
Dissertation

Stability behaviour of electromagnetic track brakes:
self-excitation mechanisms and control

carried out for the purpose of obtaining the degree of
Doctor technicae (Dr. techn.), submitted at TU Wien,

Faculty of Mechanical and Industrial Engineering

Bernhard EBNER
Mat. Nr.: 01327254

under the supervision of
Univ.Prof. Dipl.-Ing. Dr.techn. Johannes Edelmann

Institute of Mechanics and Mechatronics, TU Wien
Vienna, Austria

Vienna, October 2025

reviewed by
Prof. Maksym Spiryagin PhD, MSc, BSc

Centre for Railway Engineering, CQUniversity
Queensland, Australia

and
Ao. Univ.Prof. Dipl.-Ing. Dr.techn. Manfred Plöchl

Institute of Mechanics and Mechatronics, TU Wien
Vienna, Austria



I confirm, that going to press of this thesis needs the confirmation of the examination
committee.

Affidavit
I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume. I confirm that this work is original
and has not been submitted elsewhere for any examination, nor is it currently under
consideration for a thesis elsewhere. I acknowledge that the submitted work will be
checked using suitable and state-of-the-art means (plagiarism detection software).

City, date Signature

This thesis received financial support from the Austrian Federal Ministry for Labour
and Economy, the National Foundation for Research, Technology and Development, and
the Christian Doppler Research Association. This support was provided within the
framework of the CD Laboratory for Enhanced Braking Behaviour of Railway Vehicles,
which is gratefully acknowledged.

i



Danksagung
Der Abschluss dieser Dissertation markiert das Ende eines arbeitsintensiven und prägen-
den Kapitels in meinem Leben. Dieses war nicht nur vom Erwerb fachlicher Kompetenzen
bestimmt, sondern in hohem Maße auch von persönlicher Entwicklung: durch erprobte
Beharrlichkeit und Durchhaltevermögen, den Umgang mit neuen und komplexen The-
mengebieten sowie durch das ständige Hinterfragen sowohl von Ergebnissen als auch von
mir selbst.

"Wissenschaft beginnt im Staunen, aber sie lebt von der Kritik."

Für mich drückt dieses Zitat von Karl Popper über wissenschaftliche Disziplinen hinaus
eine Haltung aus, die sowohl zur Reflexion des Gehörten als auch zur Selbstreflexion
auffordert.

Das Ende dieses Kapitels und damit meines Universitätsstudiums wäre ohne die
Unterstützung vieler wichtiger Menschen in meinem Leben nicht möglich gewesen. Ihnen
möchte ich im Folgenden meinen aufrichtigen Dank aussprechen.

Ein ganz besonderer Dank gilt meinen beiden Doktorvätern, Professor Dr. Johannes
Edelmann und Professor Dr. Manfred Plöchl. Sie haben durch ihre eigene Begeisterung
meine Leidenschaft für die technischen Dynamik geweckt und mich durch zahlreiche
fruchtbare Fachdiskussionen, herausfordernden Fragestellungen und stets konstruktiver
Kritik fortwährend unterstützt und gefordert. Ihr Vertrauen, das freundschafliche und von
Humor geprägte Arbeitsklima und die Förderung meiner selbstständigen Arbeitsweise
haben ein für mich freies und produktives Arbeitsumfeld geschaffen. Auch in schwierigen
und sehr intensiven Phasen war ich dadurch stets motiviert, mein Bestes zu geben. Durch
ihre umfassende Expertise konnte die vorliegende Arbeit in vielerlei Hinsicht an Qualität
gewinnen. Mein Dank gilt außerdem Professor Dr. Alois Steindl für seine Unterstützung
und seine wertvollen Beiträge zu Homotopiemethoden und Bifurkationen.

Ein großes Danke gilt auch meinen KollegInnen bei Knorr-Bremse GmbH. Ohne sie wäre
diese Arbeit in dieser Form nicht möglich gewesen. Besonders danke ich Dr. Daniel Tippelt
für seine Begeisterung an komplexen Systemen und der lehrreichen Zusammenarbeit im
Zuge von Fahrversuchen, sowie Dr. Michael Jirout für seine stete Unterstützung und für
sein Vertrauen und Förderung meiner Kompetenzen. Beide haben mir mit ihrer Expertise
und jahrelanger Erfahrungen zur Magnetschienenbremse in vielen Gesprächen wertvolle
Einblicke auch aus Unternehmensperspektive eröffnet.

Ein wesentlicher Teil des positiven Arbeitsumfelds entstand durch meine KollegIn-
nen am Institut für Mechanik und Mechatronik, welche is als engagierte Experten in
unterschiedlichsten Themenbereichen kennenlernen durfte. Dank gilt meinen ersten Büro-
kollegen, Dr. Florian Zehetbauer und Dr. Andreas Fichtinger, für die herzliche Aufnahme
in die Gruppe, Philipp Mandl mit dem ich über die gesamte Zeit der Dissertation viele
schöne Momente erleben durfte, und meinen jüngeren Kollegen für das großartige Mitein-
ander auch in der gewachsenen Gruppe. Ich bedanke mich außerdem bei meinen aktuellen

ii



Zimmer- und CD-Labor Kollegen: Lorenz Klimon, mit dem ich meine Kaffeeliebhaberei
teilen darf und an dem ich seine hilfsbereite und umsichtige Art schätze, und Dr. Emin
Koçbay, dessen Humor mich täglich zum Lachen bringt. Gemeinsam mit allen anderen
Institutsangehörigen bleiben mir die zahlreichen fachlichen, gesellschaftlichen und politi-
schen Diskussionen, die gemeinsame Zeit in den Mittagspausen oder bei Ausflügen und
Feierlichkeiten sowie die stete Hilfsbereitschaft in bester Erinnerung.

Darüber hinaus gilt mein Dank für viele schöne Erinnerungen meinen Freunden außer-
halb der TU-Wien: meinen ehemaligen Studienkollegen, meinen Freunden aus der alten
Heimat in Salzburg sowie den neu gewonnenen Freunden in Wien. Die gemeinsamen
Feiern, Treffen am Grillplatz, Spiele- und Kochabende haben mir stets wohltuende
Abwechslung vom oftmals fordernden Alltag geschenkt.

Spezieller Dank gilt meiner gesamten Familie, die mir stets das Gefühl von Zusam-
menhalt und Sicherheit vermittelt und so entscheidend zum Gelingen meines Studiums
beigetragen hat. Besonders dankbar bin ich meiner Verlobten, Corinna Paulus, für ihren
beständigen Rückhalt, ihrem Glauben an mich und für die vielen gemeinsame Erinne-
rungen. Abschließend gilt mein Dank und Anerkennung meinen Eltern, Eva und Anton
Ebner, ohne deren Unterstützung ich diesen Weg niemals beschreitet und erfolgreich
absgeschlossen hätte.

iii



Contents
1. Motivation and scientific context 1

2. Research Objectives and Scope 6

3. Methods 8
3.1. Experimental investigations on the velocity dependencies of the MTB–rail

contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Modelling the electromagnetic-mechanical coupled system . . . . . . . . . 10
3.3. Energy considerations and self-excitation mechanisms . . . . . . . . . . . 15
3.4. Active vibration control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5. Nonlinear stability and post-critical behaviour . . . . . . . . . . . . . . . . 19

3.5.1. Bifurcation analysis and numerical continuation . . . . . . . . . . . 19
3.5.2. Poincaré sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3. Continuation of bifurcations in two parameters . . . . . . . . . . . 23

4. Summary of the scientific papers 25

5. Scientific impact 30

Paper A 36

Paper B 38

Paper C 40

Paper D 43

Paper E 47

iv



Abstract
Magnetic track brakes (MTBs) are additional braking systems for railway vehicles,
primarily employed under low-adhesion conditions and in emergencies. While their
effectiveness in such situations was shown frequently, experiments have revealed that
MTBs are prone to self-excited vibrations, particularly at low velocities. These vibrations
compromise the braking performance, increase structural loads, and pose potential safety
risks. Although the phenomenon has been observed in experiments and was addressed
in recent studies, the underlying excitation mechanisms and their dependence on the
frictional contact and electromagnetic interactions remain insufficiently understood. This
lack of understanding hinders the ability to interpret existing measurement data and
limits the implementation of effective control strategies, both passive and active.

This cumulative thesis aims to enhance the understanding of the excitations involved.
It examines the onset of self-excited vibrations, the dynamic behaviour of the coupled
electromagnetic system following a loss of stability, and offers recommendations to improve
the robustness of the system through a combination of experimental investigations and
theoretical analysis. Experimental studies provide essential insights into the velocity
dependence of the friction coefficient and electromagnetic attraction forces, both of which
are shown to critically influence stability. Building on these findings, electromagnetic-
mechanical models are developed and utilised to analyse the vibrational behaviour of
MTBs. A minimal model utilised to study fundamental excitation mechanisms, an
MTB brake frame model applied to investigate the interactions through the mechanical
structure and the shared power supply, and a corner model to examine influences
of distributed contact points and velocity-dependent attraction forces. Using energy
considerations and nonlinear stability theory, the thesis demonstrates how frictional
properties, electromagnetic coupling effects, and motional eddy currents interact with
structural damping to govern the emergence and growth of self-excited vibrations. Applied
bifurcation analysis and continuation methods reveal the transitions from stable operation
to periodic and quasi-periodic vibrations, including the coexistence of multiple attractors
and the onset of stickslip motions. Based on the revealed mechanisms, the influence of
changing friction conditions, design parameters, and properties of the electromagnetic
system on the stability behaviour is examined. Beyond investigations on the fundamental
dynamics, control strategies to actively mitigate self-excited vibrations are introduced.
Two state-feedback approaches are proposed that directly exploit the available actuator
by modulating the electric voltage, which either suppresses an identified excitation
mechanism or actively dissipates energy. Nonlinear stability analysis of the closed-loop
system reveals that both strategies significantly increase stable regions. However, when
friction levels are high and the friction characteristics exhibit large negative gradients,
self-excited vibrations can only be avoided through active dissipation.

