
Erkennung von Angriffen mit
mikroarchitektonischen

Zuständen und Maschinellem
Lernen

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Mariana da Silva Barros
Matrikelnummer 12202389

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dipl.-Ing. Georg Weissenbacher, D.Phil.
Mitwirkung: Alexander Pluska, MSc

Mai Al-Zubi, MSc

Wien, 8. September 2025
Mariana da Silva Barros Georg Weissenbacher

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Attack Detection with
Microarchitectural Traces and

Machine Learning

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Mariana da Silva Barros
Registration Number 12202389

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dipl.-Ing. Georg Weissenbacher, D.Phil.
Assistance: Alexander Pluska, MSc

Mai Al-Zubi, MSc

Vienna, September 8, 2025
Mariana da Silva Barros Georg Weissenbacher

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Mariana da Silva Barros

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 8. September 2025
Mariana da Silva Barros

v





Acknowledgements

First of all, I want to thank God for giving me the strength to overcome my limitations
and don’t give up. Without Him, I would not have arrived where I am today.

During my whole life and especially throughout my academic journey, the experiences
I have lived and the people I have met made me who I am today. Therefore, I want
to thank everyone in my life for all the support and help I have received. I thank my
parents, Edna and Antônio, for being the basis that made me arrive here. I also thank
my brother, Tiago, for all the encouragement given when I needed it.

I would like to thank my advisor, Prof. Georg Weissenbacher, for guidance and support
during the development of this work. I also would like to thank Mai Al-Zubi and Alexander
Pluska for their assistance during the process of writing this thesis. I also thank the
Technical University of Vienna (TU Wien) for providing the education, opportunities,
and infrastructure that allow the formation of so many people.

More important than where we arrive at the end of a path are the friendships that
we make during the journey. I would like to thank my friends from IBCV for all the
encouragement, support, and help along the way, and for helping me every day to become
a better person.

vii





Kurzfassung

Optimierungen in modernen Rechnerarchitekturen ermöglichen einen schnelleren und effi-
zienteren Informationszugriff, erhöhen jedoch gleichzeitig die Anfälligkeit für Angriffe und
Informationslecks. Diese Schwachstellen werden unter anderem durch cachebasierte Seiten-
kanalangriffe (Side Channel Attacks) ausgenutzt, die gemeinsame Hardware-Ressourcen
und Optimierungen der Rechnerarchitektur einsetzen, um gezielt mikroarchitektonische
Seiteneffekte zu erwirken. Zahlreiche aktuelle Forschungsergebnisse zur Erkennung und
Abwehr dieser Bedrohung fokussieren sich auf die Verwendung von Hardware Performance
Counters (HPCs) zur indirekten Überwachung solcher Seiteneffekte. Eine zentrale Her-
ausforderung besteht jedoch in der mangelnden Flexibilität der Überwachungsintervalle,
die entweder Angriffe übersehen oder erheblichen Overhead erzeugen können, sowie in
der begrenzten Generalisierbarkeit der erlernten Modelle. Diese Arbeit verfolgt das Ziel,
cachebasierte Seitenkanalangriffe mittels maschinellen Lernens zu erkennen, indem ein
Grenzwert-basiertes Verfahren zur Überwachung von HPCs eingesetzt wird. Sequenzen
von Zeitintervallen zwischen den Überschreitungen von (automatisch ermittelten) Grenz-
werten der HPCs dienen als Eingabe für ein T-LSTM-Modell, das zur Angriffserkennung
eingesetzt wird. Experimente auf verschiedenen Plattformen und Architekturen und in
unterschiedlichen Szenarien dienen der Evaluierung der Generalisierungsfähigkeit des
Modells. Optimierungstechniken wie Normalisierung und Fine-Tuning werden einge-
setzt, um die Leistungsfähigkeit weiter zu steigern. Das vorgeschlagene System erreicht
eine Erkennungsgenauigkeit von über 99% im besten Fall (plattformspezifisch), sowie
98% in plattformübergreifenden Cross-Validierungs-Szenarien unter Verwendung von
Fine-Tuning.

ix





Abstract

Recent advances in computer architecture make access to information faster and more
efficient, but also make the computer prone to attacks and information leakage. This
vulnerability is exploited, for example, by cache-based side-channel attacks, which make
use of shared hardware resources and optimizations in the machine, and affect its
microarchitectural traces. Recent studies on the detection and mitigation of this threat
focus on the monitoring of Hardware Performance Counters (HPCs). However, among
the faced challenges is the lack of flexibility on the monitoring time interval, which may
miss attacks or generate a substantial overhead, as well as the lack of generalization
for the learned model. Therefore, this work aims to detect cache side-channel attacks
with a machine learning technique by using an overflow-based approach to monitor
HPCs. The dataset composed by the sequence of triggered overflows for the HPC values,
along with the time interval between overflows, is submitted as input to a T-LSTM
model, which is trained to detect cache side-channel attacks. The experiments conducted
in different scenarios and platforms aim to assess the model’s generalization ability.
Optimization techniques, as normalization and fine-tuning, are used to improve the
model’s performance. The detection accuracy of the proposed system is of over 99% in
the best scenario (separate platforms), and 98% on the cross-validation across platforms
scenario with the use of fine-tuning.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 5
2.1 Cache Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hardware Performance Counters . . . . . . . . . . . . . . . . . . . . . 13
2.3 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Works 19
3.1 HPCs Monitoring for Cache Side-Channel Attack Detection . . . . . . 19
3.2 Deep Learning for Security . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Cache Side-Channel Attacks Detection on Different Environments . . 22

4 Methodology 25
4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 LSTM Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Model Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . 31

5 System Implementation 35
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Model Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . 37

6 Experimental Evaluation 41

xiii



6.1 Calibration Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 LSTM Model Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 55
7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Overview of Generative AI Tools Used 59

List of Figures 61

List of Tables 63

Acronyms 65

Bibliography 67

Appendix 73
Implementation of Dataset Creation . . . . . . . . . . . . . . . . . . . . . . 73
Implementation of Model Training Training and Evaluation . . . . . . . . . 81
Implementation of T-LSTM Model . . . . . . . . . . . . . . . . . . . . . . . 85



CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Recent advances in computer architectures make access to information faster and more
efficient. Among the introduced optimizations, we can cite the use of caches, speculative
execution, and CPU pipelines, for example. However, they also make computers more
prone to attacks and information leakage. A recent type of attack that poses a threat
to most modern architectures is cache-based side-channel attacks, which are efficient
for the fact that they don’t need additional devices or physical contact with the target
[TZW+20].

This type of attack makes use of the shared hardware resources in the machine, such
as memory and cache, and also of the optimizations on the access to these resources.
Among them, the Spectre vulnerability is one example of a side-channel attack that
exploits optimizations found in modern hardware architectures, such as branch prediction
and speculative execution. This kind of attack makes use of these features to leak
confidential information via side-channels [KHF+20]. As a result, side-channel attacks
(and particularly Spectre Attacks) have an effect on microarchitectural traces of the
machine, which are reflected on Hardware Performance Counters (HPC).

In the last years, techniques to identify when the machine is under attack have been
developed, based on both software and hardware. Some of the most popular early
approaches are: timing analysis, cache usage profiling, statistical analysis, specialized
detection tools, or analysis of system behavior [SDO23]. However, recently, the use of
Artificial Intelligence has also helped in this task. According to Al-Zu’bi [AZW24], a
popular approach to detect such attacks deploys Machine Learning (ML) to identify
suspicious micro-architectural patterns. This can be done, for example, by monitoring
the machine HPCs that are affected by this kind of attack, such as branch mispredictions
or cache misses.

1



1. Introduction

However, even though there are significant efforts in creating mechanisms to detect cache
side-channel attacks, there are still limitations associated with this task, as it is observed
in several studies developed in recent years. Gulmezoglu et al. [GMES19] affirms that
the main challenge is the fact that the existing works are based on existing attacks, and
therefore lack the knowledge of new approaches. Tong et al. [TZW+20] and Mukhtar et
al. [MMB+20] state that the overhead in detection systems still causes a lot of damage
to performance. In addition, the fact that the attacks are also evolving and adapting to
avoid detection makes it difficult to identify them using conventional techniques [SDO23].
Furthermore, the usual mechanisms created with this purpose are limited to a single
architecture or require radical hardware modifications [MMB+20].

According to Kim et al. [KHK+24], cache side-channel attacks can be designed differently
based on the target system environments, such as processor architecture, for example.
Therefore, another main challenge related to the use of microarchitectural traces, such
as Hardware Performance Counters, to detect Spectre attacks, is to build a model that
generalizes well and is robust for different platforms. Since the affected traces are related
to the computer architecture, the values will differ in different platforms, and this may
make it more difficult for the model to detect attacks in these situations.

This work brings an approach to detect Spectre attacks by observing microarchitectural
traces of the computer and using machine learning techniques. Hardware Performance
Counters that are most affected by the side-channel attacks will be monitored, and when
they reach a certain value (a pre-defined threshold), it may indicate that the machine is
under attack. This case constitutes an overflow, and this information is provided to a
detection system that will evaluate if the situation constitutes a threat to the computer.
Since microarchitectural traces usually vary with different computer architectures, one of
the main challenges is related to whether the detection model can be transferred across
different platforms.

1.2 Aim of the Work
This work aims to provide a system that can detect the presence of cache side-channel
attacks through the monitoring of microarchitectural features of the machine, using an
overflow-based approach. The measured data should be analyzed over time and evaluated
using Machine Learning techniques. In order to assess the robustness of the model, the
detection task will be validated on different platforms.

The detection system has the goal to constantly monitor the Hardware Performance
Counters and, based on the measured values and the frequency that they overcome
pre-defined thresholds, identify whether the machine is under attack. Each time there is
a threshold overflow at one of the measured HPCs, this information is sampled and sent
to a deep learning model, which will assess if it is a benign application or a side-channel
attack. This technique enables the data collection at a dynamic pace, depending on the
processes running in the machine, and, at the same time, ensures a constant stream of
data to the detection model. As a result, the performance overhead is expected to be

2



1.3. Methodological Approach

smaller than the approach of sampling at a fixed time interval, which was performed in
previous works.

However, the system must be robust enough to perform the detection in different
architectures and load situations. Due to the fact that the monitored features are
microarchitectural traces, they might differ across different architectures, which makes it
a challenge to transfer the detection system across platforms. This work will evaluate
whether this is possible and will try to overcome this obstacle through the use of an
adapted LSTM model that dynamically adapts the learning with the input timing
information. In addition, the calibration phase aims to find threshold values that enable
the system to adapt to different architectures, while still being able to detect attacks.
The system will also be evaluated with different benign applications, to guarantee that it
is robust enough to detect attacks with different workload intensities.

The following research questions (RQs) should be answered at the end of this work:

• How well does the system generalize? In other words, is it possible to transfer the
detection across different platforms?

• Is it possible to find thresholds for an unknown platform such that the system can
detect Spectre Attacks? In other words, is it possible to calibrate the system for
the microarchitectural features of each machine?

• Does the timing information on the measurements help to detect the attacks? In
other words, does the LSTM model with dynamic temporal adaptation yield good
results in this application?

• Does the calibration target influences in the learning processes?

• Do the normalization and fine-tuning techniques improve the system’s performance?

• What is the minimum dataset size necessary for the fine-tuning step?

1.3 Methodological Approach
The methodological approach consists of the following steps:

1. Literature Review
Theoretical background and related works must be researched in order to understand
the state-of-the-art, the techniques that have already been used to detect attacks,
and the achieved performance.

2. Datasets Creation
Before training and testing the model that will detect the attacks, we need to
generate datasets both in attack situations and while running benign applications.

3



1. Introduction

These datasets are composed of samples taken each time a Hardware Performance
Counter triggered an overflow, or, in other words, each time one of the monitored
HPC values was above a previously defined threshold.

• Calibration Phase
Since different platforms have different standard values for microarchitectural
traces, this phase is necessary in order to define the thresholds for each
monitored Hardware Performance Counter. This is done by sampling the
HPCs for each architecture in various benign scenarios and selecting the
thresholds that would allow us to detect attacks.

• Overflow-based Dataset Creation
We generate the datasets for training and evaluation of the model under
different workloads, for the different platforms, using the thresholds determined
in the previous step. Each sample of the dataset reflects an overflow triggering
from one of the monitored HPCs, per process running in the machine. In
addition to the overflow trigger, the sample also includes the timing information
since the last overflow occurrence, and the information on whether the process
is malicious (attack) or a benign application.

3. LSTM Modeling
Once we obtain the labelled overflow-based datasets, they will be applied to a
supervised RNN (Recurrent Neural Network) model, which has the goal of learning
whether there is an attack or not based on the monitored microarchitectural traces.
The chosen approach, more specifically a LSTM (Long-term Short Memory) model,
enables the use of the timing information to detect an attack. The architecture
for an LSTM model that includes dynamic temporal information will be defined,
based on the one proposed by Baytas et al. [BXZ+17]. This will enable the model
to use the timing information on the datasets to learn to detect an attack.

4. Model Training and Evaluation
The defined model will be trained and evaluated using the generated datasets.
Different scenarios will be tested to evaluate the generalization of the approach,
not only among different applications, but mainly among different platforms. Nor-
malization techniques will also be included in the system in order to improve
performance.

5. Model Fine-Tuning
Another technique for performance optimization, the fine-tuning approach will be
used to enable the model to perform the detection in an unknown platform with
smaller overhead.

6. Results Analysis
The results obtained in the previous steps will be analyzed and compared in terms
of performance and overhead.

4



CHAPTER 2
Theoretical Background

The chapter is organized as it follows. Section 2.1 explains the principle of cache side-
channel attacks, section 2.2 describes Hardware Performance Counters, and section 2.3
talks about Machine Learning Techniques employed in this work.

2.1 Cache Side-Channel Attacks
2.1.1 Cache Memory and Hierarchy
In modern computers, the cache memory is employed between the CPU and main memory
(RAM memory) to address the performance gap between them [LM18]. In other words,
the cache is used by the CPU to provide quicker access to data without the need to wait
for the slower RAM. The cache works by buffering recently used data, so that the overall
memory access time is significantly decreased [LM18].

Moreover, according to Lyu et al. [LM18], modern processors have the cache divided in
different levels, as a further improvement to the access time. This way, the higher levels,
closer to the processor, are smaller, faster, and more expensive, while the lower levels are
bigger, but slower. According to Shen et al. [SCZ21], modern processors contain 3 levels
of cache:

• L1 caches: per-core instruction and data caches.

• L2 caches: per-core unified caches.

• L3 cache: large cache shared across cores, also called Last-Level Cache (LLC).

Depending on whether the information requested by the CPU is available in the cache or
not, we have a cache hit or miss, respectively. During the past decade, the difference in

5



2. Theoretical Background

the access times of cache hits and misses has been exploited by cache-based side-channel
attacks [HL17] [LM18].

According to He [HL17], an effective attacker is able to observe all of the victim’s memory
accesses and infer whether it is a cache hit or miss. Furthermore, by observing the cache
shared with the victim, the attacker can also infer the memory address used by the victim.
This way of getting the leaked metadata is what characterizes cache timing side-channel
attacks, and it is used, for example, to derive the secret key to encryption algorithms
[HL17].

However, it is not always the case that the attacker can observe all the times the victim
accesses the cache. In this case, the attacker uses indirect observations, which can be
done in two different ways, as described by He [HL17]. The first one, called "time-based"
cache side-channel attacks (SCA), is where the attacker measures the access time of its
own memory access, after interfering with the victim sometimes. The other one, called
"access-based" SCA, happens when the attacker looks at the total time of the victim’s
security-critical operation.

2.1.2 Speculative Execution
According to Kocher et al. [KHF+20], modern processors deploy speculative techniques
for optimization. This approach is related to the fact that, when the control flow of
a program depends on a value stored in memory (and not in the cache), it may take
hundreds of clock cycles to retrieve this value, while the processor is idle. Instead, with
speculative execution, the processor predicts the direction of the control flow and executes
the program speculatively [SCZ21]. If, when the actual result comes, the prediction
is following the wrong path, the processor discards the precomputed results and go
back to the last correct state. However, if the prediction is accurate, the processor
commits to these results and continues to execute. According to [SCZ21], the speculative
execution technique improves the performance significantly. However, it can be exploited
by attackers to leak information and access sensitive data [AZW24] [GMES19].

2.1.3 Attack Techniques
According to Shen et al. [SCZ21], there are various examples of microarchitectural cache
side-channel attacks, and they usually involve the combination of different techniques.
According to its relevance for this work, we will present two groups of approaches that
are often combined to create attacks.

Instrumented Attacks

In instrumented attacks, the attacker uses the cache side-channels to interfere with the
victim’s access patterns and then capture the victim’s secret [SCZ21]. The difference in
the latency of cache accesses in different situations is leveraged by the attacker in order
to infer the victim’s behavior [SCZ21].

6



2.1. Cache Side-Channel Attacks

These type of attacks can be further classified in two groups, as described by [SCZ21].
The first class, "flush-based" , uses "clflush" instructions to flush the memory lines. The
most common ones are Prime + Probe, Evict + Time, Flush + Reload, and Flush +
Flush.

• Prime + Probe [MAB+18]
The Prime + Probe attack can be divided in three distinctive parts [LM18]

1. Prime: Initially, the attacker occupies specific (or all) cache sets with its own
data.

2. The victim executes its own process
3. Probe: The attacker accesses the same data that it has previously loaded into

the cache. If the data loaded by the victim is mapped to the same cache sets
and evicts the attacker’s data, there will be a cache miss, and consequently, a
longer probe time. Otherwise, if the data is still in the cache, the probe time
will be smaller.

Therefore, as Lyu et al. [LM18] explain, the attacker only measures its own running
time, which makes it effective and noise-resistant. This attack technique uses
the last-level cache (that is shared among many processors), but it can also be
implemented at L1-data and L1-instruction [BRN24].

