
SMT-Based Automated Reasoning
for Åqvist’s Deontic Logics

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Christian Köll, BSc
Matrikelnummer 11727636

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof.in Dr.in Agata Ciabattoni
Zweitbetreuung: Univ.Ass. Mag. Dmitry Rozplokhas

Wien, 3. September 2025
Christian Köll Agata Ciabattoni

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

SMT-Based Automated Reasoning
for Åqvist’s Deontic Logics

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Christian Köll, BSc
Registration Number 11727636

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof.in Dr.in Agata Ciabattoni
Second advisor: Univ.Ass. Mag. Dmitry Rozplokhas

Vienna, September 3, 2025
Christian Köll Agata Ciabattoni

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Christian Köll, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 3. September 2025
Christian Köll

v

Danksagung

Ich möchte Agata Ciabattoni und Dmitry Rozplokhas für ihre hervorragende Betreuung,
wertvolle Beratung und hilfreichen Anregungen während der Anfertigung dieser Arbeit
danken. Ihre Expertise und Unterstützung haben wesentlich zur Entwicklung und Präzi-
sierung dieser Arbeit beigetragen. Insbesondere möchte ich Dmitry Rozplokhas für seine
grundlegende Arbeit danken, auf der diese Arbeit basiert.

Mein besonderer Dank gilt meinen Eltern, die mir das Studium ermöglicht und mich auf
meinem akademischen Weg unterstützt haben.

Auch meiner Freundin danke ich ausdrücklich für ihre verlässliche Unterstützung.

vii

Acknowledgements

I would like to thank Agata Ciabattoni and Dmitry Rozplokhas for their excellent
supervision, valuable guidance, and insightful feedback throughout the course of this
thesis. Their expertise and support greatly contributed to the development and refinement
of this work. In particular, I am thankful to Dmitry Rozplokhas for his foundational
work on which this thesis builds.

My special gratitude goes to my parents, who made my studies possible and supported
me throughout my academic journey.

I am also deeply thankful to my girlfriend for her reliable support.

ix

Kurzfassung

Die Logiken von Åqvist bilden eine wichtige und vielfach untersuchte Familie innerhalb
der deontischen Logik. Rozplokhas [Roz24] entwickelte Small-Model-Konstruktionen,
die beliebige Gegenmodelle in äquivalente Modelle mit polynomial beschränkter Größe
transformieren. Diese Konstruktionen zeigen, dass das Theoremerkennungsproblem für
alle vier Åqvist-Logiken E, F, F+(CM) und G ko-NP-vollständig ist, und ermöglichen
aussagenlogische Kodierungen für effizientes automatisiertes Schließen.

In meiner Arbeit kodiere ich Rozplokhas’ Konstruktionen mithilfe des SMT Solvers Z3,
um die Gültigkeit von Formeln zu überprüfen und minimale Gegenmodelle für nicht
gültige Formeln zu finden. Wir präsentieren den gesamten Ablauf, vom Einlesen der
Eingabeformeln, über die Z3-Kodierungen bis hin zur Darstellung der Gegenmodelle.

Das entwickelte Tool bietet drei mögliche Darstellungsarten für Gegenmodelle: in reinen
Text, als Matrix oder als gerichteten Graphen. Alle Informationen können in einem
gerichteten Graphen mit geraden, kreuzungsfreien Kanten für Modelle mit bis zu drei
Welten dargestellt werden. Bei größeren Modellen wird die Präferenzrelation als Matrix
und in reinem Textformat dargestellt.

Als zusätzliche Optimierung führen wir Vereinfachungsregeln und -prozeduren ein, die
Eingabeformeln so weit wie möglich reduzieren, was zu kleineren Kodierungen (um 55%)
und einer Reduzierung der Formelgröße um 77% führt und die Lösungszeiten um das
1,71-Fache beschleunigt. Als Fallstudie haben wir das Tool auf bekannte deontische
Paradoxien angewendet, um zu analysieren, ob diese in Åqvists Logiken blockiert werden.
Abschließend demonstrieren wir die Effizienz des Tools durch Laufzeitmessungen an einer
generierten Menge von Testformeln und vergleichen die Ergebnisse mit dem bestehenden
automatisierten Ansatz von Parent und Benzmüller, der auf Isabelle/HOL basiert. Im
Vergleich zu deren Ansatz erzielt unser Tool bei ungültigen Formeln eine bis zu 25-
fache Beschleunigung und unterstützt zudem alle Åqvist-Logiken, während Isabelle/HOL
lediglich E abdeckt. Durch die intuitive Syntax und die leicht verständliche Darstellung
der Gegenmodelle ist es auch für Nicht-Experten zugänglich und stellt somit eine leichte
und effiziente Alternative für zukünftige Anwendungen im Bereich des automatisierten
deontischen Schließens dar.

xi

Abstract

Åqvist’s logics are an important and widely studied family within the field of deontic logics.
Rozplokhas [Roz24] developed small model constructions for them, which transform
arbitrary countermodels into equivalent models of bounded polynomial size. These
constructions establish the co-NP-completeness of the theoremhood problem for all four
Åqvist’s logics: E, F, F+(CM), and G, and provide propositional encodings that enable
efficient automated reasoning.

In my thesis, I encoded Rozplokhas’ constructions with the SMT solver Z3 to check the
validity of formulas and to find minimal countermodels for invalid formulas. We present
the entire workflow in detail: from parsing the input formulas, through the Z3-based
encodings, to the structured representation of the countermodels.

The tool provides three alternative ways of presenting countermodels: as plain text, as a
matrix, or as a directed graph. All information can be displayed in a directed graph with
straight, crossing-free edges for models with up to three worlds. For larger models, the
preference relation is represented as a matrix and in plain-text form.

As an additional optimisation, we introduce simplification rules and procedures that
reduce input formulas as much as possible, resulting in smaller encodings (by 55%) and
a 77% reduction in formula size, which together lead to a speedup of 1.71 in solving
times.

As a case study, we applied the tool to analyse some well-known deontic paradoxes and
check whether they are blocked in Åqvist’s logics. Finally, we demonstrate the efficiency
of the tool by performing runtime measurements on a generated test set of formulas and
compare the results with an existing automated approach by Parent and Benzmüller
based on Isabelle/HOL. Compared to their approach, our tool achieves up to a 25-fold
speedup on invalid formulas, and supports all Åqvist’s logics rather than just the logic E.
Its intuitive syntax and human-readable countermodel representations make our tool
accessible to non-experts, positioning it as a lightweight and efficient alternative for
future applications in automated deontic reasoning.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Thesis Structure . 4

2 Preliminaries on Åqvist’s Systems 5
2.1 Syntax and preference-based Semantics 5
2.2 Axioms and Derived Principles . 8
2.3 Small Model Construction . 9
2.4 Propositional encoding for Åqvist’s logics 11

3 Formula Parsing 15
3.1 Input Format . 19
3.2 Operator Precedence . 20
3.3 Tokenizing . 20
3.4 Parsing Tokens . 21
3.5 Parser Error Feedback . 24

4 Simplification of Formulas 27
4.1 Simplification of unary Operations . 27
4.2 Simplification of non-associative Operations 29
4.3 Simplification of associative Operations 33

5 Z3 encoding 47
5.1 Size Bound Calculation . 47
5.2 Variable Names . 50
5.3 Single v-variable for Necessity and Obligation 52
5.4 Encoding of Operations . 52
5.5 Encoding the Properties of the Preference Relation 56
5.6 Finding a Minimal Countermodel . 56

xv

6 Countermodel Representation 59
6.1 Text representation . 59
6.2 Directed graph . 62
6.3 Matrix . 69

7 Implementation of Deontic Paradoxes 73

8 Optimisations and Benchmarking 79
8.1 System Architecture and Formula Class Hierarchy 79
8.2 Test set generation . 80
8.3 Time Measurements for different Optimisation Levels 83

9 Comparison to Existing Tool 85
9.1 Feature Overview and Comparison . 85
9.2 Example Model Comparison . 86
9.3 Performance Evaluation . 88
9.4 Summary . 88

10 Conclusion 89
10.1 Future Work . 90

Overview of Generative AI Tools Used 93

List of Figures 95

List of Tables 97

List of Algorithms 99

Bibliography 101

CHAPTER 1
Introduction

Reasoning about norms (normative reasoning) plays a central role in various fields.
Deontic logic provides a formal framework to represent and reason about normative
concepts such as obligation, permission, and prohibition. It has been applied for many
years across disciplines [WM93] and remains highly relevant today, particularly in artificial
intelligence [CHS+23] (especially for autonomous agents and systems [NBCG22, Sin22,
NBCG21, SBA20]), law [GP25, CPS21], and philosophy [CDF25, vBCF+23, FP21].

Over the past decades, a wide variety of deontic logics have been proposed to capture the
nuances of normative reasoning [PvDT13, GHP+21]. The first deontic logic introduced in
the literature is Standard Deontic Logic (SDL) [VW51]. Although influential, expressive
limitations of the original framework showed in the so-called deontic paradoxes led to
the development of more refined frameworks. These include dyadic deontic logics, which
condition obligations on contextual information (e.g., ”ψ ought to hold given φ”) and
allow for greater flexibility in representing normative scenarios.

These logics can be broadly categorised into norm-based systems, which represent obli-
gations through an explicit set of normative statements or rules, and preference-based
systems, which interpret deontic modalities over possible worlds ordered by a preference
relation.

Preference-based systems are particularly well suited for modelling two prominent types
of conditional obligations:
Conditionals contrary-to-duty, such as those discussed by Chisholm [Chi63], which are
triggered when a primary obligation is violated, and defeasible deontic conditionals, which
capture conditional obligations that can be overridden by more specific or contextually
stronger norms. These conditionals reflect the non-monotonic character of normative
reasoning, allowing for exceptions and priority among rules.

One of the earliest formalisations of preference-based dyadic deontic logic was proposed
by Hansson [Han71], who introduced the logics DSDL1, DSDL2, and DSDL3. These

1

1. Introduction

systems interpret conditional obligations in terms of preference structures over possible
worlds, laying important groundwork for later developments in this tradition.

A fundamental basis for preference-based semantics is the work of Lewis [Lew73a], as
presented in [Par21]. Lewis introduced the limit assumption, which states that if a
formula holds in some world, then there is a best world satisfying it. This assumption
plays a central role in subsequent developments of preference-based semantics.

An important family of preference-based deontic logics are the logics formulated by
Lennart Åqvist [Åqv84], which extend the modal logic S5 [Lew18] with suitable deontic
operators. While S5 features a unary necessity operator □φ, which is true if φ holds
in all possible worlds, Åqvist’s system augments this framework with a conditional
obligation ⃝(ψ | φ) (to be read as ”ψ is obligated, given φ”). This expression is true
if ψ holds in all the most preferred (”best”) worlds among the world where φ holds. The
conditional obligation operator can be used to express prohibitions (⃝(¬ψ | φ)) and
permissions (¬⃝(¬ψ | φ)).

Åqvist [Åqv84] originally proposed three related logics E, F, and G. These logics are
increasingly expressive and restrictive on the preference relations.

• logic E imposes no structural conditions on the preference relation.

• logic F adds constraints by assuming a limited preference relation.

• logic G further strengthens the structure by assuming that the preference relation
is total, meaning that any two worlds are comparable, in addition to being limited.

Building on these foundations, Parent [Par14] introduced the logic F+(CM), which
extends logic F by incorporating the principle of Cautious Monotony (CM), well known
from the field of non-monotonic reasoning [KLM90]. To validate this principle, Parent
omits the totality assumption of G and instead assumes a smooth preference relation.
Smoothness means that for every condition that holds in some world, there is at least
one best world where it also holds.

In a related development, the use of preference structures was explored in the domain
of conditional reasoning. Lewis’s family of logics for counterfactuals, such as the sys-
tem VTA [Lew73b], provide a semantics based on similarity or preference between
possible worlds. Notably, VTA corresponds to the deontic logic G.

Burgess introduces an alternative but related framework with his preferential conditional
logic (PCL) [Bur81, NO15] and its extensions. By adding an absoluteness axiom to PCL,
one obtains the system PCA, which aligns with the deontic logic F+(CM).

A central task in logic is to derive formulas from premises and construct counterexamples
when this is not the case. However, traditional Hilbert-style systems are inadequate for
these tasks. To address these limitations, sequent calculi have been developed, offering a
more structured approach to deduction. Originating in Gentzen’s work [Gen35], these
systems enable the elimination of the cut rule, guaranteeing that every derivable sequent

2

has a cut-free proof. This is a property desirable both for proof analysis and for proving
the decidability of the logic.

For logics with conditional obligations cut-free calculi based on hypersequents have
proven especially effective. Hypersequents extend traditional sequents with a structural
mechanism to reason about sequents in parallel. Recent work by Ciabattoni et al. [COP22,
COP+23, CT24] presents analytic calculi for such logics, tailored to ensure syntactic
properties such as cut-elimination and completeness with respect to preference-based
semantics.

An alternative method is to embed these conditional systems into higher-order logic, as
proposed by Parent and Benzmüller [PB24]. This embedding leverages the expressive
power of higher-order frameworks to represent preference relations and conditional
modalities within an uniform semantic setting.

A further approach, based on the logic’s semantics, involves small model constructions,
as introduced by Friedman and Halpern [FH94]. Their method provides a transformation
of any model satisfying a formula into a model of bounded size that also satisfies
it. This construction applies to Burgess’s logic PCL and its extensions, in particular
to PCA (corresponding to F+(CM)) and VTA (corresponding to G). However, since
the construction relies on smoothness and transitivity of the preference relation, it is not
applicable to weaker logics such as E and F.

Recently, Rozblokhas developed alternative small model constructions [Roz24], combin-
ing blocks of worlds. The constructions are applicable across all Åqvist’s logics and
yield models of polynomial size. Beyond that, he presented an alternative semantical
characterisations using the natural frame properties acyclicity and transitivity. From this,
he derived the co-NP-completeness of the theoremhood problem, resolving a previously
open question for logic F. Building on this formalisation, Rozblokhas also provided an
encoding of formulas into classical propositional logic (see Section 2.4).

Using these encodings, we developed an efficient tool for automated reasoning by leveraging
Satisfiability Modulo Theories (SMT) solving technology. The tool takes a string as an
input and uses the SMT-solver Z3 of Microsoft [DMB08] to determine the validity of the
formula and obtain a countermodel if it is not valid.

The stepwise procedure is depicted in Figure 1.1. The application parses the input text
to a formula. If an error occurs during parsing, it gives feedback stating what is wrong
with the input and indicates the position of the error. Details of the parsing process are
provided in Chapter 3. After parsing, the formula is simplified as much as possible (see
Chapter 4) before being encoded into classic propositional logic for the SMT-solver Z3
(see Chapter 5). The encoding depends on the selected one of Åqvist’s logics. If Z3
fails to find a model, the formula is considered valid. Otherwise, a countermodel of the
original formula is extracted from the output of Z3. The tool will represent these models
in a readable way, where options for the representation are compared in Chapter 6.

To evaluate the reasoning capabilities of the tool, we implement three well-known

3

1. Introduction

paradoxes from deontic logic: Chisholm’s paradox, the Gentle Murder paradox, and the
principle of Deontic Explosion. We test these cases across the four Åqvist logics. The
results demonstrate how the preference-based semantics affect the validation or blocking
of each paradox.

We further compare our tool with the Isabelle/HOL-based framework by Parent and
Benzmüller. While their approach offers high assurance, it requires familiarity with
Isabelle syntax and lacks human-readable countermodel representations. Our tool provides
user-friendly input, multiple visualization formats for models, and significantly faster
runtimes in several cases. Especially for invalid formulas, our tool achieves speedups of
over 25× compared to the Isabelle-based approach.

1.1 Thesis Structure
This thesis is structured as follows: We begin by introducing of the theoretical foundations
of Åqvist’s logics and small model constructions in Chapter 2. Chapters 3 to 5 cover
the implementation of parsing, simplification, and encoding for the Z3 solver. Various
approaches to visualizing countermodels are presented in Chapter 6. The handling of
classic deontic paradoxes is discussed in Chapter 7. In Chapter 8 the performance of
different optimizations is analysed. We compare our tool with an existing approach by
Parent and Benzmüller in Chapter 9. Finally, Chapter 10 summarizes the results and
outlines directions for future work.

input string

formula

SMT encoding output

model

representation

SMT solver

parse

encode parse

generate

simplify

error feedback

Figure 1.1: Tool Structure

4

CHAPTER 2
Preliminaries on Åqvist’s Systems

We introduce the syntax and semantics of Åqvist’s deontic logics, focusing on their modal
operators and preference-based model theory. We present both the general semantic
characterizations and their finite-model counterparts, followed by a review of axioms and
principles for each logic, and a summary of Rozplokhas’ small model constructions and
their propositional encodings.

2.1 Syntax and preference-based Semantics
Åqvist’s logical systems build upon classical propositional logic by introducing two modal
operators: a unary modality □ representing necessity, and a binary modality ⃝(ψ | φ)
expressing conditional obligation, meaning that ψ is obligatory given φ.

We define the set of well-formed formulas over the set of propositional variables Var and
Boolean constants by the following BNF.

F ::= v ∈ V ar | ⊤ | ⊥ | ¬F | F ∧ F | F ∨ F | □F | ⃝(F | F)

Additionally, we have the following derived connectives:

• implication φ → ψ short for ¬φ ∨ ψ

• equality φ ↔ ψ short for (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

• exclusive or φ ⊕ ψ short for (¬φ ∨ ¬ψ) ∧ (φ ∨ ψ)

• possibility ♦φ short for ¬□¬φ

• prohibition F (ψ | φ) short for ⃝(¬ψ | φ)

• permission P (ψ | φ) short for ¬⃝(¬ψ | φ)

5

2. Preliminaries on Åqvist’s Systems

• O(φ), F (φ), and P (φ) short for ⃝(φ | ⊤), F (φ | ⊤), and P (φ | ⊤), respectively

We use the notations and definitions from the work of Rozblokhas [Roz24].

By SubF(φ) we denote the set of all subformulas of φ (including φ itself) and by |φ| the
size (number of symbols) of a formula φ.

Definition 2.1. A preference model is a triple (W, ⪰,V) where W is a (non-empty) set
of worlds, ⪰ is a binary relation on W , and V : Var → 2W is a valuation function. We
denote by W (M) the set of worlds of a given model.

We denote the strict preference relation by ≻, where w1 ≻ w2 holds if and only if w1 ⪰ w2
and w2 ̸⪰ w1.

The semantics of the obligation operator depend on the notion of ”best” worlds. Two ways
of defining the best worlds are found in the literature: optimality and maximality [Par21].
Our choice of maximality is consistent with that of Rozblokhas, who uses the same
definition [Roz24].

Definition 2.2. For a preference model M = ⟨W, ⪰,V⟩ and U ⊆ W we define

max(U) = {v ∈ U | ∄ u ∈ U : u ≻ v}.

Using the notion of maximality, an obligation ⃝(ψ | φ) is true in a model when ψ is
true in all best worlds satisfying φ. A necessity □φ is true when φ is true in all worlds.
The other Boolean operators are interpreted in the usual way, relative to each world in
the model.

Note that the definition of satisfaction below follows Rozblokhas’ presentation [Roz24],
we only extended it by cases for ⊤ and ⊥.