The findings provide theoretical insights into the nonlinear stability behaviour and the
influence of system parameters on vibrational behaviour, which is fundamental for avoiding
self-excited vibrations in future lightweight designs. The results advance the fundamental
knowledge at MTBs and deliver insights into coupled electromagnetic-mechanical systems.
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Kurzfassung
Magnetschienenbremsen (MG-Bremsen) sind zusätzliche Bremssysteme für Schienenfahr-
zeuge, die bei geringem Kraftschluss und Notbremsungen wirksam eingesetzt werden.
Versuche bei Anwendung bis zum Stillstand haben gezeigt, dass MG-Bremsen zu selbst-
erregten Schwingungen neigen. Diese Schwingungen können die Bremswirkung verringern
und die Beanspruchung der Struktur erhöhen und stellen somit ein Sicherheitsrisiko
dar. Dieses Phänomen wurde durch Messfahrten und ersten Studien beleuchtet, jedoch
sind die zugrunde liegenden Erregungsmechanismen und deren Wechselwirkungen durch
den Reibkontakt und dem gekoppelten elektromagnetischen System nicht vollständig
geklärt. Dieses fehlende Verständnis verhindert vorhandene Messdaten vollständig zu in-
terpretieren und limitiert die Entwicklung effektiver Gegenmaßnahmen. Diese kumulative
Dissertation zielt darauf ab die zugrundeliegenden Mechanismen besser zu verstehen und
daraus Lösungsvorschläge für robuste MG-Bremsen abzuleiten. Dabei wird der Stabili-
tätsverlust und das dynamische Verhalten nach einsetzen selbsterregter Schwingungen,
durch eine Kombination aus experimentellen Untersuchungen und theoretischen Analysen
untersucht. Experimente liefern wesentliche Erkenntnisse über die Geschwindigkeitsab-
hängigkeit des Reibungskoeffizienten sowie der elektromagnetischen Anziehungskräfte, die
beide einen entscheidenden Einfluss auf das Stabilitätsverhalten haben. Darauf aufbauend
wird ein Minimalmodell, zur Untersuchung fundamentaler Erregungsmechanismen, ein
Rahmenmodell, zur Analyse der mmechanischen und elektrischen Kopplung, sowie ein
Viertelmodell, zur Betrachtung von verteilten Kontaktpunkten und geschwindigkeitsab-
hängigen Anzugskräften, abgeleitet. Durch Energiebilanzen am schwingenden System
und mithilfe nichtlinearer Stabilitätstheorie wird gezeigt, wie Reibungseigenschaften,
elektromagnetische Kopplungseffekte und bewegungsinduzierte Wirbelströme mit der
strukturellen Dämpfung zusammenwirken und das Entstehen sowie das Anwachsen selbst-
erregter Schwingungen bestimmen. Mithilfe von Bifurkationsanalysen und Fortsetzungs-
methoden werden Übergänge vom stabilen Betrieb zu periodischen und quasi-periodischen
Schwingungen, die Koexistenz mehrerer Attraktoren und das Einsetzen von Haft-Gleit-
Bewegungen aufgezeigt. Aufbauend auf dem analysierten dynamischen Verhalten erfolgt
eine systematische Untersuchung des Einflusses veränderlicher Reibungsbedingungen,
Konstruktionsparameter und elektromagnetischer Eigenschaften auf das Stabilitätsver-
halten. Darüber hinaus werden aktive Regelungsstrategien zur Minderung selbsterregter
Schwingungen eingeführt. Zwei Ansätze mit Zustandsrückführung werden vorgestellt, die
den vorhandenen Aktor über eine Spannungsmodulation nutzen. Nichtlineare Stabilitäts-
analysen des geschlossenen Regelkreises zeigen, dass beide Strategien den stabilen Bereich
deutlich erweitern, wobei nur der Ansatz, der aktiv Energie dissipiert, Schwingungen
über den gesamten Geschwindigkeitsbereich verhindern kann. Die Ergebnisse liefern
theoretische Einsichten in das nichtlineare Stabilitätsverhalten und zeigen den Einfluss
von Systemparametern auf das Schwingungsverhalten und bilden damit die Grundlage
zur Vermeidung selbsterregter Schwingungen in zukünftigen Leichtbaukonstruktionen.
Damit wird nicht nur das Grundlagenverständnis zu MG-Bremsen erweitert, sondern
neue Erkenntnisse für gekoppelte elektromagnetisch-mechanische Systeme vorgestellt.
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1. Motivation and scientific context
Rail transport is widely regarded as one of the most sustainable modes of mobility. It is
known for its high energy efficiency and low greenhouse gas emissions. Accordingly, it is
commonly recognised as one of the most environmentally friendly high-volume transport
systems, capable of safely, quickly, and efficiently moving passengers and freight. These
advantages are enabled by the small rolling resistance of the wheel–rail contact. A
drawback of this steel-steel contact with comparable small adhesion is the limitation in
acceleration values. To keep efficiency high and ensure a safe operation, unfavourable
operational situations such as platform overruns and passing signals at danger must be
avoided. Preventing such circumstances is especially challenging when low and extremely
low adhesion conditions emerge, for example, from morning dew or fallen leaves in autumn.
In these situations, brake systems utilising the wheel-rail contact may not be sufficient to
meet operators’ requirements. Braking systems independent from the wheel–rail contact,
such as the magnetic track brake (MTB), are then deployed to develop additional braking
forces.

Increasing travelling velocities and loaded mass of modern railway vehicles at unchanged
infrastructure put high demands on the overall braking system, especially at low adhesion.
As one consequence, operators often use MTBs until full-stop nowadays, increasing the
currently restricted velocity range of the brake system, bounded below 25 km/h due to
high deceleration peaks. However, it was shown by experiments in the field in [1] that the
electromagnetic-mechanical coupled system is prone to self-excited vibrations when used
at such small vehicle velocities. Moreover, striving for lightweight design is noticeable
at bogies as it directly reduces the energy consumption, the costs during operation
and manufacturing, and the wear on infrastructure and vehicles. A direct consequence
is the requirement for lightweight design on brake systems, which are mounted either
directly on the wheelset, which adds unsprung mass, or in the bogie between primary and
secondary suspension. Demands increase especially for additional brake systems as they
are only applied occasionally. Developing future technical solutions for the simultaneous
requirements of extended operational velocity range and reduced weight while ensuring
high safety standards requires fundamental knowledge of the MTB’s system dynamics and
the influence of design parameters and environmental conditions. This cumulative thesis
seeks to explain fundamental influences on the dynamics and the stability behaviour
by providing necessary insights into the electromagnetic-mechanical coupling, which is
not yet fully understood. Finally, this ends with profound suggestions on mitigation
strategies, both passive and active.

The MTB of a mainline vehicle, considered in this study, is illustrated in Fig. 1. Fig. 1a
shows the track brake suspended in the bogie, depicted in its ready position, awaiting an
actuation. During the activation process, the rectangular-shaped brake frame, illustrated
with main components in Fig. 1b, is lowered by four pneumatic cylinders onto the rail.
Simultaneously, electric voltage is applied to the coils of each corner electromagnet,
illustrated in Fig. 2, which creates a magnetic field and is guided by the horseshoe-shaped
brake elements to the rail head. At the interface between brake element and rail, magnetic
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(a) (b)

Figure 1: (a) MTB in ready position mounted in the bogie, adapted from [1], (b) mech-
anical structure of the MTB without bogie on the rail.

attraction forces, striving to minimise the air gap, arise and build the normal force of the
MTB–rail contact. Based on the frictional contact between the two contact partners -
individual brake element (endpiece, respectively intermediate element, see Fig. 2) and the
rail head - sliding friction forces are created which are transmitted through the structure
and finally by the transmission pads into the bogie as an added up brake force. The
magnets stay centred on the rail during typical operation of the MTB. They are guided
by the vehicle only in the longitudinal direction, with the lateral stops at the transmission
pads staying untouched.

Such track brakes equipped with electromagnets have been used since the early nine-
teenth century, with the first patent published in 1905, [2], while they were first restricted
to the usage in trams. However, since the 30-40s in the last century MTBs are also
applied in mainline vehicles with velocities greater than 140 km/h, [3]. Since then, several
scientific papers have been published addressing the braking behaviour of MTBs. A
first detailed investigation on the static and dynamic behaviour of MTBs was published
in 1988 in [4–6]. The influence of different parameters, such as the electric current, air
gap between brake element and rail, wear, and rail profiles, on the magnetic attraction
force at standstill was analysed experimentally. The dynamic behaviour of the coupled

Figure 2: Corner electromagnet with individual elements, adapted from [1].
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electromagnetic system during the vertical attraction process was discussed by a simple
electric circuit with the back-coupling from the magnetic field considered by additional
damping, accompanied by experiments. Further, measurements of the brake force and
the sliding coefficient of friction over the vehicle velocity were presented, showing a
significant decrease with increasing velocity and a pronounced variance. The authors
of [7] and [8] showed from field tests that using an MTB positively affects reduced
wheel-rail adhesion from different types of contaminations. Further, they pointed out
the influences of slippery tracks on the braking forces of MTBs and the whole braking
performance of the used multiple-unit train. Calculations in [9] on the necessity of brakes
that work independently from the wheel-rail contact (in particular MTBs), were based on
the assumptions of steady-state magnetic forces and a given velocity-dependent friction
coefficient. In [10], a basic rigid multibody simulation model of an MTB for light rail
vehicles (LRV) was developed and validated. The movement of an MTB in its ready
position was investigated in [11] with a rigid multibody dynamics model. In [12], two
simulation models were developed, representing the electric and mechanical behaviour of
the MTB. The mechanical (contact) interaction between brake shoe and rail was mod-
elled with constant stiffness and damping coefficients in the vertical direction, neglecting
lateral forces. The friction force was derived with a Coulomb friction model based on
a velocity-dependent friction coefficient. The reluctance of the magnetic circuit was a
function of vertical distance and was calculated with steady-state FEM analysis, resulting
in an analytical look-up table. The simulation model was validated with measurements
for motions in the vertical direction. In [13] and [14], a simulation model for an MTB
utilised in LRV was developed, to map the first brake impact during activation. For
that purpose, the magnetic attraction and reluctance were described as a function of the
current and the vertical position derived by experiments, neglecting eddy currents and
magnetic leakage. The coefficient of friction was a function of the longitudinal velocity
and of time to account for the transient buildup of frictional forces. In [15], the buildup
of the braking forces of an MTB, including the first brake impact transferred to the
bogie, and the vertical jerk after a power shutdown, was analysed, utilising a multibody
dynamics model with rigid magnets and locked lateral displacement. The transmission
link and bogie frame were modelled as spring-damper elements with parameters from
quasi-static finite element analysis or experimental data. As shown from the previous
MTB specific literature research, the published work either focused on measurements
and discussed the basic braking behaviour, or on modelling the vertical motion during
activation, respectively shutdown and the beginning of the braking process.

First investigations on the vibrational and stability behaviour of an MTB were published
in [1, 16, 17]. It was shown by measurements in the field that MTBs are prone to self-
excited vibrations at low velocities, which can cause structural problems and even fatigue
damage. The oscillatory instability was investigated at a linearised electromagnetic-
mechanical minimal model of the MTB. Possible self-excitation mechanisms due to the
negative gradient of the velocity-dependent friction characteristic and the electromagnetic
coupling were revealed, based on the Hurwitz criterion, [18], applied to the linearised
system. It was shown that if the gradient of the velocity-dependent friction coefficient
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exhibits a sufficiently large negative value or system parameters of the electromagnetic
coupling are tuned accordingly, the system becomes oscillatory unstable. The authors
further validated their findings of the linearised minimal model by a full multibody
system model, and presented a few passive remedies and their positive effects to mitigate
vibrations.

Fundamental insights into mitigating friction-induced self-excitations are presented
in [19–22]. While passive mitigation techniques are advantageous as they don’t need
additional sensors, controllers, etc., they may not always be feasible due to possible
constraints in the mechanical design or possible drawbacks regarding weight. In such
cases, active vibration control can be beneficial, especially if vibrations can be mitigated
or even suppressed with available actuators, i.e. the electromagnet, which generates the
normal force of the frictional contact at MTBs. While active vibration control is not
investigated in this application, it is addressed in several publications for different systems.
Optimal approaches concerning the energy fed into the system were proposed, e.g. with a
state feedback control at a basic friction oscillator by a fluctuating normal force in [21, 23].
In this case, the energy input into the oscillating system is minimised if the normal force
exhibits a phase shift of 180◦ to the mechanical displacement. In [24], a state feedback
control was implemented for a magnetic levitation (MAGLEV) vehicle, utilising a voltage
modulation to emulate the interaction of a dynamic vibration absorber with the track
by the available electromagnetic actuator. Similarly, a virtual electromagnetic energy
harvester was implemented in [25], and a virtual sky-hooked damper was realised in [26],
aiming for a reduced energy input of the oscillating system. To propose an effective
strategy to actively mitigate vibrations at MTBs with the already available coupled
electromagnetic system is a challenging task, as it was proposed in the literature as a
possible excitation mechanism in the open-loop case itself. However, a detailed explanation
of the root cause of the onset of vibrations of the coupled electromagnetic-mechanical
system is not yet resolved. Hence, a thorough understanding of the fundamental excitation
mechanisms is indispensable for utilising a meaningful control strategy and must be
obtained first.