• Evict + Time [OST06]
According to [LM18], this is a time-driven attack that will use the execution time
from the victim to learn information. Lyu [LM18] divides it into 3 stages:

1. The attacker triggers the victim process
2. Evict: The attacker fills a specific cache set with its own data, hoping to evict

the victim data
3. Time: The attacker measures again the victim’s execution time

The basic idea of the attack is to first establish a baseline time by preloading the
victim’s data [SCZ21]. Then, after evicting and running the victim code again, it
gets a new execution time. This new time will be longer if the victim accessed the
line evicted by the attacker [SCZ21]. On the other hand, the second execution will
be faster if the evicted cache lines are not the same. Therefore, the timing of the
second execution reveals the memory access pattern of the victim process [LM18].
According to Lyu et al. [LM18], there are some weaknesses in this technique.
Firstly, there are strong assumptions made, such as, for example, the knowledge of
the memory address of useful data. Secondly, the time measurement is imprecise in
this case [LM18].

7



2. Theoretical Background

• Flush + Reload [YF14]
Initially defined for the L1 cache and later extended to L3, this attack can determine
a specific instruction or data accessed by the victim process [LM18]. The stages of
the technique, as defined by Lyu et al. [LM18], are:

1. Flush: The attacker flushes a memory line (the target address) from the cache.
2. The attacker waits for the victim process to run, which is given by a pre-

configured time [SCZ21].
3. Reload: The time to reload the memory line is measured. If the victim accesses

the line evicted by the attacker, the execution time is longer [SCZ21].

According to He et al. [HL17], in this attack, the attacker shares a library or data
with the victim. If the victim uses the shared data, those shared memory lines will
be fetched into the cache. Then, after the reload operation, a hit in the attacker’s
reloads indicates that the corresponding memory line has been used by the victim
[HL17].

• Flush + Flush [GMWM16]
Created as a variation of Flush + Reload, this attack exploits timing variation in the
"flush" instruction itself [SCZ21]. According to Ferracci [Fer19], the technique has
only one phase, that is repeated in a loop: the execution of the "flush" instruction
on a chosen shared memory line. The attacker measures this execution time, and
based on that, he decides whether this memory line has been cached or not [Fer19].
Since the attacker does not load anything from the memory to the cache, the
execution time refers only to a load by the victim process. As Ferracci [Fer19] also
mentions, the repeated "flush" instruction also evicts the cache lines for the next
loop.

Transient-Execution Attacks

As described by Shen et al. [SCZ21], transient instructions execute unauthorized com-
putations out of the intended code or data paths. Even though their results are never
committed to the machine’s architectural state, they still leave traces on the micro-
architectural state [SCZ21]. Canella et al. [CBS+19] states that this feature has been
exploited by transient execution attacks, which usually follow the flow shown in Figure
2.1.

According to Shen et al. [SCZ21] and Canella et al. [CBS+19], the general transient
execution attack can be divided in 5 phases:

1. The attacker first prepares the micro-architecture and brings it to the desired state.

2. The attacker executes a trigger instruction, which is any instruction that will cause
the following operations to be eventually squashed (as a mispredicted branch or
data dependency, for example).

8



2.1. Cache Side-Channel Attacks

Figure 2.1: High-level overview of a transient execution attack [CBS+19]

3. Before committing the trigger instruction, the CPU continues to execute a se-
quence of transient instructions, which encode unauthorized data through a micro-
architectural covert channel.

4. When it is retiring the trigger instruction, the CPU discovers the exception or
misprediction and flushes the pipeline. This is done to discard any architectural
effects of the transient instructions.

5. Finally, the attacker recovers the unauthorized transient computation results at
the receiving end of the covert channel, and reconstructs the secret from the
micro-architectural state.

Depending on what causes the trigger instruction, transient execution attacks can be
classified into two groups [SCZ21]:

• Spectre-type attacks: they exploit transient execution following control or data
flow misprediction.

• Meltdown-type attacks: they usually exploit transient execution attacks following
a faulting instruction.

Being one of the main focuses of this work, the Spectre attack will be better described in
the following section.

2.1.4 Spectre Attack
A general description of Spectre Attacks is that they trick a victim into transiently
diverting from its intended execution path, which is done particularly by poisoning the
processor’s branch prediction system [SCZ21]. They guide the transient execution from
the victim to some code snippets, which use the micro-architectural state to expose
secrets. A key factor for this type of attack is that the execution is entirely in the victim’s
domain, and it can only leak data that is architecturally accessible [SCZ21].

9



2. Theoretical Background

Currently, there are several variants of Spectre attack, each one exploiting a different
system component. Canella et al. [CBS+19] proposes a classification in two levels: firstly,
according to the micro-architectural buffers that can trigger a prediction, and secondly,
to the mistraining strategies that can be used to steer it.

Spectre variant 1

The first variant of Spectre was proposed by Kocher et al. [KHF+20]. This approach
poisons the Pattern History Table (PHT) to mispredict the direction of conditional
branches (whether they are taken or not) [CBS+19]. In other words, as described by
Ferracci [Fer19], the attacker mistrains the CPU branch predictor to mispredict the
direction of a branch. This causes the processor to execute code that would not have
been carried out otherwise.

Al-zubi [AZW24] describes the steps followed by Spectre attack:

1. Initially, the attacker tries to trick the CPU into making incorrect branch predictions,
by continuously forcing the victim to engage in misleading behaviors.

2. Then, the attacker uses "flush" instructions to clear the cache, to force the victim
process to get any data from the main memory (and not from the cache).

3. On the next step, the attacker tricks the victim process into executing speculative
execution on sensitive data (the secret that the attacker is looking for).

4. The victim has to retrieve the secret from the main memory, since the cache was
emptied by the attacker.

5. When the processor realizes the misprediction, it discards the results of the spec-
ulative computation. But the side effects on the cache are still visible to the
attacker.

6. The attacker uses a high-precision timer to determine which values were read from
the memory, and then, decode the secret. That is possible because a cache miss
implies the victim has to read data from memory, and therefore takes longer, while
a cache hit implies reading data from the cache, which is faster.

7. Finally, the attacker retrieves from the cache the secret value.

The implementation of variant 1 of the Spectre attack is available at [Spe18]. The example
code for x86 architecture is provided by the authors of the original paper [KHF+20]. The
specific idea is that the attacker uses bound checking to mistrain the victim process in
the speculative execution of conditional branches. The code snippet on the figure 2.2
below is one example that can be exploited by this attack.

Kocher et al. [KHF+20] describe the execution of this example by the Spectre Attack.
In this example, the variable x contains data that is controlled by the attacker. The

10



2.1. Cache Side-Channel Attacks

Figure 2.2: Code snippet for bound checking in Spectre Attack [KHF+20]

conditional statement in this code needs to verify if the value of x is within a legal
range. This is necessary to verify if the memory access to array1 is valid. According to
Kocher et al. [KHF+20], during the phase 1 described above (mistraining phase), the
attacker invokes the code while providing valid inputs, training the branch predictor to
expect the conditional branch result to be true. On the next phase (exploit phase), the
attacker provides a value of x that is out-of-bounds of array1. Instead of waiting for the
calculation of the branch result (whether the value is valid or not), the processor employs
speculative execution and guesses that the bound check will be true, executing the next
instruction. Eventually, when the calculation of the bound check is completed, the CPU
realizes the misprediction and reverts the changes made to the microarchitectural state.
However, the cache state remains visible to the attacker, who can retrieve the secret byte.

According to Shen et al. [SCZ21], this variant of the attack takes advantage of the access
to out-of-bounds memory that is done speculatively before the bound check resolves.
Moreover, the Spectre attack combines speculative execution, branch prediction, and
cache-based side-channels [AZW24].

Other Spectre Variants

Since the proposal of variant 1 from Spectre attack, there have been developed other
works that exploit this attack with different machine components.

• Spectre Variant 2 [KHF+20]
The Variant 2 of Spectre, proposed by the same authors, is also called Spectre-BTB
(Branch Target Injection) [CBS+19]. This approach exploits indirect branches and
poisons the Branch Target Buffer (BTB). The main idea here is that the attacker
chooses a "gadget" from the victim’s address space and influences the victim to
speculatively execute the "gadget". Instead of relying on a vulnerability in the
victim code, the attacker trains the BTB to mispredict a branch from an indirect
branch instruction to the address of the gadget, which consists of a speculative
execution of the gadget. In a similar manner as before, the processor reverts the
effects of the incorrect speculative execution, but not the effects on the cache,
therefore allowing a leakage of sensitive information via a cache side-channel.

• Spectre-RSB (Return Address Injection) [MR18] [KKSAG18]
According to Ferracci [Fer19], the third variant of Spectre is slightly different from
the other ones because it uses the Return Stack Buffer (RSB). The main idea is
that the return address value in the RSB is different from the one in the software
stack, which leads the program to misspeculate to the address in the RSB. By

11



2. Theoretical Background

triggering this misspeculation intentionally, an attacker can force a process to
execute arbitrary code [Fer19].

• Spectre-STL (Speculative Store Bypass) [Hor18]

According to Canella et al. [CBS+19], speculation on modern CPUs also includes
predicting dependencies in the data flow. The variant 4 from Spectre shows how
the mispredictions by the memory disambiguator could be abused to speculatively
bypass store instructions [SCZ21]. It is based on Store To Load (STL) dependencies,
which require that a "load" instruction to the memory shall not be executed before
all the previous "store" instructions that write to the same location have been
completed [CBS+19]. The attack takes advantage of a performance feature that
allows loads to speculatively execute even if the address of a preceding potentially
overlapping store is unknown [SCZ21].

2.1.5 Other Attacks
In this section, there will be discussed other variations and versions of related attacks that
have been developed in the last few years. Since this work is focused on a comparison
analysis of Intel and ARM architectures, we could only include in the experiments attacks
that work on both platforms. Nevertheless, we will also describe other relevant attacks.

Meltdown

Developed by Lipp et al. [LSG+20] in 2018, the Meltdown attack is one of the most famous
in the group of transient-execution attacks. This attack targets data that is architecturally
inaccessible by exploiting illegal data flow from faulting or assisted instructions [SCZ21].
As described by Canella et al. [CBS+19], in other words, Meltdown-type attacks exploits
that exceptions are only raised upon the retirement of the faulting instruction. This allows
transient instructions ahead in the pipeline to compute on unauthorized results of the
instruction about to suffer a fault. So, even though the CPU discards any architectural
effects of this computation, secrets may be leaked through microarchitectural covert
channels [CBS+19].

Rowhammer

The Rowhammer attack was proposed by Gruss et al. [GMM16] in 2016. It is based on
the fact that DRAM cells have the possibility to leak charge over time. By accessing
neighboring rows repeatedly, Rowhammer triggers the leak, which leads to bit flips and
enables adversaries with low access rights to gain system privileges [GMES19]. In other
words, the attack targets DRAM modules by repeatedly accessing a memory location, in
order to cause voltage fluctuations and discharge nearby memory locations [BYL21].

Since this attack was adapted for the ARM architecture (Raspberry Pi platform) by
Bekele et al. [BYL21], we also included it in the experiments conducted in this work.

12



2.2. Hardware Performance Counters

Foreshadow

Proposed in 2018 by Bulck et al. [BMW+18], the Foreshadow attack targets Intel SGX
technology, more specifically enclaves, a private region of memory defined at the user-level
or operating system code [Fer19]. The technique extracts a single byte from an SGX
enclave, and can be divided in three distinct phases, as explained by Ferracci [Fer19]:

1. Plain text enclave data is cached.

2. The attacker dereferences the enclave secret and loads a secret-dependent ora-
cle buffer entry into the cache, speculatively executing the transient instruction
sequence.

3. The attacker executes the same as the receiving end of Flush + Reload technique,
and reloads the oracle buffer slots to establish the secret byte.

2.2 Hardware Performance Counters
2.2.1 Micro-architectural Traces and HPCs
According to Gregg [Gre14], Hardware Performance Counters (HPCs) are special-purpose
registers included in modern processors that are used to track diverse processor events,
such as clock cycles, instructions, branch misses, and cache hits. They are responsible
for storing low-level hardware-related events in the CPU, which are tracked as counters
and available in these registers [GMES19]. In other words, the purpose of HPCs is to
monitor a hardware event, or to gather information on this event [Fer19].

The counters are used to collect information about the system behavior while an applica-
tion is running, and are available for various performance events in all major architectures,
as Intel and ARM, for example [GMES19]. According to Zhang et al. [ZZL16], most mod-
ern processors provide a Performance Monitor Unit (PMU), which enables applications
to control HPCs.

Originally designed for software debugging and system performance tuning, HPCs have
been recently exploited to detect security breaches and vulnerabilities [ZZL16]. As Zhang
et al. [ZZL16] explain, the intuition behind is that HPCs can reveal characteristics of
the programs’ execution, which in turn can reflect the programs’ security states. In
addition, these counters offer advantages such as a minimal effect on speed and resilience
to modification by an attacker [AZW24], as well as the fact that they introduce negligible
performance overhead [ZZL16].

2.2.2 Relevant HPCs
Although there are several different events in each CPU model, only a limited number
of events can be monitored concurrently in the system because the number of HPCs
available in a processor is limited, according to Kim et al. [KHK+24]. This means that

13



2. Theoretical Background

it is necessary to have a proper selection of events to monitor the effective utilization of
HPCs.

In addition, as stated by Ferracci [Fer19], the events that can be monitored using HPCs
depend on the available processor architectural family. That means that only certain
events are available for monitoring on each architecture. That happens because the
generation of a hardware event is physically triggered by data paths or control signals
implemented in the actual control unit of the CPU, which is often subject to partial or
complete re-implementation across different families of processing units [Fer19].

Therefore, for this work, we chose the events monitored by HPCs that are available in
the architectures studied, and are relevant for the task of attack detection. In order to
choose them, we used the first four HPC events in the ranking performed by Al-Zubi
[AZW24]. The choice was motivated by a common goal with this work, the availability if
the events in both architectures being monitored, and the possible number of HPCs to
be monitored concurrently. The four selected HPCs are:

• Number of retired instructions

• Number of mispredicted branch instructions.

• Number of cache misses for the Level-1 Data Cache.

• Total number of CPU cycles.

The complete list of events is available at the "perf" tool documentation [Perb]:

2.2.3 HPC Monitoring
As explained in the previous section, and also confirmed by Moore [Moo02], performance
monitoring hardware usually consists of a set of registers that record data about the
processor’s function, often accompanied by a set of control registers that allow the
user to configure and control the performance monitoring hardware. In addition, many
platforms, such as Intel and ARM, also provide hardware and operating system support
for generating an interrupt to the performance monitoring software when a counter
overflows a specific threshold [Moo02].

Therefore, hardware performance monitors can be used in one of the two modes, both
with their own uses in performance analysis:

1. Sampling: mode to collect aggregate counts of event occurrences at a pre-defined
time interval.

2. Overflow: mode to collect profiling data based on counter overflows.

The modes will be further explained in the following sections.

14



2.3. Machine Learning Techniques

Sampling

The first mode is the simplest one, where, for each event being monitored, a register is
associated that stores the aggregate counts of the event. At a time interval defined by
the user, this register (counter) is read by the system, and the value in the register is
sampled. Depending on how the user defined it, the counter can either be reset at each
time it is read, or the event count number can be accumulated.

This monitoring mode has a wide range of different applications in performance analysis,
for example to identify performance bottlenecks or to relate performance problems to
program locations [Moo02].

Moreover, this approach for measuring HPCs has been widely used in the detection
of cache side-channel attacks [AZW24] [GMES19] [TZW+20] [KHK+24]. It brings the
advantage that is simple to implement and safe, given the constant measurements.
However, on the other side, the sampling interval is fixed, and, once defined, it cannot be
changed.

Overflow

Another approach for monitoring HPCs is based on the "overflow" feature mentioned
by Moore [Moo02]. In this technique, the user defines, for a given event, a threshold
value. Then, once the counting is initiated, the system keeps constantly checking the
current count value for this given HPC and comparing it to the threshold. Once the value
is equal or greater than the threshold, it generates an interrupt and follows a routine
defined by the user. Then, the counter is reset.

In a similar way to the sampling mode, the overflow approach has numerous applications
in system performance analysis. It has the advantage of not having a fixed sampling
interval, which brings more flexibility to the monitoring. However, it is more complex to
implement, and the subsequent analysis may be more difficult to perform.

2.3 Machine Learning Techniques
As described by Zhou et al. [Zho21], Deep Learning (DL) is one of the Machine Learning
(ML) methods that implements Artificial Neural Networks (ANN). A deep learning
network is a neural network with multiple layers. Examples of deep learning networks
include Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN), among others [Zho21].

Due to its ability of learning patterns and detect anomalies, Machine Learning (ML) and,
more specifically, DL, have a wide range of applications in security, including intrusion
detection, malware analysis, or traffic anomalies [AZW24]. Pang et al. [PSCH21], for
example, performs a review on how Deep Learning (DL) can be used for anomaly
detection.

15



2. Theoretical Background

In this work, we will focus on the use of RNNs, and more specifically, LSTM networks,
which will be explained in the following sections.

2.3.1 RNNs
Recurrent Neural Networks (RNN) were first proposed and explained in 1990 by Elman
[Elm90]. It consists of a type of Artificial Neural Network (ANN), which can be described
as a neural network where the connections between the nodes resemble the neurons of a
human brain.

As explained by Muhuri et al. [MCY+20], the principle of an ANN is based on the
biological brain, where synapses are transmitted among neurons. In a neural network,
signals are transmitted through connections from one node to another. Upon receiving a
signal, the artificial neuron processes it and then transmits it to the connected nodes.
In an ANN, both neurons and connections usually have weights to adjust the learning
process. As they differ, the weights adjust the strength of the signal as it travels from
the input to the output layer, across the hidden layers [MCY+20].