Definition 2.3. (Satisfaction) For a preference model M = ⟨W, ⪰,V⟩ the truth
set ∥ϕ∥M of a formula ϕ is defined inductively:

• ∥⊤∥M = W ,

• ∥⊥∥M = ∅,

• w ∈ ∥x∥M for x ∈ V ar when w ∈ V(x),

• w ∈ ∥¬ψ∥M when w /∈ ∥ψ∥M ,

• w ∈ ∥ψ1 ∧ ψ2∥M when w ∈ ∥ψ1∥M and w ∈ ∥ψ2∥M ,

• w ∈ ∥□β∥M when ∥β∥M = W ,

• w ∈ ∥⃝ (γ | α)∥M when max(∥α∥M) ⊆ ∥γ∥M .

6

2.1. Syntax and preference-based Semantics

Logic Limit conditions Properties of ⪰
limited smooth transitive total

E
F ✓

F+(CM) ✓ ✓
G ✓ ✓ ✓

Table 2.1: Preference-semantical characterisations for Åqvist’s logics (with maximal-
ity as the notion of bestness). This table is adapted from Figure 1 in the work of
Rozblokhas [Roz24], originally derived from Parent [Par21, Table 1 and 2].

We say that w satisfies ϕ in model M (denoted M, w |= ϕ) when w ∈ ∥ϕ∥M . Further-
more, M validates ϕ (denoted M |= ϕ) when ∥ϕ∥M = W .

Åqvist’s logics differ in their constraints on the preference relation, specifically transitivity
and totality, as well as in their limit conditions, namely limitedness and smoothness.

• transitivity: for all w1, w2, w3 ∈ W , if w1 ⪰ w2 and w2 ⪰ w3, then w1 ⪰ w2

• totality: for all w1, w2 ∈ W , either w1 ⪰ w2 or w2 ⪰ w1

There are no constraints on the relation in the weakest logic E. Fconsiders limited
preference relations. For the logic F+(CM) it has to be transitive and for G additional
total. Regarding the limit conditions, for the logic F limitedness is required, and for the
logics F+(CM) and G smoothness. Limitedness ensures that for any non-empty set
of worlds satisfying a formula, there is at least one maximal world with respect to the
preference relation. Smoothness strengthens this by requiring that every world satisfying
a formula is either itself maximal or is strictly dominated by some maximal world.

Definition 2.4. (Limit conditions) Let M = ⟨W, ⪰,V⟩ be a model.

• M is limited if and only if for any formula φ if ∥φ∥M ̸= ∅ then max(∥φ∥M) ̸= ∅

• M is smooth if and only if for any formula φ and any world w ∈ ∥φ∥M there exists
a world u ∈ max(∥φ∥M) such that either u = w or u ≻ w.

Definition 2.5. A Formula φ is a theorem of Åqvist’s logic L if and only if M |= ϕ for
any preference model M that satisfies model conditions for logic L in Table 2.1.

A model M is called a countermodel if M ̸|= φ. It is called a L-countermodel if it
additionally fulfils the conditions for L in Table 2.1.

Regarding finite preference models, Rozblokhas showed that a model M = ⟨W, ⪰,V⟩
with a finite set of worlds W is:

• limited if ⪰ is acyclic [Roz24, Lemma 3.12],

7

2. Preliminaries on Åqvist’s Systems

• smooth if ⪰ is transitive [Roz24, Lemma 3.18].

This yields alternative semantic descriptions, where for finite models the properties of
limitedness and smoothness can be replaced by acyclicity and transitivity of the preference
relation, respectively. See Table 2.2 for the overview of this alternative characterisations
for all of Åqvist’s logics.

Theorem 2.1. A Formula φ is a theorem of Åqvist’s logic L if and only if M |= ϕ for
any preference model M that satisfies model conditions for logic L in Table 2.2.

Logic Cardinality of W Properties of ⪰
acyclic transitive total

E finite
F finite ✓

F+(CM) finite ✓
G finite ✓ ✓

Table 2.2: Finite-model characterisations for Åqvist’s logics (with maximality as the
notion of bestness), presented by Rozblokhas [Roz24, Fig. 3].

2.2 Axioms and Derived Principles
Since logic F extends S5, we present the axioms and inference rules of this system as
formalised by Chellas in [Che80, Section 1.2]. (T) is called the necessity axiom and (K)
the distribution axiom.

□φ → φ (T)

♦φ → □♦φ (5)

□(φ → ψ) → (□φ → □ψ) (K)

♦φ ↔ ¬□¬φ (Df♦)

φ where φ is a tautology (PL)

The inference rules of the system include the Rule of Necessitation and Modus Ponens.
φ

□φ
(RN)

φ → ψ φ

ψ
(MP)

E extends S5 by the following additional axioms, drawing from Parent’s presenta-
tion [Par21, Section 3.1].

8

2.3. Small Model Construction

⃝(ψ → χ | φ) → (⃝(ψ | φ) → ⃝(χ | φ)) (COK)

⃝(ψ | φ) → □⃝(ψ | φ) (Abs)

□φ → ⃝(φ | ψ) (Nec)

□(φ ↔ ψ) → (⃝(χ | φ) ↔ ⃝(χ | ψ)) (Ext)

⃝(φ | φ) (Id)

⃝(χ | φ ∧ ψ) → ⃝(ψ → χ | φ) (Sh)

F extends E by one extra axiom. Note that we use the equivalent formula ¬□¬A for
possibility ♦A, meaning that A must be true in at least one world.

¬□¬A → (⃝(B | A) → ¬⃝(¬B | A)) (D*)

F+(CM) and G extend logic F by adding the rule of Cautious Monotony and Specificity
Preservation, respectively.

(⃝(B | A) ∧ ⃝(C | A)) → ⃝(C | A ∧ B) (CM)

(¬⃝(¬B | A) ∧ ⃝(B → C | A)) → ⃝(C | A ∧ B) (Sp)

We also introduce two of the principles derived from the axioms of E by Parent [Par21].

If ⊢ B → C then ⊢ ⃝(B | A) → ⃝(C | A) (RW)

⃝(B | A) ∧ ⃝(C | A) → ⃝(B ∧ C | A) (AND)

2.3 Small Model Construction
A small model construction for every Åqvist’s logic L was presented in [Roz24]. He
shows, for an arbitrary L-countermodel M of some formula ϕ, how to construct an L-
countermodel with a polynomially bounded number of worlds with respect to |ϕ|.
Rozblokhas calls this process a rearrangement of a model.

A rearranged model consists of:

• a finite number of worlds from M

• copies of some of them

• a new preference relation on the selected worlds

The goal is to construct a rearranged model satisfying the same subformulas of ϕ as
the original model. For the modalities □ and ⃝, the evaluation in a world requires
consideration of other worlds. To distinguish between modalities that are validated and
those that are not by a model M , the following sets are defined:

9

2. Preliminaries on Åqvist’s Systems

• Box+: validated □φ formulas,

• Box−: non-validated □φ formulas,

• Ob+: validated ⃝(ψ | φ) formulas,

• Ob−: non-validated ⃝(ψ | φ) formulas.

Falsification in the rearranged model can be achieved by selecting an arbitrary world
from the corresponding set for the following cases:

• For the formula ϕ:
W \ ||ϕ||M

• For each formula □φ ∈ Box−:
W \ ||φ||M

• For each formula ⃝(ψ | φ) ∈ Ob−:

max(||φ||M) \ ||ψ||M

To select an arbitrary world from a set, the representation function rep : (2W \{∅}) → W
is used. The set of falsifying worlds is defined as follows.

Definition 2.6. (Falsifying worlds) For a model M = ⟨W, ⪰, V ⟩ such that M ̸|= ϕ,
Fal(ϕ, M) = rep(W \ ||ϕ||M) ∪ Fal□(ϕ, M) ∪ Fal⃝(ϕ, M), where Fal□(ϕ, M) = {rep(W \
||β||M) | □β ∈ Box−(ϕ, M)}, Fal⃝(ϕ, M) = {rep(max(||α||M) \ ||γ||M) | ⃝(γ | α) ∈
Ob−(ϕ, M)}.

Rozblokhas’ construction is based on blocks consisting of a set of worlds and a preference
relation on them.

Definition 2.7. A block on M is a tuple ⟨U, ⪰U ⟩ where U ⊆ W (M) and ⪰U is a binary
relation on U . We will use W (B) to refer to the set of worlds in B. For a given M
and U ⊆ W (M), we will consider the blocks of the following forms:

• antichain(U) = ⟨U, ⪰a⟩, where ⪰a is an empty relation;

• chain(S) = ⟨{wi}n
i=1, ⪰ch⟩ if S = [w1, . . . , wn] is a finite ordered sequence of worlds

and wi ⪰ch wj iff i ≤ j;

• clique(U) = ⟨U, ⪰cl⟩ where u1 ⪰cl u2 for all u1, u2 ∈ U .

Composite constructions combine blocks with an additional preference relation on them.
Their purpose is to generate a rearranged model for a given model.

10

2.4. Propositional encoding for Åqvist’s logics

Definition 2.8. (Composite construction) A composite construction on M is a
tuple ⟨L, ⪯L, B⟩ where L is a set of labels, ⪯L is a binary relation on L, and B is a labelling
function that maps every label from L into a block on M . Each composite construction
c = ⟨L, ⪯L, B⟩ on M = ⟨W, ⪯, V⟩ generates a model gen(c) = ⟨W gen, ⪯gen, Vgen⟩, where

• W gen = {(l, w) | l ∈ L, w ∈ W (B(l))};

• (l1, w1) ⪯gen (l2, w2) iff either l1 ⪯L l2 or both l1 = l2 and w1 ⪯U w2 for B(l1) =
⟨U, ⪯U ⟩;

• (l, w) ∈ Vgen(x) iff w ∈ V(x).

Figure 2.1 shows composite constructions for all of Åqvist’s logics. We will not go into
detail on how Rozplokhas developed the constructions and which conditions they fulfil.

2.4 Propositional encoding for Åqvist’s logics
[Roz24] provided an encoding of his small model constructions into classical propositional
logic (see Appendix C). Consistent with his method, these encodings cover all of Åqvist’s
logics.
For any given formula ϕ and logic L he defines a propositional formula FL(ϕ), which
is valid if and only if ϕ is valid in L. FL(ϕ) encodes a countermodel M for ϕ with
worlds {w1 . . . wN(ϕ)}, where N(ϕ) is the size bound which can be derived from the small
model constructions. Rozplokhas defines the following variables used in the encoding.

• pi,j for 1 ≤ i, j ≤ N(ϕ) encoding wi ⪰ wj

• vψ
i for 1 ≤ i ≤ N(ϕ) and φ ∈ SubF(ϕ) encoding M, wi |= ψ

If ψ is not a propositional variable, vψ
i depends on the v-variables for the immediate

subformulas of ψ. The dependences are encoded by the following set of propositional
equivalences.

Cev(ϕ) =
{︁

v¬ψ
i ⇐⇒ (¬vψ

i)
⃓⃓

(¬ψ) ∈ SubF(ϕ)
}︁

1≤i≤N(ϕ)

∪ {︁
vψ1∧ψ2

i ⇐⇒ (vψ1
i ∧ vψ2

i)
⃓⃓

(ψ1 ∧ ψ2) ∈ SubF(ϕ)
}︁

1≤i≤N(ϕ)

∪ {︁
v□β

i ⇐⇒ (︁ ⋀︁N(ϕ)
j=1 vβ

j

)︁ ⃓⃓
(□β) ∈ SubF(ϕ)

}︁
1≤i≤N(ϕ)

∪ {︁
v

⃝(γ | α)
i ⇐⇒ (︁ ⋀︁N(ϕ)

j=1 (vγ
j ∨ ¬vα

j ∨ (︁ ⋁︁N(ϕ)
t=1 (pt,j ∧ ¬pj,t ∧ vα

t)
)︁
)
)︁⃓⃓ ⃝(γ | α) ∈ SubF(ϕ)

}︁
1≤i≤N(ϕ)

To encode transitivity and totality of ⪰, based on their definitions, the following sets of
formulas are used.

Ctrans(ϕ) = { (pi,j ∧ pj,k) =⇒ pi,k }1≤i,j,k≤N(ϕ)

Ctotal(ϕ) = { pi,j ∨ pj,i }1≤i,j≤N(ϕ)

11

2. Preliminaries on Åqvist’s Systems

(a) SMC E(ϕ, M)

falv1 falvn

orbv1 orbvn

cloud1

cloud2cloud3

(b) SMC F(ϕ, M)

falv1 falvn

orbv1 orbvn

ray

(c) SMC F+(CM)(ϕ, M)

falv1 falvn

c-rayv1 c-rayvn

(d) SMC G(ϕ, M)

groupS1

g-rayS1

groupSn

g-raySn

Figure 2.1: Small model constructions for Åqvist’s logics developed in [Roz24, Fig. 2].
Gray circles represent worlds, dashed rectangles represent blocks. Symbol inside a block
indicates an antichain, indicates a chain, and indicates a clique. Solid arrows
represent the preference relation ⪰L between blocks: an arrow from a block l1 to a block
l2 means l2 ⪰L l1. The arrow between blocks in construction SMC G(ϕ, M) means
that there is a linear order on blocks. Note that the preference relation in constructions
SMC E(ϕ, M) and SMC F(ϕ, M) is not transitive.

The relation ⪰ is acyclic, if there exists a relation ⪰t that is transitive, irreflexive and
contains ⪰. Using additional variables ti,j for 1 ≤ i, j ≤ N(ϕ) encoding the fact wi ⪰t wj ,
we encode acyclicity with the following set of formulas.

Cacyclic(ϕ) = { (ti,j ∧ tj,k) =⇒ ti,k }1≤i,j,k≤N(ϕ)

∪ { ¬ti,i }1≤i≤N(ϕ)

∪ { pi,j =⇒ ti,j }1≤i,j≤N(ϕ)

To encode the countermodels for all of Åqvist’s logics, we combine the sets of formulas in

12

2.4. Propositional encoding for Åqvist’s logics

the following ways. The encoded models falsify ϕ in world w1.

FE(ϕ) = ¬vϕ
1 ∧

⋀︂
Cev(ϕ)

FF(ϕ) = ¬vϕ
1 ∧

⋀︂
Cev(ϕ) ∧

⋀︂
Cacyclic(ϕ)

FF+(CM)(ϕ) = ¬vϕ
1 ∧

⋀︂
Cev(ϕ) ∧

⋀︂
Ctrans(ϕ)

FG(ϕ) = ¬vϕ
1 ∧

⋀︂
Cev(ϕ) ∧

⋀︂
Ctrans(ϕ) ∧

⋀︂
Ctotal(ϕ)

13

CHAPTER 3
Formula Parsing

This chapter describes how formulas are parsed within the tool, from input syntax to
internal object representations. We introduce the supported operators and their catego-
rization, explain how formulas are tokenized and parsed based on operator precedence,
and describe the handling of associative operations and error feedback.

We allow eight operators, which can be categorised hierarchically as seen in Figure 3.1.
There are two unary operators, negation and necessity, and six binary operators. The
binary operators can further be grouped into associative and non-associative ones, which
are implication and the conditional obligation. This distinction will be important for the
encoding of formulas.

For the associative operators we introduce the new categories dominant-value operations
and parity-dependent operations. The result of a dominant-value operation can be
determined by the presence or absence of a single dominant value. A disjunction is true
if one of its arguments is true and a conjunction is true if none of its arguments is false.
For parity-dependent operations the result depends on the parity of true or false values.
Exclusive or yields true if and only if the number of true arguments is odd. Analogously
the result of an equality is true exactly if the number of false arguments is even. More
detailed explanations of these categories can be found in sections 4.3.1 and 4.3.2, where
we will use their properties for the simplification of formulas.

Formulas are internally represented by objects for top, bottom, variables, and composed
formulas using operators on variables and constants. For each operation there is one object
type representing composed formulas using this operation on formula objects. Objects
for unary and binary operations save one and two formulas as arguments respectively.
Binary operations are stored in the exact way they are input by the user, preserving the
order of the arguments.

When checking if two binary operation objects are equal the method depends on the
properties of the operation.

15

3. Formula Parsing

operators

binary

associative

parity-dependent

↔⊕

dominant-value

∨∧

non-associative

⃝(· | ·)→

unary

□¬

Figure 3.1: Hierarchical Categorisation of Operators

For non-associative operations we simply check if the first and second arguments are
equal respectively.

But if the operation is associative we need to consider all arguments connected with the
same operators. As an example, we consider the formula ¬b ⊕ a ⊕ □z. Figure 3.2 shows
two different object representations of the formula, which correspond to the formulas
(¬b ⊕ a) ⊕ □z and ¬b ⊕ (a ⊕ □z). Although the formulas are equivalent, the objects
would not be considered equivalent only comparing their two arguments.

ExclusiveOr

ExclusiveOr

Negation

b

a

Necessity

z

(a) ExclusiveOr(ExclusiveOr(Negation(b),
a), Necessity(z))

ExclusiveOr

Negation

b

ExclusiveOr

a Necessity

z

(b) ExclusiveOr(Negation(b), ExclusiveOr(a,
Necessity(z)))

Figure 3.2: Two different object representations of the formula ¬b ⊕ a ⊕ □z.

To properly group arguments of an associative operation across various object structures,
we go recursively through the operation objects on two arguments to gather arguments
sharing the same operator. One can imagine the recursive argument extraction as a
depth first search over the syntax tree of the formula.

For instance by traversing the syntax tree of the formula r ∧ r′ ∧ □s ∧ (¬t ⊕ (u ∧ v))

16

shown in Figure 3.3 we obtain the following list of arguments.

[r, r′,□s, (¬t ⊕ (u ∧ v)]

∧

∧

∧

r r′

□

s

⊕

¬

t

∧

u v

Figure 3.3: Syntax Tree of r ∧ r′ ∧ □s ∧ (¬t ⊕ (u ∧ v))

Comparing the list of arguments the object representations in Figure 3.2 are considered
equal.

To deal with different orders of the arguments such as in the formulas a∨b∨c and b∨a∨c,
we sort the arguments first.

Therefore we need an order on formulas.

Let’s start by defining a function giving the kind of a formula.

Definition 3.1. (Kind of a formula)

Kind(φ) =

������������������������������������������������

Bottom if φ = ⊥
Top if φ = ⊤
Variable if φ ∈ Var
Negation if φ is of the form ¬φ1

Necessity if φ is of the form □φ1

Conjunction if φ is of the form (φ1 ∧ φ2)
Disjunction if φ is of the form (φ1 ∨ φ2)
ExclusiveOr if φ is of the form (φ1 ⊕ φ2)
Implication if φ is of the form (φ1 → φ2)
Equality if φ is of the form (φ1 ↔ φ2)
Obligation if φ is of the form ⃝ (φ1 | φ2)

where φ1, φ2 ∈ SubF(φ)

We define an order on all kinds of the formulas.

17

3. Formula Parsing

Definition 3.2. (Order on kinds)

Bottom <k Top <k V ariable <k Negation <k Necessity <k Implication

<k Obligation <k Conjunction <k Disjunction <k ExclusiveOr <k Equality

This order is used in the order on formulas.