Different mechanisms and applications of self-excited vibrations beyond the MTB were
introduced, e.g. in [27]. A State-of-the-Art paper, giving an overview and revealing all
kinds of phenomena related to self-oscillation, was published in [28]. Friction-induced
self-excitations from sliding contacts, particularly relevant here, were covered broadly in
[29]. In particular, for basic understanding, modelling, and experimental validation of
different mechanisms resulting in friction induced vibrations, brake squeal was frequently
addressed, e.g. [30], and has been studied in detail, e.g. [31] on spragging, [32] on stick-slip,
[33] on Hopf bifurcation due to negative damping, [34] on instability with mode-coupling
in friction induced vibrations. The negative gradient of the velocity-dependent friction
characteristic, also called the falling regime in the friction characteristic, is often present
as a well-known and well-studied reason for self-excited vibrations, [19], because of a
positive energy flow into the oscillating system, [35]. Investigations in [21] showed that a
positive energy flow into the oscillating system is also possible without a falling regime
in the friction characteristic if the normal force fluctuates, which peaks at a diminished
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phase shift between normal force and oscillating motion. In [36], it was pointed out
that friction-induced vibrations are intrinsically sensitive to parameter variations and
proposed a modelling approach to consider the effects of sensitivity and uncertainty on
predictions. The basic mechanism of inertial self-excitation, which may result from the
coupled differential equations of the electromagnetic system in MTBs, was addressed
in [37], including an electric-mechanical vibrator example, with more details in [38].
At MAGLEV vehicles with electromagnetic suspension (EMS), similar to the MTB
concerning the electromagnetic actuator interacting with the track, self-excited vibrations
were also observed at low velocities and even at a standstill, [39, 40]. Investigations on
the coupled system in [24] pointed out that the fundamental frequency of the track is a
key factor in the occurrence of self-excited vibrations. Investigations on EMS-MAGLEV
vehicles in [41] found additionally that the relative motion of the electromagnet with
respect to the electric conductive rail results in a significant distortion and weakening
of the magnetic field, i.e. the attraction force shows a significant velocity dependency
due to motion-induced eddy currents. Investigations in [42] revealed that this velocity
dependency significantly influences the vertical dynamics. The mentioned investigations
from the literature on basic phenomena causing self-excited vibrations focus either on the
electromagnetic-mechanical coupling or a velocity-dependent sliding friction coefficient.
However, the interaction of both causes as emerging at MTBs has not yet attracted much
research.

Published research regarding the vibrational behaviour of the MTB was studied within
the simplification of a linearised system. Hence, no statements on the nonlinear stability
behaviour and the vibrational behaviour after the loss of stability could be drawn,
leading to a lack of interpretation of existing measurement data. The nonlinear stability
behaviour of systems incorporating frictional contacts is addressed in various scientific
publications. In [43], the stick-slip vibration of a self-excited smooth and discontinuous
friction oscillator of a moving belt type is investigated. Different belt velocities and
normal force excitations revealed distinguished shapes of oscillations, and a path to
chaos from a period-doubling bifurcation was shown. The influence of an alternating
normal force was studied in [44] on the vibrational characteristic of a 1 degree-of-freedom
(DOF) friction oscillator with changing dynamic and static friction coefficients. It was
found that the amplitude and frequency of the excitation can change the oscillatory
motion from single-periodic, multi-periodic, to chaotic stick-slip motions. In [45], the
vibrational behaviour of a friction oscillator on a moving belt is examined under various
damping values, which determines the classification of oscillator motions. Investigations
in [46] highlight stick-slip motions at a linear moving cart driven by a continuous rotating
direct current motor via scotch yoke by studying a basic electromagnetic-mechanical
coupled model, and an analytical approximation for the stick duration was proposed.
In [47], it is found that the stick-slip pattern of a coupled friction oscillator depends
on the velocity of the energy source, the normal contact load, and the eigenfrequencies
of the involved modes. Authors of [48] studied the stability behaviour of a pad-disk
brake system, considering changing friction characteristics, and ascertained that based
on the angular velocity, the vibrational behaviour can change from stable periodic orbits
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emerging after a Hopf bifurcation to the occurrence of period-doubling bifurcation and
chaotic dynamics. In [49], the dynamic behaviour of a two-layered brake pad system is
examined, where a significant influence of the brake pad mass and connection stiffness on
the stability behaviour of the system has been identified. Different types of systems and
structures related to stick-slip motions and their nonlinear dynamics are introduced in
reviews of [50, 51]. Following the literature review on the nonlinear dynamics of systems
incorporating dry friction, it becomes evident that the friction characteristic (static and
kinetic), the normal force, geometric dimensions regarding the contact point, involved
stiffness and damping, and the dynamics of coupled systems are mainly responsible for
structural changes of the related stability behaviour. The presented insights are primarily
gained from minimal models, which are indispensable for the basic understanding of
dynamical phenomena.

Concluding from the literature overview, most scientific research addressed the braking
and actuation behaviour of MTBs in modelling and experiments. However, the com-
bination of MTB and friction enhancers, such as sand, and the following change in the
braking behaviour is not yet published. As the utilisation of MTBs at lowest velocities is
a comparatively new requirement, the related problem of occurring self-excited vibra-
tions at these velocities is only addressed in very few publications. Possible excitation
mechanisms are published beyond the application of MTBs. Still, the interaction of the
electromagnetic coupling and the frictional contact on the onset of vibrations is not yet
fully understood. Based on the missing understanding of the mechanisms involved at
the onset of self-excited vibrations, strategies to actively mitigate self-excited vibrations
at MTBs are still pending. The influence of motion-induced eddy currents on the at-
traction force and stability behaviour is experimentally and theoretically unexplored,
although they show significant influences in adjacent applications. The nonlinear stabil-
ity behaviour of the coupled system, and how variations in system and environmental
parameters influence it, has yet to be addressed. Gaining insight into this nonlinear
stability behaviour is crucial for evaluating whether self-excited vibrations will occur
due to unavoidable perturbations and determining whether the structure can endure the
resulting amplitudes when vibrations become inevitable.

2. Research Objectives and Scope
This thesis aims to provide insights into the stability behaviour of MTBs, suggest
improvements for the design, and active control strategies to avoid severe self-excited
vibrations. Hence, a thorough understanding of the underlying mechanisms involved
at the onset of vibrations and the nonlinear stability behaviour of the coupled system
must be resolved. Fundamental dependencies on the loss of stability and the behaviour
afterwards shall be examined with the known issues of MTBs and revealed dependencies
of adjacent applications in mind.

Specifically, the objectives of this cumulative thesis, based on the identified research
gap above, are:

6



1. Experimental foundation: Establish an empirical basis for understanding the
velocity dependence of frictional and electromagnetic forces in MTBs, and for
characterising the qualitative behaviour of occurring self-excited vibrations.

2. Excitation mechanisms in coupled systems: Provide simplified yet represent-
ative dynamic models of the coupled electromagnetic mechanical system with dry
friction, clarify the fundamental mechanisms responsible for the onset of self-excited
vibrations, and determine their sensitivity to operating conditions.

3. Mitigation and active vibration control: Contribute strategies for suppressing
self-excited vibrations, including active concepts that exploit the electromagnetic
system itself, with the goal of extending the stability range and ensuring safe and
robust braking performance.

4. Nonlinear stability and post-critical dynamics: Characterise the nonlinear
stability behaviour of MTBs by analysing transitions from stable to unstable
operation, the emergence of limit cycles, and the sensitivity of vibrational behaviour
to design parameters and environmental conditions.

By addressing these objectives, this cumulative thesis, comprising five peer-reviewed
scientific contributions, Paper A–Paper E , aims to contribute to gaining fundamental
insights into the stability behaviour of MTBs and consequently provide information on
possible practical improvements to design a robust and vibration-free braking system.

The experimental basis for the investigations are provided by a measurement campaign
presented in Paper A with corresponding results on the velocity dependencies of the
frictional contact, Paper A, and of the magnetic attraction forces, Paper E , and by
the discussed qualitative behaviour of measured vibrations in Paper B and Paper E .
Fundamental excitation and dissipation mechanisms are studied by a minimal model
in Paper C and are extended for distributed contact points and velocity-dependent
attraction forces in Paper E . The feasibility of an active vibration control is shown in
Paper B with a more detailed discussion on control strategies and their effectiveness in
Paper C . Dependencies of occurring vibrations by changing operating conditions and
design parameters are presented in Paper E . The vibrational behaviour after a loss of
stability is presented for a minimal model of the MTB in Paper C , for a full MTB-brake
frame model in Paper D, and utilising an augmented corner model in Paper E .

In the following Sections, the underlying methods to resolve open research questions
are described briefly. Section 3.1 presents the basic approach and fundamental findings
from experiments. In Section 3.2, the electromagnetic-mechanical system models are
introduced. A description of the applied energy consideration in the context of self-excited
vibrations is given in Section 3.3. With the identified excitation mechanisms, the idea of
active vibration control with the available electromagnetic actuator is presented in Section
3.4. Methods used to investigate the dynamic behaviour after the loss of stability are
addressed in Section 3.5. Section 4 briefly describes the scientific contributions published
within this thesis. Finally, the scientific impact of the investigations is summarised in
Section 5
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3. Methods
3.1. Experimental investigations on the velocity dependencies of the

MTB–rail contact
Experiments with the real application and measurements of meaningful states, inputs
and outputs of the system during operation are indispensable for the basic understanding
of the coupled dynamic behaviour. The obtained insights are necessary to support
reasonable modelling and restrict parameters within bounds of practical relevance. In
Fig. 3a, measurements of the MTB, depicted in Fig. 1b, are shown for braking manoeuvres
until very low velocities. Fig. 3a depicts the vehicle velocity vv in black, the braking
forces measured in the left and right transmission pads FBx,j in dark and light green
and the electric current in the coils iel in red for a braking behaviour from approx. 100
km/h until standstill in the upper diagram. In the lower diagram, the corresponding
amplitudes of the braking forces F̂Bx,j = FBx,j − F̄Bx,j with respect to the mean average
F̄Bx,j are plotted with the envelopes in dashed lines. The vertical red lines indicate the

(a) (b)

Figure 3: (a) Measurements of the braking forces FBx,j in the left and right transmission
links, electric current iel and velocity vv, during a braking manoeuvre from
100 − 0 km/h, Paper E (b) Measurements from [17] and approximated sliding
friction coefficients, Paper C .

start and the end of the considered quasi-static braking manoeuvre, as the electric current
reaches its steady state value and the vehicle velocity reduces with a constant and small
acceleration of −1.5m/s2. During the quasi-static braking manoeuvre, braking forces
increase as vehicle velocity decreases. This behaviour can be partially explained by the
velocity-dependent sliding coefficient of friction µ, which is illustrated in Fig. 3b. The
shown measurement of the coefficient of friction was obtained from experiments conducted
without the electromagnet being active, since the magnetic attraction forces present at
the MTB–rail contact are internal forces and cannot be measured directly. As a result,
the sliding coefficient of friction is calculated using the directly measured braking force
and the normal force, which is derived from the measured air pressures in the pneumatic
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cylinders. If a certain velocity is reached in Fig. 3a, vibrations start to grow from available
disturbances present during the whole velocity range. Focusing on the onset of increasing
amplitudes, e.g. depicted in Paper B, a small time range of rapidly growing vibration
amplitudes may be noticed with a distinct slower change in amplitudes afterwards. In
Fig. 3a, a distinct maximum of the measured amplitudes is visible where vibrations decay
until the electric current is shut down, where amplitudes start to diminish. For a detailed
understanding of this behaviour, the postcritical behaviour of the coupled system is
investigated, while basic excitation mechanisms must be understood first.