According to Muhuri et al. [MCY+20], an RNN should have at least three layers. Figure
2.3 below represents a simple RNN architecture with two hidden layers. The basic
components of an RNN include input units, hidden units (which perform calculations to
adjust the weights and produce the outputs), and output units [MCY+20].

Figure 2.3: A simple RNN [MCY+20]

As portrayed in the Figure 2.3, the one-way information flow in an RNN model flows

16



2.3. Machine Learning Techniques

from the input units to the hidden units, and a directional loop compares the error of the
current hidden layer to that of the previous one, and based on that, adjusts the weights
between the hidden layers.

According to Gulmezoglu et al. [GMES19], in a typical RNN structure, the information
cycles through a loop. That means that, when the model needs to make a decision, it
uses the current input xt and the hidden state ht−1 (where the learned features from
the previous data samples are kept). In other words, a RNN algorithm produces output
on the previous data samples, and the output is provided as feedback into the network
[GMES19]. Figure 2.4 shows a simple diagram of a RNN cell.

Figure 2.4: RNN Cell [GMES19]

Recurrent Neural Networks can be described as the first algorithm to remember the
temporal relations in the input through its internal memory. Therefore, they are widely
used for tasks where sequential data is involved [GMES19]. However, conventional RNNs
are not effective to learn long-term sequences, because with the increasing time steps,
the amount of extracted information converges to zero and the model stops learning
[GMES19] [MCY+20].

2.3.2 LSTM
Long Short-Term Memory (LSTM) models were first proposed by Hochreiter and Schmid-
huber [HS97a] in 1997. They consist of modified RNN models, created in order to
address the problem of the vanishing and exploding gradient in traditional RNNs [AP22].
Essentially, they extend the internal memory to learn longer time sequences, being able
to bridge more than 1000 discrete time steps [GMES19] [MCY+20].

According to [MCY+20], LSTM networks replace all units in the hidden layer with
memory blocks, and each of them has at least one memory cell. Each basic cell on a
LSTM network consists of a memory cell, input, forget, and output gates, as represented
by Fu et al. [FLM+18] in the Figure 2.5 below.

The basic principle of a LSTM cell is that the information flow is controlled by the three
gates (input, forget, and output gates). The memory cells activate with the regulating
gates, which control the incoming and outgoing information flow [MCY+20]. At each
time step t, an LSTM cell receives the current input vector xt, the previous hidden
state ht−1, and the previous cell state ct−1 [Sch15]. The memory cell keeps the learned

17



2. Theoretical Background

Figure 2.5: LSTM Cell [FLM+18]

information from the previous sequences. Connected to the memory cell, it is placed a
forget gate (which are simple sigmoid threshold units), that can reset the state of the unit
if the stored information is no longer needed [MCY+20]. The LSTM cell produces two
outputs: the current hidden state (ht), and the current cell state (ct) [Sch15]. Finally,
the output gate determines whether to pass the output of the memory cell to the next
hidden state [FLM+18].

An LSTM layer consists of multiple LSTM cells working in parallel. In practice, multiple
LSTM layers are often stacked by feeding the hidden state output of one layer into
the next, which allows the network to model more complex temporal patterns [Sch15].
Therefore, LSTM networks can select distinct features in the time sequence data more
efficiently than RNNs, which enables it to learn the long-term temporal relations in the
input [GMES19].

2.3.3 Other Machine Learning Techniques
In a general definition, Machine Learning (ML) techniques are able to improve their
performance on a specific task with increasing experience [HTF09]. Therefore, ML tech-
niques have various applications that involve learning a pattern or identifying anomalies.
For this reason, traditional Machine Learning (ML) techniques have been widely used for
attack detection and other security applications.

The most common ML techniques include linear, non-linear, and non-parametric algo-
rithms (Logistic Regression (LR), Support Vector Classifier (SVC), Perceptron, Decision
Tree, Linear Discriminant Analysis LDA), K-Nearest Neighbors (kNN)), probabilistic
models (Gaussian Naive Bayes (GaussianNB)), ensemble learning methods (Random
Forest (RF) and Gradient Boosting Classifier (GBC)), as well as artificial neural networks
(Multilayer Perceptron (MLP)). These algorithms are explained in details by Alpaydin
[Alp20].

18



CHAPTER 3
Related Works

Due to the importance of assuring information security and privacy, especially with
sensitive data, and the developments and increasing variations of cache side-channel
attacks, there has been developed works on the detection of these threats. The most
recent and better performing approaches with this objective use machine learning or deep
learning techniques and can detect attacks with an accuracy of up to 99%.

3.1 HPCs Monitoring for Cache Side-Channel Attack
Detection

Since the initial implementations of cache side-channel attacks, there has been developed
research works that look for ways to detect and identify these types of threats. Given
the nature and general behavior of cache side-channel attacks, as explained in Section
2.1, one way to perform this task is by monitoring Hardware Performance Counters.

Al-Zubi and Weissenbacher [AZW24] perform a systematic evaluation of different ma-
chine learning techniques to detect Spectre Attack through the statistical profiling of
microarchitectural traces. Initially, in order to determine the minimum number of features
required for Spectre attack detection, the work samples up to 40 Hardware Performance
Counters under different attack scenarios and uses statistical methods to rank them. The
selection of HPCs (as well as the optimal number to be monitored) is performed using the
Maximum Relevance Minimum Redundancy (mRMR) technique. The best-ranked HPCs
that resulted from this experiment reflect execution (total instructions, total cycles) and
branch behavior (conditional branches, branch instructions, correctly predicted branches,
and branches taken). The datasets for the experiments of this work are generated by
sampling the selected HPCs in scenarios, including cache side-channel attacks and benign
applications.

19



3. Related Works

In addition, the authors also identify the best-performing machine learning classifiers
for this task. They use cross-validation to compare various ML models, including linear,
non-linear, and non-parametric algorithms (Logistic Regression (LR), Support Vector
Classifier (SVC), Perceptron, Decision Tree, Linear Discriminant Analysis (LDA), K-
Nearest Neighbors (kNN)), probabilistic models (Gaussian Naive Bayes (GaussianNB)),
ensemble learning methods (Random Forest Classifier (RF) and Gradient Boosting
Classifier (GBC)), as well as artificial neural networks (Multilayer Perceptron Classifier
(MLP)). The performance of the different classifiers on the same dataset is compared, as
well as how the same algorithm performed over all datasets. Finally, a statistical analysis
of the features shows that, as a result, the work finds that ensemble learning and Decision
Trees outperform other machine learning methods for the detection.

As a result of development on both the attack and Artificial Intelligence techniques,
various recent studies use hybrid techniques to improve the task of cache side-channel
attacks detection. Tong et al. [TZW+20] developed a method based on the AES algorithm
to use Hardware Performance Counters and detect different types of attacks, namely Flush
+ Reload, Prime + Probe, and Flush + Flush. The dataset used in the experiments is
collected through the sampling of 24 HPCs, under 3 different loads, in 6 diverse scenarios
(attack and benign applications).

The proposed approach first uses the random forest algorithm to filter the cache features,
and select the 4 HPCs that yield the best results (DTLB READ, L1D ACCESS, DTLB
ACCESS, and CACHE NODE). Then, the next step is to use Support Vector Machine
(SVM) for classification to perform attack detection under different loads. The classifica-
tion accuracy, precision, recall, and F1 score are measured for the different situations
(attacks and loads). The system achieves a detection accuracy of 99.92% without any
load, and 96.57% with full load.

A recent type of approach for this task involves the use of Recurrent Neural Networks, most
specifically of Long-Term Short Memory (LSTM) algorithms [HS97b]. This technique is
particularly suitable for sequential time series, due to its ability of learning both short
and long-term dependencies.

The system proposed by Gülmezoglu et al. [GMES19] implements a generic model to
detect unknown attacks in an unsupervised way, using HPCs. Initially, a training dataset
is generated through sampling of HPCs when only benign applications are running. This
data is fed to an LSTM model that learns this behavior pattern, using a sliding window
technique to learn using smaller sequences. In the testing (online) phase, the data is
collected from the same HPCs under both benign applications and attacks, while it
dynamically predicts the next value. The Mean Squared Error between the predicted
and real values is calculated, and it is used to detect malicious situations. Within a
defined decision window, if all the calculated errors are bigger than a fixed threshold, an
anomaly flag is set. Therefore, due to the unsupervised learning technique, the system is
capable of detecting attacks even in situations where there is an unknown attack. The
reported results show that the trained model is capable of detecting attacks such as

20



3.2. Deep Learning for Security

Spectre, Meltdown, Zombieload, and Rowhammer, even without observing them during
the training, with the highest F-score of 99,7%.

Most of the approaches that aim to detect cache side-channel attacks observe mainly the
cache-related events. That is effective for the earlier variants of the attacks. However,
in order to bypass this detection technique, recently proposed attacks use different
approaches, as is the case with Prime + Abort, for example. Kim et al. [KHK+24]
developed a system that can not only detect the conventional cache side-channel attacks,
but also the new variants that exploit other hardware events.

The study focuses on the attacks FLUSH + RELOAD, PRIME + PROBE, and PRIME
+ ABORT, as well as the L3 cache. Initially, the work analyzes the attacks to identify
which hardware events most closely relate to them, besides cache events. The patterns
of these events is studied under six different conditions (which involve different attacks,
different workloads, and different cryptographic applications), and they are selected based
on their distribution pattern and temporal behavior. The five selected events are: L3
cache misses, unhalted cycles, retired instructions, and two Intel TSX events. Once the
system collects the selected hardware events, the generated datasets are used to train the
models. The authors employ Multi-Layer Perceptron, RNN, and LSTM deep-learning
models to infer the presence of attacks, achieving an accuracy of over 99% with LSTM.

3.2 Deep Learning for Security
Due to their flexibility and ability to identify patterns, RNNs and LSTMs are used in
a variety of different applications. As explained in Section 2.3.2, LSTMs are modified
RNNs that extend the internal memory to learn longer time sequences [GMES19]. For
this reason, they are frequently used with problems involving sequential data and time
series, as is often the case for attack detection. Several studies describe applications of
deep learning techniques to mitigate security problems.

This is shown in the work developed by Yao et al. [YJDO19]. In this research, the authors
propose a system that uses LSTM to detect privacy risks on Named Data Networks, more
specifically, timing attacks. This type of attack uses the timing relation between the
delivery of data that is cached and not cached to infer if certain contents were recently
requested by the user. In order to detect this type of attack, the system observes several
statistics of the network packets: requested content names, the interface from which each
interest came, the arrival time of each interest packet, and the corresponding cache hit
in each time window. This information is used to generate the input features from the
supervised LSTM model: cache hit ratio, average request interval, request frequency,
and types of requested contents. The performance is compared in terms of classification
accuracy, detection ratio, false alarm ratio, and F-measure, achieving better results than
previous works.

Another work that uses deep learning methods to detect network attacks is the one
proposed by Liu et al. [LLLY19]. Due to the fact that using traditional machine learning

21



3. Related Works

methods for attack detection in payloads depends heavily on feature engineering (which
can be time-consuming and complex to implement), the authors propose an end-to-end
detection system. They propose two techniques, one using CNN payload classification,
and another one with RNN payload classification. Both have the same goal of detecting
network attacks, like DOS, probe, U2R, and R2.

The first implemented technique, referred to by the authors as PL-CNN, exploits the
ability of CNNs to extract local region features, in order to consider the entire data stream
(and not single bytes). Since network traffic is made up of packets, in which payloads
appear in the form of data streams, the authors propose another payload classification
model based on an RNN. Since RNNs can learn feature representations from data by
storing previous states, it is used to identify specific sequences that can distinguish
normal from anomalous communications. The experiments resulted in the best accuracy
of 99.36% using PL-CNN, and 99.98% using PL-RNN on public datasets.

Similarly, Fu et al. [FLM+18] also proposes the use of RNNs for network attack detection.
The technique proposed in this work is based on Long-Short Term Memory (LSTM), and
an end-to-end detection is developed, including data preprocessing, feature abstraction,
training, and detection. The system focuses on detecting network attacks based on
payloads, and the experiments are conducted on the NSL-KDD dataset. The obtained
results show that the proposed method outperforms several attack detection techniques
based on feature detection and Bayesian or SVM classifiers.

Recently, hybrid approaches have also been used to classify network behavior and identify
network attacks, which shows the relevance of this threat. Muhuri et al. [MCY+20]
develops an intrusion detection system that combines the use of a genetic algorithm for
optimal feature selection and LSTM with a Recurrent Neural Network for identifying
attacks. The work also aims for network attacks, and it is trained and tested using
the public NSL-KDD dataset. After the data is initially preprocessed, the features are
selected using a genetic algorithm (GA), which selects a subset of 99 features from the
original 122. Then, the data is input to the LSTM-RNN model, which is trained and
subsequently evaluated.

The system performance was measured with accuracy, recall, precision, F-score, and
confusion matrix, with both binary and multi-class classification. The results show that
the use of the genetic algorithm increases the classification accuracy in both cases. A
comparison with other techniques, such as support vector machine and random forest,
also shows that the proposed system outperforms them.

3.3 Cache Side-Channel Attacks Detection on Different
Environments

Despite the development of attack detection systems, which aim to improve performance
and cover multiple variants of cache side-channel attacks, it is not always the case that
the threats target conventional processors. Improvements on the attacks also include the

22



3.3. Cache Side-Channel Attacks Detection on Different Environments

adaptation to different environments, which leads to the need of detection systems that
focus on these specific situations.

One of the first works to focus on attack detection, by Zhang et al. [ZZL16], proposes a
system to detect cache-based side-channel attacks in multi-tenant cloud systems. The
approach is composed by two parts: it uses signature-based detection to identify when
the machine is executing a cryptographic application, and at the same time uses anomaly-
based detection techniques to identify abnormal cache behaviors that are typical from
attacks. This technique brings the innovation of focusing on the root causes of cache
side-channel attacks, making it difficult to evade, in addition to being able to detect
the attack in real-time. Furthermore, it does not require any new hardware support or
modifications. The work achieves high detection accuracy, with a performance overhead
of at most 5%.

A more recent work, proposed by Bhade et al. [BPSS24], implements a detection system
for cache side-channel attacks that is hardware-based. The approach successfully detects
multiple cache timing attacks on multiple sensitive locations simultaneously, with minimal
performance overhead. The system is evaluated by synthesizing the entire detection
algorithm in a block, which is tested in a RISC-V processor, under different workload
conditions. The work achieves more than 98% detection accuracy with an overhead of
0.9 to 2.1%, without any impact on its maximum operating frequency.

Even though most studies on cache side-channel attacks (both on generation and detection)
have been performed in Intel processors, ARM CPUs are becoming more popular and are
being used in more systems. Since ARM processors have a different cache organization
and instruction set than Intel processors, the original versions of cache side-channel
attacks do not work in this environment. However, there have been developed works that
adapt the attacks to ARM CPUs, as is the case of Lipp et al. [LGS+16].

The work initially identifies the challenges for implementing cache side-channel attacks
in ARM processors: the fact that the last-level caches are not inclusive, usually there
are multiple CPUs that do not share a cache, ARM processors do not support a flush
instruction, they use a pseudo-random replacement policy, and cycle-accurate timings
require root access. Then, the authors adapt the attacks and demonstrate the applicability
of the cache attacks on ARM environments. The adaptations work irrespective of
the actual cache organization, and their functionality is demonstrated on Android
smartphones.

23





CHAPTER 4
Methodology

4.1 System Overview
As described in Chapter 1, the implemented system has the aim of identifying cache
side-channel attacks by monitoring HPCs, using an overflow-based approach. In order
to evaluate whether the learning could be transferred among different architectures, the
experiments were conducted in two different architectures. Figure 4.1 shows the general
overview of the system flow.

Figure 4.1: Proposed System Overview

25



4. Methodology

Initially, the datasets are created using the overflow technique while monitoring the HPCs
running on the machine. In other words, the system is monitoring the values of the
selected Hardware Performance Counters and, when the value of either of them exceeds
a defined threshold, a sample of the dataset is collected. Therefore, it is first necessary
to determine the threshold values for each HPC. This is done in the Calibration Phase,
where the system is constantly monitoring the HPC values while benign applications
are running. At the same time, it keeps adjusting the values of the thresholds until the
overflow events are sampled at around a defined frequency. Once the thresholds are
defined, the training dataset itself is created using these fixed values by monitoring the
overflows, while attacks and benign applications are also running on the computer. In the
next step, after their creation, the datasets are used for training and evaluating the deep
learning model. The defined LSTM model was initially trained using the training and
validation datasets. Then, in order to assure that the learned knowledge is transferred
among different architectures, the model goes through a fine-tuning phase. And finally,
the resulting model is evaluated on the test dataset. With the aim of guaranteeing the
robustness of the model, the training and evaluation were performed on various scenarios,
including different dataset combinations from both platforms.

4.2 Data Selection
Prior to the generation of the datasets to train and evaluate the system, it is necessary
to define how to create then. That includes defining which HPCs will be monitored to
better identify the attacks, ensuring that they are available for monitoring on the two
chosen platforms. In addition, both the attacks and the benign applications need to be
determined according to their relevance to the attack detection task and the availability
on the platforms.

4.2.1 HPCs Definition
As mentioned in Section 2.2.2, there is a variety of HPCs available on the different
computer architectures. However, in addition to the constraint of the availability of the
event counter, each platform has a limitation on how many events can be monitored
concurrently. In this work, we perform experiments both on Intel and ARM architectures.

Modern Intel CPUs support three fixed and four programmable counters per core [Int25].
The ARM computer, more specifically a Raspberry Pi in our case, can support up to
four HPCs being monitored concurrently [Ras22]. Therefore, in order to guarantee that
the datasets created in both platforms can be used interchangeably, the number of HPCs
being monitored concurrently needs to be chosen in accordance with the limitations of
both of them. In this case, we chose to create the datasets by monitoring four events
concurrently.