Definition 3.3. (Order on formulas)

φ <f ψ ⇔ Kind(φ) <k Kind(ψ)
∨ (Kind(φ) = Kind(ψ) ∧ c(φ, ψ))

c(φ, ψ) ⇔

��������������

false if k ∈ {Bottom, Top}
φ <lex ψ if k = Variable
Arg(φ) = Arg(ψ) if k ∈ {Negation, Necessity}
l(φ) < l(ψ) ∨ (l(φ) = l(ψ) ∧ r(φ) < r(ψ)) if k ∈ {Implication, Obligation}
Args(φ) <l Args(ψ) otherwise

where k = Kind(φ) = Kind(ψ).

The following auxiliary functions are used:

• l(φ) = φ1 for φ = (φ1 → φ2) or φ = ⃝(φ1 | φ2)

• r(φ) = φ2 for φ = (φ1 → φ2) or φ = ⃝(φ1 | φ2)

• Arg(φ) = ψ for φ = ¬ψ or φ = □ψ

• Args(φ) = [φ1, . . . , φn] for φ = f(φ1, . . . , φn) and f ∈ {∧, ∨, ⊕, ↔}

As a final step, we define an order on lists of formulas.

Definition 3.4. (Order on lists of formulas)

[φ1, . . . φn] <l [ψ1, . . . ψn] ⇔ n < m

∨ (n = m

∧ ∃ k ≤ n s.t. ∀ 1 ≤ i < k. αi = βi ∧ αk <f βk)

where [α1, . . . αn] and [β1, . . . βm] are the recursive orderings of [φ1, . . . φn] and [ψ1, . . . ψm]
respectively.

Note that this definition is an instance of structural recursion over the inductively defined
set of formulas. It is well-founded because each recursive step is applied to the structurally
simpler subformulas.

The arguments of associative operation objects are sorted by the defined formula order
to ensure that equivalent formulas map to identical argument lists.

18

3.1. Input Format

3.1 Input Format
The input format uses infix notation with single characters or combinations of characters
representing the allowed operators, as shown in Table 3.1. The characters ’∼’, ’&’, ’/’
and ’#’ can be used for negation, conjunction, disjunction and exclusive or, respectively.
For implication the strings ”− >” and ”< −” can be used and ”< − >” for equality.
Obligation is represented by a combination of ’O’, parenthesis and ’|’.
To represent true or false the worlds themselves can simply be written, as the parser is
case-insensitive only in this case.

Table 3.1: Allowed Operations and Constants

Operation Name Input Symbols/Strings Display Symbol
Negation ∼ ¬
Necessity [] □
Conjunction & ∧
Disjunction / ∨
Exclusive Or # ⊕
Obligation O(· | ·) ⃝(· | ·)
Implication − >, < − →, ←
Equality < − > ↔
Top true ⊤
Bottom false ⊥

3.1.1 Identifier syntax
The variable nomenclature is based on Haskell’s conventions, which are well suited for
mathematical variables and include the helpful prime to denote a modified version of a
variable (e.g. x′).

Haskell only allows variable names that start with a lowercase letter [M+10], whereas this
tool also accepts names starting with an uppercase letter. Variable names must begin
with a letter, which can be lowercase or uppercase. After the initial letter, identifiers can
include:

• lowercase and uppercase letters

• digits

• underscore _

• prime ’

More formally, the syntax for identifiers can be described in a Backus-Naur Form (BNF)
style.

19

3. Formula Parsing

⟨identifier⟩ ::= ⟨letter⟩ ⟨id⟩∗

⟨id⟩ ::= ⟨letter⟩ | ⟨digit⟩ | ’ | _
⟨letter⟩ ::= a | · · · | z | A | · · · | Z
⟨digit⟩ ::= 0 | · · · | 9

3.2 Operator Precedence
The unary operators, negation and necessity, have the highest precedence. Conjunction
has the highest precedence of the binary operators, followed by disjunction and exclusive
or with the same precedence. Implication and equality have a lower precedence and
obligation has the weakest.

Table 3.2 shows the operators ordered from highest to lowest precedence.

Table 3.2: Operator Precedence

Operator Symbol Precedence Value
Negation, Necessity ¬,□ 5
Conjunction ∧ 4
Disjunction, Exclusive Or ∨, ⊕ 3
Implication, Equality →, ←, ↔ 2
Obligation ⃝(· | ·) 1

3.3 Tokenizing
The parser starts by tokenizing the input string, as shown in the first line of Algorithm 3.1.
Operator symbols are stored as characters in the token list, where operators entered
as multiple characters are replaced by a certain representing symbol, which are shown
in Table 3.3. Other characters are concatenated to a string and if they form the
string ”true”, ”false” or a valid variable name the corresponding object is created.

Table 3.3: Symbol Equivalents

Symbols Single Symbol
[] *
-> }
<- {

<-> =

Consider the following input string.

a & ((b & c) / ∼d) & ∼[]e

20

3.4. Parsing Tokens

The resulting token list will appear as follows, where bold, coloured parts represent
formula objects.

[a, &, (, (, b, &, c,), /, ∼, d,), &, ∼, *, e]

In the tokenizing process we check if only allowed symbols are used in the intended
way and if the variable names are valid. Any remaining errors in the input format are
discovered during the next parsing step.

3.4 Parsing Tokens
The parsing of the token list is done recursively, where in the first step we handle
parenthesis, as described in Algorithm 3.1, lines 2 to 4. We go through the parsing
process of the following input string, starting with the call of the function described in
Algorithm 3.2. We find the leftmost (opening) parenthesis and the associated closing
parenthesis (lines 1 and 2).

a & (b & c / ∼ d) & ∼ * e

The sublist of tokens within parenthesis are parsed first, i.e. the parsing method is called
recursively. When the token list contains no parenthesis, we handle the operators in the
list until we obtain a singleton list, see lines 5 to 7 of Algorithm 3.1. As described in
lines 1 and 2 of Algorithm 3.3, we start by finding the leftmost operator with the highest
precedence. Because of the highest precedence values, the unary operators are selected
first.

b &
4

c /
3

∼
5

d

We replace the unary operator symbol and the token to the right of it as an argument by
an accordingly new formula object (see lines 3 to 8 of Algorithm 3.3), in our example a
negation of the variable d.

b &
4

c /
3

¬d

When a binary operator is selected we combine the arguments to the left and right to a
new object which replaces the three tokens (see lines 9 to 13 of Algorithm 3.3).

b ∧ c /
3

¬d

After the last operator got handled, the algorithm returns the following single formula
object in the token list (see line 8 of Algorithm 3.1).

(b ∧ c) ∨ ¬d

21

3. Formula Parsing

The whole parenthesis term gets replaced by the result of the recursive call of handle-
Parenthesis (see line 5 of Algorithm 3.2). We can now handle the remaining operators.

a &
4

(b ∧ c) ∨ ¬d &
4

∼
5

∗
5

e

If multiple unary operators are next to each other, the algorithm selects the most left
of them. We iteratively form an object from all these consecutive operators and the
argument on the right. Therefore go through the unary operators from right to left and
stepwise build a single object.

∼ ∗ e

∼ □e

¬□e

The row of unary operators and the token after them get replaced by the single object.
a &

4

(b ∧ c) ∨ ¬d &
4

¬□e

For multiple occurrences of an operator on the same level, the algorithm first handles the
leftmost of them, because of left associativity. To implement right associative operators,
we would need to check if multiple occurrences of the operator with the highest precedence
are in the token list and select the most right one.

a ∧ ((b ∧ c) ∨ ¬d) &
4

¬□e

The parsing algorithm returns the following formula object for the original input string.
a ∧ ((b ∧ c) ∨ ¬d) ∧ ¬□e

Algorithm 3.1: parseFormula
Data: A formula string inputString
Result: The parsed formula

1 tokenList ← tokenise(inputString);
2 while tokenList.contains(’(’) do
3 handleParenthesis(tokenList);
4 end
5 while size(tokens) > 1 do
6 handleOperator(tokenList);
7 end
8 return tokenList[0];

22

3.4. Parsing Tokens

Algorithm 3.2: handleParenthesis
Data: A list of tokens tokenList

1 open ← index of first ’(’ in tokenList;
2 close ← index of matching ’)’ in tokenList starting from openIndex;
3 subTokens ← tokenList[openIndex + 1 .. closeIndex − 1];
4 result ← parseFormula(subTokens);
5 tokenList[open .. close] ← [result]

Algorithm 3.3: handleOperator
Data: A list of tokens tokenList

1 opIndex ← index of leftmost operator in tokenList with highest precedence;
2 operator ← tokenList[opIndex]
3 if operator is unary then
4 start ← opIndex;
5 end ← index of first formula object from opIndex;
6 operandTokens ← tokenList[opIndex + 1 .. end];
7 result ← createUnaryFormula(operator, operandTokens);
8 end
9 else

10 start ← opIndex − 1;
11 end ← opIndex + 1;
12 result ← createBinaryFormula(operator, start, end);
13 end
14 tokenList[start .. end] ← [result]

3.4.1 Obligation check
The two operators ’O’ and ’|’ for obligation are only allowed together and combined with
parenthesis. A variable cannot be named ’O’ such as in the following input string.

O & P

We interpret ’|’ as obligation and check if it is only used in combination with ’O’. It is
crucial that the obligation has the lowest precedence value, as stated in Table 3.2, such
that the obligation operator ’|’ is always selected last within one recursion level.

For instance parsing the following string, we handle the parenthesis and select the
obligation after the implication and obtain an obligation object.

O(x -> y | z)

When parenthesis get handled and there is an ’O’ in front of the opening parenthesis, we
check if the object obtained from handling the parenthesis term is an obligation formula.
For instance these inputs would lead to a parser error.

23

3. Formula Parsing

O(n # m)

O(x)

Also the other way around, if there is no ’O’ in front of parenthesis, the obtained object
must not be an obligation object. Take a look at this invalid input string.

(x | x’) / y

We also have to take care of recursion level 0. Before returning the final parsed formula,
when the result is an obligation object we check if the input string begins with an ’O’. So
for instance the following input string leads to a parser error.

[]a / b | ∼c & d

3.5 Parser Error Feedback
To give precise feedback about a possible parser error, we also want to know where it
occurred. For calculating the position we create and maintain a list of the token lengths
additional to the token list itself.

Example

We go through an example with the following input string.

x’ & true / <-> [] x

After tokenizing we obtain the following tokens with their lengths noted below. Note that
the lengths refer to the input string, hence we store a length of 4 for ’⊤’ and a length
of 3 for ’=’.

x′

2

&
1

⊤
4

/
1

=
3

∗
2

x
1

Each time we replace tokens by an expression, because we handled an operator or
parenthesis recursively, we sum up the lengths of the processed tokens.

x′

2

&
1

⊤
4

/
1

=
3

□x
3

x′ ∧ ⊤
7

/
1

=
3

□x
3

24

3.5. Parser Error Feedback

In the next step the algorithm selects the operator symbol /, where we find an operator
symbol as the second argument. To calculate the position of ’=’ we sum up the lengths
of the tokens x′ ∧ ⊤ and ’/’ to the left of it, which results in 8.

To show the position of the error to the user, we display the input string without spaces
in a monospaced font with an indicator below, as shown in Figure 3.4. The number of
blanks before the indicator is the position we calculated before.

Figure 3.4: Error Feedback Example

Figure 3.5 shows several examples for error feedback.

25

3. Formula Parsing

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.5: Examples for parser error feedback

26

CHAPTER 4
Simplification of Formulas

Before encoding a formula into propositional logic, we aim to simplify it as much as possible.
Simplifications that reduce the number of necessity and conditional obligation operators
also reduce the upper bound on the number of worlds required for a countermodel, leading
to the largest reduction in encoding size.

Simplification serves two main purposes, first, reduction of the size of the resulting
propositional encoding, and second, it can eliminate semantic redundancies, which not
only improves performance but also helps express the logical structure of the formula
more clearly.

In this chapter we present simplification rules. They are designed to preserve logical
equivalence, ensuring that a simplified formula is satisfied by a model if and only if it is
satisfied by the original formula. Therefore, they naturally also preserve satisfiability and
validity of the formula. While some simplifications are purely syntactic, others rely on
semantic properties of the underlying logic, such as modal axioms or the interpretation
of deontic operators.

The simplifications are applied bottom-up, ensuring that subformulas are simplified before
their parent expressions. This strategy prevents missed opportunities for simplification
in nested contexts.

In the following sections, we define simplification rules for each type of operator.

4.1 Simplification of unary Operations
4.1.1 Negation
For negation we can simplify basic Boolean negations and double negation.

(Neg1) ¬⊤ −→ ⊥

27

4. Simplification of Formulas

(Neg2) ¬⊥ −→ ⊤

(Neg3) ¬¬φ −→ φ

4.1.2 Necessity
Analogously to double negation, we have idempotents of the necessity operation.

(Nec1) □□φ −→ □φ

Proof. To prove the correctness of the rule, we show that both directions of the equivalence
hold.

(⇒) Assume □□φ. By the T-axiom of system, we obtain □φ.

(⇐) From □φ, we derive □□φ by the Rule of Necessitation.

Since both directions hold, we conclude that

□□φ ≡ □φ.

The necessity operator applied to the constants ⊤ and ⊥ can be eliminated, since they
have the same value for all worlds by definition.

(Nec2) □⊤ −→ ⊤

Proof. We prove the correctness of the rule by showing that □⊤ is a tautology.

By definition, in every model, ⊤ holds in all worlds. Therefore, the formula □⊤ also
holds in all models. Hence, □⊤ is a tautology.

(Nec3) □⊥ −→ ⊥

Proof. We validate this rule by proving that □⊥ cannot be satisfied in any model.

Assume □⊥ holds. By the semantics of the necessity operator, this means that ⊥ must
hold in all worlds. However, ⊥ is false in every world by definition. This results in a
contradiction. Therefore, □⊥ is unsatisfiable.

A necessity operator in front of an obligation formula can be dropped.

(Nec4) □ ⃝ (φ | ψ) −→ ⃝(φ | ψ)

28

4.2. Simplification of non-associative Operations

Proof. The correctness of the simplification rule is shown by proving the logical equivalence
between both sides. This is done by proving the implication in both directions.

(⇒) Assume □ ⃝ (φ | ψ). By the absoluteness axiom (Abs) we obtain ⃝(φ | ψ).

(⇐) Assume ⃝(φ | ψ). By the reflexivity axiom (T) of necessity, we obtain □⃝ (φ | ψ).

Since both directions hold, we conclude that

⃝(φ | ψ) ≡ □ ⃝ (φ | ψ).

4.2 Simplification of non-associative Operations
4.2.1 Obligation
If an obligation has the same argument in both positions, the formula is always true.

(O1) ⃝(φ | φ) −→ ⊤

Proof. The formula ⃝(φ | φ) holds in all models by axiom (Id).

We can simplify obligation statements with a Boolean constant as one of the arguments.

(O2) ⃝(⊤ | φ) −→ ⊤

Proof. Since ⊤ holds in all worlds by definition, it also holds in all best worlds satisfying
any formula φ. Therefore ⃝(⊤ | φ) holds in all models.

(O3) ⃝(φ | ⊥) −→ ⊤

Proof. Assume ⃝(φ | ⊥). Then φ would hold in all best worlds satisfying ⊥. There
exists no world satisfying ⊥. Hence ⃝(φ | ⊥) is true in every model.

To derive a rule for simplifying the formula ⃝(⊥ | ⊤), we introduce several theorems
that provide the necessary foundation.

Theorem 4.1. The formula ⃝(⊥ | ⊤) holds in a model, if there exists no best world.

Proof. Assume ⃝(⊥ | ⊤), i.e. ⊥ holds in all best worlds satisfying ⊤. Since ⊤ is valid
(i.e., it holds in all worlds), the best worlds relative to ⊤ are simply the best worlds
overall. Therefore ⊥ holds in all best worlds.

Let us assume there is a best world in a model satisfying the formula. Because of ⃝(⊥ | ⊤)
this world satisfies ⊥. This contradicts the definition of ⊥. We conclude that there are
no best worlds in any model satisfying ⃝(⊥ | ⊤).

29

4. Simplification of Formulas

Theorem 4.2. There exists a model in logic E which has no best world.

Proof. Let M = ⟨W, ⪰,V⟩ with W = {w1, w2, w3} and ⪰= {(w1, w2), (w2, w3), (w3, w1)}
be a model in logic E. In M none of the worlds w1, w2, w3 is a best world because of
w3 ⪰ w1, w1 ⪰ w2, and w2 ⪰ w3, respectively. Therefore, no best world exists in the
model M .

Theorem 4.3. In every model in logic F, F+(CM), or G there exists a best world.

Proof. F:
Let M = ⟨W, ⪰,V⟩ be a model in logic F, i.e. ⪰ is acyclic.
We assume for contradiction that no best world exists.
Then for every w ∈ W , there exists v ∈ W such that v ≺ w.
There are two possible ways in which this can occur:
Case 1:
We have an infinite descending chain.

· · · ≺ w3 ≺ w2 ≺ w1

Since W is finite, such a chain cannot exist.
Case 2:
The preference relation contains a cycle.

w1 ≺ wl ≺ · · · ≺ w2 ≺ w1

This contradicts the acyclicity of ⪰.
Since we have a contradiction in every case, there exists a best world in each model with
a finite set of worlds and an acyclic preference relation, i.e. in each model for logic F.

F+(CM), G:
Let M = ⟨W, ⪰,V⟩ be a model, where ⪰ is transitive.
Suppose, for contradiction, that the model contains no best world.
Given any world w ∈ W , there is always a world v ∈ W such that v ≺ w holds.
This yields an infinite descending chain.

· · · ≺ w3 ≺ w2 ≺ w1

Since W is finite, so such a chain cannot exist.
Hence, there must be at least one w ∈ W such that no v ∈ W satisfies v ≺ w.
Such a w is maximal under ⪯, i.e., a best world.
Therefore, every finite model in F+(CM) and G has at least one best world.

From Theorems 4.1, 4.2, and 4.3, we derive the following result.

30

4.2. Simplification of non-associative Operations

Theorem 4.4. The formula ⃝(⊥ | ⊤) is valid in every model of the logics F, F+(CM),
and G. But, it is not valid in the logic E.

̸|=E ⃝(⊥ | ⊤) and |=L ⃝(⊥ | ⊤) for all L ∈ {F, F+(CM), G}.

Proof. We proceed by case analysis over the logics.

F, F+(CM), G:
By Theorem 4.1, the formula ⃝(⊥ | ⊤) holds in a model only if there are no best worlds.
By Theorem 4.3, every model in logic F, F+(CM), and G does have at least one best
world.
Hence, ⃝(⊥ | ⊤) is false in all models of these logics.

E:
By Theorem 4.2, there exists a model in logic E in which no best world exists.
By Theorem 4.1, it follows that ⃝(⊥ | ⊤) is true in this model.
Therefore, ⃝(⊥ | ⊤) is not equivalent to ⊥ in logic E, since it can be true.

The following simplification rule, supported by Theorem 4.4, holds in all of Åqvist’s logics
except E.

(O4) ⃝(⊥ | ⊤) −→ ⊥

We can simplify obligation in some cases when it gets combined with other operations.

⃝(φ | φ ∧ ψ) ≡ ⊤

Proof. By the identity principle (Id), we have:

⊢ ⃝(φ ∧ ψ | φ ∧ ψ).