To address the dynamic and stability behaviour of the MTB by simulation, reasonable
changes of the environmental conditions, especially the MTB–rail contact conditions,
must be considered. As summarised in the literature review, the velocity dependency
on different contaminations has already been published; however, the influence of sand
on the qualitative behaviour has not been resolved. Hence, a measurement campaign
was performed with two magnetic track brakes mounted on a diesel multiple unit train
for repeated braking manoeuvres on a closed track contaminated with different friction
modifiers. The results for the MTB in the sixth, out of eight, bogies are depicted in
Fig. 4a. In the left diagram, the averaged longitudinal braking force F̄Bx,i is plotted over
the vehicle velocity, relative to the braking force at 25 km/h for a dry rail FBx,R, for
each contamination i. The right bar plot shows the mean value of the equivalent brake
force F̃Bx,i, as a constant force providing an equivalent brake energy for an assumed
quasi-static braking manoeuvre as the integrated velocity-dependent behaviour over
the brake distance. The values are presented relative to those on a dry track F̃Bx,Dry,
with whiskers indicating the maximum and minimum measured values. The sliding

(a) (b)

Figure 4: (a) Qualitative velocity dependency and relative equivalent values of the MTB’s
brake force for different contaminations, Paper A (b) Measured and approx-
imated magnetic flux characteristic in solid respectively dashed lines for the
leading endpiece φZG1 and the leading five pole shoes φZG1−5, Paper E .

coefficient of friction, the only systematic difference in the presented data, does not differ
significantly between dry and low-adhesion conditions (Wa-So refers to water with soap).
When sand is added, minor decreases in the brake forces with increasing velocity may
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be noticed, implying smaller gradients in the friction characteristics. This pattern also
occurs in extremely low-adhesion conditions (oil), where the friction level is reduced
additionally.

Further influences on the velocity dependency of the brake force can appear due to a
velocity dependency of the normal force, i.e. the magnetic attraction force, as it appears
at EMS-MAGLEV vehicles. In this application, the forward velocity significantly affects
the suspension’s normal force due to motion-induced eddy currents, [41]. Hence, field
tests were executed as part of this thesis to determine the effect of motion-induced
eddy currents on the attraction force at MTBs, which is unexplored experimentally
and theoretically. As mentioned earlier, the magnetic forces acting in the MTB–rail
contact are inner forces and, therefore, not measurable during regular operation. Hence,
an indirect method to measure this influence is necessary, which is done by measuring
the magnetic flux φp through the pole, which is proportional to the attraction force
FEM,p ∝ φ2

p. Therefore, a secondary coil of Nsec windings is applied around each brake
element of the electromagnet (endpieces and intermediate elements), and the magnetic
flux φp through this closed loop is derived through the correlation with the measured
induced voltage in the winding:

Uind = −Nsec
dφp

dt
. (1)

The results are depicted in Fig. 4b for the leading brake element φZG1 and as an average
over the first five elements φZG1−5. Hence, it is obtained that the magnetic flux is
significantly reduced for increasing vehicle velocities vv, which means an even pronounced
velocity dependency for the attraction force. Additionally, it is found that the reduction
of the attraction force, based on motion-induced eddy currents, is dependent on the
relative position of the considered brake element in the whole magnet, with an increased
reduction at the leading element compared to the rear elements.

3.2. Modelling the electromagnetic-mechanical coupled system
To investigate the dynamic behaviour of mechatronic systems and to study the influence
of main parameters on the stability behaviour, lumped parameter models are often
utilised, [52]. In the case of coupled systems, as emerging at MTBs with the electric
power supply of the electromagnet, the magnetic field generated by the electromagnet,
and the motion of the mechanical structure, models for each subsystem are necessary.
Further, a defined relation between lumped elements of one system, which are dependent
on state variables of the other system, is required, e.g. the air gap between the MTB and
the rail in the magnetic system, is dependent on the motion of the mechanical system.
Such relations can be obtained by semi-analytical methods, look-up tables, or pre-defined
dependencies, [53]. As different open questions arise from the literature review, models
of varying model accuracy are developed and utilised at various stages of investigation.
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Minimal Model

First theoretical investigations, Paper B and Paper C , address the self-excitation mech-
anism based on the electromagnetic-mechanical coupling, the underlying phenomena
causing a positive energy flow into the oscillating system, and an active vibration control
utilising this coupling. As the impact of the electromagnetic system on the loss of stability,
combined with frictional contact, is not yet understood, a minimal model is aimed at the
first stage.

Spectrum analysis of measured bending moments on the MTB structure from 132 brak-
ing manoeuvres, covering a velocity range of 150-8 km/h, in [1], identifies a single excited
frequency of approx. 28 Hz of the brake-frame structure. This frequency corresponds
together with the measured time signals, presented in [1], to the second asymmetric
in-plane structural mode of the MTB-frame from a conducted eigenmode analysis in [17].
Each corner electromagnet exhibits an almost rigid body rotation at this mode, with the
track rod and the connecting beams deforming in between. Hence, a similar model as
applied in [17] for a linear stability analysis is assessed here, mapping only the excited
eigenmode of the MTB with one degree of freedom. The minimal model describing a
quarter of the full MTB contains the electric-, magnetic-, and mechanical subsystems
with the couplings marked in grey, is depicted in Fig. 5. The nonlinear autonomous
differential equations of second order, as the mathematical description of the minimal
model, are given with parameters in Paper C .

Figure 5: Minimal model of the electromagnetic-mechanical coupled system with indi-
vidual electric-, magnetic, and mechanical subsystems, Paper C .

The electric circuit describes the electric power supply of the electromagnet with
the battery voltage uB, the ohmic resistance of the wiring Rel, and the electromotive
force of the coil ε = N · φ̇, with N the number of windings.

The magnetic equivalent circuit (MEC) is a lumped parameter approximation of
the 2D magnetic field through the electromagnet’s cross-section, with the approximation
of an a priori known magnetic flux path. This description of the magnetic field by a
magnetic equivalent circuit allows the reduction of the initially complicated calculation of
a generally inhomogeneous spatial magnetic field to a simpler set of equations, describing
a network of concentrated elements (magnetic resistances and magnetomotive force),
[53]. The MEC of the minimal model, shown in Fig. 5, is excited by the magnetomotive
force (MMF) of the coil Θ = N · i with i the electric current of the electric circuit. It
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further contains an eddy current loss element i∂B/∂t = G · φ̇, describing the weakening
of the magnetic field by eddy currents induced from the time-varying magnetic field,
with the electric conductivity of the eddy currents G. The magnetic resistance from the
involved iron of the pole shoe and the rail is considered with Rm,fe, and the magnetic
resistance Rm,air from an effective air gap sL. This air gap is a hyperbolic function of the
lateral displacement and a linear function of the vertical lift-off with respect to a perfect
alignment over the non-flat rail head, parametrised by the results of a magnetostatic
finite element analysis in [16].

The mechanical subsystem describes the rotation, with states α, α̇ of the rigid
corner electromagnet with inertia IMg,0, over the rail which is in translational motion
vv, and is attached to the reference point 0 by a spring-damper element approximating
the stiffness and damping of the structure. Electromagnetic forces, generated in the
MTB–rail interface, act in vertical FEMz and lateral FEMy direction in the fictitious
contact point C. The friction force FR occurring at this sliding contact is derived within
the approximation of Coulomb friction, with a velocity-dependent sliding coefficient of
friction. The additional damping due to a lateral friction force component is neglected in
this model, which is utilised for the first investigations.

MTB brake frame model

To investigate the stability behaviour of the full MTB brake frame in Paper D, considering
the mechanical coupling of the individual corner electromagnets through the elastic frame
structure and the electrical coupling through a shared electric wiring of the coils from
the individual corner electromagnets, the MTB brake frame model is introduced. The
individual subsystems are depicted in Fig. 6. The electric circuit now incorporates four
inductances, one for each corner electromagnet, with two electric branches which couple
the magnets on the same rail in series with the ones on the opposite rail in parallel. The
electric currents i14 and i23 of each branch excite the corresponding magnetic circuit,
generating the magnetic fluxes φ1, φ4, respectively φ2, φ3. The time-varying fluxes φ̇j

of each MEC j interact through the shared electric circuit. The mechanical subsystem
extends the rigid corner system from the minimal model to a full MTB. However, the
stiffness of the beams in between, which exhibit a significantly lower stiffness than the
corner magnets, is now considered by influence coefficients, which enables the possibility
to regard the interaction of a force or moment acting on the corner i with the corner j.
Based on the approximation of linear system behaviour of the mechanical structure, i.e.
linear elastic material, the principle of superposition holds, and the influence coefficient
δij is defined as the displacement in the i-direction due to a moment Mj in the j-direction,
as described in [54]. With Euler’s second law (balance of angular momentum) applied
at each corner j to derive the moments Mj , the equation of motion is derived for the
mechanical structure with the relation of the generalised coordinates βi and the moment
Mj

βi =
4�

j=1
δij Mj ; i = [1, 4]. (2)
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Figure 6: Simplified mechanical model of the four-corner electromagnets, a) Electric
circuit of the magnetic track brake; (b) Magnetic subsystem of the (1) corner
electromagnet; (c) Lateral and vertical displacements at one corner electromag-
net over the rail.

Where the influence coefficients are obtained by introducing a unity moment Mj to only
one corner j and computing the resulting rotation at the other corners βi, which in this
case is equal to the influence coefficient δij . The computation of the response by applied
moments was calculated with a finite element model of the MTB brake frame, which was
also used during the corresponding eigenmode analysis of the structure, necessary for the
parametrisation of the lumped mechanical system, described in Paper D.

Corner MTB model

In both models described above, each electromagnet is considered as one rigid body with
one fictitious contact point. The model assumptions in this case do not consider different
brake elements, typical for mainline MTBs, depicted in Fig. 2, and velocity-dependent
attraction forces. Hence, a third model is introduced to investigate the influence of
changing contact and friction conditions at segmented brake magnets with distributed
contact points and velocity-dependent attraction forces. This model is further utilised to
investigate the influence of the contact conditions and main system parameters on the
post-critical behaviour, i.e. the emerging limit cycles, which necessitates considering the
damping effect due to friction force components lateral to the vehicle velocity. For these
reasons, the corner MTB model with its subsystems is introduced, depicted in Fig. 7.
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The nonlinear stability behaviour is analysed, and dependencies of contact conditions
and system parameters on the vibrational behaviour are discussed in Paper E .