In the next step, it is necessary to define which HPCs will be monitored for overflows.
This has to be done first by observing the list of available events on each platform. The

26



4.2. Data Selection

events available for monitoring in the Intel platform are available in [perc]. For the
Raspberry Pi platform (ARM architecture), the list of available events can be found at
[perd].
From the list of available HPC events for monitoring, it is necessary to choose the ones
that best reflect the behavior of the computer during the cache SCA. In her work, Al-zubi
[AZW24] performed an evaluation and ranked the events that are most related to this
type of situation. This evaluation was made using the technique of Maximum Relevance
Minimum Redundancy (mRMR) [FTS20], which identifies features that are least related
to each other and most strongly correlated with the class.
After the described steps, the four HPC events to be monitored concurrently by our
system are:

• PERF_COUNT_HW_INSTRUCTIONS = Counts the number of retired instruc-
tions.

• PERF_COUNT_HW_BRANCH_MISSES = Counts the number of mispredicted
branch instructions.

• PERF_COUNT_HW_CACHE_L1D/RESULT_MISS = Counts the number of
cache misses for the Level-1 Data Cache.

• PERF_COUNT_HW_CPU_CYCLES = Counts the total number of CPU cycles.

4.2.2 Attacks
Among the list of implemented Cache SCA, as described in Section 2.1, we needed
to select the attacks that we aim to detect in this work. Since we are also aiming to
perform transfer learning between two different architectures, the attacks involved in the
experiments need to have an available implementation that works on both the chosen
platforms for our experiments.
Due to its relevance and number of variants, the main attack that we aim to detect in
this work was Spectre Attack [KHF+20], explained and described in Section 2.1.4. This
attack was extensively studied, both in works that also aim to detect it, as in works that
propose different variations for it. The variants chosen to be explored in this work are:
Spectre variant 1 and variant 2.
In order to increase the generalization ability of the proposed system, we also included
the Rowhammer attack in our experiments [GMM16]. In addition to the most common
implementation of this attack, there is also an adapted implementation for the ARM
architecture, more specifically, for the Raspberry Pi platform [BYL21].

4.2.3 Benign Applications
The aim of this work is to develop a system that is able to detect the presence of cache
SCA regardless of the remaining workload running in the computer at the same time.

27



4. Methodology

Therefore, it is necessary to train and evaluate the system in different scenarios and
under different workloads, to ensure that the technique is still able to identify it.

In order to cover both situations of light and heavy workloads, the datasets created to
train and evaluate the system included applications from the following classes:

• Normal workload: includes internet browsing, file explorer, file compressing, text
and spreadsheet editing

• Encoding: includes string, video, and audio encoding

• Reasoning: includes SAT solvers

• Benchmarks: includes computationally heavy benchmarks

• Memory stress tests

• Firewall management

The complete list of benign applications used in the dataset creation is shown in Section
5.2.3.

4.3 Dataset Creation
After the selection of the HPC events to be monitored, the attacks and benign applications
to be used in the dataset creation, the next step is to effectively create them.

Previous works that use HPC events to detect attacks usually employ the sampling
technique to monitor these events [AZW24] [TZW+20] [GMES19] [KHK+24] [BPSS24].
That means that, repeatedly after a pre-defined time interval (for example, 100 ms), the
system measures the values of HPCs. Each measurement consists of a sample in the
dataset, which is used as an input to a ML model that aims to learn patterns and detect
attacks.

However, this technique has some limitations. First, the fact that the time interval is
fixed does not allow flexibility on the monitoring. If, on the one hand, the attack is faster
than the interval, the system might miss the attack. However, on the other side, if the
attack is much slower, the overhead produced will be significantly higher, generating
more data than is necessary.

Secondly, the sampling approach results in the model learning the pattern for attacks in
a specific platform or architecture. However, different platforms behave differently with
respect to HPC values, due to the differences in the architecture, memory, and cache.
Therefore, the model learning is not transferred among platforms, which means that a
model learned in one platform cannot be used to detect attacks in a different one.

28



4.3. Dataset Creation

In order to overcome these limitations and generate a model that better performs in
the attack detection of different platforms, this work proposes that the datasets be
created using an overflow-based approach. As mentioned in Section 4.1, this technique is
composed of two parts: the calibration phase and the overflow monitoring.

4.3.1 Calibration Phase

The initial step of the dataset creation is to perform the calibration, or, in other words, to
determine the thresholds for each HPC to trigger an overflow. This needs to be executed
for each platform, taking into account the benign applications.

On this calibration phase, we set initial values for the selected HPCs. In order to select
these initial values, we performed the sampling of the event counters every 100 ms, while
running the applications. Then, we calculated the average of the sampled values, and
subtracted their standard deviation. These calculated results are defined as the initial
threshold for each HPC.

Once the initial threshold values are fixed, we run the monitoring process on the machine,
simultaneously with the benign applications. The process continuously checks for the
HPC counter values, and every time these values reach the threshold, an overflow is
triggered, and the counter is reset. At each situation where an overflow occurs, we
compare the time since the last overflow with a target time range. In this work, we
compared the results from different time intervals, and chose the interval from 20 to 30
ms, so which is smaller than the usual interval in the state-of-the-art (100 ms), but not
so small as to create a high overhead.

From this comparison, we adapt the current threshold. If the time between overflows is
smaller than the target interval, it means that the threshold is too low and the overflow
is being triggered too often. In order to correct that, we increase the current threshold
by 10%. On the other hand, if the time between overflows is too big, that means that
the threshold is too high, and the overflows are too sparse. In this case, we decrease the
current threshold by 10%. However, if the time between overflows is within the target
range, we also need to guarantee the robustness of this threshold value. Therefore, we
wait for this situation (that the time between overflows is within the target range) to
be repeated a certain number of times (in our case, 10 times) before the threshold for
this particular HPC is considered calibrated. Only after the thresholds for all four HPCs
have been calibrated, we consider the calibration phase to be complete.

Since each platform has different features, like frequency and cache size, for example, the
calibrated thresholds will be different for each machine. Consequently, the calibration
process needs to be executed at least once for every new device that we use to perform
the experiments.

29



4. Methodology

4.3.2 Overflow-based Dataset Creation

Once all the thresholds have been defined for each specific platform, the overflow-based
datasets must be created, both for training and evaluation, encompassing various scenarios.
For this work, in order to also test if the learning is transferred among platforms, multiple
datasets were generated for both platforms used in the experiments (Intel and Raspberry
Pi).

As described in Section 4.1, the datasets are generated based on overflows while monitoring
the selected HPCs. In parallel to this monitoring, both benign and malicious applications
are also being executed in the computer. At the beginning of this procedure, we list all
the processes currently running on the machine, and attach to each one a monitoring
unit. Then, the program keeps constantly checking the HPC values corresponding to
each process, and comparing them to the thresholds defined in the calibration phase.
Once one of the values reaches the threshold, an overflow is triggered, and a sample of
the dataset is collected.

Upon the triggering of the overflow, a handler is called to generate a sample added to
the dataset. Each sample is composed of the following parts:

1. Process name: the name of the process being monitored

2. Trigger: identification to the HPC that triggered the overflow

3. "t0": elapsed time since the last overflow triggered by this specific event.

4. "t1": elapsed time since the last overflow.

5. label: label identifying whether the process that generated the overflow is a benign
process (label 0) or an attack (label 1).

In order to ensure the diversity of scenarios and guarantee that the trained model is
robust, the dataset generation was performed on both platforms, and under different
workloads (light, normal, and heavy workload). As explained in the previous section,
it involved different attacks (Spectre variant 1 and 2, and Rowhammer), and various
benign applications (the list will be detailed in Chapter 5.

4.4 LSTM Model Definition
The deep learning technique used to implement the attack detection model is LSTM,
explained in Section 2.3.2. This algorithm was chosen because of its ability to store
information and to perform well on data series involving time.

30



4.5. Model Training and Evaluation

4.4.1 Dynamic Temporal LSTM
More specifically, the implemented model was based on the one proposed by Baytas et al.
[BXZ+17]. This technique is described by the author as "time-aware LSTM network", or
T-LSTM, and has the ability to handle irregular time intervals in a series.

The proposed architecture of this model has the same gates as a regular LSTM (forget,
input, and output gates), but the memory cell is adapted in a way that, the longer the
elapsed time, the smaller the effect of the previous memory to the current output. In
other words, previous events that are more recent affect more the network, than if they
take a longer time. With this goal, the elapsed time is transformed into a weight in the
calculation of the current memory cell value, using a time decay function. A detailed
explanation of the model architecture can be found in the paper by the author [BXZ+17].

This adapted technique is effective on the proposed application due to the fact that the
generated datasets also present irregular time intervals between samples. The overflow-
based approach generates datasets that, in opposition to most related works, are not
sampled at a regular time interval. In consequence, it is expected that it will have a good
performance in our case.

4.5 Model Training and Evaluation
On the next step, the defined T-LSTM model was trained and evaluated on the generated
datasets, which went through a pre-processing step before the training. In order to
improve the performance and guarantee that a trained model can be applied on different
platforms, a fine-tuning step was implemented after the training.

4.5.1 Performance Metrics
The training, validation, and testing tasks were evaluated using various ML performance
metrics, which will be further explained in Chapter 5. The chosen metrics for performance
evaluation are:

• Accuracy

• Precision

• Recall

• F1-Score

• True Negative Rate

• Loss

Moreover, the time overhead was also measured for comparison.

31



4. Methodology

4.5.2 Data Pre-processing
With the purpose of ensuring that the predictions by the DL model are more accurate,
and that the dataset creation did not generate any accidental errors, all the data goes
through a pre-processing phase before being input to the system.

On this step, the collected data is submitted to a normalization procedure, an essential
feature scaling technique that maps the defined data to a specific range, in order to
provide better results.

On this work, the most important feature provided as input to the T-LSTM model is
the timing information. Therefore, this is the feature that we chose to normalize before
starting the model training. In order to find the normalization technique that is most
appropriate to our situation, we experimented with different approaches and compared
their results.

The normalization techniques that we experimented with were: min-max normalization,
zero mean (standardization), and quantile normalization. The one that yielded better
results, and was therefore chosen, was the zero mean normalization, where the mean is
subtracted from the data, and the result is divided by the standard deviation.

An additional step that we included on the training dataset was to group the samples
generated by the same process together. The goal of this step is to improve the learning,
since the model receives the input data in sequences. With this technique, we can help
the model learn better the patterns from the same process on the datasets.

4.5.3 Model Training
Once the datasets are clean, normalized, and preprocessed, they are ready to be used as
input for the defined T-LSTM model.

The initial step in the model training is to define the training, validation, and testing
datasets. With the purpose of testing our hypothesis that the model is able to transfer the
learning, we defined different scenarios of combinations of datasets from both platforms
(Intel and Raspberry Pi). These scenarios can be classified in 3 different groups:

1. Training, validation, and testing datasets from the same platform.

2. Training, validation, and testing datasets as a combination of both platforms.

3. Cross-validation among platforms: training and validation datasets from one
platform and testing dataset from the other one.

After the datasets are determined, the model is defined, and the training starts, with the
validation happening every 10 steps. The training is performed for 100 epochs. During
the training, the input data is provided to the model in sequences of a defined length,

32



4.5. Model Training and Evaluation

hence our choice to group samples from the same process. The chosen parameters were
manually defined based on the experiments that produced better results.

At each step of the training and validation, the predictions are used to calculate the perfor-
mance metrics previously cited, and the results are logged. The specific implementation
details will be described in Chapter 5.

4.5.4 Model Fine-tuning
As previously explained, one hypothesis being evaluated in this work is whether the
use of an overflow-based approach and an LSTM model enables the transfer learning
between two platforms from two different architectures (Intel and ARM architecture).
However, after the performed experiments (whose results will be detailed in Chapter 6),
we observed that the behavior from the two platforms was significantly different, which
resulted in the transfer learning not working reliably.

For that reason, we included a fine-tuning step after the model training. This step was
included as a way of ensuring that a model trained on one platform can be used for
detection in another one, but without the need to retrain the whole model.

The fine-tuning procedure has the goal of optimizing a pre-trained ML model for a
specific task or dataset, in order to improve its performance. In the case of this work,
the fine-tuning will allow a trained model to adapt better to the dataset from the other
platform.

4.5.5 Model Testing
Finally, after the training and fine-tuning of the model, it can be tested. The evaluation
involves the same performance metrics previously defined in Section 4.5.1 (as the training
and validation).

The different scenarios for testing are in accordance with what was previously defined in
Section 4.5.3, with respect to the different platforms, as well as to the different workloads.
The cross-validation is related to the hypothesis that the trained model generalizes well
for the different situations, including the data from two different architectures. The
results from the performed experiments will be further detailed in Chapter 6.

33





CHAPTER 5
System Implementation

The following chapter will describe the technical details of the system implementation.
Section 5.1 describes the general details of the machines on which the experiments were
developed. Section 5.2 is related to the dataset creation process, and Section 5.3 is
focused on the details of training and evaluation of the LSTM model.

5.1 Experimental Setup

As described in Chapter 4, the system proposed in this work was implemented in two
different platforms: an Intel NUC and a Raspberry Pi, with the aim of evaluating the
model’s ability to generalize among different architectures.

In order to cover the ARM architecture, it was used a Raspberry Pi 4 Model B [ras].
The processor in this device is a Broadcom BCM2711 SoC, composed of four Cortex-A72
cores compatible with ARM v8 architecture. The device includes an available cache of
320 KB for the L1 cache (128 KB for data and 192 KB for instructions) and 1 MB for
the L2 cache. The operating system used is the Raspberry Pi OS (Debian 12 bookworm),
which is based on Linux.

On the other hand, related to the Intel architecture, it was used a Intel NUC Board
NUC10FNH [nuc24]. This machine is composed of 8 Intel i5-10210U cores with a
frequency of 1.5 GHz, compatible with x86_64 architecture. The cache sizes are: 256 KB
for the L1 (128 KB for data and 128 KB for instructions), 1 MB for the L2 cache, and 6
MB for the L3 cache. The operating system used is Debian GNU/Linux 11 (bullseye).

For training and test experiments with the T-LSTM model, a Dell Precision laptop with
a 12th Gen Intel Core i7-12700H processor was used. The operating system is Ubuntu
20.04.6.

35



5. System Implementation

5.2 Dataset Creation
The step of dataset creation (which includes both the calibration phase and the overflow-
based dataset creation) was implemented using the C language, and the gcc compiler
was used to compile it on both platforms. The implementation of the dataset creation is
listed on Appendix 7.1.

5.2.1 Monitoring Tool
In order to perform the monitoring of the Hardware Performance Counters, it was used
the profiling tool Perf Linux [pera]. This lightweight tool was used on multiple previous
studies to collect events from HPCs. The monitoring tool is available for Linux operating
systems, and enables the overflow-based approach by setting interrupt signals on the
selected HPCs. The Perf tool also enables attaching the counters to each running process,
which allows local monitoring. Since it is a tool designed for Linux operating systems, it
works on both platforms with no need for adaptation.

5.2.2 Attacks
The attacks used on the experiments, as explained in Section 4.2.2, are Spectre variants
1 and 2, and Rowhammer.

For the datasets created on the Intel platform, it was used the original implementation
of the attacks. The Spectre variant 1 was the one implemented by [Spe18]. The variant
2 from Spectre was the one by [spe]. And the Rowhammer code is available at [rowa].

On the other hand, for the Raspberry Pi platform, we needed to use adapted implementa-
tions. That is due to the fact that one of the instructions used in the attacks, particularly
the "flush" instruction, is implemented differently on the ARM architecture. Both variants
of the Spectre attack were developed by [Jia24]. And the variant of Rowhammer for
Raspberry Pi was implemented by [rowb].

5.2.3 Benign Applications
The benign applications used for the dataset creation can be classified into different
groups, as described in Section 4.2.3. The applications used are the following.

• Normal workload: internet browser, terminal, explorer, text editing, file compression,
network connectivity (ping), git

• String encoding

• Image decoding: dcraw

• Video encoding: ffmpeg

• Reasoning: minisat (with different input files)

36



5.3. Model Training and Evaluation

• Stress test: stress-ng

• Benchmarks: lzbench, mbw (Memory Bandwidth Benchmark), sysbench

• Firewall management: ufw

Since our goal in this work is to generalize among platforms, we chose only applications
that are available and work on both the Intel and Raspberry Pi platforms.

5.3 Model Training and Evaluation
The module responsible for model training and evaluation was implemented using the
Python language, more specifically, the Pytorch library (version 2.4.1). We also used
the Pytorch Lightning framework for deep learning-related tasks, and Wandb to plot the
performance metrics during training and validation. The implementation for the model
training and evaluation is listed on Appendices 7.1 and 7.1.

5.3.1 Model Architecture
In order to create the training and validation datasets, they were randomly split using
the 80-20 ratio (80% of the dataset for the training and 20% for the validation). For the
fine-tuning and testing tasks, different datasets were used. The dataloader used for the
training uses a batch size of half of the dataset size.

The proposed supervised T-LSTM model has the following architecture:

1. An embedding layer

2. A set of 4 T-LSTM layers, each one of size 64

3. A set of 4 fully-connected layers, each one of size 64

4. A linear output layer

For training, the Adam optimizer was used. The activation functions for the T-LSTM
layer are sigmoid for the gates and hyperbolic tangent for the cell. For the fully-connected
layers, a ReLU activation function is used. In addition, the 10-fold cross-validation
technique is used to ensure more accurate results.

5.3.2 Model Hyperparameters
During the performed experiments, different hyperparameter values were manually
evaluated and compared, and the ones that yielded better results were chosen. These
hyperparameters are:

37



5. System Implementation

• Number of epochs: 100

• Sequence length: 100

• Learning rate: 10−3

• Initial segment: 50

5.3.3 Performance Metrics
During the execution of the experiments, various metrics are calculated to compute the
system performance. In order to compute them, we first define the necessary elements in
relation to our application:

• True Positives (TP): attack samples correctly classified.

• True Negatives (TN): benign samples correctly classified.