Since ⊢ φ ∧ ψ → φ, we can apply the rule of right weakening (RW), which gives:

⊢ ⃝(φ ∧ ψ | φ ∧ ψ) → ⃝(φ | φ ∧ ψ).

Therefore, ⃝(φ | φ ∧ ψ) holds in all models, i.e., is a tautology.

We use this result to derive the following generalised simplification rule for obligations
with conjunctive conditions.

(O5) ⃝(φi |
n⋀︂

j=1
φj) −→ ⊤ for 1 ≤ i ≤ n

31

4. Simplification of Formulas

We can apply similar reasoning when the consequent of an obligation is a disjunction
implied by the condition.

⃝(φ ∨ ψ | φ) ≡ ⊤

Proof. We know that ⊢ φ → φ ∨ ψ, which is a tautology of propositional logic.

By the rule of right weakening (RW), this yields:

⊢ ⃝(φ | φ) → ⃝(φ ∨ ψ | φ).

By the (Id), we also have:
⊢ ⃝(φ | φ).

Applying modus ponens, we conclude:

⊢ ⃝(φ ∨ ψ | φ).

Thus, the formula ⃝(φ ∨ ψ | φ) holds in all models, and is therefore a tautology.

This gives rise to the following simplification rule for obligations with disjunctive conse-
quents.

(O6) ⃝(
n⋁︂

j=1
φj | φi) −→ ⊤

We can simplify obligations whose condition is the necessity of the obligated formula.

⃝(φ | □φ) ≡ ⊤

Proof. We begin with the tautology ⊢ □φ → φ, that we obtain from the (T)-axiom.

By the right weakening rule (RW), this gives:

⊢ ⃝(□φ | □φ) → ⃝(φ | □φ).

By the deontic identity principle (Id), we have:

⊢ ⃝(□φ | □φ).

Applying modus ponens, we conclude:

⊢ ⃝(φ | □φ).

Thus, ⃝(φ | □φ) holds in all models, i.e. it is a tautology.

This leads to the following simplification rule for obligations with a necessary condition.

(O7) ⃝(φ | □φ) −→ ⊤

32

4.3. Simplification of associative Operations

4.2.2 Implication
An implication from an expression to the same one is true, so it can be replaced by ⊤ in
any formula for simplification.

(I1) φ → φ −→ ⊤

If at least one of the arguments of implication is top or bottom, we can simplify it with
one of the following rules.

(I2) ⊤ → φ −→ φ

(I3) ⊥ → φ −→ ⊤

(I4) φ → ⊤ −→ ⊤

(I5) φ → ⊥ −→ ¬φ

We can simplify Boolean expressions when they are implied by their complements in the
following ways.

(I6) ¬φ → φ −→ φ

(I7) φ → ¬φ −→ ¬φ

Regarding a combination of implication with necessity the following simplification rules
can be applied.

(I8) □φ → φ −→ ⊤

Proof. This formula holds in all models by the T-axiom of the system S5.

(I9) ¬φ → ¬□φ −→ ⊤

Proof. By the T-axiom of the system S5 [Che80], □φ → φ holds in all models. Taking the
contraposition gives ¬φ → ¬□φ, which is logically equivalent. Therefore, the implication
holds in all models.

4.3 Simplification of associative Operations
For associative operations, simplification is best performed over multiple arguments.
If done only pairwise, simplifications such as the following could be missed, since the
duplicated arguments are not next to each other.

⃝(b | a) ∧ b ∧ ⃝(b | a) −→ ⃝(b | a) ∧ b

33

4. Simplification of Formulas

We use the list of extracted arguments described in the introduction of Chapter 3, where
here the sorting of the arguments is not necessary.

The simplification procedures use the function make which constructs a formula from
a given list of arguments. For instance the make-function for conjunction forms the
following conjunction out of the list [□s, t, ⊤, ¬r].

□s ∧ t ∧ ⊤ ∧ ¬r

Given a list with a single argument the function simply returns that argument.

4.3.1 Simplification of Dominant-value Operations
As discussed in Chapter 3 conjunction and disjunction can be grouped under the term
dominant-value operations. These operations have elements, shown in Table 4.1, with
certain properties and which we use in their simplification. These characteristic elements,
as well as duplicated and complementary arguments are handled in the same way, such
that we can come up with a general simplification procedure for these operations. These
properties are caused by their duality through De Morgan’s law.

φ ∨ ψ ≡ ¬ (¬φ ∧ ¬ψ)

The result of dominant-value operations can be determined by a certain truth constant
in specific cases. We call this constant the absorbing element. A conjunction containing
the false constant as an argument is always false, and analogously a disjunction with the
argument true constant is always true.

φ ∧ ⊥ ≡ ⊥
φ ∨ ⊤ ≡ ⊤

The respective other true constant, when combined with another element, leaves the
argument unchanged. We call this constant the neutral element, since this behaviour is
analogous to the role of 0 in addition (x + 0 = 0) and 1 in multiplication (x · 1 = x).

φ ∧ ⊤ ≡ φ

φ ∨ ⊥ ≡ φ

Table 4.1: Characteristic Elements for dominant-value operations

Operation Neutral Element Absorbing Element
Conjunction ⊤ ⊥
Disjunction ⊥ ⊤

Using the properties of the absorbing element we define the following simplification rules
for conjunction and disjunction of multiple arguments.

34

4.3. Simplification of associative Operations

(C1)
n⋀︂

i=1
φi −→ ⊥ if ∃ i such that φi = ⊥

(D1)
n⋁︂

i=1
φi −→ ⊤ if ∃ i such that φi = ⊤

The following simplification rules handle the neutral element of both dominant-value
operations.

(C2)
n⋀︂

i=1
φi −→

⋀︂
1≤i≤n
φi ̸=⊤

φi if ∃ i such that φi ̸= ⊤

(D2)
n⋁︂

i=1
φi −→

⋁︂
1≤i≤n
φi ̸=⊥

φi if ∃ i such that φi ̸= ⊤

These rules address cases in which every argument is the neutral element.

(C3)
n⋀︂

i=1
⊤ −→ ⊤

(D3)
n⋁︂

i=1
⊥ −→ ⊥

For both operators the combination of complementary arguments result in their respective
absorbing element.

φ ∧ ¬φ ≡ ⊥
φ ∨ ¬φ ≡ ⊥

Therefore, dominant-value operations over multiple formulas can also be reduced to their
absorbing element if they contain a pair of complementary arguments.

(C4)
n⋀︂

i=1
φi −→ ⊥ if ∃ j, k such that φj = ¬φk

(D4)
n⋁︂

i=1
φi −→ ⊤ if ∃ j, k such that φj = ¬φk

In the case of conjunctions, we additionally check for contradictory Boolean expressions
involving necessity.

□φ ∧ ¬φ ≡ ⊥

35

4. Simplification of Formulas

Proof. Assume □φ ∧ ¬φ holds.

• From □φ, it follows that φ holds in all worlds.

• From ¬φ, it follows that φ does not hold in the actual world.

This leads to a contradiction. Therefore, the conjunction is unsatisfiable.

φ ∧ □¬φ ≡ ⊥

Proof. Assume φ ∧ □¬φ holds.

• From φ, it follows that φ holds in the actual world.

• From □¬φ, it follows that ¬φ holds in all worlds, including the actual world.

This results in a contradiction. Hence, the conjunction is unsatisfiable.

□φ ∧ □¬φ ≡ ⊥

Proof. Assume □φ ∧ □¬φ holds.

• From □φ, it follows that φ holds in all worlds.

• From □¬φ, it follows that ¬φ holds in all worlds.

This creates a contradiction, since φ and ¬φ cannot both hold in any world. Thus, the
conjunction is unsatisfiable.

The following additional rules simplify a conjunction to ⊥ when it contains two arguments
that form contradictions involving stronger modalities, which are not covered by the
general complementary argument rules.

(C5)
n⋀︂

i=1
φi −→ ⊥ if ∃ i, j such that φi = □ψ and φj = ¬ψ

(C6)
n⋀︂

i=1
φi −→ ⊥ if ∃ i, j such that φi = ψ and φj = □¬ψ

(C7)
n⋀︂

i=1
φi −→ ⊥ if ∃ i, j such that φi = □ψ and φj = □¬ψ

Conjunction and disjunction of the same argument can be reduced to the argument itself.

(C8)
n⋀︂

i=1
φi −→

⋀︂
ψ∈{φi | 1≤i≤n}

ψ if ∃ i, j s.t. i ̸= j ∧ φi = φj

36

4.3. Simplification of associative Operations

(D5)
n⋁︂

i=1
φi −→

⋁︂
ψ∈{φi | 1≤i≤n}

ψ if ∃ i, j s.t. i ̸= j ∧ φi = φj

The combination of necessities and obligations yields simplification rules for dominant-
value operations that provide the greatest reduction in formula size, since we can reduce
the number of worlds required in the countermodel. Necessities can be combined using

□(φ) ∧ □(ψ) ≡ □(φ ∧ ψ)

Proof. We prove both directions of the equivalence.

(⇒) The direction from left to right is given by the distribution axiom K of necessity.

(⇐) We assume □(φ∧ψ). This means that in every world, the formula φ∧ψ holds. Since
φ ∧ ψ implies both φ and ψ, it follows that in each world:

φ holds and ψ holds.

Therefore, □φ and □ψ both hold. Consequently, □φ ∧ □ψ is true.

Since both directions hold, we conclude:

□(φ) ∧ □(ψ) ≡ □(φ ∧ ψ)

We can now use this equivalence to simplify conjunctions that mix necessity formulas
with non-modal components.

(C9)
n⋀︂

i=1
φi −→

 ⋀︂
Kind(φi) ̸=Necessity

φi

 ∧ □

 ⋀︂
φj=□ψj

ψj


A similar equation holds for obligations with a common condition.

⃝(φ | χ) ∧ ⃝(ψ | χ) ≡ ⃝(φ ∧ ψ | χ)

Proof. We prove the equation by showing the implications in both directions.

(⇒) This direction is given by the conjunction principle (And) derived from logic E.

(⇐) We assume ⃝(φ ∧ ψ | χ). This means that in all best worlds satisfying χ, the
formula φ ∧ ψ holds.

From this, it follows that in those same best χ-worlds:

• φ holds, hence ⃝(φ | χ).

37

4. Simplification of Formulas

• ψ holds, hence ⃝(ψ | χ).

Therefore, it follows that ⃝(φ | χ) ∧ ⃝(ψ | χ).

As both implications have been shown, the equivalence holds:

□(φ) ∧ □(ψ) ≡ □(φ ∧ ψ)

This allows us to simplify conjunctions containing obligations with a common condition.
They can be merged into a single obligation.

(C10)
n⋀︂

i=1
φi −→

 ⋀︂
φi ̸=¬⃝(_ | χ)

φi

 ∧ ⃝
 ⋀︂

φj=⃝(ψj | χ)
ψj

⃓⃓⃓⃓
⃓⃓ χ


From the equivalence we derive one combining obligation arguments of disjunctions.

¬⃝(φ | χ) ∨ ¬⃝(ψ | χ) ≡ ¬⃝(φ ∧ ψ | χ)

Proof.

¬⃝(φ | χ) ∨ ¬⃝(ψ | χ) ≡ ¬¬(¬⃝(φ | χ) ∨ ¬⃝(ψ | χ)) double negation
≡ ¬(¬¬⃝(φ | χ) ∧ ¬¬⃝(ψ | χ)) de morgans law
≡ ¬(⃝(φ | χ) ∧ ⃝(ψ | χ)) double negation (×2)
≡ ¬⃝(φ ∧ ψ | χ) (C10)

Using this equivalence, we obtain the following rule potentially combining multiple
negated obligation formulas.

(D6)
n⋁︂

i=1
ϕi −→

 ⋁︂
φi ̸=¬⃝(_ | χ)

ϕi

 ∨ ¬⃝
 ⋀︂

φj=¬⃝(ψj | χ)
ψj

⃓⃓⃓⃓
⃓⃓ χ


Since an implication φ → ψ is logically equivalent to the disjunction ¬φ ∨ ψ, we form a
corresponding equivalence for implications of formulas with obligations.

⃝(φ | χ) → ¬⃝(ψ | χ) ≡ ¬⃝(φ ∧ ψ | χ)

Proof.

⃝(φ | χ) → ¬⃝(ψ | χ) ≡ ¬⃝(φ | χ) ∨ ¬⃝(ψ | χ) materialise implication
≡ ¬⃝(φ ∧ ψ | χ) (D6)

38

4.3. Simplification of associative Operations

This lets us rewrite such implications as a single negated obligation.

(I10) ⃝(φ | χ) → ¬⃝(ψ | χ) −→ ¬⃝(φ ∧ ψ | χ)

We apply the simplification rules in a generalised way on the list of arguments of a
dominant-value operation. List reductions are the first steps. Since it can be done in
linear time complexity, we start with applying the simplifications rules (C2) and (D2) by
removing all occurrences of the neutral element (see line 1 of Algorithm 4.1). If the list
is empty after that step, i.e. it only contained neutral elements, we return the neutral
element itself. After that we remove all duplicated arguments.

We continue with early exits of the simplification procedure, by checking for the absorbing
element and for complementary arguments. If we find one of both, we return the absorbing
element, resulting by the rules (C1) and (D1).

The last processing step is the combination of obligation arguments by the rules (C10)
and (D6).

If it was possible to combine obligations, we simplify the newly constructed obligations.
To make sure that the simplification rules are applied exhaustively, we recursively call the
simplification procedure for the dominant-value operation on the new list of arguments.

For conjunction we additionally combine all necessity arguments to a single one. The
arguments □¬y, □x and □(v ∨ w) for instance can be combined to □(¬y ∧ x ∧ (v ∨ w)).

Algorithm 4.1: Simplification on the arguments of a dominant-value operation
Data: A list of arguments args
Result: A simplified formula

1 args′ ← RemoveAllOccurrences(args, neutral_element)
2 if args′ is empty then
3 return neutral_element //(C2),(D2)
4 end
5 args′ ← RemoveDuplicates(args′) //(C8),(D5)
6 if args′ contains absorbing_element then
7 return absorbing_element //(C1),(D1)
8 end
9 if args′ contains complementary arguments then

10 return absorbing_element //(C4),(C5),(C6),(C7),(D4)
11 end
12 args′′ ← CombineFormulas(args′) //(C9),(C10),(D6)
13 if args′′ ̸= args′ then
14 return simplify(args′′)
15 end
16 return make(args′′)

Let’s simplify the following conjunction as an example.

39

4. Simplification of Formulas

¬a ∧ ⃝(b | a) ∧ ⊤ ∧ ¬⃝(d ∧ b | a) ∧ c ∧ □b ∧ ⊤ ∧ ¬a ∧ ⃝(d | a) ∧ ⊤ ∧ □e

The procedure is applied on the list of arguments.

[¬a, ⃝(b | a), ⊤, ¬⃝(d ∧ b | a), c, □b, ⊤, ¬a, ⃝(d | a), ⊤, □e]

We start with by removing all occurrences of the neutral element ⊤.

[¬a, ⃝(b | a), ⊤, ¬⃝(d ∧ b | a), c, □b, ⊤, ¬a, ⃝(d | a), ⊤, □e]

After checking that the list is not empty, we remove all duplicates from the list.

[¬a, ⃝(b | a), ¬⃝(d ∧ b | a), c, □b, ¬a, ⃝(d | a), □e]

Since the argument list contains neither the absorbing element nor complementary
arguments, we do not return the absorbing element. We continue with combining
obligation formulas as well as necessity formulas.

Let us start with the necessities.

[¬a, ⃝(b | a), ¬⃝(d ∧ b | a), c, □(b ∧ e), □b, ⃝(d | a), □e]

Now we combine the obligations.

[¬a, ⃝(b ∧ d | a), ⃝(b | a), ¬⃝(d ∧ b | a), c, □(b ∧ e), ⃝(d | a)]

The next step is trying to simplify the newly composed necessities and obligations, which
has no effect for this formula. Recalling the simplification procedure on this new list of
arguments, we this time find complementary arguments, which results in the returned,
absorbing element ⊥.

[¬a, ⃝(b ∧ d | a), ¬⃝(d ∧ b | a), c, □(b ∧ e)]

4.3.2 Simplification of Parity-dependent Operations
Parity-dependent operations include equality and exclusive or (see Chapter 3). The two
operators are also related by a duality, as expressed by the following equivalence.

φ ⊕ ψ ≡ ¬ (φ ↔ ψ)

Analogously to dominant-value operations each of these operations also have a neutral
element.

φ ⊕ ⊥ ≡ φ

φ ↔ ⊤ ≡ φ

Since obviously multiple neutral elements as arguments also do not have any effect, the
properties of this characteristic element result in these simplification rules.

40

4.3. Simplification of associative Operations

(X1)
(︄

n⨁︂
i=1

φi

)︄
⊕

 m⨁︂
j=1

⊥
 −→

n⨁︂
i=1

φi

(E1)
(︃

n←→
i=1

φi

)︃
↔

(︃
m←→

j=1
⊤

)︃
−→ n←→

i=1
φi

The following rules cover the case that the operation is only over neutral elements.

(X2)

 m⨁︂
j=1

⊥
 −→ ⊥

(E2)
(︃

m←→
j=1

⊤
)︃

−→ ⊤

The parity-dependent are characterised by a significant constant we call the inverting
element. When it gets combined with any argument, it negates (inverts) the argument.

φ ⊕ ⊤ ≡ ¬φ

φ ↔ ⊥ ≡ ¬φ

The effect of several inverting elements as arguments depends on their number, since
double negation is equivalent to the original expression. We can also think of it as
combining all occurrences of the inverting element to a single element. This dependence
on the parity of the elements gives these operations their name.

Theorem 4.5. Let ⊛ be a parity-dependent binary operator, logical equivalence (⇐⇒)
or exclusive disjunction (⊕). A chain of n identical converting elements combined by ⊛
evaluates to:

• the neutral element if n is even,

• the converting element if n is odd.
n⨁︂

i=1
⊤ =

{︄
⊥ if n is even
⊤ if n is odd

n←→
i=1

⊥ =
{︄

⊤ if n is even
⊥ if n is odd

Since the neutral element has no effect, we can drop an even number of inverting elements
from the list of arguments. However, if the number is odd, we negate the whole remaining
term. The following simplification rules formalise this behaviour over several arguments.

(X3)
(︄

n⨁︂
i=1

φi

)︄
⊕

 m⨁︂
j=1

⊤
 −→

n⨁︂
i=1

φi if m is even

41

4. Simplification of Formulas

(X4)
(︄

n⨁︂
i=1

φi

)︄
⊕

 m⨁︂
j=1

⊤
 −→ ¬

(︄
n⨁︂

i=1
φi

)︄
if m is odd

(E3)
(︃

n←→
i=1

φi

)︃
↔

(︃
m←→

j=1
⊥

)︃
−→ n←→

i=1
φi if m is even

(E4)
(︃

n←→
i=1

φi

)︃
↔

(︃
m←→

j=1
⊥

)︃
−→ ¬

(︃
n←→

i=1
φi

)︃
if m is odd

The combination of an argument with itself using a parity-dependent operation yields
their respective neutral element.

φ ⊕ φ ≡ ⊥

φ ↔ φ ≡ ⊤

Therefore pairs of duplicated arguments can be dropped from the arguments.