Figure 7: Electric circuit, magnetic equivalent circuit of the system model, and mechanical
subsystem of the corner electromagnet.

The shown electric subsystem is similar to the minimal model, as only a quarter of
the MTB is considered here. The MEC contains three magnetic branches with related
magnetic fluxes φP S , as the sum through all intermediate elements, and φEf

and φEr

through the front and rear endpiece. The depicted branch of the intermediate brake
elements in Fig. 7 is already a condensed branch from the three parallel circuits, assuming
perfectly aligned intermediate elements on the rail head, due to the lateral and vertical
clearance to the magnets’ body. Each branch consists of a magnetic resistance of the
effective air gap sL,Cj between the individual brake segment and the rail head at the
related contact point Cj , and the magnetic resistance of the involved iron Rm,fe,P S for
the intermediate elements and Rm,fe,E for the endpieces. Considered eddy currents are
induced 1) by the time derivative of the magnetic field ∂B/∂t, similar to the minimal
model, and 2) by the velocity term (v × B), describing the electromotive force of
the translational moving conductor (Rail) through a magnetic field. The modelling
of motion-induced eddy currents in lumped parameter models of translational moving
conductors and quasi-static magnetic fields is not addressed for the case of MTBs in the
literature. However, for rotating, [55], and linear, [56], eddy current brakes, and induction
machines [57], models describing the induction of eddy currents and the weakening of
the main magnetic field are presented by an analytical expressions of an MMF in the
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MEC or by a coupled magnetic and electrical network with interacting electro- and
magnetomotive forces. To keep a computationally efficient minimal model and due to
the lack of a more detailed knowledge on how eddy currents are induced and how they
are affecting the magnetic field, a MMF ivv as an analytical function, to match the
behaviour from experiments in Fig. 4b, is introduced in the MEC. This model considers
the phenomenological influence of the involved dynamics of the coupled electromagnetic
system and the velocity-dependent normal force, and the respective influences on the
stability behaviour are examined. However, the magnetic field’s spatial distortion and
the interaction of the induced eddy currents in the rail are not considered here. Hence,
a linear superposition of both influences is assumed, neglecting the interaction in more
detail, and both MMFs i∂B/∂t and ivv are considered effectively with the total magnetic
flux. The mechanical subsystem describes a quarter of the MTB, similar to the minimal
model. However, the endpieces and the intermediate elements have individual contact
points here, Cj = {CEf , CEr, CP S}, with acting electromagnetic forces FEMz ,Cj , FEMy ,Cj

and the resulting friction force FR,Cj in the x − y plane. Considering individual contact
points enables investigations into the influence of changing contact conditions at the
individual brake element–rail contact. The friction force is no longer constrained in the
longitudinal direction, and the components are derived by assuming Coulomb friction with
a velocity-dependent sliding coefficient of friction. Further, a smooth transition between
static and kinetic friction is introduced by a continuously differentiable approximation of
the signum function, as artificial smoothing, [58]. To avoid singularities when the relative
velocity of the MTB and the rail becomes zero, during possible stick-slip transitions, a case
differentiation is introduced. The detailed description with underlying approximations
and the nonlinear system equations are given in Paper E .

3.3. Energy considerations and self-excitation mechanisms
Self-excited vibrations are oscillations without external excitation, while the alternating
force that sustains the motion is controlled by the motion itself. If the energy input from
an available energy source is greater than the dissipated energy during one oscillation
period, amplitudes will rise, indicating that the current state is unstable, [35]. This
method to investigate the system’s stability behaviour by an energy balance through
one oscillating period is addressed to investigate fundamental excitation mechanisms
and for mitigation strategies, both actively and passively, in e.g. [19, 21, 23]. The
negative gradient of the velocity-dependent friction characteristic, as a well-known cause
for self-excited vibrations, can be studied by a basic friction oscillator on a moving band
with constant velocity v0 and constant normal force. In this case, the friction force
FR increases with increasing oscillator motion ẋ, because of a reduced relative velocity
vrel = v0ẋ at the contact point. When integrating the friction power on the oscillator
over one period, a positive input of mechanical energy results during each period T ,

ΔEin =
T�

0

FR · ẋ dt > 0. (3)
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Hence, amplitudes will increase until a stable limit cycle is reached, [23]. A positive energy
flow into the oscillating system is also possible for a constant sliding friction coefficient if
the normal force fluctuates, which peaks if the normal force and the oscillating motion
are in phase, [21].

For the minimal model of the MTB, depicted in Fig. 5, considered during the basic
investigations on excitation mechanisms for the onset of self-excited vibrations, the
mechanical power reads,

PP = F C vC − dT · α̇2 = FR,x vC,x + FA,z vC,z + FA,y vC,y − dT · α̇2, (4)

with FA,z the vertical magnetic attraction force, FA,y the lateral magnetic self-centring
force, FR,x the longitudinal friction force, and vC the velocity of the contact point
C. For the directions x, y, z please refer to the coordinate system in the mechanical
subsystem of Fig. 5. For the linearised system with respect to the quasi-steady state (α0,
φ0, α̇0 = α̈0 = φ̇0 = 0) at vv = vs, the behaviour of the mechanical oscillation α̇, the
magnetic flux φ, and the effective energy input ΔEP =

� T
0 Pp dt obtained by a numerical

integration of Eq. 4 is shown in Fig. 8. The diagrams indicate that the magnetic flux φ
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Figure 8: (a) angular velocity α̇, (b) magnetic flux φ, and (c) effective energy input ΔEP

(c) during one oscillation period T at an unstable equilibrium state, Paper B.

lags by η in phase relative to the mechanical motion α̇, and a positive effective energy
can be observed over one oscillation period. Hence, the quasi-steady state in Fig. 8 is
unstable, i.e. amplitudes will grow over time.

For an assumed harmonic behaviour, reasonably near the quasi-steady state, the
mechanical power of Eq. (4) can be integrated analytically over one oscillating period,
and the effective energy input is obtained

ΔEP = T
(α̂ ω)2

2

�	
KEM,1 − KEM,2


 1
ω

φ̂

α̂
cos(η) − KdT

− K∂µ/∂v

�
, (5)

with coefficients KEM,1, KEM,2 , KdT
, and K∂µ/∂v depending on the quasi-steady-state

and system parameters, provided in Paper C . If this effective energy is positive, amplitudes
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will increase; otherwise, they will diminish. Hence, each term with a positive sign identifies
a possible self-excitation mechanism, and each term with a negative sign indicates a
damping mechanism. A detailed discussion on deriving the analytical equation, a
description of the individual coefficients, and restrictions of the phase shift and amplitude
ratio for the considered application is provided in Paper C .

The first term in Eq. (5) describes the effective energy from the electromagnetic
coupling. It shows dependencies of the phase shift η, the amplitude ratio of the magnetic
flux and the mechanical displacement φ̂/α̂, the inverse of the eigenfrequency ω = 2π/T
and the two coefficients KEM,1, KEM,2. This term implies that without dynamics of the
electromagnetic system and therefore being φ in phase with α (η = π/2), the first term
yields zero, and the effective energy would not be affected through the electromagnetic
terms KEM,1 and KEM,2. The same holds if the magnetic flux were constant φ̂ = 0
during the mechanical oscillations, representing a constant normal force. In the general
open-loop case, the amplitude ratio fulfils φ̂/α̂ > 0 and the phase shift 0 < η < π/2.
Hence, η is identified as a key parameter of stability for electromagnetic-mechanical
coupled systems and the first coefficient with KEM,1 in Eq. (5) is identified as a source of
self-excited vibrations and the second coefficient KEM,2 as a dissipation mechanism. The
energy input described by KEM,1 includes the partial derivative of the vertical attraction
force by the magnetic flux, and the magnitude of the friction coefficient at the considered
quasi-steady-state, i.e. it describes the contribution from the current friction coefficient
and the oscillating normal force. The energy dissipation described by KEM,2 includes the
partial derivative of the lateral magnetic force with respect to the magnetic flux, i.e. the
energy dissipation from the self-centring force FEMy . For realistic parameter ranges and
friction characteristics, the energy input exceeds the energy dissipation (KEM,1 > KEM,2).
The resulting positive energy input into the mechanical system peaks if the magnetic
flux is in phase with the mechanical oscillations (η = 0), is amplified by a high friction
level and is dampened by the self-centring force FAy. The term including KdT

in Eq. (5)
describes the energy dissipated by damping of the structure. The term with Kdµ/dv

includes the normal force at the quasi-steady state FEMz |0, and the gradient of the friction
characteristic kµ. If the gradient is positive, energy is dissipated; if a falling regime at
the operating point is present, energy is fed into the system, indicating the well-known
excitation mechanism at friction oscillators, [35].

To examine whether the equilibrium states, i.e. the quasi-steady states of the linearised
system, are asymptotically unstable, the term in brackets of the found analytical Eq. (5)
can be evaluated, for changing velocities, friction characteristics, etc. The contributions
of the individual excitation and damping mechanisms are evaluated for varying vehicle
velocities and different friction characteristics in Paper C . Further, the analytical equation
provides direct information on how the energy input can be reduced to mitigate or even
diminish emerging amplitudes, which can be passively realised by, e.g. changes in the
mechanical and electrical design. In addition, the effectiveness of the individual mitigation
strategy can be evaluated with Eq. (5).
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3.4. Active vibration control
Active vibration control at pure friction oscillators was frequently addressed in the
literature, e.g. by a state feedback control at a basic friction oscillator with a fluctuating
normal force in [19, 23] to minimise the energy input.

Analysis of the effective energy input for the MTB in the previous Section 3.3 suggests
a minimisation of the factor

�
φ̂/α̂ · cos(η)

�
in Eq. (5), associated with the excitation

mechanism from the electromagnetic coupling, to mitigate oscillations actively. Although
the amplitude ratio φ̂/α̂ and the phase shift η between the magnetic flux and the mechan-
ical motion are both reasonable as possible control variables, there are restrictions on the
demanded amplitude ratio. For η > π/2, the term cos(η) gets negative, corresponding to
active damping. Hence, an optimal control strategy minimising the effective energy input
due to a forced phase shift of η = π leads to the quickest and most efficient mitigation
of occurring amplitudes. This approach is similar to investigations on pure friction
oscillators, where the phase shift between a prescribed alternating normal force and the
oscillating motion is used to reduce the occurring amplitudes. However, in the considered
application of an MTB, the open-loop phase shift is in a range where a positive energy
flow is generated into the system.

Consequently, a state feedback is proposed which enforces a specific phase shift ηd

and utilises the amplitude ratio k = φ̂/α̂ as a free controller gain. The small active
modulation ΔuB of the electric voltage, with respect to the steady-state value uB0

uB = uB0 + ΔuB (6)

is considered to be the control input, and the control law reads

ΔuB = −K · Δx (7)

with small deviations Δx = [Δα, Δα̇, Δφ]T from the quasi-steady state indicated with
index |0. When a harmonic oscillation with an identified eigenfrequency ω, valid at the
onset of vibrations, is considered, the control gain K can be derived for a demanded
phase shift ηd and amplitude ratio k = φ̂/α̂ from the linearised electromagnetic system.
Then, the gain K results for ηd = π in

Kηd=π =
�
− 1

Cu
k ω −

(∂Cφ/∂α)|0
Cu

, k
1
ω

(∂Cφ/∂φ)|0
Cu

, 0
�T

(8)

with Cu and Cφ as coefficients of Δu respectively Δφ of the linearised electromagnetic
system.