• False Positives (FP): benign samples classified as attacks.

• False Negatives (FN): attacks that were missed and classified as benign samples.

The employed performance metrics are defined as follows.

• Accuracy:

Accuracy = TP + TN

TP + FP + TN + FN
(5.1)

• Precision:

Precision = TP

TP + FP
(5.2)

• Recall:

Recall = TP

TP + FN
(5.3)

• F1-Score:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(5.4)

• True Negative Rate:

TN_rate = TN

TN + FP
(5.5)

38



5.3. Model Training and Evaluation

In addition to the listed metrics, the cross-entropy loss was used for the training, validation,
and testing loss. A more detailed explanation of the performance metrics can be found
in the book by Zhi-Hua Zhou [Zho21].

39





CHAPTER 6
Experimental Evaluation

6.1 Calibration Phase
As described in section 5.2, the first implemented step was the calibration phase, which
was performed both for the Intel platform and the Raspberry Pi platform. As a result,
this phase generated the thresholds for the overflow-based dataset creation.

6.1.1 Intel Platform
The first part of the calibration phase includes sampling the HPC values every 100 ms
(while the benign applications are also running on the machine) to define the initial
thresholds. In our work, these initial values were defined by getting the average of the
sampled values, for each HPC. The initial thresholds obtained for the Intel platform were:

• Total instructions (TOT INS): 80000

• Branch mispredictions (BR MSP): 2000

• L1 data cache misses (L1 DCM): 4000

• Total cycles (TOT CYC): 500000

Then, starting from these values, the thresholds were calibrated according to the procedure
described in Section 4.3.1. As described previously, three values of target time interval
were tested, and the calibration was performed for each one (20, 100, and 200 ms). The
time for calibrating in the Intel platform varies between 1 and 2 minutes, depending on
the target time interval. The obtained thresholds for each target value are displayed on
the table 6.1.

41



6. Experimental Evaluation

Table 6.1: Thresholds - Intel Platform

HPC 20 ms 100 ms 200 ms
TOT INS 2000000 8000000 20000000
BR MSP 2000 20000 200000
L1 DCM 3000 30000 300000
TOT CYC 2000000 8000000 200000000

In order to choose which group of thresholds to use, the datasets created using each one
of them were evaluated in the LSTM model, in addition to being analyzed regarding
the space and time overhead. Table 6.2 displays the comparison between the datasets
created for each target interval, with respect to the mentioned aspects. The first line
displays the test accuracy when the respective dataset is used on the model evaluation.
The second line shows the timing overhead in the case that the sampling approach was
used to generate the dataset (with the related sampling time interval), instead of the
overflow approach. Moreover, the space overhead for generating a dataset using the
sampling approach, considering the monitoring of the HPC values, is around 10 times
more, when compared to the chosen overflow approach (for each generated dataset).

Table 6.2: Comparison Target Intervals - Intel Platform

Metric 20 ms 100 ms 200 ms
Test Accuracy 0.98827 0.91871 0.9774
Sampling Time Overhead 4.855 2.47 2.36

Given the fact that the compared accuracy values are approximately the same, and the
space and time overhead are significantly smaller, the target time interval of 20 ms was
chosen to generate the datasets in the Intel platform.

6.1.2 Raspberry Pi Platform
Similarly, for the Raspberry Pi platform, the initial thresholds were defined in the same
way, by calculating the average on the HPC sampling every 100 ms. The computed initial
thresholds for this platform are:

• Total instructions (TOT INS): 200000

• Branch mispredictions (BR MSP): 10000

• L1 data cache misses (L1 DCM): 100000

• Total cycles (TOT CYC): 3000000

The time for calibrating in the Raspberry Pi platform varies between 2 and 3 minutes,
depending on the target time interval. The obtained thresholds for each target value are
displayed on the table 6.3:

42



6.2. Dataset Creation

Table 6.3: Thresholds - Raspberry Pi Platform

HPC 20 ms 100 ms 200 ms
TOT INS 250000 2500000 2500000
BR MSP 35000 100000 100000
L1 DCM 40000 50000 500000
TOT CYC 1000000 10000000 20000000

Similar to the Intel platform, the Raspberry Pi was also evaluated in the same way
regarding the comparison of the target time intervals. Table 6.4 below displays the
comparison:

Table 6.4: Comparison Target Intervals - Raspberry Pi Platform

Metric 20 ms 100 ms 200 ms
Test Accuracy 0.94474 0.91138 0.90979
Sampling Time Overhead 3.636 3.076 5.38

In the same way as to the Intel platform, the target time interval chosen for the dataset
creation was 20 ms.

6.2 Dataset Creation
The process of dataset creation is detailed on Section 5.2. In order to perform experiments
across different platforms, it was necessary to create datasets on both the Intel and
Raspberry Pi platforms. The thresholds defined for each target time interval (listed on
Section 6.1) were manually experimented with and evaluated, and, for both platforms,
it was chosen the set of thresholds related to the target time interval of 20 ms, which
generates a smaller overhead with similar performance.

6.2.1 Intel Platform
To encompass different scenarios (including benign and malicious applications), we created
numerous datasets and sequentially selected those that best represent the combinations
of situations. This choice was based on a better proportion of samples from benign
processes (which received the label "0") and from attacks (labeled as "1"). The initial goal
from this work is to detect Spectre attacks, but we also executed experiments including
the Rowhammer attack. Therefore, regarding the attack samples present in the data, the
chosen datasets include two different situations:

• Spectre Attack: 7 datasets selected

• Spectre and Rowhammer attacks: 5 datasets selected

43



6. Experimental Evaluation

The criteria used for the selection are: the number of samples in the dataset, the ratio
between benign and malicious samples, and the diversity of the benign applications. The
size of the datasets varies between 20000 and 35000 samples, and the ratio that we looked
for to use in the experiments is around 50% (meaning that around half of the samples
are from attacks, and the other half from benign applications).

Data Analysis

The selected datasets were used in different experiments, as it will be detailed in Section
6.3. However, in the interest of conciseness, we will only present here a data analysis
from the dataset that yielded the best results in the experiments.

For the Intel platform this dataset included both attacks (Spectre and Rowhammer). It
contains 29000 samples, from which 14992 are from attacks and 14008 are from benign
applications.

Figure 6.1 displays the distribution of the time since the last overflow ("t0", as defined
in section 4.3.2) for each HPC, both for benign and malicious applications. The figure
displays the distribution of "t0" after the normalization step, and the values are divided
for the situations when each HPC triggered an overflow.

6.2.2 Raspberry Pi Platform
The selection of datasets created in the Raspberry Pi platform followed the same principle.
The chosen datasets also included two different attack scenarios:

• Spectre attacks: 9 datasets selected

• Spectre and Rowhammer attacks: 5 datasets selected

The same criteria were used for the dataset selection (as in the Intel platform). Similarly,
the size of the datasets varies between 10000 and 35000 samples, and the aimed ratio
between benign and malicious applications remains 50%.

Data Analysis

In the Raspberry Pi, the dataset that generated the best results in the experiments is
composed of 12000 samples, from which 6601 are attacks (label "1") and 5399 are benign
(label "0"). Figure 6.2 displays the distribution of "t0", for each HPC that triggered the
overflow, after the normalization step.

6.3 LSTM Model Experiments
Once the datasets were generated, we performed the experiments with the implemented T-
LSTM model, as described in Section 4.4. Based on the nature of the datasets (comprising

44



6.3. LSTM Model Experiments

(a) Total instructions (b) Branch mispredictions

(c) L1 data cache misses (d) Total cycles

Figure 6.1: Boxplots for distribution of t0 in Intel dataset for different HPCs

time sequences), we created the assumption that the dynamic temporal approach would
perform better with the data and learn the timing patterns to detect the attacks.

As described in Section 4.1, one of the aims of this work is to analyze whether the
proposed approach is capable of generalization among different platforms, that is, if a
model trained with data from one architecture (Intel, for example), would be able to
detect an attack on data from another one (ARM, for example). Therefore, we defined
different scenarios for our experiments, encompassing various combinations of data from
both platforms (Intel and Raspberry Pi platforms), as detailed in Section 4.5.3.

6.3.1 Scenario 1: Separate Platforms
The first set of experiments was performed on both platforms separately, meaning that
one model was trained on a dataset generated on one platform, and then applied to

45



6. Experimental Evaluation

(a) Total instructions (b) Branch mispredictions

(c) L1 data cache misses (d) Total cycles

Figure 6.2: Boxplots for distribution of t0 in Raspberry Pi dataset for different HPCs

a test dataset created on the same platform. That was repeated for both available
platforms. The goal of these experiments was to establish a baseline and determine
whether the model is able to detect attacks, achieving a performance comparable to the
state-of-the-art.

For each of the platforms, the procedure was the same: a dataset was used for training and
validation (split with the ratio 80-20), and another one (generated on the same platform)
was used for testing. The preprocessing techniques are described in section 4.5.2. The
implemented model is trained and validated using the generated datasets, and in sequence,
evaluated with the test dataset. The implementation details and hyperparameters used
are detailed on Section 5.3.

46



6.3. LSTM Model Experiments

Results

The results of the experiments were evaluated using the performance metrics detailed
in 5.3.3, for all three phases: training, validation, and test. Table 6.5 below shows the
performance results for the present scenarios for both platforms.

Table 6.5: Results - Experiments on separate platforms

Metric Intel Platform Raspberry Pi Platform
Train Accuracy 1 0.97939
Train Precision 1 1
Train Recall 1 0.94637
Train F1 1 0.97245
Train TN Rate 1 1
Train Loss 0 0.05335
Val Accuracy 1 0.95636
Val Precision 1 0.9397
Val Recall 1 1
Val F1 1 0.96791
Val TN Rate 1 0.98
Val Loss 0.00002 0.12945
Test Accuracy 0.99941 1
Test Precision 0.99875 1
Test Recall 1 1
Test F1 0.99937 1
Test TN Rate 0.99937 1
Test Loss 0.00902 0.00257

From the obtained results, we can observe that, in this scenario, the model is able to learn
and detect attacks with a comparable performance as reported by the state-of-the-art.
That establishes the baseline for the experiments executed in this work. The execution
time for the experiments (on the available environment), which will be used for further
comparison, varies between 2 minutes and 2.5 minutes.

6.3.2 Scenario 2: Combined Datasets
The next set of experiments has the goal of observing whether the proposed system is
able to detect attacks among the combined data from both platforms. In order to do
so, we performed experiments where the datasets used to train the model (training and
validation datasets), were composed of a combination of the data collected in the Intel
and Raspberry Pi platforms.

With the intention of guaranteeing that the model will not be biased towards one of the
platforms, the combined datasets were created in accordance with the same proportion
as before. More specifically, the dataset collected in the Intel platform was first randomly

47



6. Experimental Evaluation

split (80% for training, and 20% for validation), and the same was done for the dataset
collected in the Raspberry Pi. Then, they were combined so that the new training and
validation datasets used for this set of experiments had half of their samples collected on
each platform.

The model trained on this scenario was then tested in different situations. In the first
one, the test dataset was also created by combining the ones generated on both platforms.
However, we also tested the model on separate datasets (from both platforms) in order
to guarantee that the data from one platform does not outperform the other. Apart from
the differences in the datasets, the experiments were performed in the same way as those
in the previous scenario.

Results

The results for training, validation, and test obtained in the experiments using combined
training datasets are displayed on Table 6.6. That includes the situation with the
combined test dataset, and also the individual test datasets from both platforms.

Table 6.6: Results - Experiments on combined datasets

Metric Combined
test datasets

Intel test
dataset

Raspberry Pi
test dataset

Train Accuracy 0.99152 0.99958 0.988
Train Precision 0.96609 0.99929 0.97569
Train Recall 0.99914 1 0.99315
Train F1 0.98234 0.99965 0.98434
Train TN Rate 0.98916 0.9972 0.98484
Train Loss 0.02304 0.00217 0.03563
Val Accuracy 0.99966 0.935 0.94425
Val Precision 0.9975 0.98114 0.97543
Val Recall 1 0.92679 0.92031
Val F1 0.99875 0.95261 0.94615
Val TN Rate 0.9996 0.95582 0.97304
Val Loss 0.00339 0.15494 0.13775
Test Accuracy 0.98781 0.997 0.94474
Test Precision 0.97771 0.99944 0.90965
Test Recall 0.991 0.99498 0.97771
Test F1 0.98426 0.9972 0.94245
Test TN Rate 0.98426 0.9972 0.94245
Test Loss 0.04854 0.02356 0.13143

As can be observed in the results, the model behaved as expected and achieved a good
performance when trained with the combined datasets. This is in accordance to our
predictions, because the use of the combined dataset in the training enables the model to
learn the behavior of the attack on both platforms. The fact that the test performance

48



6.3. LSTM Model Experiments

metrics are slightly lower when tested on the dataset created on the Raspberry Pi platform
is a possible initial indicator that the behavior of the microarchitectural traces might be
different in both platforms.

One of the limitations related to this scenario is the fact that only the platforms
encompassed in the training dataset are expected to perform well on the trained model.
It does not guarantee that the model generalizes to unknown architectures. Therefore,
the next set of experiments will cover this scenario.

6.3.3 Scenario 3: Cross-validation Across Platforms

The third set of experiments aims to evaluate whether the developed model is robust
enough to generalize across different platforms, even if the training did not include
any data collected on this platform. Our initial assumption is that the LSTM model,
combined with the dynamic temporal approach, will enable the system to generalize and
detect attacks on data collected on an unseen platform.

In order to perform the described evaluation, we created cross-validation experiments.
This new set of experiments involved training the model on the dataset collected in one
platform (which is split for training and validation, as before), and then performing
the test on a dataset collected in another platform. The goal in this experiment is to
determine whether the learning can be transferred across the two different platforms.

Initial Results

The experiments performed on this scenario included cross-validation in both directions:
when the training dataset was collected on the Intel platform, and the test dataset
generated on the Raspberry Pi platform, and the opposite, when the Raspberry Pi is
used for training and the Intel dataset is used for testing.

Initially, we performed the experiments in this scenario using the same model as the
previous experiments, without any additional features, in order to see how the system
behaved. The initial results in both directions are displayed on Table 6.7.

As can be observed in the results, the current system was not able to transfer the learning
among platforms, or, in other words, it does not generalize well. Given the obtained
values, we decided to analyze the data collected in both platforms, and attempt to
improve the performance using machine learning optimization techniques.

Normalization Results

As a possible way to improve the results, we decided to apply normalization to the timing
values of the datasets. The reason for this choice is related to the fact that, due to the
different architectures, the timing measurements on both datasets present significant
differences.

49



6. Experimental Evaluation

Table 6.7: Results - Cross-validation Experiments

Metric Training Intel
Test Rasp. Pi

Training Raspberry Pi
Test Intel

Train Accuracy 0.99912 1
Train Precision 0.99812 1
Train Recall 1 1
Train F1 0.99906 1
Train TN Rate 0.99834 1
Train Loss 0.00419 0.00008
Val Accuracy 1 0.95727
Val Precision 1 0.96875
Val Recall 1 0.90107
Val F1 1 0.93228
Val TN Rate 1 0.98623
Val Loss 0.00058 0.34896
Test Accuracy 0.78418 0.27671
Test Precision 0.5 0.49389
Test Recall 0.13745 0.11582
Test F1 0.21562 0.18763
Test TN Rate 0.21562 0.18763
Test Loss 2.27906 6.60135

Therefore, we applied normalization techniques to both datasets and repeated the
experiments. As mentioned in Section 4.5.2, the type of normalization chosen for our
work was the zero-mean normalization (also called standardization).

The results of the experiments after the use of normalization techniques are shown in
Table 6.8.

The displayed results indicate that, with the use of the current model, the learning
was only transferred in one direction (when it is trained on the dataset created on the
Raspberry Pi and tested on the dataset from the Intel platform). Therefore, we cannot
state that, in this situation, the model is robust to generalization.

Our assumption for this result is related to the fact that both architectures behave
differently on a microarchitectural scale, and, therefore, the HPC overflow patterns
exhibit substantial differences. This can be observed in the boxplots from Figures 6.1
and 6.2, where we can see that the time intervals on the Raspberry Pi are distributed on
a larger scale than the Intel platform. This is also in accordance with the observed fact
that the model trained in the Raspberry Pi performs well on the Intel platform, but the
opposite is not true. In order to try to overcome this challenge, we decided to incorporate
the fine-tuning technique.

50



6.3. LSTM Model Experiments

Table 6.8: Results - Normalization Experiments

Metric Training Intel
Test Rasp. Pi

Training Raspberry Pi
Test Intel

Train Accuracy 0.99972 0.99971
Train Precision 1 0.99857
Train Recall 0.99964 1
Train F1 0.99982 0.99929
Train TN Rate 1 0.99963
Train Loss 0.00036 0.00141
Val Accuracy 0.98444 0.96529
Val Precision 0.99938 0.76638
Val Recall 0.982 0.96667
Val F1 0.99052 0.85148
Val TN Rate 0.99505 0.96696
Val Loss 0.12328 0.16475
Test Accuracy 0.79111 0.98827
Test Precision 0.80925 0.97075
Test Recall 0.95206 0.9948
Test F1 0.87486 0.98263
Test TN Rate 0.87486 0.98263
Test Loss 2.42958 0.05853

Fine-tuning Results

As a possible optimization approach, the fine-tuning technique was integrated into the
implemented system. Described in Section 4.5.4, this strategy involves starting from a
pre-trained model and retraining only the relevant layers on a more specific dataset, so
that the model specializes in a desired task.

In our case, we implemented this strategy on the cross-validation scenario, as a way for a
model trained in one platform to execute the detection in a dataset from another one.
This is expected to enable the learning to be transferred across platforms, but without
the necessity of retraining the whole model.

The fine-tuning method was implemented and evaluated in both directions. In order
to perform the retraining, a newly collected dataset was used, generated on the same
platform as the test dataset, and (initially) with a similar size. The results comparing
both directions of fine-tuning experiments are displayed in Table 6.9.

