
orders of creates, updates and deletes. Changes could be made in any order, and the
synchronization logic correctly maintained bridge consistency even when multiple depen-
dent elements were changed. In no case did the prototype result in broken connections,
invalid references or invalid model states.

Overall, the evaluation confirms that the synchronization logic is correct and robust
within the defined scope. The system handles typical modeling changes in a reliable and
predictable way, maintaining consistency between DEMO and BPMN models.

9.3 Unit Tests and Test Coverage
To ensure that the synchronization logic is reliable and robust, we developed unit tests
for all core helper functions. These tests validate the correctness of attribute handling,
element creation, connection management, bridge logic, and data structure initialization.

Tests are organized in the Helper_functions_test package and correspond to each
major component in the Helper_functions package. This includes compare_test.go,
copy_test.go, create_bpmn_test.go, and others. Each test targets a specific func-
tion or logic module and verifies the internal behavior using synthetic input data. The
system state is validated via the BridgeContext structure, ensuring that expected
model elements, connections, visuals, and bridges are correctly registered or updated.

All tests use mocked versions of the Sirius Web API, enabling isolated validation of
logic without triggering backend calls. The Mocks.go file provides reusable stubs and
simulated responses for typical API operations, such as saving or deleting model elements
and visuals.

The test suite includes not only successful execution scenarios but also a range of edge
cases and failure conditions. This includes:

• Changes with missing bridge mappings (e.g., a new BPMN element without corre-
sponding DEMO mapping),
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• Connection deletions where either the source or target element is missing from the
model,

• Visual creation errors when no diagram is set or when element IDs are invalid,

• Attribute mismatches between original and copy elements,

• Partial or duplicate model state due to inconsistent ID registration,

• Unsupported element types (e.g., unknown BPMN or DEMO types),

• Prompt-based logic for Step Kind inference in ambiguous BPMN insertions.

Testing these edge cases helps verify that the system handles unexpected or incomplete
input reliably and does not break under inconsistent states.

Based on the coverage analysis tools in the IntelliJ IDEA, the unit test suite achieves
100% file coverage and approximately 70.5% statement coverage. Most synchronization-
critical modules, such as compare.go, creation.go, and update_bpmn.go, exceed
90% statement coverage. Only supporting infrastructure files like BridgeContext.go,
which contain basic data initialization, have significantly lower coverage. This confirms
that the essential transformation and synchronization logic is well-covered and reliably
tested.

Figure 9.2: Test coverage of helper functions (visualized in GoLand).

Overall, the unit tests played an important role in the implementation and debugging
of the prototype. In practice, these tests helped uncover issues like missing attribute
propagation or broken bridge links early in development. As the synchronization logic
was refactored and extended, the tests ensured consistent system behavior and helped
validate incremental improvements.

9.4 Limitations and Future Work
While the prototype shows that synchronization between DEMO and BPMN models is
possible, several limitations became apparent during development and evaluation.

69



9. Evaluation

Originally, we intended to evaluate the system using models with up to 1000 Transaction-
ProcessStepKind (TPSK) elements. However, we observed that the platform becomes
increasingly unstable at this scale. In particular, Scenario 1 resulted in long response
times due to the high number of semantic and visual elements created. Scenario 1 took
almost 40 minutes to run. When executing Scenario 2 on these models, the system broke
down (it was not able to run). This indicates performance bottlenecks in the underlying
modeling platform that should be addressed to support large-scale synchronization in
the future.

Another limitation concerns how changes between models are detected. Currently, the
implementation compares all items in the original and synchronized folders to identify
created, updated and deleted items. This comparison is very computationally intensive.
While the simplified platform supports timestamps for the creation and last modification
of elements, attributes and connections, it does not support timestamps for deletions. This
makes efficient detection of deleted elements impossible. A more robust change tracking
mechanism, including deletion metadata, would improve performance and scalability.

The prototype also relies on structural context (e.g. connections to previous or next
steps) to determine the visual placement of elements. When new elements are added
without such context, they are placed in a default position. As a result, some diagrams
appear visually cluttered or misaligned. Future work could improve the visual layout
strategies to ensure clearer positioning even in context-free cases.

The current implementation focuses only on the “happy flow” of DEMO transactions.
Future work could extend the prototype to cover the entire structure of the transaction
diagram, including edge cases such as rollback or cancellation scenarios.

Although the prototype successfully demonstrates DEMO-BPMN synchronization, the
logic was developed on a language-specific basis. In future work, the synchronization
approach could be generalized to support other modeling languages such as ArchiMate or
e3value. This would contribute to a broader vision of cross-language model synchronization
in enterprise modeling.

Another limitation is the lack of a user interface for interacting with the synchronization
logic. At the moment, the prototype must be executed manually as a backend script.
This means that end users cannot trigger synchronization directly from the modeling
environment. A useful future enhancement would be to integrate a simple button or UI
control into the Web frontend that allows users to start the synchronization process on
demand.

Finally, the runtime and performance evaluation was based on test models that were
manually created for the purpose of evaluation. While this approach is useful for
benchmarking and testing the system under controlled conditions, these models do not
reflect the complexity, structure, or modeling styles found in real-world projects. We did
not have access to actual DEMO or BPMN models from companies, which limits the
practical relevance of the evaluation. As a result, the findings may not fully capture the
challenges that arise in real modeling scenarios. Future evaluations using real enterprise
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models would provide more meaningful insights into the prototype’s applicability in
practice.
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CHAPTER 10
Conclusion

In this thesis, we set out to address a common challenge in enterprise modeling: how to
keep models in different languages, like DEMO and BPMN, consistent and synchronized.
Rather than creating yet another new language, we focused on connecting two existing
ones through a metamodel-based synchronization approach that respects their individual
structures and semantics.