(X5)
n⨁︂

i=1
φi −→

⨁︂
1≤i≤n

i ̸=j, i ̸=k

φi if j ̸= k and φj = φk and n > 2

(E5) n←→
i=1

φi −→ ←→
1≤i≤n

i ̸=j, i ̸=k

φi if j ̸= k and φj = φk and n > 2

In case the operator is only applied on a duplicated pair the term results in the neutral
element.

(X6) φ ⊕ φ −→ ⊥

(E6) φ ↔ φ −→ ⊤

Combining complements with each other results in the inverting element.

φ ⊕ ¬φ ≡ ⊤

φ ↔ ¬φ ≡ ⊥

Combined with the fact that the combing a term with the inverting element results in
the negation of the term, we obtain the following rules.

(X7)
n⨁︂

i=1
φi −→ ¬

�� ⨁︂
1≤i≤n

i ̸=j, i ̸=k

φi

�� if j ̸= k and φj = ¬φk and n > 2

42

4.3. Simplification of associative Operations

(E7) n←→
i=1

φi −→ ¬
� ←→

1≤i≤n
i ̸=j, i ̸=k

φi

� if j ̸= k and φj = ¬φk and n > 2

Here we again have rules for the trivial cases with two elements.

(X8) φ ⊕ ¬φ −→ ⊤

(E8) φ ↔ ¬φ −→ ⊥

The last simplification rules deal with negated arguments. For negations of the whole
term and at least one argument the following equivalences hold.

¬(¬φ ⊕ ψ) ≡ φ ⊕ ψ

¬(¬φ ↔ ψ) ≡ φ ↔ ψ

Thereby we can remove the negation of a parity-dependent operation over multiple
arguments together with the negation of one argument. We introduce the following two
additional rules for simplifying negations.

(Neg4) ¬
(︄

n⨁︂
i=1

φi

)︄
−→

�� ⨁︂
1≤i≤n

i ̸=j

φi

�� ⊕ ψj if φj = ¬ψj

(Neg5) ¬
(︃

n←→
i=1

φi

)︃
−→

� ←→
1≤i≤n

i ̸=j

φi

� ↔ ψj if φj = ¬ψj

For negations of multiple arguments we can use the following equations.

¬φ ⊕ ¬ψ ≡ φ ⊕ ψ

¬φ ↔ ¬ψ ≡ φ ↔ ψ

The following simplification rules remove negations from two arguments for parity-
dependent operations over several arguments.

(X9)
n⨁︂

i=1
φi −→

�� ⨁︂
1≤i≤n

i ̸=j, i ̸=k

φi

�� ⊕ ψj ⊕ ψk if φj = ¬ψj , φk = ¬ψk

(E9) n←→
i=1

φi −→
� ←→

1≤i≤n
i ̸=j, i ̸=k

φi

� ↔ ψj ↔ ψk if φj = ¬ψj , φk = ¬ψk

43

4. Simplification of Formulas

Table 4.2: Characteristic Elements for parity-dependent operations

Operation Neutral Element Inverting Element
Exclusive Or ⊥ ⊤
Equality ⊤ ⊥

Using this analogous simplification rules, we can describe a generalised procedure to
simplify a list of arguments of a parity-dependent operation, shown in Algorithm 4.2.
We start as with dominant-value operations, by reducing the number of arguments by
removing all occurrences of the neutral element (see line 1). Based on the simplification
rules (X5) and (E5) we can pairwise remove duplicated elements (see line 2).

In the case that the list only consisted of neutral elements and an even number of
duplicated arguments, such that this results in an empty list, the result of the simplification
is the neutral element (lines 3 to 5). Since these two list reductions are performed
consecutively, we only need to check once.

We remove all occurrences of the inverting element and count the number of occurrences.
This number is saved in the variable negCount. Since using the simplification rules (X7)
and (E7) complementary arguments yield the inverting element, we pairwise remove
them and add the count of pairs to the negCount.

In lines 8 to 19 of the procedure we check if the list is empty and return an element
depending on the parity of the negCount. If the count is even we return the neutral
element, otherwise the inverting element - see rules (X5) and (E5).

In the last steps we try to reduce the number of negations in the formula. We consider
the following equivalences.

¬φ ⊕ ψ ≡ φ ⊕ ¬ψ ≡ ¬(φ ⊕ ψ)

¬φ ↔ ψ ≡ φ ↔ ¬ψ ≡ ¬(φ ↔ ψ)

The resulting formula has to be negated if the negation count is an odd number. We try
to avoid this negation of the whole term. Therefore, if any argument is negated, we try
to remove it together with the negation from a single argument, using the rules (Neg4)
and (Neg5). Only in the case that this fails, the final formula will be negated.

In case the removing of the negation was successful, we can pairwise remove negations
from arguments using the rules (X9) and (E9).

After all the simplifications on the argument list, we compose them again to a formula.

Let’s go through the procedure for the following formula.

⊤ ⊕ ¬g ⊕ b ⊕ ¬a ⊕ ⊥ ⊕ ¬b ⊕ f ⊕ ⊤ ⊕ e ⊕ ¬d ⊕ ¬c ⊕ b ⊕ b ⊕ ⊥ ⊕ ⊤ ⊕ ¬f

44

4.3. Simplification of associative Operations

Algorithm 4.2: Simplification on the arguments of a parity-dependent operation
Data: A list of arguments args
Result: A simplified formula

1 args′ ← RemoveAllOccurrences(args, neutral_element)//(X1),(E1)
2 args′ ← CancelDuplicates(args′) //(X5),(E5)
3 if args′ is empty then
4 return neutral_element //(X2),(E2),(X6),(E6)
5 end
6 negCount ← 0
7 removed ← TryRemoveInvertingElement(args′) //(X3),(E3)
8 if removed then
9 negCount ← 1 //(X4),(E4)

10 end
11 negCount ← negCount + CancelComplements(args′) //(X7),(E7)
12 if args′ is empty then
13 if negCount is even then
14 return neutral_element
15 end
16 else
17 return inverting_element //(X8),(E8)
18 end
19 end
20 if negCount is odd then
21 removedNegation ← RemoveSingleNegation(args′) //(Neg4),(Neg5)
22 if not removedNegation then
23 f ← make(args′)
24 return Negation(f)
25 end
26 end
27 args′ ← PairwiseRemoveNegations(args′) //(X9),(E9)
28 return make(args′)

45

4. Simplification of Formulas

We extract the following list of arguments.

[⊤, ¬g, b, ¬a, ⊥, ¬b, f, ⊤, e, ¬d, ¬c, b, b, ⊥, ⊤, ¬f]

In the first step we remove all occurrences of ⊥, the neutral element of exclusive or.

[⊤, ¬g, b, ¬a, ⊥, ¬b, f, ⊤, e, ¬d, ¬c, b, b, ⊥, ⊤, ¬f]

We also remove all pairs of duplicated arguments.

[⊤, ¬g, ¬a, b, ¬b, f, ⊤, e, ¬d, ¬c, b, b, ⊤, ¬f]

If the list would be empty now, we would return the neutral element.

We the single inverting element ⊤, leading to a negCount of 1.

[¬g, ¬a, ¬b, f, e, ¬d, ¬c, b, ⊤, ¬f]

Also pairs of complementary arguments get counted and removed from the list. After
adding the count of pairs negCount is now 3.

[¬g, ¬a, ¬b, f, e, ¬d, ¬c, b, ¬f]

The if-condition in line 12 is false since the list is not empty.

Since the negation count is an odd number, we try to remove the negation from a single
argument.

[¬g, ¬a, e, ¬d, ¬c]

In the next step we pairwise remove further negations.

[g, ¬a, e, ¬d, ¬c]

Finally, we compose the simplified argument list back into a new formula, which is
equivalent to the original one.

g ⊕ a ⊕ e ⊕ d ⊕ ¬c

46

CHAPTER 5
Z3 encoding

This chapter presents the encoding of formulas from Åqvist’s logics into formulas
of classical propositional logic, making them suitable for processing by the SMT-
solver Z3 [DMB08]. We focus on establishing size bounds for countermodels and provide
detailed explanations of the naming conventions and the encoding of operations employed
in the tool.

If a formula is parsed successfully, it is then encoded into classical propositional logic,
following the method developed by Rozplokhas [Roz24], and passed to Z3. The solver
determines whether a countermodel exists for the formula, thereby showing that it is
invalid.

5.1 Size Bound Calculation
The required number of worlds in a countermodel forms the basis for encoding formulas
into propositional logic. The calculations of the size bound for each of Åqvist’s logics are
based on the small model constructions by Rozplokhas [Roz24].

The number of falsifying worlds, used in the sizebound calculations, can be calculated by
the following formula.

|Fal(ϕ, M)| = 1 + |Fal□(ϕ, M)| + |Fal⃝(ϕ, M)|
Without determining for each subformula □φ and ⃝(ψ | φ), whether it must be satisfied,
we use the following upper bound for the number of falsifying worlds.

|Fal(ϕ, M)| ≤ 1 + |Nec(ϕ)| + |Obl(ϕ)| where

Nec(ϕ) = { ψ ∈ SubF(ϕ) | Kind(ψ) = Necessity }

Obl(ϕ) = { ψ ∈ SubF(ϕ) | Kind(ψ) = Obligation }

47

5. Z3 encoding

Figure 2.1 illustrates the small model constructions for Åqvist’s logics. These constructions
allow us to determine the maximum number of worlds required for a countermodel in
each logic.

5.1.1 E
The construction for logic E is done by one world block per falsifying world vi ∈ Fal(ϕ, M).
We add one block orbvi for each world vi. The three blocks cloud1, cloud2, and cloud3
are copies of the same block, they contain the same number of worlds. We obtain the
following formula for the required number of worlds in a countermodel in logic E.

numberWorldsE = 3 · |B(cloud1)| +
n∑︂

i=1
(|B(orbvi)| + |B(falvi)|)

For the different types of blocks we obtain the following size bounds by their definitions.

Rozplokhas states that each block (in the constructions for each of Åqvist’s logics)
contains at most |Cond(ϕ)| blocks. Therefore the following inequalities hold.

|B(cloud1)| ≤ |Cond(ϕ)|
|B(orbvi)| ≤ |Cond(ϕ)|

In the construction, n denotes the number of falsifying worlds.

n = |Fal(ϕ, M)|

We know that each block labelled falvi contains a single world.

|B(falvi)| = |{vi}| = 1

From these size bounds for the different types of blocks, we can define the following
formula for the size bound.

sizeBoundE = 3 · |Cond(ϕ)| + |Fal(ϕ, M)| · (|Cond(ϕ)| + 1)

5.1.2 F
The composite construction for logic F is similar to that for logic E. The only difference
is that, instead of the three cloud-blocks, we have a single block labelled ray.

numberWorldsF = |B(ray)| + n · (|B(orb)| + |B(fal)|)
For the single new block in the construction, we again use the upper bound of |Cond(ϕ)|
worlds for each block.

|B(ray)| ≤ |Cond(ϕ)|

Combined with the upper bounds for the different blocks we derived for logic E, we
obtain following size bound formula for logic F.

sizeBoundF = |Cond(ϕ)| + |Fal(ϕ, M)| · (|Cond(ϕ)| + 1)

48

5.1. Size Bound Calculation

5.1.3 F + (CM)

The small model construction for logic F+(CM) consists of two blocks for each falsifying
world vi, one labelled c-rayvi and one labelled falvi . The total number of worlds required
for this logic can be computed by the following formula.

numberWorldsF +(CM) =
n∑︂

i=1
(|B(falvi)|) +

n∑︂
i=1

(|B(c-rayvi)|)

Since each block contains at most |Cond(ϕ)| worlds, we obtain the following upper bound.

|B(c-rayvi)| ≤ |Cond(ϕ)|

The following equivalence follows.

n∑︂
i=1

(|B(c-rayvi)|) = n · |Cond(ϕ)|

We already know that each block labelled falvi consists of exactly one world, which leads
to the following equation.

n∑︂
i=1

(|B(falvi)|) =
n∑︂

i=1
1 = n

Using the derived size bounds, we can compute the size bound for logic F+(CM) with
the following formula.

sizeBoundF +(CM) = |Fal(ϕ, M)| · (|Cond(ϕ)| + 1)

5.1.4 G

The small model construction for the logic G is based on a stratification of worlds. We
can calculate the number of worlds we need in a countermodel for logic G with the
following formula, where [S1, . . . Sn] is the stratification of Fal(ϕ, M).

numberWorldsG =
n∑︂

i=1
|B(g-raySi)| +

n∑︂
i=1

|B(groupSi)|

Following the definition of Rozplokhas, a stratification is defined as follows:

Definition 5.1. (Stratification) For M = ⟨W, ⪯, V ⟩ and a finite set U ⊆ W , a sequence
[S1, . . . , Sn] of non-empty subsets of W is called a stratification of U when U is the disjoint
union of subsets {Si}n

i=1 (i.e., U = ⋃︁n
i=1 Si and Si ∩ Sj = ∅ for i ̸= j), and for every

ui ∈ Si and uj ∈ Sj , we have ui ⪯ uj if and only if i ≥ j.

49

5. Z3 encoding

Hence, Fal(φ, M) is the disjoint union of the sets {Si}n
i=1. Therefore the number of all

worlds covered by the stratification is equal to the number of worlds in Fal(ϕ, M).
n∑︂

i=1
|Si| = |Fal(ϕ, M)|

Each block labelled groupSi contains a clique of the worlds in Si, and therefore contains |Si|
worlds. From the equation above we know that the total number of worlds in the
stratification is |Fal(ϕ, M)|, and we can derive the following equality.

n∑︂
i=1

|B(groupSi)| = |Fal(ϕ, M)|

Since each blocks contains a maximum of |Cond(φ)| worlds, the following equation holds.
n∑︂

i=1
|B(g-raySi)| ≤ n · |Cond(φ)|

From this, the size bound for logic G can be calculated by the following formula.

sizeBoundG = |Fal(ϕ, M)| + n · |Cond(φ)|

For logic VTA (i.e. G), Friedman and Halpern [FH94] use a different approach for
constructing a countermodel. They take one world from the original model for each
modality. This results in a linear size bound of the model and the following formula,
which we use in our tool. Here Nec(ϕ) and Obl(ϕ) denote the set of all subformulas of ϕ
that are of the kind Necessity and Obligation, respectively.

sizeBoundG = 1 + |Nec(ϕ)| + |Obl(ϕ)| where

Nec(ϕ) = { ψ ∈ SubF(ϕ) | Kind(ψ) = Necessity }

Obl(ϕ) = { ψ ∈ SubF(ϕ) | Kind(ψ) = Obligation }

5.2 Variable Names
In his encoding Rozplokhas uses propositional variables denoting the preference relation
and the true formulas in the worlds of a model. Variables of the form pi,j encode that
world wi is preferred to world wj . To encode that a formula φ holds in world wi, we use
the variable pφ

i .

For the Z3 input, we use ’:’ as a separator between the the base variable and its parameters.
The name for a p-variable pi,j is p : i :j. Formulas are represented in their input format
without blank spaces, for instance v :O(b|a) :3 for the v-variable v

⃝(b | a)
3 . See Table 5.1

for examples of variable names.

50

5.2. Variable Names

In the representation of associative operators the arguments are sorted by the order on
formulas <f (see Definition 3.3).

By doing so equivalent formulas such as a ∧ b and b ∧ a are both encoded by the
variables v :a&b : i for each world i. This ordering ensures that subformulas equivalent
through associativity are encoded uniformly, which can lead to smaller and more efficient
encodings.

Implications are always represented in the rightward direction, so that the formulas a → b
and b ← a are both encoded using formulas of the form v : a− > b : i.

For parity-dependent operations the negations are additionally moved to the first argu-
ments. We first remove any negations from the arguments and sort them by the defined
order on formulas. Then we reapply a negation to each of the first arguments, equal to
the count of negations initially removed. The following formulas are all represented by
variables of the form v : ∼ (a ∧ ¬c)#b : i.

• ¬(a ∧ ¬c) ⊕ b

• b ⊕ ¬(a ∧ ¬c)

• ¬b ⊕ (a ∧ ¬c)

• (a ∧ ¬c) ⊕ ¬b

Table 5.1: Z3 Variable Naming

Variable Name in encoding Examples

vφ
i v :φ : i v :O(b|a) :3, v :y′ :1

pi,j p : i :j p :4 :2, p :1 :3
ti,j t : i :j t :3 :12, t :5 :2

We define p-variables representing the preference relation over all worlds. For logic F we
additional have to analogously define t-variables to encode that the relation is acyclic.

(declare-const p:1:1 Bool)
(declare-const p:1:2 Bool)
(declare-const p:1:3 Bool)
...
(declare-const p:9:9 Bool)

There is a v-variable for each world and subformula of the formula to encode. For the
formula □x ∨ x′ we obtain the following variables.

(declare-const v:x:1 Bool)
(declare-const v:x’:1 Bool)
(declare-const v:[]x:1 Bool)

51

5. Z3 encoding

(declare-const v:[]x/x’:1 Bool)

(declare-const v:x:2 Bool)
(declare-const v:x’:2 Bool)
(declare-const v:[]x:2 Bool)
(declare-const v:[]x/x’:2 Bool)

5.3 Single v-variable for Necessity and Obligation
Since necessity and obligation is defined generally over all worlds, we can replace the
corresponding v-variables by a single one. In the example above instead of v:[]x:1
and v:[]x:2 we define the single variable v:[]x.

For the formula ⃝(b | a) the variable v:O(b|a) replaces the following variable
declarations.

(declare-const v:O(b|a):1 Bool)
(declare-const v:O(b|a):2 Bool)
(declare-const v:O(b|a):3 Bool)
(declare-const v:O(b|a):4 Bool)
(declare-const v:O(b|a):5 Bool)
(declare-const v:O(b|a):6 Bool)
(declare-const v:O(b|a):7 Bool)

5.4 Encoding of Operations
We encode all composed formulas according to the definition of the propositional equiva-
lences by Rozplokhas [Roz24] (see Section 2.4).

5.4.1 Negation
For the formula ¬c and the world w2 the encoding is as follows.

(assert (= v:∼c:2 (not v:c:2)))

5.4.2 Necessity
The encoding of the single v-variable (see Section 5.3) for the necessity formula □d is
given below.

(assert (=
v:[]d
(and v:d:1 v:d:2 v:d:3 v:d:4 v:d:5 v:d:6 v:d:7 v:d:8 v:d:9)

))

52

5.4. Encoding of Operations

5.4.3 Conjunction
By the propositional equivalence of conjunction, we obtain the following encoding for the
formula ¬c ∧ □d.

(assert (= v:(∼c&[]d):2 (and v:∼c:2 v:[]d:2)))

5.4.4 Disjunction
The encoding of disjunction can be derived from the encodings of negation and conjunction
done by [Roz24] using De Morgans Law and double negation.

vψ1∨ψ2
i ⇐⇒ v

¬¬(ψ1∨ψ2)
i double negation

⇐⇒ v
¬(¬ψ1∧¬ψ2)
i de morgans law

⇐⇒ ¬v¬ψ1∧¬ψ2
i negation encoding

⇐⇒ ¬(v¬ψ1
i ∧ v¬ψ2

i) conjunction encoding
⇐⇒ ¬(¬vψ1

i ∧ ¬vψ2
i) negation encoding

⇐⇒ ¬¬vψ1
i ∨ ¬¬vψ2

i de morgans law
⇐⇒ vψ1

i ∨ vψ2
i double negation (×2)

Therefore we obtain the following encoding for the formula ⃝(b | a) ∨ (¬c ∧ □d) and
world 2.