The results from the fine-tuning experiments (presented on Table 6.9) show that the
addition of this technique enables the model to transfer the learning across platforms,
without requiring a complete retraining of the deep-learning model.

In addition to observing the performance metrics, we also analyzed the time overhead
resulting from this addition. In the experiments performed in this work, the distribution

51



6. Experimental Evaluation

Table 6.9: Results - Fine-Tuning Experiments

Metric Training Intel
Test Rasp. Pi

Training Raspberry Pi
Test Intel

Train Accuracy 0.9388 0.99621
Train Precision 0.95152 0.99934
Train Recall 0.90752 0.99472
Train F1 0.929 0.99702
Train TN Rate 0.96349 0.99884
Train Loss 0.15221 0.01869
Val Accuracy 1 0.995
Val Precision 1 0.99241
Val Recall 1 1
Val F1 1 0.99618
Val TN Rate 1 0.98575
Val Loss 0.00017 0.0379
Test Accuracy 0.98358 0.9925
Test Precision 0.94692 0.99962
Test Recall 0.96634 0.98642
Test F1 0.9527 0.99298
Test TN Rate 0.9527 0.99298
Test Loss 0.15326 0.02119

was observed: 70% of the experiment time is used for training and validation, while 30%
is used for fine-tuning. This shows that this approach generates less time overhead in
comparison with the situation where complete retraining is necessary.

In order to further reduce the overhead in this approach, we experimented with fine-
tuning datasets of different sizes to determine which is the smallest dataset that can still
perform successfully in our scenario. The evaluated sizes for the fine-tuning datasets were
1000 and 5000 samples (in addition to the initial size of 20000 samples). For the sake
of conciseness, we will display the results in one direction only. Since our experiments
show that the transfer from a model trained in a dataset collected on the Intel platform
to a test dataset collected on the Raspberry Pi did not perform well in the previous
experiment, we will observe this direction. In this way, the difference is more visible and
a better evaluation is possible. The test results for the experiments on the fine-tuning
dataset size are displayed in Table 6.10.

The results displayed on the table show that even though there is still room for improve-
ment, the fine-tuning dataset containing 5000 samples can already reach performance
metrics with values around 90%, which is a significant improvement compared to the
initial situation.

This set of experiments shows that, with the use of the fine-tuning technique, it is possible
for the model trained in one platform to perform the attack detection in another one

52



6.3. LSTM Model Experiments

Table 6.10: Results - Fine-tuning Size Experiments

Metric 20000 samples 1000 samples 5000 samples
Test Accuracy 0.98358 0.8743 0.91526
Test Precision 0.94692 0.87019 0.8937
Test Recall 0.96634 0.81179 0.95497
Test F1 0.9527 0.8446 0.91253
Test TN Rate 0.9527 0.8446 0.91253
Test Loss 0.15326 0.37579 0.22692

without the need to completely retrain the model, and using a fine-tuning dataset with
a smaller size (around 25% of the original number of samples). This leads to a smaller
overhead, both in the size of the dataset and in the time necessary to generate it.

53





CHAPTER 7
Conclusion

Recent advances in computer architecture make access to information faster and more
efficient, but also make the computer prone to attacks and information leakage. One type
of attack that makes use of this and poses a threat to modern computer architectures is
cache-based side-channel attacks, such as the Spectre Attack, for example. Even though
this type of attacks, which have an effect on the microarchitectural traces of the machine,
has been studied by several works that aim to detect it, there are still challenges to
overcome. Among them, it is the fact that current works use the sampling technique at a
defined interval to monitor HPC events, not being flexible to adapt and detect attacks
that may occur between the sampling intervals. In addition, state-of-the-art studies are
usually limited to a single target architecture, which does not guarantee the robustness
of a model that generalizes well. Therefore, this thesis aims to develop an approach to
detect Spectre attacks by observing microarchitectural traces of the computer and using
machine learning techniques.
To this end, this work makes the use of an overflow-based approach and T-LSTM
technique with the goal of attempting to generalize the model and transfer learning
between different architectures. The developed system includes an initial step to calibrate
to a new platform and define threshold values for each HPC that will be monitored.
The values are used in the dataset creation as overflow thresholds, where a sample is
collected for the dataset each time an overflow is triggered by one of the HPCs. The
dataset composed by the sequence of triggered overflows, along with the time interval
between overflows is submitted as input to a T-LSTM model, which is trained to detect
cache side-channel attacks. Optimization techniques, as normalization and fine-tuning,
are used to improve the model’s performance.
The experiments carried out in this work were divided into different scenarios, in order
to evaluate different aspects of the system. Initially, separate models were trained, one
for each evaluated platform. The trained models were then tested with samples from
the same platform on which they were trained, achieving results of over 99% in both

55



7. Conclusion

cases. The datasets generated on both platforms were then combined in a new training
dataset, and this trained model was evaluated both on a combination and with separate
test datasets. The obtained outcomes were also satisfactory, achieving the test accuracy
between 95% and 99.7%. Finally, the cross-validation scenario was tested, in which a
model trained with data from one platform was tested on another. The results of these
experiments revealed that the model was not generalized across platforms, and our initial
hypothesis was not confirmed.

As a way of improving the performance in this scenario, additional techniques were used,
namely normalization and fine-tuning. This enabled the system to enhance the detection
on a new platform, without the need to completely retrain the model. The test results
showed that, with the use of these techniques, the system achieved 98% accuracy on the
Raspberry Pi platform and 99% accuracy on the Intel platform. Further experiments
also indicated that a fine-tuning dataset of 5000 samples is enough to achieve all the
performance metrics above 90%. This suggests that the overhead created is significantly
small, in comparison with the need to generate a complete dataset and train the model
again.

One of the contributions of this work, as explained in Chapter 1, is the development of
an overflow-based dataset through the monitoring of microarchitectural traces (Hardware
Performance Counters). The used approach enables the system to calibrate the thresholds
to the target machine, offering flexibility for the application in unseen platforms. In
addition, the adaptability of the overflow technique ensures a constant data flow, even in
different workloads, and reduces the space and time overhead. The developed system can
identify the presence of Spectre and Rowhammer attacks in two architectures (Intel and
ARM), and the use of a fine-tuning technique enables the use of the model for unknown
platforms, while requiring less data and time than a complete model retraining would.

7.1 Future Works
The challenges and limitations related to the proposed approach are outlined on Chapter
6. Therefore, the work described on this thesis raises several improvement possibilities.

One of the most important aspects to improve in the proposed system is the ability to
generalize for different platforms. Possible approaches that could be experimented with
include testing different preprocessing and normalization techniques, different model
hyperparameters, or a different model architecture. In addition, a different calibration
algorithm may enable the generation of datasets that improve the machine learning model
training.

An important matter to consider would be to also guarantee that the system is safe to
data poisoning and other security threats. Especially when dealing with safety risks, as
is the case with this work, an essential future work would be to ensure that the model
training is performed in a safe environment and is not at risk of being poisoned by an
attacker.

56



7.1. Future Works

A technique that could be tested is the use of an attention mechanism in the deep learning
model. The idea behind this approach is to enable the neural network model to focus on
the selective and most relevant parts of the input data. In our case, it may be the case
that this feature helps the model to better identify the attack patterns, even with data
from an unknown platform.

Moreover, future works also include further ways of assessing the robustness of the model.
This includes the use of different attacks or different classes of benign applications, as
well as the presence of noise or randomization. These would make it more difficult for
the system to detect attacks, and it would guarantee that the model is robust in difficult
environments.

57





Overview of Generative AI Tools
Used

No Artificial Intelligence tools were used in the development of this thesis, except for the
initial translation of the Abstract. For this task, it was used Chat-GPT Model 5.

59





List of Figures

2.1 High-level overview of a transient execution attack [CBS+19] . . . . . . . 9
2.2 Code snippet for bound checking in Spectre Attack [KHF+20] . . . . . . . 11
2.3 A simple RNN [MCY+20] . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 RNN Cell [GMES19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 LSTM Cell [FLM+18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Proposed System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Boxplots for distribution of t0 in Intel dataset for different HPCs . . . . . 45
6.2 Boxplots for distribution of t0 in Raspberry Pi dataset for different HPCs 46

61





List of Tables

6.1 Thresholds - Intel Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Comparison Target Intervals - Intel Platform . . . . . . . . . . . . . . . . 42
6.3 Thresholds - Raspberry Pi Platform . . . . . . . . . . . . . . . . . . . . . 43
6.4 Comparison Target Intervals - Raspberry Pi Platform . . . . . . . . . . . 43
6.5 Results - Experiments on separate platforms . . . . . . . . . . . . . . . . 47
6.6 Results - Experiments on combined datasets . . . . . . . . . . . . . . . . . 48
6.7 Results - Cross-validation Experiments . . . . . . . . . . . . . . . . . . . . 50
6.8 Results - Normalization Experiments . . . . . . . . . . . . . . . . . . . . . 51
6.9 Results - Fine-Tuning Experiments . . . . . . . . . . . . . . . . . . . . . . 52
6.10 Results - Fine-tuning Size Experiments . . . . . . . . . . . . . . . . . . . 53

63





Acronyms

ANN Artificial Neural Network. 15, 16

ARM Advanced RISC Machines. 12

BTB Branch Target Buffer. 11

CNN Convolutional Neural Network. 15, 22

CPU Central Processing Unit. 1, 5, 9–14, 27

DL Deep Learning. 15, 32

DNN Deep Neural Network. 15

DRAM Dynamic Random-Access Memory. 12

FN False Negatives. 38

FP False Positives. 38

GA Genetic Algorithm. 22

GBC Gradient Boosting Classifier. 18, 20

HPC Hardware Performance Counter. 1, 2, 4, 13–15, 20, 25–30, 36, 41, 42, 44, 50, 55

kNN K-Nearest Neighbors. 18, 20

LDA Linear Discriminant Analysis. 18, 20

LLC Last-Level Cache. 5

LR Logistic Regression. 18, 20

LSTM Long Short-Term Memory. 3, 4, 16–18, 20–22, 26, 30, 31, 33, 35, 42, 49, 61

65



ML Machine Learning. 1, 15, 18, 28, 31, 33

MLP Multilayer Perceptron. 18, 20

mRMR Maximum Relevance Minimum Redundance. 27

PHT Pattern History Table. 10

PMU Performance Monitor Unit. 13

RAM Random-Access Memory. 5

RF Random Forest. 18, 20

RNN Recurrent Neural Network. 4, 15–18, 21, 22, 61

RSB Return Stack Buffer. 11

SCA Side-channel Attack. 6, 27

SGX Software Guard Extensions. 13

STL Store To Load. 12

SVC Support Vector Classifier. 18, 20

SVM Support Vector Machine. 20

T-LSTM Time-Aware Long Short-Term Memory. 31, 32, 35, 37, 44, 55

TN True Negatives. 38

TP True Positives. 38

66



Bibliography

[Alp20] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[AP22] Hossein Abbasimehr and Reza Paki. Improving time series forecasting using
lstm and attention models. Journal of Ambient Intelligence and Humanized
Computing, 13:1–19, 01 2022.

[AZW24] Mai AL-Zu’bi and Georg Weissenbacher. Statistical profiling of micro-
architectural traces and machine learning for spectre detection: A systematic
evaluation. In 2024 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1–6, 2024.

[BMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom
with transient Out-of-Order execution. In 27th USENIX Security Sympo-
sium (USENIX Security 18), page 991–1008, Baltimore, MD, August 2018.
USENIX Association.

[BPSS24] Pavitra Bhade, Joseph Paturel, Olivier Sentieys, and Sharad Sinha.
Lightweight hardware-based cache side-channel attack detection for edge
devices (edge-cascade). ACM Trans. Embed. Comput. Syst., 23(4), June
2024.

[BRN24] Swapnil Baviskar, Sanoj R, and Hiran V Nath. Cache based side-channel at-
tacks: A survey. In 2024 IEEE Recent Advances in Intelligent Computational
Systems (RAICS), pages 1–8, 2024.

[BXZ+17] Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, and Jiayu
Zhou. Patient subtyping via time-aware lstm networks. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, page 65–74, New York, NY, USA, 2017. Association
for Computing Machinery.

[BYL21] Yohannes Bekele, Ahmed Yiwere, and Daniel B Limbrick. Rowhammer
attacks on the raspberry pi 3b+. In Government Microcircuit Applications
& Critical Technologies Conference, 2021.

67



[CBS+19] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. A systematic evaluation of transient execution attacks and defenses.
In 28th USENIX Security Symposium (USENIX Security 19), pages 249–266,
Santa Clara, CA, August 2019. USENIX Association.

[Elm90] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–
211, 1990.

[Fer19] Serena Ferracci. Detecting cache-based side channel attacks using hardware
performance counters. mathesis, Sapienza, University of Rome, 2019.

[FLM+18] Yunsheng Fu, Fang Lou, Fangzhi Meng, Zhihong Tian, Hua Zhang, and
Feng Jiang. An intelligent network attack detection method based on rnn. In
2018 IEEE Third International Conference on Data Science in Cyberspace
(DSC), pages 483–489, 2018.

[FTS20] Hongqing Fang, Pei Tang, and Hao Si. Feature selections using mini-
mal redundancy maximal relevance algorithm for human activity recog-
nition in smart home environments. Journal of Healthcare Engineering,
2020(1):8876782, 2020.

[GMES19] Berk Gülmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar.
Fortuneteller: Predicting microarchitectural attacks via unsupervised deep
learning. ArXiv, abs/1907.03651, 2019.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
remote software-induced fault attack in javascript. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), DIMVA, Germany,
July 2016. Springer Vieweg.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+flush: A fast and stealthy cache attack. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 9721:279 – 299, 2016. Cited by: 378.

[Gre14] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson
Education, 2014.

[HL17] Zecheng He and Ruby B. Lee. How secure is your cache against side-channel
attacks? In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, page 341–353, New York,
NY, USA, 2017. Association for Computing Machinery.

[Hor18] Horn. Speculative execution, variant 4: Speculative store bypass,
2018. https://project-zero.issues.chromium.org/issues/
42450580 [Accessed: 2025-08-14].

68

https://project-zero.issues.chromium.org/issues/42450580
https://project-zero.issues.chromium.org/issues/42450580


[HS97a] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[HS97b] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, Second
Edition (Springer Series in Statistics). 02 2009.

[Int25] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 3 : System Programming Guide, 2025. Available
at https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

[Jia24] Yuchen Jiang. Implemention and analysis of various spectre attacks. Bache-
lor’s thesis, Technische Universität Wien, 2024.

[KHF+20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: exploiting speculative
execution. Commun. ACM, 63(7):93–101, June 2020.

[KHK+24] Hodong Kim, Changhee Hahn, Hyunwoo J. Kim, Youngjoo Shin, and
Junbeom Hur. Deep learning-based detection for multiple cache side-channel
attacks. IEEE Transactions on Information Forensics and Security, 19:1672–
1686, 2024.

[KKSAG18] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. Spectre returns! speculation attacks using the return
stack buffer. In Proceedings of the 12th USENIX Conference on Offensive
Technologies, WOOT’18, page 3, USA, 2018. USENIX Association.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache attacks on mobile devices. In 25th
USENIX Security Symposium (USENIX Security 16), pages 549–564, Austin,
TX, August 2016. USENIX Association.

[LLLY19] Hongyu Liu, Bo Lang, Ming Liu, and Hanbing Yan. Cnn and rnn based pay-
load classification methods for attack detection. Knowledge-Based Systems,
163:332–341, 2019.

[LM18] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks on caches
and countermeasures. Journal of Hardware and Systems Security, 2, 03
2018.

69

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html


[LSG+20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, Mike Hamburg, and Raoul Strackx. Meltdown: Reading kernel
memory from user space. Communications of the ACM, 63(6):46–56, May
2020.

[MAB+18] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Naveed
Bin Raees Rao, Vianney Lapotre, and Guy Gogniat. Run-time Detec-
tion of Prime+Probe Side-Channel Attack on AES Encryption Algorithm.
In Global Information Infrastructure and Networking Symposium (GIIS),
Thessaloniki, Greece, October 2018.

[MCY+20] Pramita Muhuri, Prosenjit Chatterjee, Xiaohong Yuan, Kaushik Roy, and
Albert Esterline. Using a long short-term memory recurrent neural network
(lstm-rnn) to classify network attacks. Information, 11:243, 05 2020.

[MMB+20] M. Asim Mukhtar, Maria Mushtaq, M. Khurram Bhatti, Vianney Lapotre,
and Guy Gogniat. Flush + prefetch: A countermeasure against access-
driven cache-based side-channel attacks. Journal of Systems Architecture,
104:101698, 2020.

[Moo02] Shirley V. Moore. A comparison of counting and sampling modes of using
performance monitoring hardware. In Proceedings of the International
Conference on Computational Science-Part II, ICCS ’02, page 904–912,
Berlin, Heidelberg, 2002. Springer-Verlag.

[MR18] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’18, page 2109–2122,
New York, NY, USA, 2018. Association for Computing Machinery.

[nuc24] Intel® nuc products nuc10i3fn/nuc10i5fn/ nuc10i7fn - tech-
nical product specification, 2024. https://www.intel.
com/content/www/us/en/content-details/841263/
intel-nuc-products-nuc10i3fn-nuc10i5fn-nuc10i7fn-technical-product-specification.
html [Accessed: 2025-08-27].

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of aes. In Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology, CT-RSA’06, page
1–20, Berlin, Heidelberg, 2006. Springer-Verlag.

[pera] perf: Linux profiling with performance counters. https://perfwiki.
github.io/main/ [Accessed: 2025-08-26].

[Perb] perf_event_open(2) — linux manual page. https://man7.org/linux/
man-pages/man2/perf_event_open.2.html [Accessed: 2025-08-18].