We developed a working prototype that supports bidirectional synchronization between
DEMO and BPMN models. The system can detect changes, apply transformations,
while maintaining visual and semantic consistency using bridge mappings and structured
synchronization rules. Our focus was not on one-time transformations, but on enabling
continuous synchronization, supporting ongoing model evolution in both directions.

Throughout the process, we combined theoretical foundations with practical implemen-
tation, using the Simplified Modeling Platform to build and test our approach. We
followed principles from design science [10] and algorithm engineering [11] to iteratively
design, evaluate, and improve the prototype. Our system supports both automated
synchronization, where semantics are clear, and manual guidance where ambiguity exists.

The evaluation showed that our approach performs well for small to medium-sized models,
correctly applying changes and preserving model structure and traceability. At the
same time, we identified limitations in scalability, visual placement logic, and platform
constraints.

Overall, we demonstrated that model synchronization between different languages is
feasible.

All source code, unit tests, and benchmarking scripts used in this thesis are available in
the corresponding GitLab repository [42].
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10. Conclusion

10.1 Recap of research questions
At the beginning of this thesis (Chapter 1), we introduced five research questions on
which we build the design and development of the synchronization prototype. These
questions covered both conceptual and technical challenges involved in keeping DEMO
and BPMN models aligned. In this section, we revisit each question and explain how it
was addressed throughout the work.

RQ1: Which transaction-related elements in the DEMO and BPMN
metamodels can be mapped to each other in a semantically meaningful and
technically feasible way, and what synchronization rules are needed to
support this mapping?

In order to synchronize DEMO and BPMN models, we first needed to define clear
and consistent mappings between the two languages. This was done based on DEMO’s
Complete Transaction Pattern, which provides a structured way of describing coordination
between actors. For each DEMO transaction step (e.g., Request, Promise, Execute,
Accept), we identified corresponding BPMN elements such as Activities, Events, Pools,
and DataObjects. These mappings were formalized as synchronization rules, which are
applied consistently in both directions. The full overview is shown in Table 7.1.

RQ2: How can model differences - such as added, removed, or modified
elements, attributes, and connections - be detected using a delta-based
comparison approach to support bidirectional synchronization?

To keep track of what has changed between two models, the prototype compares the
current version with its last synchronized snapshot. This comparison is done at the
semantic level, so we compare actual model elements, not visuals. As a result we get a
categorized list of changes: elements or connections that were created, deleted, or updated.
This delta-based approach is used in both directions and ensures that the system only
processes what actually changed. The logic for this comparison is explained in Chapter 6
and is the foundation for the incremental synchronization used in Scenarios 2 and 3.

RQ3: How can detected changes be transformed and applied to the target
model in a way that updates semantics, visuals, and bridge mappings
consistently?

After identifying what has changed in one model, the next step is to apply those changes
to the other model in a consistent and structured way. This involves more than just
copying over elements - it also means updating their attributes, placing them correctly
in the diagram, and maintaining the bridge connections that keep both sides in sync. To
handle this, the prototype uses a set of modular functions that take care of the different
tasks step by step: from semantic transformation to visual placement to updating internal
mappings. These functions were designed to work together smoothly and ensure that
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every change is applied in a traceable and predictable way. The full process is explained
in Chapter 8.

RQ4: Which types of changes can be synchronized automatically, and in
which cases is manual intervention required due to ambiguity or
model-specific constraints (particularly in BPMN-to-DEMO
transformations)?

Not all transformations can be done fully automatically. For the direction from DEMO
to BPMN, the mapping is straightforward because DEMO models include clear semantics
about each transaction step. This allows the system to generate BPMN elements
without user input. The reverse direction, from BPMN to DEMO, is more complex.
BPMN elements often lack the semantic detail needed to infer exactly what kind of
transaction step they represent. In these cases, the system suggests a likely option based
on surrounding elements (e.g., incoming and outgoing connections), but still asks the
user to confirm or correct it. This interactive behavior, described in Chapter 7, strikes a
balance between automation and correctness.

RQ5: What is the complexity of the resulting synchronization mechanism?

To evaluate the scalability and performance of the system, we analyzed the complexity
of the main synchronization functions and ran a series of runtime benchmarks (see
Chapter 8and 9). Most core operations, such as detecting changes, applying transforma-
tions, and maintaining bridge mappings, scale linearly with the number of elements or
connections involved. The benchmark results confirm that the system can handle realistic
model sizes efficiently. In addition, the development process followed the principles of
Algorithm Engineering, using iteration and testing to refine performance and reliability.

In summary, each of the research questions has been addressed both in theory and in
practice. The resulting prototype shows that continuous synchronization between DEMO
and BPMN models is not only technically feasible, but can also be implemented in a way
that is robust, traceable, and adaptable for future extensions and modeling languages.
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Overview of Generative AI Tools
Used

I used ChatGPT (OpenAI, GPT-4, version June 2025) as a supporting tool for this
thesis project. It helped me to understand certain aspects of the Go programming
language, as I had not worked with it before. It also gave me guidance in structuring
the whole thesis, e.g. in organizing the chapters and refining the formulation of the
research questions. I also occasionally used the it to improve sentence structure and check
grammar. Nevertheless, all technical ideas, transformational logic and written content
were developed by me and carefully reviewed before inclusion.
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