(assert (= v:(O(b|a)/(∼c&[]d)):2 (or v:O(b|a):2 v:(∼c&[]d):2)))

5.4.5 Obligation
The encoding of obligations have the greatest formula size. Like mentioned in Section 5.3
we encode a general v-variable over all worlds.

(assert (= v:O(b|a)
(and

(or
v:b:1
(not v:a:1)

(and p:1:1 (not p:1:1) v:a:1)
(and p:2:1 (not p:1:2) v:a:2)
(and p:3:1 (not p:1:3) v:a:3)
(and p:4:1 (not p:1:4) v:a:4)
(and p:5:1 (not p:1:5) v:a:5)
(and p:6:1 (not p:1:6) v:a:6)
(and p:7:1 (not p:1:7) v:a:7)

53

5. Z3 encoding

)

(or
v:b:2
(not v:a:2)

(and p:1:2 (not p:2:1) v:a:1)
(and p:2:2 (not p:2:2) v:a:2)
...
(and p:7:2 (not p:2:7) v:a:7)

)

...

(or
v:b:7
(not v:a:7)

(and p:1:7 (not p:7:1) v:a:1)
(and p:2:7 (not p:7:2) v:a:2)
...
(and p:7:7 (not p:7:7) v:a:7)

)
)

))

5.4.6 Exclusive Or
Exclusive or is useful in our automated reasoning tool because it allows us to enforce
that exactly one of two conditions holds, which frequently arises in encoding deontic
constraints. The operation is encoded based on the following equivalence.

φ ⊕ ψ ⇐⇒ (¬φ ∨ ¬ψ) ∧ (φ ∨ ψ)

Therefore the formula x ⊕ x′ is equivalent to the formula (¬x ∨ ¬x′) ∧ (x ∨ x′). Hence it
can be encoded in the following way.

(assert (=
v:x#x’:2
(and

(or
(not v:x:2)
(not v:x’:2)

)

54

5.4. Encoding of Operations

(or
v:x:2
v:x’:2

)
)

))

Note that we directly use the not operator of Z3, avoiding the need to introduce separate
v-variables v: x:2 and v: x’:2.

5.4.7 Implication

For the encoding of implications we use this equivalence.

φ → ψ ⇐⇒ ¬φ ∨ ψ

Hence we can encode a → b by encoding it as ¬a ∨ b in the following way.

(assert (=
v:a->y:2
(or

(not v:a:2)
v:y:2

)
))

Implication can also be used in the other direction using the input string <-. We encode
a formula φ ← ψ simply like the equivalent formula φ → ψ. See for instance the encoding
of the formula c ← p for world 2.

(assert (=
v:c<-p:2
(or

(not v:p:2)
v:c:2

)
))

5.4.8 Equality

For equality we can directly use the corresponding operation of Z3, which looks as this
for the formula (r ∧ s) ↔ t and world 2.

(assert (= v:(r&s)<->t:2 (= v:(r&s):2 v:t:2)))

55

5. Z3 encoding

5.5 Encoding the Properties of the Preference Relation
Using Rozblokhas’ encodings for the properties of the preference relation we can add,
depending on the logic, some of the following assertions for n worlds and for 1 ≤ i, j, k ≤ n.

From the straight forward encoding of transitivity and totality we obtain the following
assertions:

• for transitivity
(assert (impl

(and p:i:j p:j:k)
p:i:k

))

• for totality
(assert (or

p:i:j
p:j:i

))

To encode acyclicity we add assertions over the Boolean t-variables.

(assert (impl
(and t:i:j t:j:k)
t:i:k

))

(assert
(not t:i:i)

)

(assert (impl
p:i:j
t:i:j

))

5.6 Finding a Minimal Countermodel
When reasoning about a formula, we call Z3 multiple times, as presented in Algorithm 5.1.
To establish validity, we first attempt to construct a countermodel using the maximum
number of worlds allowed by the encoding. If no countermodel exists at this upper bound,
then no countermodel exists at all, and the formula is valid (see lines 1–3). Since most
formulas admit a model with significantly fewer worlds, we continue with encodings
and SMT calls with an increasing number of worlds starting from 1 (lines 4 to 9).

56

5.6. Finding a Minimal Countermodel

Algorithm 5.1: Minimal countermodel search
Data: Formula φ, size bound sizeBound
Result: A countermodel of minimal size, or isValid if none exists

1 if not found getModel(sizeBound) then
2 return isValid
3 end
4 for i ← 1 to sizeBound do
5 m ← getModel(i)
6 if found m then
7 return m
8 end
9 end

57

CHAPTER 6
Countermodel Representation

We compare three different options to represent countermodels: using text only, a directed
graph, or a matrix.

6.1 Text representation
The most straightforward way to present a countermodel is textually, listing the preference
relations in the formal notation. For example,

w2 ⪰ w1

w3 ⪰ w1

w3 ⪰ w2

The simple approach of representing each pair of worlds separately can be improved by
combining multiple relations into a single line.

w3 ⪰ w1, w2

w2 ⪰ w1

The computation of these compact relations is presented in Algorithm 6.1. We maintain
two maps that store, for each world, the lists of better and inferior worlds, respectively.
Additionally, for efficiency, we store the size of each list.

We find the world w with the maximum number better or inferior worlds. The list of
worlds l forms the left (resp. right) side of the relation line if these are better (resp.inferior)
worlds. In lines 24 and 25 of Algorithm 6.1 the list l and the corresponding count entry
is removed from the maps. For each world in l we remove the list from the respective
other map and decrement the count by 1 (see lines 25 to 29).

59

6. Countermodel Representation

To check if the same relation holds for additional worlds to w, we go through the stored
list of the remaining worlds. If l is a sublist of the stored list, we add the corresponding
world to the same side of the relation as w. Since l has the maximum length of all lists,
it can only be a sublist if it is the equivalent list. Hence, for efficiency, we first check if
the lists have the same length.

The process of finding the world connected to most other worlds, updating the lists and
counts, as well as potentially adding further worlds, is repeated until all relations are
handled.

Example

Let us go through the process for the following preference relation.

w1 ⪰ w2 w1 ⪰ w3 w1 ⪰ w4 w1 ⪰ w5

w3 ⪰ w2 w3 ⪰ w5 w4 ⪰ w2 w4 ⪰ w5

We obtain the following mappings, assigning each world a list of better and inferior
worlds, respectively, represented by their numerical identifiers.

inferior:

1 ↦→ [2, 3, 4, 5]

3 ↦→ [2, 5]

4 ↦→ [2, 5]

better:

2 ↦→ [1, 3, 4]

3 ↦→ [1]

4 ↦→ [1]

5 ↦→ [1, 3, 4]

World 1 has the most relations to inferior worlds, from which we obtain the relation w1 ⪰
w2, w3, w4, w5. Since there is no world with the mapping to the same list, we do not
extend the relation. We remove the mapping to the list of better worlds and the entry of 1
in all lists of inferior worlds. Mappings for which the list is now empty can be removed.

inferior:

3 ↦→ [2, 5]

4 ↦→ [2, 5]

better:

2 ↦→ [3, 4]

60

6.1. Text representation

Algorithm 6.1: Compact preference relation
Data: Map from world to better worlds better
Map from world to inferior worlds inferior
Map from world to the number of better worlds betterCounts
Map from world to the number of inferior worlds inferiorCounts
Result: A compact representation of the preference relation

1 while betterisnotempty do
2 wBet, maxBet ← max(betterCounts)
3 wInf, maxInf ← max(inferiorCounts)
4 worldSide ← [w]
5 listSide ← l
6 if maxBet > maxInf then
7 w ← wBet
8 l ← better[w]
9 sameRels ← better

10 sameCounts ← betterCount
11 otherRels ← inferior
12 otherCounts ← inferiorCounts
13 relation ← [worldSide, listSide]
14 end
15 else
16 w ← wInf
17 l ← inferior[w]
18 sameRels ← inferior
19 sameCounts ← inferiorCount
20 otherRels ← better
21 otherCounts ← betterCounts
22 relation ← [listSide, worldSide]
23 end
24 sameRels.remove(w)
25 sameCounts[w] = 0
26 for v ∈ l do
27 otherRels[v].remove(w)
28 otherCounts[v] = otherCounts[v] − 1
29 end
30 for (v, m) ∈ sameRels do
31 if length(l) = length(m) then
32 if l = m then
33 worldSide.add(v)
34 end
35 end
36 end
37 end
38 return relation

61

6. Countermodel Representation

3 ↦→ ∅
4 ↦→ ∅
5 ↦→ [3, 4]

We continue with the mapping from world 3 to its inferior worlds. Because world 4 has the
same mapping here, we combine the both to the relation w3, w4 ⪰ w2, w5. After removing
the two worlds from the corresponding mappings to better worlds, only mappings to
empty lists remain.

inferior:

3 ↦→ ∅
4 ↦→ ∅

better:

2 ↦→ ∅
5 ↦→ ∅

The given preference relation can be expressed in two lines.

w1 ⪰ w2, w3, w4, w5

w3, w4 ⪰ w2, w5

6.2 Directed graph
A directed graph combines all the information of a model in one graphical representation.
Worlds are represented by nodes with their number, i.e. node i representing world wi.
Each node can be denoted with the true variables of the corresponding world. There is an
arrow from node i to node j when wj ⪰ wi. A countermodel for the formula a ∧ ⃝(c | b)
with the size bound as a number of worlds, can for example be represented by the graph
in Figure 6.1.

2
b

1
b

3
b

4
b

5
b

7
b

6
∅

Figure 6.1: Example graph representation

62

6.2. Directed graph

For larger models, and especially those with a dense preference relation, the graph
becomes hard to read.. Up to three worlds in a model, we can represent the graphs
with straight crossing-free edges. The layout allows us to position true variables beside
their nodes, taking advantage of the space available for longer names. Depending on
the preference relation we can display the graph in a clear drawing, where the nodes are
arranged in a vertical column, or in a triangular orientation (see Figure 6.2).

(a) Linear graph (b) Triangular graph

Figure 6.2: Example graph UI with variables displayed next to node

The linear representation works for many such small models. We display nodes repre-
senting better worlds above the ones representing inferior ones. Apart from that, we try
to keep the natural order (1, 2, 3) as much as possible.

1

2

3

(a)

1

2

(b)

1

(c)

Figure 6.3: Line graphs in natural order

We go through the different cases depending on the number of worlds and the preference
relation.
Models with a single worlds are the trivial case. For models with two worlds, we display
node 2 on top, if w2 ≻ w1, and node 1 on top otherwise.

The different cases for models with three worlds depend on the number of connections.
There is a connection between two nodes i and j, if there is at least one arrow between

63

6. Countermodel Representation

1

(a)

1

2

(b)

2

1

(c)

Figure 6.4: Graphs for models with one or two worlds

the two nodes, i.e. if wi ≻ wj or wj ≻ wi. We talk about an undirected connection
if there is a bidirectional arrow between two nodes (both relations hold) and about a
directed connection from node i to node j if there is an arrow only from i to j (only
one of both relations is true). A directed connection from node i to node j, is in order
when i < j, and against order otherwise.

If the preference relation is empty, we display the nodes in the natural order (see
Figure 6.5).

1

2

3

(a)

Figure 6.5: Graph for models with three worlds and no connections

Next we cover the cases with a single connection. For undirected and directed connections
in order, we have the order [1, 3, 2] if the connection is between node 1 and node 3.
Otherwise, we can use the natural order, as displayed in Figure 6.6.

If the single connection is a directed order against order from node i to node j, we move j
in front of i in the natural order. This orders result in the graphs shown in Figure 6.7.

The linear structure of nodes does not fit for some of the following described cases. For
these cases we apply a triangular positioning of the nodes, with their natural order shown
in Figure 6.8.

For models with three nodes and two connections, we start by determining the central
node, i.e. the node with a connection with the two other nodes, which we indicate by bold
lines. If both connections are undirected we can use the natural order. The line structure

64

6.2. Directed graph

1

2

3

(a)

1

2

3

(b)

1

3

2

(c)

Figure 6.6: Graphs for models with three worlds and one undirected connection or
directed connection against order

3

1

2

(a)

2

1

3

(b)

1

3

2

(c)

Figure 6.7: Graphs for models with three worlds and one directed connection against
order

1

2

3

Figure 6.8: Triangular graph in natural order

65

6. Countermodel Representation

can be used if node 2 is the central one, otherwise we use the triangular structure (see
Figure 6.9).

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

Figure 6.9: Graphs for models with three worlds and two undirected connections

We have three cases for models with two directed connections, depending on the number
of in- and outgoing arrows in the central node. If one arrow is ingoing and one is outgoing,
the order of the nodes is fully determined. The central node is the first in the order if it
has two ingoing arrows, and on the bottom if it has two outgoing arrows. To complete
the order we sort the remaining two nodes ascending by their numbers.

(a) (b) (c)

Figure 6.10: Graphs for models with three worlds and two directed connections

For the case of one undirected and one directed connection, we differentiate if the arrow
of the directed connection is ingoing or outgoing with respect to the central node.
When it is outgoing we obtain the structures displayed in Figure 6.11, depending on if
node 1 is

(a) not part of the directed connection,

(b) the central node,

(c) the node the directed connection is ingoing.

66

6.2. Directed graph

1

(a)

1

(b)

1

(c)

Figure 6.11: Graphs for models with three worlds and one undirected, one directed
connection - arrow of directed connection outgoing from the central node

For to the cases where the arrow of the directed connection is ingoing to the central
node, we use the same distinction and get the graph drawings of Figure 6.12, where in
(b) exactly one of both arrows is bidirectional.

1

(a)

1

(b)

1

(c)

Figure 6.12: Graphs for models with three worlds and one undirected, one directed
connection - arrow of directed connection ingoing in the central node

All graphs with three nodes and three connections are displayed in the triangle structure.
We have cases depending on the number of directed connections.

If all connections are undirected we can use the natural order, as shown in Figure 6.13.

For models with a single direction connection, we change the natural order depending
on this connection in the same way as described for models with three nodes and a
single directed connection against the order. This results in the graphs presented in
Figure 6.14, where the ones with directed connections in order trivially keep the natural
order (a, b, c).

When two out of three connections are directed, we first determine the central node, as
we did in for cases with two connections. As for models with two directed connections
(without an additional undirected one), we have three analogues cases depending on the
number of in- and outgoing arrows of the central node.

67

6. Countermodel Representation

1

2

3

Figure 6.13: Graphs for models with three worlds and three undirected connections

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

2

1

3

(d)

3

1

2

(e)

1

3

2

(f)

Figure 6.14: Graphs for models with three worlds and three connections - one of them
directed

68

6.3. Matrix

(a) (b) (c)

Figure 6.15: Graphs for models with three worlds and three connections - two of them
directed

If a model has three directed connections, we either, if each node has one ingoing and
one outgoing arrow, have a clockwise (see Figure 6.16a) or a counter-clockwise cycle (see
Figure 6.16b) or a fully determined ordering of the nodes (see Figure 6.16c).

(a) (b) (c)

Figure 6.16: Graphs for models with three worlds and three directed connections

6.3 Matrix
A matrix can be used as a clear way to represent the preference relation over the set of
worlds. We number the rows and columns by the numbers of the worlds. There is a mark
in column i and row j, if and only if world wi is preferred over world wj , i.e. wi ⪰ wj .
The true variables of each world can directly be written next to the row of the world.
Figure 6.17 shows the matrix for a countermodel of the formula z∨y∧⃝(w | v)∨¬u∧□s
with the size bound as a number of worlds.

To improve the readability of the matrix representation, especially for bigger models,
by an interactive user interface. When moving the cursor on a mark, we highlight the
corresponding world numbers, as shown in Figure 6.18. Therefore we use different colours
to indicate better and inferior ones. The colours are also used to highlight the true

69

6. Countermodel Representation

Figure 6.17: Example matrix interface

variables of the corresponding worlds. When a mark in the diagonal of the matrix is
hovered the true variables of the world are marked grey (see Figure 6.19).

Similar we also highlight worlds for cursor movement on a world number. The numbers
of all inferior worlds for a number of a row (see Figure 6.20), and of all better worlds for
a number of a column (see Figure 6.21).

The most suitable representation depends on the size of the countermodel. For models
with up to three worlds we display the directed graph giving the complete information.
The matrix representation is used for the models bigger than those. Since the text
representation of the preference relation is useful to quickly see the best or most inferior
world of a model, we display it also for these bigger models.

70

6.3. Matrix

Figure 6.18: Example matrix interface with cursor on the marker

Figure 6.19: Example matrix interface with cursor on a diagonal marker

71

6. Countermodel Representation

Figure 6.20: Example matrix interface with a highlighted row

Figure 6.21: Example matrix interface with a highlighted column

72

CHAPTER 7
Implementation of Deontic

Paradoxes

In this chapter, the automated reasoning tool is applied to a selection of well-known
paradoxes in deontic logic. By paradoxes we mean problematic or counterintuitive
patterns of reasoning that arise when formalizing normative concepts. For each paradox
we give a formalization in SDL (with SDL formulas displayed in blue) and show how the
paradox manifests in this logic. By formalizing the statements in Åqvist’s systems, we
can test their applicability across different logics, and illustrate how obligations behave
when modeled in preference-based frameworks.

A classical contrary-to-duty paradox is given by Chisholm [Chi63].

Paradox 1 (Chisholm’s Paradox). We are given the following normative and factual
statements:

1. The man ought to help his neighbours.

2. If he helps, he ought to tell them.

3. If he does not help, he ought not to tell them.

4. He does not help his neighbours.

We can formalize the paradox in SDL using the following formulas.

1. ⃝(h)

2. ⃝(h → t)

3. ¬h → ⃝(¬t)

73

7. Implementation of Deontic Paradoxes

4. ¬h

In SDL, premises (2) and (3) must be encoded differently. Premise (2) is treated as
an obligation of an implication, i.e., ⃝(h → t), whereas premise (3) is treated as an
implication whose consequent is an obligation, i.e., ¬h → ⃝(¬t). This asymmetry is
standard in the literature (cf. [Chi63]) and causes the paradox to occur in SDL.

From (2), by axiom K of SDL, we get ⃝(h → t) → (⃝h → ⃝t).

By (2) and modus ponens we get (⃝h → ⃝t), and with (1) we infer ⃝t.

From (3) and (4), by modus ponens, we infer ⃝¬t.

Hence, ⃝t and ⃝¬t hold simultaneously, yielding a contradiction in SDL.

The formalization of the statements in Åqvist’s logics is given by the following formulas.

1. ⃝(h | ⊤)

2. ⃝(t | h)

3. ⃝(¬t | ¬h)

4. □¬h

To analyse Chisholm’s scenario with our tool, we check if the conjunction of the four
statements is satisfiable.

ϕ = ⃝(h | ⊤) ∧ ⃝(t | h) ∧ ⃝(¬t | ¬h) ∧ □¬h

To test satisfiability, we provide the tool with ¬ϕ. The tool then checks whether this
negation is valid. From this result, we can determine whether ϕ itself is satisfiable.