70

https://www.intel.com/content/www/us/en/content-details/841263/intel-nuc-products-nuc10i3fn-nuc10i5fn-nuc10i7fn-technical-product-specification.html
https://www.intel.com/content/www/us/en/content-details/841263/intel-nuc-products-nuc10i3fn-nuc10i5fn-nuc10i7fn-technical-product-specification.html
https://www.intel.com/content/www/us/en/content-details/841263/intel-nuc-products-nuc10i3fn-nuc10i5fn-nuc10i7fn-technical-product-specification.html
https://www.intel.com/content/www/us/en/content-details/841263/intel-nuc-products-nuc10i3fn-nuc10i5fn-nuc10i7fn-technical-product-specification.html
https://perfwiki.github.io/main/
https://perfwiki.github.io/main/
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://man7.org/linux/man-pages/man2/perf_event_open.2.html


[perc] Perfmon events - intel processors. https://perfmon-events.intel.
com/ [Accessed: 2025-08-25].

[perd] Pmu events - arm cortex a72. https://developer.arm.com/
documentation/100095/0002/performance-monitor-unit/
events?lang=en [Accessed: 2025-08-25].

[PSCH21] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel.
Deep learning for anomaly detection: A review. ACM Comput. Surv., 54(2),
March 2021.

[ras] Raspberry pi 4 tech specs. https://www.raspberrypi.com/
products/raspberry-pi-4-model-b/specifications/ [Ac-
cessed: 2025-08-26].

[Ras22] Raspberry Pi Ltd. Datasheet Raspberry Pi BCM2711 ARM Periph-
erals, 2022. Available at https://datasheets.raspberrypi.com/
bcm2711/bcm2711-peripherals.pdf.

[rowa] Program for testing for the dram "rowhammer" problem. https://github.
com/google/rowhammer-test [Accessed: 2025-08-26].

[rowb] rowhammer_rpi3. https://github.com/developedby/
rowhammer_rpi3 [Accessed: 2025-08-26].

[Sch15] Pia Schwarzinger. Integrating causal discovery and machine learning for
enhanced financial forecasting. dithesis, Technische Universität Wien, 2015.

[SCZ21] Chaoqun Shen, Congcong Chen, and Jiliang Zhang. Micro-architectural
cache side-channel attacks and countermeasures. In 2021 26th Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 441–448,
2021.

[SDO23] Ishu Sharma, Rajat Dubey, and Sharad Shyam Ojha. Exploit detection and
mitigation technique of cache side-channel attacks using artificial intelligence.
In 2023 2nd International Conference on Automation, Computing and
Renewable Systems (ICACRS), pages 995–1001, 2023.

[spe] Spectre variant 2 poc. https://github.com/Anton-Cao/
spectrev2-poc [Accessed: 2025-08-26].

[Spe18] Spectre attack implementation, 2018. https://github.com/Eugnis/
spectre-attack [Accessed: 2025-08-14].

[TZW+20] Zhongkai Tong, Ziyuan Zhu, Zhanpeng Wang, Limin Wang, Yusha Zhang,
and Yuxin Liu. Cache side-channel attacks detection based on machine
learning. In 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), pages 919–926,
2020.

71

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://developer.arm.com/documentation/100095/0002/performance-monitor-unit/events?lang=en
https://developer.arm.com/documentation/100095/0002/performance-monitor-unit/events?lang=en
https://developer.arm.com/documentation/100095/0002/performance-monitor-unit/events?lang=en
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
https://github.com/developedby/rowhammer_rpi3
https://github.com/developedby/rowhammer_rpi3
https://github.com/Anton-Cao/spectrev2-poc
https://github.com/Anton-Cao/spectrev2-poc
https://github.com/Eugnis/spectre-attack
https://github.com/Eugnis/spectre-attack


[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution,
low noise, l3 cache Side-Channel attack. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 719–732, San Diego, CA, August 2014.
USENIX Association.

[YJDO19] Lin Yao, Binyao Jiang, Jing Deng, and Mohammad S. Obaidat. Lstm-based
detection for timing attacks in named data network. In 2019 IEEE Global
Communications Conference (GLOBECOM), pages 1–6, 2019.

[Zho21] Zhi-Hua Zhou. Machine Learning. 01 2021.

[ZZL16] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. Cloudradar: A real-time
side-channel attack detection system in clouds. In Fabian Monrose, Marc
Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro, editors, Research in
Attacks, Intrusions, and Defenses, pages 118–140, Cham, 2016. Springer
International Publishing.

72



Appendix

Implementation of Dataset Creation
1 #define _GNU_SOURCE
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <errno.h>
6 #include <unistd.h>
7 #include <fcntl.h>
8 #include <signal.h>
9 #include <sys/syscall.h>

10 #include <linux/perf_event.h>
11 #include <sys/ioctl.h>
12 #include <time.h>
13 #include <dirent.h>
14 #include <stdio.h>
15 #include <string.h>
16 #include <stdlib.h>
17 #include <ctype.h>
18 #include <time.h>
19 #include <dirent.h>
20
21 #define MAX_PROCESSES 100
22 #define MAX_SAMPLES 100000
23 #define NUM_COUNTERS 4
24
25 int thresholds[NUM_COUNTERS];
26
27 // Store the info on the PID and 4 HPCs
28 typedef struct {
29 pid_t pid;
30 int fds[NUM_COUNTERS];
31 } monitored_proc_t;
32
33 // List of processes that are being monitored
34 monitored_proc_t procs[MAX_PROCESSES];
35 int num_procs = 0;
36 int list_pids[100000];
37 int list_pids_attached[1000];
38 int list_pids_seen[100000] = {0};

73



39 int list_eventsets[1000];
40 long long int count_pid = 0;
41 int count_pid_attached = 0;
42 int count_pid_seen = 0;
43
44 // Save last value of each HPC for each process
45 long long last_value_tot_ins[MAX_PROCESSES] = {0};
46 long long last_value_br_msp[MAX_PROCESSES] = {0};
47 long long last_value_l1_dcm[MAX_PROCESSES] = {0};
48 long long last_value_tot_cyc[MAX_PROCESSES] = {0};
49
50 // Save the new value of each HPC (with difference from the last one)
51 long long value_trigger;
52
53 // Store HPC values
54 long long values[NUM_COUNTERS];
55 long long last_values[NUM_COUNTERS][MAX_PROCESSES] = {0};
56
57 // Timing info
58 clock_t start_time, end_time;
59 long long t0;
60 long long last_usec_HPC[NUM_COUNTERS] = {0};
61 long long cur_usec_HPC[NUM_COUNTERS];
62
63 // Overflow counter
64 int counter = 0;
65 long long overflow_log[100000][9] = {0};
66 char overflow_name_log[100000][20];
67 char list_names_attached[100000][1024];
68 int label = 0;
69
70 int isProcessDir(const struct dirent *entry) {
71 // Check if the entry name is a number (PID)
72 for (int i = 0; i < strlen(entry->d_name); i++) {
73 if (!isdigit(entry->d_name[i]))
74 return 0;
75 }
76 }
77
78 const char* get_process_name_by_pid(const int pid)
79 {
80 char* name_pid = (char*)calloc(1024,sizeof(char));
81 char* name_cmd = (char*)calloc(1024,sizeof(char));
82
83 if(name_pid){
84 sprintf(name_pid, "/proc/%d/comm",pid);
85 FILE* f = fopen(name_pid,"r");
86 if(f){
87 size_t size;
88 size = fread(name_cmd, sizeof(char), 1024, f);
89 if(size>0){
90 if(’\n’==name_cmd[size-1])
91 name_cmd[size-1]=’\0’;

74



92 }
93 fclose(f);
94 }
95 }
96 return name_cmd;
97 }
98
99 // Handler overflow

100 void handle_event(int signo, siginfo_t *info, void *context) {
101
102 // Get t1: Time since last overflow
103 clock_t end_time = clock();
104 long long t1 = llabs((long long)(((double)(end_time - start_time) /

CLOCKS_PER_SEC)*1000000));
105
106 // Get overflow trigger
107 int fd = info->si_fd;
108 for (int i = 0; i < num_procs; i++) {
109
110 monitored_proc_t *p = &procs[i];
111 long long val;
112 char name_overflow[1024];
113 int pid_index;
114
115 // Get the PID and HPC that caused the overflow (1 HPC at a time)
116 if (fd == p->fds[0]) { // TOT_INS
117
118 // Read the trigger value
119 read(fd, &val, sizeof(val));
120 value_trigger = val - last_value_tot_ins[i];
121 last_value_tot_ins[i] = val;
122 values[0] = llabs(val);
123 last_values[0][i] = llabs(val);
124
125 // Read other values
126 int k;
127 for(k=0; k < NUM_COUNTERS; k++) {
128 if(k==0) continue;
129 long long other_val;
130 read(p->fds[k], &other_val, sizeof(other_val));
131 values[k] = llabs(other_val);
132 last_values[k][i] = llabs(other_val);
133 }
134
135 // Get the time and calculate t0
136 cur_usec_HPC[0] = (long long)end_time;
137 t0 = llabs((long long)(((double)(cur_usec_HPC[0] - last_usec_HPC

[0]) / CLOCKS_PER_SEC)*1000000));
138
139 // Get process name
140 int j;
141 for(j=0; j< count_pid_attached; j++) {
142 if(p->pid == list_pids_attached[j]) {

75



143 pid_index = j;
144 strcpy(name_overflow, list_names_attached[j]);
145 }
146 }
147
148 // Get label (attack or benign)
149 if(name_overflow) {
150 if (strstr(name_overflow, "spectre") != NULL) {
151 label = 1;
152 } else if(strstr(name_overflow, "pht_flush") != NULL) {
153 label = 1;
154 } else if(strstr(name_overflow, "hprh") != NULL) {
155 label = 1;
156 } else {
157 label = 0;
158 }
159 }
160
161 strcpy(overflow_name_log[counter], name_overflow);
162 overflow_log[counter][0] = 1;
163 overflow_log[counter][1] = value_trigger;
164 overflow_log[counter][2] = values[1];
165 overflow_log[counter][3] = values[2];
166 overflow_log[counter][4] = values[3];
167 overflow_log[counter][5] = t0;
168 overflow_log[counter][6] = t1;
169 overflow_log[counter][7] = label;
170 overflow_log[counter][8] = counter;
171 last_usec_HPC[0] = cur_usec_HPC[0];
172
173 } // Repeated for other HPC events
174 }
175 counter++;
176 start_time = clock();
177 }
178
179 // Function to setup the overflow signal
180 void setup_signal(int signum) {
181 struct sigaction sa = {0};
182 sa.sa_sigaction = handle_event;
183 sa.sa_flags = SA_SIGINFO;
184 sigaction(signum, &sa, NULL);
185 }
186
187 // Attach the overflow signal to each process and PID
188 void attach_signal(int fd, int signo) {
189 fcntl(fd, F_SETFL, O_ASYNC);
190 fcntl(fd, F_SETSIG, signo);
191 fcntl(fd, F_SETOWN, getpid());
192 }
193
194 // Perf function for HPC monitoring
195 long perf_event_open(struct perf_event_attr *attr, pid_t pid,

76



196 int cpu, int group_fd, unsigned long flags) {
197 return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags);
198 }
199
200 // Create and open perf counter given the name and threshold
201 int open_counter(pid_t pid, int type, int config, long period, int signo) {
202 struct perf_event_attr pe = {0};
203 pe.type = type;
204 pe.size = sizeof(pe);
205 pe.config = config;
206 pe.sample_period = period;
207 pe.exclude_kernel = 1;
208 pe.exclude_hv = 1;
209 pe.disabled = 0;
210
211 int fd = perf_event_open(&pe, pid, -1, -1, 0);
212 if (fd == -1) return -1;
213 attach_signal(fd, signo);
214 return fd;
215 }
216
217 // Create and open perf counter for the cache HPC
218 int open_cache_event(pid_t pid, int cache, int op, int result, long period,

int signo) {
219 struct perf_event_attr pe = {0};
220 pe.type = PERF_TYPE_HW_CACHE;
221 pe.size = sizeof(pe);
222 pe.config = cache | (op << 8) | (result << 16);
223 pe.sample_period = period;
224 pe.exclude_kernel = 1;
225 pe.exclude_hv = 1;
226
227 int fd = perf_event_open(&pe, pid, -1, -1, 0);
228 if (fd == -1) return -1;
229 attach_signal(fd, signo);
230 return fd;
231 }
232
233 // Function to setup PID and counters for each process to be monitored
234 int setup_proc(pid_t pid, monitored_proc_t *proc) {
235 proc->pid = pid;
236
237 // TOT_INS
238 proc->fds[0] = open_counter(pid, PERF_TYPE_HARDWARE,

PERF_COUNT_HW_INSTRUCTIONS, thresholds[0], SIGRTMIN);
239 if (proc->fds[0] == -1) return -1;
240
241 // BR_MSP
242 proc->fds[1] = open_counter(pid, PERF_TYPE_HARDWARE,

PERF_COUNT_HW_BRANCH_MISSES, thresholds[1], SIGRTMIN + 1);
243 if (proc->fds[1] == -1) return -1;
244
245 // L1_DCM

77



246 proc->fds[2] = open_cache_event(pid, PERF_COUNT_HW_CACHE_L1D,
247 PERF_COUNT_HW_CACHE_OP_READ,
248 PERF_COUNT_HW_CACHE_RESULT_MISS,
249 thresholds[2], SIGRTMIN + 2);
250 if (proc->fds[2] == -1) return -1;
251
252 // TOT_CYC
253 proc->fds[3] = open_counter(pid, PERF_TYPE_HARDWARE,

PERF_COUNT_HW_CPU_CYCLES, thresholds[3], SIGRTMIN+3);
254 if (proc->fds[3] == -1) return -1;
255
256 return 0;
257 }
258
259 int main(int argc, char **argv) {
260
261 if (argc - 1 > MAX_PROCESSES) {
262 fprintf(stderr, "Max %d processes allowed\n", MAX_PROCESSES);
263 return 1;
264 }
265
266 /* Variables needed for monitoring the processes */
267 DIR *dir;
268 struct dirent *entry;
269
270 // Setting interrupt signals for overflow of 4 HPCs
271 setup_signal(SIGRTMIN);
272 setup_signal(SIGRTMIN + 1);
273 setup_signal(SIGRTMIN + 2);
274 setup_signal(SIGRTMIN + 3);
275
276 /*Open and read threshold file */
277 FILE *fptr;
278 fptr = fopen("thresholds.txt", "r");
279
280
281 char myString[100];
282 while(fgets(myString, 100, fptr)) {
283 //printf("%s\n", myString);
284 }
285
286 char *token = strtok(myString, ",");
287 int counter_HPC = 0;
288 while (token != NULL)
289 {
290 thresholds[counter_HPC] = atoi(token);
291 if(thresholds[counter_HPC] == 0) thresholds[counter_HPC] = 100;
292 counter_HPC++;
293 token = strtok(NULL, ",");
294 }
295
296 fclose(fptr);
297

78



298 FILE *file_dataset;
299 file_dataset = fopen("dataset.csv", "w");
300
301
302 fprintf(file_dataset, "process_name,trigger,TOT_INS,BR_MSP,L1_DCM,TOT_CYC

,t0,t1,label,sample\n");
303
304 // Iterate until dataset is done (MAX_SAMPLES reached)
305 int iterations = 0;
306
307 while (counter < MAX_SAMPLES) {
308
309 iterations++;
310
311 // Open the /proc directory
312 dir = opendir("/proc");
313 if (dir == NULL) {
314 perror("opendir");
315 return 1;
316 }
317
318 // List all pids
319 count_pid = 0;
320 while ((entry = readdir(dir)) != NULL) {
321
322 if (isProcessDir(entry)) {
323 int pid_num = atoi(entry->d_name);
324
325 list_pids[count_pid] = pid_num;
326 count_pid++;
327 }
328 }
329
330 closedir(dir);
331
332 int i;
333
334 // Attach pids and eventsets
335 for(i=0; i< count_pid; i++) {
336
337 int j;
338 int attached = 0;
339 int seen = 0;
340
341 // Check if process is attached
342 for (j=0; j<count_pid_attached; j++) {
343 if(list_pids_attached[j] == list_pids[i]) {
344 attached = 1;
345 }
346 }
347
348 // Check if process was seen (tried to attach)
349 if(list_pids_seen[i] == 1) seen = 1;

79



350
351 // If it is the first time that I am seeing this process
352 if ((attached == 0)&&(seen==0)) {
353
354 char path[64];
355 snprintf(path, sizeof(path), "/proc/%d", list_pids[i]);
356 if (access(path, F_OK) != 0) continue;
357
358 pid_t pid = list_pids[i];
359
360 // Setup the HPC counters and overflows for the process
361 if (setup_proc(pid, &procs[i]) < 0) {
362 printf("Error %d\n", pid);
363 perror("setup_proc failed");
364 if(seen == 0) {
365 list_pids_seen[i] = 1;
366 count_pid_seen++;
367 }
368 } else {
369
370 // Start counting for timer
371 start_time = clock();
372
373 // Get process name
374 char* name = get_process_name_by_pid(list_pids[i]);
375
376 // Save name and PID of process being monitored
377 list_pids_attached[count_pid_attached] = list_pids[i];
378 strcpy(list_names_attached[count_pid_attached],name);
379 count_pid_attached++;
380 }
381 }
382 }
383 }
384
385 int i;
386 for(i=0; i<counter;i++) {
387 if(overflow_log[i][0] != 0) {
388 fprintf(file_dataset, "%s,",overflow_name_log[i]);
389 fprintf(file_dataset, "%d,%lld,%lld,%lld,%lld,%lld,%lld,%d,%d\n",

overflow_log[i][0], overflow_log[i][1], overflow_log[i][2], overflow_log
[i][3], overflow_log[i][4], overflow_log[i][5], overflow_log[i][6],
overflow_log[i][7], overflow_log[i][8]);