From the derived feedback gain, it becomes evident that only the mechanical states are
necessary for the developed state feedback. The second term in the first element remains if
the amplitude ratio k = φ̂/α̂ is set to zero, which indicates a constant magnetic flux with
φ̂ = 0 but α̂ �= 0 during oscillations. In this case, the term corresponding to the effective
energy input from the electromagnetic coupling is eliminated, and only the feedback
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of the mechanical displacement α is sufficient. However, the self-excitation mechanism
based on the negative gradient of the friction characteristics remains unchanged in this
case. Energy is only actively dissipated with the suggested state feedback if a demanded
amplitude ratio k > 0 is implemented, see Paper C for more details. The feasibility of
the active vibration control, with the implemented state feedback, resulting in a negative
energy input ΔEP < 0 over each oscillation period for the same quasi-steady state as
depicted for the open-loop case in Fig. 8, is shown in Fig. 9.
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Figure 9: (a) angular velocity α̇, (b) magnetic flux φ, and (c) effective energy input ΔEP

(c) during one oscillation period T with implemented state feedback, Paper B.

3.5. Nonlinear stability and post-critical behaviour
Published research regarding the vibrational behaviour of the MTB and the previous
energy consideration examines the stability behaviour within the simplification of a
linearised system. Consequently, no conclusions can be made regarding the nonlinear
stability behaviour and the vibrational characteristics following a loss of stability. This
lack of understanding hinders the ability to interpret existing measurement data, e.g.
the shown behaviour in Fig. 3a. Further, it can impede making meaningful statements
regarding safe operations when vibrations cannot be avoided. Hence, different methods
are applied to investigate the nonlinear stability behaviour of the suggested system models
in Section 3.2.

3.5.1. Bifurcation analysis and numerical continuation

The appearance of a topologically nonequivalent phase portrait, i.e. a structural change
in the system behaviour, under a variation of parameters, e.g. a stable focus point
(equilibrium) becomes an unstable focus, is called a bifurcation, [59, 60]. In the present
cumulative thesis, occurring bifurcations are analysed to investigate structural changes
of the system behaviour of autonomous ordinary differential equations, describing the
proposed system models, under parameter variation to examine the stability behaviour.
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The parametrised autonomous ODEs representing the system model read

ẋ(t) = F (x, λ), (9)

with the state vector x ∈ Rj , the nonlinear function F (x, λ) ∈ Rj describing the coupled
system equations, with j the number of states depending on the considered system model,
and the vector of parameters λ ∈ Rk.

Depending on the structural change, different types of bifurcations are distinguished.
For example, a Fold bifurcation of stationary solutions (equilibria) occurs if a real
eigenvalue of the Jacobian matrix of stationary solutions crosses the imaginary axis,
and a Hopf bifurcation arises if a conjugate pair of complex eigenvalues crosses it. The
Fold bifurcation typically leads to a change in the stability behaviour of the system
under parameter perturbations, whether the Hopf bifurcation leads to the emergence
of another type of solutions, namely periodic orbits or limit cycles if they are isolated
(generically the case), [61]. For the Hopf bifurcation, we further distinguish between
a supercritical or subcritical bifurcation. The supercritical Hopf bifurcation is called
soft loss of stability or soft generation of limit cycles, as it describes the smooth change
of a stable stationary branch into a stable periodic branch. In the subcritical case, a
hard generation of limit cycles or a hard loss of stability is obtained, as an unstable
periodic branch follows from the stationary branch, which turns back and gains stability.
When the varied parameter is increased beyond the bifurcation value, the amplitude
suddenly undergoes a jump and large periodic orbits occur, [58]. Besides the bifurcations
of stationary solutions, a structural change can obviously occur for solutions of Eq. 9
with ẋ �= 0, during parameter variations. Common bifurcations of periodic orbits are, e.g.
the Fold bifurcations of cycles, if a stable and unstable limit cycle collide and disappear
at this bifurcation, [59], which can also be interpreted as a loss of stability of the periodic
orbit when considering the branch of periodic orbits, [61]. The transition from stable
to unstable periodic orbit signifies the presence of a second Floquet multiplier ζ1 = 1.
Floquet multipliers are eigenvalues of the monodromy matrix M(T0), derived by the
fundamental matrix solution M (t) of Eq. 9 for constant parameters λ, which is described
by,

Ṁ = A(t)M , (10)

with M(0) = I the identity matrix as initial condition. There A(t) = ∂F/∂x(x0(t)),
describing the linear system governing the evolution of perturbations z(t) = x(t) − x0(t)
near the cycle L0 of the nonlinear system F (x, λ) at a parameter set λ0 with x0(t) denote
the corresponding periodic solution x0(t + T0) = x0(t),

ż = A(t)z. (11)

Any solution z(t) to the Eq. 11 satisfies

z(T0) = M(T0)z(0). (12)

Naturally the stability of the cycle depends on the properties of the variational equation
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of the cycle Eq. 11, hence the eigenvalues of the monodromy matrix M(T0), denoted
1, ζ1, ζ2, . . . , ζj−1, are applied to evaluate the stability of cycles, [59].

A further bifurcation of periodic orbits is a Neimark-Sacker bifurcation occurring if a
conjugate pair of complex Floquet multipliers exists and lies on the unit cycle, which
gives birth to quasi-periodic orbits, i.e. the phase trajectory corresponds to a torus, [59].

To analyse bifurcations of a system described by Eq. 9, diagrams depicting a scalar
measure [x] of the vector x as solution of Eq. 9 versus a varied parameter λi ∈ λ can be
studied, which are called bifurcation diagrams, [60]. The continua of such solutions are
called branches, and can be obtained by applying continuation methods to calculate the
solution x(λ) starting at a solution [x](λi), which is obtained, e.g. by time integration at
a fixed set of parameters until a stationary or a periodic solution of Eq. 9 is reached. Then,
a parameter is freed and the branch is calculated based on numerical path continuation,
typically utilising a predictor-corrector scheme. To investigate the nonlinear stability
behaviour of the MTB, bifurcation diagrams are studied within Paper C , and Paper
E , utilising the continuation toolbox MatCont, [62]. There, a tangent predictor step
Xn,0 = xn + κvn with the first prediction Xn,0 at xn with the stepsize κ and the
normalised tangent vector vn is followed by a correction using a Newton-like iteration
with the Moore-Penrose condition1, is applied. A detailed description of the underlying
equations to derive the solutions xn depends on the studied solutions, i.e. equilibrium or
periodic orbits, and is given in Paper E .

With the method described, bifurcation diagrams are observed for the minimal model
and depicted in Fig. 10. In Subfigure (a), the equilibrium states of α, corresponding to a

Figure 10: (a) Stable and unstable equilibrium states, (b) maxima and minima values
during emerging periodic orbits for three different friction characteristics
µhigh, µStp,1, µStp,2, Paper C .

quasi-steady braking manoeuvre from 150 km/h until standstill, are depicted for three
different friction characteristics, which exhibit the same static friction coefficient and
increasing negative gradients from µhigh to µStp,2, dµhigh/dvv>dµStp,1/dvv>dµStp,2/dvv.

1Modified pseudo-arc-length condition, aiming in the solution nearest to the predicted point Xn,0, [59].
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Two supercritical Hopf bifurcations, indicated with H, are revealed, corresponding to
a soft loss of stability and unstable equilibrium states in between. When compared
to the energy considerations, the Hopf-bifurcations coincide with the points where the
energy input from the identified excitation mechanism exceeds the involved damping
mechanism, corresponding to a loss of asymptotic stability afterwards, validating the
energy considerations in Section 3.3. In Fig. 10(b), the solution branch of occurring
limit cycles after the Hopf bifurcations is depicted with the mechanical displacement’s
enveloping max and min values. In contrast to pure friction-induced self-excited vibrations,
where the unstable region is increased for steeper sliding friction gradients, the considered
electromagnetic-mechanical coupled system described by the minimal model in Fig. 5
shows the opposite behaviour. The Hopf bifurcations are shifted to lower velocities
for friction characteristics exhibiting an increasing negative gradient and decreasing
magnitudes. The behaviour of the stable limit cycles in Fig. 10(b) is not qualitatively
affected by the different friction characteristics. Still, the growth rate of emerging
amplitudes increases with steeper curves of the friction coefficient, leading to the largest
amplitudes for µStp,2.

3.5.2. Poincare sections: Interaction of the whole MTB-frame

The dynamic behaviour of occurring vibrations, i.e. identifying occurring limit cycles and
related stability analysis, can be investigated by appropriate cross-sections Σ in the state
space, so-called Poincaré sections. This cross-section Σ is a smooth hypersurface with
dimension j − 1, one less than the dimension of the state space x ∈ Rj , and is defined
for the MTB-brake frame model, in Paper D:

Σ = {x = (β1, . . . , β4, β̇1, . . . , β̇4, φ1, . . . , φ4)T ∈ R12 |β3 = 0; β̇3 > 0}. (13)

When a periodic orbit L0 is considered, it starts at the point x0 on Σ and returns to Σ
at the same point x0(t) = x0(t + T0), hence periodic motions corresponds to fixed points
at Poincaré Sections. Moreover, nearby orbits starting at a point x ∈ Σ close to x0, will
return at some point x̃ ∈ Σ near x0 and intersect Σ transversally. Thus, the Poincaré
map is constructed

x → x̃ = P (x). (14)

Further, the stability of the cycle L0 is equivalent to the stability of the fixed point of
the Poincaré map, [59]. Hence, the cycle is stable if all eigenvalues of the Jacobian of the
Poincaré map are located inside the unit circle.

The intersections with the defined Poincaré Section Σ detected during vibrations of the
considered system can be applied to identify the type of steady-state motions, [60]. While
the periodic orbit corresponds to a fixed point, a quasi-periodic motion corresponds to an
invariant closed curve as depicted for the coupled full MTB-brake frame model, Fig. 6, at
a vehicle velocity of vv = 2 m/s for the generalised coordinate β1 in Fig. 11. When the
vehicle velocity increases, the Poincaré section shrinks to a few discrete points, describing
periodic vibrations, and indicates a Neimark-Sacker bifurcation.
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Figure 11: Poincaré section of quasi-periodic oscillations at a vehicle velocity of vv = 2
m/s in (β1, β̇1), Paper D.

3.5.3. Continuation of bifurcations in two parameters

The above methods observe and investigate emerging bifurcations and full solution
branches for varying system parameters. However, it is of further interest how the
revealed bifurcations, obtained by numerical continuation of equilibria and periodic
orbits, change when parameters characterising the frictional contact, motion-induced
eddy currents or the mechanical design are varied. For this reason, continuation of
bifurcation in two parameters is applied, which in the case of the Hopf-bifurcation results
in the stability border of equilibria and in the case of the Fold bifurcation of limit cycles
in the loss of stability of the related periodic solutions.

For these investigations, the corner MTB model is utilised to consider the contact
conditions of a mainline magnetic track brake with detached contact points of several
brake elements and the weakening of the magnetic field due to motion-induced eddy
currents. Further, the component of the friction force orthogonal to the forward motion
is considered, adding an additional damping mechanism, and the lateral and vertical
clearance to the structure is regarded by decoupled intermediate elements.