The tool outputs a model satisfying ϕ in logic E, consisting of two worlds, where h and t
hold in the better world, and no propositional variable holds in the inferior one. Formally,
the model is M = ⟨W, ⪰, V⟩, with

• W = {w1, w2, },

• ⪰ = {(w2, w1)},

• V(w1) = ∅ V(w2) = {h, t}.

Also Parent and Benzmüller analysed this paradox in [BFP18] using their approach based
on Isabelle/HOL. The only difference between the model they found and ours is the
preference relation, which in their case is empty.

The well-known Gentle Murder paradox highlights that standard deontic logic allows
deriving that killing is obligatory, despite the initial obligation not to kill [For84].

Paradox 2 (Gentle Murder). Consider the following norms and facts:

74

1. It is obligatory not to kill.

2. If one kills, one ought to kill gently.

3. Killing gently entails killing.

4. Killing occurs.

In SDL the statements can be expressed by the following formulas.

1. ⃝(¬k)

2. k → ⃝(g)

3. g → k

4. k

From (2) and (4), it follows: ⃝(g)

From (3) and ⃝(g), we derive: ⃝(k)

This contradicts (1), yielding a paradox in standard deontic logic.

In Åqvist’s logics the statements can be expressed by the following formulas, and the
obligation to kill by ⃝(k | ⊤).

1. ⃝(¬k | ⊤)

2. ⃝(g | k)

3. □(g → k)

4. k

To illustrate the Gentle Murder paradox, we test the validity of the following implication.(︂
⃝ (¬k | ⊤) ∧ ⃝(g | k) ∧ □(g → k) ∧ k

)︂
→ ⃝(k | ⊤)

We input the implication into the tool, which for logic E returns the countermodel M =
⟨W, ⪰, V⟩ given by

• W = {w1, w2},

• w2 ≽ w1,

• V(w1) = {g, k}, V(w2) = ∅.

75

7. Implementation of Deontic Paradoxes

Here, k holds only in the less preferred world, so the best ⊤-worlds (i.e. the most preferred
worlds overall) do not validate k. Therefore, ⃝(k | ⊤) does not hold, and since the
premises hold, the implication is shown to be invalid. This is the same countermodel for
the paradox as the one found in [COP22] via hypersequents.

The so-called repugnant conclusion is a famous paradox in population ethics, originally
formulated by Derek Parfit [Par84]. It illustrates counterintuitive implications of total
utilitarian reasoning when comparing populations of different sizes and qualities of life.
The presentation below closely follows the presentation by Parent and Benzmüller [PB24].

Paradox 3 (Parfit’s Repugnant Conclusion). Parfit characterizes the so-called repugnant
conclusion as follows:

“For any possible population of at least ten billion people, all with a very
high quality of life, there must be some much larger imaginable population
whose existence, if other things are equal, would be better even though its
members have lives that are barely worth living” [Par84, Chapter 6]

In this paradox, total utilitarianism is applied by treating the overall value of a population
as the sum of individual well-being. Consequently, a reduction in the quality of life for
each individual can be outweighed by a sufficiently large increase in the number of people.
As illustrated in Figure 7.1, this reasoning leads to what Parfit terms the repugnant
conclusion: a very large population Z, whose members have lives barely worth living,
would still be judged better than a much smaller population A, whose members enjoy
excellent lives, simply because the total sum of well-being in Z exceeds that of A.

A

very high quality in life

Z

very low but positive quality in life

Z has a lot more people

Figure 7.1: Repugnant conclusion, adapted from [PB24]

The repugnant conclusion can be understood as the outcome of repeatedly applying the
reasoning behind the mere addition paradox. Figure 7.2 illustrates this paradox. In
population A, every individual enjoys a very high quality of life. In population A+, there
exists a group of people identical in size and welfare to A, but in addition there are

76

further individuals whose lives are somewhat less good, though still worth living. This
extension from A to A+ is what Parfit calls a case of ”mere addition”. Population B
contains the same number of individuals as A+, and although their lives are all worth
living at a welfare level slightly above the average of A+, their quality of life is still below
that of population A. By iterating this structure (adding B+ and C, then C+ and so
on), we are eventually led to the repugnant conclusion: a very large population Z in
which all individuals have lives of very low positive quality.

A A+
+ people

B

average in A+

Figure 7.2: Mere addition paradox, adapted from [PB24]

The following assumptions are usually taken to be plausible:

1. A > B. Population A is strictly better than B. Otherwise, by parity of reasoning
in the iterative construction (B+, C, C+, ...), one would have to conclude that A
is not better than Z.

2. A+ ≥ A. Population A+ is at least as good as A, since adding extra lives that
are still worth living cannot make the situation worse.

3. B > A+. Population B is strictly better than A+, as both have the same size,
but in B everyone has higher welfare, and welfare is distributed equally.

The relations ≥ and > used in (1)–(3) are defined over propositional formulas. As shown
in Table 7.1, the expression ϕ ≥ ψ is taken as shorthand for ¬⃝(¬ϕ | ϕ ∨ ψ). The strict
preference ϕ > ψ is then obtained by combining ϕ ≥ ψ with the condition that ψ ̸≥ ϕ.

Definiendum Definiens
ϕ ≥ ψ ¬⃝(¬ϕ | ϕ ∨ ψ)
ϕ > ψ ¬⃝(¬ϕ | ϕ ∨ ψ) ∧ ⃝(¬ψ | ϕ ∨ ψ)

Table 7.1: Preference on formulas, adapted from [PB24].

77

7. Implementation of Deontic Paradoxes

Formalizing the above assumptions in Åqvist’s preference-based logics and combining
them, we obtain the following conjunction:

ψ = ¬⃝(¬A | A ∨ B) ∧ ⃝(¬B | A ∨ B)
∧ ¬⃝(¬A+ | A+ ∨ A)
∧ ¬⃝(¬B | B ∨ A+) ∧ ⃝(¬A+ | B ∨ A+).

We proceed as before by testing satisfiability via the negated formula ¬ψ. The tool
checks whether this negation is valid, which allows us to determine the satisfiability of ψ.

For logic E we find the following model M = ⟨W, ⪰, V⟩, satisfying ψ, with

• W = {w1, w2, w3},

• ⪰ = {(w1, w3), (w3, w2), (w2, w1)},

• V(w1) = {B}, V(w2) = {A}, V(w3) = {A+}.

In Figure 7.3, we compare the model generated by our tool with the one from [PB24].
The latter contains one additional preference relation and one world satisfies an extra
variable.

1
B

3
A

2
A, A+

(a) Model in [PB24]

1
B

2
A

3
A+

(b) Model found by our tool

Figure 7.3: Models for repugnant conclusion

The repugnant conclusion can be avoided by rejecting the assumption of transitivity of the
preference relation, as argued by, e.g. Temkin [Tem87]. Accordingly, for logics F+(CM)
and G, our tool finds that ¬ψ is valid. This implies that ψ is unsatisfiable in these logics.

Overall, the paradox of the repugnant conclusion is avoided in logics that do not require
transitivity of the preference relation (E, F), while it still arises in the logics that enforce
transitivity (F+(CM), G).

78

CHAPTER 8
Optimisations and Benchmarking

This chapter explains the generation of a test set of formulas for runtime comparisons
and discusses optimisations for the automated reasoning tool. Before introducing the
optimisations, we briefly outline the software architecture of the tool.

8.1 System Architecture and Formula Class Hierarchy
The automated reasoning tool is implemented as a web application. It consists of a Vue
frontend, which communicates with the Java backend, which in turn uses the Java Z3 API
to interact with the Z3 solver (see Figure 8.1).

Vue frontend

Java backend

Z3
AP

I

Z3

Figure 8.1: Architecture overview of the frontend–backend–solver interaction.

We examine the central class structure used to represent formulas internally, which is
illustrated in the UML diagram in Figure 8.2. The methods display and represent are
used to obtain a string representation of a formula using standard logical symbols and
input-specific symbols, respectively. The latter is used to define variable names for the Z3
encoding.

79

8. Optimisations and Benchmarking

The equals-method of an AssociativeOperation compares the complete list of arguments
returned by the method getArgsDeep, without considering the order of them. These list
is also important for the simplification process (implemented in the methods simplify) of
these operation types, as discussed in Section 4.3.
The propositional encoding for Z3 of a formula object is returned by the method encode.
Therefore the class Z3Context provides a central interface for encoding formulas into
BoolExpr objects for the Z3 API and managing variables used in the encoding. It provides
utility methods for constructing logical expressions, including mkEq, mkNot, mkAnd,
mkOr, and mkImpl. Listing 8.1 shows an example of how these utility methods are
applied in formula classes, specifically within the encode method of Conjunction.

Listing 8.1: Encoding method for Conjunction
public BoolExpr encode(int world, int sizeBound) {

return mkEq(
getVarV(this, world),
mkAnd(

getVarV(leftOperand, world),
getVarV(rightOperand, world)

)
);

}

8.2 Test set generation
To compare the performance of different methods and implementations, we generate a
test set of formulas.
The generation is done recursively based on the maximum depth of the formulas. The
recursion base case consists of the following formulas with a depth of 0, the Boolean
constants ⊤, ⊥ and a single variable.

[⊤, ⊥, v0]

Formulas of depth d with d > 0 are generated recursively using the formulas of a maximum
depth of d − 1 as arguments. Note that this for instance when we generate formulas
of depth 2 includes formulas of depth 0 as arguments. Therefore formulas of depth 2
include formulas like v0 ∧ ⃝(⊤ | v0).
We take a look at the formulas with depth 1 we generate. For the unary operators we
obtain the following formulas with atomic formulas of depth 0 as arguments.

[¬⊤, ¬⊥, ¬v0, □⊤, □⊥, □v0]

Through combining atomic expressions using the binary operator obligation we obtain
the following formulas.

[O(⊤ | ⊤), O(⊤ | ⊥), O(⊤ | v0)

80

8.2. Test set generation

Formula

+ display(): S
+ encode(): BE
+ getSubFormulas(): L<F>
+ toString(): S

Top

+ represent(): S
+ display(): S
+ equals(): boolean
+ hashCode(): int

Bottom

+ represent(): S
+ display(): S
+ equals(): boolean
+ hashCode(): int

Variable

- name: S

+ getName(): S
+ represent(): S
+ display(): S
+ equals(): boolean
+ hashCode(): int

CompositeFormula

+ encode(): BE
+ getOperands(): L<F>
+ getDisplaySym(): S
+ getInputSym(): S
+ getSubFormulas(): L<F>

UnaryFormula

- operand: Formula

+ getOperands(): L<F>
+ display(): S
+ represent(): S
+ equals(): boolean
+ hashCode(): int

BinaryFormula

- left: Formula
- right: Formula

+ getOperands(): L<F>
+ display(): S
+ represent(): S
+ equals(): boolean
+ hashCode(): int

AssociativeOperation

+ getArgsDeep(): L<F>
+ simplify(): Formula

ExclusiveOr

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Disjunction

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Conjunction

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Equality

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Obligation

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Implication

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Necessity

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Negation

+ encode(): BE
+ getDisplaySym(): S
+ getInputSym(): S

Figure 8.2: UML class diagram of the formula hierarchy.
Type abbreviations: S = String, L<F> = List<Formula>, BE = BoolExpr.

81

8. Optimisations and Benchmarking

O(⊥ | ⊤), O(⊥ | ⊥), O(⊥ | v0)

O(v0 | ⊤), O(v0 | ⊥), O(v0 | v0)]

To combine different variables with each other we add additional variables to the test set
of the one smaller depth. The number of variables we have to add depends on the depth.
At depth d, up to 2d different variables can be combined, see Table 8.1.

Table 8.1: Variables for generating formulas of a given depth

depth variables example formula
0 [v0] v0
1 [v0, v1] v0 ∧ v1
2 [v0, v1, v2, v3] (v0 ∧ v1) ∨ O(v2|v3)

At depth 1, we can generate formulas combining two different variables, we obtain the
following ones for obligation.

[⃝(v0 | v0), ⃝(v0 | v1), ⃝(v1 | v0), ⃝(v1 | v1)]

Note that the formulas ⃝(v0 | v1) and ⃝(v1 | v0) are equivalent modulo variable
renaming. We only add one of such formulas to the test set.

[⃝(v0 | v0), ⃝(v0 | v1)]

We check whether two formulas are equivalent modulo variable renaming, by renaming
variables to sequentially numbered names starting with v0. The variables in a formula get
renamed in the order of their first occurrence. For example renaming the formula x∧y ∧x
we apply the following renamings, since x occurs before y.

x ↦→ v0

y ↦→ v1

These result in the following formula renaming.

x ∧ y ∧ x ⇝ v0 ∧ v1 ∧ v0

For instance all obligations with two different variables, like ⃝(b | a), ⃝(v0 | v1)
and ⃝(v1 | v0), as arguments get renamed to ⃝(v0 | v1).

We often have to check if a formula equivalent modulo variable renaming is already in
the test set while generating formulas. To efficiently do that, we for each depth maintain
a set of formula strings obtained from the formulas through renaming variables.

Not needed parenthesis are skipped in the strings, such that we only add one of formulas
equivalent due to associativity. For example the formulas (v0 ∧ v1) ∧ v2 and v0 ∧ (v1 ∧ v2)

82

8.3. Time Measurements for different Optimisation Levels

both are represented by the string ”v0 ∧ v1 ∧ v2” and we only add one of them to the test
set.

We avoid generating commutatively equivalent formulas, such as v0 ∧ ⊤ and ⊤ ∧ v0 for
conjunction. The following conjunctions of depth 1 are generated.

[⊤ ∧ ⊤, ⊤ ∧ ⊥, ⊤ ∧ v0, ⊥ ∧ ⊥, ⊥ ∧ v0, v0 ∧ v0, v0 ∧ v1]

For a maximum depth of 1 and excluding the implication operator, we obtain the
following 47 formulas.

[⊤, ⊥, v0,

¬⊤, ¬⊥, ¬v0,

□⊤, □⊥, □v0,

⃝(⊤ | ⊤), ⃝(⊤ | ⊥), ⃝(⊤ | v0),

⃝(⊥ | ⊤), ⃝(⊥ | ⊥), ⃝(⊥ | v0),

⃝(v0 | ⊤), ⃝(v0 | ⊥), ⃝(v0 | v0), ⃝(v0 | v1),

⊤ ∧ ⊤, ⊤ ∧ ⊥, ⊤ ∧ v0, ⊥ ∧ ⊥, ⊥ ∧ v0, v0 ∧ v0, v0 ∧ v1,

⊤ ∨ ⊤, ⊤ ∨ ⊥, ⊤ ∨ v0, ⊥ ∨ ⊥, ⊥ ∨ v0, v0 ∨ v0, v0 ∨ v1,

⊤ ⊕ ⊤, ⊤ ⊕ ⊥, ⊤ ⊕ v0, ⊥ ⊕ ⊥, ⊥ ⊕ v0, v0 ⊕ v0, v0 ⊕ v1,

⊤ ↔ ⊤, ⊤ ↔ ⊥, ⊤ ↔ v0, ⊥ ↔ ⊥, ⊥ ↔ v0, v0 ↔ v0, v0 ↔ v1]

The number of formulas grows rapidly as we increase the maximum depth. For a
maximum depth of 2 we obtain a test set of 10 460 formulas, which we use in the following
section for comparison of different optimisation levels.

8.3 Time Measurements for different Optimisation Levels
We compare the runtime of the tool on the generated test set. Time measurements of the
base implementation serve as a reference point. Table 8.2 shows the average runtime for
simplifying the formula, computing the size bound N(ϕ), Z3 encoding, checking validity,
finding a minimum model (for all and only invalid formulas), and the total runtime for
the test set described in the previous section.

In the class Z3Context we use memorisation, by caching already created BoolExpr-objects,
to speed up the encoding, which achieves a speedup of 1.15.

Our main optimisation strategy is the formula simplification discussed in Chapter 4.
This reduces the formula size (i.e. the number of symbols) by 77% and the size bound
for the required number of worlds in a countermodel by 52% (see Table 8.3). For the
total runtime of the tool this yields a speedup of 1.71 compared to the version using
memorisation.

83

8. Optimisations and Benchmarking

simplify N(ϕ) encode validity min.(all) min.(inv.) total
base – 0.01 13.64 24.17 17.13 28.81 54.95
memoriz. – 0.01 12.03 23.60 12.35 20.76 47.99
simplify 0.06 0.01 6.45 15.83 5.81 16.87 28.10

Table 8.2: Runtimes in milliseconds

formula size size bound
without simplification 98.36 8.35
with simplification 22.46 4.01

Table 8.3: Reduction of formula size and size bound

84

CHAPTER 9
Comparison to Existing Tool

We compare the introduced tool with the existing automated approach for Åqvist’s
logics by Parent and Benzmüller [PB22] using Isabelle/HOL. Their approach uses higher-
order logic to formalize and verify deontic correspondences within Åqvist’s framework.
Isabelle is an interactive theorem prover that supports a variety of logical formalisms.
In particular, Isabelle/HOL is based on classical higher-order logic, making it suitable
for the formalization of complex logical systems. Their approach embeds Åqvist’s logics
into Isabelle’s meta-logic, allowing properties and correspondences to be expressed, and
automatically verified using higher-order reasoning. This method emphasizes formal
proof construction and logical soundness.

9.1 Feature Overview and Comparison
We compare our tool to the Isabelle/HOL implementation in terms of:

• Supported logics: Our tool supports all of Åqvist’s logics (E, F, F+(CM), G),
while theirs is restricted to E.

• Performance: Our tool uses finite model construction via propositional encoding
and SAT-based solving, resulting in significantly faster runtimes.

• Simplification: Additionally, our tool is capable of simplifying the input formula,
which improves readability and also computational performance.

• Input format: Our tool accepts straightforward syntax requiring no prior knowl-
edge. In contrast, Isabelle/HOL requires familiarity with formal proof environments
and function syntax.

85

9. Comparison to Existing Tool

• Model readability: Our tool provides countermodels in three human-readable
formats (graphical, matrix, and text), compared to Isabelle’s internal Nitpick
output.

• Extensibility: Our tool is designed to be modular, with the potential for extending
support to new operators and optimizations (see Chapter 8 and Chapter 10).

Table 9.1: Feature comparison between our tool and Isabelle/HOL

Feature Our Tool Parent & Benzmüller
Supported logics E, F, F+(CM), G E
Model generation Yes (minimal models) Yes (via Nitpick)
Model format Graph, Matrix, Text Isabelle output
Input simplicity Intuitive syntax Isabelle/HOL code
Formula simplification Yes No
Runtime performance Fast (SAT-based) Slower (HOL-based)
Extensibility Easy to extend Harder (formal proofs)
Usability for non-experts High Low

9.2 Example Model Comparison

To illustrate differences in model representation, we consider the following model M =
⟨W, ⪰, V⟩, with

• W = {w1, w2, w3},

• w2 ≽ w1, w3 ≽ w1, w3 ≽ w2,

• V(w1) = {c}, V(w2) = {a, b}, V(w3) = {b}.

Isabelle provides countermodels in the following Nitpick format.