390 }
391 }
392 fclose(file_dataset);
393 return 0;
394 }

Listing 1: Code for dataset creation

80



Implementation of Model Training Training and Evaluation

1
2 from tlstm import *
3 import torch
4 import numpy as np
5 import pytorch_lightning as pl
6 from pytorch_lightning.loggers import WandbLogger
7 import wandb
8 from collections import Counter
9

10 torch.set_float32_matmul_precision(’medium’)
11 seq_len = 100
12
13 # Scenario and datasets to be used
14 eval_scenario = 1
15 train_NUC = 1
16 train_Rasp = 0
17 test_NUC = 0
18 test_Rasp = 1
19
20 # SCENARIO 3: CROSS-VALIDATION
21
22 # Getting training dataset from file
23 if(train_NUC):
24 name_train_data = ’./datasets/train_data_intel.csv’
25 print(’Train NUC: ’+ name_train_data)
26 elif (train_Rasp):
27 name_train_data = ’./datasets/train_data_rasp.csv’
28 print(’Train Rasp: ’+ name_train_data)
29
30 data = torch.tensor(np.loadtxt(name_train_data, delimiter=’,’), dtype=torch.

long)
31 data = data[data[:, 7]<=1]
32 data = torch.stack([
33 data[:, 0] - 1, data[:, 5], data[:, 7]
34 ]).T
35 data = data[len(data)%seq_len:].reshape(-1, seq_len, 3)
36
37 # Getting test dataset from file
38 if(test_NUC):
39 name_test_data = ’./datasets/test_data_intel.csv’
40 print(’Test NUC: ’+ name_test_data)
41 elif (test_Rasp):
42 name_test_data = ’./datasets/test_data_rasp.csv’
43 print(’Test Rasp: ’+ name_test_data)
44
45 data_test = torch.tensor(np.loadtxt(name_test_data, delimiter=’,’), dtype=

torch.long)
46 data_test = data_test[data_test[:, 7]<=1]
47
48 data_test = torch.stack([
49 data_test[:, 0] - 1, data_test[:, 5], data_test[:, 7]

81



50 ]).T
51 data_test = data_test[len(data_test)%seq_len:].reshape(-1, seq_len, 3)
52
53 # Train Dataset
54 class Dataset(torch.utils.data.Dataset):
55 def __init__(self):
56 self.signal = data[:, :, 0]
57 self.timing = data[:, :, 1].to(torch.float)
58 self.y = data[:, :, 2]
59 self.n_labels = self.y.max().item() + 1
60 def __len__(self):
61 return len(self.signal)
62 def __getitem__(self, idx):
63 return self.signal[idx], self.timing[idx], self.y[idx]
64
65 data = Dataset()
66
67 # Data Normalization
68 mean, std, var = torch.mean(data.timing), torch.std(data.timing), torch.var(

data.timing)
69 data.timing = abs((data.timing-mean)/std)
70
71 # Divide into train + val subsets
72 train_ratio = 0.8
73 train_samples = int(train_ratio * len(data))
74 train, val = torch.utils.data.random_split(data, [train_samples, len(data) -

train_samples])
75
76 train_loader = torch.utils.data.DataLoader(train, batch_size=len(train)//2,

num_workers=15, shuffle=True)
77 val_loader = torch.utils.data.DataLoader(val, batch_size=len(val)//2,

num_workers=15, shuffle=False)
78
79 # Test Dataset
80 class Test_Dataset(torch.utils.data.Dataset):
81 def __init__(self):
82 self.signal = data_test[:, :, 0]
83 self.timing = data_test[:, :, 1].to(torch.float)
84 self.y = data_test[:, :, 2]
85 self.n_labels = self.y.max().item() + 1
86 def __len__(self):
87 return len(self.signal)
88 def __getitem__(self, idx):
89 return self.signal[idx], self.timing[idx], self.y[idx]
90
91 data_test = Test_Dataset()
92
93 # Test data normalization
94 mean, std, var = torch.mean(data_test.timing), torch.std(data_test.timing),

torch.var(data_test.timing)
95 data_test.timing = abs((data_test.timing-mean)/std)
96
97 test_loader = torch.utils.data.DataLoader(data_test, batch_size=len(data_test

82



), num_workers=15, shuffle=False)
98
99 # Define model

100 model = TLSTM(2, 4, 64, 50, lr=1e-3, freeze_lstm=False)
101
102 # Define logger and trainer
103 logger = WandbLogger(project="spectre", group="test")
104 trainer = pl.Trainer(
105 max_epochs=100,
106 logger=logger,
107 check_val_every_n_epoch=10,
108 devices=1
109 )
110
111 # Train model
112 trainer.fit(
113 model,
114 train_loader,
115 val_loader
116 )
117
118 # Save model trained
119 trainer.save_checkpoint("tlstm.ckpt")
120
121 # Define dataset for fine-tuning
122 if(test_NUC):
123 name_ft_data = ’./datasets/fine_tune_data_intel.csv’
124 print(’Fine-tune NUC: ’ + name_ft_data)
125 elif (test_Rasp):
126 name_ft_data = ’./datasets/fine_tune_data_rasp.csv’
127 print(’Fine-tune Rasp: ’ + name_ft_data)
128
129 # Load dataset and get relevant columns
130 ft_data = torch.tensor(np.loadtxt(name_ft_data, delimiter=’,’), dtype=torch.

long)
131 ft_data = ft_data[ft_data[:, 7]<=1]
132 ft_data = torch.stack([
133 ft_data[:, 0] - 1, ft_data[:, 5], ft_data[:, 7]
134 ]).T
135 ft_data = ft_data[len(ft_data)%seq_len:].reshape(-1, seq_len, 3)
136
137 # Fine-tune Dataset
138 class Fine_Tune_Dataset(torch.utils.data.Dataset):
139 def __init__(self):
140 self.signal = ft_data[:, :, 0]
141 self.timing = ft_data[:, :, 1].to(torch.float)
142 self.y = ft_data[:, :, 2]
143 self.n_labels = self.y.max().item() + 1
144 def __len__(self):
145 return len(self.signal)
146 def __getitem__(self, idx):
147 return self.signal[idx], self.timing[idx], self.y[idx]
148

83



149 ft_data = Fine_Tune_Dataset()
150
151 mean, std, var = torch.mean(ft_data.timing), torch.std(ft_data.timing), torch

.var(ft_data.timing)
152 ft_data.timing = abs((ft_data.timing-mean)/std)
153
154 ft_loader = torch.utils.data.DataLoader(ft_data, batch_size=len(ft_data)//2,

num_workers=15, shuffle=True)
155
156 # Fine-tune only the final layer on the new dataset
157 ft_model = TLSTM(2, 4, 64, 50, lr=1e-4, freeze_lstm=True)
158 ft_model.load_state_dict(model.state_dict(), strict=False)
159
160 trainer_ft = pl.Trainer(
161 max_epochs=100,
162 logger=logger,
163 accelerator="auto",
164 devices=1
165 )
166
167 trainer_ft.fit(ft_model, ft_loader)
168 trainer_ft.save_checkpoint("tlstm_ft.ckpt")
169
170 # Perform test
171 trainer_ft.test(dataloaders=test_loader)
172
173 # Close logger
174 wandb.finish()

Listing 2: Code for model training and evaluation

84



Implementation of T-LSTM Model

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from pytorch_lightning import LightningModule
5 import numpy as np
6 import torchmetrics
7 import itertools
8 from itertools import chain
9 import sklearn

10 from sklearn import metrics
11 import matplotlib.pyplot as plt
12
13 class TLSTM_Layer(nn.Module):
14
15 def __init__(self, dim):
16 super().__init__()
17 self.dim = dim
18 self.W_all = nn.Linear(dim, dim * 4)
19 self.emb = nn.Linear(dim, dim * 4)
20 self.W_d = nn.Linear(dim, dim)
21 self.out = nn.Linear(dim, dim)
22 self.h_initial = nn.Parameter(torch.zeros(1, dim)).to(self.emb.weight

)
23 self.c_initial = nn.Parameter(torch.zeros(1, dim)).to(self.emb.weight

)
24 self.norm = nn.LayerNorm(dim)
25
26 def forward(self, signal, delta):
27 batch, seq_len, _ = signal.shape
28 h = self.h_initial.expand(batch, -1)
29 c = self.c_initial.expand(batch, -1)
30 signal = self.norm(signal)
31 outputs = torch.zeros(*signal.shape).to(signal)
32
33 for step in range(seq_len):
34 c_s = torch.tanh(self.W_d(c))
35 c_ds = c_s / (1 + torch.log(delta[:, step:step + 1]).expand_as(

c_s))
36 c_t = c - c_s
37 c_star = c_t + c_ds
38 outs = self.W_all(h) + self.emb(signal[:, step])
39 f, i, o, c_candiate = torch.chunk(outs, 4, 1)
40 f = torch.sigmoid(f)
41 i = torch.sigmoid(i)
42 o = torch.sigmoid(o)
43 c_candiate = torch.tanh(c_candiate)
44 c = f * c_star + i * c_candiate
45 h = o * torch.tanh(c)
46 if(~torch.isnan(self.out(h)).any()):
47 outputs[:, step] = self.out(h)
48

85



49 return outputs
50
51 class FullyConnected(nn.Module):
52 def __init__(self, dim):
53 super().__init__()
54 self.norm = nn.LayerNorm(dim)
55 self.linear1 = nn.Linear(dim, 4*dim)
56 self.linear2 = nn.Linear(4*dim, dim)
57 self.activation = nn.ReLU()
58
59 def forward(self, x):
60 x = self.linear1(self.norm(x))
61 x = self.activation(x)
62 x = self.linear2(x)
63 return x
64
65 class TLSTM(LightningModule):
66 def __init__(self, n_labels=2, n_layer=4, hidden_size=64, initial_segment

=50, lr=1e-3, freeze_lstm=False):
67 super().__init__()
68 self.n_labels = n_labels
69 self.emb = nn.Embedding(4, hidden_size)
70 self.tlstm_layers = nn.ModuleList([
71 TLSTM_Layer(hidden_size)
72 for _ in range(n_layer)
73 ])
74 self.fc_layers = nn.ModuleList([
75 FullyConnected(hidden_size)
76 for _ in range(n_layer)
77 ])
78 self.out = nn.Linear(hidden_size, n_labels)
79 self.initial_segment = initial_segment
80 self.save_hyperparameters()
81
82 if freeze_lstm:
83 for layer in self.tlstm_layers:
84 for param in layer.parameters():
85 param.requires_grad = False
86
87 self.y_train_true = []
88 self.y_train_pred = []
89 self.y_test_true = []
90 self.y_test_pred = []
91
92 def forward(self, signal, timing):
93 signal = self.emb(signal)
94
95 for tlstm, fc in zip(self.tlstm_layers, self.fc_layers):
96 signal = signal + tlstm(signal, timing)
97 signal = signal + fc(signal)
98
99 return self.out(signal).squeeze()

100

86



101 def training_step(self, batch, batch_idx):
102 signal, timing, y = batch
103 counter = 0
104
105 out_t = (signal, timing)
106 out = self(signal, timing)
107
108 # Calculate loss
109 loss = F.cross_entropy(
110 out[:, self.initial_segment:].reshape(-1, self.n_labels),
111 y[:, self.initial_segment:].reshape(-1)
112 )
113 self.log(’train_loss’, loss, prog_bar=True, sync_dist=True)
114
115 # Calculate metrics
116 accuracy = (out.argmax(-1) == y)[:, self.initial_segment:].float().

mean()
117 self.log(’train_accuracy’, accuracy, prog_bar=True, sync_dist=True)
118
119 y_true_tensor = y[:, self.initial_segment:].reshape(-1)
120 y_pred_tensor = out[:, self.initial_segment:].reshape(-1, self.

n_labels).argmax(-1)
121
122 self.y_train_true.append(y_true_tensor.tolist())
123 self.y_train_pred.append(y_pred_tensor.tolist())
124
125 TP = ((y_pred_tensor == 1) & (y_true_tensor == 1)).sum().item()
126 FP = ((y_pred_tensor == 1) & (y_true_tensor == 0)).sum().item()
127 FN = ((y_pred_tensor == 0) & (y_true_tensor == 1)).sum().item()
128 TN = ((y_pred_tensor == 0) & (y_true_tensor == 0)).sum().item()
129
130 precision = TP / (TP + FP) if TP + FP > 0 else 0
131 recall = TP / (TP + FN) if TP + FN > 0 else 0
132 f1 = 2 * (precision * recall) / (precision + recall) if (precision +

recall) > 0 else 0
133 tn_rate = TN / (TN + FP) if TN + FP > 0 else 0
134
135 self.log(’train_precision’, precision, prog_bar=True, sync_dist=True)
136 self.log(’train_recall’, recall, prog_bar=True, sync_dist=True)
137 self.log(’train_f1’, f1, prog_bar=True, sync_dist=True)
138 self.log(’train_tn_rate’, tn_rate, prog_bar=True, sync_dist=True)
139
140 return loss
141
142 def validation_step(self, batch, batch_idx):
143 signal, timing, y = batch
144 out = self(signal, timing)
145 input = out[:, self.initial_segment:].reshape(-1, self.n_labels)
146
147 # Calculate loss
148 loss = F.cross_entropy(
149 out[:, self.initial_segment:].reshape(-1, self.n_labels),
150 y[:, self.initial_segment:].reshape(-1)

87



151 )
152 self.log(’val_loss’, loss, sync_dist=True)
153
154 # Calculate metrics
155 accuracy = (out.argmax(-1) == y)[:, self.initial_segment:].float().

mean()
156 self.log(’val_accuracy’, accuracy, sync_dist=True)
157
158 y_true_tensor = y[:, self.initial_segment:].reshape(-1)
159 y_pred_tensor = out[:, self.initial_segment:].reshape(-1, self.

n_labels).argmax(-1)
160
161 TP = ((y_pred_tensor == 1) & (y_true_tensor == 1)).sum().item()
162 FP = ((y_pred_tensor == 1) & (y_true_tensor == 0)).sum().item()
163 FN = ((y_pred_tensor == 0) & (y_true_tensor == 1)).sum().item()
164 TN = ((y_pred_tensor == 0) & (y_true_tensor == 0)).sum().item()
165
166 precision = TP / (TP + FP) if TP + FP > 0 else 0
167 recall = TP / (TP + FN) if TP + FN > 0 else 0
168 f1 = 2 * (precision * recall) / (precision + recall) if (precision +

recall) > 0 else 0
169 tn_rate = TN / (TN + FP) if TN + FP > 0 else 0
170
171 self.log(’val_precision’, precision, prog_bar=True, sync_dist=True)
172 self.log(’val_recall’, recall, prog_bar=True, sync_dist=True)
173 self.log(’val_f1’, f1, prog_bar=True, sync_dist=True)
174 self.log(’val_tn_rate’, tn_rate, prog_bar=True, sync_dist=True)
175
176 return loss
177
178 def test_step(self, batch, batch_idx):
179
180 signal, timing, y = batch
181 print(len(y))
182 out = self(signal, timing)
183 input = out[:, self.initial_segment:].reshape(-1, self.n_labels)
184
185 # Calculate loss
186 loss = F.cross_entropy(
187 out[:, self.initial_segment:].reshape(-1, self.n_labels),
188 y[:, self.initial_segment:].reshape(-1)
189 )
190 self.log(’test_loss’, loss, sync_dist=True)
191
192 # Calculate metrics
193 accuracy = (out.argmax(-1) == y)[:, self.initial_segment:].float().

mean()
194 self.log(’test_accuracy’, accuracy, sync_dist=True)
195
196 y_true_tensor = y[:, self.initial_segment:].reshape(-1)
197 y_pred_tensor = out[:, self.initial_segment:].reshape(-1, self.

n_labels).argmax(-1)
198

88



199 self.y_test_true.append(y_true_tensor.tolist())
200 self.y_test_pred.append(y_pred_tensor.tolist())
201
202 TP = ((y_pred_tensor == 1) & (y_true_tensor == 1)).sum().item()
203 FP = ((y_pred_tensor == 1) & (y_true_tensor == 0)).sum().item()
204 FN = ((y_pred_tensor == 0) & (y_true_tensor == 1)).sum().item()
205 TN = ((y_pred_tensor == 0) & (y_true_tensor == 0)).sum().item()
206
207 precision = TP / (TP + FP) if TP + FP > 0 else 0
208 recall = TP / (TP + FN) if TP + FN > 0 else 0
209 f1 = 2 * (precision * recall) / (precision + recall) if (precision +

recall) > 0 else 0
210 tn_rate = TN / (TN + FP) if TN + FP > 0 else 0
211
212 self.log(’test_precision’, precision, prog_bar=True, sync_dist=True)
213 self.log(’test_recall’, recall, prog_bar=True, sync_dist=True)
214 self.log(’test_f1’, f1, prog_bar=True, sync_dist=True)
215 self.log(’test_tn_rate’, f1, prog_bar=True, sync_dist=True)
216
217 return loss
218
219 def configure_optimizers(self):
220 return torch.optim.Adam(filter(lambda p: p.requires_grad, self.

parameters()), lr=self.hparams.lr)

Listing 3: Code for T-LSTM model

89


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodological Approach

	Theoretical Background
	Cache Side-Channel Attacks
	Hardware Performance Counters
	Machine Learning Techniques

	Related Works
	HPCs Monitoring for Cache Side-Channel Attack Detection
	Deep Learning for Security
	Cache Side-Channel Attacks Detection on Different Environments

	Methodology
	System Overview
	Data Selection
	Dataset Creation
	LSTM Model Definition
	Model Training and Evaluation

	System Implementation
	Experimental Setup
	Dataset Creation
	Model Training and Evaluation

	Experimental Evaluation
	Calibration Phase
	Dataset Creation
	LSTM Model Experiments

	Conclusion
	Future Works

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendix
	Implementation of Dataset Creation
	Implementation of Model Training Training and Evaluation
	Implementation of T-LSTM Model