Fig. 12 depicts the solution space of the post-critical behaviour with freed vehicle
velocity vv, the velocity-dependent friction parameter δµ, and the period T at the periodic
solutions. This plot characterises the post-critical behaviour for different shapes of the
friction characteristic, while the static friction coefficient remains constant. Subfigure
(a) presents a 3D plot, (b) the related front, and (c) the top view of several bifurcation
diagrams with the maximum mechanical displacement max(α) as the scalar measure for
varied velocities vv at selected and constant values of δµ, highlighting the continuation of
occurring cycles in grey. The red line represents the continuation of Hopf bifurcations,
H(δµ, vv), encasing parameter regions λ associated with unstable equilibrium states.
This branch reveals a minimal necessary velocity-dependent friction parameter δµ,H∗ for
Hopf-bifurcations to be present, and for values δµ > δµ∗, periodic orbits follow from the
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shown Hopf curve depicted in red. When δµ is increased further, occurring amplitudes

Figure 12: Full solution space of occurring periodic orbits by variation of δµ and vv,
including Hopf and both LPC branches, Paper E .

rise, and at a specific value δµ,BP C1 , a transcritical bifurcation of limit cycles, indicating
a branch point (BPC) is reached. This value describe a seperation of a no-jump situation
for δµ < δµ,BP C1 from a two-jump situation for δµ > δµ,BP C1 , when considering the
bifurcation diagrams and is called a gap center in a two-parameter setting, [58]. Hence,
unstable periodic orbits are created at the related continuation of Fold bifurcations of limit
cycles, LPC1(δµ, vvT ), depicted in green. When the unstable limit cycles are followed,
proceeding from LPC1(δµ, vvT ), further Fold bifurcations are revealed, indicating an
additional branch of stable limit cycles. When those Fold bifurcations are continued,
a curve LPC2(δµ, vv, T ), shown in purple, which delineates a region of stable periodic
solutions which exhibit stick-slip motions due to large amplitudes, corresponding to the
second branch of stable periodic solutions, is found. The related branch point of this
two-parameter continuation, with δµ,BP C2 , indicates an isola formation, with stable limit
cycles coexisting with stable equilibriums for δµ,H∗ > δµ > δµ,BP C2 , with unstable limit
cycles describing the region of attraction. For values δµ,BP C1 > δµ > δµ,H∗ stable limit
cycles coexist, and at the branch point with δµ,BP C1 stable and unstable limit cycles
attach and annihilate each other for δµ > δµ,BP C1 , and the described two-jump situation
occur. With this method of studying two-parameter continuation, different parameters in
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the system can be examined by considering the post-critical behaviour, which is described
in detail in Paper E .

4. Summary of the scientific papers
Paper A

Investigations of Degraded Adhesion Conditions and Interrelated Methods for
Improving Braking Performance using the Advanced TrainLab (aTL)
Marcus Fischer, Thomas Rasel, Bernhard Ebner,
Felix Kröger, Sebastian Heinz

Proceedings of EuroBrake2023
https://doi.org/10.46720/EB2023-BSY-020

In this first publication, the influence of contaminants and friction enhancers on the
MTB–rail sliding contact is investigated experimentally. Multiple series of brake tests
with different initial velocities, up to 120 km/h, were carried out on different conditions:
dry conditions, without detected spin-downs, low adhesion conditions, with a water/soap
solution on the rail, and extremely low adhesion conditions, created by applying paper
tape combined with pure water or plant-based oil to the rail head. The evaluated
quasi-static braking manoeuvre showed that the sliding coefficient of friction in the
MTB–rail contact does not vary significantly between dry and low adhesion conditions,
both qualitatively and quantitatively. When sand is applied to the wheel–rail contact
of the wheelset in front of the considered MTB, a significant increase in the averaged
brake force is detected, and the velocity dependency is reduced. With oil applied to
the rail, the qualitative behaviour of the coefficient of friction stays unaffected; however,
the quantitative values are decreased significantly in this case. Things change with
applied paper tape, as the measured brake force decreases with decreasing velocities
in the first stage, reaching a minimum, and is increased afterwards. This behaviour
is explained by gathering paper tape by the MTB first, and at a specific velocity, the
velocity-dependent friction coefficient becomes dominant, leading to an increase in the
brake force afterwards, which is not observed in experiments with real leaves on the rail.
With these results, it is reasonable to consider a monotonous decay of the sliding friction
coefficient with increasing velocity during the dynamic and stability behaviour of the
MTB, Paper B-Paper E ; however, the influence of changing gradients and the level of
the friction characteristic should be examined which is changed significantly during the
operation of an MTB.

Bernhard Ebner is responsible for: planning and implementing the measurement and
testing concept of the magnetic track brake, monitoring MTB during test runs, evaluation
and plausibility check of measurement data regarding MTB, and writing, reviewing &
editing the article.
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Paper B
Active mitigation of self-excited vibrations of a magnetic track brake
Bernhard Ebner, Daniel Tippelt,
Johannes Edelmann, Manfred Plöchl

Journal of Physics: Conference Series
https://doi.org/10.1088/1742-6596/2647/15/152007

The behaviour of self-excited vibrations occurring in MTBs during braking manoeuvres
at low velocities by depicting measurements and analysing the feasibility of an active
vibration control is addressed in this publication. Measurements present the excited
eigenmode and eigenfrequency of the vibrations with the loss of stability at a certain
velocity, where amplitudes rise rapidly and reach a respective limit cycle. Utilising a
linearised minimal MTB-model at a constant vehicle velocity, the effective energy input
in the mechanical subsystem by the electromagnetic coupling and the frictional contact
is analysed numerically. A positive energy input at the considered operation point and a
phase shift between the magnetic flux and mechanical oscillations are identified. While
previous work has focused mainly on passive countermeasures, this study introduces an
active vibration control strategy based on a modulation of the electric input voltage
of the MTB. A state feedback control is utilised to force the identified phase shift to
a specific value, ensuring a negative effective energy over an oscillation period at the
linearised MTB model. The developed control is applied to the nonlinear quarter MTB
model, starting at a respective limit cycle of the considered operation point with constant
vehicle velocity. Occurring amplitudes are effectively reduced, and self-excited vibrations
were suppressed completely for a defined friction characteristic, illustrating that active
vibration control with the available electromagnetic actuator is feasible.

Bernhard Ebner is responsible for: conceptualisation, methodology, derivation of the
model equations, visualisation and presentation of the experimental and theoretical
results, numerical calculations, and writing - the original draft.

Paper C
System analysis and active vibration control of a simplified electromagnetic track
brake model
Bernhard Ebner, Johannes Edelmann,
Manfred Plöchl

Journal of Sound and Vibration
https://doi.org/10.1016/j.jsv.2025.119307

In this third paper, a more detailed investigation of the energy input leading to the
onset of self-excited vibrations at MTBs, the behaviour after the loss of stability, and
active vibration control strategies are presented. The minimal model from Paper B is
utilised in parametrised form to analyse the system behaviour with changing vehicle
velocities and friction conditions, based on Paper A, extending the previous investigations
focusing on a chosen operating point. An analytical expression for the effective energy
input is derived in this paper, based on the linearised system with respect to the quasi-
steady states, and the assumption of a harmonic behaviour, reasonable near the onset
of vibrations. With this expression, two main self-excitation mechanisms are identified:
(1) the well-known falling friction mechanism, based on the negative gradient of the
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velocity-dependent friction coefficient. (2) the electromagnetic coupling mechanism,
which leads to a phase-shifted alternating normal force with a positive energy input
into the oscillating system, even for a constant sliding coefficient of friction. With the
analytical expression of the energy input, mitigation strategies can be found, and two
active control strategies based on a modulation of the electric voltage are proposed. First,
a state feedback control to keep a constant normal force, which suppresses the second
self-excitation mechanism and requires only the mechanical displacement for the feedback
loop. Second, similar to the approach in Paper B, a control forcing the magnetic flux to
be in antiphase with the mechanical oscillation, which then actively dissipates energy and
corresponds to an optimal control strategy with respect to the energy input. Nonlinear
stability analysis of the closed-loop system revealed that only the second control strategy
is able to prevent a loss of stability over the whole velocity region when the friction
characteristic becomes very steep. The minimal necessary controller gain to keep stable
operation over the whole velocity range is derived through the numerical continuation
of occurring Hopf bifurcations of the closed-loop system. The post-critical behaviour of
the electromagnetic-mechanical coupled system is analysed by a continuation of periodic
orbits emerging at the Hopf bifurcation and shows a significant reduction of the braking
performance of the MTB if vibrations can not be avoided. Additionally, it is shown that
harmonic mechanical oscillations change to stick-slip vibrations at very low velocities,
where the relative velocity at the contact point becomes zero during the stick phases.

Bernhard Ebner is responsible for: conceptualisation, methodology, derivation of the
model equations, formal analysis, numerical calculations, investigation, interpretation
and visualisation of the results, and writing - the original draft.

Paper D
Self-sustained oscillations of a magnetic track brake frame
Konstantin Avramov, Bernhard Ebner, Johannes
Edelmann, Yuri V. Mikhlin, Borys Uspensky

Nonlinear Dynamics
https://doi.org/10.1007/s11071-024-10643-6

The dynamic behaviour of the full MTB during self-excited vibrations at low velocities is
investigated in this fourth publication. For this purpose, a novel nonlinear mathematical
model of the MTB is presented, integrating both the mechanical and the electromagnetic
interaction of the individual corner electromagnets into an in-plane approximation of the
full MTB-frame with four mechanical and four electromagnetic degrees of freedom. The
mechanical subsystem accounts for the interaction through the flexible brake frame along
with dry friction between MTB and the rail. The structure is modelled by four rigid
corner electromagnets, each having one fictitious contact point, which are coupled based
on influence coefficients determined through finite element analysis. The electromagnetic
subsystem is modelled by a lumped-parameter approach that captures the oscillatory
magnetic fluxes induced by the mechanical displacements and the interaction through
the shared electric circuit of the electric power supply. The coupled MTB-brake frame
model is utilised for numerical analysis of the equilibrium states, periodic oscillations,
and bifurcations for a range of vehicle velocities and several initial conditions in the case
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of oscillatory solutions. For the undamped case without a component of friction lateral
to the direction of motion, unstable equilibrium states are present throughout the whole
velocity range. Two distinct types of stable self-excited vibrations with different oscillation
frequencies and shapes emerge: one with large amplitudes performing an asymmetrical
motion of the brake frame and one with small amplitudes with a symmetrical motion.
Stickslip motions arise from dry friction, especially at low velocities, where sections of
constant generalised velocities are observed. At very low velocities, a NeimarkSacker
bifurcation occurs, leading to quasiperiodic vibrations underneath. As velocity increases,
multiharmonic oscillations transition into simpler single-harmonic vibrations. The study
highlights the complex interaction between dry friction and electromagnetic coupling in
the case of a full MTB with interactions especially important at the lowest velocities.

Bernhard Ebner is responsible for: derivation of the electromagnetic model equations,
providing the finite element model, discussion on numerical results, visualisation and
presentation of the system model, and writing parts of the original draft, review & and
editing.