86

9.2. Example Model Comparison

Free variables:
a = (λx. _)(i1 := False, i2 := True, i3 := False)
b = (λx. _)(i1 := False, i2 := True, i3 := True)
c = (λx. _)(i1 := True, i2 := False, i3 := False)

Skolem constants:
v = i3

v = i3

v = i2

x = i2

Constants:
aw = i1

(r) = (λx. _)
((i1, i1) := True, (i1, i2) := False, (i1, i3) := False,

(i2, i1) := True, (i2, i2) := True, (i2, i3) := False,

(i3, i1) := True, (i3, i2) := True, (i3, i3) := True)

Our tool displays the same model in three different representations discussed in Chapter 6,
which can be seen in Figure 9.1.

(a) Graph (b) Matrix (c) Text

Figure 9.1: Model representations of our tool

87

9. Comparison to Existing Tool

9.3 Performance Evaluation
We combine the size bound method with the Isabelle approach to compare the runtimes.
Our routine first checks validity, then finds a minimal countermodel. For the invalid
formula a ∨ b ∨ ⃝(a | b) ∨□¬a ∨□¬c ∨□¬b, we obtained a runtime of 8559 milliseconds
using Isabelle and 338 milliseconds with our tool. This corresponds to a speedup of 25.29×,
even without applicable simplifications.

We also tested the valid formula (⃝(b | a) ∧ ⃝(c | a)) → ⃝(d | a), for which no
simplification rule is applicable.

Here, we obtained a runtime of 2783 milliseconds with Isabelle/HOL and 1057 milliseconds
with our tool, resulting in a speedup of 2.63.

The formula ⃝(b | a)∧⃝(c | a)∧⃝(d | a) can be simplified, and we achieved a speedup
of 2.97 with a runtime of 668 milliseconds compared to 1986 milliseconds using Isabelle.

In particular, for invalid formulas, our automated reasoning tool shows the greatest
advantage.

9.4 Summary
Parent and Benzmüller’s work has laid important groundwork for mechanizing Åqvist’s
logic E in a proof assistant. Our tool complements this effort with a lightweight, efficient,
and user-friendly approach applicable to a broader range of deontic systems. Its speed,
minimal countermodels, and input simplicity make it a strong candidate for further
academic and practical applications in automated deontic reasoning.

88

CHAPTER 10
Conclusion

Åqvist’s logics form a central framework in the field of deontic logic. To use them for
reasoning (providing either proof or countermodel) [Roz24] introduced a semantic-based
method, by developing small model constructions for these logics and encoding them
into classical propositional formulas. In this thesis we use these encodings to develop an
efficient automated reasoning tool that leverages SMT technologies through the usage of
the SMT-solver Z3 of Microsoft to check validity and find a minimal countermodel for
non-valid formulas.
After introducing preliminaries, including the propositional encoding, we explained the
parsing of formulas, where we give error feedback for invalid inputs. We presented how
formulas are simplified by applying transformation rules in a bottom-up manner. For the
encoding for Z3 we gave formulas for the upper bound of the required number of worlds,
explained the encoding for the supported operators, and the process of finding a minimal
countermodel with respect to the number of worlds. To present the countermodels in a
readable form we proposed three different representations using text only, as a directed
graph, and as a matrix. We use these variants depending of the number of worlds in the
countermodel.
As a case study, we used the tool to check whether deontic paradoxes are blocked by
attempting to find countermodels. Finally, the runtimes were compared for different
optimisations and the developed automated reasoning tool was compared to the approach
by Parent and Benzmüller [PB22] using Isabelle/HOL. While their approach provides
high assurance within a proof assistant, it is restricted to logic E, requires familiarity
with Isabelle’s formal syntax, and produces countermodels in a less accessible format. In
contrast, our tool supports all of Åqvist’s logics, offers intuitive input and multiple human-
readable model representations, and achieved substantial performance improvements. In
particular, for invalid formulas our method outperformed the Isabelle/HOL framework
by more than a factor of 25, demonstrating its potential as a reliable and efficient tool
for future academic and practical applications in automated deontic reasoning.

89

10. Conclusion

10.1 Future Work
While this work provides a solid foundation, future work can extend its scope in various
directions.

Future work could focus on extending our framework to handle more complex paradoxes,
including those found in legal reasoning, helping to gain a better understanding of
conflicts and improve computational methods in law. Our tool could also be used to
study examples from legal texts, capturing key aspects of obligations, permissions, and
rules in practice.

Another direction is to explore deontic explanations—simple justifications of why certain
obligations or permissions hold, as discussed in [CUP]. These explanations could help
make normative reasoning in legal contexts more transparent and easier to understand,
providing insights into why specific rules apply or why one action is preferred over
another.

Although we currently support standard propositional connectives (such as conjunction,
disjunction, negation, implication, equivalence, and exclusive or), as well as both deontic
modalities used by Åqvist, the tool could be extended to accept additional deontic
operators for prohibition (e.g., F (ψ | φ)) and permission (e.g., P (ψ | φ)). Such
additions would allow for more natural and expressive representations of normative
statements, particularly when negative obligations or explicitly permitted actions need to
be formalized. It would also be possible to add fixed versions of the conditional operations
in the form of ⃝(ψ), F (ψ) and P (ψ), which are equivalent to ⃝(ψ | ⊤), F (ψ | ⊤),
and P (ψ | ⊤), respectively. The unary possibility operator ♦ (input e.g. as ”<>”) could
also be directly encoded into a propositional formula using the following equivalence.

♦ψ ⇔
N(ϕ)⋁︂
i=1

vψ
i

The tool currently returns a countermodel with the minimal possible number of worlds.
It could also be extended to find countermodels minimal with respect to the density of
the preference relation. That is, models where the number of preference pairs (wi, wj) is
as small as possible. This could be done by multiple Z3 calls, after each one adding an
assertion to exclude the last found model to find all different models, and identify one of the
least complex one of them. To exclude a model M = ⟨W, ⪰,V⟩ with W = {w1, . . . , wn}
one could add the following assertion.

(assert (or

∀ wi, wj ∈ W with w ⪰ v (not p:i:j)

))

Another promising direction for extension would be the extension of the formula sim-
plification phase. Future enhancements could include context-aware simplifications

90

10.1. Future Work

that consider surrounding formula structure. For instance one could detect redundant
subformulas across larger scopes.

The computation of the size bound for the required number of worlds in a countermodel
could be improved. One could determine for each subformula of the form □φ and of the
form ⃝(ψ | φ), if it needs to get satisfied. That is deciding if it is in Ob+ (resp. Box+)
or in Ob− (resp. Box−). The cardinalities of this sets could be used to compute a more
precise size bound, by enabling the use on the exact formula for the number of falsifying
worlds.

|Fal(ϕ)| = 1 + |Fal□(ϕ, M)| + |Fal⃝(ϕ, M)|
The graph representation for bigger countermodels could be examined.
Also, the text representation of transitive preference relations could be extended. The
relation given by w1, . . . , wn ⪰ v1, . . . , vm could be extended in the following way, if for
each xi it holds that {w1, . . . , wn} ⊆ sameRel[xi] and for each yi we have {v1, . . . , vm} ⊆
otherRel[yi] (compare Algorithm 6.1).

x1, . . . , xk ⪰ w1, . . . , wn ⪰ v1, . . . , vm ⪰ y1, . . . , yl

The formula test sets introduced in Section 8.2 can serve as a foundation for creating
more advanced benchmark sets, enabling better tool comparisons and systematic testing
of optimisations.

91

Overview of Generative AI Tools
Used

While working on this thesis, I used the AI tools ChatGPT and Gemini to find synonyms
and alternative formulations, to check grammar and spelling, as well as to help generating
LaTeX code for formulas and figures.

93

List of Figures

1.1 Tool Structure . 4

2.1 Small model constructions for Åqvist’s logics developed in [Roz24, Fig. 2].
Gray circles represent worlds, dashed rectangles represent blocks. Symbol
inside a block indicates an antichain, indicates a chain, and indicates
a clique. Solid arrows represent the preference relation ⪰L between blocks: an
arrow from a block l1 to a block l2 means l2 ⪰L l1. The arrow between
blocks in construction SMC G(ϕ, M) means that there is a linear order on
blocks. Note that the preference relation in constructions SMC E(ϕ, M) and
SMC F(ϕ, M) is not transitive. 12

3.1 Hierarchical Categorisation of Operators 16
3.2 Two different object representations of the formula ¬b ⊕ a ⊕ □z. 16
3.3 Syntax Tree of r ∧ r′ ∧ □s ∧ (¬t ⊕ (u ∧ v)) 17
3.4 Error Feedback Example . 25
3.5 Examples for parser error feedback . 26

6.1 Example graph representation . 62
6.2 Example graph UI with variables displayed next to node 63
6.3 Line graphs in natural order . 63
6.4 Graphs for models with one or two worlds 64
6.5 Graph for models with three worlds and no connections 64
6.6 Graphs for models with three worlds and one undirected connection or

directed connection against order . 65
6.7 Graphs for models with three worlds and one directed connection against

order . 65
6.8 Triangular graph in natural order . 65
6.9 Graphs for models with three worlds and two undirected connections . 66
6.10 Graphs for models with three worlds and two directed connections . . . 66
6.11 Graphs for models with three worlds and one undirected, one directed con-

nection - arrow of directed connection outgoing from the central node . . 67
6.12 Graphs for models with three worlds and one undirected, one directed con-

nection - arrow of directed connection ingoing in the central node 67
6.13 Graphs for models with three worlds and three undirected connections 68

95

6.14 Graphs for models with three worlds and three connections - one of them
directed . 68

6.15 Graphs for models with three worlds and three connections - two of them
directed . 69

6.16 Graphs for models with three worlds and three directed connections . . 69
6.17 Example matrix interface . 70
6.18 Example matrix interface with cursor on the marker 71
6.19 Example matrix interface with cursor on a diagonal marker 71
6.20 Example matrix interface with a highlighted row 72
6.21 Example matrix interface with a highlighted column 72

7.1 Repugnant conclusion, adapted from [PB24] 76
7.2 Mere addition paradox, adapted from [PB24] 77
7.3 Models for repugnant conclusion . 78

8.1 Architecture overview of the frontend–backend–solver interaction. 79
8.2 UML class diagram of the formula hierarchy. Type abbreviations: S =

String, L<F> = List<Formula>, BE = BoolExpr. 81

9.1 Model representations of our tool . 87

96

List of Tables

2.1 Preference-semantical characterisations for Åqvist’s logics (with maximality
as the notion of bestness). This table is adapted from Figure 1 in the work of
Rozblokhas [Roz24], originally derived from Parent [Par21, Table 1 and 2]. 7

2.2 Finite-model characterisations for Åqvist’s logics (with maximality as the
notion of bestness), presented by Rozblokhas [Roz24, Fig. 3]. 8

3.1 Allowed Operations and Constants . 19
3.2 Operator Precedence . 20
3.3 Symbol Equivalents . 20

4.1 Characteristic Elements for dominant-value operations 34
4.2 Characteristic Elements for parity-dependent operations 44

5.1 Z3 Variable Naming . 51

7.1 Preference on formulas, adapted from [PB24]. 77

8.1 Variables for generating formulas of a given depth 82
8.2 Runtimes in milliseconds . 84
8.3 Reduction of formula size and size bound 84

9.1 Feature comparison between our tool and Isabelle/HOL 86

97

List of Algorithms

3.1 parseFormula . 22

3.2 handleParenthesis . 23

3.3 handleOperator . 23

4.1 Simplification on the arguments of a dominant-value operation 39

4.2 Simplification on the arguments of a parity-dependent operation 45

5.1 Minimal countermodel search . 57

6.1 Compact preference relation . 61

99

Bibliography

[Åqv84] L. Åqvist. Deontic logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic: Volume II, pages 605–714. Springer, Dordrecht, 1984.

[BFP18] Christoph Benzmüller, Ali Farjami, and Xavier Parent. A dyadic deontic logic
in hol. In 14th International Conference on Deontic Logic and Normative
Systems (DEON 2018). College Publications, 2018.

[Bur81] John P Burgess. Quick completeness proofs for some logics of conditionals.
Notre Dame Journal of Formal Logic, 22(1):76–84, 1981.

[CDF25] Agata Ciabattoni, Josephine Dik, and Elisa Freschi. Mı̄mām. sā on ‘better-
not’permissions. Journal of Philosophical Logic, pages 1–39, 2025.

[Che80] Brian F Chellas. Modal logic: an introduction. Cambridge university press,
1980.

[Chi63] Roderick M Chisholm. Contrary-to-duty imperatives and deontic logic.
Analysis, 24(2):33–36, 1963.

[CHS+23] Agata Ciabattoni, John F Horty, Marija Slavkovik, Leendert van der Torre,
and Aleks Knoks. Normative reasoning for ai. 2023.

[COP22] Agata Ciabattoni, Nicola Olivetti, and Xavier Parent. Dyadic obligations:
proofs and countermodels via hypersequents. In International Conference on
Principles and Practice of Multi-Agent Systems, pages 54–71. Springer, 2022.

[COP+23] Agata Ciabattoni, Nicola Olivetti, Xavier Parent, Revantha Ramanayake,
and Dmitry Rozplokhas. Analytic proof theory for aqvist’s system f. In
Deontic Logic and Normative Systems: 16th International Conference, DEON
2023, pages 79–98. College Publications, 2023.

[CPS21] Agata Ciabattoni, Xavier Parent, and Giovanni Sartor. A kelsenian deontic
logic. In Legal Knowledge and Information Systems, pages 141–150. IOS
Press, 2021.

101

[CT24] Agata Ciabattoni and Matteo Tesi. Sequents vs hypersequents for åqvist
systems. In International Joint Conference on Automated Reasoning, pages
176–195. Springer, 2024.

[CUP] Agata Ciabattoni, Blaz Istenic Urh, and Xavier Parent. Deontic explanations
in åqvist’s systems. 17 DEON, page 79.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[FH94] Nir Friedman and Joseph Y Halpern. On the complexity of conditional logics.
In Principles of Knowledge Representation and Reasoning, pages 202–213.
Elsevier, 1994.

[For84] James William Forrester. Gentle murder, or the adverbial samaritan. The
Journal of Philosophy, 81(4):193–197, 1984.

[FP21] Elisa Freschi and Matteo Pascucci. Deontic concepts and their clash in
mı̄mām. sā: Towards an interpretation. Theoria, 87(3):659–703, 2021.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathema-
tische zeitschrift, 39(1):176–210, 1935.

[GHP+21] Dov M. Gabbay, John F. Horty, Xavier Parent, Ron van der Meyden, and
Leendert van der Torre, editors. Handbook of Deontic Logic and Normative
Systems, Volume 2. College Publications, London, 2021.

[GP25] Guido Governatori and Monica Palmirani. Legal explanation in defeasible
deontic logic via legalruleml. 2025.

[Han71] Bengt Hansson. An analysis of some deontic logics. In Deontic logic:
Introductory and systematic readings, pages 121–147. Springer, 1971.

[KLM90] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial intelligence,
44(1-2):167–207, 1990.

[Lew18] Clarence Irving Lewis. A survey of symbolic logic, volume 5. University of
California press, 1918.

[Lew73a] David Lewis. Counterfactuals, blackwells, 1973.

[Lew73b] David K. Lewis. Counterfactuals. Harvard University Press, Cambridge,
MA, 1973.

[M+10] Simon Marlow et al. Haskell 2010 language report. 2010.

102

[NBCG21] Emery A Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori.
A normative supervisor for reinforcement learning agents. In CADE, pages
565–576, 2021.

[NBCG22] Emery A Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori.
Enforcing ethical goals over reinforcement-learning policies. Ethics and
Information Technology, 24(4):43, 2022.

[NO15] Sara Negri and Nicola Olivetti. A sequent calculus for preferential conditional
logic based on neighbourhood semantics. In International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, pages
115–134. Springer, 2015.

[Par84] D Parfit. Reasons and persons oxford, uk: Oxford univ. Press [Google
Scholar], 1984.

[Par14] Xavier Parent. Maximality vs. optimality in dyadic deontic logic. Journal of
Philosophical Logic, 43:1101–1128, 2014.

[Par21] Xavier Parent. Preference semantics for hansson-type dyadic deontic logic:
a survey of results. Handbook of deontic logic and normative systems, 2:7–70,
2021.

[PB22] Xavier Parent and Christoph Benzmüller. Automated verification of deontic
correspondences in isabelle/hol-first results. In ARQNL@ IJCAR, pages
92–108, 2022.

[PB24] Xavier Parent and Christoph Benzmüller. Conditional normative reasoning
as a fragment of hol. Journal of Applied Non-Classical Logics, 34(4):561–592,
2024.

[PvDT13] Xavier Parent and Leendert van Der Torre. Handbook of deontic logic and
normative systems. An intuitionistic basis for input/output logic., page p,
2013.

[Roz24] Dmitry Rozplokhas. Lego-like small model constructions for åqvist’s logics.
In Agata Ciabattoni, Dali Gabelaia, and Ivan Sedlár, editors, Advances in
Modal Logic, pages 631–651. College Publications, 2024.

[SBA20] Colin Shea-Blymyer and Houssam Abbas. A deontic logic analysis of au-
tonomous systems’ safety. In Proceedings of the 23rd International Conference
on Hybrid Systems: Computation and Control, pages 1–11, 2020.

[Sin22] Lavanya Singh. Automated kantian ethics: A faithful implementation. In
German Conference on Artificial Intelligence (Künstliche Intelligenz), pages
187–208. Springer, 2022.

103

[Tem87] Larry S Temkin. Intransitivity and the mere addition paradox. Philosophy
& Public Affairs, pages 138–187, 1987.

[vBCF+23] Kees van Berkel, Agata Ciabattoni, Elisa Freschi, Francesca Gulisano, and
Maya Olszewski. Deontic paradoxes in mı̄mām. sā logics: There and back
again. Journal of Logic, Language and Information, 32(1):19–62, 2023.

[VW51] Georg Henrik Von Wright. Deontic logic. Mind, 60(237):1–15, 1951.

[WM93] Roel J Wieringa and John-Jules Ch Meyer. Applications of deontic logic in
computer science: A concise overview. Deontic logic in computer science,
pages 17–40, 1993.

104

	Kurzfassung
	Abstract
	Contents
	Introduction
	Thesis Structure

	Preliminaries on Åqvist's Systems
	Syntax and preference-based Semantics
	Axioms and Derived Principles
	Small Model Construction
	Propositional encoding for Åqvist's logics

	Formula Parsing
	Input Format
	Operator Precedence
	Tokenizing
	Parsing Tokens
	Parser Error Feedback

	Simplification of Formulas
	Simplification of unary Operations
	Simplification of non-associative Operations
	Simplification of associative Operations

	Z3 encoding
	Size Bound Calculation
	Variable Names
	Single v-variable for Necessity and Obligation
	Encoding of Operations
	Encoding the Properties of the Preference Relation
	Finding a Minimal Countermodel

	Countermodel Representation
	Text representation
	Directed graph
	Matrix

	Implementation of Deontic Paradoxes
	Optimisations and Benchmarking
	System Architecture and Formula Class Hierarchy
	Test set generation
	Time Measurements for different Optimisation Levels

	Comparison to Existing Tool
	Feature Overview and Comparison
	Example Model Comparison
	Performance Evaluation
	Summary

	Conclusion
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