Paper E
Stability behaviour of a basic magnetic track brake model: Influences of system
parameters and motion-induced eddy currents
Bernhard Ebner, Manfred Plöchl,
Johannes Edelmann

Nonlinear Dynamics
https://doi.org/10.1007/s11071-025-11574-6

In this final publication, building upon the prior publications Paper A-Paper E , a nonlinear
electromagneticmechanical model of a quarter MTB is utilised to investigate the onset
and evolution of self-excited vibrations, to explain still open questions from experiments
and to suggest improvements. The model incorporates experimentally observed velocity
dependencies of the friction coefficient from Paper A, the newly found velocity dependency
of the attraction force, which is presented in this paper, and considers segmented brake
elements with individual frictional contacts. Although it was presented in Paper D, that
the interaction through the structure can lead to quasi-periodic oscillation at the lowest
velocities, basic mechanisms, including damping, are studied on a quarter model here,
enabling a clear explanation of coherences and practical improvements. The method
of energy considerations from Paper B and Paper C are further utilised to explain the
dynamic behaviour. The velocity-dependent attraction forces arise from motion-induced
eddy currents and are incorporated phenomenologically by an analytical approximation
of measurements. By utilising bifurcation analysis and numerical continuation of limit
cycles and bifurcations, the study explores the nonlinear stability behaviour and occurring
oscillation patterns of the system across varying system parameters and environmental
conditions. It is obtained that specific friction levels and negative gradients of the friction
and attraction force characteristics are necessary to reach unstable equilibria, explaining
that severe vibrations were only measurable in 1 out of 10 experiments. A second branch
of stable limit cycles is revealed and emerges as an isola formation coexisting with stable
equilibrium states. With critical parameters being increased, unstable equilibria are
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reached, emerging between two super-critical Hopf bifurcations, which are connected by
stable limit cycles with a distinct maximum of vibration amplitudes. This behaviour also
matches well with observations from experiments, where amplitudes of measured braking
forces increase in the first stage of severe vibrations, while they are decreasing after
a specific velocity. When, for example, the friction characteristic is steepened further,
stable limit cycles emerging at the Hopf bifurcations attach with unstable limit cycles of
the isola and annihilate each other, forming a transcritical bifurcation. When exceeding
this branch point, two-jump situations from stable limit cycles with small amplitudes to
limit cycles with large amplitudes and stick-slip motions and back are the consequence.
Hence, involved damping mechanisms shall be employed to prevent unstable equilibria,
and a velocity region with a two-jump situation must be avoided, which is suggested
by changing design parameters, which can reduce excitation mechanisms or increase
damping when appropriately tuned. Further, it is proposed that avoiding weld formations
at the endpieces reduces the risk of oscillations as well.

Bernhard Ebner is responsible for: conceptualisation, methodology, planning and execution
of experiments regarding motion-induced eddy currents, derivation of the model equations,
numerical analysis, interpretation and visualisation of experimental and numerical results,
and writing - the original draft.
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5. Scientific impact
This cumulative thesis enhances the understanding of self-excited vibrations in magnetic
track brakes (MTBs) and provides effective strategies for their mitigation. The invest-
igations demonstrate that the MTB is prone to self-excited vibrations at low velocities
with rapidly growing amplitudes, which subsequently decay after reaching a global max-
imum. These behaviours are explained by distinct excitation mechanisms interacting
with dissipation mechanisms that had not previously been classified in this context.

Three fundamental excitation mechanisms are identified. The first is the well-known
falling-friction effect, analogous to classical friction oscillators. The second is an electro-
magnetic coupling mechanism, arising from the dynamics of the electromagnetic system,
leading to a positive energy input even for constant friction coefficients, due to a varying
and phase-shifted normal force. The third is a motional eddy current mechanism, where
velocity-dependent normal forces act analogously to the friction mechanism, but originate
from the back-coupling of motion-induced eddy currents in the rail. Their interaction
with unavoidable damping, such as structural damping, self-centring electromagnetic
forces, and lateral friction, explains both the onset and the amplitude evolution of self-
excited vibrations at MTBs. The analysis demonstrates that the friction characteristic,
through its gradient and magnitude, determines which mechanism dominates, offering an
explanation for the pronounced sensitivity of stability to environmental and operational
conditions.

The nonlinear dynamics of the MTB are further characterised by a range of bifurcation
phenomena, including Hopf, Fold, and NeimarkSacker bifurcations, as well as the coexist-
ence of periodic attractors and stickslip oscillations. These findings clarify how stability
is lost and regained, and how multiple vibration regimes may exist for the same operating
conditions. The significance of segmented brake elements and distributed MTB–rail
contact points on the stability behaviour is highlighted, revealing both their potential to
reduce and their risk to promote large-amplitude oscillations and degraded braking forces.
The dual impact of increased structural loads and compromised braking performance
underscores the safety relevance of the identified mechanisms.

Beyond explaining the vibrational behaviour and providing a correlation between design
parameters and occurring vibrations, the thesis introduces novel active control strategies
that exploit the electromagnet itself as an actuator. By modulating the electrical input,
the self-excitation mechanism based on the electromagnetic coupling can be suppressed
or inverted, enabling active energy dissipation. These simple, yet effective strategies
represent a step beyond passive countermeasures and demonstrate the feasibility of
embedding active vibration control directly into the brake design.
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Paper A
Investigations of Degraded Adhesion Conditions and Interrelated Methods for
Improving Braking Performance using the Advanced TrainLab (aTL)

Marcus Fischer, Thomas Rasel, Bernhard Ebner, Felix Kröger, Sebastian Heinz
EuroBrake 2023, Conference Proceedings, Art.Nr. BSY-020
https://doi.org/10.46720/EB2023-BSY-020

Keywords: degraded adhesion, vehicle test runs, wheel slide protection, adhesion
management, magnetic track brake

Abstract: The article describes the results of on-train tests performed by Knorr-
Bremse and DB Systemtechnik within the Shift2Rail PIVOT2 technology initiative
under the HORIZON 2020 European Research Framework Programme. The tests
aimed first, to carry out an in-depth investigation of degraded wheel/rail adhesion
conditions, and second, to validate the effectiveness of technical solutions to optimally
master such conditions. The solutions are especially important for later use with
ATO (Automatic Train Operation) at Grade of Automation (GoA) level 3 and 4,
meaning driverless/ unattended train operation, to avoid restrictions that would
otherwise reduce rail system performance. Performed in spring 2022 aboard the
DB advanced TrainLab (aTL), the tests concentrated on two solutions: WheelGrip
adapt (a WSP function), and a train-wide Adhesion Management (ADM) func-
tion using sanding systems. The tests demonstrated the reliability of the adaptive
response of the new WSP towards different adhesion conditions maintaining the
same braking performance in regular low adhesion conditions (UIC) and improved
braking performance in extremely low adhesion conditions. The advanced train-wide
ADM was able to achieve even shorter stopping distances. With the support of
the Vienna University of Technology (TU Wien), the study also investigated the
behavior of magnetic track brakes (MTBs) and their conditioning effects, concluding
that MTBs not only provide additional braking force, but also improve the perform-
ance of other brakes acting on downstream wheelsets. However, the effect differs
depending on the third-body layer, achieving better results on paper-based versus
oil-based contamination. The collected data will be used by Knorr-Bremse to design
further solutions, and by DB Systemtechnik to produce a mathematical model to
subsequently configure a WSP test rig for performing enhanced certification tests.
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Active mitigation of self-excited vibrations of a magnetic track brake
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Abstract: Magnetic track brakes (mtbs) are additional braking systems used in
railway vehicles at emergency situations and low adhesion conditions. Operation at
low velocities can cause harmful self-excited vibrations, which must be avoided at
all circumstances. Few passive countermeasures are already published, but active
vibration control of an mtb lacks in literature so far. In this paper an active vibration
control to diminish self-excited vibrations, based on reducing the energy, drawn by
the oscillating system, is studied. Considering a minimal model of the mtb, the energy
input depends on the electromagnetic-mechanical coupling and the friction force in
the mtbrail contact. The obtained equation of this energy reveal a dependency of
the phase shift, between magnetic flux and the oscillatory mechanical motion. A
control law for the input voltage is obtained to reach a specific phase shift reducing
the energy input and oscillating amplitudes.
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Abstract: Magnetic track brakes are prone to self-excited vibrations at low velocit-
ies, which can harm the mechanical structure and need to be mitigated. To avoid
severe vibrations, active control strategies utilising the available electromagnetic
system are investigated in this study. As the electromagneticmechanical coupling
is a cause for self-excited vibrations itself, energy-based analyses are conducted on
a simplified model to examine the underlying excitation mechanisms first. They
are then assessed to identify effective countermeasures. An analytical equation for
the effective energy input into the oscillating system is obtained, highlighting that
the negative gradient of the sliding friction coefficient and the involved dynamics of
the coupled electromagnetic system are reasons for the loss of stability. It is shown
that the dominating phenomenon can change with the vehicle velocity and that each
cause can initiate self-excited vibrations without the other being present. Conducted
bifurcation analyses confirm analytical findings and reveal a significant reduction
in the magnetic attraction force by increasing oscillating amplitudes, leading to
decreased braking performance during oscillations. Building on the acquired findings,
an active vibration control strategy is presented to force the phase shift between the
electromagnetic and mechanical states to a particular value, minimising the effective
energy input. Results from the nonlinear stability analysis of the closed-loop system
show that the implemented state feedback can suppress the excitation mechanism
associated with the electromagnetic coupling, further actively dissipate energy, and
prevent vibrations over the whole velocity range.
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Paper D
Self-sustained oscillations of a magnetic track brake frame
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Abstract: Magnetic track brakes (MTBs) are additional brake systems for railway
vehicles used in low adhesion and emergency conditions. In particular, the frame of
this brake may exhibit self-sustained vibrations. To study the underlying mechanisms
of these oscillations, a nonlinear mathematical model of the MTB is derived that
consists of two submodels: a mathematical model of the mechanical subsystem
and a model of the coupled electro-magnetic subsystem. Mechanical vibrations of
the brake-frame are described by four degrees of freedom. Nonlinear dry friction,
which is observed between the rail and the frame, is accounted for in the mechanical
model. The coupled electromagnetic subsystem is modelled by a lumped parameter
approach, describing the oscillating magnetic fluxes due to the mechanical motion
of each electromagnet. The self-sustained vibrations are studied numerically for
different vehicle velocities. The NeimarkSacker bifurcation is observed. As a result
of this bifurcation, the self-sustained quasi-periodic vibrations are originated. The
stickslip motions of the frame are observed, caused by the dry friction between the
rail and the magnet.
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Paper E
Stability behaviour of a basic magnetic track brake model: Influences of system
parameters and motion-induced eddy currents
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Abstract: Insights into the vibrational behaviour of emergency braking systems
of railway vehicles, such as the electromagnetic track brake, are indispensable for
short stopping distances and safe operation. Moreover, they are fundamental for the
development of lightweight railway vehicles. Hence, the nonlinear stability behaviour
of the electromagnetic track brake is examined within this paper by applying
bifurcation analysis and numerical continuation methods to a newly developed
minimal model. The proposed electromagnetic-mechanical model accounts for a
segmented brake magnet, incorporating the frictional contact of individual brake
elements and a velocity-dependent attraction force resulting from motion-induced
eddy currents, revealed by experiments. Two super-critical Hopf bifurcations give
rise to periodic orbits of pure slip motions for varying vehicle velocities, compliant
with observations from measurements. Further, a second branch of stable periodic
orbits with large amplitudes at a similar oscillatory frequency exhibiting stick-
slip motions is found. By modifying the friction characteristics, the coexisting
periodic attractors converge, resulting in a branching point that marks the onset of a
parameter region where only large-amplitude periodic orbits with stick-slip motions
are stable. Influences of main design and environmental parameters are studied.
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